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CHAPTER I 

PROBLEM SUMMARY AND RESEARCH OBJECTIVES 

Introduction 

The objective of this dissertation is to develop and evaluate 

heuristic solution methods for multi-resource generalized assignment 

models, including some variations and complications. These problems 

belong to a class for which efficient optimal solutions probably cannot 

be developed. Without using references or symbols, this chapter 

summarizes the problem, justifies and develops the approaches and 

objectives of the research, and reports briefly the results that have 

been obtained and the contributions that have been made. 

Problem Summary 

General 

All assignment models are similar in seeking the best assignments 

of a set of "agents" to a set of "tasks." Typical applications are 

assigning machines or workers to jobs, factories to production orders, 

merchandise types to warehouse spaces, deployment of medical resources 

in catastrophic situations ("triage"), and many others. For example, 

the original motivation for this research was assignment of artillery 

to military targets. 

1 
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Previous Approaches 

In the "classical" assignment problem, the number of agents and 

taks is, perhaps after a simple augmentation, the same. Each agent 

is assigned to exactly one task as some objective function is optimized. 

The "generalized" assignment model allows the assignment of several 

tasks (or none at all) to each agent, so long as the tasks do not exceed 

the agent's capacity of some resource. 

Multi-Resource Models 

The primary concern of this research is the extension of generalized 

assignment models to consider several resources for each agent. The need 

for this is illustrated by an example in Chapter II, where an elegant 

solution of a single-resource model is (invalidly) used for a multi-

resource problem. 

Complications and Reality 

Secondary consideration is given to some of the complications that 

arise in actual problem situations. These include variations on the 

model, such as: 

Scheduling the execution of the assignments, including prior 
restrictions on the schedule. 

Incorporating discretionary resources for some agents; that 
is, a decision must be made as to which category of a given 
type of resource would be used for a given task. 

Allowing mixed assignments, in which agents can share some 
tasks. 

Task distribution leveling,. an attempt to avoid solutions where 
very efficient agents may be overloaded, while others are idle 
or nearly so, even though no constraints are violated. 

Combinations of some or all of the above variations. 



Other complications arise in the problem-solving environment: 

Limited computer resources may be all that are available. 

Conversational response times are often required. 

Simplicity of use is very important. 

Summary and Justification of Solution Approaches 

Optimal Approaches 

3 

There is probably no hope of obtaining a nonenumerative optimal 

solution to a multi-resource problem of realistic size, where the number 

of agents times the number of tasks may be well over a thousand. Branch

and-bound logic has always been the most efficient enumerative way 

to attack this kind of problem. For some single-resource problems 

this has been fairly satisfactory, approaching conversational speed, 

but the problems lacked variations. Also, the fastest results were 

associated with problems where the number of agents was very small 

compared to the number of tasks. This combined in fortunate coincidence 

with the single-resource characteristic to allow especially rapid 

solution. Current computer technology will probably not allow optimal 

solution of multi-resource problems in conversational time, especially 

if complications are present. 

Heuristic Approaches 

This dissertation describes and evaluates heuristic solution 

methods. Certain characteristics of multi-resource problems bear on the 

development of these methods. 

Unlike classical assignment or transportation problems, these 

problems cannot readily be checked for possession of a feasible solution 



(i.e., one covering all tasks). It is probably just as difficult to 

devise a procedure that can always detect a feasible solution. (if one 

exists) as it is to develop an optimal algorithm. For this reason, 

4 

the best any heuristic procedure can do is to frequently find an excel

lent feasible solution. Also, the only way of testing any solution for 

optimality consitutes an optimal solution method for the entire problem. 

Further, without re-solving the problem from the beginning, it is a 

matter of guesswork to determine how resource limitations should be 

changed in order to improve a solution or perform sensitivity analysis. 

Justifying the Heuristic Approach 

Why, then, is it desirable to develop heuristic approaches at all? 

This is answered by examining justifications for use of heuristic 

methods (1) in general, and (2) with this class of problems. 

Solution Time and Its Variability 

One justification has already been mentioned: solution time. Up 

to this point, however, only the duration itself was emphasized, and 

not its variability. In management planning or systems design, it is 

helpful to be able to predict response time. Heuristic methods can 

frequently be designed to require a fixed (or bounded) amount of time 

(thus enabling the use of worst-case analysis), but a branch-and-bound 

algorithm's time usage can vary through a vast range. This variability 

also applies to storage requirements. 

General Usefulness 

Heuristics are useful in spite of the aforementioned difficulty 

in finding a feasible solution. The fact is that in actual practice, 



5 

many feasible solutions usually exist, so a good one will be obtained 

by a well-designed heuristic. Management will usually be willing to 

allot additional resources or reduce the number of tasks if a normally 

reliable method has failed to find a feasible solution. Sometimes 

it is sufficient to minimize the number of unassigned tasks, as in 

triage. Also, several different hei.iristics can be used on a problem. 

Perhaps one will find an answer where others do not. 

Multiple Alternatives 

Heuristics can be designed to provide several attractive solutions, 

from which the most suitable can be chosen according to secondary 

objective requirements that may be impossible to codify. This is not 

true of most optimal procedures. 

Inexact Data 

Data are almost always so inexact that a good approximate solution 

cannot be called inferior to a solution obtained by optimal methods. 

Also, the difference between optimal and approximate objective values 

will often be less than the incremental cost of the optimal solution. 

Flexibility 

Heuristics are typically far more adaptable to changing require-

ments than are optimal methods. The former are not required to be as 

precisely formulated (in a mathematical sense) as are the latter. In-

deed, as will be seen, some of the more successful methods developed 

by this research descend directly from heuristics developed for quite 
I 

different problems. Although branch-and-bound methods are relatively 



easy to adapt compared to other optimal methods, they do not approach 

the flexibility of heuristic methods. 

Improving Optimal Methods 

6 

Branch-a~d-bound methods themselves provide two other justifications 

for heuristic solution methods. A very good bound on the optimal solu

tion can be obtained, thus enabling early elimination of large numbers 

of nodes. Also, the branching process uses heuristic rules to find 

promising branches. 

Choosing Heuristic Approaches 

Whatever the justification for use of heuristic methods, it must 

eventually be decided which of the literally infinite number of possible 

approaches to take. This is, of course, determined to some extent by the 

design objectives and performance standards that will be specified. One 

cannot, however, escape the fact that designing a heuristic is an intui

tive process in which inspiration comes from experience and investigation 

of the work of others. 

Construction Heuristics 

The first heuristic approaches that will be described here are those 

that construct a solution. Most of them attempt to progressively augment 

a partial solution by adding an especially attractive agent-task combi

nation. This process is guided by some intuitively developed intermediate 

logic that seeks a better solution than would be achieved by simply 

assigning successive tasks to the cheapest available agent. The inter

mediate logic is where experimentation has been done. The approaches of 

this research include: 



Random intermediate logic, where many complete solutions 
are generated at random. 

Penalty methods, quite similar to Vogel's approximation 
method. 

"LP-guided" methods, where successive assignments are 
based on variable values in a linear programming 
solution. 

Improvement Heuristics 

Additionally, ways have been developed to improve an existing 

solution. Two strategies try to obtain a savings by switching the 

assignment of two tasks to different agents: 

"Greedy" methods, which make the first profitable switch 
found. 

CRAFT-type methods, motivated by the well-known layout 
procedure, which make the most profitable switch found 
after examining all possibilities. 

Objectives 

Development 

Specific design objectives come from analysis in which 

7 

desirable performance characteristics are determined by (a) the require-

ments and limitations derived from the operating environment, and 

(b) cost-effectiveness versus other possible approaches. 

Requirements and Limitations 

The most important requirements involve: 

The problem definition in terms of size and complexity. The 
size of a realistic problem (in tasks times agents) can vary 
from about ten to thousands. Many applications deal with 
multiple resources, and complicating variations may be 
present. 



Response time, measured in real elapsed time. This requirement 
may vary considerably. It might be a few minutes in emergency 
or wartime situations, or "on-the-spot" in a factory. An hour 
or two would satisfy most managers. Problems involving large, 
long-term investments could justify much slower response, if a 
solution could be sufficiently improved or shown to be nearly 
optimal. This leads to the next type of requirement. 

Accuracy, in terms of nearness to the optimum solution (if one 
exists and can be found, or if a reasonable set o£ bounds can 
be determined). As has been mentioned, problem data are usually 
inaccurate. However, for the previously mentioned investment 
situation, or for a procedure that will be used many times, 
there may be reason to strive for high accuracy. Very good 
data will be needed, though, if the added effort is to be cost-. 
effective. 

Feasibility, or coverage of all tasks. This can be the most 
important requirement. As has been noted, however, there is 
probably no way to be sure of finding a feasible solution, 
and it is equally difficult to determine what should be done 
to introduce feasibility. Since feasibility is so important, 
it is necessary to detect when (a) it is certain that no 
feasible solution exists, and (b) it is probable that none 
exists. Heuristic rules for slack analysis can help guide 
the relaxation of constraints. 

8 

Limitations, besides those noted in conjunction with data accuracy, 

arise from the resources available for implementation: 

Personnel resources are limiting in that any solution method 
is more useful if it is as simple as possible to implement, 
maintain, use, and modify. 

Computer resources can be limited in speed, storage, peripheral 
devices, and programming languages. Many of the methods de
scribed are compatible with some of the smallest microcomputers. 

Cost-Effectiveness 

Note that the requirements of response time, accuracy, and 

feasibility bear directly on cost-effectiveness. There must, however, 

be some basis for comparison. What would a user do if this res.earch 

had not been undertaken? The incremental improvement would have to be 

measured against the incremental cost. 
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No reasonable alternative is known to be available. It is estimated 

that the best optimal branch-and-bound algorithm that could be developed 

for a typical multi-resource problem with two resources, 15 agents, and 

100 tasks, with no complicating variations, would have a response time 

of about thirty minutes and would require about a million bits of 

storage, using existing computer technology. The storage requirement is 

reasonable only for fairly large computers, and the response time would 

be suitable for only a few applications. 

Based on the above paragraphs and earlier discussion, three points 

can be made about the cost-effectiveness of this research: 

(1) There is apparently no other way to obtain a solution 
quickly enough. This means that the limiting value 
of the method is the value of the solution, for 
which users are willing to bear development costs 
of five to seven digits. 

(2) The incremental cost of a single heuristic problem 
solution is at most a few dollars. 

(3) Refinements to approach optimality should be made 
only if the improvement is of greater value than the 
cost of the refinement. No refinement is justified 
that produces a solution closer to the optimum than 
the amount of error in the data, which is usually 
very difficult to measure. 

Objectives 

The objectives given below are based on the requirements and 

limitations encountered in the assignment of air and artillery units to 

military targets. This is the application where the most taxing require-

ments occur ("worst case" philosophy), and actual problems are available. 

Many complications are present, response times on the order of five 

minutes are desired, multiple daily use places some premium on accuracy 

(although data are often estimated), problems are frequently so highly 



constrained that feasibility is the most important consideration, and 

personnel will usually be familiar only with input-output characteris

tics. The computer, for which specifications are currently sketchy, 

will use fairly recent technology. Total storage will probably be 

limited to 500,000 bits. (As was noted, methods suitable for micro

computers are also included). 
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The precise objectives of this research can now be stated: To 

devise heuristic solution methods substantially fulfilling the aspira

tion levels given below for realistic multi-resource generalized 

assignment problems. A realistic problem is defined as one whose size 

(tasks times agents) is on the order of ten to a thousand, possibly 

including one or more variations. Primary emphasis is placed on the 

multiple-resource model without variations. This model contains the 

features believed to be common to most applications, thus warranting 

the most thorough investigation. Variations may or may not apply to 

specific problems. Those that apply may be present in widely varying 

forms and severities. Therefore, procedures for handling variations 

are demonstrated to the extent that they have been identified in actual 

problems and dealt with to the user's satisfaction. It is emphasized 

that procedures for solving the basic multiple-resource problem have 

been planned for adaptability to variations encountered in practice. 

Suggestions are made for dealing with the variations. 

Aspiration Levels 

The first category of secondary objectives is evaluation of the 

methods that have been developed according to the following aspiration 

levels and qualitative criteria: 



Coverage (feasibility): A single aspiration level cannot be 
set. For problems appearing to be fairly loosely constrained, 
it is not unreasonable to hope that solutions covering all 
tasks would be found in at least 90 percent of the cases tested 
(some of which, despite appearances, probably do not possess 
feasible solutions) •. The deterioration of this performance 
becomes more severe as constraints tighten, since more problems 
are probably actually infeasible. 

Response time: A reliable response time on the order of five 
minutes is the aspiration level. 

Accuracy/Optimality: The aspiration level for this factor is 
to produce a solution within 15 percent of the optimum in 90 
percent of the cases where a feasible solution is found and 
the optimum is known or can be adequately bounded. 

Computer Storage: The aspiration level is to use an amount 
of storage (bits) that does not exceed 300 times the product 
of the numbers of resources, agents, and tasks. 

Other: Qualitative evaluation criteria include: 

(a) Adaptability to introduction of variations, 
which is necessary for any method to be of 
general applicability. 

(b) Availability of multiple solution alternatives 
subject to virtually instant access, which 
would be highly desirable in order to better 
satisfy additional secondary or transient 
objective criteria. 

(c) Ease of implementation, operation, and main
tenance, which would be critical to actual 
usefulness. 

(d) Predictability of response time. 

Evaluation Techniques 

Another category of secondary objectives is to determine whether 

the above criteria have been satisfied. It is not intended to evade 

11 

the usual research technique of evaluating an approximation by comparing 

it to the value being approximated, but the ill-cmnditioned nature of 

this class of problems makes it impractical to obtain exact information 
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about optimality and feasibility. Therefore, the following techniques 

are used to overcome these difficulties: 

Special heuristics enable probabilities to be calculated for 
obtaining a solution within a certain quantile of all solutions. 

Continuous methods (linear programming) give additional infor
mation about existence and bounds of solutions. 

Tests on smaller problems give some intuitive support while 
enabling more thorough use of special heuristics and 
continuous methods. 

Summary of Results 

Where measurements were possible, objectives were usually 

satisfied beyond the aspiration levels by one or more methods. This 

section summarizes the results for each category of objectives. 

Realistic Problems: A method was developed that will be used 
by the U. S. Marine Corps in a conversational implementation 
to solve artillery problems containing every variation that has 
been described. It is described in Chapter V. Elsewhere in 
Chapter V, some ways are suggested for considering variations 
in basic methods, even when the methods are implemented on a 
microcomputer. 

Coverage: A solution covering all tasks was always found 
unless known not to exist. If no solution existed, about 90 
percent confidence could be associated with covering as many 
tasks as possible. 

Response Time: Response times under five minutes could be 
guaranteed with the best methods on most computers. 

Accuracy/Optimality: Ninety-four percent of the answers 
were within 15 percent of the optimum, under stricter condi
tions than aspired to. Results support very high confidence 
of obtaining a solution superior to all but a few other 
solutions. 

Computer Storage: Depending on the output and user options 
desired, storage requirements were well within the aspira
tion level. Also, special methods for saving storage are 
discussed in Chapter V. 

Evaluation Techniques: Basic methods, either modified or 
used in slightly different ways, gave most of the informa
tion needed. 
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Contributions 

General 

This research has made several contributions. Besides the 

solution methods themselves, these include problem definition, evalua

tion methodology, and realistic applications. 

Heuristic Methods 

Considerable effort and inspiration were necessary to combine 

methods used with other classes of problems. Powerful heuristics were 

produced by adapting such methods to the characteristics of multi

resource generalized assignment problems. 

Problem Definition 

Although these problems are frequently encountered, no discussion 

of their multi-resource aspect was found in the literature. Researchers 

have used algorithms that are "optimal" for single-resource problems. 

Such an approach is itself heuristic. This dissertation establishes 

the need to consider multiple resources explicitly. 

Evaluation Methodology 

It was necessary to develop most of the evaluation methodology. 

The literature is weak in describing evaluation methodology for heuris

tics in general. Therefore, this dissertation may well serve as one 

of the more comprehensive sources of ideas for evaluating any heuristic. 
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Realistic Applications 

Researchers confronted with actual problems will seldom find pre

existing solution methods that can be applied unchanged. This 

dissertation describes the adaptation of some of its heuristics to fit 

specific applicational requirements, thus serving as a possible source 

of inspiration. 



CHAPTER II 

THE PROBLEM IN LITERATURE AND PRACTICE 

Introduction 

The classical assignment model occurs in almost every textbook 

(see [17, 31 and 33]). Agents and tasks are interchangeable 

because of the assumption that each agent has enough resources for 

exactly one task. Ross and Soland [26] point out that a model would 

be more useful if it allowed the assignment of several tasks to a 

single agent, so long as these tasks do not use more of some resources 

than the agent has available. However, they and others [3, 4, 9 and 

29] did not go beyond one resource. This chapter presents mathematical 

models and discusses applications, beginning with the single-resource 

problem, but primary emphasis is placed on the extension to multiple 

resources, with additional discussion of problems with variations. 

Single-Resource Problems 

Models 

Figure 1 is a model of the single-resource problem. It was 

adapted from Ross and Soland [26], to whom the terms "agent," "task," 

and "generalized assignment problem" are also due. A similar model is 

given by Balachandran [3, 4]. 
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m n 
Minimize E E cijxij 

i=l j=l 

Subject to: 
n 
E a .. x .. < b. 

l.J l.J - 1. j=l 
i=(l,2, ••• ,m) 

m 
E xij 1 

i=l 
j=(l,2, ••. ,n) 

= 0 or 1 

where 

m = number of agents 

n = number of tasks 

c.. cost incurred if agent i is assigned to task j 
l.J 

aij = resource required by agent i to do task j 

bi amount of resource available to agent i 

xij 1 if agent i is assigned to task j 

xij 0 if otherwise 

Figure 1. Mathematical Model of Single-Resource Generalized 
Assignment Problem 
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(1-1) 

(1-2) 

(1-3) 

(1-4) 
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Figure 1 reduces to the classical assignment model if we let aij = 

hi = 1. De Maio and Roveda [9] and Srinivasan and Thompson [29] discuss 

the special case that can be interpreted as a generalized transportation 

model where each destinationmust be supplied from a single source. 

This can be represented by allowing ai. to be a. in Figure 1. 
J J 

Applications 

Many specific applications have been cited, especially in Ross and 

Soland [26]. They include assignment of software development tasks to 

progrannners, assignment of jobs in computer networks (Ross and Soland 

[26] cite a working paper for Balachandran [3], assignment of contrac-

tual payments or television commercials to time periods, along with 

fixed charge plant location models (Ross and Soland [26] cite Geoffrion 

[13] and Gross and Pinkus [16] here) where each customer must be sup-

plied by one plant, and communication network design models with node 

capacity constraints (Ross and Soland [26] cite Grigoriadis et al. 

[ 15]). 

Multi-Resource Problems 

Justification 

Actually, many of the applications cited above may be multi-

resource situations that have been simplified in order to make them 

analytically tractable. For example, Balachandran [3, 4], in discuss-

ing the assignment of jobs to computers in a network, states that 

each job requires resources such as CPU time, memory, software, or 

peripherals. Later, the problem is simplified dramatically by associ-

ating an infinite:cost with combinations for which the job's 
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requirements for one or more resources exceed the total capacity of the 

computer. The only constrained resource is "processing time," giving 

a model like Figure 1. It is not clear whether "processing time" is CPU 

time or elapsed time, but the multi-programming capabilities of the 

computers involved appear to invalidate the single-resource model in 

either case. This example shows why it is often necessary to consider 

multiple resources in generalized assignment problems. All of the 

models discussed below would require modification to adequately describe 

Balachandran's problem (which could probably be said of most applica

tions), but the need for investigation of multi-resource problems seems 

well-established. 

The Basic Multi-Resource Model 

Figure 2 was derived from a model developed during preliminary 

research dealing with assignment of artillery units to engage enemy 

targets [6]. (Note that Figure 2 can be reduced to Figure 1 by letting 

the number of resources (p) be one.) In the artillery problem, two 

resources are involved: ammunition and time. The computer network 

[3, 4] problem dealt with resources of five types, most of which should 

have been considered explicitly, although software can be handled with 

Balachandran's infinite-cost approach. This technique has been used 

elsewhere [6, 26], and is mentioned in standard texts [17, 31, 33]. 

The Unconstrained Optimum 

Definition 

If the resource constraints (1~2) and (2-2) are disregarded in 

Figures 1 and 2, ah optimal solution becomes readily available by 



m n 
Minimize L: L: c .. x .. 

i=l j=l l.J l.J 

Subject to: 

where 

p = 

aijk = 

bik = 

n 

L: a .. kx .. < b.k 
j=l l.J l.J - 1. 

m 

L: xij 
i=l 

1 

= 0 or 1 

number of resources, 

amount of resource k 

amount of resource k 

i=(l,2, ••. ,m); 

k=(l,2, ••• ,p) 

j=(l,2, •.• ,n) 

indexed by k 

required by agent 

available to agent 

i to 

i 

(Other notation is identical to that in Figure 1) 

do task j 

Figure 2. Mathematical Model of Multiple-Resource Generalized 
Assignment Problem 
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(2-1) 

(2-2) 

(2-3) 

(2-4) 
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simply assigning each task to the cheapest agent. Such a solution, 

which has also been called the "trivial solution" [26], will be re-

ferred to in this dissertation as the "unconstrained optimum." Strict-

ly speaking, of course, the problem has become "unconstrained" only 

in terms of resources. The other restrictions remain because these 

could otherwise no longer be called "assignment problems." 

Complicated Multi-Resource Problem 

Introduction 

Despite the extended generality of the basic multi-resource 

model in Figure 2, it would need to be modified for most applications. 

Although it is neither possible nor practical to construct a model 

that will be of complete generality, it seems to be a worthwhile exam-

ple to expand the basic model to cover several variations, especially 

since such an application has been identified. 

The expanded mathematical model, however, is quite complex, which 

limits its usefulness. Therefore, this section begins with a Model 

Summary, followed by the model itself and a discussion of its components. 

Model Summary 

The meaning of each expression in the model is given below: 

(3-1) 

(3-2a) 

(Objective 
of: 

function) 

total cost 

Minimize a weighted combination 

(a) 
(b) 
(c) 

disparity in task distribution 
deviation from desired mixed assignments. 

(Ammunition constraints) No unit may use more 
of a particular type of ammunition than is 
available. 



(3-2b) 

(3-3a) 

(3-3b) 

(3-4a) 

(3-4b) 

The Model 

(Time constraints) Units may not exceed the 
specified amount of time available. 

(Binary coverage constraints) Targets for which 
mixed assignment is not desired must have 
exactly one unit assigned to cover them com
pletely. 

(Mixed coverage constraints) Units in a mixed 
assignment must provide aggregate coverage that 
is sufficient for the target. 

(Mixed assignment restrictions) For a unit firing 
a given type of ammunition at a given target in 
a mixed assignment: 
(a) Each gun in the unit must fire at least 

one shell. 
(b) The unit's fractional coverage of the 

target is equal to the number of shells 
fired divided by the number the:unit 
would need to fire to cover the whole 
target. 

(c) A record must be kept of the particular 
combination of unit, target, and 
ammunition type. 

(Binary assignment restrictions) In "unmixed" 
assignments, a unit either covers all of a target 
or none of it. 
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Figure 3 includes the variations for the most complicated version 

of the artillery problem, in which the agents are "units" and the 
I 

tasks are "targets." The notation is given in Figure 4. Figure 3 does 

not include the scheduling variation, for which the additional constraints 

and notation are given in Figure 5. 

Priority 

The model does not dlnsider target priority, which is handled by 

solving a subproblem (of the form given in Figure 3) for each priority 

class in decreasing order of importance. Each subproblem has access 



Minimize h 1 

n 
+ h3 E c I • (M. 'M I • 'Gj 'G I • ) 

j=l J J J J 

Subject to: 

B = 
i 

j E. J m 

Yl.·J·k = 0 Y .. k > q./a .. k 
} or { l.J - 1 l.J 

zijk = 0 zijk = 1 

xijk = 0 

aijkyijk t (O,qi,qi+l), ••• ) 

xijk = 0 or 1 

o} yijk = zijk = 

i=(l,2, ••• ,m); 

k= ( 1' 2' ... 'pi) 

i=(l,2, ••• ,m) 

i=(l,2, ••• ,m) 

. ~ J 
J ~ m 

k= (1 '2' ••• 'pi) 

i= (1, 2, ••• ,m) 

j E. Jb 

k= ( 1 ' 2 ' • • • 'p . ) l. 

Figure 3. Mathematical Model of Artillery Problem 
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(3-1) 

(3-2a) 

(3-2b) 

(3-3a) 

(3-3b) 

(3-4a) 

(3-4b) 



h 

m 

n 

pi 

c' 
j 

M. 
J 

M'. 
J 

G. 
J 
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Combining weight for objective function (Eh=l; all h~O). 

Number of friendly units (agents); indexed by i. 

Number of enemy targets (tasks); indexed by j. 

Number of ammunition types (discretionary resources) 
available to unit i; indexed by k. 
(NOTE: k and p are used differently than in Figures 1 and 2.) 

Cost, ammunition usage, and time needed if unit i engages 
target j using ammunition type k. 
(NOTE: c and a are coefficients on the sum of x and y, 
but t is a function of x and y.) 

Binary assignment variable; =1 if unit i alone engages target 
j 'using ammunition type k; =0 otherwise, even if unit i parti
cipates in mixed engagement of target j. 

Mixed assignment variable; value is fraction of target j that 
unit i engages using ammunition type k. 

Total amount of time unit i is firing (actually, busy). 

Cost due to deviation from mixed assignment specifications; a 
function of M., M'., G., and G' .• 

J J J J 

Number of units requested for mixed assignment for target j. 

Number of units ac~ually assigned in mixed assignment to 
target j. 

Set of units requested for primary consideration for mixed 
assignment to target j. 

Set of units actually assigned to target j. 

Supply of kth ammunition type at unit i. 

Time horizon; must be in same units as t. 

Set of indices to tasks requiring binary assignment. 

Set of indices to tasks requiring mixed assignment. 
(NOTE: Jb·U J = {1,2, ... ,n}; Jbr\ J · = 0). 
---- m m 

Number of guns located at unit i. 

Binary indicator variable; =1 if yijk > 0; =O=yijk otherwise. 

Figure 4. Notation for Mathematical Mo~el of Artillery Problem 
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only to those resources not allocated in an earlier subproblem. This 

concept of absolute priority was the result of a user specification, 

but also occurs elsewhere, e.g., in the operating systems for IBM 360 

and 370 computers. Other viewpoints exist, such as the "goal program

ming" approach of maximizing the number of assigned tasks as long as 

no tasks remain unassigned in a final solution if sufficient resources 

for them can be diverted from tasks of lower priority. The distinction 

between these two concepts of priority is rather fine--the first opti

mizes in groups; the second optimizes the entire problem (and would 

always·achieve .coverage at least as wide as the first). The second 

concept, besides being difficult to understand (which is regarded by 

Woolsey [34] as a fatal flaw), is computationally unwieldy and could 

prevent assignment of the most efficient units to the most important 

targets. 

Objective Function 

Figure 3 incorporates only one of many possible formulations for 

the four objective criteria: 

(1) Coverage: Maximizing the number of targets covered. 

(2) Cost Minimization: Maximizing target value requires only a 

simple transformation. 

(3) Mixed Assignments: Minimizing overall deviations from the 

numbers and types of units specified. 

(4) Task Distribution Leveling: Minimizing the maximum disparity 

between any two units in fraction of available time used. 

Coverage is not reflected in Figure 3, because coverage can be made a 

consequence of cost minimization by adding to the problem a fictitious 

unit with unlimited resources. Any targets that could not be assigned 
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elsewhere could be assigned to this unit. However, the associated 

cost would be so great that any solution actually covering n + 1 targets 

would be of lower cost than if n or fewer targets were covered. This 

approach is also used by Balachandran [3, 4]. The objective function 

has been formulated as a simple linear combination of the other three 

criteria. Balachandran [3, 4] justifies this by noting that (a) various 

theoretical appraoches [12, 24, 27] would not be economically feasible 

because of the computation time required, and (b) the linear combina~ 

tion is adequate if management can assign utilities for use as combining 

weights. Woolsey [34] describes a procedure for obtaining and refining 

such weights through interaction with the user. In summary, there is 

little evidence that a more elaborate formulation would better repre-

sent the largely intuitive decision standard that a user would employ. 

It is quite possible that a heuristic will obtain an answer that 

will satisfy a model without operating explicitly on the model's 

specifications. This is true in the case of the decision variables of 

Figure 3, which the heuristic considers only indirectly. Also, the 

user has not yet decided on the final form of all objective criteria, 

which may portend changes in the final heuristic even though the model 

does not change. 

Mixed Assignments and Discretionary Resources 

The model in Figure 3 also contains nonbinary variables (yijk) to 

reflect the mixed assignment variation. For those targets defined 

by the user as requiring simultaneous engagement by more than one 

unit, yijk represents the "fraction" of target j that unit i will cover 

using ammunition type k (the use of different ammunition types is the 
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discretionary resource variation). The restrictions of y. 'k and a. 'ky "k 
1J 1J 1J 

to the sets of discrete values defined in Figure 3 (3-4a) are derived 

from a further requirement ("one-volley-mini~ttum") that each participat-

ing unit must fire at least one round from each gun, with the total 

number of rounds fired by each unit being, of course, an integer. 

Note that the indicator variable z .. k is a count of the number of units 
1J 

participating in a mixed assignment on target j. 

Correspondence Between Models 

To help understand the correspondence between models, Figures 1, 2 

and 3 have had their components numbered according to equivalent func-

tion. For example, (1-1), (2-1), and (3-1) are the objective functions; 

(1-2), (2-2), (3-2a) and (3-2b) are resource constraints; (1-3), (2-3), 

(3-3a), and (3-3b) are complete coverage constraints. 

Scheduling 

The additional constraints and notation for the scheduling varia-

tion are given in Figure 5. The meaning of each constraint is given 

below: 

(5-1) 

(5-2) 

(5-3) 

(5-4) 

The duration of an assignment must be at 
least as great as the time required to 
execute it. 

An assignment to a target with a specified 
"start time" must be scheduled with an 
allowance for set-up time. 

A specified "end time" becomes the actual 
end time. 

If (a) only the "end time" or (b) only the 
"start time" is specified, the assignment 
must (a) start as late as possible, or 
(b) end as early as possible. 



E 
j 

j €. J 
e 

sij ~ Ej - tijk(xijk'yijk) 

eij ~ 8 j + tijk(xijk'Yijk) 

sij > 0 

'<&J·jE.J J s' e 

'E.J·j<tJ J s' e 

e .. < T j=(l,2, ••• ,n) 
1] 

NOTE: In (5-l) through (5-7), i=(l,2, ••• ,m) 

si j 
1 

eilj 

where 

- u si . - u 

l 
il 2] i2 

j E J m; il :f i2 ; z .. =1 
ei . 

1] 

2] 

S. =specified "start time" (first shell falls on target j). 
J 

E. =specified "end time" (last shell falls on target j). 
J 

J = set of targets for which "start times" are specified. 
s 

J set of targets for which end times are specified. 
e 

u. = set-up time for unit i. (NOTE:· t .. k includes ui .. ) 
1 -- 1] 
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(5-1) 

(5-2) 

(5-3) 

(5-4a) 

(5-4 b) 

(5-5) 

(5-6) 

(5-7) 

(5-8) 

(5-9) 

scheduled time for unit i to begin setting up to fire on 
target j. 

eij 

D .. 
1] 

scheduled end of unit i's engagement of target j. 

=interval from sij to eij" 

Other notation is as in Figures 3 and 4. 

Figure 5. Additional Constraints and Notation for Scheduling 
Variation in Artillery Problem 



(5-5)' (5-6) 

(5-7) 

(5-8), (5-9) 

Assignments must occur within the specified 
time horizon. 

Assignments for a given unit may not 
overlap. 

In a mixed assignment on a given target, 
shells from all participating units must 
start and stop falling on the target 
simultaneously. 

These constraints come from user specifications. A problem from a 

different area might use entirely different scheduling constraints. 
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The complexity of the problem modeled in Figure 5 can be appreci-

ated by imagining an exercise in project management where the network 

cannot be constructed in advance except for fragments derived from 

specified start and end times for some activities. Durations, costs, 

and materials requirements are not initially known, because it is not 

known who will execute each activity. Som~ of the usual flexibility 

has been removed by prior restrictions on activities that may or may 

not be on the critical path. Thus, the scheduling variations make 

the problem very difficult indeed. 

Difficulty of Optimal Solution 

General 

As was stated in Chapter I, generalized assignment problems are 

known [28] to belong to a class (called "P-complete") of problems for 

which it is believed that no nonenumerative optimal solutions can be 

obtained. The artillery problem is doubly complicated. If we regard 

the units as "jobs" to be scheduled for processing on "machines" 

representing targets, it can be seen to be an extension (mixed assign-

ments, schedule restrictions) of the jobshop problem, which is also 
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known [11] to be an unpromising ("NP-complete") problem. Indeed, all 

problems that are NP-complete are also P-complete, but the converse 

does not necessarily hold [28]. 

"P-complete" stands for "polynomial-complete," a term derived from 

a formal definition of efficiency. Garey et al. [11] defines an effi-

cient algorithm as one for which some constant c exists such that the 

amount of time required for a problem with n variables will never be 

C C II C ") above O(n ). (O(n ) denotes a quantity that is on the order of n • 

Such an algorithm is said [11, 28] to run in "polynomial time." In 

other words, an efficient algorithm is one capable of being executed 

at worst in an amount of time on the order of a constant power of the 

number of variables. (This definition of efficiency appeared only 

recently, and thus lacks wide acceptance.) P-complete problems are 

believed not to be solvable in polynomial time, thus requiring enumer-

ative solutions, for which the number of iterations is on the order of 

en, which is greater than nc as long as c is less than nand c is 

greater than 2, so enumerative solutions can be very tedious. Even 

the branch-and-bound methods that have been developed for single-

resource problems [3, 4, 9, 26, 29] cannot be guaranteed to examine 

n fewer nodes than on the order of m , although the fastest algorithms 

[3, 4, 26) never needed excessive CPU time, for randomly generated 

problems of 500 to 5000 variables. 

Multi-Resource Problems 

Unfortunately, the optimal methods for single-resource problems 

offer almos~ no hope of extension to multiple resources. Only the 

algorithm of Ross and Soland [26] appears compatible with multi-resource 



problems, but response times would probably be too great for most 

applications. Running time should be many times that of the single

resource version, which on seven 20 x 50 (1000-variable) randomly 

generated problems used between 0.199 and 1.568 minutes of CPU time 
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on a CDC 6600, excluding input-output and editing of the data. For 

multi-resource problems (using the data given by Glover et al. [14] 

for comparative speeds of different computers in solving transporta

tion problems) these times could increase by thousands of times if the 

programs were run on a more typical computer. Storage requirements 

would also be very great--probably several million bits. 

Attempts have been made to model single-resource problems in terms 

of network flows, but Balachandran [3] reported that such algorithms 

did not appear to be amenable to guarnateeing the binary characteristics 

of the variables. Ross and Soland [26] compared their algorithm to 

two others, one of which was a network model [19] that repeatedly ex

ceeded a 50-minute time limit (four of seven 500-variable problems) on 

the CDC 6600. 

A study by Glover et al. [14], reveals that it is difficult to 

equitably compare speeds of algorithms. However, it seems clear that 

any optimal algorithm would be too unwieldy for most applications. 



CHAPTER III 

BASIC HEURISTIC METHODS 

Introduction 

History and Classification 

Heuristic methods are not new. Michael's lengthy review [21] 

reports that heuristics were once grouped with philosophy, psychology, 

and logic. He says the Romans recognized heuristic approaches as 

early as 300 A.D., and notes that both Descartes and Leibnitz tried 

to develop a classification system. 

Michael also attempts to classify heuristic methods, as have 

others [5, 18, 23]. The various classifications have little in common, 

which may be due to each author's concentration on methods in his own 

field. One idea, however, that seems to fit into all systems is the 

concept of "construction" and "improvement" heuristics. These. terms, 

due to Parker [23], are practically self-explanatory. Construction 

heuristics attempt to generate a complete solution, usually trying to 

proceed toward a solution that is especially attractive according to 

some objective criterion. Improvement heuristics operate on pre

existing complete solutions in an attempt to improve the value of the 

objective function. 

Ubiquity 

Examples of heuristics ·abound in everyday life, Michael gives 

31 



several, such as the golfer who uses an old ball on a hole with a 

water hazard, or the motorist selecting a route through a city based 

on perceived traffic conditions. 
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Games (Michael mentions chess) constitute a familiar area where 

heuristic analysis is the only practical approach. Ignizio [18] cites 

remarks about the ability of humans to play ticktacktoe, in which most 

players generate a strategy to guide them through thousands of outcomes. 

Although chess is vastly more complex, there exists for either of 

these deterministic games an optimal strategy (which may be impractical 

to determine). Other games are complicated by stochastic elements that 

add possibilities for the use of heuristics. Startling similarity to 

the language of academic discussion of the philosophy behind heuristic 

strategies can be found in discussions between tournament bridge 

players. 

Design Process 

It seems, then, that heuristics are everywhere. Everyone has an 

intuitive feeling for developing and using thel!l without being able to 

describe exactly what is happening. Michael [21] says that the process 

of developing a heuristic should be based on a study of "cognitive 

processes," and cites Polya [25] as recommending that the basis be 

experience in solving problems and watching problems be solved. A more 

structured philosophy is difficult to achieve. Ignizio [18] points 

out that the infinite number of possibilities makes it easy to criti

cize any one choice versus the others that were possible, and that it is 

probably impossible to explain the design to everyone's satisfaction. 

How does a painter know which brushstroke completes the canvas? These 



33 

last considerations should be kept in mind when considering the methods 

described and evaluated in the remainder of this dissertation. 

Background and Development of Specific Methods 

Sahni and Gonzalez [28] have shown that P-complete problems can be 

as ill-suited for heuristics as for optimal methods. They conclude that 

any heuristic that runs in polynomial time must occasionally produce 

arbitrarily bad results. Therefore, neither optimal nor near-optimal 

results can be guaranteed to be obtainable in a reasonable amount of 

time. With this in mind, several heuristics were developed for this 

research in the hope that some may perform well when others do not. 

Figure 6 outlines the heuristic methods that were developed. Many 

were inspired by examples described in the literature for use with 

problems of similar structure, such as traditional assignment and 

transportation models [17, 31, 33], as well as plant layout [10, 20, 

23], facilities location [10, 31], covering [18], knapsack [34], and 

project-scheduling [8] models. 

Construction Heuristics 

The construction heuristics used here all fit a classification 

due to Ignizio [18]. They use "add" logic, in which all variables are 

initially set to zero, then selectively set to one in the hope that an 

acceptable complete solution will result. They differ according to the 

type of intermediate logic that decides which variable is "added." 

Some are motivated by the popular method which makes assignments 

at random [8, 20, 23]. This procedure has the advantage of simplicity. 

In pure scheduling applications [8], it has produced significantly 



I. Construction Heuristics 

A. Random Intermediate Logic 

1. 
2. 

RANDR: 
RANDC: 

Random column, random row 
Random column, cheapest row 

B. Penalty-based (VAM) Logic (all assign 
cheapest row) 

1. VAMC: Column from VAM on costs 
2. VAMI: Same, but on resource-biased 

costs 

C. LP-guided Logic 

1. LPMAX: Random column, row of max 
LP variable 

II. Improvement Heuristic 

A. GREEDY: First profitable switch 

B. CRAFTY: Most profitable switch 

Figure 6. Outline of Basic Heuristic Methods 
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better results than more refined heuristics. McRoberts [20] has done 

work in determining sample size and estimating the distribution of solu

tion values. The speed and simplicity of randomly-guided layout 

heuristics has also been mentioned [23]. Two heuristics of this type 

will be described: RANDR and RANDC. Both can be used to obtain eval

uation standards, and RANDC is a very good problem-solver. 

Another form of intermediate logic used in this research was 

motivated by the Vogel approximation method (VAM), a textbook [17, 31, 

33] heuristic giving good initial solutions for transportation problems. 

Preliminary research [7] produced two VAM-based heuristics that gave 

excellent results: VAMC and VAMI. 

The third type of construction heuristic (LPMAX) has been used in 

many integer-constrained problems. Variable values from a continuous 

(linear programming) solution are adjusted to integers. As often noted 

[17, 30, 31, 33], adjustment must be judicious, or infeasibility or 

unacceptable suboptimality can occur. The continuous solution can also 

give information about bounds and existence of the discrete optimum. 

Unfortunately, obtaining the continuous solution to a problem of realis

tic size requires much storage and time, and there is little room for 

discretion in adjusting the variables. 

Improvement Heuristics 

Parker [2] distinguishes between "greedy" methods and the well-known 

CRAFT [1] technique in a class that Brockelhurst [5] calls "bivariate 

searches." Parker and others he cited found that (for layout problems) 

CRAFT gave the best objective function values, but greedy methods were 

faster. The adaptations used here, GREEDY and CRAFTY, run so slowly 
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that their usefulness is limited to evaluating other methods' performances 

on relatively small problems. 

Specific Methods 

Introduction 

This section describes in detail each of the methods given in 

Figure 6. Construction heuristics are described in a brief narrative 

followed by a detailed outline. The same logic is used to optimize a 

task in RANDC, VAMC, and VAMI, so it is given in detail only for RANDC. 

Problem data are assumed to be given. Figure 7 explains the notation 

used in the outlines, some of which is repeated from Figure 2. VAMC 

and VAMI will be described and outlined together because VAMC is imple

mented as a special case of VAMI. 

Improvement heuristics are flowcharted rather than outlined. The 

flowchart makes the logic clearer by avoiding the subscripts on 

subscripts that an outline would use. Only one flowchart is used be

cause of the similarity of the logic of GREEDY and CRAFTY. 

Narrative Description of RANDC 

The user specifies how many solutions are to be generated (''sample 

size"). A solution is generated simply by "optimizing" all tasks in 

random order. The best solutions are printed. 

"Optimizing" a task means assigning it to the cheapest agent having 

sufficient remaining resources. If no agent is resource-feasible, a 

flag is set to indicate that the task remains unassigned. The "cost" of 

an unassignep task is set to a value· (see II.D.3.c. below) that is so 
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Method(s) Where Usedi Meaning 

All; Amount of resource k required by agent i 
to do task j 

RANDR; Vector for shuffling agent indices 

All; Amount of resource k originally .available 
to agent i 

All; Amount of resource k remaining for agent i 

All; Cost incurred if agent i is assigned to 
task j 

All; Contribution of current assignment to 
objective function 

RANDR, RANDC; Random number seed 

VAMI; Factor to balance cost-inefficiency 
combination 

VAMI; Vector of penalties {H.} 
J 

All; Indices of agents, tasks, and resources, 
respectively 

All; Indices of assignment currently being 
constructed 

All; Number of agents, indexed by i 

All; Number of tasks, indexed by j 

RANDR, RANDC; "Sample Size,".or number of trial 
solutions to be generated 

All; Number of resources, indexed by k 

VAMI; Matrix of inefficiency-biased costs {Pij} 

VAMI; Combining weight for constructing P 

VAMI; Number of values of Q to use 

VAMI; Matrix of resource inefficiencies {Sij} 

T RANDR, RANDC, LPMAX; Vector for shuffling 
task indices {Tj} 

Figure 7. Notation Used in Outlines of Construction' 
Heuristics 
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Method(s) Where Used; Meaning 

All, Count of tasks that could not be assigned 

RANDC, VAMI, LPMX; Vector for seeking ith -
smallest element in jth column of ci. 's (modified 
xi.' s in LPMAX) {W.} J 

J 1 

All;= 1 if agent i is assigned to task j; 
= 0 otherwise 

All; Assignment vector {x.}: X.=i means 
x .. =1; X.=-1 means task j J J 
c5Jld not be assigned 

All; Current value of objective function 

All; Minimum Z among complete solutions 
found so far 

Figure 7. (Continued) 



large that maximizing the number of assigned tasks is a direct conse-

quence of minimizing total cost. 

Outline of RANDC 

I. Acquire Nand d; set T.=j for all j and A.=i for all i. 
J l 

II. Generate N solutions: 

A. (Re)set u and Z to zero. 

B. (Re)set Bik to bik for all i and k. 

C. Use random numbers to shuffle T (task indices). 

D. For all j: 

1. Set J = T. (i.e., pick a task at random). 
J 

2. Set Wi = ciJ for all i. 

3. For all i: 

a. Set I to index of ith- smallest W .• 
l 
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(1) If aiJk exceeds Bik for some k, go to II.D.3.b. 

(2) If not, subtract aiJk from Bik for all k. 

(3) Set C = ciJ and go to II.D.4. 

b. If i < m, go to II.D.3.a. for next i. 

Max c. If not, set C = n .. (c .. ); set I= -1; Add 1 to u. 
l,J lJ 

4. Add C to Z, set XJ•I. 

E. Print solution if new best solution or one of first five 
solutions. 

F. Go to II. A. until N solutions have been generated. 

II.D.2., 3., arid 4. constitute a procedure that will be referred to as 

"Optimize task J" in describing VAMI/VAMC. 
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Example Solution Using RANDC 

The following example problem will also be used to illustrate VAMI, 

as well as being quite similar to the problem solved in the computer 

runs of Appendix D. 

Suppose the problem is to minimize 

subject to: 

6lx11 + 16x12 + 72x13 + 43x14 .::_ 140 i=l, 

19x11 + 16x12 + 46x13 + 50x14 .::_ 150 i=l, 

48x21 + 28x22 + 49x23 + 67x24 ..::_ 150 i=2, 

36x21 + 62x22 + 5lx23 + 8lx24 ..::_ 130 i=2, 

xll + x21 = 1 j=l 

x12 + x22 = 1 j=2 

xl3 + x23 = 1 j=3 

xlO + x24 = 1 j=4 

xij =. 0 or 1 

Note that m=2, n=4, and p=2. 

k=l 

k=2 

k=l 

k=2 

Corresponds 
to (2-2) in 

Figure 2. 

Corresponds 
to (2-3) in 
Figure 2. 

Corresponds 
to (2-4) in 
Figure 2. 

Expressing the problem data as matrices and vectors to correspond with 

the notation of Figure 2 gives: 

j=l j=2 j=3 j=4 

c .. : 
l.J 

i=l 
i=2 

i,.;l, k=l 
i=l, k=2 
i=2, k=l 
i=2, k=2 

40 
89 

j=l 

61 
19 
48 
36 

e.g., a132 = 46, a241 = 67, etc. 

i 

87 
63 

j=2 

16 
16 
28 
62 

60 79 
58 10 

j=3 j=4 

72 43 
46 50 
49 67 
51 81 

bik: 

140 
150 
150 
130 
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This example will not exactly trace the outline of RANDC. Rather, 

it seeks to communicate the concept of repeated optimization of tasks 

in random order which is the main idea of RANDC. Three solutions will 

be generated. 

Suppose the vector T is first shuffled to give the order 4, 1, 2, 

3 for optimizing the tasks. Task 4 is assigned to agent 2 (the cheapest 

agent) at a cost of 10. The resource supplies for agent 2 are reduced 

from 150 and 130 to 83 and 49. Note that it is no longer possible to 

assign tasks 2 and 3 to agent 2 because they would require more of 

resource 2 (62 or 51) than is available (49). 

Task 1 is the next to be optimized. Agent 1 is cheapest at a cost 

of 40 and is resource-feasible. The data matrices, annotated to show 

the effect of the first two assignments, are: 

@ 87 60 79 
c .. : 89 63* 58*@ slack 1J 

bik: 

® 16 72 43 79 

@) 16 46 50 131 

aijk: 
48 28* 49*@ 83 

36 62>~ 51*® 49 

Circled elements are those associated with assignments that have been 

made; those marked with an asterisk indicate that the corresponding 

assignment has become infeasible because of resource limitations. 

The third task to be optimized is task 2. The annotated data 

matrices are: 

40 @ 60* 79 
c .. : 

1J 
89 63 58* 10 
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slack 
bik: 

®@ 72* 43 63 

@)@ 46* so 115 
aijk: 

48 28 49*® 83 

36 62 51*@ 49 

Note that task 3 cannot be assigned to either agent. Agent 1 would re-

quire 72 units of resource 1 and only 63 are available. A similar 

situation exists for agent 2's second resource, of which 51 units are 

needed, but only 49 units remain. 

This first solution is thus complete, with a total cost of 137 

(40 + 87 + 10) with one task remaining unassigned. 

Suppose the second RANDC solution begins by shuffling the vector T 

to obtain the order 1, 3, 4, 2 for optimizing the tasks. When task 1 

is optimized by assigning it to agent 1 at a cost of 40, not enough 

resources are used to interfere with any potential assignment of another 

task. However, after optimizing task 3 via assignment to agent 2 at a 

cost of 58, the potential assignment of task 4 to agent 2 becomes 

infeasible: 

@ 87 60 79 
c .. : 
lJ 89 63 @ 10* 

slack 
bik•: 

® 16 72 43 79 

@> 16 46 so 131 
aijk: 

48 28 @ 67* 101 

36 62 ® 81* 79 

Task 4 is next to be optimized, and only agent 1 has sufficient 
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resources. This assignment, at a cost of 79, does not reduce resource 

supplies enough to affect any potential assignment of task 2. This is 

therefore made to agent 2, which is cheapest at a cost of 63. This 

gives a complete solution in which no tasks remain unassigned: 

@) 87 60 ®. 
c .. : 

89 ®@ 10 
1] 

slack 

bik: 

@ 16 72 @) 36 

@) 16 46 @) 81 
aijk: 

48 @)@ 67 73 

36 ®® 81 17 

This, as can be seen by inspection or enumeration, is the optimum 

solution, with a total cost of 240. 

A third RANDC solution is generated by shuffling the elements of 

the vector T to obtain, for example, an order of 4, 2, 3, 1 for 

optimizing tasks: 

c .. : 
lJ 

aijk: 

40 ® ® 79 

@) 63 58 ® 

61 @@ 43 

19 @@ 50 

@ 28 49 @ 
G) 62 51 @ 

slack 
bik: 

52 

88 

35 

13 

The total cost of this complete solution is only 245, so it represents 

a useful alternative to. the optimal solution obtained earlier. 
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Narrative Description of RANDR 

This heuristic generates solutions by assigning tasks in random 

order to randomly chosen agents. Tasks are assigned only to resource-

feasible agents, however. 

Outline of RANDR 

This is identical to RANDC except for II.D.2. and 3. which are 

replaced by the following: 

II.D.2. Shuffle A (agent indices) 

3. For all i: 

a. Set I= A. (i.e., pick an agent at random). 
1 ' 

The remainder of II.D.3. is the same as given for RANDC. 

Narrative Description of VAMI/VAMC 

The logic of this heuristic can probably best be understood by 

tracing its development. VAMC, the first heuristic developed in this 

research, is essentially identical to the Vogel Approximation Method, 

except that penalities ("H") are calculated for columns (tasks) only, 

and not additionally for rows as with transportation problems. The 

task associated with the largest penalty is optimized. Any penalties 

that could have changed (by some assignment becoming infeasible) are 

recalculated. 

VAMC often produced bad results in preliminary research. It could 

not avoid assignments that were especially inefficient uses of re-

sources if the relative cost was low. VAMI attempts to overcome this by 

combining the cost of a prospective assignment with its resource inef-

ficiency (which is' a sort of "resour~e cost"--the fraction of the agent's 
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remaining supply of the scarcest resource). Different combinations are 

tried, each with more weight (Q) on inefficiency (s .. ) and less (1-Q) 
1J 

on cost (cij). 

For each value of Q between zero and one, a "P-matrix" of the 

combined cost and inefficiency elements is built. A balancing factor 

(F) must first be applied to make the average inefficiency equal to the 

average cost, because these averages usually differ by several magni-

tudes. Penalties are calculated from the P-matrix. 

Otherwise, VAMI is the same as VAMC. In fact, VAMI is equivalent 

to VAMC when Q is zero, because pij is then equal to cij (see IV.B.2. 

of the following outline). 

VAMI resembles (and was motivated by) the optimization of a La 

Grangian function, with Q playing the role of a multiplier. No claim is 

made, however, that this resemblance justifies any expectation of near-

optimal results. 

Great efforts have been made to find a way to predict the best 

values of Q and q. Unfortunately, only the following impressions were 

produced: 

(1) The best results were usually obtained for small (but nonzero) 

values of Q, unless constraints were very tight. 

(2) The best value for q was usually b~tween 3 and 25, with larger 

values of q being needed for tight constraints. 

The results of these observations were incorporated into VAMI as follows: 

(1) The steps taken in Q (see IV.C. and D.) from 0 to 0.25 are 

only a third as large as those taken from 0.25 to 1, but equal in 

number. Allowing for the VAMC trial (Q=O) means q must be odd. 

(2) q can be acquired as a user input, or as a value calculated 
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from the data (say, 20 times average Sij), or as a constant (11 usually 

works well). One will be added if q is even. 

Outline of VAMI/VAMC 

I. Acquire q. 

II. For all i and j where agent i is feasible for task j: 

A. 

B. Accumulate Ecij and ESij' 

III. Calculate balancing factor and initialize Q: 

A. Set F = Ecij f ESij (Sums calculated above). 

B. Set Q = 0. 

IV. Generate the number of solutions specified by q: 

A. Set u = 0 and Z = 0. 

B. For all i: 

c. 

D. 

E. 

F. 

1. (Re)set Bik to Bik for all k. 

2. Set Pij = (1-Q)cij + Q•F•Sij for all j. 

If Q < .25, add l/(2q - 2) to Q. 

If not, add 3/(2q - 2) to Q. 

Set Hj =difference between two smallest P .. for all j. 
1] 

For all j: 

1. 

2. 

3. 

If j .,; 1, recalculate H. if possibly affected by the 
previous assignment. J 

Set J to index of jth- largest Hj. 

Optimize task J. 

G. Print first 5 solutions and all new best solutions. 

H. If Q exceeds 1, stop. If not, go to IV.A. 
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Example Solution Using VAMI 

The same problem is used as with RANDC: 

40 87 60 79 
cij: 

89 63 58 10 
bik: 

61 16 72 43 140 

19 16 46 50 150 
aijk: 

48 28 49 67 150 

36 62 51 81 130 

Before generating any solutions, a matrix {S .. } of resource inefficiencies 
1] 

must be calculated: 

.44 .11 .51 .31 

sij 
.32 .48 .39 • 62 

As stated in the Outline of VAMI/VAMC, 

For example, the value of .44 for s 11 was obtained as follows: 

61 19 Max <140 , 150) = Max (.44, .13) = .44 

The ·costs and inefficiencies are summed: 

E E 
i j cij 40 + 87 + .•• + 58 + 10 486 

E E 
i j sij = .44 + .11 + ..• + .39 + .62 = 3.18 

Their ratio is calculated to use as a balancing factor in later calcula-

tions, in which it is desirable to transform the inefficiencies so that 

their average magnitude will be equal to average cost: 

F 486 152.83 = 3.18 = 
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which is rounded to 153 for convenience in this example. 

In the iterative portion of VAMI, the number of solutions generated 

is given by q. Q is started at zero and is increased to 1 in q steps, 

not all of which will be given here. Every solution is guided by 

VAM-style penalties developed from a matrix {P .. } whose elements are 
l.J 

functions of Q and the corresponding cost and balanced inefficiency 

values: 

P. . = (1 - Q) c .. + QFS .. 
l.J l.J l.J 

Note that when Q = 0, P .. =c .. and VAMI is equivalent to VAMC (i.e., 
l.J l.J 

penalties are calculated from costs alone, without considering potential 

resource problems). 

Thus, for Q = 0, penalties will be calculated from the matrix 

40 87 60 79 

89 63 58 10 

VAMI-style penalties are calculated by subracting the smallest element 

in each column from the second-smallest. When this is done for the 

above matrix, the penalty vector {H.} is obtained: 
J 

H.: 40 24 2 69 
J 

The largest penalty is 69, associated with task 4, which is then 

optimized: 

40 87 60 79 
c ... : 

58*@ 
l.J 89 63* slack 

bik: 

61 16 72 43 140 

a . 19 16 46 50 150 
ijk. 

49*@ 48 28* 83 

36 62* 51*@ 49 
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Penalties must be recalculated, because with only two agents in the 

problem, any assignment must affect either the cheapest or second-

cheapest agent. There is no change in the penalty for task 1, but the 

cheapest agents have become infeasible for tasks 2 and 3. Since only 

one agent is still available for these two tasks, the penalty is arbi-

trarily calculated by subtracting the corresponding P .. from 99998. 
~J 

Task 4 is already assigned, so no penalty calculation will be made for 

it, which is indicated by "**" irt the following vector of recalculated 

penalties: 

H.: 49 99911 99938 ** 
J 

The largest penalty is associated with task 3, which is assigned to 

agent 1. This does not consume enough resources to further affect 

feasibility, so recalculation will not change the penalties associated 

with tasks 1 and 2: 

Hj: 49 99911 ** ** 
Task 2 is assigned to agent 1. This makes agent 1 infeasible for task 

1, which will thus be assigned to agent 2. This gives the same near-

optimum (total cost: 246) as the third RANDC solution. 

Taking further ·arbitrary steps of 0.1 in Q will not change the 

solution until Q reaches 0.4, where VAMI will not yield a feasible solu-

tion. The next example uses Q = 0.5 to obtain .a new alternative solu-

tion that is only 10 percent worse than the optimum. The resource-

biased costs are: 

53 52 . 69 63 

69 68 59 52 

These figures were obtained from the formula given earlier. For example, 

P11 = (1- Q)c11 + QFS11 = (.5)(40) + (.5)(153)(.44) =53 
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The Pij values have been truncated to integers for convenience (this is 

also done in the program to allow use of integer arithmetic to improve 

execution speed). From them a vector of penalties is calculated: 

H.: 16 16 10 11 
J 

There is a tie for the largest penalty between tasks 1 and 2. Such ties 

are arbitrarily broken in favor of the lower-numbered task, so task 1 

is assigned to agent 1, because P11 is less than P21 . This does not 

affect any potential assignment of another task, so the recalculated 

penalties show no change: 

H.: ** 16 10 11 
J 

This means that task 2 is the next to be assigned. It is assigned to 

agent 1, which is associated with the lowest P .. , even though the cor-
1] 

This responding c1j is not the lowest currently feasible for task 2. 

shows how, as Q increases, VAMI becomes increasingly biased toward 

assignments that make especially good use of resources. Thus, the 

status of the problem is: 

@@) 60* 79 
c .. : 

1] 89 63 58 10 slack 
bik: 

@@ 72* 43 63 

@)@ 46* 50 115 
aijk: 

48 28 49 67 150 

36 62 51 81 140 

Since agent 1 has become infeasible for task 3, the penalties are 

recalculated as: 

H.: * * ** 99939 11 
J 
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and task 3 is assigned to agent 2. This forces the assignment of task 

4 to agent 1 because of resource limitations, giving: 

@@ 60@ 
cij: 

89 63@ 10 
slack 
bik: 

@@ 72 @) 20 

@)@ 46 @ 65 

aijk: 
48 28 @ 67 101 

36 62 ® 81 79 

The total cost of this solution is 264, which compares well with the 

optimum of 240. 

Increasing Q above 0.7 causes a solution to be generated that is 

similar to the above except that task 1 is assigned to agent 2. The 

cost of that alternative would be an unattractive 313. 

VAMI did not find the optimum for this example (as RANDC did), 

but it did produce three feasible solutions, two of which were very 

near the optimum. 

Narrative Description of LPMAX 

Despite the apparent complexity of LPMAX, the basic logic is fairly 

simple. Any xij=l indicates that the corresponding assignment can be 

made immediately. Tasks that remain unassigned are optimized in random 

order exactly as in RANDC, except thatelements of W corresponding to 

nonzero xij are set equal to xij instead of cij' 
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Outline of LPMAX 

It is assumed that a continuous optimum solution is available for 

a problem identical to Figure 2 except for relaxation of the zero-one 

constraint (2-4) to allow xij to take on any value from zero to one. 

I. Initialization. 

A. 

B. 

Acquire 

For all 

1. For 

a. 

N, 

j: 

all 

If 

(1) 

(2) 

(3) 

d, and I 
xij s for all i and j • 

i; 

x .. 
l.J 

= 1: 

Store j in right-hand end of T (starting at 
T ). 

n 

Set X .=i. 
J 

Go to I.B.l. f9r next j. 

2. (All xij known to be~· 1 for this j): Store j in left

hand end of T (starting at T1). 

II. Generate N solutions. 

A. Set u and Z to zero, set Bik = Bik for all i and k. 

B. Shuffle left-hand indices in T. 

c. For all j (n, n-1, ••• , 2, 1) (note right-to-left order).· 

1. Set J = T •• 
J 

2. If right-hand j' go to II.C.4. 

3. If left-hand j: 

a. For all i: 

(1) Set wi = 1000 (1-xij) • 

(2) If wi = 0, set Wi = 1000 + cij. 

b. For all i: 

(1) Set I to index of ith-smallest wi. 



(a) If aiJk exceeds Bik for some k, go to 

II.C.3.b. (2). 
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(b) If not, subtract aiJk from Bik for all k. 

(c) Set C = ciJ and go to II.D.4. 

(2) If i < m, go to II.C.3.b. (1) for next i. 

(3) Max I = -1; add If not, set C = n i. (c .. ); set 
1 to u. ,J l.J 

4. Add C to Z, set XJ = I. 

D. Print first five solutions and all new best solutions. 

E. Go to II.A. 

GREEDY/CRAFTY 

These two methods are flowcharted together in Figure 8, where 

reference is made to "RH" (right-hand) and "LH" (left-hand) tasks, 

which are the two tasks being considered !or changes in agent assign-

ment. The methods terminate when a complete cycle through all possi-

ble changes produces none that are feasible and profitable. A cycle 

addresses all (left-hand) tasks from 1 to n-1. For each of these, a 

trial agent is chosen. Then, each (right-hand) task of higher index 

than the left-hand task is examined to see if it is feasible for its 

assignment to be switched to some trial agent giving a lower objective 

function value in conjunction with the trial agent for the other task. 

In GREEDY, the change is made immediately, but CRAFTY makes the best 

change found in the entire cycle. Both methods then begin a new cycle. 



-~N 

( STOP ) 

STORE 
CHANGE 

YES RECALL 
CHANGE 

>M <M 

~----------------~ 

LH TRIAL 
AGENT = 1 

SWITCH TO 
RIAL AGENT 

Figure 8. Flowchart of GREEDY/CRAFTY 
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CHAPTER IV 

BASIC METHODS PROGRAMMED AND TESTED 

Introduction 

This chapter describes the programming and testing of the basic 

methods of Chapter III, as well as auxiliary routines written to 

facilitate testing. 

Programs 

Languages 

All programs are written in FORTRAN IV, except that continuous 

solutions are produced by IBM's MPS (~athematical frogramming ~stem). 

Organization 

Each solution method is programmed as a subroutine named SOLVER, 

which is called as part of an overall testing scheme which is flow

charted in Figure 9. A small main program directs the first step of 

the scheme through a housekeeping and control routine SOLOOP from which 

SOLVER is called. Before calling SOLOOP, the main program uses other 

subroutines to randomly generate (MATGEN) and print (MATPRT--optional) 

problems. After SOLOOP, another optional subroutine (MPSGEN) can be 

called to create a data set for input to MPS in the second step of the 

scheme. SOLVER calls SWAPPR, which is optionally GREEDY or CRAFTY. 
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The following paragraphs outline or describe each test routine. 

Outline of Main Program 

I. Read control variables: 

A. NOVBLS: Indicates end-of-file if greater than 9000. 

B. !SEED: Seed for random-number function (RANDU). 

C. !PRINT: Print switch; controls degree of detail in 
printout. 

D. NBIGQS: "N" or "q" from Figure 7, depending on method 
used by SOLVER. 
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E. MTEST: Passed to SOLOOP to control number of solutions 
produced (one for each set of b.k right-hand-side values), 
and (optional--used with LPMAX) 1 reading of xi. values 
from a previous continuous solution. J 

F. LPFLAG: Controls calling of MPSGEN (see below). 
LPFLAG = 0: MPSGEN not called. 
LPFLAG = 1: MPSGEN called after SOLVER runs. 
LPFLAG = 2: Prevents SOLOOP from calling SOLVER; only 

MPSGEN is called. 

G. !GREED: Controls method used in SWAPPR. 
!GREED = 0: No improvement is attempted. 
!GREED = 1: GREEDY. 
!GREED = 2: CRAFTY. 

H. MM,NN,PP: Problem dimensions (m,n,p in Figure 2). 

II. Call MATGEN to generate problem. 

III. Call MATPRT if IPRINT = 1. 

IV. Call SOLOOP to call SOLVER for several sets of bik values. 

V. Call MPSGEN to generate MPS problem data (unless LPFLAG is 
zero). 

Outline of MATGEN 

I. 

II. 

Generate cij and aijk values as integers distributed U(l,lOOO). 

Generate number of infeasipilities as an integer distributed 
U(l,mn/3). 
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III. Generate indices of infeasibilities as integers distributed 
(row) U(l,m) or (column) U(l,n). 

IV. Flag infeasibilities: = o. 

Outline of MATPRT 

I. 

II. 

Print matrix of cij values. 

For each k, print matrix of a .. k values. 
l.J 

Outline of SOLOOP 

I. 

II. 

III. 

IV. 

v. 

If all agents are infeasible for some task, restore 
feasibility for a randomly chosen agent. 

Find and print unconstrained optimum and resources required 
for it by each agent. This determines maximum b.k value 
(IBSTOP) to be tried in V. below. 1 

Return to Main Program if LPFLAG 2 (i.e., MPS data are only 
output wanted; see I.F. in Outline of Main Program, above). 

Max 
Calculate cost of unassigned task as n· .. (ciJ'). 

l.,J 

Control generation of solutions: 

A. Check MTEST to control handling of bik values and 
(optional; used with LPMAX) input of optimal continuous 
xij values produced by MPS. All bik will be equal (vari-

able name: IB) to facilitate testing. 

MTEST = 0: Takes 11 steps in IB from 50p(n/m + 1) to 
IBSTOP (see II. above). 

MTEST > 0: MTEST is the number of values of IB that are 
tried. Each IB is read from a card. 

MTEST < 0: The negative of MTEST is again the number of 
IB's that are tried. However, after each IB, a 
deck of cards is read which contai~s i,j, and 
[1000 xii] for each nonzero xi. in an earlier 
MPS solution for the IB just raad. 

B. For each IB: 

1. Finds and prints unconstrained optimum when IB < 1000. 
Because aiik is distributed U(l,lOOO), this gives a 
tighter.boond on the optimum than calculations in II. 
above. 
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2. Calls SOLVER to obtain a solution for all bik = IB. 

Description of MPSGEN 

The flow of MPSGEN is determined by the sequence required for MPS 

input data, an example of which can be found in Appendix B. The output 

of MPSGEN can be related to Figure 2 as fcollows: 

MPS Data Item 

Row ROOOOO 

Row Rliiik 

Row R2jjj 

Column Xliiijj{n<lOO) 

Column Xliijjj(n>99) 

Notation in Figure 2 

Objective Function (2-1) 

Resource Constraints (2-2) 

Coverage Constraints (2-3) 

The unmodified output of MPSGEN can be used by MPS in the next job 

step. 

Description of SOLVER 

SOLVER is coded using symbolic names that are either self-explana-

tory or coincide as closely as possible with Figures 2 and 7. Figure 10 

establishes correspondence between Figures 2 and 7 and the code of 

SOLVER (see Appendix A). Four versions of SOLVER were prepared: RANDC, 

RANDR, LPMAX, VAMI. Each version of SOLVER uses logic that is similar 

to the corresponding outline in Chapter III. The main exception is the 

use of IB for all bik' which greatly facilitates testing without (because 

aijk are random variables) introducing undesirable bias into the test

ing process. Each SOLVER can be easily recoded to use bik values 

passed in an array. The solutions found by SOLVER will be printed with 

a degree of detail that depends on. the value stored in !PRINT: 
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Symbol in Figures 2 and 7 Variable Name(s) in Appendix A 

a AV(vector form), A(matrix) 

A AB 

b IB 

B BV ,B 

c cv,c 
c CBIG 

d I SEED 

F F 

H H 

i I 

I IBIG 

j J 

J JBIG 

k K 

m MM(object-time dimension, 
M(operational) 

n NN,N 

N NBIGQS 

p PP,P 
p PS 

q NBIGQS 

Q Q 

s s 
T T 

u u 
w w 
X XB 

z z 
z . MINZ 
m~n 

Figure 10. Symbols From Figures 2 ap.d 7 Corresponding 
to Variable Names in Appendix A 
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!PRINT = 1: The first 5 solutions and all new best solutions 
are printed in long form. This includes the 
value ~f the objective function ("COST"), the 
number of tasks remaining unassigned ("NO UNASGD 
TASKS"), the sum of the Ci. values for the assigned . J 
tasks ("COST OF ASGD TASKS"), and the number of 
trials necessary for SOLVER to obtain the solution 
("TRIAL NO."), all on a single line. The next 
line begins with the words "ASSIGNMENT VECTOR:" 
followed by xl through x20' with additional lines 

being used as needed for x21 through Xn. Then the 

slacks (each agent's remaining supply of each 
resource) are printed. 

!PRINT 0: Identical to !PRINT = 1, except that new best 
solutions are the only ones printed. 

!PRINT -1: This also causes output to be printed only for 
new best solutions, but in short form, where the 
slacks are not printed. 

SWAPPR is called to try to improve any new best solution. If 

!GREED = 0 SWAPPR will take no action. However, even if !GREED = 0, it 

will be set to 1 to let GREEDY attempt to improve the best solution 

found by SOLVER for each value of bik' VAMI uses a subroutine named ·. ·L · 

PENCOL to obtain or recalculate the penalty for each task. 

Description of SWAPPR 

This subroutine follows the logic of Figure 8. The code of 

SWAPPR in Appendix A refers to six important indices: 

JL (JR) 

IL (IR) 

IL2(IR2) 

Index of left(right)-hand task 

Index of agent to which left(right)-hand task 
is currently assigned 

Index of trial agent for left(right)-hand task 

The fundamental decision of SWAPPR is to determine if a cost savings 

can be attained without violating any resource constraints if the 

assignment of task JL is switched from agent IL to agent IL2 while 



switching task JR from agent IR to agent IR2. 

Improvement methods can be used in a "stand-alone" mode if an 

initial solution is made available to SWAPPR for improvement. 

Description of RANDU 
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RANDU is a multiplicative congruential generator of pseudorandom 

variates distributed U(o,l). It was adapted as a FORTRAN FUNCTION from 

the well-known subroutine RANDU found in IBM's Scientific Subroutine 

Package. The modification used in Appendix A was designed for maximum 

speed, but retains the statistical characteristics of the original 

RANDU. RANDU is machine-dependent, as are almost all such routines, 

and will probably need to be rewritten if not implemented on a computer 

similar to the IBM 360/370 series. 

Continuous Solutions with MPS 

MPS is implemented in a straight-forward manner, as can be seen 

from the code in Appendix A. The only extension beyond the simplest 

minimization of a linear program is the use of the "BOUND" option to 

"SETUP" the relaxation of the zero-one constraint to bounded variables. 

In this work, the output of MPSGEN has always been passed to MPS as a 

temporary data set. This is easily accomplished using Job Control 

cards, and is much more convenient than handling the thousands of data 

cards required to describe the continuous form of a thousand-variable 

program with several resources. 

Passing the Results of MPS to LPMAX 

Usually, almost all variable·values produced by MPS are zeros. 

A typical problem with 50 tasks might have only 55-65 nonzero xij 's in 
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its continuous solution, depending on tightness of constraints, even 

though the total number of variables might be 1000 or more •. This 

makes it fairly convenient to manually prepare input cards for testing 

LPMAX. 

Testing the Programs 

Preliminary Testing 

Initially, several problems of various dimensions were run in 

order to decide on the design of further. testing proc~dures. For 

most problems, RANDC, VAMI (which includes VAMC), and LPMAX were 

allawed to produce several solutions each, with their best solutions 

being improved by GREEDY and CRAFTY. ·GREEDY and CRAFTY were also used in 

the "stand-alone'i mode by allowing RANDC to generate one solution which 

·was then passed to SWAPPR for improvement. Finally, as aids to evalua

.tion, RANDC and RANDR were. run for large values of Nand succeeded by 

GREEDY. The continuous optimum produced for LPMAX and the unconstrained 

zero-one optima found by SOLOOP also served as .evaluation standards. 

Several general observations were made. 

Execution Time 

Not surprisingly, this seemed to be a function of the number of 

variables (mn), the "shape" (ratio of m ton), and the number of 

resources (p). Different methods appeared to be affected quite differ

ently by these factors, however. GREEDY and CRAFTY are too slow to use 

on large problems, even for test purposes. 
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Objective Function Values 

In this respect, the construction heuristics were consistently 

closer (in percentage) to a bound on the optimum for large (mn = 0(1000)) 

problems than for small, which was unexpected. However, this became 

less surprising after calculations revealed that the average difference 

among all possible objective values is many magnitudes less for a large 

problem than for a small one. Consider the following example of two 

problems of the same shape but different size: 

Dimensions (m x n): 

n No. Solutions (m ): 

Worst Solution 
(All Tasks Unassigned): 

Best Solution 
(Unconstrained Optimum): 

Average Difference 
Between Solutions: 

7 X 5 

1.6 X 104 

25000 

1639 

1.4 

35 X 25 

4.0 X 1038 

625000 

580 

1. 6 X 10-33 

n Of course, many of the m possible solutions are usually infeasible, 

but a similar analysis based only on feasible solutions is not a rea-

sonable undertaking, and it is doubtful if the results would differ 

significantly. 

Feasibility 

Where feasible solutions were known to exist, construction heuris-

tics seemed to be a bit better at finding them for large problems than 

for small ones. Again, there are probably enormously greater numbers 

of feasible solutions to a large problem. 
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Problem Characteristics 

It was clearly impossible to test all methods thoroughly with 

several problems in each category of characteristics. Suppose five 

different problem sizes were tested for six different shapes with five 

different sets of bik values for from one to four resources, using each 

basic method, with GREEDY and CRAFTY being applied to the final result 

of each construction heuristic, along with the use of RANDC and RANDR 

for very large values of N (2000) to obtain a solution that would be 

99.7 percent sure to lie in the .997 quantile of all solutions. Even 

without multiple replication, thousands of computer runs would be re

quired, many of which would cost over $100 each. The testing of pro

grams would require several years, and several rooms could be filled 

with the printouts. 

From the preliminary testing, it appeared that there were 

pronounced performance differences between the methods. Therefore, it 

was decided that an extens.ive testing procedure as described above would 

reveal very little that could not be inferred from an abbreviated 

scheme. Each problem characteristic was considered from the standpoint 

of its importance in revealing differences in the performance of methods 

relative to each other. 

Problem Size 

This characteristic had great effect on performance during 

preliminary testing, but the effect appeared to be purely linear (con

struction) or quadratic (improvement). Relative performance between 

methods seemed to be almost the same for small and large problems. 
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Therefore, it was decided to do almost all further testing for problems 

with approximately (1) 50, or (2) 1000 variables. Other problem sizes 

would only be "spot-checked." 

Problem Shape 

This seemed to be a very important characteristic, so it was 

decided to try five or six shapes for each problem size. However, 

it appeared that "tall" problems (m/n of, say, three or more) gave 

identical objective values with any method. There were usually strong 

indications that these results were optimal. Therefore, more emphasis 

was placed on "wide" (m/n about 0.1) problems than on "tall" ones. 

Number of Resources 

This affected LPMAX, CRAFTY, and GREEDY strongly, but made less 

difference with other methods. Also, it made little difference in the 

relative performance of the methods. Therefore, various values of p 

were tried for most problems, with p being held constant for an 

occasional specialized test. 

Tightness of Constraints 

Relative performance of methods appeared to depend on the degree 

to which problems were constrained, so it was decided to try several 

values of bik' To increase the chances of interesting results, one 

method (usually RANDC or VAMI) was run with MTEST = 0, which caused 

11 values of bik to be tried. The other methods were then used with 

the (usually) four bik values which appeared to be most likely to 

cause differences in relative performance of methods. 



67 

Characteristics of Methods 

These make it impossible to devise a "fair" way to compare 

methods. One obvious appraoch would be to allow each method equiva

lent time and storage (perhaps combined, e.g., kilobyte-hours) to 

work on identical problems. Also, methods could be allowed to run 

until equivalent solutions were produced. Neither of these approaches 

is fair because methods vary in their performance characteristics! 

(1) Some methods (RANDC) can make better use of additional time 

than others (VAMI). 

(2) Some methods (LPMAX) require a high initial .investment of 

storage and time for the first solution, but subsequent solutions are 

produced very rapidly.· 

(3) There is no way to be sure that each method has been coded to 

use individual logic features as efficiently as possible. 

(4) Each method is designed to use different amounts of time and/or 

storage in the hope of obtaining a solution whose quality is related 

to its cost. 

Glover et al. [14] also concluded that no "fair" comparison can be 

devised. 

Some approach, however, had to be chosen. The considerations 

discussed in the last several pages led to the final test design, in 

which the "equal time" approach allowed RANDC the same time as needed 

by VAMI, while other methods were run so as to reveal if their results 

justified their cost. Results were compared from many viewpoints. 

Test Design 

RANDC was run for approximately the time needed by VAMI for q = 11. 
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LPMAX and GREEDY were run as seemed "natural" for them: 

(1) LPMAX was run for N = 10 after being allowed the tremendous 

overhead of MPS. 

(2) GREEDY was run to completion with an initial solution produced 

by RANDC for N = 1. GREEDY was not tested for large problems. 

Most of each test run was devoted to obtaining evaluation standards. 

Problem size determined what could be done: 

(1) Small problems, where mn = 0(50): 

(a) RANDR and RANDC were run for N = 2000. 

(b) GREEDY was used to attempt to improve the results 

obtained by each other method. 

(2) Large problems, where mn = 0(1000): 

(a) RANDR and RANDC were usually run for N = 500, although 

several runs were made for N = 2000. 

(b) No improvement with GREEDY was attempted. A single run 

would have cost about $200. 

(3) SOLVER calculated the unconstrained optimum. 

(4) MPS gave the continuous optimum. Not only the solution 

value was used, but also the fraction of nonzero x .. that were equal 
1] 

to one. This fraction seemed to be a good indicator of constraint 

severity, since no method (in preliminary testing) ever found a way 

to cover all tasks when this fraction was below one-half. 

Summary of Test Runs 

("Run" means one execution of the scheme described above in Test 

Design for one set of bik values.) A total of 107 runs were made--66 

for small problems (only 47 and 53 of these included LPMAX and GREEDY, 
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respectively) and 41 for large problems. Of the 107 test runs, 42 

were intended to produce results for detailed tabulation to allow direct 

comparison of relative performances of the various methods. These 42 

runs were made for eleven different problems by using four (two with 

Problem 5) sets of bik values for each problem. The results are dis

played in Tables II through XII and summarized in Table I. 

TABLE I 

SUMMARY OF PROBLEM RESULTS 

Problem/Table Size (mn) m n p Number of bik Values 

1/II 48 4 12 4 4 
2/III 50 5 10 1 4 
3/IV 49 7 7 3 4 
'•/V 48 6 8 1 4 
5/VI 48 8 6 3 2 
6/VII 48 3 16 4 4 
7/VIII 1000 10 100 2 4 
8/IX 1000 20 50 3 4 
9/X 992 31 32 1 4 

10/XI 1000 40 25 3 4 
11/XII 1000 50 20 4 4 

The other 65 runs were used in part to investigate special performance 

characteristics of methods. All runs were used in summary tabulations. 

Test Results 

General 

The following paragraphs present and discuss summary tabulations 

of test results based on all 107 test runs. Discussions of special 
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TABLE II 

TEST RESULTS FOR PROBLEM 1 

No. Variables No.· Resources 
Seed (RANDU) 4 48(4 X 12) u,z . obtained for: 7001 

m1n Avg. CPU 
bik= bik= bik= bik= Time (sec.) 

Methbds/Tria1s 1370 1940 2130 2510 per bik 

RANDC/30 3,38613 0,4222 0,3385 0,3381 0.3 
+GREEDY Same 0,4107 Same Same 0.5 

VAMC 5,62413 1,15220 0,3385 0,3381 
VAMI/11 4,51676 0,4347 0,3385 0,3381 0.3 
+ GREEDY 3,39753 Same Same Same 0.5 

LPMAX/10 3,40101 1,14524 0,3385 0,3381 5.3 
+ GREEDY Same Same Same .Same 0.4 

GREEDY 4,49188 0,4107 0,3385 0,3381 0.6 

RANDR/2000 2,30401 0,4756 0,3922 0,3801 15.1 
+ GREEDY 2 '28571 0,3913 0,3385 0,3466 0.5 

RANDC/2000 3,38613 0,4107 0,3385 0,3381 16.2 
+ GREEDY Same Same Same Same 0.4 

CONTINUOUS 5760.4 3374.7 3338.2 3318.6 5.0 
OPTIMUM 3/21 9/15 10/14 11/13 
1/xij =1/ llxij :/:0 

UNCONSTRAINED 0,3284 .0,3284 0,3284 0,3284 
OPTIMUM 
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TABLE III 

TEST RESULTS FOR PROBLEM 2 

No. Variables No. Resources Seed (RANDU) 
1 50(5 X 10) u,Z .. obtained for: 1122334455 

m1n Avg. CPU 
bik= bik= bik= bik= Time (sec.) 

Methods/Trials 310 470 550 630 per bik 

RANDC/30 3,30706 1,11777 0,2844 0,2482 0.2 
+ GREEDY Same 1,11759 0,2810 Same 0.4 

VAMC 3,30531 2,20580 0,2996 0,2482 
VAMI/11 3,30631 1,12i94 0,2844 0,2482 0.2 
+ GREEDY Same Same 0,2810 Same 0.4 

LPMAX/10 2,22376 0,2844 0,2842 3.6 
+ GREEDY 1,12862 0,2810 0,2482 0.4 

GREEDY 3,30531 1,11759 1' 11618 1,11759 0.8 

RANDR/2000 3,30531 1,11777 0,2844 0,2482 14.3 
+ GREEDY Same 1,11759 0,2810 Same 0.4 

RANDC/2000 3,30531 1,11777 0,2844 0,2482 16.2 
+ GREEDY Same 1,11759 0,2810 Same 0.4 

CONTINUOUS Infeasible 2711.5 2342.0 2228.3 3.2 
OPTIMUM 6/14 7/13 8/12 
ltx . . =1/ lfx . . :fO 

1J 1J 

UNCONSTRAINED 0,2370 0,2183 0,2175 0,2175 
OPTIMUM 
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TABLE IV 

TEST RESULTS FOR PROBLEM 3 

No. Variables No. Resources Seed (RANDU) 
3 49(7 X 7) 

u,Z i obtained for: 1001 
mn Avg. CPU 

bik= bik= b.k bik= Time (sec.) 
1 = 

per bik Methods/Trials 510 720 1350 1980 

RANDC/30 2,15148 1,9309 0,1344 0,1146 0.2 
+ GREEDY Same 1,8541 Same Same 

VAMC 2,15148 1,9313 0,1344 0,1146 
VAMI/11 2,15148 1' 9313 0,1344 0,1146 0.2 
+ GREEDY Same 1,8615 Same Same 0.4 

LPMAX/10 2,15861 0,1344 0,1146 3.7 
+ GREEDY 1,8927 Same Same 0.5 

GREEDY 2,15148 2,15152 0,1344 0,1157 0.5 

RANDR/2000 2,15148 1,9309 0,1355 0,1463 13.1 
+ GREEDY Same 1,8541 0,1344 0,1146 0.4 

RANDC/2000 2,15148 1,9309 0,1344 0,1146 16.5 
+ GREEDY Same 1,8541 Same Same 0.4 

CONTINUOUS Infeasible 2649.5 1195.4 1131.3 3.5 
OPTIMUM 5/9 6/8 6/8 
lfx ij =1/ //xij :/0 

UNCONSTRAINED 0, 2677 0,2563 0,1120 0,1120 
OPTIMUM 



73 

TABLE.V 

TEST RESULTS FOR PROBLEM 4 

No. Variables No, Resources Seed (RANDU) 1 
48 (6 X 8) u,Z . obtained for: 3001 

m1.n A.vg. CPU 
bik= bik= bik= bik= Time (sec.) 

Methods/Trials 580 740 1220. 1380 per b.k 
l. 

RANDC/30 1,10246 0,2503 0,1439 0,1439 . 0.2 
+ GREEDY Same Same Same Same 0.3 

VAMC 1,10246 0,2503 0,1439 0,1439 
VAMI/11 1,10246 0,2503 0,1439 0,1439 0.2 
+ GREEDY Same Same Same Same 0.3 

LPMAX/10 1,9963 0,1494 0,1439 3.3 
+ GREEDY 0,2503 0,1439 Same 0.4 

GREEDY 1,10246 0,2503 0,1439 0,1439 0.4 

RANDR/2000 1,10246 0,2503 0,1494 0,2048 8.9 
+ GREEDY Same Same 0,1439 0,1508 0.4 

RANDC/2000 1,10246 0,2503 0,1439 0,1439 13.8 
+ GREEDY Same Same Same Same 0.3 

CONTINUOUS Infeasible 2499.3 1273.7 1218.1 3.1 
OPTIMUM 7/9 7/9 7/9 
llx . . =1/ fix . . #0 

l.J l.J 

UNCONSTRAINED 
OPTIMUM 1,9914 0,2489 0,1137 0,1137 
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TABLE VI 

TEST RESULTS FOR PROBLEM 5 

No. Variables No. Resources Seed (RANDU) 
3 48(8 X 6) 

u,Z i obtained for: 1357 
mn Avg. CPU 

bik= bik= Time (sec.) 

Methods/Trials 790 870 per bik 

RANDC/30 0,1963 0,1635 0.2 
+ GREEDY Same Same 0.5 

VAMC 0,1963 0,1635 
VAMI/11 0,1963 0,1635 0.2 
+ GREEDY Same Same 0.5 

LPMAX/10 0,1963 0,1635 3.9 
+ GREEDY Same Same 0.5 

GREEDY 0,1963 0,1635 0.5 

RANDR/2000 0,1963 0,1635 15.1 
+ GREEDY Same Same 

RANDC/2000 0,1963 0,1635 21.7 
+ GREEDY Same Same 0.5 

CONTINUOUS 1962.2 1554.9 3.7 
OPTIMUM 5/7 4/8 
llx . . = 1 I llx . . :f 0 

1J. 1J 

UNCONSTRAINED 0,1958 0,1499 
OPTIMUM 
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TABLE VII 

TEST RESULTS FOR PROBLEM 6 

No .. Variables No. Resources Seed (RANDU) 
4 48 (3 X 16) 

u,Z i obtained for: 13579 
m n Avg. CPU 

bik= bik= bik= bik= Time (sec.) 

Methods/Trials 2700 3300 3600 . 3900 per bik 

RANDC/30 2,36291 1,20996 0,5121 0,5121 0.3 
+ GREEDY 2,35202 Same Same Same 0.6 

VAMC 3,51799 0,5624 0,5121 0,5121 
VAMI/11 3,51777 ·o,5624 0,5121 0,5121 0.9 
+ GREEDY 2,36209 0,5454 Same Same 0.6 

LPMAX/10 1,20996 0,5121 0,5121 4.4 
+ GREEDY Same Same Same 0.6 

GREEDY 3,50603 0,6001 0,5154 0.5121 0.6 

RANDR/2000 2,35921 0,6263 0,5727 0,5313 23.9 
+ GREEDY Same 0,5361 0,5295 0,5163 0.6 

R..<'.NDC/2000 2,35651 0,5945 0,5121 0,5121 24.7 
+ GREEDY 1,20305 Same Same Same 0.6 

CONTINUOUS Infeasible 5206.9 5084.1 5027.7 4.1 
OPTIMUM 14/18 15/17 15/17 
fix .. =1//lxi .:/:0 

1J J 

UNCONSTRAINED 0,4989 0,4989 0,4989 0,4989 
OPTIMUM 
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TABLE VIII 

TEST RESULTS FOR PROBLEM 7 

No. Variables No. Resources Seed (RANDU) 
2 1000 (10 X 100) u,Z . obtained for: 1007 

m1n Avg. CPU 
bik= bik= bik= bik .. Time (sec.) 

Methods/Trials 4140 4900 5660 7180 per bik 

RANDC/500 3,320139 0,11867 0,9694 0,8856 30.8 
I 

I 
i' 

VAMC 7, 714355 0,10979 0,9466 0,8856 30.1 
VAMI/11 0,13800 0,10148 0,9320 0,8856 

LPMAX/10 1,113622 0,12156 0,9388 0,8856 63.8 

RANDR/ZOOO 1,145341 0,422101 0,41651 0,40820 123.2 

RANDC/2000 2,217867 0,11715 0,9551 0,8856 205.0 

CONTINUOUS 12968.3 9916.5 9272.4 8854.3 60.4 
OPTIMUM 
fix . . =1/f/x .. :f:.O 

1J 1J 

UNCONSTRAINED 0,8829 0,8829 0,8829 0,8829 
OPTIMUM 
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TABLE IX 

TEST RESULTS FOR PROBLEM 8 

No. Variables No. Resources Seed (RANDU) 3 1000 (20 X 50) u,Z . obtained for: 121341 
m1.n Avg. CPU 

bik= bik= bik= bik= Time (sec.) 

Methods/Trials 1440 1770 2430 2760 per bik 

RANDC/125 0,7184 0,4445 0,3075 0,2914 12.2 

VAMC 0,7149 0,3874 0,2958 0,2880 
VAMI/11 0,5587 0,3632 0,2958 0,2880 12.0 

LPMAX/10 0,7027 0,3910 0,3115 0,2880 82.3 

RANDR/2000 0,20501 0,19012 0,17401 0,17936 83.8 

RANDC/2000 0,6107 0,4138 0,3010 0,2880 198.0 

CONTINUOUS 5203.3 3444.6 2902.2 2876.5 75.7 
.OPTIMUM 43/57 45/55 48/52 48/52 
1/xij =1/1/xi/0 

UNCONSTRAINED 0,2761 0,2761 0,2761 0,2761 
OPTIMUM 
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TABLE X 

TEST RESULTS FOR PROBLEM 9 

No. Variables No. Resources Seed (RANDU) 1 992. (31 X 32) 
u,Z . obtained for: 380225 

m1n Avg. CPU 
bik= bik= bik= bik= Time (sec.) 

Methods/Trials 100 290 860 1620 per bik 

RANDC/30 4,137693 0, 5135 0,1519 0,1088 5.0 
! 

VAMC 3,106635 0,4988 0,1572 0,1088 
VAMI/11 3,106635 0,4988 0,1556 0,1088 5.1 

LPMAX/10 0,5217 0,1581 0,1088 60.6 

RANDR/500 3,109018 0,12591 0,11693 0,10823 19.8 

RANDC/500 3,106635 0,5021 0,1490 0,1088 83.5 

CONTINUOUS Infeasible 4597.2 1468.7 1086.2 55.4 
OPTIMUM 28/36 31/33 31/33 
llx . . =1/ //xi. :/-0 

l.J J 

UNCONSTRAINED 3,104636 0,4281 0,1230 0,1070 
OPTIMUM 
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TABLE XI 

TEST RESULTS FOR PROBLEM 10 

No. Variables No. Resources Seed (RANDU) 3 1000 (40 X 25) 
u,Z i obtained for: 50359 

m n Avg. CPU 
bik= . b = bik= bik= Time (sec.) ik 

per bik Methods/Trials 350 550 950 1550 

RANDC/30 5,132222 0,5196 0,1014 0,732 7.1 
I 

VAMC 5,132222 0,5196 0,1002 0,698 
VAMI/11 5,132222 0,5196 0,1002 0,698 6.7 

LPMAX/10 0,5196 0,1019 0,698 91.9 

RANDR/500 5 '132313 0,8583 0,7329 0,7781 26.8 

RANDC/500 5,132222 0,5196 0,1002 0,698 122.0 

CONTINUOUS Infeasible 5195.4 972.6 697.3 84.8 
OPTIMUM 24/26 22/28 24/26 
/lxi. =1/ llx . . #0 

J 1] 

UNCONSTRAINED 3,83054 0,4995 0,867 0,648 
OPTIMUM 
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TABLE XII 

TEST RESULTS FOR PROBLEM 11 

No. Variables No. Resources Seed (RANDU) 4 1000 (SO X 20) 
u,Z i obtained for: 121567 

mn Avg. CPU 
bik= bik= bik= bik= Time (sec.) 

Methods/Trials 520 840 1320 1640 per bik 

RANDC/45 0,6020 0,891 0,372 0,366 7.2 

VAMC 0,6020 0,891 0,372 0,366 
VAMI/11 0,6020 0,891 0,372 0,366 7.1 

U'MAX/10 1,25721 0,891 0,372 0,366 99.5 

RANDR/500 0,7515 0,6139 0,6823 0,6717 16.7 

RANDC/500 0,6020 0,891 0,372 0,366 78.9 

CONTINUOUS 5903.2 887.6 371.3 365.8 94.3 
OPTIMUM 15/25 18/22 19/21 19/21 
llxij =1/llxij IO 

UNCONSTRAINED 0,5478 0,809 0,362 0,362 
OPTIMUM 
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performance characteristics exhibited by individual methods are supported 

by results from selected runs. 

Tables II Through XII 

The values tabulated are in the form u, Z . with Z . including the m1n m1n 

costs charged for the number of unassigned tasks (u).· Several things 

stand out: 

(1) VAMI and RANDC (allowed the same amount of time as VAMI) 
consistently gave better objective values and used less 
CPU time than LPMAX or GREEDY. 

(2) Objective values found by all methods usually have a high 
probability of being in the uppermost percentile of all 
possible solutions, based on the value achieved by RANDR 
for N = 2000 or N = 500. 

(3) All methods usually obtained feasible solutions, given 
existence, and near-optimal solutions, given bounds. 
GREEDY could not improve many of the solutions found 
by the construction heuristics. 

(4) Problem characteristics (size, shape, number of resources, 
tightness of constraints) have great effect on absolute' 
and relative performance of methods. RANDC gives much 
better results with small problems than with large, 
for example. 

Specific measures of performance will be discussed in more detail 

below, based on results from all test runs. 

Pairwise Comparison on Solution Values 

Table XIII shows the outcomes of comparing each pair of methods in 

terms of the objective function values achieved. The data below the 

diagonal are for large problems, where mn = 0(1000). Each entry in 

Table XIII consists of three numbers in the form T, L, U: 

T: Total number of runs in which both methods were tested on 
a problem of a given size category. 



L: Number of runs in which the Left-hand (row heading) method 
gave a better objective value. 

U: Number of runs in which the ~per (column heading) method 
gave a better objective value. 
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For example, the entry 47, 17, 2 at the intersection of the row labeled 

VAMI and the column labeled LPMAX means that both VAMI and LPMAX were 

tested on 47 runs of small problems, with VAMI obtaining a better solu-

tion than LPMAX in 17 runs, and LPMAX giving a better value than VAMI 

twice. Obviously the two methods gave the same solution 28 times. 

RAN DC 
VAMC 
VAMI 
LPMAX 

TABLE XIII 

OUTCOMES OF PAIRWISE COMPARISONS OF METHODS ON 
SOLUTION VALUES OBTAINED 

SMALL PROBLEMS 

RAN DC VAMC VAMI LPMAX 

(66,18,7) 66,14,8 47~20,0 
41,20,4 66, * , 15 (47,16,6) 
41,20,4 41,14,* 47~17,2 
41,14,14 (41,6,16) 41,0,24 

LARGE PROBLEMS 

GREEDY 

(53 ,18, 7) 
53,16,8) 
53,16,7 
47,9,17 

In interpreting Table XIII, it should be noted that VAMC is the same 

as VAMI with Q = 0, so VAMC can never give a better solution than VAMI. 

This is indicated by asterisks where appropriate. Further, GREEDY was 

not used on large problems, as stated earlier. 

Nonparametric sign tests were performed on the data of Table XIII. 

Each underlined entry indicates an observed significance leyel (OSL) of 

0.05 or less. Parentheses denote an OSL be~ween 0.05 and 0.10. No 



83 

sign test was performed for the VAMC/VAMI comparison, since VAMI will 

always perform at least as well as VAMC. 

From Table XIII, it is clear that VAMI is best for large problems 

using this criterion. For small problems, RANDC seems to be best, 

although it does not differ significantly from VAMI. 

A weakness in this comparison technique is that solution values and 

differences between solutions are not quantified. This makes RANDC 

and LPMAX seem to perform equally on large problems. In fact, when 

LPMAX is better than RANDC, it is usually only a little better, but 

when it is worse, it is often much worse. This can be seen in Tables 

II through XII. 

Best Heuristic Solution 

Table XIV shows how often each method gave the best objective value, 

including ties. Each entry in Table XIV is in the form B/T (P%): 

B: Number of !est solutions (or ties) produced by a given method. 

T: Total number of runs involving all methods. 

P: fercentage of T represented by B. 

For example, the entry "36/47 (77%)" for RANDC on a small problem 

means that in 36 of the 47 runs in which all methods were involved, RANDC 

gave a solution at least as good as the best obtained by any other 

method. 

Table XIV can be seen as a table of estimates of the probability 

that one method will outperform or equal any other in terms of the ob

jective value produced. Again, VAMI stands out for large problems, 

while the distinction between methods is not at all clear for small 

problems. The best and worst methods (RANDC and LPMAX/GREEDY) for small 



problems differ by only 22 percent. This is less than the 24 percent 

difference between the two best methods for large problems (VAMI and 

VAMC), whose outcomes are not even independent of each other. 

TABLE XIV 

FREQUENCIES AND PERCENTAGES FOR BEST SOLUTIONS 
FROM INDIVIDUAL METHODS 

Small Large 
Problems Problems 

' 
RANDC 36/47 (77%) . 14/41 (34%) 

.VAMC 32/47 (68%) 29/41 (71%) 
VAMI 34/47 (72%) 39/41 (95%) 
LPMAX 26/47 (55%) 14/41 (34%) 
GREEDY 26/47 (55%) not tested 

VAMC appears to have performed well, since it found as good a 
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solution as any other method for more than two-thirds of both large an4 

small problems. However, many of its less-than-best solutions were very 

poor indeed, especially when constraints were tight (see Tables II, III, 

and VIII). 

From the preceding paragraph, it is clear that the criterion of 

Table XIV, like that of Table XIII, has the shortcoming of not consider-

ing solutions quantitatively. How should quantitative results be 

reported? 
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Accuracy/Optimality 

Tabulating raw solution values as in Tables I through XII can give 

some quantitative indication of relative performance. However, the 

objective values have more meaning if they can be related to the optimal 

solutions. This is done by comparing them to the optimum, by bounding 

their percentage difference from the optimum, and by determining some 

minimum probability of their being in some very small best fraction of 

all solutions. Three tabulations are used to do this: 

(1) Runs finding a known or suspected optimum (Table XV). 

(2) Runs within certain percentages of a bound on the optimum 
(Table XVI). 

(3) Runs giving solutions very likely to be in a very small 
best quantile of all solutions (Table XVII). 

In some runs, the optimum was either known or suspected, usually 

based on comparison of the continuous optimum to the best heuristic 

solution. Examples of this can be seen in Table V (suspected optimum 

for bik = 740 of 2503 where the continuous optimum was 2499.3) and Table 

VI (known optimum for bik = 790 of 1963, the next integer above the 

continuous optimum of 1962.2). 

The entries in Table XV are in the form F/T (P%): 

F: Number of known or suspected optima found by a given method. 

T: Total number of problems attempted by the method where the 
optimum was known or suspected. 

P: Kercentage of T represented by F. 

VAMI and VAMC gave identical results for this criterion, so their 

entries are combined in Table XV. 

Clearly, the best results from this point of view were produced by 

VAMI/VAMC in finding every known or suspected optimum. This does not 
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TABLE XV 

FREQUENCIES AND PERCENTAGES OF METHODS FINDING KNOWN 
OR SUSPECTED OPTIMAL SOLUTION 

Problem Known Suspected Combined 
Method Size Optimum Optimum Results 

RAN DC Large 14/17 CS2%) 3/10 (30%) 17/27 (63%) 
Small 9/9 (100%) 18/18 (100%) 27/27 (100%) 

VAMI/ Large 17/17 (100%) 10/10 (100%) 27/27 (100%) 
VAMC Small 9/9 (100%) 18/18 (100%) 27/27 (100%) 

LPMAX Large 12/12 (100%) 4/7 (57%) 16/19 (84%) 
Small 2/6 (33%) 12/12 (100%) 14/18 (78%) 

GREEDY Small 7/7 (100%) 9/14 (64%) 16/21 (76%) 

TABLE XVI 

CUMULATIVE FREQUENCIES AND PERCENTAGES OF RUNS WITHIN VARIOUS 
. TOLERANCES OF THE BEST BOUND ON THE OPTIMUM 

Method 
RAN DC VAMC VAMI LPMAX GREEDY 

Large Problems 
Total Runs 39 39 39 39 None 

2% 16 (41%) 21 (54%) 29 (74%) 15 (38%) 
5% 25 (64%) 25 (64%) 33 (85%) 16 (41%) 

10% 27 (69%) 35 (90%) 37 (95%) 23 (58%) 
15% 29 (74%) 37 (95%) 37 (95%) 27 (69%) 

Small Problems 
Total Runs 45 45 45 32 35 

2% 22 (49%) 22 (49%) 22 (49%) 12 (38%) 14 (40%) 
5% 27 (60%) 27 (60%) 27 (60%) 17 (53%) 21 (60%) 

10% 27 (60%) 30 (67%) 30 (67%) 17 (53%) 21 (60%) 
15% 39 (89%) 42 (93%) 42 (93%) 21 (66%) 28 (80%) 



Problem 
Size 

Large 

Small 

TABLE XVII 

FREQUENCIES AND PERCENTAGES OF SOLUTIONS EQUALING OR EXCEEDING VALUES OBTAINED BY 
RANDR OR RANDC HITH LARGE VALUES OF N 

Evaluation 
Standard, N RANDC VAMC VAMI LPMAX GREEDY 

RANDR, 2000 15/17 (88%) 15/17 (88%) 17/17 (100%) 17/17 (100%) 
RANDR, 500 22/24 (92%) 24/24 (100%) 24/24 (100%) 18/24 (75%) 
RANDC, 2000 2/17 (12%) 13/17 (76%) 17/17 (100%) 11/17 (65%) 
RANDC, 500 14/24 (58%) 22/24 (92%) 22/24 (92%) 12/24 (50%) 

RANDR, 2000 54/66 (82%) 51/66 (77%) 57/66 (86%) 32/47 (68%) 36/53 (68%) 
RANDC, 2000 54/66 (82%) 48/66 (73%) 51/66 (77%) 23/47 (49%) 34/53 (64%) 

(X) 
-...J 
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mean that VAMI/VAMC will always find the optimum. Problems for which 

the optimum is easily found are not at all typical, and VAMI/VAMC, as 

can be seen under bik = 1370 in Table II, "must occasionally produce 

arbitrarily bad approximations,'·' as noted in Chapter III, page 33. 

Probably the most meaningful statistics for judging the relative 

capabilities of the methods in finding good solutions are given in 

Table XIV. For problems where feasible solutions were.known to exist 

(usually because they were found by some heuristic), frequencies and 

percentages are tabulated to show how often each method produced a 

solution that was within (a) 2 percent, (b) 5 percent, (c) 10 percent, 

and (d) 15 percent of the greatest lower bound (usually the continuous 

optimum) on the optimal solution. 

The frequencies and percentages in Table XIV are cumulative. 

For example, RANDC gave a solution within 20 percent of the best bound 

on 16 (41 percent) of 39 large problems, while 25 (64 percent) of 39 

RANDC solutions were within 5 percent of the bound. This, of course, 

implies that 9 solutions from RANDC were between 2 percent and 5 percent 

greater than the bound. 

The best results for large problems were again produced by VAMI, 

where 95 percent of all solutions to problems known to possess a feasi

ble solution were within 10 percent of the optimal solution, and 85 per

cent were within 5 percent. For small problems, VAMI, VAMC, and RANDC 

did not differ significantly, although H should be noted that RANDC 

ranks behind VAMI/VAMC according to this criterion, which is the reverse 

of what was reported in Tables XIII and XIV. Again, this happens be

cause solutions from VAMI that were superior to those from RANDC were 

sometimes very superior, but the reverse was seldom true. RANDC and 
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VAMI/VAMC also produced many identical solutions, especially with fairly 

loose constraints. 

Another view of optimality is the statistical approach of Table 

XVII. McRoberts [20] pointed out that it is easy to calculate the 

number (N) of equally likely solutions that must be randomly generated 

to have a specified confidence (C) that the best solution obtained will 

be within a given best fraction (P) of all solutions: 

1 - C ~ (1 - P)N so N • log (1 - C) 
log (1 - P) 

N must thus be 459 or more to be 99 percent confident of obtaining a 

solution from the 99th percentile (P = .01) of all solutions, and if C 

= .997 and P = .003, N = 1944. Tests were run using RANDR with N = 500 

or N = 2000. 

Besides being convenient round numbers, 500 and 2000 are conserva-

tive, because they could actually be associated with larger values of 

C and/or smaller values of P. Also, RANDR itself is conservatively 

biased because it will not assign an infeasible agent to any task, 

which makes most good solutions much more probable than most bad 

solutions. 

n Unfortunately, there are m solutions to each problem. In a 50-

variable problem, mn is of the order of 105 to 107 , so there are 

hundreds or thousands of solutions within the upper fraction P of all 

solutions, even when P = .003. As can be seen from Tables II - VII, 

RANDR with N = 2000 (C ~ .997, P ~ .003) produces solutions that are 

usually worse than those found by the methods being evaluated. The 

situation deteriorates dramatically for larger problems. If mn • 1000, 

mn will be of the order of 1050 or 10100 , so enormous numbers of 
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solutions would be implied by the smallest fraction of all solutions 

associated with reasonable values of C and P. The starkly inferior 

solutions to large problems produced by RANDR with N = 500 or 2000 are 

evident in Tables VIII - XII. 

RANDC, however, produces good solutions even for small values of 

N, as has been seen. RANDC is much more biased toward good solutions 

than RANDR, so running RANDC with a large N should give great confidence 

of obtaining one of the very best solutions. 

A drawback of RANDC, especially as an evaluation tool, is that it 

is biased against good solutions in some highly-constrained problems. 

The best coverage for such problems is often achieved by assigning many 

tasks to agents that are expensive, but especially resource-efficient. 

It is possible to devise examples where RANDC would never find an 

obvious optimum, because of its rule of assigning each task to the 

cheapest available agent. It is believed, however, that actual prob-

lems will rarely exhibit this difficulty. 

Table XVII is useful despite the difficulties set out in the 

preceding paragraphs. It gives strong intuitive support to the conten-

tion that some methods are extren1ely likely to find one of the few very 

best solutions, even though the likelihood and quantile cannot be de-

termined. 

The entries in Table XVII are in the form N/T (P%): 

N: ~umber of runs giving a solution at least as good as, 
that found by the evaluation standard. 

T: I.otal number of runs compared to the evaluation standard. 

P: N expressed as a Percentage of T. 

VAMI again stands out for large problems. RANDC does well only 

for small problems1
, although it is certainly not "fair" to evaluate it 

i 
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against an "advantaged" version of itself. VAMC does very well, con-

sidering that it requires so little time. 

Although the objective value is severely penalized when the solu-

tion does not cover all tasks, there remains a need to test the ability 

of each method to find solutions covering as many tasks as possible. 

Coverage (Feasibility) 

Table XVIII is intended to estimate the probability that a given 

method will find a solution covering all tasks, provided a continuous 

solution exists. The entries are frequencies and percentages from 

among 45 small problems and 39 large ones possessing continuous 

solutions. All methods find feasible solutions fairly reliably, but 

VAMI, with 100 percent success for bothproblem sizes, is clearly 

superior. 

TABLE XVIII 

FREQUENCIES AND PERCENTAGES OF FINDING FEASIBLE SOLUTION 
WHEN CONTINUOUS SOLUTION EXISTED 

Problem Number 
Size of Runs RAN DC VAMC VAMI LPMAX 

Large 39 33 (85%) 

GREEDY 

Small 45 

37 (95%) 

42 (93%) 

37 (95%) 

42 (93%) 

39 (100%) 

45 (100%) 36 (80%) 39 (87%) 

Up to now, the solution itself has been the only information from 

the test runs to be investigated. The computer time and storage 
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required to produce these solutions also need to be considered, 

especially since this research was motivated by a need to conserve these 

resouces. 

Response Time 

The computers used for almost all this research were large, fast 

IBM 370~series systems. The CPU time required by these machines is 

only about a fourth of that needed by more typical equipment. Tables II 

through XII show the amount of CPU time required for one run using each 

method. For large problems, RANDC and VAMI/VPJ:1C are clearly the only 

methods that can be counted on to provide response times suitable for 

conversational use on most computer systems. CPU times listed for 

LPMAX include the time required by MPS, but they do not include time 

for interfacing the three-step program sequence (MPSGEN, MPS, LPMAX), 

which admittedly can be refined beyond what was done here, but would 

always be costly. Requirements for data interface also plague LPMAX. 

RANDC and VAMI/VAMC generate all solutions in main storage, so CPU 

time is the only determinant of response time. However, the linear 

programming formulation of a large generalized assignment problem 

(mn variables; mp + n constraints; mn upper bounds) forces MPS (or 

whatever) to use peripheral storage, which lengthens response time 

considerably. 

Execution (CPU) time was observed to be affected by problem size 

(mn), the number of resources (p), and problem shape (m/n). It was 

impractical to ma~e the numb-=r of.runs necessary to investigate this 

thoroughly, so it was decided to place the most emphasis on effects that 

were unexpected or otherwise especially interesting. 
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Problem Size (mn) 

During preliminary testing, results were at first confusing until 

it was noted that execution time was affected by the shape as well as 

the size of the problems. Then, by holding m/n relatively constant 

while varying mn, results were obtained that were quite as expected: 

(1) For the construction heuristics, execution time was a 
linear function of mn. This is not surprising, since 
for each of n tasks, a maximum of m agents are consi
dered by these methods, without any combinatorial 
complications between tasks. The MPS overhead for 
LPMAX also contributed linearly to execution time as 
mn increased, which is normal for linear programming 
algorithms. 

(2) With improvement heuristics, however, execution time 
was a quadratic function of mn. This is to be expected 
since they consider assignments in pairs, and there 
are O(m2n2) possible pairs. 

Number of Resources (p) 

This was held constant (usually at 2, 3, or 4) while investigating 

the effect of problem size. When p was varied under constant problem 

dimensions, effects were observed that were quite as expected: 

(1) Execution times of RANDR, RANDC, and VAMI/VAMC did not 
change much. The time spent checking resources is 
small compared to the time spent seeking minima in 
columns, calculating penalties, etc. 

(2) LPMAX (actually the MPS phase) was strongly affected. 
Adding one to p increases the number of constraints 
by m. This means that the CPU time required by an 
improvement heuristic will therefore be multiplied by 
a factor of about p to become O(m2n2p). 

Problem Shape (m/n) 

The most interesting results were produced by varying this factor. 

Unlike the factors discussed above, problem shape affects the fast 
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methods RANDC and VAMI/VAMC; but it has little effect on other methods. 

The most interesting thing about problem shape is that it affects execu

tion time of RANDC in a way opposite to the effect on VAMI. These 

opposite effects are graphed in Figures 11 and 12. 

Why is VAMI slower for "wide" or "tall" problems than for "square" 

ones? For "wide" problems, recalculation of penalties must be done for 

more tasks than with other shapes. As problems become "tall," the search 

for the two smallest elements in a column begins to require more time. 

The reason why RANDC is slowest for "square" problems is less 

obvious. RANDC uses time for choosing the next task to optimize, and 

for finding the cheapest available agent. Fewer tasks must be chosen 

in a "tall" problem, but finding the cheapest agent takes less time in 

a "wide" problem. Apparently the combined effect is worst for."square" 

problems. 

Storage Requirements 

All the methods were well within the capacity of a fairly small 

computer, except LPMAX. The MPS package requires far more storage 

(about 2,000,000 bits) than a user-written routine for the continuous 

solution, but the latter would still be very large and costly to 

develop. 

As will be seen in Chapter V, it is possible to sharply reduce the 

amount of storage used by packing two or more numbers into the space 

normally used for one, at a slight cost in execution time. However, 

most users will have sufficient storage available to avoid packing. 

Under the assumption that each numeric value uses one "word" of storage, 

the various methods require array storage as follows: 
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Storage Words Increment 

RAN DR (p + l)(n + 1) (m) + n 
RANDC, LPMAX (p + l)(n + l)(m) + 2n n 
VAMC (p + l)(n + 1) (m) + 3n n 
VAMI (p + 3)mn + (p + l)m + 3n 2mn 

The storage requirement for LPMAX does not include the overhead of 

MPS. The above requirements can be halved with many computers by using 

half-word integer storage. 

The methods require storage for the program logic, also. This 

will differ between computers, but the implementations in Appendix A 

used p£ogram storage (for subroutine SOLVER, less array storage) in the 

following approximate amounts (in bits): 

RAN DR 
RAN DC 
LPMAX 
GREEDY/CRAFTY 
VAMI/VAMC 

24000 
25000 
26000 
35000 
40000 

For a fairly large problem (m = 100, n = 15, p = 4), it should be 

possible to implement VAMI in 200,000 to 500,000 bits of storage, 

depending on word length, which is well within the capacity of almost 

any computer. RANDC would require slightly more than half as much 

storage as VAMI. 

Summary 

It is clear that RANDC and VAMI/VAMC are superior to the other 

methods, but the conclusions and recommendations to be drawn from the 

results presented in this chapt~r will be develpped in Chapter VI, 

after Chapter V describes two implementations. 



CHAPTER V 

·TWO IMPLEMENTATIONS 

Introduction 

The methods described in Chapter III must be modified to fit most 

applications. This is due to constraints of the solution environment 

as well as complications of the problem itself. This chapter describes 

ways of dealing with (a) an environmental constraint (limited computer 

resources), and (b) a complicated problem (the artillery problem of 

Figures 3 through 5). 

Limited Computer Resources 

Background 

Until recently, the size and cost of computers made them impracti-

cal for many on-the-job applications. Almost overnight, miniaturized 
I 

equipment that is startingly sophisticated has become available at 

about the same cost as an electric typewriter or a forklift truck. 

Computers can now be located in industrial environments where assign-

ment problems are encountered. Deciding which machine or worker does 

which job need no longer be a haphazard process. There is great paten-

tial here for improved productivity. Most of the methods described in 

this dissertation can be used with microcomputers, especially RANDC and 

VAMI. This section, adapted from Thibault et al. [32], shows how 

97 
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machines are assigned to jobs in an operational situation. The discus

sion will be in terms of "machines" and "jobs" instead of agents and 

tasks. Two resources will be considered: "material" and "time." 

Simplifications in Methods 

The logic of RANDC remains essentially unchanged. VAMI considers 

only five "Q" values (0, 0.1, 0.2, 0.4, 0.8), and calculates penalties 

only for the two lowest-cost machines for each job, with no penalties 

being recalculated during the solution process. 

Simplifications in Problem Data 

Besides allowing for only two resources, it is assumed that costs 

and resource requirements can be predefined as part of the program, 

since the set of machines and the set of possible jobs, along with the 

corresponding cost and resource data, usually do not change often. 

The items that change frequently are: 

(1) Which machines or jobs are to be considered from the set of 

those possible, and 

(2) The available supplies of material and time. 

This is the only information the user must specify. (RANDC also 

requires a random number seed and the sample size.) 

The user-specified subsets of cost/resource data are moved into 

the "northwest corner" of the corresponding main arrays before the 

solution phase of the program begins. 

Saving Time and Storage 

The use of predefined data allows the further simplification of 
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using presorted and pre-indexed costs. The machine indexes and the 

costs are packed (to save storage) in the form ccccii, where ecce indi-

cates the cost and ii the index. These indexed costs are presorted by 

the user into descending order for each task. They are part of the 

source program. This simplifies and speeds up both RANDC and VAMI by 

making it very easy to find the "next cheapest machine" for a given 

job. 

Similarly, requirements for material and time are packed (mmmttt), 

but they are entered for each job in the order in which machines are 

numbers. 

Of course, using predefined data may not always be appropriate. 

Programs can easily be coded to read costs and resource requirements, 

but they are rather error-prone and tedious to use for problems of 

realistic size. 

For example, suppose job two's costs and resource requirements 

were as shown in Table XIX. The data for job 2 would be entered in the 

source program as follows. (Note that leading zeros are not necessary 

and that ** is entered as a cost of 9999 with material and time require-

ment of zero.) 

1080 REM JOB 2 
1090 DATA 4804,5060,6303,6805,8701,9607,999902 
1100 DATA 16016,0,28062,38089,12069,96019,50033 

The packing techniques require only six-digit precision. (Costs and 

resource requirements must be scaled if necessary.) 

Programs 

Appendix C contains sample programs written in a subset of BASIC 

that will work on most microcomputers. Identical code (through statement 
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1970) is used in all programs to initialize and acquire all data except 

the special items needed by RANDC. The solution routines are as alike 

as possible, given their differing logic. 

Cost 

Material 

Time 

** Means that 
machine. 

Program Outputs 

TABLE XIX 

EXAMPLE OF DATA TO BE ENTERED IN 
MICROCOMPUTER PROGRAM 

Machine No. 

1 2 3 4 5 

87 *)'( 63 48 68 

16 ** 28 38 12 

16 ** 62 89 69 

6 

56 

95 

19 

the job cannot be done on the corresponding 

7 

95 

so 

33 

As can be seen from the examples in Appendix D, both programs 

give the user an opportunity after completion (NEW RUN?) to either 

restart completely (YES) or try some other set of resource supplies 

(RHS for "_g_ight-!!and-~ide"). Before completion, RANDC asks if the 

user wants additional trials to be made (MORE TRIALS?). If YES is 

input, RANDC asks HOW MANY? 

The program output is otherwise largely self-explanatory, except 

for the following fiotes: 



(1) The total cost of a solution will be printed with one 
asterisk to the left of the word COST for each job 
remaining unassigned to any machine. This, in addition 
to the listing of UNASSIGNED JOBS, is designed to alert 
the user that a particular solution is incomplete (which 
may be a natural result of limited supplies of resources). 

(2) Slack data are printed to help guide the user to a 
successful reallocation of resource supplies. However, 
the mathematical properties of this problem can make 
reallocation a tricky process. 

(3) Both programs occasionally produce duplicate solutions 
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in an effort to provide the user with multiple alternatives. 

Testing and Evaluations 

RANDC and VAMI were run against 180 randomly generated problems 

as indicated in Table XX. RANDC was allowed ten trials to the five 

(one for each Q) allowed to VAMI, because it was estimated to take 

about twice as long to generate penalties as random numbers. Ten 

different sets of dimensions were used, varying from 6 x 3 to 3 x 10 to 

represent most problem "shapes" that would be possible in the 7 x 10 

program arrays. For each set of dimensions, three different sets 

("Problems 1, 2, and 3") of cost and resource coefficients were used. 

For each of these, tight, medium, and loose ("T, M, and L") resource 

supplies were tried. In Table XX, the method performing best for a 

given problem is denoted by "R" for RANDC and "V" for VAMI with "-" 

indicating a tie. 

It is clear from Table XX that there is no significant difference 

between RANDC and VAMI for a basic problem. RANDC can be easily run 

for a very large number of trials to obtain a more realiable estimate 

of the true optimum, and it is much easier to understand and explain 

than VAMI. However, VAMI does have certain advantages if many complica~ 

tions are present," as w:ill be seen. 
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TABLE XX 

SUMMARY OF TEST RESULTS FOR MICROCOMPUTER IMPLEMENTATION 

Dimensions Problem 1 Problem 2 Problem 3 
T M L T M L T M L 

6x3 v 
7x4 R 

3x3 v v 
5x5 R R R 
7x7 R R R 

3x5 R R R v 
5x8 R R R R v 
7xl0 R R R R R v v 

2x6 R R 
3xl0 v v v R R v 
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Complications in General 

Complications make the task of optimizing a job much more difficult. 

However, VAMI-type penalties can still usually be calculated in a 

straightforward way, so the extra time they take diminishes in 

importance, because the process of optimizing a job may take much longer 

than choosing a job to optimize. Thus, requiring fewer trials than 

RANDC can be a big advantage. Below are ideas for dealing with speci

fic complications, mostly adapted from the artillery problem. 

Job Priorities. As suggested in Chapter II, each group of jobs of 

a given priority could be treated as a separate subproblem, solved in 

order of decreasing importance. VAMI (or RANDC, if this is the only 

complication) is suitable for this. Another way would be to transform 

the costs for job j according to priority (being careful to ensure 

highest costs and penalties for the most important jobs) before solving 

with VAMI ro RANDC. 

Alternative Resources. A good example of this complication is the 

availability of several types of ammunition to an artillery unit. This 

can be handled by defining a group of multiple machines, one for each 

alternative resource, and assigning as usual, decrementing time for all 

"machines" in the group. 

Shared Jobs. Sophisticated approaches are very difficult to fit 

into a microcomputer, but it may be possible to specify a fictitious 

mmachine, representing two or more others in combination, and decrement

ing resources for all machines involved in the assignment. This com

plication does not combine well with alternative resources. Such a 
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combination might best be handled with VAMI. 

Multiple Objectives. If this is the only complications, RANDC 

with modified objective evaluation is probably best. Otherwise, VAMI 

is likely to be better, if the penalty calculations are based on the 

multiple objectives. 

Notation 

BASIC severely limits variable names, so the code in Appendix C 

is not the same as that used in Appendix A. Table XXI establishes 

notational correspondence between Figure 7, Appendix A, and Appendix 

C for important variables with different names. 

The Artillery Problem 

Introduction 

The basic solution approach descends directly from VAMI. Targets 

are optimized in a sequence based on penalties calculated from weighted 

combinations of costs and resource inefficiencies. Optimizing a target 

is a very complicated process, however. Also, extreme measures were 

taken to save time and storage while allowing the use of variable 

problem dimensions (m and n) without recompiling the program. This 

makes the program (Appendix E) almost indecipherable, in spite of 

detailed documentation with comment cards. 

It is most unlikely that the program of Appendix E could be used 

in another application without extensive modification. The following 

Summary Flowchart and Narrative Outline of the Solution Routine present 

the procedure in a form that is easier to understand and more likely to 
•I 
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Appendix C 
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TABLE XXI 

NOTATION IN APPENDIX C 

Contents 

Assignment vector 

Initial resource supplies 

Current objective function value 

Best objective function value yet 
found 

Index of task currently being 
optimized 

Maximum array dimensions 

RANbC: vector for shuffling task 
indices 

VAMI: vector of task penalties 

Packed resource coefficients 

RANDC: Random number seed 

(a) temporary storage for moving 
cost and resource data into 
"northwest" corners of main 
arrays 

(b) amounts of resources remaining 

Count of tasks that could not be 
assigned 

Indices of user-specified subset of 
agents 

(a) indices of user-specified subset 
of tasks 

(b) RANDC: number of trials (BASIC 
arrays and scalars can share 
a name) 
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provide inspiration. (Appendix F contains an output example for a 

small problem.) 

Summary Flowchart 

After the "Input Phase" is complete, a "Control Routine" supervises 

the generation and printing of solutions by the "Solution Routine" and the 

"Output Routine." The overall logic of this process is given in the 

Summary Flowchart in Figure 13. 

Table XXI refers to a "P-matrix" and "Q." These items are similar 

to those of the same names used in VAMI. 

In interpreting Figure 13, it should be noted that the "Output 

Routine" is designed to produce different lists (emulating video outputs), 

i 
depending on the codes passed to it by the "Control Routine" and the 

"Solution Routine." 

Narrative Outline of the Solution Routine 

I. For each target priority class: 

A. Obtain penalties for each target in priority class. 
Penalties depend on number of units desired (one for 
normal assignment, more for mixed assignment) versus 
number of units available. 

1. No units available: Penalty is -1 (lower than any 
other penalty) because nothing can be gained by 
making an early assignment. 

2. Number desired exceeds number available: Penalty 
is 500,000 + 100,000 x (shortage). 

3. Number desired equals number available: Penalty 
is 500,000. 

4. Number desired is one less than number available: 
Penalty is 100,000 + largest difference between 
two successive (in size) P-matrix values for target. 



T 
INPUT 
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CONTROL 
ROUTINE 

Figure 13. 

. ACQUIRE 
DATA 

PRELIM I NARY 

CALCULATE 
P-MATRIX 

CALCULATE 
NEXT Q 

TARGET 
ASSIGNMENT 

LIST 

Summary Flowchart for Solution 
of Artillery Problem 
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5. Otherwise: Find, from each unit, the type of 
ammunition having the lowest P-value for this 
target. Penalty is the greatest difference 
between two such values over all units. 

B. Optimize targets in order of h~ghest-to-lowest 
penalties. Logic depends on whether mixed assignment 
and/or start/stop times are specified. (Note: 
"cheapest" as used below means having smallest P-value 
for a given target.) 
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1. Unmixed assignments with start/stop times specified: 
Make cheapest feasible assignment that fits start/ 
stop period. If only start (or only stop) specified 
calculate other end of firing period as specified 
in 5-4a and 5-4b of Figure 5. 

2. Unmixed assignments with no start or stop time: 
Make cheapest feasible assignment, starting as 
early as possible in the unit's' shortest satis
factory schedule gap. 

3. Mixed assignment: Calculate "Mixing Limits" as 
the maximum (TMASMX in Appendix E) and minimum 
(TMASMN) over all units of the time required for 
each unit to cover its "ideal share" of a mixed 
assignment. This "ideal share 'time" is the amount 
of time the unit would need to fire a number of 
shells that would be the smallest integer not 
exceeded by a .. k/M. (see Figure 5). 

1] J 

a. Both start and stop times specified: 

(1) Check every unit (in order of ascending P
value for this target) to determine if the 
unit's ammunition supply and schedule 
permit it to contribute anything to the 
coverage of this target. If so, add it 
to list of prospective mixed assignment 
participants. 

(a) If desired number (or more) of units 
is in list, check if coverage is 
complete. If it is, go assign. 
Otherwise, check next unit. 

(b) If no more units are available and 
coverage is complete, go assign. 
If coverage is not complete, target 
remains unassigned. 



b. Start or stop time (not both) specified: 

(1) Determine the set of units able to fire at 
least one volley. From all such units find 
the maximum (AVAMAX) and minimum (AVAMIN) 
length of a schedule gap bounded on one end 
by the specified start or stop time. 
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(2) Try to fit mixed assignments in the following 
order of length: TMASMX, TMASMN, AVAMAX, 
AVAMIN. Exclude cases known in advance not to 
fit, e.g., when TMASMX is greater than AVAMAX. 
The procedure for trying to fit each of these 
trial lengths is similar to that used when 
both start and stop times are specified. If 
complete coverage cannot be achieved with one 
trial length, then try the next, but assign 
as soon as any possibility for complete cover
age is found. If no trial length gives full 
coverage, target remains unassigned. 

(3) If possible, shorten the successful trial 
length until at least one participating unit 
has only exactly enough time for its share. 
Then assign., 

i 

c. Neither start nor stop time specified: 

(1) Determine set of trial lengths to be specified 
according to TMASMX minus TMASMN: 

TMASMX minus 
TMASMN 

under 1 min. 
1 min. - 2 min. 
over 2 min. 

No. Steps from 
TMASMX to TMASMN 

1 
2 
4 

(2) Scan schedules of units, starting with 
cheapest, looking for gaps. Each time a 
gap is found, try to fit a mixed assignment 
of the current trial length in it. If scan 
produces a gap suitable for a "perfect mixed 
assignment" (number of participating units 
exactly as specified; each unit can cover a 
"perfect share"), assign immediately after 
attempting to shorten length as in I.B.3.b.(3) 
above. Otherwise, save best gap yet ~ound. 

(3) If no "perfect mixed assignment" is found 
for the current trial length, start scanning 
again for next trial length. 
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(4) If no trial length produces a "perfect mixed 
assignment," check the best gap yet found. 
If full coverage is not possible in that gap, 
target remains unassigned. Otherwise, assign 
tar.get in this "best gap," attempting to 
shorten length as in I.B.3.b.(3). 

C. "Assigning" means adding elements to scheduling arrays, 
updating counters and pointers, decrementing ammunition 
supplies, etc. Also, an output routine is called to print 
a summary of the assignment for this target on the "Target 
Assignment List." 

Interpreting Appendix E 

The notation of Appendix E does not correspond exactly to Figures 3 

through 5. There are two main reasons for this: 

(1) The program, typical of many heuristics, does not operate 
on the model explicitly. There are elements in the program 
that are not present in the model, and vice versa. 

(2) The sponsor of the research preferred that notation 
developed in preliminary research be continued. 

Also, Appendices E and F refer to "massed fire," etc. instead of "mixed 

assignments." This was again a sponsor preference. 

The Narrative Outline men.tions discretionary resources only once. 

This is because each unit is broken up into several fictitious units 

(one for each ammunition type). Thus, the term "unit" actually can be 

read as "row," or "distinct ammunition/unit combination." When an 

assignment is made, the schedules and remaining time supplies are, of 

course, updated for all rows associated with the assigned unit. 

Appendix E also deals with "primary" and "secondary" rows. The 

user has the option of specifying a set of rows that receive primary 

consideration for assignment to a given target. The secondary rows 

are those specified for consideration if sufficient primary rows are 

unavailable. This is handled by treating the primary rows as though 
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they were "cheaper" than the secondary rows. 

Interpreting Appendix F 

These lists are designed to be self-explanatory. The term "ALPHA" 

is used for "Q" because of the sponsor preference noted above. 

The solution routine is intended for use in a conversational en-

vironment. Appendix F can therefore be seen as data that will eventual-

ly be kept in peripheral storage and displayed on a screen as needed, 

instead of being printed immediately after generation. 

Testing and Evaluation 

The user supplied only one set of problem data for test purposes. 

The problem was too large (37 rows, 27 targets) for initial debugging. 

Output from this problem is not included in this dissertation for these 

reasons: 

(1) The problem contained logical conflicts that prevent any 
feasible solution from being found. 

(2) No basis has been established by the user for evaluating 
the objective function. The procedure for determining 
cost coefficients is currently under revision. The form 
of the objective function has not been fixed. 

(3) The current Appendix F is less cumbersome to use but 
does not omit any important information. 

A few smaller problems were randomly generated and used in 

debugging the program code, but no formal testing was done, since the 

objective function remains undefined. However, even for the 37 x 27 

problem, the program ran quickly enough for conversational use, and the 

answers that were obtained appeared to satisfy well the admittedly 

hazy objective criteria of Figure 3, given any unremovable infeasibility. 

Also, program size was such that the user could expect to implement the 
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application in 500,000 bits of storage. 

Conclusions 

This application points up the adaptability of VAMI. RANDC (for 

an N of reasonable size) would have required too much time because of 

the complex process of optimizing a target. It is difficult to imagine 

any way to implement LPMAX. GREEDY and CRAFTY use too much time for 

smaller and much simpler problems. VAMI, however, is again a standout, 

as was so often seen in Chapter IV. 



CHAPTER VI 

SUMMARY, CONCLUSIONS, CONTRIBUTIONS, 

AND RECOMMENDATIONS 

Sunnnary 

The Problem 

Multi-resource generalized assignment problems have been identified 

in many applications. Unfortunately, these problems are very difficult 

to solve, especially if complications are present. 

Optimal Solutions Unavailable 

Apparently, no cost-effective optimal solution method can be 

developed. Optimal methods also have several disadvantages per se: 

(1) They are difficult to adapt to changing requirements. 

(2) They do not produce several solution alternatives. 

(3) They use much storage and computer time, which is usually 
unjustified, since data are often inexact. 

Heuristic Approaches 

This research has produced several heuristic solution methods. 

Construction heuristics use various forms of logic to build a solution 

from the problem data. These forms of logic, along with the correspond-

ing heuristics developed in this research, are: 

113 
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(1) Random (RANDR, RANDC) 

(2) Penalty-Guided (VAMI/VAMC) 

(3) Adjusted Continuous Solution (LPMAX) 

Improvement heuristics try to make an existing solution better. GREEDY 

and CRAFTY do this by switching the assignment of two tasks to different 

agents. 

Objectives 

This research has sought methods for realistic aspirations for: 

(1) Quantitative eerformance measures: Task coverage, response 
time, accuracy/optimality, computer storage. 

(2) Qualitative performance measures: Adaptability, alternate 
solutions, ease of use, predictability of response time. 

Testing 

The methods have been programmed and tested on a number of 

problems. A number of criteria were used to compare the relative 

performances of the heuristics. Distinct differences in performance 

were observed, along with some interesting characteristics of indivi-

dual methods. 

Implementations 

Two demonstrations have been developed of implementations under 

extreme circumstances: 

(1) Limited computer resources 

(2) Extremely complicated problem 

Results have been fairly satisfactory, so far as interpretation is 

possible. 



Conclusions 

Evaluation of Test Results 

Each of the objectives of this research will be considered to 

determine: 

(1) whether it was achieved, and 

(2) which method(s) performed best in achieving it. 
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Additionally, a tabulation is made of conclusions about the performance 

of individual methods in achieving research objectives. 

Realistic Problems 

Chapter V makes it clear that the basic methods VAMI and, to a 

lesser extent, RANDC can be adapted to fit a variety of realistic 

problem situations. 

Coverage 

The aspiration level given in Chapter I was to find a solution 

covering all tasks in 90 percent of " •. the cases tested." It is 

only reasonable to add the qualification that the continuous solution 

must exist, since there can be no full coverage otherwise. Table XVIII 

shows that VAMI, VAMC, and RANDC exceeded this level (VAMI scored 100 

percent!), with both LPMAX and GREEDY at or above 80 percent. For the 

28 problems where full coverage was apparently impossible, only three 

cases were encountered where VAMI failed to cover as many tasks as 

believed possible. 
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Response Time 

The aspiration level of five minutes can be guaranteed for large 

problems only by RANDC and VAMI/VAMC. One might reduce the value of N 

or q to speed up these methods, if an increased chance of a bad solution 

could be tolerated. 

Interesting effects on the response times of RANDC and VAMI/VAMC 

were observed to be caused by changing the "shape" of a problem of a 

given size. Qualitative considerations of response time also involved 

"shape," as will be seen. 

Accuracy/Optimality 

Given existence of a feasible solution and knowledge of a bound 

on the optimum, the objective was to find a solution within 15 percent 

of the bound in 90 percent of the cases tested. VAMI/VAMC was the only 

heuristic to satisfy this criterion. Indeed, 'for large problems, VAMI 

was within 10 percent of the bound in 95 percent of the test runs! This 

result is even more remarkable if it is noted that the bound was usually 

the continuous optimum. There is, of course, no guarantee that the 

continuous optimum is anywhere near the actual zero-one optimum. 

Consistent with the findings of Sahni and Gonzelez [28], every 

method occasionally produced terrible results. The probability of this 

could be substantially reduced by using two different methods on the 

same problem, provided the outcomes of the methods were very nearly 

independent. 

It is debatable whether bad outcomes of VAMC and RANDC are indepen

dent events, since the probability that such events will occur simul

taneously appears to be greater than the product of their individual 
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probabilities of occurrence. VAMC and RANDC both optimize a task in the 

same way and are thus both likely to miss good solutions in problems 

where that strategy is a poor one. This may have occurred in the results 

reported in the leftmost data columns of Tables VIII and IX. 

VAMI may produce results more nearly independent of the outcome of 

RANDC, since VAMI was designed specifically to avoid the problem just 

described. However, it may well be that another set of problems exists 

where VAMI and RANDC do not produce bad answers independently. Not 

enough runs were made in this research to thoroughly investigate this 

proposition empirically. However, on only one test run (see Table II) 

did both RANDC and VAMI fail to find an appealing solution. This gives 

some intuitive support to the contention that the probability of such 

an event is very small indeed. 

In summary, the following conclusion can be drawn regarding accu

racy/optimality: 

(1) VAMI is very powerful, often where other methods fail. 

(2) RANDC is a useful supplement to VAMI. 

Computer Storage 

All the methods except LPMAX use less than half the amount of 

storage aspired to. There are ways of reducing storage requirements 

still further, however. Happily, the greatest reductions can be real

ized with VAMI, which uses mor~ storage than other methods. Besides the 

use of halfword storage described in Chapter IV and the packing tech• 

nique of Chapter V, VAMI can be programmed to store the cost and 

inefficiency matrices on a direct-access storage device. They would 

be needed only at the beginning of the process of generating a new 
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solution. Each recall would require only a fraction of a second, so the 

response time would probably suffer little. Direct-access devices are 

widely available even for microcomputers. 

While this research was being done, developments in computer 

technology have made the consideration of storage much less vital. How

ever, it remains comforting to conclude that heuristics are available 

that will enable almost any computer to be used on generalized assign

ment problems with an excellent chance of success. 

Qualitative Criteria 

As has been noted, VAMI is the most adaptable method, chiefly 

because its intermediate logic is not executed as often as that of other 

methods, and thus can be extensively redefined without costing much time. 

RANDC, however, is also quite adaptable, as long as the process of 

optimizing a task does not become too complicated. 

All methods except VAMC produce multiple solution alternatives by 

design. RANDC and RANDR obviously offer more variety than other methods, 

although it is not clear that this is significant. 

All methods are sufficiently easy to implement, operate, and main

tain. It is estimated that one week or less would be required to imple

ment any of the basic methods. Operation requires only that basic 

problem data be available. This could be generated by some automated 

process, or predefined, or at worst, keypunched. VAMI, the most 

complicated method to implement, might, in the long run, be the easiest 

to maintain in the face of changing requirements because of its 

aforementioned flexibility. However, RANDR and RAN~C would allow sim

ple changes to be ~ade readily. GREEDY/CRAFTY and LPMAX do not appear 
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to be robust with respect to changes; an apparently minor change in 

the problem definition might mean that the method would become useless 

(which is true, to some extent, of all methods). 

As pointed out in Chapter IV, response times of RANDC and VAMI 

were a function of problem "shape" as well as size. The following 

expressions give highly approximate estimates of the CPU time in 

seconds required by RANDC and VAMI to produce one solution on the CDC-

modified IBM 370-155-II at the University of Arkansas: 

RANDC: 

VAMI: 

2 
(Nmn/1000)(.2- .l(log10 (m/n)) ) 

2 
(Nmn/1000)(1 + 1.5{log10 (m/n)) ) 

The actual CPU time requirements are pseudorandom variables. Response 

time depends not only on CPU time but also on other parameters of the 

solution environment. Nevertheless, on most systems, response times of 

RANDC and VAMI will probably be: 

(1) A linear function of mn, and 

(2) An approximately quadratic function of m for a given mn. 

These relationships should hold well enough for most planning purpo;9es. 

Performance of Individual Methods 

The conclusions drawn above are ordered by objective, which makes 

it difficult to extract information regarding the overall performance 

'of each method. Also, some less important conclusions have not been 

mentioned. Therefore, all conclusions have been tabulated in Table 

XXII. 

Table XXII leaves little doubt that VAMI is far superior to the 

other methods. VAMI is the only method that could conceivably be re-

garded as an all-round problem solver. No other method achieved all 



TABLE XXII 

TABULATED PERFORMANCE OF BASIC METHODS IN 
ACHIEVING OBJECTIVES 

Method 
Objectives VAMI RAN DC VAMC LPMAX 

L s L s L s L s 

Realistic Problems * * M M * * u u 

Coverage * * s s s s u u 

Response Time s s s s * * u u 

Accuracy/Optimality * s u s s s u u 

Adaptability * * M M * * u u 

Multiple Solutions s s * * u u s s 

Implementation s s * * s s M M 

Operation s s s s s s M M 

Maintenance s s s s s s M M 

Predictable Time s s s s s s s s 

* = Outstanding 

s Satisfactory 

M = Marginal 

u = Unsatisfactory 

120 

GREEDY 
s 

u 

u 

s 

u 

u 

s 

M 

M 

M 

u 



121 

research objectives. 

In spite of its failure to achieve all research objectives, RANDC 

does perform very well. It has advantages in areas not addressed by 

the research objectives: 

(1) RANDC resembles the approach a decision-maker would be 
likely to devise. Therefore it is easy to explain, and 
has considerable ("infinite-number-of-monkeys") intuitive 
appeal. 

(2) RANDC can make good use of additional computer time to 
increase the probability that it will find a good solution. 

(3) Its results seem likely to be almost independent of those 
of VAMI, thus enabling the use of a powerful combination 
for especially intractable problems. 

VAMC, although tested here as a special case of VAMI, could be 

implemented on its own if, for instance, it were known that constraints 

would never be particularly tight, but that rapid response time and 

minimal computer storage requirements were very important. Also, VAMI 

is not difficult to convert to VAMI, should the need arise. 

LPMAX, GREEDY, and CRAFTY are not at all cost-effective, although 

LPMAX's by-product of a tight bound on the optimum and an index of con-

straint tightness are certainly useful for evaluating other methods. 

As will be seen under Recommendations, it even appears to be possible 

to improve performance of GREEDY and CRAFTY. 

Contributions 

Introduction 

This research has made several contributions. The most important 

of these was the development of powerful heuristic solution methods, 

but other valuable contributions i~clude problem identification and 

I 

definition, development of evaluation methodology, and demonstration 
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of specific applications. 

Heuristic Methods 

All of these were inspired to some degree by one or more existing 

solution techniques. However, the ultimate development of the heuris-

tics required two main creative ihputs: 

(1) Combination of techniques used with apparently unrelated 
classes of problems. 

(2) Modification and extension of such techniques to fit the 
special structure of generalized assignment problems. 

The process can be compared to the development of the rotary lawn 

mower from the previously known principles of scissors and the wheel. 

VAMI is the outstanding example of this process of combination and 

modification. The Vogel Approximation Method (VAM) was combined with 

the LaGrangian approach of appending weighted resource conside~ations 

to t4e objective function. Modifications included the use of discrete 

values of Q in place of the continuous-valued LaGrange multiplier, while 

only columns were optimized, instead of rows and columns as in the 

original VAM. Further modifications to fit extreme circumstances were 

described in Chapter v. 

Problem Identification and Definition 

This contribution had to be made in order to justify this research. 

The most important aspect was recognition of the need to give explicit 

consideration to multiple resources in formulating models and devising 

solution methods. A further contribution in this category was the 

identification of the need to develop heuristic methods, not only 

because of the probable unavailability of optimal methods, but also 
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because of inherent disadvantages of optimal methods. Finally, as is 

evident in the artillery problem and elsewhere, assignment problems 

and scheduling problems often need to be solved simultaneous!~. The 

usual approach of first making assignments and then scheduling their 

execution is not always satisfactory. 

Evaluation Methodology 

Many ideas were taken from the literature. Some, such as the 

pairwise comparison of methods using the nonparametric sign test 

[23], were changed little. Others, e.g. the us1 of long runs of RANDC 

to obtain an evaluation standard, were developed independently. Some 

traditional methodology (using the continuous optimum as a bound on 

the zero-one optimum) was, however, much more complicated to develop. 

Finally, using the #x .. = 1/#x .. # 0 ratio (x .. from the continuous 
1J 1J . 1J 

solution) as an index of constraint tightness was an idea that occurred 

spontaneously during the development of LPMAX, but did not require any 

developmental work. 

Whatever the source, the evaluation methodology used in this dis-

sertation is more comprehensive than any that could be found in the 

literature. Accepting the reservation of Glover et al. [14] that there 

can be no "fair" evaluation standards, Chapter IV of this dissertation 

is likely to be one of the more comprehensive available sources of 

techniques for evaluating many types of heuristics. 

Realistic Applications 

A researcher who is faced with a realistic problem will probably 

be unable to apply one of the methods of this dissertation without 
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modification. It is, of course, impossible for this research to examine 

every plausible variation that might occur. However, it is hoped that 

the researcher can be helped by the demonstrations and guidelines that 

are given in Chapter V for handling extreme but dissimilar requirements. 

Recommendations 

Introduction 

This section makes recommendations for using and explaining the 

heuristics developed in this research and for further avenues of 

research to pursue, specifically as regards development of better 

heuristics. 

Using the Heuristics 

It would be a mistake to discard all methods except VAMI. There 

are situations where the use of VAMI would be inadvisable. RANDC is 

simpler and quicker to implement, and would probably be the method of 

choice if only a few loosely-constrained problems were to be solved, 

especially if the problems were not especially large. The advantage 

of RANDC's tendency to produce results independent of those of VAMI 

has already been noted. Again, VAMC might be best if speed were impor

tant and either constraints were loose or an occasional poor solution 

could be tolerated. 

In conjunction with applications, some experience has been gained 

with explaining VAMI. It is crucial for the user to understand the 

method being used, because even such a powerful method may be otherwise 

rejected, perhaps covertly. Th~ best reception has been given an 

approach that roughly parallels the development of VAMI: 
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(1) Description of an unsuccessful method, usually optimization 
of tasks in order from 1 to n. 

(2) Discussion of :the need to find a better-than-sequential 
order in which' to optimize tasks. 

(3) Introduction of the penalty concept and description of VAMC. 

(4) Introduction of a simple example where VAMC fails because 
it does not adequately consider resources. 

(5) Discussion of the concept of a "resource cost," or "resource 
inefficiency." 

(6) Introduction of the combination of costs and inefficiency. 
It is not usually advisable to explain the concept of 
variable combining weight in great detail, since it is 
difficult to handle questions about predicting an "optimal" 
Q. 

As an alternative, one might begin by explaining the concept of VAMC, 

and then discussing the incorporation of resource inefficiency as a 

cost, but in far less detail than suggested above. 

Explanations of any method should be done in terms of the simple 

examples using small tables of numbers. Jargon such as "objective 

function" or "decision variable" should be regarded as taboo except 

with entirely academic audiences. 

Further Research 

One glaring need for further investigation is certainly to test the 

heuristics with actual problems. Some preliminary research was done 

with hypothetical artillery data displaying highly nonrandom character-

istics such as many equal or nearly equal cost or resource coefficients 

in a column or row. Results were too sketchy to interpret properly, 

but such problems may be more difficult than those used in this research. 

Tests in further realistic applications are likewise desirable as a 

means of revealing.more about general applicability of the various 
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methods. There may be situations in which VAMI/VAMC is much less adapt

able than some other method. Indeed, further testing per se is needed, 

both using problem sizes not considered in Chapter IV, and attempting to 

duplicate the results of this dissertation, especially using different 

computers. 

Development and refinement of evaluation methodology would contri

bute not only to research with this class of problems, but also with 

heuristics in general. No claim is made that this dissertation is the 

last word on such methodology. 

Next, it should be possible to refine the he.uristic methods them

selves. A preliminary attempt to improve the execution speed of GREEDY 

and CRAFTY appears to have chances of success. The modification used 

was to attempt to swap the two agents already ass:igned to a pair of tasks, 

instead of trying all possible new ways of assigning the tasks. 

Perhaps RANDC should be slightly biased toward assigning the second 

cheapest agent to the task being optimized when constraints are tight. 

Alternatively, RANDC could be made to consider resource inefficiency in 

some way. Both ideas are attempts to suggest a way for RANDC to find 

good solutions to problems where assigning the cheapest agent is a poor 

strategy for optimizing a column. 

Even VAMI may be subject to improvement. It may, for instance, be 

possible to avoid the time-consuming process of recomputing penalties 

by considering in penalty calculation the third-smallest element in 

the column. Also, it may be possible to get better results by not 

considering inefficiencies where an agent is well-supplied with resources. 

This technique would also increase execution speed. 

LPMAX might giye better results if it were guided in some way by 
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the dual variables from the continuous solution. Sensitivity analysis 

of the continuous solution can give information about the consequences 

of elevating some variables to one and reducing others to zero. 

All construction heuristics make one assignment at a time. It 

certainly would seem worthwhile to investigate the usefulness of making 

two or more assignments at a time. The generalized form of this approach 

is to divide the overall problem into subproblems (sets of tasks) tobe 

solved optimally or heuristically in some sequence. Defining and 

sequencing subproblems was done on the basis of task priorities in 

Chapter V. However, many actual problems do not1 deal with priorities, 

so some other approach would need to be developed, possibly from VAM. 

Finally, most assignment problems are also scheduling problems. 

This research has concentrated on assignment met,hods. The scheduling 
i 

logic for the artillery problem was not the result of a thorough 

investigation. Therefore, further research is necessary to develop 

methods for dealing with problems where assignment and scheduling 

must be done together, with emphasis on scheduling techniques. 
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01'01 
0002 
00113 
0004 
0005 
0006 
0001 
0008 
0009 

!'OlD 
Oilll 
0012 

. 0013 
GQJ4 

0~1~ 
0016 
0017 

0018 

0019 
0020 

DOll 
0022 

0023 
0024 
00<'5 
1'026 
0027 
01:121! 
01129 
0!.'30 
0031 
0032 

C••••• T~IS P~DGRA~ GENERATES• PPINtS !IF LESIDF~It A~D S~LVES !FOP ,ANY 
c•c••• Rl~HT-HA~o-srnESI A wULTI-~ESOu~CE G!~~~4L!lEJ •~si&~uE~T pq~DLE~ 
C••••• W!T~ RA~OO" D!~E~SIOSSoCOEF~!C!ENTS,~O. RfSDU~CES, A~~ INFEASIBILITIES, 
C••~•• !F C~SI~F~t Ah !\PUT DlTA ~ET f~P LP S~LV PY ~P! CIN SE GENEP~Tf~ 

!N~E3EP CVtl~GnloAVI60001tRV!20001oPS!lSO~l•SilSCG) 
ccw~o~ /XBCOW/lOPT!75DI 
J!'IITEGE''i P? 
cowwoN /SEEDC/ !SEED 
CC,uQ~ ~~~~TC/ !PPINT 
COMWOh/RhVUC/ h8iGQS 
CO~W0~ /S~APC/ IGPEED 
CO~~ON /TESTC/ ~TEST 
CC~YG~ /LPC~~/ LF~LAG 

C••~•• ~F.•D A?~wOX NO VRLS WANT~Oo ~~SDO~ Sf.EO,~~I~T SwiTC~, A~J SAWPLE 
C'••••• SIZE !FOR RA!\.OOM-GUIOF.O .. F.THODSI OR '110 ()IS WAI<TE'l fF"t:•R V&MII • 
C••••• MTES.T TELLS IF NEXT CARI'!!SI ARE .FOR LPWA( OR F(IP P-fSP!CtFIED RHS•S 
C••••• MTEST: N • SOLUTION ROUTINE CALLED FGR N ~HS ~ALI~S F~9 .. FOL CARDS 
C••••• -N = LPMAX USED N T!WfS 0~ SETS ['IF DATA CA~DS CONSISTIN~ OF 
C••••• A~ PHS VALUE AND THE XI~ VALUES FROM T~E LP SOLN FOR 
C••••• THAT PARTICULlR R~S., 
C••••• 0 = NCPWAL OPERATIC~ (Q~StS A-f GENERATEn FPOW ~ATAI ANY 
C••••• EXTRA !lATA CloPO "ILl.. ?E .liSF'!'I AS P"S I,. C:EhERATIN.S . 
C••••• DATA DECK F(l~ HFS TO USE TO GET LP Sm.~. 
c••••• LPFLAG TELLS IF DATA OECK FOR LP SOLN ~y wPS IS •&~TED, 
C••••• LRFL~G: 0 = NO MPS OECKI 1 • DECK L ALL ELSEJ 2 • DECK L ~OTHI"u ELSE 
C••••• IG?EE~ CONTROLS Ito4PPDVEMENT HEURISTIC: D z NONE, 1 • GREEDYo 2 • C~AFTY 

]OOJ wFAO!SollNQVRLSo!SEEDoiPRINToNBIGOSoHTEST 0 LPFLAGoiGREED 
IFtNOVBLS,GT,9000l GO TO 98 

1 F"0R'4AT!f!!l01 
•wiTE!fo223l ISEF.O 

223 FC~~~T~•lSE:~ :ttll!) 
C••••• RE~D Dt~E~SIONS AND NO, RESOUPCESt T~EN P~INT T~Fk 

RE~DCSollk~,~N,PP 

rMIT!(~t2233) ~~,NN,P~ 

2233 F'QOWAT!•O~~.~~.PP st 0 3!I5o'• •11 
C••••• CALL S~ijROUTIN£ TD ~E~ERATE COEFFtS L TNFEASIBILIT!ES, 

CALL "ATGfN!CVoAV,~MoNNoPPI 
C••••• PRINT P~~qLE" OAT4 if ~!SIRED, 

IF(l~QI~T.LE.DIGO TO 33 
CALL ~ATPRT!CVolVo~~.N~,PPI 

Co•••• CAlL SU~ROUTINE TO USE O~E SOLN METHOD WITH SEVF~AL PHSIS 
33 C~LL 50LCCP!CVoaVoBV,~"'N~,PPoPSoSI 

TF!LPFLAG,EQ.OIGO TO 1000 
C..... GENERATE DATA SET FOR LP SOLN CRHS IOUST BE READ FROII A CARDI 

PElC 15 tll I RHS 
ISTOP=P'""PP 
DO 33:3 I=loiSTOP 

3333 P.VIII=JRiiS 
C~·LL "'PSt;EN!CVoAVo!!Vol'll•oNNoPPI. 
GO TO 1 O•JO 

98 ~<RITE16o991 
99 FORMAT(tlttSOXo•••• NORMAL END OF ~08 ••••I 

STOP 
END 

•OPTIONS tN EFFECT• 
•OPTIONS IN EFFECT~ 

IDoEBCDICoSOURCEoNOLIShNOOECKoLOAOoNOlo!AP· 
NAME a MAIN t LINECNT • 60 
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~001 

oon 
0003 
0~04 

0005 
0006 
0007 

o~na 

OC09 
cn10 
0011 
0012 
00_13 

0014 

SUP~~UT!~E UATGE~!C 1 A,~M,~N 0 PP) 
IST~GE~ PP,P,C,A 
:!~E~S!L~~ C(~~,N~)tAC~~.NN,PP) 

CJ~•GN /SEEDC/ !SEED 
fa.<="'~ 

N="" 
r:>:PP 

c~•••• G~~~RATE COEFFICIENTS 
DO 1:1 I=l,.., 
rc 1 'j ...:=! ,,., 
crt,Jl=lCO~•~l\DJ<lSEfO)+l 

CO l ~ r<:::! rP 

~!!oJoMl=100a•~&~DU!IS~EDl+1 

10 CO" Tl ~liE 
C••••• G~~"~AiE NO CF INFEASIBILtTIES 

NOJNFS=~·~I3•RA~OU!ISEEDl+1 

DATE 78295 16118122 

0015 
0016 
0017 
OOlq 
DOl<) 
0020 
0021 
002<' 
0023 

t••••• GENE~ATE I~D!CES OF INFEASIBILIT!ESJ FLAG INFEAStBILITIES 
DO 2C IJ=!.~C:~FS 

lZAP=~~RA~2~<ISEE0)+1 

VZ~P=r.o::;.,u.:::..;! ISEEC) +1 
C!IZA?,JZA~l=9999 

DO 20 o<=l,P 
A (!2'A"ovZAP,Kl=O 

20 CO"TI'IUE 
RETUR~ 

END 

•CDTIJNS JN EFFECT• IDoEBCD!CoSOURCE,NOLISToNOOEC~oLOIOoNO~A~ 
•DPTIO~S Ih EFFECT* hA~E = MITEEN o LINECNT = 60 
*STATISTICS• SOURCE STATE~o~TS = 23oPROGDAH SIZE • 1224 
•STATISTICS• NO DIAG~OSTICS EE~~RATEO 
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SUB~OuTI~E ~ATPRTCC,A,~N,NNtPPl 
CC~~o, /SEEDC/ !SEED 
I~Tf":£~ C.A,PP,~ 

O!~E~SION Cc~MoNNloACNN,NN,??) 
lo':~~ 

ll.=i'iN 
P=P." 
wRITE C6tll 

DATE • 7!295 16/18122 

0001 
0002 
OOCJ 
0004 
0005 
0006 
0007 
00011 
0009 
0010 
i\O.ll 
00!2 
0013 
0014 
0015 
00)6 
0017 
0018 

F0PY~T!~l•o40X••~ATRI~ bF C(ltJl COEFFICIENTS C9999•Ii'iFEASI8LEl•l 
~~!iE <6t2l (J•J=l•~J 

0019 
0020 
0021 
0022 
C02J 
0024 

2 FO~uATi///oS~X,•T~SK NU~RERSIIo/ltC17Xo20ISll 
00 5 I=l•" 
WRIT£!6s3} It CCC!tJ) tJ=ltN) 

3 FO~M~Tt•OAG~~T NO,•ol4,t: t,20I5tltll7Xo20I5ll 
5 COII.TiktJE 

00 lO K=lol> 
1otRITE16o6lKoK 

6 FORMATC•l•oJJ~,,~ATRIX OF AIIoJoKl COEFFICJENTS FOR K••ol2t 
" (!, (,, RESCU"'CE NO,•ol2t'l'o///l 
•~IiFC~o2l (JoJ=loNl 
00 10 I=1•"' 
•RITE!~t3) ltiA!IoJoKltJ•1tNl 

10 CONTINUE 
RETUR!'< 
END 

•OPTIONS IN EFFECT• IDoEBCOICoSOU~CEoii.OLISToNODECKoLOAOtNONAP 
•OPTIONS IN EFFECT• NAME c MATPRT t LINECNT • 60 
•STATISTICS~ SOURCE STATE~E~TS • 24•PROGRAN SIZE a 1184 
•STATISTICS• NO DIAGNvSTICS GENERATED 
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0001 

;)002 
coo.; 
0!11!4 
01!05 
oo~;; 

0007 
000& 
o·oo.; 
1!010 
COll 
0012 
0013 
0014 

0_015 
0016 
00]7 

CCJS 
CC19 
0020 
0021 
0022 
00i13 
0024 
OG2'5 
llOc6 
('0?7 
oo2a 
0(129 
0030 
0031 
0032 

0033 
0034 
OC35 
0036 
0037 
0038 
0039 

0040 
0041 
0042 
0043 
0044 
oo•o; 
0046 
0047 
0048 

0049 

SUBROUTINE SOLOOP!C,A,~,~~.~~,PP,PSoSI 

C••••e CALCULATES UNCO~STRAiNfD OPTI~u~, ThEN CeT~INS SOLUTIONS FOR SEVERAL 
C•~••• DIFFERENT RHS•S BY RFPEATEO CALLS TO A SOLUTION SUBROUTINE THAT 
C••••• USES O~E OF T~E ~EURISTICS, 

CC~~O~ .IX~CO~/IOPT!7501 

CO~"'C"' /·SEECC/ ISEEO 
CO~~O~ /TESTC/ MTEST 
CO~MC~ /LPCCM/ LPFLAG 
INTEGER PPoCoAo8oP 
INTEGER PSoS 
~~~~NSICN PS(MH,NNitS(MHoN~I 

DIMENSION C!HHoNNltAI~H,NN,PPJoBI~M,PPJ 
~.f=~JN 

~="'~ 
P==>P 
•~IrE (6oS I 

5 FOHHAT!•l•o30Xot••• INFO ABOUT UNCONSTRAt~ED OPTIHU~ •••tl 
C••••• CLEAR B•S FOR ACCUIIliLATING RESOURCES PEOD BY UNCDNSTR OPT 

00 10 I=loM 
DO 10 K=-1oP 

:o i'!Cio'<l=O 
C••••• FIND U~CONSTR OPT ~NO ACCUM ITS RESCE PFOTSI FlhO RHS NEEDED TO MAKE 
C••ooo · u•:CC..,STR OPT FEAS: FINO MAX FEAS C·l I o..IJ 

!E'STC·P=O 
"!o.CSU!ot=O 
.. XCOST=O 
00 20 .J=loN 
~I,..C=C llo.Jl 
IMC:ol 
00 15 1=2oM 
ICIJ=CIIo.Jl 
IFII~XCDST,GTolC!Jl,OR,IICIJ,GT,9000)l GO TO 14 
"XCOST=IC!J 

14 TFCM!NC,LE.ICIJJGC TO 15 
~~INC= J C !.J 
IMC•I 

15 CONTINUE 
IFIMI,..CwLT,9nOOIGO TO 17 

C••••• FI~UP FOR TASK ~HERE ALL AGENTS ARE FLAGGED INFEAS 
JHCsM•~ANCU!ISEEDJ+1 

IIINC=lOOOo~A~DU!ISEEDl•l 
C (I'ICt..II="INC 
00 16 K=l oP 

16 AIJMCoJoK1=1000~RANOUIISEEDl•1 
wRITE16tl~51 JoiMCoMINCoiAIIMCoJoKioK•loPJ 

165 FORMAT!•OTASK 1 ol4o' INFFAS FOR ~LL AGENTS ~- NEW C AND A VALUES•t 
•• FOR AGENTtoi4oOito.fot C a •oiSo• A••S •• 0 4151 

17 "NCSUM=MNCSUM+MINC . 
IOPTIJJ:oiMC 
00 19 K=ltP 
BIIHCti<I=B!IHCoi<I+AIIMC,JoKI 
IF!BIIMCoi<J,GT,I~STOPI IASTOP=BIIMCoKI 

19 CONTINUE 
20 CO,..TINUE 

WAITEC6t221 MNCSUMoiiOPTCJioJ•loNI 
22 FORMATIIOUNCONSTR OPT COST • •ol1•'• 

etOASGMT VECTORI •o22I5o,ti15Xo22151) 
WAITE C6t222.21 
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~050 

C~Sl 

0052 
0(153 
oo5• 

0055 
01!56 

. ·-, 
0057 
005!! 

0059 
OOM 
CC61 
0062 
0063. 
006. 

0()65 
0~66 

0067 
OOM 
0069 
0070 
0071 
llG72 
0013 
{1~74 

0075 
0076 

0077 
0078 
0079 
0080 
OOSi 
or.s2 
OC83 
OOIJ4 
0085 

0086 
0087 
00118 
0089 
0090 
0091 
0092 
0093 
009• 
0095 
(1096 
0097 
~098 
0099 
0100 

2222 FORWATC•OAESOURCE RE,TS OF UNCONSTR OPT:<) 
~0 200 i<=l•P 
wAIT!: Ch222l K, (I'I(I,Kl •I=lt~l 

2?2 FCA~AT(5X,t~ESOU~CE•ti2t'l 1 t15I6tloi17Xtl5l6ll 
2~0 CONTINGE . 

C••••• SKIP EVE~YT~rNG ELSE IF ~PS DECK ONLY DESIRED 
IFILPFLAG,E0,2l~ETURN 

INFCST="'~COST*N 
N~=N/1'•1 

IFI"T"ST.NE.~lGO TO 210 
C••ooo ~TeST = o: CALCUL~TE T"E SET OF ~~S•S TO BE USEO 

iBST~T='= (HtP-DN,_, 
!~STfP:I!ESTnP-IBSrPT)/10 

I&STEP=l~STEP•lO-~CDIIBSTEPo10l 

!BSTCP=IBSTO~•IBSTEP 
IB=IBSTPT-IBSTEP 
GO TO 50 

C••••• ~TEST > co < o: READ IN THE SET OF RHStS TO BE USED 
210 ~STOPR:MTEST 

!Ff~TEST.LT.Ol~~TOPR:•~TEST 
"STEP>':O 

50 !FC~TEST.~E.OlGG TO 55 
IB=I'i•I5STEP 
IF!I8.GT,IeSTOPlRETURN 
GO TC 70 

55 MSTEPR=~STEPQ•1 
IF~MSTEP~,&T,MSTOPRlRETURN 
PEAD!S,S6l!8 

56 FOR"'AT !BllCl 
IFIMTfST.GT.GlGO TO 70 

C•••~• MTEST < o: READ CONTIN SOLN FOP RHS ~UST READ. LPMAX ~Ill BE CALLED. 
C••••• ONLY NONZERO CONTIN VBLS ARE READt SO ZERO OUT MATRIX FIRST 

DO 60 I=lo!" 
DO 60 ~=ltN 

60 PS(lo~l=O 
63 READ f5o56> I oJoLPX 

IFII.GT.~lGO TO 70 
PSiloJl=LPX 
GO TO 63 

70 WRITE16o2Sl IA 
25 FORMATI/1/o' SOLUTION FOR ALL AIIoKI a•oi7l 

C••••• FIND UNCONSTRAINED OPTIHU~ FOR THIS RESOURCE LEVEL 
C••••• IIF POSSIBLY OIFFE~ENT FROM ABOVE UNCONSTR OPT) 

IF!IR.GT.lOOOIGO TO 48 
"NCSUM=O 
DO 45 ~=1tN 
MINC=INFCST 
IMC=-1 
DO 40 I=ltM 
DO 30- K=1tP 
IFIAf!•~tK),GT.IBlGO TO 40 

30 CONTINUE 
ICIJcC II oJl 
IF!fiCIJ.GE,MINC),OR.!ICIJ.&T,9000llGO TO 40 
:OINC,.ICIJ 
r;.oc=r 

40 CONTINUE 
IOPT!J)ciMC 

F4GE. 01!02 
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FORTRAN IV 6 LEVEL 21 SOLOOP 

~NCSU~=~NCSU~+MINC 

45 CONTINUE 
~~ITE16oi6)UNCSU~ti!OPTI~l~J=lo~l 

DATE "' 78295 16.118.122 

0101 
0102 
0103 
0104 46 ~OR~ATc•OU~CO~STR OPT COST FO~ T~JS RHS IS o,I7o•l Asr,y VECTOR:•, 

0105 
0106 
0107 

0/t(3QJ4)) > 

48 CALL SOLVER ICtAoBoiBol'l<oNI'i,PP,WXCOST,PS·oS) 
GO TO 50 
END 

•OPTIONS IN EFFECTo ID,EBCOICoSOURCE,NOL!STo~OOECKoLOAOoNO"AP 
•OPTIO~S IN EFFE~T• NA~E =·SOLOCP , LlNECNT = 60 
•STATISTICS• S~URCE STATEMENTS = 107oPROS~AM SIZE • 3696 
•STATISTICS• NO DIAGNOSTICS GE~ERATED 
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,O~TRAN IY ~ LFVEL 21 MPSG£"1 OAT£ • 711295 

0001 

00112 
0003 
0004 
111105 
0006 
0001 
0008 
()009 
11~10 

0011 
0012 
0013 
0014 
0015 
0016 
0017 
OOli!! 
0019 
0020 
OC21 
00?2 
0023 
0024 
0025 
0026 
01127 
00211 
0029 
0030 
POll 
01)32 
0033 
0034 
0035 
0036 
0037 
ooJq· 
0039 
ONO 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
on5t 
0052 
0053 
0054 
0055 

c••••• 
c••••• 
c••••• 

SUBROUTINE MPSGENICoAoRoMM,NN,P~l 

GE~ERATES DATA DECK FOR MPS 

INTE~ER CoAoAoPPoP 
DI~ENSIO~ CCMMoNNitAI~M,NN,~P)oBCMMoPP) 
..-:.ww 
N=NN 
p:pP· 
W~'ITEC7o777l 

777 FCq~~TC'NA~E INP-OATA•I 
loCIT~!7o!J 

FD~~ATC 1 RO~S•olo' N ROOOOOI) 
,..lV=tr.•~ 

DO lv I=!O,~lOolO 
r>C 10 -<=1•~ 
IR=lOOuO•I•K 
WRITEI7o21IR 

2 FOR~AT:• L R•oiSI 
10 COI><TINl!E · 

t·O 2v .J=loN 
!~=2t;~C•J 

w~:E~7.3J IR 
3 F0~~6T(t E R•,I4J 

20 co•.'l'!"<v£ 
1>PITE !7o41 

4 FC~~ATC•COLU~NSt) 
IZEPOS=IOO 
IFI~.GT,991IZERCS•IOOO 
DO lllO l=lol' 
IlO=l"*I 
IS!-lF'T=!•IZt'lOS 
!.JJ=lC~~GC•!~n!FT 
CC :Ct'l J=l,N 
IJX=!~J•J 
no ~n I(:J,P 
IFC~CloJo~l.LE.B!IoKIIGO TO 40 
COST=9999999, 
(:!.\ TO 45 

40 CO"TI!o.UE 
COST=CC!o.J) 
IFCCOST,GT,QOOO.lCOST:9999999, 

45 ~PITEC7o5!I.JXoCOST 
S FC~~ATC' X'ol6o' ROOOOO•oFl6o6l 

CO '50 K=loP 
JP::JnOOO•IlO+K 
IFICOST,LT,9998,!GO TO 56 
AIJK:O, 
GO TO 65 

56 ·AIJK=AiloJoK) 
65 ~RITEC7o6l l.JXolRoAIJK 

6 FO~~ATC' X'•l6t 0 R•oi5oFl6o6l 
50 CCNT!NIJE 

I;<=?OOO•J 
WRITEI7o71IJXolR 

7 FORMAT!' X•oi6o' R•oi4o9Xo•l.0'1 
100 CONTINUE 

IIIRITEI7o8) 

16/18/22 PAGE 0001 

~ 
w 
00 



FORTRAN IV G LEVEL 21 MPSGE'N 

0056 
0057 
ocse 
0059 
OC60 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
(1069 
0070 
0071 
0072 
0073 
0074 
0075 
0('76 
C077 
0078 
0079 
0080 
0081 
J082 
0083 

8 FORMAT (I RHS t l 
00 200 l=l·"' 
IlO=JO•I 
00 200 "'=!oP 
!P=!COOO•IlO+K 
8IK=BCioll) 
WPITE17o9) l~o8IK 

9 FCR~ATI 1 R~Sl•o6Xo•R•oiSoFl6,6l 
200 CO'JT P<L:E 

DO 300 ~=l•N 
I'l=20CO•..i 
J;R!TE(7olll !R 

11 FCR~AT1 1 R~Sl 1 t6Xe•R•oi4o9Xo'l•'l 
300 CD•HP•UE 

IOR!T£17el2l 
12 FOP~AT!•BOUNDSt) 

DO 400 I=!e'< 
ISH!F"T:I•IZEPOS 
IJJ:olCOOOC•ISHlFT 
no 400 J=loN 
IJX=IJJ+J 
·.;;rn::l7el3l IJX 

13 FCQ~~T(I U~ &VSLS 
400 CO~Tik:...E 

wRITE 17 t 7o;99 I 
7999 FORMATC•ENDATAt) 

PETURk 
END 

X1 ol6o7Xo'l.•l 

OAT£ • 78295 

•OPTIONS ;N EFfECT* !DtEBCD CoSOUPCEoNOLISToNOOECKoLOADo~OwAP 
*OPTIO~S IN EFFECT• NA~E • PSGEN , LlNECNT = 60 
•STAT!STICS~ SOURCE STATE ENTS '" A3oPROGRAM SIZE • 2284 
•STATISTICS• NO DIAGNOSTICS GE~ERATEO 
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FORTRAN IV 6 LEVEL 21 S!lLVER DATE • 78295 16/1i'/22 

OC!Ol 

0002 
0003 
0004 
0005 
oon6 
OOH 
cnr.a 
000~ 

0010 
Oilf1 
0012 
0013 
0014 
0015 
01116 
OCI7 

OOIEI 
0019 
0020 

o·nl 

0022 
01123 

0024 

0025 
0026 
!1027 
Q028 
oo?9 
0030 
0031 
0032 
0033 
0034 
0035 
003'!1 
OC37 
0038 
0039 
0040 
0041 
0042 

0043 
0044 

SUB~OUTINE SOLVER!CtAtRtl~.~~.~N,PP,~XCOST,PStSI 

c••oooo•••o••••••oooo•••···················~~~············~····················· c • 
C ••• VAitoti ••• • 
c • 
C••••••••••••••••••~••••••••••••••••••••••••••••••••••••••o••••••••••••••••••••• 

INTEGER Zt~tHI7~0)tW!750)tX8!750l 
CO~~ON /X8CO~/IOmTr750l 

EOU!VALENCE!XcllltlOPT!!ll 
OI~ENSIO~ IP!TSOl 
OI~ENSIC~ !X~SAVC750! 

CO~MO~ /S~ACCf !G~EED 

CC~MON/R~V~C/ ~B!GQS 

CO~~o~ ~~~~TCI IPRINT 
TNTEGER CtAtR,P,PP 
INTEGER PS,S 
DI~ENSION SI~M,NNltPS!~N,NNI 

DI~ENSION C!~~,NNltAI~~,NN,PP),8(WW,PP) 
INTEGER CSIG 
"':~M 

N=NN 
P:PP 

C•••oo COST 0~ U~ASGD TtS~ IS N'J. TAS~S TI~ES ~AX FEAS COST. 
C•••o• THIS GUA~A~TEfS T~AT A SOLN COVEP.ING·N~l TASKS IS C~EAPE~ THA~ 
c~•••• A SOL~ COVERI\G N DR FEWE~ TASKS. 

I~FCST=~XCOSTON 

WRITE 16t31 
3 FOR~ATI•O•o• YA~I ••••1 

C••••• M•KE N~IGOS OOD IF IT IS EVE~ 
IF!C~ODI~RIGOSt2lloNE.llN~IG?S=~B!GOS+l 

C••*o~ CALCULATF I~CREME~TS FOR Q < .25 AND Q >• o25 
::lOLT25=l,/(2o(NRIGOS-lll 
DOGE25:3.•DQLT25 

C••••• CALCULATE ITERATION NO, ~HERE BIGGER INCREMENT ST.RTS BEING USED 
ISTEPI\:NAIGOS/2 

C••••• CALCULATE AND SUM INEFFICIENCIESISII SUW COSTS iCJ. iFEAS CELLS ONLY) 
SUMS=Oo 
SU'<C=O. 
DO 1 I=lr" 
DO 1 J:l,N 
ICIJ=C !I tJl 
IFITC!J,GT.90001GO TO 1 
SMAX=FLOAT(A(ItJtlll/I8 
IF!P.EO.llGO TO 4 
DO 2 1<=2oP 
STE'<P=FLOAT(A(I,J,Kll/IB 
IFISTEMP,GT.SMAXISMAX•STEMP 

~ CQP.,TINUE 
4 SUMC:SUMC+ICIJ 

SMAX=S,..AX<>lOOO, 
IF!SMAX.GT,lOOOo)SMAX•lOOO, 
SUHS•SUI'S+S~AX 

SIItJl=SMAX 
CONTINUE 

e••••• CALAULATE FACTOR TO BALANCE AVG S ~ AVG Ct CLEAR Q 
F.,SUMC/SUMS 

Q•O. 
C••••• BIG DO-LOOP GENERATES THE NO. OF SDLNS sPECD 
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FORTRAN IV G LEVEL ll SOLVER DATI!: • 78l95 161'18/ll 

0045 

0046 
0047 

0048 
0049 
oosn 

0051 

0052 
0053 
00<;4. 
0055 
0056 
0057 
0056 

C0 59 
OC60 
CG~l 

0~"2 

0!163 
0064 

0065 

0066 
OOH 
0068 
0069 
C070 

0071 

0072 
0073 
0074 
097~ 

0076 

0077 
0078 
0079 
00811 
0081 
0082 
Oil83 
0084 
0085 

0086 
0087 
0088 
0089 
0090 

00 1000 ~SOLN=1oN8IGOS 
C•o••• !REliNITIALIZE NO, UNCOVERED TASKS' OBJ FUN VALUE 

l':O 
z=o 

C••o•• CREli~!TIALIZE h"S•S 
[10 5 I=1•"' 
00 5 K=loP 

5 BCiot<l=IB 
C••••• CALCULATE 11-Ql OUTSIDE 00-LOOP 

01=1.-Q 
C••••• CALCULATE "'AT~IX tPSl OF RESOU~CE-BIASED COSTS 

WI<ITE lf>•l24i Q 

124 F0R"'ATC 1 0Q:t,F7,5l 
no 1 o I" 1,"' 
00 10 J=~ •" 
ICIJ=CCioJl 
PStioJl=IC!J 
IFCICIJ,GT,9nOOlGO TO 10 

C .. ••• wHEN O=Ot PS IS THE SAWE AS C AND YAMI ts EQUIV TO VAMC 
IFCNSOLN,NE,1l GO TO 7 
GO TO 10 

7 PS!l,Jl:OJ•TCIJ+0°F•Sc!oJl 
1 o co>n !'•l'E 

C••••• ~PDATE 0 F~R ~EXT TI~E 

IF!~SDLN,LE,ISTEPNlO=O•OOLT25 
IFCNSOLN,GT,ISTEPNlC=O•D~GE25 

C••••• CALCULATE PE~ALTIES 
D015J=1,N 

C••••• CLEAQ XB FOR LATER CHECKING IF PENALTIES NEED RECALCULATING 
XBCJl=O 
CALL PE~COLCPSCloJ),~W,NN,PP,A,B,J,IHoll•I21 
H(J)c!H 
IPCJ,=Il 0 lCt00+!2 

15 co,.,·; p.uE 
C••••• CLEAR FLAG TO TEST 'OR NO MORE ASGTS FEAS 

NOMO=O 
C••••• OPTIMIZE TASKS IN ORDER OF MAX PENALTY 

DO 100 J=1•N 
IF!NO~O.GT,OlGO TO 100 
MAXPEN=-5 
JfliG=O 
IF!J.EO.llGO TO 16 

C••••• C~~C~ TO SEE IF A"'Y PEN•LTIES NEED TO BE RECALCULATED 
DO 170 JJ=l•~ 
IFCXfl(JJl,NE,OlGO TO 170 
Il=IPCJJl/lCOOO 
12=>400 CIP CJJl olOOOO I 
JFCCI!,NE.JBIG),AND,ti2oNE,J8I6ll60 TO 170 
CALL PENCOL!PSCltJJi•"'"•NN,PP,A,B,JJ,IH,It,I2l 
IPCJJl=Tl•lOOOO+I2 
H(JJl=IH 

170 CONTINUE 
C••••• FINO NEW MAX PENALTY 

16 DO 17 JJ=loN 
IF!(HAXPEN ,GT. HCJJil ,OA, CXBCJJI ,GT, 011 60 TO 17 
HAXPEN•HlJJl 
JBIG•JJ 

17 CONTINUE 

PAGE COOl 
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FORTRAN IV 6 LEVEL 21 SOLVER OAT£ ,. '!'82~5 1!!18/ZZ 

0091 
0092 
0093 
0(194 
C095 
0096 
0097 

0098 
0099 
~100 

01-(11 

o1r.z 
0103 
0104 
0105 
OlOI!i 
010'1' 
OHB 
~109 

0110 
0 lll 
0112 

0113 
0114 
0115 

0116 
n111 
0118 
0119 
0120 

0121 
0122 

0123 
0124 
0125 
0126 
0127 

0128 
0129 
0130 

0131 

0132 
0133 
0134 
0135 

C••••• IF MAX PENALTY < 0 NO MORE ASGTS ARE FEAS. CALCULATE FINAL INCRENENTS 
C••••• IN COST L ~0. UNASr,o TAS~S. T"EN FLAG COR~ES ELE~ENTS OF ASGT VECTOR. 

IF<"AXPE~.GE,OIGO TO 18 
llJAOO=~-J•I 

CEIG=IN~CST•IUACD 

L"•u•! UADD 
!'0 177 JJJ=l•N 
IF!XStJJJI,cQ,OIXBIJJJl•-1 

177 CO'-ii"UE 
C•••a• SET FLAG FOR NO MORE ASGTS FEAS 

N0 .. 0=1 
IBIG=-1 
GO TO 80 

C••••• M4~E SOME OTHER PENALTY M.X NEXT T!WE 
le H(Jil!GI=-~ 

C••••• TRY A~Ft<TS IN AN ORDER OETE~~I~EO BY ~~0 OOES THIS TAS~ AT LO~EST COST 
C<O ?;> I=loM 

22 Wlii•CI!oJ8IGl 
DO 7'5 I=loM 

23 loi'IN=w!11 
!BIG= I 
00 25 !I=loM 
!FPd!!l ,GE,WMINI GO TO 25 
-~iN=~. til) 
IR!'3=!I 

2S CC~T tt~UE 
IF!~~iN,GT,9000lGO TO 45 

C••••• CHEC~ IF RESOURCES OK 
('10 30 !<=l•P 
IF!A!!RIGoJBIGoKI.GToB!IRIGoKIIGO TO 40 

30 CONTit>UE 
C••••• R~SOURCES OK -- ASSIGN 

00 35 l(:l,P 
~I!PiGo~l=R!IB!G,~)-A!IRIGoJ9IGol() 

35 CONTI I:UE 
CRIG=C!IRIG,JBIGl 
GO TO 80 

C•••6• R~SOURCES NOT OK -- TRY NEXT CHEAPEST AGENT 
40 loi!I'liGl=9999 

GO TO 23 
c~•••• NO FEAS AGENT FOR THIS TASK -- COST IS BIG ' FLAG IS -1 

45 C!<IG=I'-FCST 
TRIG=-! 
U=U•l 
GO TO 80 

75 CONTI!'<UE 
C••••• ADD TO COST AND UPDATE ASGMT VECTOR 

80 Z•Z•CBIG 
XB!JAIGizziBIG 

I 00 CONTINUE 
C••••• SOLUTION CO~PLETE 
C••••• INITIALIZE FLAG TO CHECK FOR NEW BEST SOLN 

NUBEST:O 
C••••• PRINT OUT ALL NEW BEST SOLNS 

IF!NSOLN,GTollGO TO 120 
105 ~RITE16o1l01 
110 FORMATI' ••• NEW BEST SOLN ••••I 

NUBEST•l 
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FOR!RAN IV G LEVEL 21 PENCOL DATE • 782CJ5 16/18/22 

0001 SU8ROUTl~E PENCOLCPS.~~,NN,PP,A,8,JJti~,ti,I21 
C••••• .T~!S SUB~CUTINE CALCULATES A PE~ALTY "IH" AS THE OI~FFRE~CE BETWEEN 
C'•••• T~~ TwO ~~ALLEST FEASI~LE fLE~E~TS l~IN2•HINPJ OF T~E JTH COLU~N OF P, 
C••••• THF I~DfXES OF WINP AN" ~I~2 ARE RETUQ~EO !N Yl ~~C I2 SO CHECKING 
C••~•• FCQ T~E NEC~SSITY OF PE~ALTY RECALCULA~ICN CAk BE SPEEDED UP, 

0002 
0003 
0~04 
()~05 

0006 
0007 
0008 
0009 
0~10 

CO!! 
0012 
CiOlJ 
0014 
0015 
0016 
001? 
0~ !!! 
0019 
(1020 
0021 
0022 
0023 
0024 
0025 
0026 
a on 
~~28 

0029 
0030 
0031 
0032 
0033 
0034 
(1035 
0036 
0037 
Ou38 

!~T~~E~ ~S,PP,P,At8 

OI~ENSION PSC~~l,ACM~,NNtPPltBC~M,PPI 
~<=1'!4 

N=NN 
P=P? 
J=JJ 
~<I!o.::>:9'l9'i9 

!1=0 
00 1:1 I=l,lo! 
!?S=FS<!) 
IF!CIPS.LT,O),OR,CIPS,GT,9000IIGO TO 10 
DO 5 tc=ltP 
IF!A!I•J•Kl,LE.Bci,KIIGO TO 5 
PS !I I =•l"S 
GO TO 10 

5 CONTINUE 
IFC:PS,GE,M:~?JGO TO 10 
.. z,·,P~z;;s 
Il=I 

10 CO~TI..,liE 

~P<2;.99998 

I2=0 
!lO 20 I=l,M 
!PS=PS!Il 
IF!CIPS,LT.O!.OR,CI,EQ,Ili,ORoiiPS,GT,9000IIGO TO 20 
DO 15 K:oJ,P 
IFCA!l•Jotcl,LE.ACl•KllGO TO 15 
PSC!J.:-If'S 
C::O TO 20 

15 CO~>TPWE 
IFCIPS,GT,MIN2JGO·TO 20 
"IN2=IPS 
I2=I 

20 CONTINUE 
IH=,.!N2•MINP 
PETi.JF>N -
END 

•OPTIONS IN EFFECT• !O,EBCDICtSOURCE,NOLISTtNOOECKtLOAD,NOMAP 
•OPTlONS IN EFFECT• NAME • PENCOL t LINECNT • 60 
•STATISTICS• SOURCE STATE~ENTS • 38tPROGRAN SIZE • 1378 
•STATISTICS• NO DIAGNOSTICS GENERATED 
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FORTRAN IV 6 LEVEL 21 SOLVE;? DATE "' 78295 1"'/3Z/44 

6001 

0002 
0003 
0004 
coos 
0006 
0007 
0008 
0009 
0010" 
0011 
0012 
001J 
0014 
0015 
0016 
oo:7 

~01!! 

0019 
0020 

0021 
0022 
0023 
0024 
0025 

C02~ 

0027 

0028 
0".29 
0030 

0031 
0032 
0033 

0034 
0035 
0036 
0037 
0038 
0039 
0040 

0041 

0042 

SUSROvTI~E SOLV~R!CoA 0 PoiR,~~,N~oPP,~XCOST,PSoSI 

c·~·······~•o••··················•·o~o••········································ c • 
C ••• RANOR ••• • 
c • 
C•••••••••••oo••oo~o•oooooooo•••••••o•••••••••••••••••••••••••••••••••o••••••••• 

I~TEGF~ Z•UoTC7!DJoARC1501oXBC750I 
CC~~O~ /X?CCY/ IOPTC7SO) 
DI~~~SIO~ II~SAVC750I 

EOUI~ALE~CE (X5(1loiOPTt1ll 
!STE(:.EP PS,S 
DI"E~SID~ SC~~.~NioPSC~M,NNI 
cow~CN /S~APC/ !GREED 
COMwCN/PNV"CI NSIGOS 
CCY~C~ /SEEDC/ !SEED 
C~~~'JN /PP,TC/ IPPINT 
INT~G~~ C,A,o,P,PP 
OI~!NSICN CC~MoNNioAI~M,NN,PP)oBI~M,PP) 

INTEt;EP CBIG .. = ... ,.. 
N:NN 
P:PP 

Co•••• COST 0~ vNASGO TASK IS NO. TASKS T!~ES ~AX FEAS COST. 
c•o•o• T~IS GU.RANTEES THAT A SOLN COVERING N~l TASKS IS CHEAPER T~A~ 
C~•••• A SOLN CCVEPING N OR FEWER TASKS. 

! ~~FCS'r:w ACGST*~ 
.... ;;!T::c6,3) 

3 ~OP"ATI'O••• 
C••••• INITIALIZE 

DO 1 .J=loN 
TIJ)a:.J 
CONTINUE 
DO 2 I=loM 

2 A81Il=I 

RANDP ••••1 
VECTORS OF TASK AND AGENT INDEXES TO BE SHUF,LEO 

C•oeeo DEF&ULT Stu~LE S17E IS 300 
I~~~~IGC,S,~T.1l ~BIGOS:30~ 

C••••• AIG DO-LOOP GE~ERATES THE NO. OF SOLNS SPECD IN 5A~PLE SI7E 
DO 1~00 NSOLN=loNB!GCS 

C••oGe !~EIINITIALIZE NO. UNCOVERED TASKSt 08J FUN VALUEt FLAG ~OR 
u=o 
z .. o 
IE"D=O 

C••••• I~EliNITIALIZE RHS•S 
DO 5 ~=l•"' 
DO S K=1oP 

5 iHlol(l=IH 
C••••• SHUFFLE TASK INDEXES 

NtJ=N-1 
DC 20 J=1oNM 
JSHUF=CN-Jl•RANDU!ISEEDI+J+1 
JSiorAPaT(JI 
T!Jj=TCJSHUFl 
TCJSHUFI•JSWAP 

· 20 CONTI'-UE 
C••••• ASSIGN TASKS IN RANDOM ORDER 

DO HO J:ol,N 
C••••• PICK A TASK AT RANOOH. 

JBIG,.TIJI 

LAST AGENT 
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FORTRAN IV G LEVEL 21 SOt.VEi? DATE • 78295 16/JZ/44 

CC43 
C044 

1!045 
0046 
0047 
0048 

0049 

0050 
0051 
01)52 

0053 
0054 
0055 
0056 
(lij57 

0058 

G059 

0060 
0061 
0062 

r.o£.3 
~064 

0065 
0066 
0067 

0068 
~Of1 

007C 

0071 

0072 
G073 
0074 
0075 
0076 
0077 
0078 
0079 
0()80 
0081 
0082 
0083 
0084 

C••••o 
l••••• 

NOTEI THE FOLLO•ING LOGIC C0"91N~S STEPS IloDo2o ~NO 3 0 OF RANOR 
TO SAVC: TI~E. 

c 
C••••• TAY AGENTS !~ RANCD~ O~DE~ DURING (NOT AFTERI SHUFFLE PROCESS 

""'1='·~-1 
00 75 I=!•>'~: 

C••••• PICK RA~~C~ AGENT 
JSHUF:(M-IJ•PA~DUClSEEDl•l•l 

!BIG=ABIIS"UFl 
AB CISHUFJ.:AB C I) 
AS (J):;;J9IG 

C••••• CHEC~ IF FLAGGED i~FElS!SLE 
25 !FCC(!RTGoJRJGl.GT.9~Dr)G0 TO 40 

C••••• cwECK IF ~ESCUPCES rt< 
DO 30 K=loP 
IFCAIIFI~oJBIGoK!.GT.~rt8IGoKll60 TO 40 

30 CONTitJ!.IE 
C••••• AESOUriCES OK -- ASSIGN 

DO 35 t<=loP 
BIIRIGoKl=BCIBIGoKI-AIIBIG,~~~GoKl 

35 COkTII'•UE 
CBIG=CC!8J\,,JBIG! 
<,O TO I'~ 

C••9oo AtSOURCES ~GT 0~ -- T~Y A~OT~ER AGENT AT RA~DOMo o o • 
40 tFCJ.LT.~Ml!GO TO 75 

C••••• UNLESS NCRDOY IS LEFT TO TRYo o • • 
JFIIENO,EO.llGC TO 45 

C••••• FLA(, LAST AGENT ~S TRIEOo THEN GO TRY HIM 
IE~-<0=1 
IBIG=ABII") 
GO TO 25 

C••••• NO FEAS AGENT FOR THIS TAS~ -- COST IS BIG L FLAG IS -1 
45 C!'tG=I"'FCST 

IBIG=-l 
u=U•l 
GO TO 80 

75 CONTI"<IJE 
C••••• 400 TO COST ANC UPDATE ASGMT VECTOR 

80 7=l•CRIG 
XtHJBIGI=tBIG 

100 CONT~~UE 
Ccoooo SOLUTION CO~PLETE 
C••••• INITIALIZE FLAG TO CHECK FOR •Ew BEST SOLN 

NUBEST=O 
c~oooo PRINT OUT ALL NEW BEST SO~NS 

IFCNSOLN.GT,!IGO TO 120 
105 WRITF..C6oll01 
110 FORMAT!' •oo NEW BEST SOLN ~•••I 

NUSEST=l 
~<IN7"Z 
00 11'5 IXBS=l•~ 

115 IXRSAVCIXRSl=XBCJXBSI 
GO TO 125 

120 .IFIZ.LT,MINZlGO TO 105 
IFIIPRINToLT,llGO TO 500 
IFINSOLNoLEoSIGO TO 125 
GO TO 500 

125 IRCOST•Z-U•INFCST 
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00115 
01186 

0087 
COB~ 
0099 
009~ 
~1191 
0092 
009] 
0094 

0095 
00<;6 
0097 

00911 
0099 
0100 
0101 
010? 
010] 
0!04 
0105 

~RITEI~t1?7l ZtUolRCOSTtNSOL~ 
127 FOR"ATC' COSTit,I7o'• NO u~•SGO TASKS:•oi5, 

••• COST OF ASGD TASKS:t,J7,t, TRIAL NO,:•,t6l 
loRITE 16ol30! IXRIJioJ=lo'll 

130 ~o~MATI' ASS!G~~ENT VECTOR: ••20I5,/oi20t,20T511 
JFIJPR!NT.LT.OJGO TO 500 
00 200 l'zloP 
IIR IT E I 6 t 15 0 I K' ( 8 I It K I t I "'1 oWl 

150 FOR~~TI' SLACKS FOR RESOURCE••l2•'' 'tl6%6o/oi25Xt16I611 
200 CONTINL'E 
500 JF(NUREST.EQ,OJGO TO lOCO 

C••••• NEll 8~ST SCLN -- TRY TO I~P~CVE IT 
I'.U3EST=O 
CALL SwAPPRICoAoB•MtNoPoiNFCSToZI 

1000 CONTI lloUE 
C••••• LET GREEDY TRY TO !~PROVE eEST SOLN FOUND FOR THIS RHS 

IGSAVzJGQEED 
IGREF.D=l 
00 1115 IXBS•1oN 

1115 XBCIXBSI•lXSSAVCIXBSI 
CALL SwAPPR(CtAoB•"•N,P,J~FCSToMJNZI 
IGREEO=JGSAV 
RETURN 
rr.o 

•OPTIONS IN EFFECT• lDoEBCOJCtSOURCE,NOLlSToNODECKtLO~D,NO~AP 
•OPTIOr.S IH EFFECT• NAME ., SOLVER t LINECNT = 60 
•STATISTICS• SOURC~ STATEMENTS = lOStPROGRAM SIZE • 12334 
•sTATISTICS• NO OIAGNOSTICS GENERATED 
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0001 

0002 
0003 
OGG4 
DOGS 
0G06 
OOG7 
GOOB 
0009 
00111 
0011 
00.12 
0013 
0014 
001'5 
0016 
0011 

zu• _.. 
019 

0020 

OG21 
01121 
oon 

0024 

0025 

0026 
G02'1' 

0028 
0029 
0030 

0031 
0032 
0033 
0034 
0035 
0036 
0037 

0038 

0039 

004G 
0041 

SUBROUTINE SOLVERICoAo~oiP.~M.~N,PP,HXCOST 0 PSoSi 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c • 
C ••• ;IA~DC ••• • 
c • 
c···~········~•••••••••••••••·~··••••••••••••••••••••••••••••••••••••••••••·~•••• 

INTEGE~ ZoUoTI750ioWI750ltXB17501 
CO~~CN /~eCO~/ IOPT1750l 
~~~ENSIJ~ 1XRSAVC750i 
INTF.GF'< PSoS 
DI~ENS!O~ SC~~.N~ltPSIMHoNNl 
F.OClV~LENCE !~BilloiOPTilll 
cc~uc~ IS~';CI IGRE~D 
cc~wc~,~~~~CI ~~IGQS 

co~wo~ /SEEOC/ ISEED 
CC"'"'OI• /Piiii;TC/ tPAINT 
INTEGER CoAo8oPoPP 
DlltEr.S ION C 114M •'•"' I oA IHM oNNoPP I o8CMHofiPl 
INTEGER CBIG 
M=lllo4 
NaNN 
P=PP 

C••••• COST OF UNASGO TASK IS N~. TASKS TIMES lo!AX FEAS COST. 
C••••• T"IS GlJAPA'iTEES T~o<AT A. SOl.N COVEQING ~<•i TASKS IS C14EAPER T14AN 
c••••• A SOl.N COVERING r. OR FEWE~ TASKS. 

INFCST=!'XCOST•N 
IIIRITE 16t31 

3 FOR~ATC•O••• RANDC ooot) 
C• .. •• JNITIA.l.IZE VECTOR OF TASK INDEXES TO 8[ SHUFFLED 

00 1 J•1·~ 
TIJI=J 

1 CC~TIMJE 
C••••• DEFAULT SA~PLE SIZE IS 300 

IF(N~IGQS.LT.ll NEriGOS•300 
C••••• BIG DO-LOOP GENERATES THE NO. OF SOLNS SPECD IN SAMPLE SIZE 

00 1000 ~SOl.N•ltr.BIGQS " 
Coo••• II'!EliNlTIALlZE NOo UNCOVERED TAS!<S & 08..1 FUN VALUE 

U=O 
Z•O 

C••••• IPEII~ITIALIZE RHStS 
00 S I=ltl' 
00 S K"ltP 

5 BIIoKI=I8 
C••••• SHUFFl.E TASK INDEXES 

N~=N•l 

DO 20 J=ltNI' 
JSHUF=IN•..II•RANDUIISEEDI+..I•l 
..l"iWAP:TI..I) 
Tl..ll=T!JSHUFl 
TC..ISHUFI•..ISWAP 

20 CONTINUE 
C••••• ASSIGN TASKS IN RANDOM ORDER 

DO 100 ..laJ,N 
C••••• PICK A TASK AT RANDOM 

..IBIG•TI..Il 
t••••• TRY AGENTS IN AN OROER DETERMINED BY WHO DOES THIS TASK AT" LOWEST COST 

DO 22 "1•1 ,M 
22 VIIl•CIIt..IBIGl 
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0042 
0043 
00 .. 4 
0045 
0046 
0047 
0048 
0049 
0050 

0051 
0052 
0053-

0054 
0055 
0056 
0057 
0058 

OOS9 
0060 

oot-1 
0062 
0063 
0064 
0065 

0066 
0067 
0068 

0069 

00'70 
0071 
0072 
0073 
0074 
0075 
0076 
0071 
0078 
0079 
0080 
00!11 
0082 
0083 
0084 

0085 
0086 
0087 
0088 
0089 
009-0 

DO 75 1=1•" 
23 ~ii'IN=io!ll 

TBTG=1 
DO 25 II=l•"' 
IFI~IIII.GE.~~INI GO TO 25 
W"'TN=III 1 II I 
IBIG=II 

25 CONTI"l!~ 
TFI•~I~.GT.~oO~IGC TO •5 

C•••o• CHEC~ IF RE~Ov~C£5 OK 
00 3t. K=ltP 
IFIAt:~!G,~q!GtK!,GT,B!IBIGt~IIGO TO 40 

30 CDNT!~LiE 
C••••• ~~SOUQCES OK -- ASSIGN 

00 35 K=1tP 
BC!8IfoKI=BtiBI5,KI-A!IBIGtJBIGtKI 

35 CC~H!~U£ 
ceiG=Ctia!G,JPIGI 
GO TO e? 

C••••• RESOURCES NOT OK -- TRY NEXT CHEAPEST AGENT 
40 illlFllG1=9999 

GO TO 23 
C••••• NO FEAS AGENT FOR THIS TASK -- COST IS BIG ' FLAG IS -1 

45 CBIG=INFCST 
IBIG=•1 
U=U•1 
GC TO eO 

75 COf',TI!'<UF.: 
C••••• ADD TO COST AND UPDATE ASG"T VECTOR 

80 Z=Z•CIOIG 
XBIJPIGI=IBIG 

10C CONTI"'UE 
C••••• SOLUTION COIOPLETE 
C••••• I~ITIALIZE FLAG TO CHECK FOR NEV BEST SOLN 

~iUBfST=O 

C••••• PPI~T OUT ~LL ~Ell PEST SOLNS 
IFC~SOLN.GT.liGO TO 120 

105 lii<ZTE16tll0l 
110 FOR~ATI' ••• NEW BEST SOLN ••••l 

NUPEST=1 
"li';Z=Z 
DO 115 IXl<S=1tN 

115 IXBSAVIIXBS!•XB!IXBSI 
GO TO 125 

120 tFfZ.LT.~I"Z!GO TO 105 
IFtiPRI~T.LT.liGO TO 5~0 
IF!I';SOL"'•LE,S!GO TO 125 
GO TO 500 

125 IRCOST=Z-U•INFCST 
WPITEI6t1271 ZoUoiRCOSToNSOLN 

127-FOPMATI' COSTit,I7o 1 t NO UNASGD TASKSI•ol5o 
••• COST OF ASGD TASKS:•,t7•'• TRIAL NO.:•,t61 

WRITE C6o1301 IXBCJI oJa1,N) 
130 FORMAT\' ASSIGNMENT VECTOR: t,20l5o/o(20X 1 20I5ll 

IFIIPR!NT.LT.OlGO TO 500 
DO 200 Kct,P 
WRtTEI6o150lK•(B!ItKltl=loHI 

150 FORMATe• SLACKS FOR RESOURCEtol2•'' 'tl6l6t/ti25Xol6I61l 
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0391 200 CO~Tt~UE 
C092 500 JF!N~9EST.EO.OIGO TO 1000 

C••ooo NE• E:ST SOLN -- TRY TO I~PROVE IT 
0093 NU8EST=O 
00~4 CALL SwAPPR!CtAtB•"•NoPoiNFCSToZI 
OG95 1000 CONTI~UE 

C••••• LET GREEDY TRY TO !~PROVE BEST SOLN FOUND FOR THIS PHS 
0996 !FSAV=IGREED 
oq97 IGP.EED=l 
0098 00 !115 lX8S=loN 
C~99 1115 XB!IX&Sl=IXBSAVJIXBSI 
0100 C~Ll SWAPPR(CoAoBt~tNoPoiNFCSToNINZl 
0101 tG~EEC~tGSAV 
0102 RETURN 
0103 END 

•OPTIONS IN EFFECT• JDoEBCDICoSOURCEoNOLISToNODECKoLOADoNONlP 
oOPTIOhS IN EFFECT• NAME • SOLVER , LINECNT • 60 
•STATISTICS• SOURCE STATEMENTS • 103oPROGRlN SIZE c 12274 
•STATISTICS• NO DIAGNOSTICS GENERATED 
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0001 

0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
OIH2 
0013 
0014 
0015 
0016 
0017 
0018 

GOl'l 
0020 
0021 

0022 
0023 
0024 
0025 
0026 
~021 
0()28 

- 0029 
on3o 
0031 

-0032 
0033 
01'34 
0035 
(.1036 
0037 
0038 

0039 

0040 

0041 
0042 

0043 
0044 
0045 

SUBwO~TINE SOLVERICoAoBotB,~M,NN,PPoUXCOST,XlJoSl 

c·············••c•o•••••••••o•••················································ c • 
C ••• LP"AX ••• • 
c • 
c•·············~·······o·•·············••s••···································· 

I~TEGE~ z,u,T!750ltWI750loX81750l 
CO~~ON /X~CD~/ IOPT17SOl 
n:~E~SIDN IX~SAV!750l 

INTEGER XIJoS 
OI~E~SIC~ S!~~,N~l,XIJIMM,NN) 

EGUIVALE~CE !XBill•IOPT11ll 
CO~~c~ /TESTC/ MTEST 
C0~M0~ IS•APC/ !GREED 
COM~O~/R,VVC/ N~IGGS 

C~M~ON /SEEDC/ !SEED 
CCM~O~ /P~~TC/ !PRINT 
I~TEGER C,A,~tPoPP 

DI~ENSION C(MMthNloAIMM,NNoPPJ,~IMMoPP) 
I~TEGEP CRIG 
.. =~tot 
h=NN 
p .. pp 

C••••• COST DF UNASGD TASK IS NO, TASKS TIMES IO~X F£AS CnSTo 
C••••• TH!S GV~~ANTEES T~~T A SOLN COVERING N~l TASKS IS C~EAPER THA~ 
C••••• A SOLN COVERING N OP FEWER TAS~S. 

I"-FCST=>'XCOST<>N 
lcRITE (6t3l 

3 FOP~ATI•O••• LPMAX •••'l 
C••••• INITIALIZE VECTOR OF TASK INCEXES 

JFRONT=l 
JBACI<=~I 

DO 1 J=loN 
XB!Jl=O 
DO 2 I=l•" 
IFIXIJCI,Jl,LT,lOOOIGO TO 2 
TIJPACKl=J 
J8ACK=JBACK-l 
XBIJl=I 
GO TO 1 

2 CONTINUE 
":'I J,:RO"iTl =J 
JFPONT=JFRON":'+l 
CONTINUE 
NM=JFRONT-2 
NJ=NM+l 
NPl,.N+l 

C••••• DEFAULT SA~PLE SIZE IS 10 
lFINB!GQS,LT.ll NBIGQS•10 

C••••• BIG DO-LOOP GENERATES THE NO. OF SOLNS SPECD IN SAMPLE SIZE 
DO 1000 NSOLN=loNBIGQS 

c••••• IREliNITIALIZE NO. UNCOVERED TASKS L 09J FUN VALUE 
U=O 
2=0 

c••••• IRE I INITIALIZE RHS•S 
00 5 I.,ltM 
DO 5 K•ltP 

5 BIIoKI•IB 
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0046 
0047 
0048 
0049 
005!1 
0051 

0052 
0053 

0054 

oos·~ 

0056 
01)'57 
rose. 
0059 
01160 
0061 . 
0062 
0063 
110"4 
00~5 

04'"6 
COH 
0068 
0069 
0070 
0071 
0072 
0073 
~074 

\:·075 

GG76 
!1077 
0078 

0079 
0080 
0081 
0082 
co~~ 

0084 
0085 

0086 
0087 
0088 
0089 
0090 

(1091 
0092 
0093 

C••••• SHUFFLE INDICES OF TASKS HAVING NO XIJ • 1 
00 2!1 ..1=1oNM 
.JS~UF•I~J-JI•RANDUCISEEDI•J•1 
,JSWAP=TIJI 
TC.JI•TI.JSHUFI 
TCJSioiUFI=JSifAP 

20 COIH I t.VE 
C••••• ASSIGN TASKS: FIRST Wloi£RE SO~E XIJ • ll OTHERS IN RA~OOM OROER 

00 lOJ ..t=ltN . 
J6ll::li!P1•J 

C••••• GET lND£ll FOR NEXT T·ASK 
JBIG=TCJI;XI 

C••••• IF XIJ ~ !t MAKE COPRES ASGT, OTHER-IS£, GO 8Y OESCENDihG XIJ VALUE, 
C••••• IF NO FEAS ~I..: > Oo ASSIGN BY ASCEhDlN~ COST, 

IBFLAG=O 
IFCJ;X.LE.NJIGO TO 20?1 
I!HG:XB CJBIGI 
I!!FLAG=l 
GO TO 33 

20ll CO 2202 I=loM 
Jlii•IOOO•XI.JCioJBIGI 
!F III< I .L T ,0 I Ilii•9999 
IFIIIii,E0,10DOIIWI•1000•CCitJBIGJ 
IICII=!:oi 

2202 CO!'.f!l,uE: 
33 ['0 7'5 !=I oM 

IFCI~FLAG,EO,liGO TO 3533 
23 wMIN=WCll 

I6IG=l 
DC 25 II:oloM 
IF!W!IIIoGE,WMIN) GO TO 25 
WMIN:Iol (II I 
IBIG•II 

25 CONTI~IUE 
IFC~~~~.GT,9nnOlGO TO 45 

C••••o C~~CK IF ~E:SOURCES OK 
DC Jr. l'~l.P 

IFCACIRIGtJRIGtK),GT~RII~IGoKI!GO TO 40 
30 CONTI'H;IO 

C••••• RES~URCES OK •• ASSIGN 
3533 00 35 K=loP 

BCIBIGoK)•B{I~IGoKI•ACIBIGojBIGoK) 
35 CONTINUE 

CRIG=CCIBIG,JB!O) 
GO TO 80 

C••~~• RESOURCES NOT OK •• TRY NEXT C~EAPEST AGENT 
40 WIII'iiGI=9999 

GO TO 23 
C••••• NO FEAS AGENT FOR THIS TASK •• COST IS BI6 ' FLAG IS •1 

45 CBIG•INFCST 
IBIG=-1 
U=U•l 
GO TO 80 

75 CONTINUE 
C••••• ADD TO COST AND UPDATE ASGMT VECTOR 

80 z=Z•CBIG 
XBCJRIGl=IBIG 

100 CONTINUE 
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0094 

009<; 
0096 
OOQ7 
009!! 
OO<JQ 
0100 
0101 
0102 
0103 
0104 
0105 
0106. 
0107 
0108 
0109 

011!1. 
0111 
0112 
0113 
0114 
0115 
1!116 
o: 11 

0118 
~119 

0120 

0 ll!1 
0122 
0123 
01?4 
OI?r; 
012~ 
0127 
0128 

C••••• S'LUT!ON CO~PLETE 
C••••• INITIALIZE FLAG TO CHECK rOll NEw BEST snL" 

NlJ!;!;:STaO 
c~•••• P~INT OUT ALL NEW B~ST SOLNS 

JF!~SOLN,GT,lluO TO 120 
lOS ""'IT<:I6•!l0l 
110 F0P~~TI 1 • 6 • N~· BEST SOL~ ••••1 

"U!'EST:l 
"'' I!'.?=Z 
['10 1!5 !XilS=l•N 

115 IXRS&ViiXQSl:XSIIXBSl 
GO rc 125 

120 I~IZ.LT.~I~ZlGO TO 105 
lFIIP~l"T.LT.llGO TO 500 
IF!~SOLN,LE.51GO TO 125 
GO TO 500 

125 JRCOST:Z-~•J~FCST 
~~ITEI6tl27) z,~,iRCCSToNSOLN 

l27 fv~~ATI' COST:•o!7t'• "0 UNASGD TASK>:•,Jc:;, 
*'o COST CF ASGO TASKSI•oi7•'• TRIAL NO.:•oi6l 

wPITE l~ol301 IX8 !JltJ=lo"l 
130 FC~~AT(t ASSIGk~ENT VECTOR: to20I5tlt120X 020I5)) 

!FIIPwiNT.LT,OlGO TO 500 
DO 200 K"ltP 
WRITE !6tl'50)Kt IBIIoKJ,J&loMI 

150 FCR~~TI 1 SLACKS FOP RESOURCEtoJ2o 1 : 'o16I6o/oi25X.l6I61) 
200 CONHP>;UE 
500 !Ft~~~EST.~O.OIGO TO 1000 

C•~••• N~~ ~EST SOLN -- TRY TO I~PROVE IT 
f'i.!f'O::ST=O 
CALL S~APPR!CtAtBtMoN.PoiNFCSToZI 

1000 CCI<TI'<UE 
C••••• LET GREEDY TRY TO IMPROVE BEST SOLN FOUND FOR THIS RHS 

IGSAV:JGREEO , 
IGRO::ED=l 
~0 1115 lXBS=loN 

1115 X&!IXSSI=!XPSAV(JXBSI 
CALL SwA?PRtCtAoBtM,N,P,INFCST,~INZl 
IGRfE;J=IGSAV 
RETURS 
E"D 

•OPTIONS IN EFFECT• ID,E9CDICoSOURCE,NOLISToNOOECK,LOAOoNOM.lP 
•OFTION5 IN EFFECT• NA~E " SOLVER o LINECNT ~ 60 
•ST~TiSTICS• SOURCE STATE~ENTS • 128oPROGRAM SIZE • 127~8 
•STATISTICS• NO OIAGNOSTlCS GENERATED 
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0001 

0002 
00~:! 
O~C4 

00'~ 
e~c;, 

0007 
000!! 
Ot'09 
01!1(1 

0011 
~012 

~n3 
0~14 

0 Ol '5 
0Cl6 

0(1}1 

001!! 
0019 

0020 
0021 
0022 
~~;>) 

t~?· 

CC25 
OC?f) 
ocn 
002! 
0029 

0(130 
0031 
0032 
0033 
0034 

0035 
0036 
0037 
0031'! 

0039 

0040 

SUBROUTINE S~·PPRICt••A•N~,N~oPPoiSFCSToZI 
C••••• THI~ SU~POUTINE IS "CPAFTYt" HGR£~0Yt~ OR DOES NOT~ING AT ALL• 
C••••• DEPENDING 0~ II~ETHER "IG~EED" IS 2• l• OP ZERO, 

I~T~C.E~ X~,C.A,q,Pp.c,z 

ozwE~S!O~ X~C750l•C<M~.~~,,A(W~.~s.P~}9P{wv,~P) 
CD~~~~ /X~CC~/!OPT!TS~! 

t')U IV t.L E ".CE ()';a ( l ! '! ~:> T ~ 1) ) 
CO~W~~: /S~!CC/ !~DEED 

co~uoN /PPNTC/ !P~l~T 

Ol~ENS!CN l~EAD!2•21 
0-TA IwEAO t•GPEE•o•CPAF•,•DY •o•TY 1/ 
!F!I~PEEO.LT 1lRETUwN 

C••••• PRINT ~EA l~G fDC w~ATEV!R MET~OD IS TO e£ USED, 
lk='!T~ce.,l~J C ;.,jE.tDCIGCE~O,JI•J•1•2) 

c 

16 ~G~vAT(t~•o~ r,zA~,••••') 

lr.l:~ .. 

._~=~.~-4 

I':PP 

>4P=~•l 

c••••• RETURN HER£ AFTER ~4KlN9 SWAP 
c 
C••••• !RElScT INDICATOR FOR CH~CKING IF THIS TRY FOUND A GOOD SVAP 

1 JSw$"=0 
C••••• !qElSET COST I~PROVE~ENT OF ~EST ~~AP vET FOUND PY •CRAFTY" 

IC""AkG=O 
JL=l 

C••••• JL TS INDEX OF LEFT-~AND TRIAL TASKt IL IS CURRENT Ar-ENT FOR TASK JL 
2 JL=X'!!JLl 

CILJL=I"lFCST 
IF!!L.GT,OICtLJL=CCILtJLI 
IFCCILJL,GT,9000lCILJL=INFCST 
IL2:1 

C••••• !L2 IS !N~EX OF TRIAL N!W AGENT FOR TASK JL 
3 IF!!L?.EO,IL!GO TO ~ 

CIL?..JL=Ir-.~cs; 

IF!IL2.LT.~PlCIL2JLcC(IL2oJLI 
IF!CIL2JL,GT,9000lCIL2JL•JNFCST 
JP=JL•l 

C••••• JP IS INDEX OF RIGHT-HAND TRIAL TASKJ IR rs INDEX OF CURRENT AGENT 
4 IP=X~!JP) 

Cl!>JR=INFCST 
iF!IP,GT,OICIRJP:CCIRoJR) 
!FCCIPJR,GT,90001CIPJ~•INFCST 

IR2zl 
C••••• I~~ IS INDEX OF TR!AL NEll AGENT FOR TASK JR 

5 !FCIR2,EO,IP>GD TO 7 
CIR?JR=INFCST 
IFI!R2,LT,>4PJCIR2JR•CCTR2,JRI 
!F!CIR2JR,GT,9000ICIR2JR=INFCST 

C••••• CALCULATE CHANGE IN TOTAL COST IF SWAP VER£ HADE, 
I~ELTZ=CILJL+CIRJP-CIL2JL-CIR2JR 

t••••• C~EC~ IF SWAP IS POTENTIALLY PROFITABL~ 
IF!lD,ELTZ.LE.OIGO TO 7 

C••••• IF SOo CHECK IF RE~CURCES OK WITH FOL DO-LOOP, 
c 
c••••• 
c••••• 

APPARENT CLUMSINESS OF L06IC IS DUE TO ~OSSIBILITY Dl" £QUALITY 01" ROV. 
INOICESt AND POSSIAILITY FOR ROW INDICES TO INDICATE THAT TASK UNASGD, 
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FORTRAN IV u LEVEL 21 SIIAPPA OAT[ • 78295 16.118/22 

1!041 
0042 

01143 
0044 
(1!145 
0046 
0~47 

004@ 
0049 
0{15!1 
0051 
0052 
l'053 
Ol'~4 
cess 
0051.: 
0057 
0058 

0059 
0060 
0061 
0062 

0063 
OC64 

0()65 
OOf-6 
0067 
00~8 

C069 
0~70 

0071 
0072 

t073 

01!74 
0075 
00"6 
0077 
1)078 

0079 
0080 
0081 

0082 
0083 

c 
C••••• C~EAK FL•G FOR RESOURCE INFEASIBILITY 

IhFS-1:0 
00 100 X=l•P 

C••••• F:R EACH T~SK AND EACH AGENT: IF AGENT i~DICATES AE~L ASG~Tt SAVE 
C••••• CUR~E~T RESOURCE SUPPLY AND ADO BACK CORREhT USAG€ OR SUBTRACT OFF 
C••••• POTENrl~L USAGE, 

IFIIL.LE.OlGO TO 20 
ILBSA\':fl(IL,i<l 
PllltKJ:!LPSAV+AilltJLoKI 

20 IFCiq,LE.O!GO TO 25 
IRSS~V=StiP,Kl 
~ClloKI•IRRSAV+A;JR,JRoK) 

25 IFI!L2,GT.~lGO TO 30 
I2LSAV:BC!L2tl':l 
IBL2K:I2LSAV-ACIL2tJLoK) 
IF!IBL~K.LT,OllNFSA•l 

P llL2 ,K l = IBL2K 
30 tF(IR2,GT,~Jr,O TO 35 

t2PS~V:'!CIP;>,..:) 

!8D2~:!2RSAV·AC!R;>,J~,K) 

IF!I2R2K.LT,OllNFSA=l 
B (JR;>,~<' I =I8tl2r< 

C••••• RESTORE PfSOURCE Sl~PLI~S AFTER FEASIBILITY C~ECK 
35 !F!IR2.LE,NJP!IR2tKl=I2~SAV 

IF!!L2.LE,MIBIJL2•KI:I2LSAV 
IF!IR ,GT.OlBCIRoKlsiRBSAV 
IFilL ,GT,OJBCILoKl•ILBSAV 

C••••• IF SoAP ~OT RESCURCE•FEASIRLEo 60 TRY A~OTHEP 
!F!!~FSA,GT,OIGO TC 7 

100 COI\Tit-;iJE 
C•••oo FLt3 ASGTS SwiTCHED TO lNFEAS AGE~TS AS UNA~6D 
C••••• ~UT FIRST SAVE hEW AGENT INDICES IN CASE TniS IS •CRAFTY" 

!R2S.IIV:IR2 
IL2SAV:IL2 
IFfCIL2JL,GT,QOOOliL2•·1 
IF!CIR2JR,GT.9000JIR2s-l 

C••••• TURN ON FLAG THAT OK SWAP HAS BEEN FOUNDI IF •GREEDY,• ~AKE S~AP NOW 
t<;WAP:! 
IF!If.~EED,EQ,lJGO TO 6 

·co•••• ~ESTGRE JR2 AND ll2 SO •C~AFTY• WILL BE ARLE TO CONTINUE SEARCH 
!P.2:1~2SAV 

IL2:IL2SAV 
C••••• IF rCRAFTV•" CH~CK FOR NEW REST POSS SIIAP, 

IF!ICH~NG.GE,IOELTZIGO TO 1 
C••••• SAVE COST IMPROVE~ENTt ROWS, AND COL5 OF BEST SWAP YET FOUND 

ICHANG=!DELTZ 
!ASAV:IR 
ILS~V=IL 

JRSAV:JR 
JLSAV:JL 

c••••• IF BOTTO~ OF RIGHT-HAND COLt GO TRY NEW RH COLt ELSE TRY NEXT ROW IN RH 
7 IF!IR2.GT.M)G0 TO 78 

IR2o:IR2+1 
GO TO 5 

C••••• ~AKE SIIAP: DECREMENT COSTt RESET AGENT ASSIGNMENTS, UPDATE RESOURCES, 
6 Z•Z-IDELTZ 

IF!IL2,GT.MliL2•-l 
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~ORTAAN tV 8 L~VEL 21 SIIAPPII OAT~ • 711295 

4!0!!4 
OOBS 
0086 
0087 
OC88 
001'9 
OC'fO 
OO'Y1 
ceo;z 
0093 

0(194 
0,95 

00¥6 
0097 
0098 

IFIIA2,GT,"ilA2••1 
Xi>. IJL! =ll2 
X8(JQ)alR2 
00 106 t<=1tP 
IFIIL.GT,Ol81llt~l=BI!LtKl•AII~t~L•KI 
IFIIL2,GT,O!BIIL2tKlz~(IL2tKl•ACIL2oJLoKI 
IFCI~.GT,OlBCJR,Kl•BIIAoKl•ACIAt~AoKI 
tFIIR2,GT,Ol B!IA2eKI•BCIR2oKI•A(IR2t~RtKI 

66 CONTINl;E 
GO TO 500 

C••••• TRY ~EW RH COL 
78 Jllo:JA+! 

JFIJR,LE,NlGD TO 4 
Cooo•• ~0 MQRE ~~ COLS -- TRY TO UPDATE AO~ INDEX IN LH COL 

8 IFCIL2,GE,~PIGO TO 88 
!L2=!L2•1 
t;O TO 3 

C••••• LH COL ALL USED UP •• TAY TO GO TO NEXT LH COL, 
88 ~L•JL+1 

IFIJL,LT,NIGO TO 2 

. .,,., .. 

0099 
0100 C••••• ALL LH COLS TRIED -- CHECK IF GOOD S~AP FOUND, IF NOT, RE~UAN, 

0101 

010? 
0103 
01~4 
010!! 
0106 
0107 • 
0108 
0109 
0110 
0111 
0112 
Oll3 

0114 
0115 
0116 

0117 
0118 
0119 

0120 
0121 

. IFCIS~~P.EQ,Ol GO TO 600 
C••••• l(>~o;.~: TO I<E "CRAFTY" WITH GOOC SWAP STORED, SET UP S~AP AND 60 MAKE IT, 

IC:ELTZ"=!Co"A~G 
IR2=IR2SAV 
IA=p>SAV 
JP:JCISAV 
rL•ILSl.V 
JL=JlSAV 
!L2=IL2SAV 
JF!IL2.LE,O,OR,!L2,GE,~IGO TO 888 
triCtiL2oJLl,GT,90001IL2~-l 

8~8 IFIJ~2.LE,C,OA,I~2.GT,wlGO TO 6 
tF!Ci!R2oJR),GT,90001IA2••1 
GO TO 6 

C••••• COME HERE AFTER SWAP L PAINT RESULTS OF SIIAP, 
500 !FIIPRI~T,LT,llGO TO 1 

WRITEI6oS01JloJLtlloiL2tJAoiRotR2 
501 FORWAT! 1 0SUCCESSFUL SWAP -- NEW COST ISI t 0 I7olt 

•21• TASK•o!4otl OLD AGENT ~AS•oi4o'• NEW AGENT IS•oi4ll 
GO TO 1 

600 ~AITEI6o60ll ZoCXB(JltJ=lo~l 
601 FORMAT(tOFINAL SWAP RESULT: COST=•oiTt 

••t -SSIGNMENT VECTOR WASI'tlol30!411 
PET URN 
END 

•OPTIONS IN EFFECT• IDoEBCDICoSOURCEoNOLISTtNODECKoLOAD,NOMAP 
•CPriONS IN EFFECT• NA~E = SWAPPR t LINECNT • 60 
•STATISTICS* SOURCE STATEMENTS • 12ltPROGRAM SIZE • 4376 
•STATISTICS• NO DIAGNOSTICS GENERATED 

•STATISTICS• NO DIAGNOSTICS THIS STEP 
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FORTRAN IV G LEVEL 21 RANDU 

0001 
0002 
0003 
OC04 
oocs 
0006 
0007 
0008 
0009 

FUNCTION RANDUIISEEDXI 
!SEEO=ISEEDX 
ISEEO=ISEED•!6e07 
IF IISEEDl1, l t2 

1 ISEEC=ISEE0•2l47483647•1 
2 PANDU=ISEE0•4,656613E-10 

ISEEOX=ISEEO 
PETUAN 
E"'O 

DATE • 78295 

•OPTIO~S !"' EFFECT• !OtE~COICtSOUACEoNOLIST,~ODECKoLCAOoNO~AP 
•OPTIO~S !~ EFFECT~ NA~E = RANCU , LINECNT a 60 
•STATISTICS• SOURCE STATE~ENTS = 9oPROGRAM SIZE • 412 
•STATISTICS• NO DIAGNOSTICS GENERATED 

CONTROL PROGRlM CO~PILER - MPS/360 V2-M11 

P~OSRAI-. 

IN! TIALZ 
MOVEIXORJ,tROOftOOtl 
HOVE!XOATA,•I"'P-OAfAt) 
HOVE!XPBNAHEotGENASGT•I 

16'11.122 

OCOI 
0002 
·oot.s 
0~66 

oce7 
ll06r> 
0069 
0070 
007! 
0072 
1l073 
0074 
0075 
0(176 

TITLEt•LP SOLN OF MULTI•RESOURCE GENERALIZED ASGT PROSS•) 
MOVEIXRHSt•RHSl•l 
CONVERT!•SUHMARY'I 
SETUP!•BOUND•o•BV8LS•I 
RCDOuT 
PRIMolL 
SOLUTIO!' 
EXIT 
PEND 
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SEED a 1122334455 

MMoNNoPP • So 10• lo 

- - ----

z 3 

AGEioT NO. . . . . 6C4 79 570 

~GENT "0• z: 498 774 23'1 

A6(111T NO. J: 221 9999 815 

AGENT NO. 41 654. 964 794 

AGEIIIT NO. s: 753 607 51 

2 3 

AGENT NOo 1: 69~ 199 762 

AGENT NO. . 21 274 918 276 

A&ENT NO. 31 158 0 343 

AGENT NO. 4: 300 970 980 

AGENT NO. 51 520 908 340 

MATRIX OF C!Io.JI COEFF%CI£STS !9999•INFEASI8LE) 

TASK NUMoERSI 

4 5 6 1 8 9 10 

447 !!"5 645 '525 887 795 847 

93 290 520 963 611 •S7 i69 

898 268 401 937 515 9999 46 

13 555 819 9999 504 486 '789 

213 9999 791 114 566 478 9999 

MATRIX OF AIIoJoKI COEFFICIENTS FOR K• 1 II. Eoo RESOURCE NOo 11 

TASI( "'U'IEiEIIS: 

4 5 6 7 8 9 10 

546 765 508 A60 451 565 922 

648 270 803 379 319 668 644 

158 204 188 726 741 0 304 . 
202 106 100 0 166 236 56!1 

488 0 72 120 156 513 0 

~ 
l11 
00 



159 

••• IN,O AIIOIIT UNCONSTIUINEO OPTJIIUM ••• 
U~CONSTR OPT COST • 2154 

ASGMT VECTOR! 3 5 It 3 3 5 4 2 3 

RESOURCE REQTS Or UNCONSTII OPT! 
RESOURCE 11 199 6fl8 854 368 460 

SOlUTIOPII roR All Ell loiO • 310 

UNCONSTR OPT COST roR THIS RHS IS 2370J ASGT VECTOR! 
3 1 2 4 3 3 5 4 4 3 

••• RANOR • •• 
••• NEW BEST SDlN • •• 
COST: 40~4lo NO U~ASGD TASKS! 4o COST or ASGD TASKS: 198i, TRIAL NO.I 
~SSlGN~ENT VECTOR! 3 1 •1 ·1 2 s 5 •1 4 ·1 
SLACKS FOR RESOURCE 1: 111 ItO 152 74 118 

••• \iREEOV • •• 
SUCCESSrUL SWAP •• NFW COST lSI 40366 

USK 11 OLD AGENT liAS 3t NEll AGENT IS •1 TASK 10 I OLD AGENT WAS •1• I.IEW AGENT IS 3 

SUCC~SS,UL SWAP •• NfW COST lSI 40314 
T~SK 31 OlD AGflloT wAS •lt Nf'\11 AGfNT IS 2 TASK 51 OLD AGENT illS 2t NEW AGEr.T IS ·1 

SUCCESSFUL SWAP •• NEW cnsT lSI 3<;iA41 
HSK It I OLD AGENT WAS -1· Nfill AGENT IS 4 TASI< 91 OLD AGENT WAS 4o NEW AGENT IS •1 

SUCCESSFUl SWAP •• NFW COST lSI 307~6 

TA<;K 11 OLD AGENT liAS •lt NEW AGEIIIT IS •1 TASK 51 OLD AGENT liAS •lo NEll AGENT IS 4 

SUCCtSSFUl SIIAP •• NFW COST rs: 30531 
TASK 6t OLD AG~NT WAS So NEW AGF;NT IS -1 T/.SK ,8: OLD AGENT WAS •1o NEW AGENT IS 5 

FH•~I. S~AP ll(SULTI COST• 30531J ASSIGNIIFNT VECTOII WASI 
-I 1 ~· " 4 ·1 5 5 -1 3 

••• NEW BEST SOLN ••• 
CO~T: 3l146o NO UhASGD TAS~SI Jo COST OF Asr.n TASI(SI 2226, TRIAL NO, I 2 
~SSIGNMENT VECTOR: 2 1 •1 4 4 3 s 5 -i -1 
Sl•C~S FOR PESOURCE 11 111 36 122 2 34 

••• G4EEDV ••• 
SUCCF5SFUl SWAP •• NfW COST IS I 30~8<'> 

H~l( 1 : OLD AGCNT WAS 2o NEll 'GENT IS •1 TASt 31 OLD I.GENT i<AS ·1· NEW AGEIIIT IS 2 

SUCCESSFUL SII~P ~- NEW COST lSI 30706 
TASK 11 .OLD AGF.NT WAS -1· NEio AGE"NT IS 3 TA!OK 61 OLD AGENT wAS 3o NEW AGENT IS -1 

SUCCESSFUL S~AP •• hEW COST !51 30531 
TASK 1 : OLD AGENT WAS 3o NEW AGENT IS •1 TASII 101 OLD AGENT WAS •1• NEll AGENT IS 3 

FI~AL S~AP RESULT: COST= 305311 ASSIGN14ENT VECTOR IOAS: 
-I 1 2 4 4 -I 5 5 •I 3 

CC~T: 3?44q, hQ UNASGO TASKS: 3t COST or ASGI) TASKS! 3529, TR%AI. N0 1 : 3 
AS~!GN~ENT VECTO~: 2 l -1 3 4 4 5 s •1 .. 1 
SLACKS rOR ~ESO~RC~ 11 Ill 36 152 104 34 

-·- --· .. --. ·--··-- -- --- ··d- -~-- ---

C0$1: 40934o NO UNASGD TASKS: •• COST OF ASGO TASKS I 2374, TRIAL NO.I 4 
ASSlG~~ENT VECTOR: 4 2 •1 •1 5 •1 5 -1 3 
SLAC~S FOP ~ESOUPCE II 111 34 6 10 Ri' 
CO~TI ~2449, NO UNASGO TASKS! Jo COST or Asr.o TASKS I 3529, TRIAL NO, I 5 
ASSIGNMENT Vf.CTORt i! 1 •1 3 • 4 5 5 ' .. 1 ·1 
SlACKS FOil ~ESOUIICE I I 111 36 152 104 j~o 

••• NEil REST SOLN ••• 
COST: 3053lt NO UNASGD TASKS! 3o COST OF ASGD TASKS: l61i. TRIAL NO,r 15 
ASS!GIIoHENT VECTOR: •1 1 2 4 4 -1 5 5 .;.j 3 
SLACKS rOR RESOURCE 11 111 34 6 2 34 

••• GREEDV ••• 
FINAL SWAP AESULTI COST• 30531' ASSIGNMENT VECTOR WASt 
•1 1 2 4 4 ·1 5 5 ··1 3 



••• INFO ABOUT U~CONSTAAI~EO OPTtMUN ••• 

UNCONST~ OPT CuST • 2154 

ASGMT VECTOR! 3 5 4 3 3 5 4 

R[SOURCE AEQTS OF UNCONSTR OPTI 
RESOURCE 11 199 668 854 368 460 

SOLUTION FOR ALL 8(I,KI • 63~ 

UNCONSTA CPT COST FOR T~IS RHS IS 21751 ASGT VECTOAI 
3 1 5 4 3 3 5 4 5 3 

••• R~NOC ••• 
••• NEW BEST SOLN ••• 

2 3 

COST! 21482, NO UNASGO TASKSI 
ASSIGNMeNT VECTOR: 3 

2o COST OF ASGO TASKSr 220~, TRIAL NO,r 
2 4 3 3 -1 4 5 -1 

••• GREEDY ••• 

FINAL S•AP RESULT: COST• 24821 ASSIGNMENT VECTOR WAS: 
2 1 5 4 2 3 s 4 4 3 

••• NEW BEST SOLN ••• 

1 

COSTr 2482, NO UNA~GD TASKS! Oo COST OF ASGO TASKSI 2482t TRIAL NO,: 2 
ASSIGN~ENT VECTOR: 2 1 5 4 2 3 5 4 4 3 

••• GREEDY ••• 
FINAL SWAP PESULT: COST= 24821 ASSIGNMENT VECTOR WASr 

2 1 5 4 2 3 5 4 4 3 

••• GREEDY ••• 
FINAL SWAP RESULTr COST• Z4821 ASSIGNM[NT VECTOR WASI 

2 1 5 4 2 3 5 4 4 3 

1-' 
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••• INFO ABOUT UNCONSTRAINED OPTfUUIC ••• 

UNCONST~ O~T COST s 2154 

ASG"T VECTOR: 3 5 4 3 3 5 4 

RESOURCE REOTS OF UNCONSTR OPT: 
RESOURCE lt 199 668 854 368 460 

SOLUTION FOR ALL BlloKl • 470 

UNCONSTA OPT COST FOR THIS RHS IS !183f ASGT VECTORI 
3 1 s 4 3 3 s ... ... 3 

••• YAM I • •• 
Qao.o 
••• I!IEII BEST SOLI'f ••• 
COST! •. 10§80. NO UNASGD . TASKS: 2o COST OF AS&D TASKS: 
ASSIGN,.ENT YECTORI 3 1 5 4 2 -1 5 

••• G'lEF.D1 ••• 

FJN•L ~WAP PESULTI COST• 205801 ASSIGNMENT VECTOR WASI 
l 1 s 4 l •l s •I 4 3 

0•0.05000 

O•C.lOOOO 

O•~olSOOC 

o· .. r.2o~oo 

0•1!.25000 

0•0.40000 

0•0.55000 

0•0.7000G 
••• NEW BEST SOLN ••• 

2 3 

l30Co TRIAL "'O•: 
-1 4 3 

COST: 12i94t NO UNASGD TASKS! 
ASSIG~ME~l VECTOR! 3 1 

1o COST OF ASGD TASKS: 2554 0 TRIAL N0 0 1 
2 ... -1 5 5 5 4 3 

••• GREEDY ••• 
FINAL SWAP RESULT: COST• 121941 ASSIGNMENT VECTOR WASI 

3 1 2 4 -1 5 5 5 4 3 

0=0.85000 

0•1.00000 

••• GREEDY ••• 
FINAL SWAP RESULTI COST• 121941 ASSIGNMENT VECTOR WASt 

3 1 2 ... -1 5 5 5 4 3 

9 

.... 
0\ .... 



A6£1';T NO. 

t.6£t1T I'!Oo 

AGn~T NO. 

AGENT NO. 

AGENT NOo 

AGENT NO. 

11 

21 

31 

1: 

2: 

31 

MATRIX 0~ CIIoJI COEFFICIENTS 19999•INFEASIBLEI 

TASK NUOii'IERS: 

2 3 4 5 

804 79 9999 447 895 

645 ~25 P.57 9999 847 

498 774 238 93 9999 

MATRIX OF AlloJtKl COEFFICIENTS FOR K• 1 llo [,, RESOURCE NO. 11 

TASIC NUMBERS: 

2 3 4 5 

699 199 0 546 765 

508 860 451 0 922 

274 918 276 648 0 
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ft&ME 
AOitS 

N lli)OOOO 
l. PlOOll 
l. lll~O<'l 

l. Pl0031 
E A200l 
E A2,02 
E R2003 
E Ri!GG• 
E R2~05 

COLUJoiNS 
Xl00131 
Xl00101 
X1C0!02' 
Xlry0102 
J(}OC103 
XlCOl04 
Xl00104 
X}0010'5 
XlOC201 
Xl00201 
XlC0202 
X10~203 
X}00703 
X100204 
X100~0~ 
X10G301 
X100301 
X10.0302 
X100303 
X100303 
X 100304 
Xl003114 
X100305 

R~S 

RHS1 
RHS1 
PHSl 
Rl''il 

qnu~ms 

UP E'V(lLS 
UP ;wqLS 
UP RV13LS 
UP RVaLS 
UP A\181.5 
UP BII9LS 
UP 8111'11.5 
UP 8\IAI.S 

·UP 8\l'll.S 
UP FWALS 
UP BV'll.S 
UP IWRI.S 
UP BIIBl.S 

l.P SOLN OF JoiULT!•AESOURCE GENERALIZED ASGT PROBS 

INP•DATA 

llOOGOO 804.00000 R1 0011 699.00000 
1>2001 1.oonoo 
1'>00000 79.00000 R100ll 199.00000 
ll2002 1o0?C.00 
ROCOCO 99999.00000 R2003 1.00000 
llOtiOOO .... 7.00000 Rl0011 546.00000 
112004 l.~onoo 

ROOOOO 99999.00000 A2005 1.00000 
ROOOOO 64S.oocoo A101121 soe.ooooo 
R2001 ·t.oooco 
RCO~OO 9999:;.or~oo R20Q2 1.ooooo 
i'lOOOOO' BA7 .o,,ryoo lllOn21 451.00000 
R20C3 1.oonno 
AO~OOO 99999.00000 R2004 1.00000 
fi0.01CC 99999,00000 A2005 1.00000 
RQ!lOOO 49Jl.!lOOOO R10031 274,00000 
112001 1.coooo 
ROOOOO, 99999.ooono RZ002 1.00000 
1>00000 ;!3'1.00000 1>10031 216,00000 
R2003 1.onooo 
ROO~OO 93.00000 R10031 648.00000 
R2004 1.00000 
ROOOOO 99999.00000 R2005 1.00000 

R10011 740.00000 R10021 740.00000 
R10031 740.00000 A2001 1.00000 
R2002 1.00000 R2003 1.00000 
R2004 1.ooooo R2005 1.00000 

Xl00101 1.00000 
Xl00102 1.onooo 
XI00!03 1o00000 
Xl00104 t.ooooo 
X1001C5 1o00000 
X100201 1.00000 
X100202 1.00000 
X100203 1.00000 
Xl00204 1.0~000 
.X1002~5 1.onooo 
Xl0030l 1.00000 
X100302 1.00000 
X100303 loOOOOO 
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LP SOLN OF MULTI-RESOURCE GENERALIZED ASGT PROBS 

VARIFOAMt OBJ R AOOOOO RHS " RHS1 

TIME • Oo069 lo!INS. PRICING c T XCYCL£SW • 15 

OLD ETA NON-ZE~OS •••••0 
~Elf ETA NON-ZEROS •••••0 
BASIS NON-ZEROS •••••••9 
DENSITY INCREASE 1.00-

OLD ETA VECTORS •••••0 
NE~ ETA VECTORS •••••0 
6ASIC LOGICALS ••••••9 
TR:A~GLE COLS •••••••0 

OLD ETA ~ECOROS •••••••1 
~Ew ETA PECOI>OS •••••••1 
BASIC STRUCTU~ALS •••••0 
BU~P COLU~NS ••••••••••' 

VARIFORiolo OBJ = ROOOOO RI'S " 'IHS1 

TIME • Oo087 MINSo PRICII'<G z T XCYCLESW • 15 
liSCALE ., . . XFUNCT = 703~84.0000 • XSIF • 1391.00000 • XIIIIF • 

ITER NUM8ER VECTOR VECTOR REDvCED SUM 
NUMBER INFEAS OUT IN COST INFEAS ,,., 1 e 10 10 u Ho.ooo- 691.00000 

2 7 23 23 u 649.000- 232.00QOO 
3 5 13 tJ u sn.noo- 226.00000 
4 3 15 15 u sc9.noo- 6.oo-ooo 
5 3 17 11 u 1.0Q~oo- s.ooooo 
6 2 22 22 u 1.onooo- 4.0001)0 

716 7 2 11 ll u 1.ooono- 3.00000 
8 2 14 14 u 1.nonoo- 2.001100 
9 1 16 16 u t.ooooo- loOOOOO 

10 0 19 19 u t.ooooo-
FEASIBLE SOLUTION 

VARIFOR~, ORJ • ROOOOO • RHS = RHSl 

TI"'E • · 0.087 io'lNS. PRICIIIiG " 7 XCYCLESW = !5 
XSC,\LE = . . XFUNCT = 400494.0000 • XSIF • . . XNIF • 
SCALE t>ESET TO 1.00000 

ITER NUMBER VECTOR VECTOR REDUCED FUNCTIONAL 
NIJHBER NON OPT OUT IN COST VALUE 

7/5 11 s 6 21 u 99999.0- 40C494.0000 
12 7 12 u 999Qc;_. o- 400494.0000 
13 8 18 u 999c;q.o- 41)049• .• 0000 
1'4 9 ~4 u 999119.0- 4004'1 ... 0000 
15 5 2~ u 498.000- 40049 ... 0000 

7/5 16 5 11 u 11 99920.0- 3001;7 ... 0000 
l7 22 u 22 997€-l.O- 20011!3.0000 
18 2 13 9955?,0- 102172.6250 
19 18 23 99906,0- 101257.7500 
20 12 lT 99112.o- 101257.1500 

7/2 21 2 4 2 .64835- 101157.,8'fs 
7/1 22 1 15 u 15 2,68518- 101154.!1000 

OPTlloiAL SOLUTION 

78/10/23 0.06.211 Pl.GE 

START lNVEQT Co069 
TI~E TAKE~ 0.017 
~0. OF RC•S ••••••9 
.ESIOuE CDLS •••••0 

8 

0 

ITERATION NO. •••••0 
ALTo ~IVOTS •••••••0 
~0. OF 8UWPS ••••••0 
hO. OF SPIKES •••••0 

T 

1-' 
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LP SOLN OF NULTI-RESOU~CE GENERALIZ£~ ASGT PROBS 

SECT!ON 1 - ROWS 

NUMBER ••• Row •• AT ••• ACTIWIT"l'••• SLACK ACTIVITY ooLOiiER LIWITo 

ROOOOO es 101 ~5 ... 51.=52 10l15•.c;lat;2- ~IO'<E 

2 RlllCI1 es 3S•.C37C4 385.96296 '110';£ 
3 I<H02l PS 50'3,0:•1\:0 232.00000 "'tj!.£ .. RIC031 UL. 74~.000~0 . NCt<E 
5 012001 EQ !.C'~VOO . 1.ooooo 
6 R2002 EO t.or.ooo . 1.ooooo 
7 P.2C03 EO l,C0•100 . 1.ooooo 
8 112004 EO 1.ooooo . 1.coooo 
9 R2005 EO 1.coooo . 1.1!0000 

-~-- - - --

.. UPPEI< LIMIT. 

~OPiE 
T•rt.Co!\~~0 

74o.e~~,o. 

740.0~090 
1o00900 
1.ooono 
loOOOIIO 
1.00000 
loOOOOO 

78/10/23 

oOUAL ACTIVITY 

1.00000 

.54630 
641.69519-

99999.00~00-
Bll?.oonoo-
447.110ooo-

99999.00000-

Oo0Bo28 PAGE 

------. - - - --- --- -- -· ·-·---- -- --- -- ------- -------------- ------- ---- ----·- - ---·- - --

LP SOL.N OF MULTI-RESCURCE 6E~ERAL.IZED ASGT PROBS 78/10/23 0.08.28 P.Ar.E . 
SECTION ?. - COLU"NS . 

NUI-<Bf:Q .COLU~-<N. AT ,_,,ACTIVITY,,, •• It.;PUT Cll5T •• ..LOwER LIMIT. •• UPPER LI"IT. o;(EDUCEO COST • 

10 XIOOlOl L.L . PO•.noooo . 1.0111\CO 156.31481 
11 XIOOlO? UL. 1.00000 79.00000 . 1.000~0 999?~.ooooo-

12 X!00!03 LL . 99'199.00000 . 1.oonoo 99112.00000 
13 Xl00104 BS ,2!1395 447.noooo . 1.ooooo 

A 14 XIOO!OS L.L. . 9<~<~<~<~.onnno . 1.00000 
15 Xl00201 UL 1.0000() l'o45.ooooo . 1.oocoo 2.68519-

A 16 X 1C0202 LL . 9'1<199.00000 . t.oonoo 
17 XI002n3 65 . ~!l7,0000G . 1.oonoo 
lA XI00204 LL . 99CI'l9.0il000 . 1.t1~oeo 99552.001100 

A 19 XIOO?OS LL . 9<;999,00000 . t.oonoo 
2' XlC0301 BS . 498.00000 . 1o00000 
21 XI00302 BS . 99999.00000 • loOIIOOO 
22 X100303 UL 1.000GO 238.00000 . 1.00000 498.22222-
23 Xl00304 BS • 71605 93.00000 . loOOOOO 
2 .. X100305 BS 1.00000 99999.00000 . loOOOOO 

9 

10 

..... 
0\ 
VI 



APPENDIX C 

PROGRAMS. FOR LIMITED COMPUTER RESOURCES 

166 



1990 REM 
2000 Q ... 05 

:=== VAMI 

2010 FOR ~2=1 TO 5 

XXX 

2e20 IF ~2 = 1 THEN 2060 
2030 RE~ T~KE STEPS IN Q 
2040 Q .: Q+Q 
2050 RE~ {~E)SE! RESOURCE SUPPLIES 
206C F0~ ! : 1 70 M7 
2·170 ;,;(j) = 3(!) 
2'J~i: V(l) : T(l) 
2090 NEXT I 
2100 REM LOOP CA~C'S PENALTIES 
2110 FOR J:l TO N 
2120 IF J2>1 GO TO 2170 
2130 RE~ PENALTY FOR Q = 0 IS EASIER 
21~0 P(J):AgS(INT(C(2,J)-C(l,J)+20)/l00) 
2!.~0 GO TO 2~60 
2160 RE~ ~~PACK RESOURCE REQTS 
2l"il El:::R(l,J) 
21SO Rl=I~T(El/1000) 
2190 E!=El-Rl=lOOO 
2200 E2=-R(2,.J) 
2210 R2=1ST(E2/l000) 
2220 E2=E2-R2~1000 
2230 REI''. \.":?ACK COSTS C ROW HIDEXES 
22.1!0 Pl=C.C,J) 
2250 c~=!~~~?l/100) 
2260 Pl=?:-cl~:~o 
2270 P2:C(2 1 J) 
2280 C2=!NT(P2/100) 
2290 P2= 0 2-cz=:oo 
2300 REM CALC !NEF'CY FOR ~ACH 
2310 RE~ RES"CE ON EACH MACH 
2320 Rl=iH/B(?l) 
23~0 E~=-El/T(Pl) 
2~~0 R2:l;.?l'!(r'2) 
235:l E2=-;'.2/T(?2) 
2360 RE~ FIND MAX lhEF 1 CY ON EACH MACH 
2370 IF El•R1 THEN 2390 
2380 E1=Rl 
2390 IF E2•R2 THEN 2~20 
2400 E2:R2 
2410 REM CALCULATE PENALTY 
2420 Ql.:l-Q 
243C C5=(Cl+C2)/2 
244~ E5=(El+E2)/2 
2450 P(J):ABS(QlX(C2-C1)+(QXC5/E5)X(E2-El) 
2460 NEXT J . 
2470 C5=0 
2480 REM UNTIL ALL JOBS ARE ASSIGNED 
2490 FOR ~ = l TO N 
2500 REM FINO L = NO. OF JOB W/MAX PEN 
2510 M6=P(l) 
2520 L=l 
2530 FOR J6:2 TO N 

'. ; 
~ I • 4 

2~40 IF P(J6)~6 THEN 2570 
2550 Mf=P(J6) 
2560 L=J6 
2570 tiEXT J6 
2590 RE~ KEEP PEN FROM BEl~~ HAX AGAIN 
259~ P(L)=-9393;9 
2c :C !<E'1 O?T l"l ZE ..;O e W/MAX PEN 
26 lO fO't I = 1 TC !'I 
2E 20 C 2 = C C I , L) 
2530 IF C:2>?;~;co T~EN 2740 
~5~0 Cl = INT(C4:'/l00) 
4:'6;0 C2=C2-Cl" 100 
2660 R2=R(I,t.) 
2570 R1: IP..T(R2/!000) 
2£80 IF Rl > U(C2) THEN 2730 
~:i?C R2 = R2-Rl:ClOOO 
C:iOO IF R2 > V(C2) 'THEN 2730 
27lC ! ~=I 
~720 GO TO 2780 
2730 NEXT I 
2740 A(L):-1 
2750 u6 = u6 + 1 
2760 Cl : '500000 
2770 GO TO 281C 
:2730 U(C2) : U(C2) - Rl 
2790 V(C2) : V(C2) - R2 
2~CC A(L)=C2 
2210 C5 : C5 + Cl 
:23 20 ~»EXT J 
283C PRINT 
2e4C PRINT 1 SOLUTION 1 ;J2 
:2850 IF U6 : 0 THEN 2900 
22::o cs = cs-u&: sooooo 
25 70 FOR I : l YO U6 
2e30 P'l.!NT tx 1 ; 

2290 NEXT I 
2900 PRINT 1 COST: 1 ;C5 
2910 FOR I : 1 TO M 
2920 Yl:Y(I) 
2330 PRINT 'I'!ACH NO. 1 ;Yl; 1 ASGD TO:' 
2940 Nl : 0 
2950 FCR J : l TO N 
29£0 IF A(J) ~ Yl THEN 2990 
2970 Nl : 1 
2920 PRINT 1 JOB 1 ;Z(J) 
2990 NEXT J 
3000 IF N1 ~ 0 THEN 3020 
3010 PRINT •:cxx NOTHING :c:c:c 1 

3020 PRINT 'UNUSED MATL:';U(Yl) 
3030 P~INT 1 UNUSED TIME:';V(Yl) 
3040 PUNT 
3050 NEXT I 
3060 IF U6=0 THEN 3130 
3070 PRINT 'UNASSIGNED JOBS:' 
3080 u6=0 
3090 FOR J : l TO N 

"·· 

3100 
3110 
3! c.> 
313:l 
31'-0 
3150 
;::.6~ 
~-- ... _.:v 
3:~~ 
~,~~ ............. 
32CO 
3210 
32:?0 
3230 

IF A(J) > C THEN 3120 
P:!I'IIT 1 JOB ';Z(J) 
NEXT .J 
'<EXT J2 
!''<!I;T 'N:;:W RUN?' 
l!~~~T Y$ 
~~ YS = 'YES' T~EN 3190 
IF YS P 'R~S' T~EN 32lC 
GO TO l6~C 
RESTORE 
GO TO lltCC 
PR! NT 1 :c:cx END x:ox 1 

STOP 
END 

I-' 
0'\ 
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1990 REM XXX RANDC XXX 

2000 PR!NT 'RANDOM NO.:?' 
:iO 10 INPUT R9 
2020 GJ;: N'l" 550000 
2!:30 PltiNT 'NO. TRIALS: ?' 
20~0 I N!>iJT Z 
ccso IC. = 1 
2060 REM IC. C Z ARE RESET IF 
2070 REM MORE TRIALS ARE WANTED 
20130 FOR k : Kl TO Z 
2090 REM (RE) SET FLAG FOR INCOMPL. SOLN 
2100 u6 = Q 
2110. REM (RE) SET RESOURCE SUPPLIES 
2120 FOR I : 1 TO H7 
2:.30 V(l) : E(I) 
21~0 U(l) = T(l) 
2150 NEXT I 
n60 REM SHUFFl.E INDEXES TO .JOBS 
2170 fOR .J = N8 TO 1 STEP -1 
2180 S1 = Yt> 1 
2190 R9=RND(R9) 
2200 C2=1 NT(R9¢ .J)+1 
2210 C4:P( 51) . 
2220 P(Sl):P(C2) 
2230 P(C2) : C4 
22~0 .t.:EXT iJ 
2250 cs = 0 
2260 RE"' OPTIMIZE iJO BS PER SHUFFLED INDEXES 
2270 FOR iJ = 1 TO N 
2280 L : P( iJ) 
2290 FOR I : 1 TO M 
2300 I 5= I 
2;10 C2 = C(l, L) 
2320 IF C2>999~00 THEN 2450 
2330 REM GET COST £ RO~ INDEX 
2340 Cl = INT(C2/lOC) 
2350 C 2=C 2-CJ:' 100 
2360 REM UNPAC r & CHECk RESOURCES 
2370 R 2=R(l, l) 
2380 Rl = INT(R2/lDOO) 
2390 IF Rl > V(C2) THEN 2430 
2~00 R2 : R2-Rl:: lOCO 
2:.:.0 RE'1 IF RESOURCE OK, GO ASSIGN 
242(; IF R2 s U(C2) THEN 2500 
2~~0 NEXT I 
2- "C REM UNASSIGNED iJO B 
:<450 A(L)=-1 
2~60 u5 = u6+-1 
2470 C1 = 500000 
24 80 GO TO 2540 
2490 REM DECREMENT RESOURCES C ASSIGN 
2500 V(C2) = V(C2) - Rl 
2510 U(C2) : U(C2) - R2 
2520 A(L)=C2 

""':.; 

2530 R~"' ADD COST TO TOTAL 
2540 C5 : C5 + C1 
2550 NEXT .J 
2560 REM PRINT SCLN tF NEW f£ST 
2570 REM OR ONE OF FIRST FIVE 
2560 IF K s 5 THEN 2600 
2590 IF C5 a Gl THEN 2930 
2600 PRINT 
2610 IF C5 a G1 THEN 2640 
2620 PRINT IIC:C NEW f£ST SOLUTION' 
2630 G1 = C5 
2640 PRINT 'TRIAL NO. 'JK 
2650 c:s = c5-u&c sooooo 
266C IF U6 = 0 THfN 2700 
267C FOR I = 1 TO U6 
2c:0 PRINT r.c '; 
26::'0 NEXT I 
2700 PRINT 'COST= 1 JC5 
2710 FOR I : 1 TO M 
27 20 YlF Y(t) 
2730 PRINT 'MACH NO. 'JY1; 1 ASGD TO : 1 

27~0 Nl = 0 
27 50 FOR iJ : l TO N 
2760 IF A(J) ~ Y1 THEN 2790 

JOB ';Z(.J) 
2770 N::. = l 
2780 PRINT 1 

2790 NEXT .J 
2800 IF Nl ~ 0 THEN 2820 
2810 PRINT o::xx NOTHING >:>ex 1 

2820 PRINT 1 UNUSED MATL:'JV(Y1) 
2830 PRINT 'UNUSED TIME: 1 ;U(Y1) 
2840 PRINT 
2850 NEXT I 
2860 IF Uc=O THEN 2930 
2270 PRINT 'UNASSIGNED .JOBS:' 

1 TO N 
> 0 THEN 2920 

.JOB ';Z(.J) 

2880 U6:0 
2e90 FOR iJ = 
2900 IF A(.J) 
2910 PRINT 1 

2920 NEXT .J 
2930 NEXT K 
2940 REM CHEC IC FOR MORE TRIALS 
2950 PRINT 'MORE TRIALS?' 
2960 INPUT Y$ 
2970 IF Y$ ~ 'YES' THEN 3030 
2980 PRINT 1 HOW MANY?' 
2990 K1 = Z + 1 
30DO INPUT Z 
3010 z = z + Kl - 1 
3020 GO TO 3149 

3030 PRINT 
3040 PRINT 'NEW RUN' 
30 50 I NPIJT Y$ 
306~ REM CHECK FOR RERUN OF WHOLE PRO!! 
;~70 RE~ OR NEW RESO~R~E SUPPLIES 
3C2C IF YS : 'YES' THEN 3:::.c 
309C IF YS - 'RHS' THEN 3130 
3100 GO TO 3ll;9 
3::.10 RESTORE 
3120 GO TO 31119 
3130 PRINT 1 XXIC END ICXIC I 

3140 STOP 
3150 END 

I-' 
0\ 
00 



lDOO REM""" METHODS ARE IDENTICAL THRU STATEHI!NT 1980 ••• 
1010 DIM C(7, 10),R(7, 10), 8(7), T(7),V(7) 
1020 DI"l A(lC),P(l0) 1 Y(7),Z(lO),U(7) 
1030 !!.EM"'"' P~EDEFINED DATA"'"' 
1040 ~E~ SORTED IN~EXED COSTS f.N:l 
1050 RE~ PACKE:l RESCURCE ~;QUIRE~ENTS 
1060 REM .:Of! 1 
1070 DATA 40Gl,6307,73C6,8305,e903,9~~2,970~ 
lOBO DATA 61019,13015,48036,62033,69039,18057,58025 
1090 REM .JO l' 2 
1100 DATA 4804,5606,63C3,68C5,8701,9507,99S902 
1110 DATA 1S016,0,28052,380S9,12059,95Cl9,50033 
ll 2l II E!-! ..!0 E 3 
1130 OATA 2~05,~802,5803,60C1,5705,71C7,9504 
l!qO CATA 7ZJ45,59C63,49051,870c5,!~~25,27059,82034 
1150 REV. .;o e 4 
1160 DATA 1202,3306,3905,5701,7~03,8304,8907 
1170 DATA 870.82,12067,43015,34034,66011,92048,54019 
1180 REM .JOB 5 
1190 DATA1003,2506,4304,5307,6505,7901,9802 
1200 DATA 43C50,81039,~JC8l,89G72,78C49,85061,79062 
1210 RE.,. ..JOB 6 
1220 DATA 2501,3606,6405,6703,?00~,S907,99S~02 
1230 DATA 7402~,0,33C251 6006l,62089,4201l,ll014 
1:<40 REM JOB 7 ... . . 
1250 DATA 3702,3904,~405,4503,€806,69071 950l 
1260 DATA 53012, 890 24, 45023, 9 20 7c, 31044, !!~0 591 3 2019 
1270 RE~ ..JOE 8 
1280 DATA 1102,2-903,4107,7101,7705,7906,970ll 
1290 DATA 74071,84069,52085,96C46,74095,50C25,55016 
1300 RE'I JO!l 9 
1310 DATA 2C01,3505,440~,460~~805,5803,6107 
132~ DA7A 75G72,4e091,91C55,S6059,46Ce9,63059,62049 
1;30 REM JCS 10 
1~40 DATA 1002,1106,1601,2lC5,7107,7304,999903 
13:0 DATA 53056,71075,0,62056,90047,32048,86075 
1360 REM ARRAY DIMENSIONS 
1370 M7 : 7 
13M. N7 = 10 
1390 ~E'~ READ PREDEFINED DATA 
140 C FOR J : 1 TO N7 
11110 FOR I : 1 TO M7 
14 20 READ CCI, u) 
g7Q NEXT I 
14iiO FOR ! : 1 TO M7 
1450 READ R(I,.J) 
1460 NEXT I 
1470 NEXT .J 
1480 REM INPUT ADDITIONAL DATA 
1490 PRINT 1 NO, MACHINES ? 1 

1500 ltlPUT M 
1510 M9: H + 1 
15 2C M8 : M • 1 
1530 PRINT 1 NO, .JOBS ?' 
15~0 I ~~PUT N 
1550 No : N•1 
1550 PRiNT 1 ENTER 1 ;M; 1 MACHINE NOS. IN OROER 1 

1570 FOR I : 1 TO H 
1580 I NP.UT Y( i) 
159C NEXT I 
1600 PRINT 1 ENTER 1 ;N; '.JOB NOS, IN ORDER' 
1610 FOR J : 1 TO N 
1€20 INPUT Z(..J) 
1630 ';EXT J 
15~0 PRINT 'ENTER: MATL THEN TIME FO~' 
1650 FOR I : 1 TO M 
1560 Yl: Y(l) 
1670 PRINT 'MACHINE f';Y(I) 
16SO INPUT f(Yl), T(Y1) 
1690 NEXT I 
1700 '<E."l CHECIC IF RER:.iN WITH 
l7lC ~EM NEW RESOURCE SU;>PLlES 
172:l IF Y$ : 1 RHS 1 THEN 2000 
1730 RE'I INITIALIZE ~OP INDEXES 
1740 RE~ FOR S~UFFLlNG AND 
1750 REM COMPRESS COSTS ' RESOURCES 
1760 RE~ INTO UPPER LEFT CORNER 
1770 IIEM OF DATA MATRICES 
1780 FOR J : 1 TO N 
1790 ?(.J) = .J 
181;0 L=Z(..J) 
1810 ! 2 = 1 
1820 FOR I : 1 TO M7 
1830 C2: C(I,L) 
1840 1< = C2-100"CINT(C2/l00)) 
1850 FO~ 11 : 1 TO M 
1860 K1= Y(ll) 
1870 IF K P ICl THEN 1920 
1880 U(I2):R(K,L) 
1890 V(! 2)=C2 
1900 !2=12+1 
1910 !F !2 > M THEN 1940 
1920 NEXT ll 
1930 NEXT I 
1940 FOR l= 1 TO H 
1950 R(I,..J):U(I) 
1960 C(I,.J):V(I) 
1970 NEXT l 
1980 NI!XT .J 

1-' 
0' 
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NO, MACHINES ? 
? 2 
NO, .10 es 1 

? -!~TER 2 MACHINE NOs. IN ORDER 
? 1 
? 3 
ENTER ~ .JOB NOS. IN ORDER 
? 1 
? 2 
? 3 
1 5 
ENTER: MAT~ THEN TI~E FOR 
1-4ACHINE t 1 
? Ho, 15o 
MACHINe I 3 
1 150, 130 

SOLUTION 1 
::ccosT = 137 
MACH NO, l ASGO TO 

.JOe 1 

.;oe 2 
UNUSED MATL: 63 
UNU~ED TIME: 115 

MACH NO. 3 ASGD TO 
.;oa 5 

UNUSED MhTI.: 83 
UNUSED TIME: 49 

UNASSIGNED .JOBS: 
.JOB 3 

roLUTION 2 
x COST= 137 
MACH NO, 1 

.;oe 1 

.JOB 2 
UNUSED MATL: 63 
UNUSED TIME: 115 

ASGD TO 

HACH NO, 3 ASGD TO 
.JOB 5 

UNUSED MATL: 83 
UNUSED TIME: 49 

UNASSIGNED .JOBS: 
.JOB 3 

,j 

·~ 

SOLUTION 3 
xcosT = 110 
MACH NO. l ASGD TO 

.JOB l 
JOB 3 

UNUSE:> HATL: 7 
UNUSED TIME: 85 

MACH NO, 3 ASGO TO 
.Jtl e s 

UNUSED MATL: 83 
UNUSED TIME: 49 

UNASSIGNED .10 BS: 
.JOB 2 

SOLUTiON 11 
::c COST : 137 
MACH NO. l 

.10 e l 

.JOB 2 
UNUSED MATL: 63 
UNUSED TIME: 115 

MACH NO. 3 
.JOB 5 

UNUSED MATL: 83 
UNUSED TIME: 49 

UNASSIGNED .JOBS: 
.JOB 3 

SO:..UTION 5 
COST= 240 
MACH NO. 1 

JOB l 
.JOB 5 

UNUSED MATl.: 36 
UNUSED TIME: f;l 

I'IACH NO. 3 
.JOB 2 
.JOB 3 

UNUSED MATl.: 73 
Uto.'USED TIME: 17 

NEW RUN 
1 NO 

XXX END IC:CX 

TIHE 0.3 SECS. 

ASGD TO 

ASGO TO 

ASGD TO 

ASGD TO 

~ ....... 
~ 



NO. MACHINES ? 
? 2 
NO, .;oBs ? 
1 I; 
ENTER 2 MACHI Nc NOS. IN ORDER 
1 1 
? 3 
ENTER 4 .JOB NOS, IN ORDER 
1 1 
? 2 
~ 3 
? 5 
E~TE~: MATL THEN TIME FOR 
~~ACH! ~;e ! l 
? lZiC., 150 
MACHINE t 3 
? 150,130 
RANDOM ~-0. =? 
? 5217347 
NO. TRIALS= 1 
1 10 

:c:c NEW cc ST SOLUTION 
T~IAL NO, 1 
"'COST = 137 
MACH NO. l ASGD TO 

JOB l 
.JOB 2 

UNUSED MATL: 63 
UNUSED TIME: 115 

MACH NO, 3 ASGD TO 
oJOB 5 

UNUSED MATL: 83 
UNUSED T!ME: 49 

UNASSIGNED JOBS: 
.JOB 3 

oc:c NEW ~ST SOLUTION 
TIU.!.'- 11:0, 2 
COST = 240 
MACH NO, 1 ASGD TO 

JOB 1 
JOB 5 

UNUSED MATL: 36 
UNUSED TIME: Bl 

MACH NO, 3 ASGD TO 
JOEl 2 
.JOB 3 

UNUSED MATL: 73 
UNUSED TIME: 17 

TRIAL NO, 3 
COST: 240 
MACH NO, 1 A!&D TO 

oJO S l 
JOe 5 

UNUS!:O MATL: 36 
UNUSED TIME: 61 

MACH ~10, 3 ASGD TO 
JOB 2 
JOB 3 

UNUSED MATL: 73 
UNUSED TIME: 17 

TRIAL NO, 4 
COST: 246 
MACH NO, l ASGD TO 

JOB 2 
.JOB ~ 

UNUSED MATL: 52 
U,._'\JSEO TIME: 88 

MACH SO, 3 ASGD TO 
JOB l 
JOB 5 

UNUSED MATL: 35 
UNUSED TIME: 13 

TRIAL NO, 5 
COST : 240 
MACH !100, l ASGD TO 

.;oB 1 
JO I! 5 

UNUSED MATL: 36 
UNUSED TIME: 81 

MACH NO, 3 ASGD TO 
JOB 2 
JOB 3 

UNUSED MATL: 73 
UNUSED TIME: 17 

MOR f TRIAL 5? 
? NO 

NEW RUN 
?NO 

:c:.:c END """ 
TIME 0. 3 SECS • 

1-' 
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FORTRAN IV G LEVEL 21 OCAIN DATE • 78295 13138/39 

noct 
0002 
0003 

0004 
0005 
0006 

c···················••c••••c••·············•••o··············~·········· 
coeoeoeeoeeeeeee•eeeeeeeeee~eeoeoeoeeee•oeoeee•eo§e•GeeOOOOeeeeee•eooeeO 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••·~·•••••••••• 
Coo•• ••••• 
c•ooo 

C•••• 
C•••• 
C•••• 
C•••• 
C•••• 
C•••• 
Ceooo 
C••o• 
C•••• 
co••• 
C•••• 
Co••• 
C•••• 
C•••• 
C•••• 

A FAST ioiEURISTIC FOR ASSIGNING liEAPONS TO TARGETS 

BY 

~~NAY C. THIBAULT 
All! I) 

KE.,NETh Eo CASE 

CKLAHOM& STATE UNIVERSITY 

SEPTE~BE~ ltl977 

••••• 
••••• 
••••• ··6··••••• 
••••• 
••••• 
•••o• 
••••• 
••••• 
••••• 
••••• 
••••• 
••••• 
••••• 
••••• 

c••••••••••••••~•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c•••••-•••e••····~~·o···················································· 
c••••••••••••••••••••••••••••••••••••~•••••••••••••••••••••••••••••••••• 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

•••o••••••••vo••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • • 

••• WAIN PROGRAM ••• 

MAIN f'UNCTIO:O.S I 

1. READ A~O P~I~T INPUT DATA 
2. ~AKE PRELIMI .. ARY CALCULATIONS 
3. FINO UNCO~STP&INED OPTIMUM 
4. ADO PhANTOM U~IT 
5o C'LL SOLUTIO~ 4~D OUTPUT SU~ROUTINES 

NOTE: THIS MAIN PRO~PA~ AND THE OUTPUT AND CHART 
SUBROUTINES EXIST PRIICARILY TU DE~ONSTR4TE HOW TO 
GENERATE AND P~IIIIT TH~ DATA NEEDED BY AND PRODUCED BY 
THE SOLUTION SUBROUTIIIIES. 

• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• • 
• • • 
• 
• 

••••o•o~~oo•••••••••••••••••••••••••••••••••••••••••••o•••••••• 

COMMON /AC0~2/ NALPHA 
COHMON /PRCOH/ IPX!20l 
COHHON /UCOH/ CVEC!l200loRVEC!12001tEVEC!i200ioSVEC11200)o 

•A!401tSU!40loTl!40loTU!40loTIHE,NT,NUtNN,p,,tSAHEoPVEC!l2001 
DIMENSION C!40o3DltR!40o30loE140o30loSI40,JOltP(60o30l 
EQUIVALENCE (C!lltCVECClllo!RilloRVECilllo(EilloEVEC!lll 
EQUIVALENCE ISilloSVECClllo(P(lloPVECilll 
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0007 

00011 

0009 

0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 

00?0 
0021 

0022 
0023 
0024 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

C~~woN /SChfn/ ~P5TqTI~OioSPSTOP130lo~ST&cy(4GioSTAPTS!1?00lo 
•STCP511200loSHELLSll2nOJtNTARGI12COlt~S~~~~~:20GltN,IRSTI401t 
•I~FEASI3~1 

DI~E~SION SCSTA(40o30JtSCSTP!40o301oSCROSr40•301oNSCTPR!40o301o 
•NRANKS!40o311 

EQUIVALENCE !STAPTSilltSCST41l11o!STOPS111tSCSTP!lllt 
o ISHELLS(lloSCROSillloiNTAPGili•NSCT~Gill)oiNSRANKilloNRA~KSilll 
cow~o~ /CC~G/ !G~A-oiG((4nlolGGI40t 
co~uo~ /CD~2/ !P130loiGI401tMSIJil2001t~I!JI901oMAXPRI 

OI~ENSIO~ ~SI40o301oMI!3Co31 
EQUIVALENCE I~SilloMSJJ11llt1Ml111o~IlJCl)l 
CO~wON /CO~X/ LGRNr,(40J 
C0H~O~ /OCOW/ LINfl10lloASTARSC1011 
CC~~ON /~CCM/ AL~HAoTOPINE 

CC~MON /DCO~/ MAXROWoWAXCOL 
DATA INDCHS,INDCSS /0,0/ 
DIMENSION IZONK(401 

••••••••••••••••• 
• • 
• ••••••••••••• • 
• • • • 
o o WARNI~G • • 
* • • 0 

• •••••••••o••• o 
• • 
••••••••••••••••• 

TkE FOLLOWING TWO STATEWENTS MUST ALWAYS SET ·~AXROW" AND •MAXC0L" 
EQUAL TO THE DIHENSIONS DEFINED ABOVE FOR THE ~AIN ARRAYS. 

HAXROW=40 
MAXCOL:o30 

c••ooo 
c••••• 
c••••o 
c••o•• 
C••••• 
c••••• 
c••••• 
co•o•a. 
cooooo 
CO-G-000 

aoooeo~eoooooo~o~•••••••••••• 

• READ • DISPLAY I~PuT nATA • 

······~······················ 
••o••••••••••••••••••••••••••••••••••••••••••••••••&• 
o NOTE TkAT ALL •READ•, •PRINT"• AND •FOR~AT" • 
• STATEM~NTS OEALING WITH B~~!C PR08LEM DATA HAVE 0 

• BEEN LCCATEO HERE TO FACILITATE PROGR•w • 
• MAI~TENANCE o 
ooaoooaaoooooaaoooo•••••••••••••••••••••••••••••••••• 

c 
c••••• 
c ...... 
C••••• 
C••••• 
c 

c 

READ HISSION TIHE, NOo TGTSt ~0. ROWS!aNO. FUZE/ROUND COMBOSit 
M4X INEFFICI~NCY ALLOWED, CONTROL fOR PRINTING INPUT DATA, 
NUHBER OF ALPHAS TORE TRIED !SHOULD RE 0001 1 WILL BE ADDEO IF EVENit 
FRACTION OF MISSION TI~E WHICH DEFINES NPLENTY OF TIHEo" 

PEAD ltTiwE.NTtNUoTOPINE,rP~INToNALPHAoPLENTY 
FORMAT!FlO.Oo2IS,FS.Oo2IStFS.OI 
IFITOPINEoLTo ,OliTOPINE•oS 

C• .. •• REliD COST MATRIX. I"NSCORE"l 
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0025 
0026 

0027 
0028 
OC29 
C030 
C03l 
0032 

0033 
0034 
0035 

c 
DO 10 I=lo'-U 
~EAD J,CCtloJl oJ=lo~Ti 

c 
C.,..o••~ 

C••ooo 
C••••• 
c••••• 
c•••e• 

THE rCLLC•I~G FO~>,AT ST:.TE!4£"'TS ':<E USFI'I FCfl flEI.CI!t'G ALL DATA 
EXCE~T ~:SSIO~ TI~Eo NO, TGTSo ~0. UNITS• ~P.D WAX, !hEF~!CIEhCY 
tALL OF wwiC~ A~E IN T~E FIRST OAT~ CARnlo AND SCHEDULING INFO 
!WHICH IS IN THE VFRY LAST SET OF DATA CARDS!. SEE DOCUMENTATION FOR 
INST~UCT!ONS FOR CHANGING METHODS OF DATA INPUT, 

c 

c 

'3 FOR~>Ht20F4,!!1 

33 FOPHATC20I·\l 
~0 399 ..:=lol'>T 
JF!CtioJl,GT,9900ICt!oJl•lOOOOOO. 

399 CONTH<lJE 
10 CO,..TIIIIUE 

c••••• 
c 

qE.AD MATRIX OF ROU~iD R£0UIRE>4ENTS c•NROUN05") 

c 

DO 20 I=lolliU 
PEA~ 3t !R!ItJloJ•l•NTI 

20 CONTit.liE 

C••••• READ A~~UIIi!TIC~ SUPPLIES 
c 

0036 READ 3o!Atlloi•ltNUI 

0037 

"' ~ 
C•••••· 
c 

READ TIWES Fa~ SETU~ AND FIRST ROUND 

READ 3oCSUCIIol•ltNUI 
c 
C••••• R£4Q T!HES fE~.ROUNO !SUSTAINED FIRE! c . . 

0038 READ3o!Tl (llei=ltNUI 
c 
C••••• READ NO, TUBES FOR EACH ROW 
c 

0039 READ 3tCTU!Il•I•l•NUI 
c 
C••••• READ NO•S. 0¥ UNITS CORRESPONDING TO ROWS !MUST ~E IN ASCENDING ORDEAl 
c 

0040 PEAD 33o!IGiiloi•loNUJ 
c 
C••••• READ TARGET PRECEDENCES (MUST q£ IN ASCENDING ORDE"l 
c 

0041 READ 33ollPCJloJ•l•NTI 

0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 

c 
C••••• 
c 

CL~AR M~SSING ANC SCHEDULING ARRAYS 

NN=NU+l 
DO lQ?O J=loNT 
"'ICJoll=l 
"'l!J,2l=O 
I'ICJo31=0 
sPsT;n tJ> =99'19. 
SPSTOPC.IJ:I')999, 
DO 1020 I•loNN 
SCSTACle.Jl•Oo 
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(1051 
GOS2 
CC~3 
00'54 
005'5 
0056 
0057 
oose 
0059 
0060 

0061 
0062 
01163 

0064 
0065 
00~~ 

0067 
006S 

0069 
0070 
0071 

0072 
0073 
0074 
OC7"i 
0076 
0077 
0078 
G079' 
ooeo 
0081 

0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 

SCSTD II oJI =0, 
SCROSI!t.II=Oo 
NSCTR<Hlo.JI•Oo 
MSIIo.JI=O 

1020 CONTI"'UE 
DO 1021 I"1oNN 
NSTAiHIII=O 
NFIRST!Il=O 
IGGII:=O 

1021 COII:T!t.i.JE 
c 
C•••o• 
c••••• 
c••••• 
C••••• 
c 

1022 

c 

READ AND STORE ~ASSING INFO: 
A, READ TGT NO,, NO, UNITS TO BE ~ASSEOo AND NO, ROWS FOR 

PRIMARY IMC l AND SECONDARY !~CCI CONSIDERATION 
FOR ~ASSING, !TGT NO, ,GT, "NT" INDICATES END OF ~ASSING 

READ 33oMXoMNo~CoMCC 
IFIMX,GT,NTlGO TO 1030 
I"'DCIIS=1 

INFO,) 

C••••• 
C••••• 
c 

B, READ INDEXES OF ROkS FOR PRIMARYt THEN SECONOARYt CONSIDERATION 
FOR MASSING 

c 

READ 33oiMS!ItMXIol•ltMCI 
IFIMCC,LT.11 GO TO 1025 
!!CP1""'1C•1 
fo'CC,.MCC•l'IC 
READ 33oiMSIItMXItlzMCPltMCCl 

c••••• 
c 

C, STORE MASSlJ\jG CONTPOL INFO FOR TGT NO, ,.,.X" 

Mli"'Xo3l=MCC-"'C 
1025 ~IIMXo1l="'N 

MIIMXt21=MC 
C••••• ADJUST C AND R FOR MASSING VHEN R-VALUE < 1 VOLLEY 

IFI~C.LT.21GO TO 1022 

c 

DO 1027 l=lo"'U 
ClMX=CIIo"'XI 
IFICIMX,GT,9900,lGO TO 1027 
TUIX=TU(l) 
RIMX,.I'Hlti'Xl 
IFITUIX.LE,RIMX)GO TO 1027 
CCitMXl=CI,.X•TUIX/RIMX 

1027 CONTINUE 
GO TO 1022 

C••••• 
co~oo• 

READ SCHEDULING IN~O: 
A, READ TGT NO., START ~ STOP TIMES CTGT NO, ,GT, •NT 01 INDICATES 

END OF SCHEDULING INFOlo NOTE USE OF SPECIAL FORMAT STATEMENT. co•-o•• 
c 

1030 READ 1033tJtSSJ1tSSJ2 
1033 FORMATCI4o2F8o01 

IFIJ.GT,NT)GO TO 1666 
INDCSS•1 
1FCISSJ2.LE.SSJ1IoANO,CSSJ1oLT.TIHEIISSJ2•9999, 
SPSTRTIJ I =SSJl 
SPSTOPCJI•SSJ2 
GO TO 1030 
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0090 
0091 
0092 

0093 
0094 

0095 
0096 
oon 
0098 
0099 
C100 
0101 
0102 
0103 
0104 
0105 

. 0106 
0107 

01011 
0!09 
o·11o 
0111 

0112 
0113 

0114 
0115 
0116 
0117 
0111.! 
0119 
0120 
0121 
0122 
0123 
0124 
Ol?S 
012" 
C I i?7 
01Zi3 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 

c 
C••••• PR!NT I~PUT DATA 
c 

1666 IFIIP~INT,EO.OIGO TO 1667 
1066 PAINT 6 

6 FOPMtTilH1tlt13Cl~Oo/lo~1Xt2911H•It/o51Xo1H•t27Xo1H•olo 
•S1Xo29H• SUM~RY OF INPUT DATA •olo51Xo1H•o27XolH•olo5lXo 
•29!11<•11 

PRINT 2oTJ~E,~T,NUoTCPIN~oNALPHA 

2 FO~UATC1SH1MISSlON DURATlONioFAo2olo131<0NO. TARGETS1ol4olt 
•10I<ON0o RC•S:oiJo/o27HOMAXo INEFFICIENCY ALLO~ED1oF7.4o/o 
•?4HO~O. ALPHAS TO BE TRIEO:o13tlt 
•13~1CC5T ~ATRIXIo/oSHORO~:l 

DO 43 I•loNU 
PRINT 4oloiCIIoJloJ•loNTl 

4 FOPMATCiHOtl3o1H:o15F8oOo/~CSX~lSF8oOII 
43 CONTINUE 

PRI"'T 5 
5 F0P"ATC42H1"-0o ROUNDS NEED'!D OF FL'ZE I FOP TI.RGET Jlo/oSHOROii:J 

00 200 I=1oO,:U 
PPl~T 4oioiRCltJioJ•1tNTI 

200 COIIjTINUE 
00 1060 IcloNU 

1060 LINEIII=I 
PAINT 1070oiLINECiltiz1oNUI 

1070 FOOMAT11Hit51Xo27H••• UNIT PARAMETERS •••olllllo 
•9H DOW ~O,I,/ti15I811 

PPI"'T 7t(ACIIti•I•"'UI 
7 FOP~ATC20~nA~MO SuPPLY VECTOR1o/oi15F8.0)) 

PRZ"'T 37, CSUIII ol"ltNIII 
37 FO~~ATI///o47H VECTOR OF TIMES C~INI FOR SETUP L FIRST ROU~Oto/t 

•Cl5F8oll I 
PRINT 47tiT11Iloi•1oNUI 

47 FOR~ATI/1/tSO~ VECTOR OF TIMES CMINI PER ROUND !SUSTAINED FIREIIt 
•It CISF8olll . 

PRINT S7tiTUIIlti•1t~Ul 
57 FO~~ATI/1/tZ~~ VECTOR OF NO. TUBES PER ROW:o/tll5F8o01l 

PRINT 11~3oi!Gilltl•1oNUI 
1103 FO~~ATC/11>30~ VECTOR OF UNIT GROUP NUM&ERSI.Io11SI8ll 

PRP;T 1101 
1101 FO~~ATI1Hit50XtZ9H••• TARGET PARAMETERS 
1667 DO 1105 I•1o20 

NL=O 
00 1106 J:s1,NT 
IFIIPIJI.NE.IIGO TO 1106 
~L=••L. •1 
UN<: CNLI :J 

1106 CM<TINUE 
IFCNL.EO.OIGO TO 1105 
,.I.Xi>i<I=I 
IFIIPRINT.EC.OJGO TO 1105 
PRINT 1107oloCLINEIJioJ•1oNLI 

•••ell/Ill 

1107 FORMATI11HOPRECEDENCEoi3o9H TARGETSit2SI4,(23Xe25I411 
1105 IPX II I •NL 

IFIIPPINT.ECoOIGO TO 1668 
IFCINDCMS.EO,OIGO TO 1115 
PRINT 1102 . 

1102 FORMATC21H1MASSIN6 INFORMATION:ollo 
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0137 
0138 
0139 
11160 
Cl41 
n42 
0143 
Ol4A 
014'3 
0146 
OlU 
0148 
OH9 
01'50 
01'51 
C152 
0153 

. 0154 
0155 
01'56 
0157 
01'58 
~159 

0160 
1!16! 

01!12 
0163 
0164 

111 ~ 

1112 
1110 
lllS 

l12C 

1122 

$J9~ TfiT ~0. UNITS 
4'34M hD, TO ~ASS 

00 1110 J•lt!>CT 
I<=MI cJ,ll 
IFC~.EQ,11GO TO 1110 
L=J.~! tJ,2) 

P~~S TO ~E CONSIOE~EO:,Ir 
ICT~ERS HAVE BEEN FLAGGED ISFEAStBLEl) 

PRINT 11ll•J•I<•!~SiltJI•l•1tLI 
FOP~AT!lHO•l3ti7,5~,9" PRI~APY1o!6,24;4,(27Xo25T4ll 

1-:IJ3="'!(,i,3) 
IF1~1J3,LT,11GO TO 1110 
LPl=L•l 
.. CC=L•MIJJ 
PR1NT 111?t!~SiltJI•l•LPltYCCI 
FOP~~TC1TXt10HSECONOARYI,25I4•12TX,25I411 
co~rr i ><uE 
JF!lNCCSS,EQ,OJGO TO 1147 
P~l'<7 1120 
F~~u£TC4~~1START•STO? I~FOPMlTIO~ (9999 • NOT SPECIFIEOII 
;>P!NT 112?. 
FOP~~TI///t32H TARGET START TIME STOP TIMEt//) 
DO 1125 Jz1,NT 
IF!CSPSTRT!JJ,GT,9990,).~~0.!SPSTOPIJI,GT,9990,JIGO TO 1125 
PRINT l126•JoSPS!RTIJJoSPSTOP!Jl 

1126 
112'5 

c 

FOR ... AT!I5rF14,3rF12.31 
CONTP<UE 

c••o•• 
c••••• 
c••••• 

•••••••••••••••••••••••••••• 
• P~ELl~I~A~Y CALCULATION~ • 
•••••••••••••••••••••••••••• 

.:: 
c 
C••••• PP.INT HEADING 
c 

c 

1147 PFlNT 1006 
10n6 fO~~AT!lHlol•l3!1HO•II•43Xr4311~*l•I•43X•i~••41XtlH•,I• 

•43~t43~• ?ESULTS OF PFELI~!NA?Y CALCWLATIO~S ••I• 
•43Xt1~••4l~rlH*r/t43Xo4311~•11 

C••o•• 
Co•••• 

ADJUST MISSION TIME ANO a~wo SU~PLIES TO ALLOW FOR ROUNDOFF 
ERROR WHEN SU8TPACTING USAGES DU~!NG E~ECUTION OF SOLUTION 

c 

c 

1668 TIME=TIME*l,OOOOl 
00 ~69 ts1,NU 

269 AltleA(ll•l.00001 

C•ooo~ ESTIMATE !FOR USE IN OO•LOOPS 8EL~WI AN UPPE~ LIMIT TO OEFINE WHEN A 
C•••o• UNii HAS "PLENTY OF TIME" TO ~OVER ALL TARGETS 
c 

'165 TIME75•TIME•PLENTY 

0166 
0167 
0168 

0169 

c 
C••••• 
c••••• 
c 

c 

CLEAR SUMS FOR ESTIMATING ALPHA AND CALCULATING FACTOR FOR 
eALANCING INEFFICIENCIES TO COSTS 

SU"'C=O, 
SUMSaQ, 
SSS•O. 

00 77 I•1oNU 
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0110 
0171 
0172 

0173 
0174 
0175 
0176 
0177 

0178 
0179 
~lAO 

0181 
0182 

0183 

0184 
0185 

0186 
0187 

0188 
0189 

0190 
0191 
0192 

0!93 
0194 
0195 
0196 
019"T 
0198 

0199 
0200 
0201 

c 
c••••• 
c 

SUIIEI"O• 
SU1o!ANO:C 0 

00 76 J•ltNT 

FLAG INFEASIBILITIES IN A14140t TIIIEt AND INEFFICIENCY MATRICES 

JF CC CitJI.LTo990000.IGO TO 762 
2762 PCloJI=Oo 

EIItJiz1000000. 
S!IoJI•lOOOOOOo 
GO TO 76 

c 
C••••• 
c 

CALCULATE ENGAGEMENT TIMES 

762 EX•PCioJI/TUCII-1. 

c 
C••••• 
c 

IFCCEX-IFIXCEXII.GT.o.nOliEX~EX+lo 
EX•IFIXCEXI•T1CII 
IFIEX.LT.O.IEX=O. 
E II oJI o:EX+SU II I 

ADO INFEASIBILITIES FOR NON-MASS TGTS DUE TO TINE OR A14MO 

IFIC14IIJt11.GTollo0Ro!IEIItJI.LT.TI14El.ANO.IRiltJioLToA!Illll 
• GO TO 761 

CIIoJl=lOOOOOO. 
GO TO 2762 

c 
C••••• C•LCuLATE TIME A~O AMMO INEFFICIENCIES 
c 

761 Pl•EiloJI/TIME 
R2•R II oJI 

C••••• ADJUST FOP ONE-VOLLEY "'IN!14U14 ON MASS TGT IF NEEDED 
IFCCNICJo1i.GT.lloAN0 0 !TUIII,GT.R211R2•TU(II 

c 
c•••o• 
c 

c 
c••••• 
C••••• 
c 

R2•R21A I I i 

BUILD !~EFFICIENCY MATRIX (APPLYI~G MAX ALLOWA~LE !~EFFICIENCY! 

IFIR1.GE.P21 SIIoJ)cR} 
IFCRZ.GT.RllSIIoJI•RZ 
lFCSIIoJI.GT.TOPINEISIItJI•TOPINE 

SUM AND COUNT FEASIBLE COSTS AND INEFFICIENCIES FOR LATER 
CALCULATIO~S OF FACTOR FOR BALANCING COSTS TO INEFFICIENCIES 

Sli"C=SU"'C:•CIIoJl 
S•.i"'5=51JI-'5 •5 II oJ I 
SSS=SSS•l. 
SUMA~O=SU~A~O•RIItJ) 

SUMEI=SUMEI•EiloJI 
76 CONTINUE 

c 
c••••• 
c••••• 
c 

S!~ S~ITC~ TO TURN 0~~ CONSIDERATION 0' INEFFICIENCIES FOR UNITS. 
WITH PLENTY OF TIM! ANC AN140 TO COV!R ALL POSSIB~£ TA~GETS 

LGRNG II I "0 
IFCSU~EioGT.CTIME751 oANO, SUNA140,GT,A!II) LGRNG!Il•l 

77 CONTII'cUE 
c 

P.t.GE 0007 

I-' 
00 
0 
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C••••o "8" IS FACTOR FOR BALANCING COSTS ' INEFFICIENCIES 
c 

0Z02 B•SUHC/SUNS 

0203 
!12114 
0205 
(i2~'> 

02117 
020~ 

0209 
~210 

0211 
0212 
0213 
P'l4 
0?1'5 
0216 
0?17 
0213 
0?19 
0220 
0221 
0?22 
02~3 

0??4 
'22?5 
C2?6 
02?7 
~??.13 

0229 
0230 
0231 
C232 
0233 
0234 
0235 
0236 

c 
C••••• 
c 

COMPLETION OF MASSI~G SURSCRIPT I"MS"I AR~AY: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A. CCLU~~S OF •MS• CO~~ESPO~OTNG TO MASSED TGTS ~ILL CONTAIN INDEXES 
TO ROwS GROUPED AS ~'LLOWS F~OM TOp TO BOTTO~: 
lo · J~GFXES TO •owS FOP P~IHA~Y HASSING CONSICE~!TION. 
2. !~DE~ES TO ~D•S FOR SECONDARY ltASSlNG CONSIDERATION. 
3, l~DEX TO •P~A~TC~" U~lT 
4o INDEXES TO TNFEASIRLE ROWS 

B. OTHER TGTS: 
l, INDExES TO FEAS!~LE P~-s 
2o INCEX TO "PHA~TOM• UNIT 
3. INDEXES TO INFEASIBLE ROwS 

Co FOR THE JTH T~RRET: 
1, MI(Joll • ND, U~ITS TO MASS I• 1 FOR ~. ASOVEI 
2. HIIJo21 = ~0. PR!~L~Y AOwj FOP Ao ABOVE! 

= NO. FEASI8LE ~OwS FOR B. ABOVE 
3, NICJ,]l • NO. SECONDARY RO•S I• 0 FOR Bo ABOVEI 

NOTEI A,l. ANO A.2. -ERE DONE -HEN MASSING INFO -AS READ FROM CAQDS. 
C, HAS BEEN PARTIALLY DONE. 

INXXA:o,...U•l 
oo 2noc J=l.NT 
"'IJ1="'I !J, ll 
MIJ?="I !Jo2l 
,.1..i3="! !Jt3) 
1'l23=~IJ2oWIJ3 

IF!"IJ!.E~.llGO TO 2004 
no 2001 I"l•"'u 

2001 JZONK!Il=l 
00 2002 I=l•"I23 
NOZONK:".S(J,Jl 

2002 !ZO~-~~OZOhKl•O 
INX!:H<XXA 
no 2J"-3 I=l•"'u 
JF;r!O);K(Il.EO.O) GO TO 2003 
C<I•Jl=Ioorooc, 
FIIIoJl=O. 
ECioJl=1000000, 
SIItJl=IOOOOOOo 
"S CINXItJl•J 
INXI•INXI-1 

2003 CONTINUE 
c;o TO 20•H 

20J4 P'C=~ 
INXt=TNX..:t> 
DO 2006 IzloNU 
IFCC!IoJl,Lio990000oiGO TO 2005 
"'SI!NXIoJl"'I 
JNXI•INXI-1 
GO TC 200t> 

2005 lfC•HC+l 
lotS !lo!C,JI•I 

2006 CONTINUE 
MICJo2l•HC 

P/.GE 0008 

1-' 
00 
1-' 
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0237 
0238 

0239 
0240 
0241 
0242 
0243 
"244 
0245 
0246 
G247 
0248 
1!249 
0250 

025\ 
0252 

0253 
0254 
G255 
0256 
C257 

0258 
0259 
0260 
0261 

c 

2007 ~SIINXltJl•lNXXA 
2000 CONTINUE 

C••••• 
C•••o• 
C••••• 

•••••••••••••••••••••••••••••• 
• FIND UNCO~STRAIN~O OPTI~U~ o 
•~•••••••••••••••o•••••••••••• 

c 

c 

SUHCOL=O, 
00 65 I=l·"'T 
COLHlN=lOCOOOO 
DO 64 J:l,~<t; 
IFICIJoll,LT,COLMINlCOLMIN•C!Jol) 

64 CONTJWE: 
IFICOLM! ... ,GT,9~0DOOICOL~IN:O, 
suwcoL:SU~COL•CCLMIN 

65 CONTII'.t;E 
IF !IPMINT,EO,O!GO TO 1669 
PRII'oT 66tSUMCOL 

66 F0RMAT!1Hlo*5XtZ7~ SUM 0~ COLU~N COST MINJMA:oF9,2t/////l 

c••••• 
c 

PRINT ENGAGEMENT TI~ES CALCULATED ABOV£ 

c 
c 

PRINT 67 
67 FO~WAT 128~ MATRIX OF ~NGAGF-MENT TIMESt,/ 1 

•~7H !~CTE NE~ INFEASIP.ILITIES DUE TO MASSINGt TIMEt OR &MMOltlt 
•SHO«OW:) 

1669 COI'.TINUE 
DO A I•loO,U 
JFtiPRI ... T,EQ,OlGO TO &n69 
PRIN1 88tit!EIIoJitJ=ltNTl 

88 FORMAT 1lHOol3olHltl5!IXoF7,3ltlt15Xol5!1XoF7.Jlll 

C••••• 
c•oooo 
Ct"'oo•• 
c 

••••o•ooo•ooooo•••••••~••••••••••o••••••o•••••••• 

o SET UP FUZING INDEXES TO SPEE~ UP ASG~T LOGIC • 
o•••••••oo••••••••o•o•••••••••••••••••••••••••••• 

c 
co-•••• 
c 

ZEP.O OUT COUNTS OF ROWS IN UNIT GROUPS 

4069 DO 4000 ~=loNU 
4000 IGX!t<):Q 

IGMAX=O 
DO 5000 i<:J,NU 

c 
C••••• FIND OUT WHAT UNIT GROUP EACH ROW BELONGS TO ANt ADD 1 
C••••• TO COUNT Or ROWS IN THAT UNIT GROUP 
c 

0262 IGXX=ISIKl 
0263 IGXIIGXXl=IGXtlGXXl+l 

0264 
0265 

c 
c••••• 
c 

FIND "'AX OF ALL UNIT GR'lUPS FOR LATER USE IIITH DU"MY UNIT 

IFCIGXX,GT.IGMAXIIGMAX•IGXX 
5000 CONTINUE 

C· 
C••••• DETERMINE AND SAVE THE ROW EACH UNIT GROUP STARTS IN 
c 

PAG~ 0009 
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0266 
0267 
0268 
0269 
9270 

KK•l 
DO ~050 K•1tiG~AX 
IGG Cl<l =KK 
!<Kai<K•IGX!K) 

5050 CONTINUE 
C••••• A~PLY ~ALANCING FACTOP TO 
C••o•• @ALANCED INEFFICIENCIES 
c 

DO 8 J=leNT 
S!IeJl=B•:i!IeJI 

8 CO'iTINUE 
JF:IPRINT,EQ,OJGO TO 1670 
PRINT 82tB 

DATE • 78295 13138/39 

INEFFICIENCIES AND PRINT THE 

0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
11279 

82 FOFMAT!4HlB!•tF8,3t31Hl•wEIGHTEO ~AX!R/AeE/Tl•MATRIXIt/tSHaROWI) 
DO 69 I=leNU 

0280 
0281 
0~82 

021!3 
()284 
Gil'85 
0286 
0287 
02913 
0289 
0290 
0291 
0292 
0293 

0294 
0295 
0296 
0297 
0298 

c 

PRINT 88tlt!S!IoJloJal,NTl 
89 CONTINUE 

c••••• •••••••••••••••••••• 
C••••• • ADO PHAIITON UNIT • 
c••••• •~•••••••••••••••••• 
c 

1670 NN=NU•l 
DO 9 I=lelliT 
5!"1Ntii"500000o 
ccNN,Il=Sooooo. 
R(NNt!l•l, 
E!NNtil•TIHE/!NT•lOOl 
P!NNell•SOOOOOo 

9 CONTINUE 
A(NNl•2DOOOOOOOO, 
LGRNG(NNl:O 
Sl:!NNl=,OOl 

c 
C••••• 
c••••• 
c••••• 
c 
c 
C•oooo 
CttftoitOit 

c 

Tl !NN):,OOl 
TUH.r.l=l 
IG!IIoNl"O 

••••••••••••••••••••••••••••••••••••••••••••• 
• CALL SUBROUTINES FOR SOLUTIONS AND OUTPUT • 
•••••o•o•••••••••o•o••••••••••••••••••••••••• 

CALL MAIN CONTROL SUBROUTINE !~HICH CALLS ALL OTHERS, INCLU• 
DING OUTPUT) 

CALL F!'IBIAS 
PRINT 9999 

9999 FORMATI1Hlt50Xo2TH••• NORMAL END OF JOB •••I 
STOP 
END 

•OPTIONS IN F.FFECTo IDtEBCOICtSOUP.CEtNOLISToNODECKtLOADoNOMAP 
•OPTIONS IN EFFECT• NAME • MAIN 1 LINECNT a 60 
•STATISTICS• SOURCE STATEMENTS • 298oPROGRAM SIZE • 
•STATISTI~S• NO DIAGNOSTICS GENERATED . 

9234 
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0001 

0002 
C003 
0004 
0005 

01106 

0007 
0008 
0009 
0010 
0011 

0012 
0013 

og1• 

00!5 

0016 

con 
001S 
0019 

0020 

0021 

0022 
0023 
0024 

C025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

SUBROUTihE FRBIAS 

••••••••••••••••••••••••••••••••••••• 
• • • ••••••••••••••••••••••••••••• • 
• • • • 
• • MAIN CONTROL SUBROUTINE • • 
• • • • 
• •••••••••••••••••o••••••••••• • 
• • 
•o~••••o••••••••••••••••••••~•••••••• 

COW~ON /AICD/ !CODE 
CC~YQN /ACC~2/ "ALP~A 

CO~~O~ /FRCC~/ IP~120) 
COH~ON /UCO~/ CVECil200ltRVEC!l200ltEVEC!120~1tSVEC!12001t 
*AI4CltSUI40loTl!401oTUI40loTIHEoNTo~U,~N,~,tSA~E,PVEC112001 
co•~o~ /SC~E~/ SPSTPT!30loSPSTOP13DioNSTARTI40l,STARTSI1200lo 
•STOPS:l200loS~ELLS!l200loNTARG!l200),~SRANKil200itNFIRST!40lt 
•I~~EAS!301 
CC~~CN /CO~G/ IGHAXolr.XI40ltiGr.l40l 
CO~~ON /CCM2/ IP130lrlG140ltMSIJ11200ltMIIJ190ltMAXPRI 
CO~~ON /COHX/ LG~NGI40) 
COMMON /ACO•/ •LPHA,TOPINE 
COMMON /DCOM/ ~AXROWtMAXCOL 

DALl=-~. 
OAL2=0. 

C••••• N~LPHA ~UST AE ODD FOR TMIS ROUT!NE TO wORK 
!F(MQD!NALPHAt2l.NE.liNALP~A=NALPHA•l 

C••o•o ·PUT PAGE EJECT IN FPONT OF RESULTS FOR EACH ALPhA 
NEJ=l 

C••••• IF O~LY ALPHA:oQ IS WANTED, GO DO IT 
IF INALPHA.EOo11GO TO 10 

C••••• C6LCULATE INCREMENTS FOR ALPHA 
NALMl=';ALPHA•1 
DALl•O.S/FLOATCNALMll 
C'AL2=3.oDAL1 

Co••o• CALCULATE INOEX FOR SWITCHING F~OH SH.LL TO LARGE t~CREMENT IN ALPHA 
NSII!CH=NALt'l/2 

c 
10 ALPHA=Oo 

C••••• DO•LOOP TR!ES 11 NALPHA" DIFFERENT ALPHA VALUES FROM 0 TO 1 INCLUSIVE 
DO 100 N8=ltNALPHA 

c 
coo••• 
c••oo• 
c 

IFINB.EO.NALPHA) ALPHA•1• 
IF!NALPHA,E0.11ALPHA•O. 

INNER LOOP CO~BI~ES COST AND INEFFICIENCY MATRICES ACCORDING TO ALPHA. 
VECTOR ADDRESSING IS USED TO SAVE TIME• 

ALCOMP=l.•ALPHA 
Jo:MAXROW•NT 
IAOD:oHAXROW•NN•1 
J=O 

20 J•l•l 
LI=MODIItMAXROW) 
IFIILI.LE.NNloANOoiLI.NE.Ol)GO TO 12 
IFILI.GT.NNII•I•IADD 
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0033 
0034 
0035 
OG36 
0037 
0038 
0039 
0040 
0041 
0042 
0043 

t;O TO 23 
12 CVl=CVECill 

IFICVr.GT.900000.lGO TO 14 
PVI=CVI 
IFILGRNGCLil.EQ.OlGO TO 15 
IFINR.EG.llGO TO 15 
PVI•CVI•ALCO~P•SVECIIl*AlP~A 
GO TO 15 

14 PYI•lOOOOOO. 
15 PVF.CIIl=PVI 

JF(N9.EQ.11eO TO 23 

DATE • 71295 12.'29,12 

0044 
004'5 
0046· 

C••••• CLEAR ANY I~TEwMEOIATE !~FEASIBILITY FLAGS FRO~ PREY A LPHA 
MS I J I =~<S I J <I I 
IFIMSIJI.LT.OIMSIJIII•I-~SIJil 

23 IFII.LT.JIGO TO 20 
c 
c••••• 
c 

CALL SOLUTION ROUTINE FOR EACH ALOHA. 

C••••• IREIIN!TIALI2E OUTPUT ROUTINE 
0047 ICOCE=O 
0048 CALL OUTPUT 

C••••• CALL SOLUTION ROUTINE 
0049 CALL VOEGLN 

C••••• SIGNAL CO~PLETE SOLUTION TO OUTPUT ROUTINE 
0050 ' ICOOE•4 
0051 CALL OUTPUT 

0052 
0053 
0054 
0055 
0056 
0057 
00~·1! 

0059 

c 
c 
c••••• 
c 

CALCULATE "EXT VALIIF. OF ALPHA 

JFC~ALPHA.EG.11GO TO 100 
IFINA.LE.NS•IC"lALPriA=ALPMA•OALl 
IFINB.GT.NS~ICM).LPHA•ALPHA•OAL2 

100 CONTINUE 
PRINT 69 

69 FORMATI'l'oiOXo•••• END ••••l 
PET URN 
E"'O 

•OPT!ONS IN EFFECT• IDoEBCO!C,SCURCEoNOLISToNOOECK,LOAO,NO~AP 
•OPTIONS IN EFFECT• NAME • FRBIAS t LINECNT • 60 
•STATISTrcso SOURCE STATEMENTS • 59,PROGRAH SIZE • 1432 
•STATISTICS• NO DIAGNOSTICS GENERATED 

PI.GE 0!102 
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OOC1 

oocz 
0003 
0004 
0005 
0006 

0007 

0008 
11009 
0010 
0011 
0012 
on13 
0014 
001~ 
0016 
0017 
cote 

. (;019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 

0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 

0035 
0036 

0037 
0038 

~UBROUTINE VOEGLN 
c••••••••••••••••••9•••••••••••••••••~·~•••••••••••••••••••••••••••~•••• 

c••~••••••••••••••••••••••••••••••••••••••~··••••••••••••~•••·••••~•••••• 

c·········2·······················••o••••*••···························~ C•••• ••••• 
Co•-Qo 

co••• 
c•~•· 
C•••• 

MODIFIED VOGEL APPqOXIHATION MET~OO 
••••• ..... 
••••• 
••••• 

c··················••o••················································ 
c••••••••••••••••~•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c··································•o••························••o•••••• c 
c 
c 

COM~CN /SCO~/ KoKSS 
CO~~nN /P~CO~/ IPX1201 
COMMON /CONG/ JGMAXol~X1401oiGG(40) 

COMMON ICON?/ IP(301oiGI40)oNSIJ11,00)oWIJJ(901o~AXPPI 
COw~'~ /SC~FD/ SPSTRT!301oS~STOP1301o~ST~RTI401o~TAPT~Il200lo 
•STOPS112001oSNELLSI1200loNTARGI12001oNS~•NKI12001okF!PSTI401o 

•P•FEAS!30l 
cow~oN /UCON/ CVECit2nOioRVEC1120CioEVECil2001oSVEC112001t 

•A 1401oSUI40l oTll401 oTUI401oTIHEoNToi'.UoNNtBoiSA"'foP'IECU200l 
CO~MON /CONX/ LG~NGI4n) 
COwwQN /ACO"'/ ALP~AoTOPINE 
CO,.WQ~ /OCON/ ~AXPC~o~AXCOL 
cowuo~ /AICD/ ICOCt 
COMHO~ /ANC~'/ NIJC,MJ?Co~'PUVEC1401>1IA"' 
COuMON /A~CN/ IGAwoMSAN 0 AFPACToAMNFIXo8EG!NSoENOSoilANXoTCOSToSUAM 
OIMEhSION PENLTY!200) 
DI~E~~ION COVfR~!401otUFGwS!40lolUFGHE140) 0 IUEFLG1401 
DiwENSION tuu~LG140loJliSFLGI401tiUFFLG140) 0 TlNMASI41 
DIMENSION CHE~P!401oiXC~EP1401olAUNIT1401,tNDPENl200ltCOVAAG(401 
CO~~ON lASTS/ A5(401tTSI40l 
DIMENSION IUNITF!401 
DtwENSION IUNF21401 
DATA HCTHCT/lo/ 
Kl<=l-I'AXROIII 
I<K~R=I<I< 

JX=O 
wAXC02=NAXCOL+MAXCOL 
JPS=O 

C••••• REI~ITIALIZE AMMO AND TIME SUPPLIESoALSO SOME SCHEO ' PENALTY INDEXES 
DO 3 Io:loNk 
TS Ill =TIME 
ASIIl=A Ill 
NSTAPTIII=O 
JXCHEPill=O 
IAUNITIII:aO 
CHEAP 111=0, 

3 CONTINUE 
c••••• INiTIALIZE POINTEP TO FI~ST ENGAGEMENT !N EACH UNIT•S SCHEDULE 

DO 10 Ic1oiGMAX 
10 NFI'!ST!IIcl 

C••••• PEINITIALIZE SCHEDULING ARRAYS 
J•MAXROW•NT 
IAOD•HAXROII-NN-1 

. '"~, 
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0039 
oo..n 
0!!41 
0042 
0043 
0(144 
004'\ 
004') 
OOH 
004!\ 
0•)49 
oosn 
on5! 
00~·2 
OC53 
00'54 
0055 

00'56 
0057 
oco;11 
0059 
00'-'1 
Ctl61 
OO!;o2 
00!>3 
0064 

. 0065 
0066 
C067 
1\06~ 

C069 
0070 
0071 
0072 

c 

I=O 
20 I"I•l 

Ll""Oi:' I I t!ojiXFIOlil 
IFI:Ll.LE.~N!.ANOofLI.NE 0 0ll60 TO 12 
IFILI.Gi.~N:I=l•IADD 
GO TO 23 

12 sT:.PTSIIt=~. 
STO:>~ III~o. 

SHELLSIII=O. 
NTAPG I I l =0 
NS!<.AIIoK II) =0 

23 IFII.LToJ!GO TO 20 
DO 2~00 IPFITY=ltMAXPRI 
IFN=!PY. (!P:lTY) 
IFI!P~.EQ.DJGO TO 2000 
JP:JPS•1 
JPS:aJPS+IPN 

c••••• OBH IN PENAL TIES FOR THIS PRECEnENCE CLASS IIIHOSE COLS. GO JP TO JPSI 
c 

c 

00 200 .;=JPtJPS 
JX•JX+1 
M:iJ1 ='"'IIJ fJX l 
M!J2=~!IJIJX+HAXC0Ll 
M!J3=HllJivX+~AXCOl.'l 
K~z'(i(+!o<AXROW 

tO~ I J21.,1(K +~! J2-1 
IFIMIJ2.LT.2!GO TO 31 
I( at(!( 

KSS:KM!J21 
CALL SC'PTER. 

31 IF!H!J3.LT.2lGO TO 35 
I<"KSS•l 
I<SS:I':!;S•"IJ3 
r.~LL SORTER 

35 PEIIoMAX=-1000000. 
NC"APN=O 

C••••• SAVE P-VALUESt ROW NO. L UNIT NCo OF AHH0/TIME-FEASI8LE ROllS. 
C••••• COUNT DISTINCT UNITS. 
c 

0073 JCHEAP:O 
cn74 NO~~~T~o 

0!/75 
C~7~ 

OC77 
007<1 
0079 
00110 
0081 
0082 
C083 
oos• 
0085 
OOE'6 
0087 
0088 
0089 

no s~ I=~~<.K~IJ21 

Il="SIJCll 
!PV:><:>-:•II-1 
P\IIl>V=P\IEC liPV) 
IriCVECIIPVloGT.450000.l GO TO 48 
IFIMIJ1.NE.1!GO TO 40 
IF!IRVEC!IPVloGT •• Sfiiil.ORo{EVEC!IPVJ.GT.TSIIIJllGO TO 48 
G(l TO 42 

40 IFCISUIII!.GToTSf!IlloOR.tTUCllloGT.ASCillllGO TO 48 
42 IG!!,.IGI!Il 

IFCIC~EAP.r.T.OJGO TO 45 
NOUNITo:l 
GO TO 44 

45 INOFLG•l 
00 46 LL•ltiCHEAP 
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0090 
0091 
or.92 
0093 
0094 
0095 
0096 
0097 
0098 
0099 

0100 
!1101 
0102 

0103 

0104 
0105 
0106 

OIC7 
01(1~ 

0!09 
0110 

0111 
~liZ 
01 !3 
0114 
0115 
0116 
0117 
0118 

46 

44 

c 
c••••• c·····• c 

48 

so 
c 

IF IIAIINIT CLLI oNE.IGII IGO TO 46 
INOFLG=O 
IFCIG!I.GE.OIIGII•C-IGIII 
CONTINUE 
IFCINCFLG.EOollNOUNIT•NOUNIT•l 
ICI'EAP=!CI'EAP•l 
Ci'EAPCICHEAPl•PVIPV 
IXCHEPCICHEAPl•II 
IAUNIT!ICHE.Pl•IGII 
GO TO 50 

FLAG A~~O OR TIME INFEASIBILITY ~y MAKING CORRESPONDING VALUES 
IN P AND MS NEGATIVE. 

PVECCIPVl•C-PVIPVl 
HSIJ CI l = C-II l 
CONTINUE 

c••-••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c • 
C ••• PENALTY CALCULATIONS ••• • 
c • 
C ~ETHOD OF CALCULATING PENALTY DEPENDS ON NO. OF UNITS AVAILABLE • 
C VS. NO. REOUlREOo • 
c • 
c•••••••••••••••••••••••••••••••••••••••••~••••••••••••••••••••••••••••••••••••• 
c 

IFCNOUNIT.GT.OlGO TO 60 
c 
C••••• .A. IF NO UNITS ARE AVAILABLE• PENALTY IS -1 CLO~€R THAN ANY OTHER 
C••••• PEN•LTYl SINCE THERE IS ~QTHING TO RE GAINED RY MAKING AN 
c~•••• EARLY ASSIGNMENT. 
c 

c 

PENLTJ:o-1. 
GO TO 100 

60 IFCNOUNIT.GT.MlJll GO TO 65 

c••••• 
c••••• 

8 0 IF TOO FEW OR EXACTLY FNOUGH UNITS ARE AVAILAPLEo PENALTY IS 
500000•100000*1~0. UNITS ~EEDEO - NO UNITS AVAILABLE! 

c 

c 

FENLTJ~SOOOOO.•I00000.6FLO~i(HIJ1-~0UNITI 
GO TO. 100 

E05 lollJP:'4!J1•1 
IFCNOUNIT.GT.MIJPIGO TD 80 

C••••• 
c••••• 

C. IF ONLY ONE UNIT loiORE THAN REQUIRED IS AVAILAPLEo PENA~TY IS 
10~000 • !LARGEST DIFF B~T~EEN 2 SUCCEEDIN6 P-VALUESl 

c 

c 

~IGOIF=C~EAPI2l•CHEAPC11 
IFCICHEA?.EQ 0 2lGO TO 75 
DO 70 I=3oiCHEAP 
POIFF=CHEAP!Il-CHEAPII-11 
IFIPOIFF.GT.siGDIFlBIGDIF•PDIFF 

70 CONTINUE . 
75 PENLTJ•lOOOOO.•BIGDIF 

GO TO 100 

_____-· 
, ....... D. IF THE NO. UNITS AVAILABLE EXCEEDS THE NO. UNITS REQUIRED BY 
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011~ 
0120 
IJ12l 
0122 
0123 
ul2" 
Cl25 
Ol2~ 
0127 
01?8 
0129 
0130 
0131 
0132 
0133 
0134 
il135 

0)36 
0137 
one 
0139 
0140 
0141 
014? 
0143 
0144 
0145 
l\146 
0147 
~148 
Ol.O'l 
o:c;o 
Ql'H 
0152 
0153 
0154 
0155 

0156 

0157 
0156 

0159 
0160 
0161 

C••••• ~O~E THAN 1• PENALTY IS LA~GEST CIFF RET~EEN UNIT "CHANPS." 
C••••• I"CI'A'~P" IS DEFINED AS THE ROw OF A U'<lT i'<AVING THF SMALLEST 
C••••• NONNEGATIVE P-VALUEt AND IS FL.GGEO BY· A POSITIVE ENTRY IN lAUNITol 

c 

80 IPSIIICH=O 
CO 90 I=1tlCI'EAP 
IFIIAUNITCII,LT.OIGO TO 90 
CHOPI=CHEAP (I I 
IFCI?SwCH,GT,OlGO TO P3 
I?S~C,-t=l 

CHLAST=CHEAP! 
GO TO 90 

83 IFCIPSwCH.r,T,11GO TO 85 
IPSWCH=2 
PENLTJ=CHEAPI-ChLAST 

84 CHL~ST=CHEAPI 
GO TO SO 

85 POIFF:cHEAPI-CHLAST 
IFIPOIFF.GT,PENLTJ)PENLTJ=POIFF 
GC TO fl4 

90 CONTINUE 

c••••• 
C••••• 

INSERT PENALTY AND ITS COLUNN INTO SO"TEO ARRAYS TO DETER!IIINE ORDER 
IH WHICH THIS PRECEDENCE SROUP :s TO 8~ OPT!MIZE~. 

c: 

c 

100 IFIJ,GT,JP) GO TO 110 
PENLTYIJI•PENLTJ 
INDi>E"IJ):J 
GO TO 200 

110 JJ=J 
00 120 I"JP,J 
IFII.LT.JIGO TO 115 
PENLTYCJI=PENLTJ 
tr.OPENCJl=JJ 
GO TO 120 

!15 PENLTI=PE"LTYIII 
IFIPE~LTJ.LE,PENLTIIGO TO 120 
PSOIAP=PE"'L TI 
PENLTYC!l•PENLTJ 
PEI'iLTJ=PSwAP 
IS~4i>=JJ 

JJ=INDPEI'<CII 
INDPENIII,.ISOIAP 

120 CONTiNUE 
200 CONTINUE 

c····~··••o•o••························••o••··············o•o••••··············· c ~ 

C ••• OPTIMIZE COLU~NS IN OOOE~ OF HIGHEST-TO-LO~EST PENALTIES ••• • 
c • 
co~·-~·-··o~0030•ooooo••···············~·•w••••····§·~·························· 

00 500 J:JPoJPS 
C••••• GET INDEX OF COL W/JOTH LOWEST PEN AND CLEAR ITS INFEAS FLAG 

II=INDPENIJI 
INFEASIII>=O 

C••••• CALCULATE VECTOR INDEX OF 1ST ELEMENT IN COL 
III=~KMR+MAXROW~II 
IIM•III-1 
IIIMziiM 

PA:OE 0004 
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011'.2 
0163 
011>4 
Ol"'S 
OH--5 
0!67 
0168 

0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0171 
0178 

0179 

0180 

0181 
0182 
0183 
0184 
0!85 
Cl8! 
0187 
0188 
0189 
0190 

0!91 
0192 
01'H 
0194 
0195 
0196 
0197 
0198 

C••••• USE ~ASSING SPECS FOR THIS CCL TO GET INDEXES FOR ChECKING FEASIBILITY 
JX=II 
1< I J l=._!: J c JX) 
HIJ2=~IIJCJXei<AXCOLl 
.. IJ~•.,IIJCJXoi<AXC021 
"1J?3=~I..J2•"IJ3 
"'Ic3•"IJ23•IllM 
,. I I 2 =I I I"' • loU J2 

C•••• SET ~p OUTPUT ROUTINE FOR NEW TGT 
ILAM•II 
"'lJC=14IJ1 
!"I2t:•"!J2 
!2=1 
DC 1~0 I=III,,.II2 
,.PUVECCI21•!4BSCI<SIJCIII 
I?=!2•l 

150 CONTINUE 
!CODE"'l 
CALL OUTPUT 

C••••• CLEAR "AX COVERAGE FOUND SO FAR FOR "'ASS TGTS 
CO\o',..AX&~. 

C••o•• TUkN ON E~ECUTION OF CODE PASSAGES STA~TING •DO 2G2oo•M AND "202 CON •• • 
ITI'SXN=•10 

c 
c·························§•••o••~·············································· c • 
C CONTPOL IS RETURNED TO STATEMENT 2011 ~ITH MIJ1•1 IF ATTEWPTING TO • 
C TRY ANOTHER PERIOD LENGTH FOR "'ASSED TARGET VITH ONLY START OR SlOP SPEC • 
c • 
c·········~··o·························································•••o••••• c 
C••••• G~T ~TA~l L STOP TIMES !IF ANY) FOR THIS TGT, CLE•~ COU~TERS ASD 
C••••• FLAGS lF "&SSING WANTED !OTHERWISE GO DO SlhGLE U~IT ASSIG~MEhTio 

2011 SPSTT=SPST~TIIII 

C••••• 
c••••• 
c••••• 
C••••• 
c••••~ 
c••o•o 
c••••• 

2022 

SPS TP:SPSTOP (II I 
IFCMIJl.EQ.1JGO TO 203 
IUCHKIJ:n 
Mt.SSER=G 
.,,~.,..,., :0 

MASFLI":O 
SUMCOV=O. 
A\IA'4IN:99'l'l. 
AVA,..AX:O. 

POINTEPS CLEARED IN FOL DO-LOOP ARE USfO TO KEEP UP WITH WHEPf A GAP 
STARTS AND ENCS IN A UNIT•S SCHEDULE I!USFLGeiUEFLPeiUFGkSoiUFSMElo 
INDEXES TO CORRESPONDING ROWS !FUZES) ARE KEPT IN IUFFLG AND tUHFLGo 
IUSFLGeiUEFLGt AND IUFFLG ARE PE~HANENT WITHIN DO•LOOP STARTING AT 
STAiE~E"T 2031 OTHERS ARE TEMPORARY. 
ALSOo iU~TTF IS USED TO KEEP 2 ROWS FROM SAM£ UNIT FROM BEING ~ASSED 
TOGETHER ON THE SAME TGT. 

DO ?02 I=ltiGMAX 
IFIITMSXN.GT.I•SII GO TO 2022 
IUSFLIH I l"'O 
IUEFLG C ll:aO 
IUFFLGCII=O 
COVRAGII Je:O. 
IUFGMS II I •0 
IUFG"E I II"'O 

PAGE 0005 

,_. 
\0 
0 



FORTRAN IV G LEVEL 21 VOEGLN DATE • 78295 12129/12 

0199 
0200 
0201 
0202 

OcC3 
0204 
0205 
0206 
0207 
02~8 
0209 
0210 
0211 
0?12 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
02?0 
0?21 
022? 
0223 
~224 

0225 
0226 
0227 
0228 
0229 
0230 
0?31 
0232 

0233 
0234 
0235 
0236 

0237 

IUMFLGIII•O 
COVE~~III=Oo 
IUNITFIII•O 

202 CONTINUE 
C••••• FOR ~ASSING ~~T~OUT SPECIFIED START ANO/OR STOP: 
C•••~• FI~D TIME EACH P~IMARY UNIT ~OULD REQUIRE FOR ITS "SH~RE" OF A 
C••••• •PERFECT ~ASSJ" SAVE MAX AND MIN OF THESE ALONG WITH CORRESPONDING 
C••••• U~IT ~U~~~R. 

JFIIT~sx~.AToi•SIIG3 TO 203 
IFI!SPST~TililoGTo9990.>.0Pa!SPSTOPIIli.GT 0 9990ollGO TO 2023 
TkAS~X:SPSTCPilli•SPSTRT!lii 

GO TO 203 
2023 TMAS~X=O. 

THASM~=TIME 
MAXUNT=-1 
MlNuNT=•1 
CO 201 I=IIIoMJJ2 
~SiJI=~SIJ!Il 
JF(~5IJI.LT.n!GO TO 201 
M~I=~SIJI•II~ 
EIJ=EYEC!WAII 
VOLLYS:RVECIM~Il/I~LOATIM1J1l•TU(MSIJIII 
VOLFIX=I~IXIVOLLYSI . 
IF!IVOLLYS•VOLFIXIoLE.0.011VOLFIX•VOLFIX•i~ 
TMAS•TliMSIJII•VOLFIX 
IF(T~,S.LE.rMAS~XIGO TO 204 
i~~S~X:TWAS 

~AXu~T=MS<JI 

204 tF!TMAS.GE.TMAS~NlGO TO 201 
TMASMh:TMAS 
MlNUNT:HSIJI 

201 CONTI~UE 
TMDIFF:TM.SMX•TMASMN 
TMAS14=T~OIFF/4 
IT~SxN:4 

tT~!NC:l 

IF!TU.ClFF.LT.2.liT~INC=2 
!FIT~DIFF,LT.l1IT~I~C=4 

c•••••ooo•oo•ooo•o•••••*••o•~···············~··················•••o••··········· c • 
C SEARCH COLU~N FROM PEST-TO-~O~ST F~R RO~S TO ASSIGN THIS TGT TOo • 
C VALUES ARE FIRST OBTAINFD THAT ARE ~EEOED FOR ALL TGTS 0 THEN ~E·BRANCH • 
C TO ONE OF THE OPTIMIZING ROUTINES ACCORDING TO TYPE OF TARGET! • 
c • 
C lo START AND/OR STnP ~PEC!F1EDI NON-MASS • 
C II. NO START OR STOP! NON~MASS • 
C III. STAPT AND/OR STOP! HASSING SPECIFIED • 
C lVo NO START AND/OR STOP! HASSING SPECIFIED • 
c • 
c•o••···············•••o•······················································· c 

203 DO 450 I•IIIoMI23 
SPSTT=SPSTRT!III 
SPSTP=SPSTOP!III 
IUCI'!KD=I•III•1 

C••••• GET INDEXES TO MAIN ARRAYS (MSI.Jl FOR UNIT PARAM::TF.:RSt MAl FOR. AI'MO 
C••••• AND TIMElo 

MSJ.JI•MSl.J II l 
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0238 

0239 

0240 
0241 
o? .. i! 
0243 
0244 
0245 
0246 
0247 
0248 

0249 

0250 

OL'Sl 

0252 
0253 
0254 
0255 
0256 
025'7 
0258 

0259 
0260 
0261 

il262 
02~3 

0264 
0265 
0266 
026? 
0268 

02£9 
0270 
Gl!Tl 
0272 
0273 
0274 
0275 
0276 

I'IAI•MSIJI•lJN 
C••••• FEASIBILITY CHECK 

IFI~SIJI.LT.OlGO TO 450 
C••• UNIT PA•UMETEASo UNIT NOoo Al4140 L TIMEo FtAE TIMEt TOTAL UNIT SCHED LENGTH 

TPI•Tli~S!Jii . 
TUI:rTUII'SIJII 
SUI=S~I~SIJII 
IGU=IG !!"SIJI I 
E IJ=EVEC P<A II 
P\II'AaiiVC:CI"4II 
TCOST=c~·Ec I "All 
FIAT!)oi•EIJ-SUI 
TULONG:zTINE•SUI 

C••••• C~ECK IF Ilo OR IV. 
IF!!SPSTT.GT 0 9990oloANO.ISPSTP.GT.9990oll~O TO 300 

C••••• C~ECK IF II!~ 
IFI~IJ1oGT.llr-O TO l!7D 

c 
c~··••••••••••••••••••••••••••••••••••••••••••••••••~••••••••••••••••••••••••••• 
c • 
C••••• lo STAAT.ISTOP AND NON-MASS. • 
c • 
C APPRCACH IS TO CHECK THIS UNIT•S SChEO. IF O~o ASSI6No • 
c • 
c••••••••••••••••••••••••••••••••••••••••••~·••••••••••••••••••••••••••••••••••• 
c 
C••••• IF CNE fSO OF PERIO~ UNSPEC•Oo GO CALCULATE IT FRON OTHER END 

tF(!S?STT.~T.9990;l.OR.ISPSTP.GT 0 9990.IIGD TO 205 
C••••• C~ECK IF UNIT IS FAST E~OUGHI IF SOo ALLOW FOR SET-UP TIME 

tF!ISPSTP-SPSTTioLToFIRTI~IGO TO 450 
210 SPST.T=SPSTT-SUI 

GO TO 220 
205 tF(SDSTT.GT.QQ90 0 IGO TO 215 

SPSTP:SPSTT•FIRTIM 
GO TO 210 

2!5 5PSTT:SPSTP-~IJ 
C§oooo FI~n OUT ~C~ "A~Y TGTS HAVE BEEN ASGD TO THIS UNTT. IF > 0 GO CHECK 
C••••• FO~ SC~ED I~TE"FERENCEo OT"E~wiSE MAKE THE ASSIG~MENTo 

21!0 NSTRTI=~ST~RTIIGXXI 
NSTPO=NSTRTI+l 
IFINSTRTI.GT.OIGO TO 230 

C••••• ~AKE INITIAL ASGHT F~R UNIT IGXX 
1!22 NSTAQTIIG)X1•1 

NFICSTIIGXXI=l 
SiA~TSII~XXI=SPSTT 

STfPSIIGXXI:SPSTP 
S~ELLSIIGXX):RVMA 
NTARGitGXXI•lOOO•li•MSIJI 
NSRA~KIIGXXl•O 

C••••• PASS ASGMT TO OUTPUT SUBROUTINE 
2223 IGANatGXX 

~SAM•I'ISIJI 
AFPACT•1. 
AHHFIX=RVHA 
REGINS=SPSTT 
EhDS=SPSTP 
IlAIIX•II 
SUAM•SUI 
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0~77 

0278 
0279 

11280 
0281 
0282 
0283 
028" 
02115 

02!16 
02!!7 
0298 
02!;9 
0290 
0291 
li292 
t293 
0294 
0295 
0296 
0297 
0291! 
0299 
0300 

0301 
0302 
0303 
0304 
031)5 
0306 
0307 
030~ 

030"1 
0310 

0311 
0312 
0313 
0314 
0315 
CI3H> 
0317 
~318 
0319 
0320 
0321 

ICCOE:2 
C.t.LL OUTPUT 

223 ASIMSlJilaASIMSIJII-RVMA 
C••••• SUBTRACT Tl~E FOR ALL ROWS IN UNIT 

IGGIXsiGGilC.XXi 
IGGIXS=IGGIX•IGX(lJXXI-1 
SCTI~E=SPSTP-SPSTT 
00 225 lGGG=IGGIXtlGGIXS 

225 TSIIGEGI=TS!IEGG!-SCTI~E 
GO TO 500 

C•o•oo CHECK IF U~IT•S SC~EO FITS WITH START/STOP 
230 IFPST=~FlRST!lGXXl 
232 !VSA:(JF~ST-11*MAXRO~•IGXX 

STAqTC=ST~PTSIIVSAI 
NRIVSAsNSRANKIIVSAI 
IFISTARTC.GE 0 SPSTPIGO TO 240 
IFROLC=!fllST 
IfPST=~ODI~~IVSAolOOOl 

IF!IFRST.EQ 0 0lGO TC 250 
GO TO 232 

240 IPREV=~~!VSA/1~00 
I260=0 
IFIIPREV.~C.OIGO TO 2~0 
lVSB•IIPREV-1l•~AXPOW•IGXX 
STOPC=STOPS!!VS~I 
IFISTOPC.GToS~STTIGO T~ 4~0 

C••••• 6SGN TO UNIT IGJX IN TIME SLOT SPSTT TO SPSTP 
243 NSTJJ=~STWT!•~tx~Cw+IGXX 

IPT~0~=IPPEV•ICOO . 
NSRANK!NSTXXl•IPTHDU•IFPST 
NSRANKIIVSA):~RIVSA-IPT~OU+~STP0•1000 

!FII260,EP.~)N5RA~KIIVSBI•NSRANKIIVSBI-IFRST+NSTPC 
245 STARTSI~STXXl•SPSTT 

STOPSINSTXXI=SPSTP 
SHELLSI~STXX)•RV~A 

NTAR~(~STXXI•lOD~•II•~SIJI 

~STARTIIG~XI=hST~O 

C••••• CO~PLETE ASG~T ~y GOING TO wHERE TI~E AND AMMO SUPPLIES ARE ADJUSTED 
GO TO 2223 

250 S~OPC:STOPS[JVSAI 
IFISTOPCoGT 0 SPSTTIGO TO 450 
NSTARTIIGXX)sNSTPO 
NSTXX•NSTP7I•~AXRO~•IGXX 
NSR~NKIIVSA):NRIVSA•NSTPO 

~SRA~KINSTXXI=IFROLD•l~OO 
r,o TO 245 

2b0 NFIRSTIIGXXI•NSTPO 
I260s1 
GO TO 243 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c . • 
C III. START/STOP A~D MASSING SPECIFIED • c . • 
c 
C APPR04CH DEPENDS UPON WHETHER OR NOT ~OTH ~TART AND STCP ARE SPECIFIED: • 
C A. IF F.OTH A~E SPECIFIE~• WE SIMPLY DETERMINE IF TGT CAN BE COVERED IN • 
C SPEC•D PEPIOD A"D BRANCH OFF TO ASSIGN IT .t.S SOO"' AS E"OUGH UNITS ARE • 
C "ASSEO OR NO MORE AVAILABLE• PROVIDED COVERAGE IS SUFFICtENTo • 
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0322 
0323 
0324 
0325 
0326 

0327 
~3211 
0329 
0330 
0331 
0332 
0333 
0334 
0335 
0336 
0137 
r.33B 
0339 
0340 
03•! 
0342 
0343 
0344 
~34<; 

0346 
0347 
0346 
0349 
0350 
0351 
0352 
0353 
~154 
o;:,so; 
0356 
0357 
0351! 
0359 
0360 
0361 
0362 
0363 
0364 
0365 

0366 
0367 
0368 

C B. ]F ONE ENO OF PERIOD IS UNSPEC•Do A RECORD IS ~EPT OF ALL UH!TS • 
C MAVI~G TI~E TO GET OFF AT LEAST ONE VOLLEY. TH!S IS DONE BY SETTING • 
C UP A OU~~y FERIOO EQUAL TO SET•UP TI~E AND PROCEEDING AS IN A. A~OVEo • 
C FLAGGI~! SUCH UNITS VITH A 2 OR 3 IN 1NFSII FOR FURTHER PROCESSI~G. • 
c • 
c••oe•o•ooo•o~~~o······························································· c 
C••o•~ U~LfSS A RO~ FRO~ THI~ UNIT wAS ALREADY TRIED, SET POINTER TO THIS GAP. 

270 JFI!U~ITFtir.XXI.NE,OIGO TO 450 
!FRS;:\~:RSTtiGXXI 

JUEFLGIIGXX):IF~ST 

IFCSPSTT.GT.9990,lGO TO 285 
JFISPSTP.GT,9990,IGO TO 286 

C .. ••• ~OTH START AND STOP SPE·CoO •• ALLOW FOR SETUP TJWE AND SET FLAG. 
S?STX=SPSTT·SUI 
INFS IJ.:O 
C'O TO 287 

285 JNFSJic2 
S.TO~'C=·Slil 

284 SPSTX=SPSTP•SUl 
GO TO 2A7 

286 Jf'FSIJ:J 
STARTC=Tii'!E 
SPSTP:SI>STT 
GO TO 2~4 

287 ~sTqT!=~STARTIIGXX) 
NST;>Q:I<STRTJ•l 
tF!~STRTI.NE,OlGO TO 272 
JFRST::O 
GO TO 273 

?72 IVSA:tiFRST•!l•i'!AXROV•lGXX 
STARTC=STARTSIIVSA) 
NRIVSl:NSR&~KIIVSAI 

IFCST~~TC.GT.SPSTPJGO TO 274 
!F"CL~o=I~'PST 

IF~ST=~ODt~PlVSAolOOOI 
IFIIF~ST.E~.~IGO TO 271 
r.o TO ?72 

274 IPPEV=NQIVSA/1000 
IF!IP~EV.EQ.~lGO TO 273 
tVS~~(IPPEV•ll•~AXROW•IGXX 
STOPC=STOPSIIVS9) 
!FISTOPC.GT.~PSTXiGO TO 450 
I~SFLG!ISXXl=!P~EV 
GO TO 273 

271 STOPC=STOPStiVSAl 
!FISTDPC.GT.SPSTXlr.O TO 450 
IUSFLGIIGXXl=lFPOLO 

273 MASSE~=~ASSER•l 
IUNITF I IGXX l =I'3XX 
IUFFLG!!GXX):MSI~I 
IUEFLG!IGXXl=IFRST 
IFIINFS!I.EQ.OlGO TO ?75 

C••••• FOR ONE END UNSPECtO, SAVE ~AX L MIN AVAIL TIME IOISPEGARO SET•UP) AND 
C••••• INDEXES TO CORRESP UNITSt COUNT UNITS WHOSE AVAIL TIME EXCEEDS TMASMX. 

IFCiNFSII.EO.JlAVAILT•STARTC-SPSTP 
IF!INFSII.E0.21AVAILT•SPSTT•STOPC 
IF!AVAILT.&E.AVANINIGO TO 276 
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0369 
0370 
0371 
0372 
0373 
0374 
03"!'5 
0376 

0377 
0378 
0379 
031'10 
o3el 
03<);1 
0383 
03!14 
03&5 
03!16 
031!7 
1\3!18 
0389 
0390 
03'il 

1!392 
0393 
0394 
0395 
0396 

~3Q7 

0398 
0399 
0400 
0401 

0402 
0403 

AVAMII<=AVAILT 
IAVMJN=IGXX 

276 IFIAVAILT.LF.AVA~AXIGO TO 277 
AVjl.Mj\X:>lVo\ILT 
I"'V"AX=!GXX 

277 IFCAVAILT.LT.TMASMXIGO TO 450 
NAVP":"'AVI'M+l 
GO TO 450 

C••••• FOR 80TH E~DS SPEC•Dt ASSIGN IF FULL COVER POSSo IF NOT FLAG INFEAS. 

c 

275 ,_S~S=AS!MS!JTI 
PEOTIP=SP~TP-SPSTT 

VOLLYS:IFIXCREOTI~/TRI+lol 
SHLPCS=VCLLY~*TUI 
IF!ASHSoLToSHLPOSISHLPOS•ASMS 
COVAOD:SHLPOS/RVMj\ 
COVRj\GCIGXXIaCOVADO 
SUMCOV=SU,.COV•COVjl.DD 
JFCCMASS~R.GEoM!JlloANDoCSUNCOV 0 GEololl80 TO 278 
IFIIUC,.KO.LT.MIJ231GO TO 450 
!FCSUMCOV.GE.loiGO TO 278 
I"lFEASCIII"'l 
GO TO 500 

278 TMASMX=REOTIM 
GO TO 451 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c • 
C II. &. IV.: NO START OR STOP SPECIFIED • 
c • 
C UNLESS UNIT wAS ALREADY TRIED, GET PARjl.HS COHWON TO ROTH MASS AND NON• • 
C MASS~ THEN S~LIT LCGIC. • 
c • 
c···~······•o•••································································ c 

c 

300 IFRST•IGXX 
IUEFLGCIGXXi=IFRST 
NSTRTI=NSTARTCIGXXI 
NSTPO="<STwTI •1 
IFC~IJl.GT.l)GO TO 370 

c§··············•••oooo•••*••··················································· c 
c 
c 
c 
c 
c 

II. NO STAPT/STOP A~O NON•MASS 

jl.PPROACH IS TO FIND SMALLEST GAP IN UNiT•S SCMED THAT CAN COVER 
THIS TARGET. 

• 
• 
• 
• 
• 
• 

c•••~o·•···································Q···································· c 
IFCI<STRTI.GT.OIGO TO 305 

C••••• NCNE 15&0 YETI START AS EARLY AS POSS 
SPSTTX=O. 
SPSTT:o•SUl 
SPSTP•FIRTIM 
GO TO 222 

C••••• SECOND & SUBSEQUENT ASGMTSI SEEK SMALLEST GAP THAT FITS 
305 lFRST:NFIRST!IGXXl 

SLOTMNaTULONG 
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0404 
0405 
0406 
0407 
0408 
0409 
04!0 
0411 
0412 
0413 
0414 

0415 
0416 
0~·17 
0418 
0419 

0420 
0421 
0422 
0423 
0424 
0425 
C426 
0427 
e•2s 
~429 
0430 
0431 
0432 
0433 
!)434 
043S 
043!; 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
0444 
C445 
0446 
0447 
0448 
0449 

OLDSTP••SUI 
310 IVSA=IiFRST•ll•~AXROW+IGXX 

STARTC:STARTSilVSAl 
~BIVSA=NSRAN~II~SAI 
SLOT•STARTC-OLOSTP 
IFIISLOT.LT.SLOT~N).AND.ISLOT.GEoEIJilGO TO 320 

315 OLOSTP:STOPS!IVSAI 
!fROLC=IFRST ' 
IFR5T=~0D!~RI~SA,l000) 

IFIIFRST.EQ,OIGO TO 330 
GO TO 310 

C••••• NEW MI~ FITTING GAP: SAVE NE~ ~IN AND SAVE POINTERS TO ENGAGE~ENTS 
C••••• ALREADY SCHEDULED ON ENDS OF GAP 

320 SLOTM,.,=SLOT 
IAFTEFI:IFRST 
IF!EFCR:NOlVSl/1000 
SPSTTX=OVlSTP 
GO TO 315 

C••••• END OF UNIT'S SCHED: CHECK IF ADEQUATE GAP ~AS FOUNDI CHECK IF THIS 
C•••••· END GAP WAS IT 

c 

330 SLOT=TI~E-DLOSTP 
IFIISLOT.LT.EIJ!.ANDo!TULO~G.EO.SLOTMN)lGO TO 450 
IFC!SLOT.GE.SLOTMNI.OR.ISLOT.LT.EIJllGO TO 335 
IBEFOR=l"FF'OLD 
IAFTER:IFF>ST 
SLOTI'"=SLOT 
I~FTER:O 

IBE"FO'<=If~'>(ILO 
SFSTTX=OLCSTP 

335 SPSTT=SPSTTX 
SPSTP:SPSTT•EIJ 
NSTARTCIGXX):NSTPO 
NSTXX:NSTBTI•~AXPO••tr.XX 
NSRANK!NSTXXlR1000•IBfF(IR•IlFTER. 
IF IIRfFOR 0 NE.O!GO TO 340 
~FIRST:IGXXl=~STPO 

IVSA=IIAFTER-ll•~AXPC~+!GXX 
NSRAN~(IVSAl•"SFIA~KI!VSAl+lOOO*~STPO 

GO TO 245 
340 IFIIAFTER.~E.O!GO TO 345 

IVSA=IIFROLD-1l•~AXROW•IGXX 
NSRANKIIVSAl=NSR·N~(IVSll•NSTPO 
GO TO 245 

345 IVSA•IIAFTER-ll•~AXRCW•Jr,xx 
NRIV5A="ODINSRANKIIVSAlelOrOI 
NSRA~KIIVSAl=N~:VSA+lOOO•~STPO 

IVSA=!IBEFOR-li~~AXROW•IGXX 
NPIVSA:NSRANKCIVSAl/1000 
NSRANKIIVSA)aNRIVSA•1000•NSTPO 
GO TO 245 

c··························································c••·················· c • 
C IV. MASSING SPEC•O BUT ~0 START OR STOP • 
c • 
c··································••o••··························••o•••········ c 
c••••• APPROACH IS TO TRY FITTINS A •PERFECT MASS" INTO GAPS IN THIS RO~•S 
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0450 
0451 
0452 
0453 

0454 
0455 
0456 
0451' 
0458 
Ott 59 
0460 
04~1 
0462 
0463 
0464 
0465 
0466 
0467 
04~8 

0469 
0470 
0471 
(147<' 

0473 
0474 
0475 

0471!1 
0477 
0478 
0479 
0480 
0481 
0482 
0483 
l'484 
0485 
0486 
0487 
04111 
0419 

c••••• 
C••••• 
c••••• 
c••••• 
c••••• 
C••••• 
c••••• 
C••••• 
c••••• 
c••••• 
C••••• 
C••••• 
C••••• 
c 

SCHED BY CHECKING OTHER ROW•S SCHEDS FOD COMPATI~ILITY WITH THE 
START/STOP TIMES THAT WOULD RESULT IF THE E~GAGE~~NT ~EGAN AS EARLY 
IN THE GAP AS POSSI~LE ANO LASTED AS LO~G AS THE SLOWEST PRIHARY U~IT 
WOULD REQUIRE TO ENGAGE EXACTLY ITS 05WA~E" OF THE TARGET. THIS OU~A
TION HAS ALREADY BEFN CALCI~ATEO IN T~E DO•LODP E~OI~G !N STATEMENT 201 
AND IS CALLED THAS~X. ASG~T :s wAfE l~ T~E FIRST RAP WHERE A "PERFECT 
MASS" W!LL FIT. IF NO SUCH GAP IS FOUN~t A5GMT IS ~ADE IN T~E GAP 
WHERE THE HOST P~IwARY UNITS A~E AYA!LA~LE• P~CVIDED ENOUGH SECONDARY 
UNITS ARE AYAlLABLEo OR PRI~ARY UNITS CAN &E "ST~ETCHED" OR "SPEEDED 
UP" TO COYER THE TARGET AJEOUATELYo IF THAT DOESN•T WORKo A NEW VALUE 
IS PUT IN TWASHX WHICH IS CLOSER TO THAS~No WITH SUCCESSIVELY SHORTER 
LENGTHS BEING TRIED U~TIL O~E •OAKS OR TMAS~N IS REACHED. 
!SEE CO~~ENTS BET~EEN STATEwENTS 475 ANO 476.1 

37r lFCIUNITFCIGXXloNEoOIGO TO 450 
INFSII=S 
PERIOO•SUI+T~AS~X 

IFCNSTATI 0 GT 0 0)G0 TO 375 
C..... NO•JE ASSIGNED& START TRIAL PERIOD AS EARLY AS POSSIBLE 

SPSTTX=O. 
SPSTX=•SUI 
SPSTPX:Tt.4ASIIX 
c;O TO 390 

375 IFRST=NF!RSTCIGXXI 
OLDSTP=•SUI 

380 IVSA•ClFRST•li•IIAXROW+IGXX 
STARTC=STA~TSCIVSA) 
NRIVSA:NSRANKCIVSA) 
SLOT=STARTC•OLDSTP 
IFCSLOT.LT.PERIODJGO TO 385 

383 SPSTX=OLDSTP 
SPSTPX:SPSTX+PERIOO 
SPSTTX=OLOSTP+SUI 
GO TO J'ln 

3BS OLOSTP=STOPS(lVSAI 
IFROLD=IFRST 

386 IFRST:IIOOCNRIYSAo10001 
IFCIFRST.NE.OIGO TO 38n 

C••••• END OF UNIT•S SCHED 
SLOT=TI~E-OLOSTP 
IFCSLOT.LT.PERIODJGO TO 450 
(;0 TO JA3 

C••••• CHECK IF GAP WILL FIT INTO ENOUGH OTHER UNITS• Sr.HEOSo LOGIC IS 
Co•••• Sit.4ILAR TO SECTIONS ST~RTING AT STATEMENTS 203 AND 270o 

390 00 3391 LL•lriGHAX 
IUFGMSCLLI=O 
IUFGHECLLI=O 
IUMF'LGCLLI•O 
COYERHILLI=O 
IUNF2CLLI•O 

3391 CONTINUE 
SUMCOY=O. 
HASSER•O 
t<PRIM =0 
NPRI'Io\X=•l 
00 410 LL•IIIoMI23 
HSI.JXX•MSlJILLI 
IFCMSI.JXXoLToOI&O TO 410 
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049!1 
0491 
0492 
0493 
04'<4 
0495 
04<;6 
•J497 
rto99 
0499 
~sa~ 
1)501 
0502 
0503 
0504 
oc;c5 
050~ 
0507 
0508 

0509 
0510 
0511 
O'H2 
0513 
05h 
0515 
r.5l6 
0517 
0518 
0519 
0520 
0521 
~522 
05?3 
C5?4 
052'i 
0526 
0527 
0526 
0529 
0530 
0'3.31 
ns32 
O'i33 
0534 
0535 
0536 
0537 
0531! 
0539 
0540 
0541 
0542 

0543 
0544 

tG~XX,.IGI"'S!JX~) 

IFI!IGXX.EO.IGXXXI.AND.!MS!JtoNE.~SIJ~XIIGO TO 410 
~AIXX~"'SlJXX•IIIk 
IF!IUNF21IGXY.XI 0 NE.OIGO TO 410 
tFI~S=NFI~ST!l&X~XI 

IUFG~~IIG~~Xl=!FIRS 

Til! X=Tl 1"'5 I JX X l 
SUI1=51!1"5I-J<Xl 
Fl~"X:RVECP-''I!XXl 

FIJX:EVEC I"AIXXl 
FIRXX=E!JX•SUIX 
TUIX=TUI,.S!JXXl 
Tl'LXX =TI "E •<;u!Jt 
SP5TXX=SPSTTX·<;~IX 

NSTRIX=~STARTI!GXXXI 

NSTPI)1:NSTRIX•l 
IFINSTPIX.N~.ClGO TO 392 
IFIRS:o 
GO TO 393 

C••••• FOLLOWING LOGIC lS Sl"'TLA~ TO THAT STARTING AT STATEMENT 272 
392 l \IS X: I IF I HS•ll•i'UXROW. IGXXX 

STARTC=STARTSliVSXI 
NRIV5X2NSRANK!IVSXl 
tF!STARTC.GT,SPSTPXI GO TO 394 
TFPSOL:IFIR5 
TF!~S=~C~I~~IVSXolOOOl 
IF!lFIPS.FO,Ol60 TO 391. 
GO TO 392 

394 IPREVX=~RIVSt/1000 
IF!tPPEVX.fO,OlGO TO 393 
IVSqX=!IPHEVt•ll•~AXROW•!GXXX 
STOPC=STOPS!IVSAXI 
TFISTOPC.GT.SPSTXXIGO TO 410 
IUFG~S!IGXXXI•IPRF.VX 

GO TO 393 
391 STOPC:STOPS!I\ISXI 

IF!STO~C.r.T,~PSTXXIGO TO 410 
IU"'FLG!IG1XX1z~~IJXX 
IUFGNS(!GXXXI=!FRSOL 

393 ~ASSER=~~SSER•l 
IU~FLGIIGX~~~~~SIJXX 

IUFG"fllGXXXl•IFiRS 
JUNF?IIGXXJI~IGXXX 

IFILL.GT.MII21GO TO 395 
NPFJ"l:!o'ASSER 

395 VDLLYS•IFJX(TMASMX/TR!X + lol 
S~LPOS=VOLLYS•TUIX 
.IIS,.X:ASIMSIJXXl 
IFIASHX.LT,SHLPDS)SHLPOS•AS~X 
COV~Q03SHLPOS/RVHX 

IF<COVADO.GT,l)COVADD•lo 
SU"'C0\I=SU"'C0V•CO\IADD 
COVERMilGXXXl=COV.IIOO 
IFIISU"'COV.LT.l).ORoiNPRIM,LT,MIJlloORo!LL.GT,MII2liGO TO 399 

C!•••• SUITARLE SLOT FOR "PERFECT ~ASS." SET INDICATORS ANO GO ASSIGNo 
C••••o ALSO SHORTEN LENGTH IF POSSIRLE TO FULLY COVER TGT IN LESS TIME 

COVMAX•SUMCOV 
SPSTP •SPSTPX 

PI.GE Oi113 
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054'5 
0546 
0547 
0548 
0549 
C5SO 
0551 
0552 
0553 
0554 
0555 
0556 
0557 

0558 

05'39 
0560 
0'561 
0562 
~563 

0564 
056'5 
056~ 

0!!:67 
0568 
OSM 
0!:70 
0571 
0572 
0573 
0574 

0575 
0576 

0577 
0578 
0579 
nsso 
05&1 
0582 
0583 
05!14 
0585 
0586 
0587 
0588 
0'5A9 
0590 
0591 
0592 
0593 
0594 

S TOPI>Ih:.SPSTPX 
CO\.Pi"t,:999'l, 
RAT!OMal,/FLOATI~ASSERI 
DO 31l6 LLL=),IG~AX 
IUS~~GCLLLl=I~FG~SCLLLI 
IU~FLG(~LLl•IUFG~E(LLLI 

IUFFLGfLLLl=ILMFLGfLLLl 
COVR~L=CDVE~WlLLLl 
CO~~AGlLLLl=COV~~L 

lFCIU~FLG!LLLl.LTollGO TO 3'l6 
!FlCCVR~N.GT.COV~~LlCDVRHNaCOVRML 

396 CONTINL:E 
JN~SII•4 

C••••• IF LE\GTK CAN~OT PE PEDUC~O, GO ASSIGN. ELSE SHO~TfN LEhGTHo 
IF!CCv~~N.L£,PATIC~lGO TO 451 

C••••• Fl~J ~Ih LENGTH RfO•D 8Y A PARTICIPATING UNIT FOR ITS SHj~E 
C•••~• jN~ ADJUST PEQICO ACCORDINGLY !COVERAGE F~ACTIO~ RECOWE$ RATION 
C••~•• FC~ ALL UNITS 6ECAUSE THIS IS AN EQUALLY-SHARED TGT,) 

TLhGTi":99Q9, 
00 397 LLL=ltiG~AX 
IXPO«=I~FFLG!LLLl 
IFli~RCa,LT,1lGO TO 397 
~AIX=!IM • IX~O~ 

VCLLYS=~~EC(MA!XJ•RATIO~/TUIIX~OWI 
VOL~IX=JFIXCVQLLYSI 
IFl!VOLLYS~VCLFIXl.LE,.OllVOLF!X•VOLFIX-1, 
TRYL~~=T1!!)~0W)•VOLFIX 
IF!TRYLE~,LT.TLNGT~lTLNGThaTRYLEN 
COVRAG!LLLI•RATION 

397 COIIITI"UE 
T~'ASWX•TL'<GTI< 

STOPPR=S~STTX•TLNGTH 
SPSTP:STOPP? 
GO TO ~51 

C••••• nDE~~ECT ... SSH "OT SATISFIED YET. CHECK IF FULL COVERAGE YET ACHIEVED, 
C••~•• CHfC~ ALSO IF ALL PRI .. ARY UNITS HAVE R~EN TRIED, 

399 !Fll~v~COV.GE.l,),ANO,!LL.GE,~<IIZII GO TO 411 
410 CONT!~UE 

C••••• c~ECK IF THIS IS BEST TRIAL GAP YET TESTEDo IF SOt SAVE ITS PARA~'ETERS 
411 IF!SUI'CC~.LT.11GO TO 420 

c 

IF!~PRiw.LE,NPRHAXIGO TO 425 
11:PRWAX:'4P><!" 

413 COV~AJ:SU~COV 
IUNITF(JGXXJ=IGXX 
SiO"P~=S~STPX 

DO 415 LLL•loiG~AX 
COVMML:CCVER"'llLLl 
COVPAGILLLI=COVRHL 
IUSFLGlLLLl=TUFGMSILLLI 
IUEFLGlLLLl=IUFGME!LLLI 
IUFFLGILLLI•!UMFLG!LLLI 

415 COl>iTINUE 
GO TC 425 

42P IF!SUMCOV.LE 0 COVMAX)GO TO 425 
GO TO 413 

42~ JFIIFRST,NE,OIGO TO 386 
450 CONTINUE 

.-----
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0595 
0596 
0597 

0598 
0599 

OMO 

0601 
0602 
0603 
0604 
0605 
0606 
0607 
0608 
0609 
0610 
0611 
0612 
0613 
0614 
0615 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c • 
C ••• END OF DO-LOOP T~AT CYCL£5 THAU RO~S ••• • 
c • 
c•••••••••••••••••••••••••••••~••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
C••••• IF NO~-~&SSt NO FEAS ASGMT COULO BE FOU~C. FLAG TGT AS U~ASGD, 

IF!MlJl,GT.llGO TO 451 
JNFEAS!Ill=l 
GO TO 500 

c 
c•o••··········································································· c • 
C ••• CO~TI~UATION OF WASSJ~r, LOGIC ••• • 
c • 
C t•T iHIS POINT, ALL UNITS• RESOURCES HAVE ~fEN C~ECKEOt ~ND THE FEST o 
C -SET OF UN!T ~ESOUPCES T~AT IS AVAILARLE SU~JECT TO ALL OTHER RESTRICTIONS • 
C IS K~O•N, FOR SO~E UNITS !l~FSII•O 0~ lNFSti=4t ~F&~I~r. UNSPEC SCHEO • 
C WHERE P~PFECT ~ASS •AS FOUNOt OP SOl~ STOP A~D START SPECIFIED WITH • 
C SA7ISFACTORY ~ASS FCSSIPLElt ASGwT CAN 6F IM~EDIAiELY M&OE, FOP o 
C iNFSII•2 0~ 3, ME~NI~G ONLY ONE END OF EN~Ar.E~E~T PE-IOD SPEC•Dt ~E o 
C K~OW ONLY ~HICH U~ITS CAN GET OF~ tT LfAST CNE VOLLEY, t~FSII•S o 
C ~EANS NO PEQ~ECT ~ASS FOUND FOR WA~S iGT W!Tw STA~T/STOP U~SPEC, ~LT~OUGH • 
C T~E PtQ~w~Tf~S OF T~E wOST PQQWISI~G GAP ~AVE EE~, S~~fO ST~PTI~G AT • 
C STAT~vf~i 411 A~OVE. FOP INFSII=2t3t OR 5, FURT~EQ •OP~ IS ~ECfSSARY,) • 
c • 
c•••••••••o•••••••oooo.oo•····4················································· c 

451 I~FEASIIIJ•INFSII 
IF!!INFSII.~E.O),ANO,!INFSII.NE,4l)G0 TO 475 

C••••• A~ T~IS POINT IT IS KNOWN THAT A ~ASS tS POSSIPLE URI~G U~tTS WHOSE 
C••••~ INDEXES POINT TO NONlEQO VALUES Ih IUFFLG• T~ESE ~C~ZE~D VALUES 
C•••~• APE THE ROW NUHBERS, UNIT Ir~OEXF.S ALSO POI~T TO CfLLS OF IUSFLG A~D 
C•••e• !U~FLG T~AT CONTA!~ PJ!NT~QS TO THE SCwFDUL~D E~GA'-'~E~rS FO~ TH4T U~IT 
Covooo THAT P~ECfnE AND FOLLOW T~E GAP ~HEr~ THE HASS ~ILL FIT~ I~NCRING 
C••••• S~T-~P TI~E, THE LENr.TH OF TWE ~ASS IS T~ASMX AND IT E~DS AT TI~E 
C•oooo SPSTP, APP~OACH TO HASSING HERE IS TO TRY TO ACHIFVE A PERFECT MASS, 
C••••• IF NOT POSSIBLE• SLOWEST UNIT!Sl IS lAPEl GIVEN AS MUCH AS POSSlBLEt 
Co•••• AND OT~ER UNIT•S SHARES ARE REVISED UP~•RDSt WIT~ THE PROCECURE 
C••••• 9EJNG REPoATED UNTIL COVERAGE IS CO~PLETE !~HICH WE KNOw WILL BE POSS 
C••o•• BECAUS~ OF E~PLIER CHECKING INVOLVING COVRAG(,) AND SUMCOV) 0 

452 SPSTT;SPSTP·T~AS~X 
Cooo•o C~LCULATE IDEAL MASS COVERAGE ' COMPARE IT TO LOWEST PREY CALC•D COVERG 

453 "ASSER:J 
COVL0w=9999, 
DO 4531 I=ltiGHAX 
IUFLGI:I:.JFFLGIII 
tFIIUFLGI,lT,1lGO TO 4531 
COVRML=COVRAG!Il 
IF!COVPHL,LE.0.005) GO TO 4532 
~o<:.SSF.R:t"~SSER•l 

IF!COVLDw,LE,COVRMLJ GO TO 4531 
COVLOW=COVRMl. 
LLSt.Vzi 
GO TO 4S31 

4532 IUFFLG c-1 l "'0 
4531 CONTINUE 

FNMASS•MASSER 
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Ot-16 
0617 

0618 
0619 

0620 
0621 
0622 
0623 

Ct>?4 
Ot-25 
0626 
06?7 
0628. 
0629 
0630 
0631 
0632 

~633 
~~34 

0635 

0636 
0637 
0638 
0639 
C640 
Co64l 

0642 
ae43 
064 .. 
o.:.•o; 
0646 
0647 
0648 
0649 
0650 
0651 
0652 
0653 
0654 
0655 
0656 
0657 
0658 
0659 
0660 
0661 

FNU~ER:J, 

454 RATIOM•FNU~ER/FN~~SS 
C••••• ALLOW FOR ROUNDOFF ERROR 

COVLO~=COVLO•••OOl 
455 lFICOVLO-.GT.RATlvHIGO TO 465 

C••••• u~IT CANtT COVER ITS SHARE -- ASSIGN AS MUCH AS IT CAN COVERo 
.t.FRACT=COVLOW 
1GOT0•456 
GO TO 470 

456 F~UMER•FNUMER-AFRACT 
C••••• FI~C ~E~T SLO~EST U~lT A~D W"AT IT CAN COVER 

COVRAGILLSA~I=9999. 

COVLOI<•9'l9<;. 
DO 457 I=loiG~AX 
COY"l>~l=COV;<AGIII 

IFCCOVRML.GE.COVLOWIGO TO 457 
IFIIUFFLGIII.EQ,OIGO TO 457 
COVLOW=COVRHL 
LLSAV•I 

457 CCJNTI ~;uE 
C••••• IF ~v~E UNITS ARE ~OT ASGO VETo GO RECALCULATE S~ARES FOR THE~. 

FNMASS=F~MASS-1. 
IFIFNMASS.GT,,SOIGO TO 454 
GO TO 500 

C••••• PERFECT ~ASS -- ASGN EACH UNIT AN EOUAL SHARE 
465 LLSAV•O 

c 

466 LLSAV•LLSAV•l 
AFRACT•RATIOH 
IFILLSAV.GT.I~MAXlGO TO 500 
IFICC0VRAGCLLSAVIoGT,9000 0 l,CR,!IUFFLGILLSAV),E0,0)1GO TO 466 
IGOT0:.4t>6 

cooooo••ooeoo••··········••o••••••••••o••······································· c • 
C •••• ASSIGNMENT OF ONE UNIT IN A ~ASSED ENGAGEMENT •••• • 
c • 
co•o•••••ooooo••••o••······································••o•••••••••••o••···· c 

470 !U=!UFFLGCLL5AVI 
S~SiTX=S~STT-SUCIUl 
NSTRTI=~STIDTflLSAVl 

NSTPO•I<STRTI+l 
NSTXX;NSTRTio~AXPOW•LLSAV 
IUSF=IUSFLGCLLSAVl 
IUEFziUEFLG(LLSAVI 
STARTSCNSTXXl=SPSTTX 
STOPS<NSTXXI:SPSTP 
IUII=tii-Il~WAXROW+IU 
RV~A:RVf:C C lUI I l 
A~~o~RV~AoAFRACT 

~~~FIX=IFIXCA~~Ol 

IF!CAM~O-A~MFIX!,GT,0,011AM~FIX•AMMFIX•i 
TUFlESo:TUCIUI 
tFCAHMFIX,LT,TUBESIAMHFIX•TUBES 
AFRACT:AMMFIX/RVMA 
ASIUaAS IIUI 
IFCAMMFIX,GT,ASIUIAMMFIX•ASIU 
TCOST•CVECCiUIIl•AFRACT 
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~662 
~6<;3 

Of-64 
0665 
06'>6 
0661 

066~ 
OE-69 
OE-70 
0671 
06'7?. 
0"'73 
0674 
0675 
0676 
0677 
0678 
0679 
0630 
0681 
0682 
Cji.~J 

061'4 
06P5 
C/686 
0687 
068!! 
0689 
o6qo 
0Eo9l 
C6Cj? 
0693 
0694 

0695 
0696 
0697 
0698 

0699 
0700 
0701 
0702 

ShELLSINSTXXIcA~MFIX 
NT.RGI~STXXI•l~OO•tl+TU 

ISI!Ul•ASI!Ul·A~MFIX 
1G'3I x= IGG ILL. SA';') 
JGG!~S=!GG!X+I~XI~LSAVt-l 
SCTl~f=SPSTP•SPSTTX 

C••••• ~ASS ASGT TO OUTPUT SU~ROUTINE 
IGA"=LLSAv 

c 

MSA"=IU 
!<EG!NS:SPSTTX 
fi'IOS"SPST? 
!"UA"'=S!J I IUl 
!IA"X=li 
ICCDE=3 
CloLL Ol:TPUT 
00.471 !GGGaiGGlXtlGGIXS 

471 TSitr.GGiaTSIIGGG!•SCTl"E 
NSTARTILLSAVI=NSTPO 
JFI~ST~TI.Nf.OIGO TO 472 
NSllAl'<KI~STXX)cO 

GO TO 474 
472 I~SF:IUSFLGILLSAVI 

IFI!USF.EG.Dl~FtnSTILLSAVI•NSTPO 
IUEF•iUEFLGILLSAVl 
IUSFT~"IUSF•JOOO 
NSRANKI~STXXl•IUSFTH+ll~F 
IFIIUEF.EO.OlGO TO 47?4 
IUfFXaiTUEF-llOHAXROW+LLSAV 
NSllAN~IIUEFX)=~SRA~~IIuEFXI-IUSFTH+NSTPO•tOOO 

4724 IFIIUSF.EO.O!GO TO 474 
IUSFX=IiUSF-ll•"AXPO••LLSAV 
NSRA~~~I~SFX!=NSRANKIJUSFXI-IUEF•NSTPO 

474 IF!IGCTO.E0.466JGO TO 466 
JFIIGOTO.E0.456!GO TO 456 

c···············••o•••··············~·····································••••o• c • 
c • 
C ••• ALL ~ASSES WITH I~FSII•2t3t OR 5 COME HER~ ••• • 
c • 
C••o••••••••••o••~•••••••••••o•o•••••••••••••••••••••••••••••••••••••••••••••••• 
c 

475 JFIINFSII.NE.S)GO TO 477 
JFICOVMAX.LT.llGO TO 4752 
SPSTP=STOPPR 
GO TC 452 

C••••• FULL COVERAGE NOT YfT FOUND FOR A NON-START-STOP "ASSED TGT. SHORTEN 
C••••• TRIAL PERIOD LENGTH PY TH~ '·AGE OF IT~ASMX - TMASMNI INDICATEUI 
C••••• A. 2SJ !F T"ASMX - T~AS~N > 2 
c••••• a. 5o~ t~ 2 > tTMAs~x - T~As~Nl • t 
C••••• c. 100~ IF IT~4S~X - TMAS"NJ < 1 
C••••• AND TRY AGAIN, UNLESS TRIAL PERIOD IS NOw hOPELFSSLY SHORT !DEFINED 
C••••• BY TIME R!GUlREO BY FASTEST UNIT TO COVER ITS "SHARE" OF TGTol IF NO 
C••••• MASS JS ~OSSIBLE AT ALLt FLAG TGT AS INFEASIBLE. 
~752 JTMSXNa!TMSXN•ITMlNC 

IFIITMSXN.GE.OIGO TO 476 
INFEASIIIJ•l ~ 
GO TO 500 
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0703 
0704 

0705 
0706 
0707 
0708 
0109 
0710 
0711 
0712 
t-713 
071• 
c,nc; 

0716 
0717 
071R 

071<> 
C720 
07?1 
071!2 
0723 
0724 
071!5 
0726 
0727 

072!! 
0729 
0730 

0731 
0732 
0733 
0734 

c 

~76 TMAS~XcTMASMN•FLOATCITMSX~l•T~ASI• 
GO TO 2011 

c•······························~················•o•••··························· c • 
C ••• MASS WITM O~LY ON~ E~D OF E~A4G!MENT PERIOD SPECIFIED ••• • 
C ct"'FSI I=2 !lll 31 • 
c • 
c~···············•••v••••••••o••·································~·······~······ c 
C••••• ~HEN WE GET HERE ~F W"'C~ ~~~c~ ~NITS HAVE TIME TO GET OFF" AT LEAST 
C••••• ONE VOLLEY ClUFFLG IS NO,ZE~O A~~ POI~TS AT RO~) &~D ~~EQE 1"' T~~IR 
C••••• SC~ED~ CPOI~TEAS !~CF"L~ ~~~ !UEFLG! T~F VDLL~Y DR ~HATEVF~ WILL FIT, 
C••••• ~E ~LSO KNO~ (AVAM!No~VI"~•l T~f WAX A~O w!~ GAP L~NGT~S AWO~P T~~SE 

C•••ov UNITSo A"'D !lAVM!,.,IAVWAXl ~"IC" U~ITS THEY ARE ASSOC!ATEO wiTH, 
C••••• FINALLY• WE HAVE A COUhT OF u~ITS CNAYPMl ~HOSE GAP LE"'GTHS CA~ "OLD 
C••••• ~ PERFECT ~ATCM. I~F"SII•~ MfAkS STAQT U~SPEC•OI ·~ FOQ UNSPEC•D STOP. 
C••••• AMMO HAS NOT BEE"' C"ECKEO I~ DETfR~I~I~G T~ES~ AYAILARILITIES BEYOND 
C••~•• CAPACITY FOR A SINGLE YCLLEY. IT wiLL RE ATTEMPTED TO F!T MASSES IN 
C••••• THE FOLLOWING O~DEP OF LE~GTM: T~~SuX,TMA5HNoAVAMIN 1 AVAMAX 0 CASES 
C••••• KND~N IN ADVANCE NOT TO FIT !LIKE T~~SMX>~YA~AX) ~lL~ BE EXCLUDED. 
C••••• NOTE THAT ThE MINI~~u Nl;~qER OF U~ITS TRIED FOR A MASS IS lt ~H!Ch 
C•ooo• ~EA~S THAT A SINGLE UNlT:louLD BE ASSIGNED IF NO MASS ~ORKS. 

477 JT~NnX=C 
IFCTHASMX,GT 0 AYAMAXliTMN0Xa1 
IFCTMASMN,GT,AVAMAXliT~NDX•2 
TIMNAS!ll•TMASMX 
TIMMASC?.l=TNASMN 
TIMM~SI3l=AVAUJN 

TI~~ASC4):AVA~AX 

478 JT~NnX=!T~~DX•l 
IFIIT~~DX,LEo4lGO TO 479 
JNFEAS!IIl=l 
no Tn ~~o 

C••••• !NITI~Lllt AND TRY NEXT LENGTH, 
479 TL~GTH•TIW~ISIIT~NDX) 

IFCINFSlt.E0,3lSPSTP•SPSTT•TL"'GTH 
IFCINFSII,E0,2)SPSTT•SPSTP-TLNGTH 

C••••• CLEA~ F"LA6St POINTERSt AND COVERAGES 
ro 483 I~ltiGMAX . 
JUMFLG!Il~O 

IUFGHS!Il=O 
JUFG~Eil)•O 
COYRAG!Il•O 

483 CONTINUE 
MASSER•O 
SUMCOV=O• 
00 4QO I=tiitMI23 

C••~•• G~T ~OW NO. ~ UNIT NOo 
~SIJI=HSIJC!l 
IFIMSIJ!,LT.llGO TO 4~0 
IG~X•IGCMS!Jll 

C••••• IF THI~ UNIT CAN GET OFF" A VOLLEYt FtND OUT IF ITS GAP FITS TRIAL 
C••••• LENGT~ ANDt IF SO, HOW MUCH OF TGT IT CAN COVi.R IN THAT PERIOD. 

!FCIUFFLGCIGXXl.NE.MSIJilGO TO 490 
MAioiiM+MSIJI 
SUI•SUCMSlJII 
SPSTTX•SPSTT•SUt 
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0735 
073(; 
0737 
0738 
0739 
0740 
0741 
0742 
0743 
0744 
0145 
0746 
C747 
0748 
0749 
0750 
0751 
0752 
0753 
0754 

. 075'i 
0751; 
C757 
075B 
0759 
0760 
0761 
!1762 
0763 
0764 

0765 
0766 
0767 
0'768 
0769 
0770 
0771 
0772 
0773 
07l4 

0775 
0776 
0777 

0778 
0779 
0760 
0781 
07112 
0783 
0784 
0785 
0786 
0787 

IUS~•IUSFLGC!GXXl 
IliFF= I u:TLG I IGXX l 
GAP'3EG=·SL!I 
GAPEND=T H'E 
IFIIUSF.EOoOIGO TO 4904 
IGIU=IIUSF-lle~AXRO••TGXX 
GAPREGaSTOPSCIGIUl 

4904 IFIIUEF.EO.O!GO TO 4907 
IGIU=IIUEF•!;•~axPO~•IGXX 
GAPE~D=ST-PrSIIG!Ul 

4907 !FICI\FSII~F0.2l.AhDo(~APEND.GT.SPSTPllG~PFND=SPSTP 
IFICI~FSII.ED.3l.A~D.CGAPPEG.LT.SPSTTXllG~PBEG•SPSTTX 
GAPl~G:GIPE~D-GAgBEG 

IFCGA~LNG.LT.CTL~GTHoSUlllGO TO 490 
ASt'S:ASI"'SIJ!i 
llVI'A=FIVEC (I' A I l 
VOLLYS=IFIXITL~GT~/TliMSIJill•lo 
SHLPOS:VOLLYS•TUt~SIJil 

IFIASVS.Li.S~LPOSlSHLPOS=ASMS 
CO~A~O=S~L~CS/;~~A 

SU~'C0v=SuvCOV ·C0\1.>00 
;..tA5S£P::VASSE~•l 

~~~FLGIIGXJI=~SIJI 
IUFG~StiGXXl•IUSF 
IUFG~EIIGXXI•IUEF 
COVRAGIIGXXl=COVADD 
IFc;u~COV.LT.llGO TO 49n 
IFI:~ASS~P.GE.~IJ1l.OR.II.GE.~I23llGO TO 491 

493 CO~T IMJE 
r.O TC 47~ 

C••••• A SUIT~~LE ~~55 h~S ~EEN FOUNO -- I~IT!ALIZE AND GO ASSIGN, 
C••••• ALSO TPY TO SHORTEN LENGTH IF POSSIBLE 

491 COVRY~:9Q~Q. 

PATI0~=1o/FLOATI~ASSERl 
DO 493 I~loiG~AX 
IUEFLGill•IUFG~E!Il 
IUSFLGIIl=IUFG~Sill 
IUFFLG(Il=IU~FLGI!l 
C:CVA_CQ=C::vPt.G C!) 
IF(I'j'·'F!..(;(!l.LT.!IGO TO 493 
IFICOVP~h.&T.COVADDlCOVPM~=COVADD 

493 CONTINUE 
C••••• rF LENGTH CAN ~E.SHORTENEOoGO 00 IT 

IFICOVR~N.GT.RATIO~IGO TO 494 
THASI<IX•TLNGTH 
GO ':'0 452 

C••••• FINO MI~ LENGTH REQtO RY A PARTICIPATING UNIT FOR ITS SHARE AND 
C••••• ~OJUST PERIOD ACCORDINGLY 

494 TL~GTH=999Q• 
00 495 I~loi~~AX 
IXROW=IUFFLGIII 
IF!IXFIOw.LT.!lGO TO 495 
MAIX=IIM o IXROw 
VOLLYS•RVFCIMAIXl*RATIO~/TUIIXROWl 
VOLFIX•IFIXIVOLLYS) 
IFICVOLLYS-VOLFIXloLE •• OllVOLFIX•VOL~JX-1~ 
TRYLENdliiXROlil•VOLFIX 
IFCTRYLEN,LToTLNGTHlTLNGTH•TRYLEN 
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07A8 
0789 
07<10 
0791 
0792 
0793 
0794 
0795 
Ci796 
0797 

COVRAGI I l~RATIOM 
495 COIII':'lii;UE 

IFCINFSII,EQ,21SPSTT=SPSTP•TLNGTH 
JFCI~FSII,EQ,31SPSTP•SPSTP+TLNGTH 
T"'AS!o!X=TLNGTH 
GO TO 452 

soo cor.nr.uE 
2000 CCI>Tl"UE 

RETURN 
END 

DATE • 76295 

•OPTIONS IN EFFECT• IO,EBCDICoSOURCEoNOLISToNODECKoLOADoNOMAP 
•OPTIONS IN EFFECT• NA"'E • VOEGLN o LINECNT a 60 
•STATISTICS• SOURCE STATEMENTS • 797oPROGRAM SIZE a 19778 
•STATISTICS• 1110 DIAGNOSTI~S GENERATED 
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0001 

0002 
0003 
0004 

0005 
(1006 
00()7 
000!1 
0009 
\IClO 
0011 
0012 
eot3 
0014 
001o; 
0016 
0017 
0013 
OG19 
0021! 
or.?t 
0022 
C•023 
~024 
0025 
cou. 
0~27 
0026 
0029 
0030 
0031 
0032 
0033 

c 
c 
c 
c 
c 
c 
c 

SUBROUTINE SORTEP 

••••••••~•••••e•••••&•o•••••••••••••••••••••••••••••••••••••~•••••••••• 
• T~I5 SUBROUTINE SCATS T~E K•T~ THRU ~S•T~ ELEWF~TS OF ~SIJ ACCOR- • 
• DING TO DESCENDI~G P-VALUES T"E~ POtNT -T. ~FD~F!NJTION OF ~AT- • 
• ~!CES ~S AN~ P TO VECTC~S ~SIJ AND PVEC SPEED~ I•P EXECUTION • 
•••••••~~o•••••6~ooo•••••~•••••••••••••••••••4••••••••••••••••••••••••• 

CD~~J~ /SCOM/Ko~5S 

COM~~~ ICC~?/ IP!30loiG!40)oMSIJI1200lt"IJJ(<I0)oMAXPRI 
CC~~~N /UCOH/ CVECI1200loPVEC!l200l~EVECI1200loSVEC11200lo 

•AC40l•SUI40loT1C40loTUI40ltTIHEoNToNUoNN,g,ISAHEoPVEC!l200) 
K5X=KSS 
0(5:1<55-1 
t<P=I<•l 
!(M:K-1 
(\0 31 i..=l<oi<S 
IS•AP:(I 
".C.C:I<SiJIKl 
PVI=100Q~OO. 
IF!~AD.GT,Ol PVI•PVECIKM+I<ADl 
DO 32 ~'=KPoi<SX 
KAOO:KAO 
KAO="!SIJ!~l 

P\TJ:PVJ 
PV!=lOCOOOO. 
JFc~•U.GT.Ol FVJ•FVEC(~Hei<AO) 
IfiPVJ,GE,PVIIl GO TO 32 
""=~-1 
MSIIA<>=,.SIJC"'M) 
"'S!JC"'"'Io:MSIJI~I 
WSIJ(M):oMSWAP 
ISIIAP=1 
i<.,_O=KADO 
PVJ:PVIJ 

32 COt.TJNUE 
!F!ISwAP,NE,llGO TO 33 
KSX=KSX-1 

31 CONTINUE 
33 RETURN 

ENO 

•OPTIONS IN EFFECT• IDoEBCOICoSOURCEtNOLISToNOOECKoLOADoNO~AP 
•OPTIONS IN EFFECT• ~•~E • SORTER t LINECNT • 60 
•STATISTICS• SOURCE STATEMENTS • 33oPROGRAM SIZE a 776 
•STATISTICS• NO DIAGNOSTICS GENERATED 
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0001 
0002 
0003 
0004 
0005 
0006 

0007 

0008 
0009 
0010 
OOH 
0012 
OulJ 
0014 

0015 
0016 
0017 
0018 
0019 

01120 
0021 
0022 
OC23 
0024 
0025 

0026 
0027 
0028 
0029 
0030 
0031 
0032 

0033 
11034 
0035 
0036 

0037 
0038 
0039 
0040 

0041 

SUeRJUTINE OUTPUT 
CCM~ON /~SCM/ IGAMoMSAM,AFRACTolMMFIXoBEGt~SoENOSollAMXoTCOSToSUA~ 
COMMON /AMCM/ ~IJCoMI2C 0 MPUVEC1401oliAM 
C0MMON /AICD/ ICOOE 
CO~~C~ /PRCOM/ IPX120) 
COM~ON /UCOM/ CVECil2001oRVECil2001tEVEC112~01tSVFC11?001t 

•AI40)oSU1401 oTl1401oTll140loTIMEt~T.~U.~N,R,ISAMcoPVFC11200l 
COMMON /SCHED/ SPSTRT(301tSPSTOP130loNSTlPT1401tSTAPTSI1200lt 
•STOPS!l200loSHELLSil200ioNTARGI1200loNSRAN~I1200ltNFIRST(40lt 
•I~FEASC30l 

C••••o 
c••••• 
c••••• 
c••••• 
·c••o•• 
c•o••• 
CQ•••• 
c•o••• 
c•o••• 

COMMON /COMG/ IGMAXoiGXC40ltiGG!40) 
COMMON /COMX/ LGRNGI40) 
CO~MO~ /COM2/ iP1301oiGC40)tMSIJ112001oMI!J(90ltMAXPRI 
CO~MCN /ACO~/ ALPHAoTOPI~E 

COMMON /OCO~/ MA~POW,~AXCOL 
COM~ON lASTS/ ASI4CioTSC40l 
OI~ENS!ON ICOVROC2001 

ICOVRO!J) WILL HAVE A BIT HAS~ BUILT UP IN IT TO FLAG PROBLEMS WITH 
COVERAGE OF TARGET J. BITS MEAN FRO~ RIGHT TO LEFT (LO TO Hill 

1. O=~OT COVER£0 
2. l=SECONDAPV U~TTIS) INVO~VED 
3, l=UNEVEN ~OVE~A~E 
4., l=~RONG NO. U~ITS ~ASSEC 

OATA ICOV~D,IFTRST/200•0e1/ 
DATA I~OLDoiTGOLO/OoO/ 
IFIIICODE.EOoli.OR 0 ClCOOE~EQ 0 4))60 TO 500 
JFIICODE.EO.OIGO TO 1000 
lF!ICODE.E0.2lGO TO 25 

C••••• UPDATE COUNT OF UNITS MASSED L CHECK FOR PRIMARY UNIT 
I'AS<;CT:MASSCT+l 
l~CK!<=l 

DO lQ I=! •"'I7C 
IF I"='IIVEC I!) .EQ .HSAI'I IHOKK•O 

10 CCNilNUE 
JMOK•I"'O~+l"'O~K 

C••••• IF >1 UNIT MASSEOo CHECK FOR UNEVEN COVERAGE IUNLFSS FOUND EARLIE~) 
IFIMASSCT.GT.liGO TO 20 
JPOK=O 
AFC~EI'=AFf;ACT 

GO TO 25 
20 JFCTPOK.NE.O!GO TO 25 

IFCABS!FHJJCaiAFCHEK-AFRACTIIoGT.O.lllPOK•i 
AFCHEK=AFPACT 

C••••• P~INT ASGTt ADD TO COST 
25 PRINT 60ltiGAH,HSAMeAFRACToAHMFIXoBEGINStENDStSUAMtTCOST 

601 FORMATC?l5oF10,6oFB,Oo4F7,21 
TTCOST=TTCOST+TCOST 
JFIICODE.F0.31RETURN 

·C••••• FLAG COVERAGE OK 
ICOVRO(IIAMXI=l 
RETURN 

500 IFIIFIRST.EO.llGO TO 550 
• JFIIMOLD.LT.21GO TO 540 
C••••• CHECK FOR PROPER NO, UNITS MASSED IF COVERED AT All 

IFIMASSCT,EOoOI GO TO 540 
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0042 
()043 

0044 
0045 
0046 

0047 

0048 
OC49 
0050 
0051 

0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
Oft60 
0061 
0062 

0~63 
0064 
00'>5 
~"~6 
0067 
0068 
0(169 
0070 
0071 
0!172 
O~T3 
~074 

0075 
cn76 
0077 
0078 

0079 
0080 
0081 
0082 
0083 
0084 

0085 
0086 
00117 
0088 
0089 
0090 
0091 

ICOV~G=l 
!FI~AS5CT,fQ,I~OL0l GO TO 520 

C••••• FL~G wRO~G ~0. UNITS ~ASSEO 
ICOV1>G=ICOVRf.•8 
P~I~T SOS,I~DLO,~ASSCT 

505 FOR~ATI' ••• ~0. U~ITS DESIRED FOR ~ASSING VAS•el3t 
••I NO, ACTUALLY USED VAS•ti3,t ••••1 

520 IF!I~O~.EQ,O)GO TO 530 
C••••• FLAG SECO~DARY INVOLVEMENT 

ICOV~t;=ICCV'l;•2 

P'll"'T 52So!IJO!<: 
525 FORJJAT! 1 ••••oiS,t SECONDARY UNIT!Sl NEEDED ••••1 
530 TF !IPO~.EO,OlGO TO 537 

C••••• F~AG U~EVEN COVERAGE 
!C0V"G=ICOVRG+4 
PRINT 535 

535 FOPMATI' ••• COVERAGE UNEVEN ••••I 
537 ICOVPOIITGOLDl=ICOVRG 
540 IF!ICDV'lDIITGOLOl ,NE.OlGO TO 550 

P~!~.:T ~45 

545 FOPWAT(I ~·· UNASSIG~ED •••• , 
550 IFIICOOE.EQ,4l GO TO 1100 

IF IRST=O 
PPI~T 600oii~~,HIJCoiMPUVECIIlo!•1o~I2Cl 

600 FORM~TI 1 0ASGMT FOR TGT1tf4,•1 NO. UNITS DESIRED1tol3t 
••I PPI~ARy ROVSrt,20I3t.lti56Xt20I~ll 

PRINT ~60 

660 FCR~ATI' U~IT ROW FRACTION S~ELLS ST~RT 
!Ti:O!..fi=I!A!" 
I~DL;)=~IJC 

F~IJC=•LOATIMIJCI 

I'ASSCT"'O 
II'OKsO 
!POI<"O 
RETlJPN 

tor.o PPINT lC25oALPHA 
1025 FOQMATI20~1QE5ULTS FOQ Al?HA •oF7o5t1Hil 

JFI 0 5T=l 
TiCCST=O, 
~tTl!~~~. 

1100 PFI~7 llOloTTCOST 
1101 FORMAT!50Xo•-------'•.lo47XtF9,2l 

STOP SETUP 

C••••• SUI'"ARYI TARGET ASSIGNMENTSI V~~lATIONS FROM SPECS 
TTCOST=O• 
P,UIIS<;D=O 
~SECOY=O 
NI';AOMS:O 
NUt<EVf::O 
NOK=O 

COST•l 

C•~••o FOL 00-LOOP CHECKS RIT MASK IOECCMPOSEO BY MOD FUNCTION) FOR FLAGS 
C•••o• !NDICATI~G PROBLEMS IN ASSIGN~ENTS 

DO 1200 I•ltNT 
ICOVRG=ICOVRDIII 
IFIMODIICOVRGt2l.EO.OIGO TO 1110 
NOK•NOK+1 
GO TO 1115 

1110 NUASGDaNUASGD•l 
60 TO 1200 
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roQ2 
OC93 
~01;4 

0095 
()0'16 
0097 
!)~98 

or.:;c: 
01~0 

0101 
~'102 

c 

1115 !C~vor,:ICOVPG/2 
!Fcuc~CICOVRG•2l,EO.O!GO TO 1120 
NSEC~v=~SEC~Y•1 

1120 ICOVRG=ICOVC:G/2 
IF!~O:ciCOVRGo2l,EQ,OlGO TO 1125 
NU~~v~=~UNEVN•l 

112~ IF!ICOVRG.LE.llGO TO 12n0 
~"A~~s=~S~~~S•l 

12CC CChTI~~E 
~~~~T ;?!~.~T,~O~tNUA5PDoNSECOV,~UNEVNoN~AQMS 

125C ~QPMAT!•ClSS!Gh~ENT SU~~ARY '•It' ~0. TGTS PRESENT WAS•ti4t 
••• NO, TGTS ASG~ ~AS•oi4o'• NO, TGTS UNASGO WAS•ol4o/o 
•• NO, TGTS ASGO TO SECON~A~Y ROWS WAS•ol4t/t 
•• NO, TGTS WITH UNEVEN COVERAGE w•s•tl4o/, 
•• NO, TGTS WITH WRONG NO, UNITS NAS5EO WAStol4t//) 

12/29/12 

c••••• 
C••••o 

T~IS SECTION DEMONSTRATES TwO WAYS OF D!SPLAYING TH£ SCHEDULE OF 
ASSIGN"ENTS, 

OlC3 
0104 
()105 

OH~ 

0107 
otr•! 
0109 
null 
"11! 
~ 11<' 
0113 
0114 
0115 
~11!> 
0117 
~11~ 
~li9 

Ol<O 
0121 
0122 
~123 
0124 
0125 
0126 
0127 

0128 

0129 
lll~O 
0131 

c 
:>P!''T 2n0 

201' ~OP~ATC•!SC~fOULE OF FIRING ASSIGN~EhTS: 1 ,/Io' UNIT•! 
DO 2~00 lclolG~AX 
JS= .. STA'lT !Tl 
IF!JS,GT.~!GO TO 2030 
PRI>jT <'02~oi 

?020 ~ckv~T!•O•ol3t5Xt•••• UNASSIGNED ••••! 
:;.o TlJ 2soo 

2,:.n DPT~~ ?~3ltl 
2031 'QP~iT!•O•,I3t61e•START STOP TGT ROW SHELLS•! 

JX=~l~ !PST (I l 
204~ IVSA:(JX-ll•~A1ROW•l 

IROo:NTA«GCIVSAl 
ITGT:IPOW/1 ~00 
Iw0~=I~'~Oit-IT~T 0 1000 

!S~ELS=IFIX!S~ELLS!IVSA!l 
PRI~T 20~0tSTARTS!IVSAl,STOPS!lVSAltlTGTt!POWoiSHELS 

2050 FO~~AT(F!5.?oF7,2•2l6ol7) 
JX:MO~!~S~A~~!IVSA)olOOOl 

l~!JX.~€.Ol~O TO 2040 
IGX!=IGX !Il 
!RO~<-=IGG!Il 
IRSTOP•lROW•IGXI-1 
PRI"T 2060oTS!lROWlo!JtAS!JloJ•IROWolRST0P) 

2060 FO"~AT!lOXo•SLAC~ TI~EI toG12.So/o!lOXo'SLAC~ AN~O IN ROWtoT4t 
,., IS•oF6,o,• Si-'ELLS'll 

250 0 CO"TI '<UE 
C••••• PPI .. T SCHEDULE IN SAQ CHART FORM, 

CALL C!-<A'<T 
PETU;>N 
Et.!l 

•OPTIONS IN ~FFECT• IOoEBCOICtSOURCEtNOLISToNODECKoLOAD,NO~AP 
•OPTIONS IN FFFECT• NAME • OUTPUT t LINECNT • 60 
•STATISTICS• SOURCE STATE~ENTS • 13lePROG;>AM SIZE • 4362 
•STATISTICS• NO DIAGNOSTICS GENERATED 
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0001 
0002 

0003 

00~4 

000'; 
00~6 

OOC'!' 
0008 

01)09 

OOH 
c 

~ueqoUTINE C~ART 
CO~~O~ /UCOW/ CVEC11200),qVEC11200I•£VECilZ~OltSVECf1200lt 
•AI4~l•SUI40loTll40)oTUI40)oT!WE,NT,~U,~~.~,Is•~E,PV£Cf12001 
CCYUC~ /SC~EO/ SPSTRT!30l•SDSTQPf3Ql•~ST~oTc40l,ST.~TSI1200lo 
•5TCPSf!2COI,S~~LLSI12r~),~TARGI120~l•~SPA~~Il20Cl•~~IPST!40)o 
•!·.r-~~~~30, 

CCY~~~ /CC•Gt !G~AXo!G~!4~lol~G(4n) 
co~~~~ IC~~?I IP!JQI•I5!401o•S!Jil2=~loWIIJ!90l•••K0~! 
~I~E~S!C~ IC~A~T!A0olOO:,ICVECTI40001 
~CUIVALE~CE riC~APT!llo!CVECTilll 
~:·E~S!ON SCSTA!40o30!,SCSTD(40o30l•SCRDS!40o30lo~SCTRG!40o30l• 

·~R~~~5!40o30) 

E~VIV~LESCE !STARTSfll•SCST~flll•ISTQPS11) 1 5CSTP!lllo 
• !S~ELLSilloSC~DS!lll•INTAPG!lloNSCTOGfll)o!~SRAN~!llo~PANKS!1)1 

DATl ~0~2/t?O~ •1 

C••••• TI~C IS T!wE I~CREWENT FOR CWART 
c 

0011 DATA Tl~C/1,/ 

0012 

0013 
0014 
OOlS 
0016 
0017 
0018 

0019 
00l'9 
0021 
00?2 
0023 

~024 
0025 
0026 
0027 
00?" 
0029 
0030 
0031 
0032 

0033 
0034 

0035 
0036 
0037 
~038 

0039 
0040 

c 
llT=l,/TIII.C 

C CLE~P C~~PTI~G -~RAY 
[)() 1 I=lo4000 
ICVECT !II cO 
CC~-.j-r~·-.i~E 

IS"I~:iJ'O 
JS~o<AJ:] 

00 lO l=l•lG".lX 
C FCR EAC~ UNIT FIND ~0 OF TGTS ASGO & INDEXES OF 1ST & LAST ROWS IN UNIT 

~ST=lTI ,.NSTA~T II I 
lFI~STPTl.LTo11GO TO 10 
IGGit=IGG!Il 
I~GixS=IGr.IX•IGX!ll•l 
OC 11 ~=ltNS~PTI 

C FOP EAC~ iGT ~SG~ TO UNIT. GET TGT L RO~ I~DEY!So USE T~EM TO GET START/STOP 
C TI~ES FOP CALC•G CkA~TING INDEXES ON 8ASIS OF Tl~C MIN PER CELLo 

NTR';:NSCTPG!!oXl 
IROo:wCD!NT~r,,10001 

ITGT•!~TRG-I~OWI/1000 
START=SCSTA !!•'<l 
STC"•SCST~>t!oi(J 
sTAPT=rSTAPT•S,l•PT+.s 
STOP a(STOP +~,I•PT+oS 
ISTT=STA"T 
ISTP=STOP 

C STAY INSIDE ARRAY FCR TIMES < •5 OR >!95*TINC) 
IF!ISTT.LT.lllSTT=l 
IF!ISTP,Gi,100liSTP•lnn 

C OETEP~I~E ~~~ L WAX CfLLS USED !EARLIEST START, LATEST STOP! ~OR "00 60 •••" 
IF!ISTT.LT,JSWIN!lSMlN~ISTT 
IF!ISTP.GT.ISwAXllSMAX•ISTP 
DO 12 J=IGGI~olGGlxS 
M,ll'/1(:9999 

C FOR EAC"t ROo TN !JNIT GENERATE A CHART SYI'I~OL •~**' EXCEPT FOR loSGO ROW WHERE 
C TGT 11.0 BECC~ES SYwBOL 

IF!J.~Q,lROWlMARK•ITGT 
00 13 L•ISTT,ISTP 

C FOR EACH HALF-MIN BETWEEN START ' STOPt STORE CHART SYMBOL 
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0041 
C042 
0043 
0044 
0045 
0046 
0047 
;i04!J 
0049 
0050 
0051 
0052 
0053 
O-ll54 

ICWART I J•Ll•"4ARK 
13 CONTINUE 
12 CC"'l'rNUE 
II CO..,TINUE 
10 CCNTINUE 

PRI~T 20,CIGIJitJ=ltNUI 
20 ~OCUATC'1'•10Xt•••• UNITS ••••tlo(8Xo41I3ll 

P'< ... T :;J 
30 FCD~ATC•O•t10Xt•••• RO~S •••• , 

PRINT 40tiJtJs1tNUI 
40 FCPUAT(8Xt41I3l 

PRPJT 45 
45 ~0'<"4ATI' TIME•! 

CTI"4~=FLOATIJS"4JN!•TINC-5o 

121'29112 

c 
~055 

PRI~T CWART L!'·~S ONLY AFTER FIRST ENGAGE~ENT ~EGINS L BEFORE LAST ONE ENDS, 
00 60 !=IS~JN,ISuAX 

0056 
on57 
0051!1 
0~59 
!1<:160 
0(161 

PPI~T ~OoCTI~EoiiC~-RTIJtil•J•ltNUI 
50 FO~~~T(F5,!t3Xt411' •,I21l 

CTI~E=CTiuE•TINC 
60 CCNTI>4UE 

PET URN 
E)<O 

•OPTIONS IN EF~ECT• !D·E~COICtSOURCE,NOL!SToNOOECKtLOAO,NQuAP 
•CPTIO"S IN EFFECT• NA~E = CWART , LINECNT • 60 
•STATISTICS• SCURC~ STATEufNTS ~ ~},PROGRAM SIZE • 17728 
•STATISTICS• NO DIAGNOSTICS GENERATED 

•STATISTICS• 002 DIAGNOSTICS THIS STEP 
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APPENDIX F 

OUTPUT SAMPLES FROM PROGRAM IN APPENDIX E 
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MISSION OURATIONI 30.00 

NOo TARGETS I 10 

HOo ROllS I 5 

IOAXo INEFFICIENCY ALLOIOEOr o.sooo 

NOo AlP~AS TO BE TRIEOI 3 

COST MATRIX I 

ROIW: 

II so. 45. 40. so. 
Zl 91. 36. SAo 19. 

31 5?.?.1000000. 42. TOo 

41 4Tol000000o1000000o 20o 

51!(100000. 22. 42. 37. 

NOo ROUNOS NEEDED OF FUZE I FOR TAR'3ET ,J; 

ROiil 

1: 3!1. 60. 21. ?4. 

21 53. 94. 52. 2Ao 

3: I • o. 63. \7. 

4: 5~;. o. n. 32. 

51 o. 43. 62. 43. 

60. 

39. 

95. 

32. 

60. 

ST. 

zq. 

19. 

83o 

49. 

····~························ • • 
• SU~HARV 0~ INPUT DATA e 
• • 
••••••••••••••••••••••••••••• 

30. 20.1000000. 70. 

62. 34. 61. 74. 

77.1000000. 38. 86. 

36. 19. 39. 79. 

116 0 l4.toooooo. 39. 

35. 411. o. 98. 

69. 31lo !4. llo 

o;r. ~. ss. 40o 

45. 90o 94o ~3. 

91o 21o 21o 72. 

213 

lOo 

65. 

47. 

48o 

62. 

34. 

7. 

87. 

llo 

12. 



••• 

ROW N0 0 1 
1 2 3 4 5 

AMMO SUPPLY VECTORI 
114. 594. 638. 246. 478. 

VECTOR OF TIMES !MINI FOR SETUP &. FIRST ROUND: 
2.ooo 1.ooo 1.ooo 1.ooo z.ooo 

III!CTOR OF TIMES !MINI PER ROUNO !SUSTAINED FJREII 
o.•oo o.oso 0.100 0.100 o.soo 

VI!CTOR OF NO. TUBES PF.R ROWI 
I • 6. 1o 

'VICTOR OF UNJT GROUP NUMBERS! 
1 2 3 3 4 

••• 

I''<ECECENCE TARGETS I 2 

PRECF:DENCE ?. TARGETS I 3 

PRECF:DENCE 3 TAPGETS 1 4 

PRECEDENCE 4 TARGETS I 5 

I"REC>OF'NCI': 5 TARGfTSI 6 1 8 

PIH CFOENCE 6 TARuETSI 9 

PRECEDENCE 1 TAR_,E TS 1 10 

MASSING lNFO~~ATION: 

TGT NO. UNITS ROWS TO RE CONSJOEREDI 
NOo TO MASS !OTHERS HAVE BEEN FLAGGED JNFEASJBLEI 

3 

2 2 

3 2 

PRIMARY I 

PRIMMIYI 
SECONDARY I 

PRIMARY I 
SECONDARY I 

1 

1 
5 

1 
2 

2 

2 

3 

3 

4 

4 5 

214 
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STAAT•STOP INFORMATION 19999 • NOT SP!CIFI!DI 

TARGET 

1 
2 

• 

MATRIX Or-

START TIME 

4.000 
9999.000 

e.ooo 

ENGAGEMENT 

STOP TtME 

16.000 
20.000 

9C#99.000 

THIES I 

•••••••••••••••••••o••••••••••••••••••••o•• 
• • • 

RESULTS OF PRELIMYNARY CALCULATIONS 
• • 
• ••••••••••••••••••••••••••••••••••••••••••• 

SUM OF COLUMN COST MINIMAl 322,00 

INCITE NEW INFEASIBILJTIES DUE TO MASSING, TIMEt Oil AMMOI 
ROW I 

l I •.ooo 5.600 3.200 3.?00 5.600 •.~oo •.&oo ••••••• 8.400 4.ooo 
?.I 3.600 5.fo50 3.550 2.350 2.400 4.t.OO 2.1l50 }.650 1.soo 1.300 
31 1.ooo ........ 2.oon 1.200 1.300 1.900 ••••••• j.900 1.600 2.400 
41 lo900 ••••••• ••••••• 1.500 2.300 1.700 2.400 2.5oo 1.700 2.300 
51 ·····-· 23.ooo 32.500 :?J.ooo 26.000 ••••••• 12.000 ••••••• ••••••• 7.soo 

Ml• 255.5911-WF.IGHTEO MAX\R/AoE/TI•HATRIXI 

ROW I 

11 80.712 1n.·196 47.0A2 53.A08 127.794 711.47(1 107.616 ••••••• 127.796 76.228 

2: 30 .F,1l 41!.136 30.245 20.021 20.447 37.4116 24.281 i4.n57 12.779 11.076 

3: 8.520 ........ 25.238 10.?.24 11.076 22.835 ••••••• 22.033 16.~24 34.853 

41 57.144 ••••••• o•••••• 33.247 86.235 46.754 93.508 97.664 44 .... 76 84.157 

51 ••••••• 127.796 127.796 127.796 127.796 ••••••• 102.235 ••••••• ••••*•• 63.897 

215 



RESULTS FOR ALPHA :0.00000: SC"EDULE OF FIRI~G ASSIGNMENTS: 

ASGICT FOR TGT 11 NO. U~ITS DESIREOI 31 PRIIIARY 110\ISI 4 1 2 ~ UNIT 
UNIT ROW F'RACTtOt4 SHELLS START STOP SETUP COST 

1 1 !1.333333 12o 2.00 16.00 2.011 16.67 1 START STOP TGT ROil! SMELLS 
2 2 0.339623 18. 3.01) 16.00 1o00 30,91 -. -z.oo z.oo 6 1 35 
3 4 0,)45455 19. 3,00 16.00 1,00 16.24 2,00 16,00 1 1 12 

16.00 18,40 3 1 ll 
A5G14T FOR Tt;T 21 NO, UNITS DESYREO: 21 PRIIIARY POliS: 2 1 - 18,40 22.40 10 1 34 
U!'iiT ROil FR~CTION SMELLS START STOP SETUP COST SLACK T!'•E: 5,6003 
••• UII;ASSIGNEO ••• SLACK AMIIO IN ROil 1 IS 22. SHELLS ,..., 
ASGI-IT FOR TGT 31 NO, UNITS DESIRED: 21 PRIIIARY ROWS: 1 3 ! 2 STAIIT STOP TGT ROW SHELLS 
UNIT ROW FRACTION SHELLS START STOP SETUP COST -1.00 0,50 9 2 11 

1 l 0.52311~9 11. 16,00 16.40 2,(10 20.95 3.~0 16.00 1 2 18 
3 3 0.507936 32. 17 .oo 1A,40 1.00 21.33 SLACK TI'•E: 1';.5oo 

SLACK AMMO IN ROW 2 IS 565, SHELLS 
AS\-"'1 FOR TGT 41 ~0. UNITS DfS!PEO: 11 PI!IMAI!Y RO\o/5: 2 4 ! ' UNIT ROll FRACTION S~'<Ei.LS STAPT STOP SE'TUP Ct'lST 3 STAIIT STOP TGT ROll SHELLS 

4 5 1.oooooo 43. 6,00 29.00 2,00 37,1)~ -1.00 },30 5 4 63 
·- 3.00 16.00 1 4 19 

ASG"T FOR TGT 51 NO. U~ITS DESIRED: 11 PIHI-IAIIY ROiiS: 4 2 i }7,00 18,40 3 3 32 
UNIT RJw FRACTION SHELLS START STOP SETUP COST }8,40 20,30 8 J 55 

3 4 },000000 83, -1.00 1.30 1,00 32,00 '"' 20,30 <?2,70 7 4 90 
SUCI<' TI"E': 9,0003 

ASG•'T FOR TGT et NO, U~ITS DESIRED: ll PRIMARY ROWS: 3 4 ; SLACK A~"O IN ROll 3 IS 551, SI-IELLS 
U~IT ROW FRACTIOI< S,iELLS ST41!T STOP SETUP COST SLACK AM~O IN ROW 4 IS 54, SHELLS 

3 3 l.oooooo 55. 13,40 20.30 1,00 3A,00 
4 STAPT STOP TGT ROll SHELLS 

ASGMT FOR TGT 61 NO, UNITS DESIRED: 11 PRI~ARY ROIISI 1 4 ; -;) 6,00 29,00 4 5 43 
U~IT ROW FRACTION SHELLS SURT STOP SETUP COST SLACK TillE: 7,0003 

1 1 l.oooooo 35, -2,00 2,00 2,00 30.00 SLACK AMMO IN ROW 5 IS 435, SHELLS 

ASGMT F'OR TGT 71 ~0. UNITS OESIRECI 11 PRIIIAIIY ROWSI 5 4 
UNIT ROil FRACTIO~ SHELLS STAPT STOP SETUP COST 

3 4 1,000~00 c;o. 20.30 22.70 1.oo l<l,OO 

ASGMT FOR TGT 91 NO. UNITS DESIRED: 11 PI!IMAPY ROIISI 1 2 
lll'il T RCW F'RACTIOI< SHELLS START STOP SETUP COST ..._.: 

2 2 1.oo~coo 11. -1.00 o.so 1,00 74,00 

ASG~"T FOR TGT 101 NO, UNITS DESIRED: 11 PIIIfo4ARY ROllS: 1 3 
UNIT ROil FRACTION SHELLS START STOP SETUP COST j ~ 

1 1 t.oooooo 34. 18,40 22.40 2.00 10,00 ------
346,09 

ASSIGN"ENT SUM~ARY 
NOo TGTS PRESENT WAS lOt NO, TGTS ASGO iiAS 9, NO, TGTS UNASG( --
NOo TGTS ASGO TO SECONDARY ROWS WAS 0 
NO. TGTS WITH UNEVEN COVERAGE WAS 0 ' NO. T6TS WITH WRONG NOo UNITS MASSED WAS 0 

~ 
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••• UNITS ••• RESULTS FOR ALP"A •0.250001 
2 3 3 4 

~ ASGIOT FOil TGT 11 NO. UNITS DESIRED: 31 PRIN41lY POwS: 4 1 2 3 5 
••• ROWS ••• UNIT ROW f"RACTIO"' St<ELLS STt.RT STOP SETUP COST 

2 3 4 5 1 1 0.333333 12. z.oo 16.00 2.on }f,,f,7 
TIME ,- 2 2 0.339623 18. 3.00 16.00 1.oo 30.91 
-2.0 6 0 0 0 0 : d ·j 3 4 0.345455 19. 3.00 16.00 1.oo 16.24 
•1.0 6 9 •• 5 0 

o.o 6 9 •• 5 1'1 -- ASGMT FOI> TGT 21 "'0• U~lTS DESIRED: 2t PRIMARY RO>ISI 2 
loll ~ 9 •• 5 0 Ut<IT ROW FRACTION SHELLS START STOP SETUP COST 
2.0 6 0 0 0 n ••• U'<&SSIG..,EO ••• 
3.0 1 i •• 1 0 -~ 

•• o 1 1 •• 1 0 ASG14T FOP TGT 31 NO, u~ITS C~SIREO: 21 PRI,..ARY ROoS: 1 3 5 " s.o 1 1 •• 1 0 U"'IT RO• FRACTION SHELLS SU.RT STOP SETUI> COST 
6.0 1 1 •• 1 4 1 1 0.523809 11o 1f>.OO 18.40 2.00 20.95 
7.0 1 1 ... 1 • 3 3 0.507936 32. 17 .oo 18.40 1.no 21.33 
e.o 1 1 •• 1 4 
9.0 1 1 •• 1 4 ~. ASG,..T FOR TGT 4f NO. UNITS DEStREOI 11 PRIMARY ROWS I 2 4 s 1 3 

10.0 1 1 •• 1 4 UNIT ROll FRACTIO"' SHELLS STAPT STOP SETUP COST 
u.o 1 1 •• 1 4 4 s 1.oo~~oo 43. 6.(10 29.00 2.0~ 37.00 
12.0 ~ 1 •• 1 4 --
1J.n 1 1 •• 1 • ASGNT F!JR TGT 51 NO. UNITS DESIRED: 1 I PRI"AI'lY RO.,S: .. 2 '5 1 3 
14.0 1 1 •• 1 4 U~•IT RCij FI>ACTION SHELLS START STOP SETUP COST 
15.0 1 1 •• 1 • 3 • t.ooooao 83. -1.00 1.30 1.oo 32.00 
1"•.11 3 1 •• 1 4 
11.0 3 0 3 •• 4 ASGMT FOR TGT 81 NO. UNITS DESIRED: 11 PR[lolAl'!Y ROWS: 3 4 2 
1~.o 10 0 8 •• 4 UNIT ROll FRACTION SHELLS START STOP SETUP COST 
19.0 10 0 8 •• 4 3 3 1.oooooo 55. 18.40 20.30 1.00 38.00 
?o.o 1!1 0 •• 7 4 
?.1.0 10 0 ;,. 7 4 ASG14T FOR TGT 61 NO. U~tTS DESIRED: 11 Plll"'ARY ROWS: 4 1 2 3 
22.0 10 0 •• 7 " I Ullili ROil FRACTION SHfLLS STA;;T STOP SETUP CC<;T 
23.0 0 0 00 7 4 :; • 1.oooooo •s. l. 30 3.00 1.oo :;.;.oo 
24.0 0 0 0 0 • 
25.0 0 0 0 0 4 ASGWT FOR TGT 71 NO. U~ITS DESIRED: 11 PR I "AF!Y ROWS: 5 • 2 
26.0 0 0 0 0 4 UNIT ROW FRACTION SHELLS START STOP SETUP COST 
21.0 0 0 0 0 4 3 4 1.000000 90. 20.30 22.70 loOO 19.CO 
28.0 0 0 0 0 4 
29.0 0 0 0 0 4 ASG"T FOR TGT 91 NO. UNITS DESIRED: 11 PRIMA <IV ROWS: 2 l 3 4 

UlliiT ROW FRACTION SHELLS START STOP SETU!> COST 
2 2 1.oooooo 11. -1.00 o.so 1.00 74.00 

ASG>IT FOR TGT 101 NO. U~ITS DESIRED: 11 PR!"IIRY RO~S: .l 3 4 s 2 
UNIT I' OW FRjCTION SHELLS START STOP SETUP COST 

1 1 1.000000 34. -2.00 2.00 2.00 10.00 ·-----
352.09 

4SSIGNMENT SU .. ~ARY -- NO. TGTS PRESEhT WAS lOt NCo TGTS ASGO WAS 9, NO. TGTS UNASGO WAS 
lli0 0 TGTS ASGO TO SECONDARY ROWS WAS 0 
NO. TGTS wiTH UlliEVEN COVERAGE WAS 0 
NOo TGTS WITH WRONG NOo UNITS MASSED WAS 0 

N 
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SC~EOULE OF FIRING ASSIGNMENTSr 

UNIT 

ST~RT STOP TGT ROW SI-IELLS 
-2.00 z.oo 10 1 34 

2.00 16.00 ! 1 12 
16.~0 18.40 3 1 ll 
SLACK Tl"E: 9.6003 
SLACK A~"O IN ROW 1 IS 57. SHELLS 

2 START STOP TGT ROW SHELLS 
-1.00 0.50 9 z 11 

J.oo 16.00 1 ~ 1a 
SLACK TII.IE: 15.500 
SLACK A""0 IN ROW 2 IS 565. 511ELLS 

3 ShRT STOP TGT ROW SHELLS 
-1.00 1.30 s • 83 

1.30 3.oo 6 4 45 
3.00 16.00 1 4 19 

17 .oo 18.40 3 3 32 
1@.40 20.30 8 3 55 
zo.3n 22.70 7 4 90 
SLACK Tl!o!E: 7.3003 
SLACK AMMO I~ ROw 3 IS 551• SHFLLS 
SLACK A"I.IO IN ROW 4 IS 9o S11ELLS 

.. STAAT STOP TGT ROW SHELLS 
6.00 29.00 4 5 43 

SLACK TIME: 7.0003 
SLACK AMMO IN ROW S IS 435. SHELLS 

1 

1 - TI"E 
-2.0 10 
-1.0 10 
o.o 10 
loC 10 
2.0 10 

.-.. 3.0 1 
4.0 1 
s.o 1 
6.0 1 
7.0 1 
l?oO 1 - 9.0 1 

10.0 1 . ' 11.0 1 
- 12.0 1 

13.0 1 
14.0 1 
15.0 1 
1"'.0 3 
17 .o 3 
19.0 3 
19.0 0 
20.0 0 
21.0 0 - 22.0 0 
23.0 0 
24.0 0 
25.0 0 
26.0 0 
27.0 0 
2B •. O 0 
29.0 0 

••• UNITS 
2 3 J 

••• POWS 
2 J • 
0 '() 0 
9 •• 5 
9 •• 5 
9 •• 6 
0 •• 6 
1 •• 6 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
1 •• 1 
0 3 •• 
0 8 •• 
0 8 •• 
0 •• 7 
0 •• 7 
0 •• 7 
0 •• 7 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

••• 
• 
••• 
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n 
0 
0 
0 
0 
0 
0 
0 
4 
4 
4 

• 4 

• 4 
4 

• • 
4 
4 
4 

• 4 
4 
4 
4 
4 
4 
4 

• 4 
4 

N 
1-' 
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RESULTS FOR ALPHA •1.000001 SCHEDULE OF FJAI~G ASSIG~~ENTSI 

ASGNT FOi< TGT 11 ~0. UNITS DESIRED: 31 PRJ~~AY ROWSI 4 1 2 3 5 u"'n 
UIIIIT ~011 FllACTION St!ELLS STARi STOP SETUP COST 

1 ! 1!.333333 12. 2.00 16.00 2.no 16 • .07 1 START STOP TGT ROW 5>1ELLS 
2 2 C.339623 1a. 3.oo 1,.00 1.no 30.91 ~ 2.00 16.00 1 1 12 
3 4 0.345455 19. 3.00 16.00 1.on 16.24 

~ ! i ·: SLACK TII<E: 16.000 
SL•C~ ANI<O IN ROll 1 IS 102. SHELLS 

ASGJ<T FOP TGT 21 NO. U~ITS DESIRED: 21 PRIMARY ROWS: 2 1 -, 

lJI\jJ'!" >10~ FRACT:O~ S"'ELLS STA:ll STOP SETUP COST 2 SUilT STOP TGT ROll SHELLS 
••• t;'4A5SIGNE.:l . ... -1.~0 C.6<; 8 " 14 

.-- 0.65 2.15 9 2 11 
ASGNT ;:-:Ji< TGT 31 NO. U~ITS DESIRED: 21 PAl~ARY llOoS: 3 5 i 4 3.00 16.00 1 2 16 
UNIT RCii FRACTION St<ELLS STAAT STOP SETUP COST 16.00 17.30 10 2 7 

4 5 0.387097 24. 1S.Il0 28.35 2.00 16.?6 - SLACK T!"'E: 12.550 
3 3 0.6!9048 39. 16.00 28.35 1.00 26.00 SLACK A~<I<O IN ROw 2 IS 544. SHELLS 

••• COVERAGE UkEVEN • •• 
3 START STOP TGT ROW SHELLS 

-'SG!IT FOP. TGT 41 NO. UNITS DESIRED: 1& PPIMAAY A('IISI 2 4 5 1 3 -1.00 1.30 5 4 1'3 
i,;N!T ~ow FRACTION St<ELLS START STOP SETUP COST 1.30 3.co 6 4 45 

-. J.oo u;.oo 1 4 19 
t.SC"'T FOR TGT 51 NO. UNITS DESIRED: ll PPI"'ARY ROllS: 4 2 5 3 1 16.00 28.35 3 3 39 
ut.IT ROll FF<ACTION SHELLS START STOP SfTliP COST SLACK TIWE: 0.65027 

3 4 1.oooooo 83. -t.no 1.30 1.~o 32.00 ~ SLAC~ AI<MO IN ~OW 3 IS 599. S"'ELLS 
SLACK AMMO IN ROw 4 IS 99. SHELLS 

.tSGMT FOF> TGT 81 N0 0 UNITS DESIRED: 1J PRIMARY POIISI 3 4 2 
UNIT ROir FIIACTION S~ELLS START STOP 'SETUP COST 4 START STOP TGT ROW SHELLS 

2 2 1.oooooo 14 .• -1.00 0.65 1.00 61.00 - -2.00 10.00 7 5 21 
l';.oo 28.35 3 5 24 

ASGMT F'CQ TGT 71 N0 0 U~ITS DESIRED: 11 PR!'•AAY ~OoS: 5 4 2 l SLAC!( TI .. E: 4.6SC3 
U"lT ~(I- FR~CTJO"< SI"ELLS STAiH STOi> SI'TUP COST SLACK AMMO IN ROW 5 IS 433. SHELLS 

4 5 1.0~0.~0' 21. -2.00 10.00 z.oo 1 ... oo G I 

ASG"T FJR TGT ~I NO. UNITS DESIRED: 11 PRIMARY AOWSI 4 2 3 
uNIT POii FRACTION SHELLS START STOP SETUP COST 

3 4 t.oooooo 45. 1.30 3.00 1.no 36.00 

ASG~T FO'l 'l'GT 91 NO. UNITS DESIRED: 11 PRIIoiARY ROllS: 2 4 3 
liliiiT A0il F;:;ACT!CN Si-<ELLS ST·ART STOP SFTUP COST 

2 2 1.ooor,oo 11. 0.65 2.15 t.oo 74.00 

ASGMT FOR TGT 101 NO. U~ITS DESIRED: 11 PRIMo\RY RO<S: 3 4 5 2 
''NIT '<OW FRACTION SHELLS ST.ORT STOP SETUP COST 

2 2 1.000000 1. 16.00 17.30 1.oo 65.00 ------388.07 

ASSIGN~ENT SUM"'ARY 
~a. TGTS PPESENT WAS 10, NO. TGTS ASGD WAS 9, NO. TGTS UNASGD WAS 
NO. TGTS ASGD TO SECONDARY ROWS liAS 0 
NO. TGTS •ITH UNEVEN COVERAGE WAS 1 
!110 0 TGTS WITH lliRONG NO. UNITS MASSED WAS 0 

N 
1-' 
\0 



TI"'E 
-2.0 0 
-1.0 0 
o.o 0 
t.o 0 
2.0 1 
1.0 1 
•• n 1 
S.G 1 
6o0 1 
7.o 1 
ii.O 1 
Q•D 1 

10.0 1 
11.0 1 
12 • C• 1 
n.o 1 
t•.n 1 
15.0 1 
16.0 1 
17.0 0 
18.0 0 
19.0 0 
2•.0 0 
<'I • 0 0 
1!2.0 0 
?.:l.O 0 
24.0 0 
25.0 0 
26.0 0 
27.0 0 
28.0 0 

••• UNITS ••• 
2 3 3 4 

••• I'IOwS .. .. 
2 3 • 5 

0 0 0 7 
e •• 5 7 
8 •• 5 T 
9 •• 6 7 
9 •• ~ 7 
1 •• {, 7 
1 ... . 7 ' 1 •• .. 7 
1 •• 1 7 
1 ... 1 7 
1 •• 1 7 
1 •• 1 7 
1 •• 1 7 
1 •• 1 0 
1 •• 1 0 
1 ... 1 0 
1 •• 1 0 
1 ... I 3" 

10 J •• 3 
10 3 •• 3 

0 3 •• 3 
0 3 •• 3 
0 S oe 3 
0 3 •• 3 
0 3 ... 3 
0 3 •• 3 
0 3 ... 3 
0 3 •• 3 
0 3 •• 3 
0 3 •• ~~3--
0 3 •• 3 

••• 

r 

'' 

END • •• 
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N 
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