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This thesis attempts to implement the building blocks required for the 

realization of a radiation-hardened, 8-bit flash analog to digital (AID) converter. All 

the building blocks were designed and verified by simulating on PSPICE. All the 

building blocks were laid out using the layout tool MAGIC. The results of this study 

can be used to realize a high resolution AID converter employed in space 

communication systems. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Analog-to-Digital converters are used throughout modem military systems. 

Common applications include image processing, communication links, analog sensors, 

control systems, and digital video [1,7,23]. The digital video field, which includes 

image recognition and high-definition television, has created the need for inexpensive, 

high-speed (between 5 and 1 OOMsamples/s), and moderate resolution (between 6 and 

12 bits) analog-to-digital (AID) converters. 

Image and signal processing systems in the field of space communication 

operate in a high-level radiation environment. Such systems are susceptible to 

threshold shift, increased leakage current, and FET mobility fall-off [5]. These effects 

of radiation are addressed by the use of new IC processing technologies like 

CMOS/SOS and CMOS/SOI [ 6] which offer superior radiation tolerance, low leakage 

current, latch up free CMOS, and high speed. This work presents the design of an 8-

bit radiation-hardened high-speed AID converter in CMOS/SOS technology. Such a 

high-speed AID converter leads to increased power dissipation. It is also the objective 

of this thesis to design an 8-bit radiation-hardened very low-power AID converter in 

1 
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CMOS/SOS technology. Such a low-power AID converter leads to reduced speed. 

One major approach in the design of very high-speed analog-to-digital (AID) 

converters has been a parallel conversion technique [7]. Parallel (or flash) conversion 

can be defined as the technique of 2n comparators simultaneously comparing the 

analog input with the reference voltage for an n-bit conversion. Comparison, encoding, 

and latching are done in one clock cycle. The key to realizing a flash AID converter is 

to achieve a low-power, high-speed, and low-offset comparator. 

The converter power consumption should be small to obviate the forced 

cooling, and costs should be low for most applications. The first video AID converters 

(ADC) were expensive hybrids, and later the 8-bit monolithic flash converters were 

made in bipolar technology [8,9]. Current advanced CMOS processes are capable of 

achieving video conversion rates of 5 - 20 Msamples/s [10,11]. 

The need for low-cost, low-power, high-speed, radiation-hardened AID 

converters is continuously increasing in military applications. It has been difficult to 

develop low-power, radiation-hardened, video speed, 7- 8 bit AID converters using 

bulk CMOS technology [7,12,13,14]. Hitherto, very little work has been reported on 

the design of high-speed radiation-hardened AID converters [5]. Historically, high­

speed radiation-hardened AID converters have been designed using bipolar technology 

at the expense of power dissipation. 

AMOS integrated circuit operating in a high level radiation environment 

should operate virtually independent of transistor threshold voltage shift, increased 

device leakage current, and electron-hole mobility fall-off [1,3,4,5,15]. These problems 



can be addressed by the use of thin-film CMOS/SOS technology for the following 

reasons. CMOS/SOS devices are made with epitaxial silicon islands on a sapphire 

substrate, which isolates the n and p transistors from each other. Hence, this structure 

is highly resistant to transient and total-dose radiation. Overall, the CMOS/SOS 

technology offers superior radiation tolerance, high speed, low power, and good noise 

immunity. 

3 

The currently available radiation-hardened AID converters do not have the 

capability to operate at a high-speed (25 - 50 Msamples/s), high resolution (8 bits) and 

low power [5]; therefore, the development of a high-speed, low-power analog- to­

digital converter that is highly immune to radiation effects is needed. 

The design of comparators, bias circuits, and PLA encoders (building blocks of 

this AID converter) were verified by simulation on PSPICE. All these building blocks 

were laid out using the layout tool MAGIC. 

1.2 Objectives 

The primary objective of this work is to design a radiation-hardened 

CMOS/SOS comparator circuit processed using thin-film technology and implement it 

in an 8-bit fully parallel (flash) AID converter IC. This AID converter features a high­

speed (more than 25Msamples/s) operation, a low-power consumption (less than 

600mW), and a total-dose radiation goal of lMrad(Si). 

Additional objectives include designing a very low-power, radiation-hardened 

CMOS/SOS comparator and implementing it in an 8-bit very low-power, low-speed 
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radiation tolerant flash AID converter. This AID converter features very low power 

consumption (less than 20mW), low speed (less than lMHz) and a total-dose radiation 

goal of lMrad(Si). 

The contents of this thesis are presented in four chapters. Chapter ll discusses 

in detail the effects of ionization radiation on the ICs and different types of flash AID 

converters. The major schemes for reducing the radiation effects are discussed. Chapter 

ill describes the design of a novel comparator circuit, a bias circuit, a PLA encoder, a 

reference string, and a low-power version of a flash AID converter. This chapter 

includes a thorough discussion and analysis of each of the building blocks of this flash 

AID converter, along with simulation results. Chapter ill also includes a discussion on 

the layout of all the building blocks. Chapter IV offers conclusions based on these 

results. Suggestions for future work connected with investigations of this proposed 

AID converter system are also offered. 



CHAPTER II 

LITERA TIJRE REVIEW 

This chapter discusses in detail the types of radiation environments and the 

basic effects of ionization radiation on the circuits, along with schemes for reducing 

the radiation effects. Different types of AID (full-flash and two-step) converters are 

presented along with the analysis of resistor and capacitor reference strings and their 

advantages and disadvantages. Different types of comparators are also described, along 

with the necessity for autozeroing techniques. 

2.1 Radiation Effects 

The exposure of an integrated circuit (IC) to nuclear radiation alters the 

electrical properties of the active components of the circuit, which results in the 

degradation of circuit performance and possible circuit failure [15]. The primary goal 

of the radiation effects community is to harden electronic systems against degradation, 

failure, or upset when circuits are subjected to radiation exposure. Radiation hardening 

may be accomplished by one or more of the following methods: proper design and 

control of IC processing, appropriate device and circuit design, circumvention and 

error-correcting techniques, and careful hardness-assurance procedures. 

There are a variety of radiation sources and environments to which electronic 

5 



systems may be exposed. The different radiation environments can be classified into 

three types of the most practical interest [15]: 

i. Space radiation environment: Systems to be used in space may have to withstand 

large doses of radiation which are accumulated slowly over long periods of time. This 

environment has a low ionization dose rate of less than 1 rad/s and a total dose of 

more than 1 03 rad. 

ii. Radiation from nuclear explosion: Systems to be used in the vicinity of nuclear 

explosions need to be hardened against radiation delivered in very short pulses and at 

very high dose rates. This environment has a high dose rate gamma flux of more than 

I 08 rad/s and total dose of more than 104 rad. 

iii. Nuclear reactor radiation environment: Systems to be used in this environment 

must withstand a steady state neutron flux and a low to moderate ionizing dose rate 

(i.e., gamma rays). 

In spite of the seemingly complex interactions of radiation with matter, there 

are two dominant effects on solid state electronics [15]: ionization (generation of 

electron/hole pairs) and displacement damage (dislodging atoms from their normal 

lattice sites). For charged particle irradiation (even though a certain amount of atomic 

displacement can occur in general), the primary modes of degradation of electronic 

devices occur as a result of ionization [15]. For this reason, only ionization effects are 

considered in this section. 

6 
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2.1.1 Ionization Effects 

The part of an MOS structure most sensitive to ionizing radiation is the oxide 

insulating layer (Si02), which in present-day devices is generally less than 1 0011m 

thick. In insulators (Si02), radiation-induced photocurrents are generally not a problem 

because of the much lower carrier mobilities and lower numbers of electron/hole pairs 

created. However, insulators generally contain relatively large densities of charge 

trapping centers at which the radiation-induced charges can be trapped for extended 

periods of time. In Si02, the radiation-generated electrons are much more mobile than 

the holes, and are swept out of the oxide (collected at the gate electrode) in times 

measured in picoseconds. In that first picosecond or two, some fraction of the 

electrons and holes will recombine. The holes which escape initial recombination are 

relatively immobile and remain behind near their points of generation, causing 

negative voltage shifts in the electrical characteristics of MOS devices~ i.e., shifts 

occur in threshold voltage (V T) for MOS transistors or the flatband voltage (V fb) for 

MOS capacitors [15]. This voltage offset (threshold shift) in the MOSFETs is a major 

radiation-effects problem. As shown in Figure 1, the NMOS and PMOS threshold 

voltages will undergo a negative shift during total-dose irradiation. This negative shift 

results in an increased( decreased) current drive and an increased( decreased) 

subthreshold leakage current for NMOS(PMOS). 

The above discussion of the radiation response of MOS devices addresses the 

gate oxide layer and the consequences of trapped-charge buildup in the gate oxide 

layer, primarily that of induced shifts in threshold voltages. The same physical 
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processes leading to charge buildup in the oxide layers also occur in the thicker 

oxides used as field regions, isolation, or passivation oxides in IC technologies. The 

effects of charge buildup in these oxides on circuit operation involves generation of 

undesirable parasitic current leakage paths. Specifically, charge buildup in field, 

passivation, and isolation oxide regions can induce formation of inversion channels in 

the surface regions of adjoining semiconductor regions. In the presence of any 

potential gradients, this will result in parasitic current leakage (field oxide transistor) 

paths. These induced cu"ent leakage paths can be important failure modes not only in 

bulk CMOS technologies, but also in Silicon on Sapphire (SOS) and Silicon on 

Insulator (SOl) structures, as well as in bipolar technologies [15]. This induced leakage 

current alters the dynamic behaviour of the circuit so that the device would not operate 

according to the dynamic range specifications. This problem can be addressed by 

either increasing the oxide thickness or by design techniques such as making the 

quiescent bias current very large compared to the leakage current. 

Ionization radiation also causes an increase in the density of fast interface traps, 

which results in charge accumulation in the dry gate oxide devices. The increase in the 

density of interfacial defects changes the channel charge and mobility in inversion, 

causing an increase in the channel time-constant by several orders of magnitude [I 5]. 

The increase is larger in the weak inversion region where mobility is significantly 

reduced by increased columbic scattering from the generated defects, and tends to 

saturate in a strong inversion where other scattering phenomenons dominate. The 

increase in the channel time constant is one of the major radiation effects problems, 



and results in slower device response, which in turn reduces the gain bandwidth 

product for both n- and p-channel devices. This problem can be addressed by 

employing a mobility-independent circuit design; however, this solves only the gain 

problem. 

The primary basic effects of total dose radiation on MOSFETs based on the 

work by McLean (1987) are summarized below: 

i. The threshold voltages of NMOS & PMOS will undergo a negative shift during 

total-dose radiation. 

ii. Radiation increases the device leakage current, which alters the dynamic 

behaviour of the circuit under consideration. 

iii. Radiation lowers the mobility of the MOSFETs, which results in a reduced gain 

bandwidth product for both n- and p-channel devices. 

From a circuit perspective, the shift in threshold voltage results in 

increased( decreased) transconductance of NMOS(PMOS), and the increase in the 

device leakage current reduces the output impedance. 

2.2 Conventional Flash AID Converters 

10 

In the very strictest sense, a flash converter operates no faster than the 

propagation delay of the system, which in turn is limited by the parasitic capacitances. 

A fully parallel converter is often referred to as full flash [16]. The full and two-stage 

flash techniques are generally used with conversion rates greater than 1 OMHz. 



11 

2.2.1 Full-flash AID Converter 

Full flash (single-step or parallel or flash) converters use 2n comparators, 2n+ 1 

ladder resistors/capacitors, a 2n-to-n encoder, a clock generator, and n output buffers. A 

block diagram of a conventional n-bit flash AID converter is shown in Figure 2. A 

major component in realizing a high performance flash AID converter is a low-power, 

high-speed and low-offset comparator circuit. Simultaneously, 2n comparators compare 

an input voltage with each ladder tap voltage, which is achieved by dividing the 

reference voltage by the resistor ladder. The ladder tap voltage which most closely 

approximates the input signal is determined by testing the output of each comparator 

with the comparator outputs immediately above and below it. The encoder circuit 

converts the identified ladder tap voltage to a binary code. The n outputs of this 

encoder circuit are followed by n output registers and buffers. 

The drawback of this converter is that when the resolution is increased by 2 

bits (for example, from 8 to 10 bits), the flash converter's area and power increase by 

a factor of 4 with a resulting decrease in yield and reliability [7]. As the die area 

increases, the propagation delay differences also increase, adding to timing delays and 

related errors. Currently, the full flash converters are the best solution for fewer than 

8-bits ADC. 

The block diagram of a classical two-step n-bit flash AID converter (ADC) is 

shown in Figure 3. The converter consists of a sample-and-hold amplifier, an MSB 
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ADC (coarse ADC), a DAC, a subtractor, a gain block, and an LSB ADC. The 

operation is easily understood with the accompanying timing diagram. In the first 

phase the input is sampled and held. In the second phase MSBs are converted. In the 

third phase the DAC reconverts the input, which is subtracted from the held input and 

the result is amplified. The fourth phase is the "second step" in which the LSBs are 

converted. 

This architecture uses 2nn. comparators rather than the 2n comparators used in a 

flash (fully parallel) converter. This yields a large savings in area and power with a 

resulting improvement in yield and reliability at the expense of two rather than one 

clock cycle for the conversion. The main drawbacks to classical two-step converters 

have been the need for high-speed, high-gain op amps and the difficulty of matching 

ADCs and DACs to each other [7]. 

2.3 Analysis of a Resistor/Capacitor Reference Ladder 

The reference ladder is a critical building block in the design of AID converters 

because it is responsible for providing reference voltage to each of the comparators. 

The inaccuracies in the reference voltage due to the reference ladder results in the 

degradation of the performance of the AID converters. The major source of error in 

flash AID conversion has been determined to be the loading of the reference ladder by 

the string of comparators which sample each ladder tap [17]. Surprisingly, small values 

of loading on the reference ladder have been shown to degrade accuracy significantly. 

When dynamic loads are applied to the ladder taps, the tap voltages are perturbed and 



the integral non-linearity (INL) is degraded. Because of this, many resistor ladder 

designs have taps at the quarter points brought out to pins so that compensation 

voltage sources can be applied [7]. 

15 

In this section a comparison of the resistor reference ladder and capacitor 

reference ladder approaches is presented. There are two major issues involved which 

influence the selection of reference ladder: the effect of loading on the performance of 

the ladder, and the effect of a component mismatch on the performance of ladder. 

2.3.1 Loading Errors 

Reference loading errors are of two types: 

Transient error: This is the error associated with instantaneous ladder loading during a 

single measurement. For a resistor ladder, a bypass capacitor at the midpoint of array 

along with internal capacitances will reduce this error by a factor of four compared to 

static error (17]. In the case of a capacitor ladder, this error will be greater due to the 

RC time constant associated with the capacitances of ladder and the finite source 

resistance associated with the voltage reference [17]. 

Long term recovery error: This is the error associated with a new input level after the 

ladder has been loaded for a long period by an input at another leveL This is the static 

error which cannot be bypassed and hence is the major source of error in AID 

con verst on. 

The discrete resistor ladder model which was investigated by Dingwall (1979) 

is modified as shown in Figure 4. This figure shows the ladder network loaded by the 
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Figure 4. Discrete Reference Ladder Model 
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parasitic capacitance corresponding to each of the input comparator stages. During 

alternate half cycles, these parasitic capacitors are alternately discharged to input 

voltage potential and then to the appropriate ladder tap voltage [14]. Charging currents 

abstracted from the reference ladder network result in a nonuniform current flow in the 

ladder and produces a nonlinear division of the reference voltage. In this model the 

ladder load has been numerically simulated by an impedance Z(~ ), which will result in 

removal of the same amount of charge from ladder nodes each full cycle as the 

comparator parasitics remove each half-cycle. Z(~) is related to the input parasitic 

capacitance of the comparator ccomp: 

The equivalent parasitic load-to-ladder section impedance ratio is given by: 

where 

K=U~ 
~~ 

ztap = the ladder impedance between two adjacent taps, 

Z(~) = the loading at each ladder tap point by comparator input parasitics, 

N = the number of ladder taps, and 

K = the loading constant. 

(1) 

(2) 

The analysis by Dingwall (1979) shows that ladder loading is a strong function 

of V IN and loading ratio Z(~ )/Z18P, and the greatest errors are caused by input voltages 

of 0 or Vref• corresponding to the extremes of reference ladder voltages. It has been 
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shown that worst case loading occurs when the parasitics are initially charged to zero 

and then to the reference voltage. For 8-bit accuracy a load ratio of Z(& )/Z14r in excess 

of I 00,000 is required [17]. 

If a resistor ladder is used with ~r=l 0 ohms, and Ccomr=0.2fF and if the circuit 

is operated at 25MHz, then we have a loading ratio of 

which is well above the loading ratio required. 

If a capacitor ladder is used, then to achieve the required loading ratio 

In this case, 

Z(c..>) >100,000 
Ztap 

c 
-E!E..>lOO,OOO 
ccomp 

(3) 

(4) 

(5) 

For Ccomp= 0.2fF, Clap> 20pF. So to achieve a required loading ratio, a large capacitor 

is required which in turn requires a very large area for an 8- to 1 O-bit AID converter. 

Thus it is seen that the area requirement and loading effects are closely related. 

In case of a resistor string, as Ru.r decreases, the loading error decreases as does the 

area. However, if ~P is reduced, then various resistances, such as lead resistance of 

the package and bonding wire resistance, cannot be neglected. Then trimming of 

resistors is required or power consumption in the chip increases due to low resistance. 

Also, if Ru.P is reduced, then the finite source resistance of the voltage reference forms 
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a voltage divider along with the resistor string, leading to an error in the tap voltage. 

Thererfore, it is required that ~ be much greater than ~ource· Hence, a compromise 

concerning the allowable error is required due to the voltage divider formed by the 

source impedance. 

In case of a capacitor string, to decrease the loading effects the capacitor 

should be large; this requires increased area. Thus, a tradeoff is again required in 

regards to the permissible loading effect that can be tolerated and how much real 

estate is available on the chip. 

2.3.2 Mismatch Errors 

The component mismatch and the leakage current at the input of the 

comparator influence the performance of the reference ladder. Doemberg (1989) 

considered an n-bit resistor string with the resistor values normally distributed with 

mean Rand standard deviation oR. The worst case error that can be tolerated is± 1/2 

LSB, which occurs at the middle tap. At that tap the ratio of tap voltage to V rer is 

(6) 

This ratio of voltages is the ratio of resistance of half of the string to the total 

resistance. The maximum mismatch for less than 1/2 LSB error is [7] 

OR= 1 

R .j2*2D 
(7) 

For 8-bits this leads to (oR I R) < 0.0442. The same analysis applied to a capacitor 
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string results in a similar matching requirement, (ac I C) < 0.0442. 

Capacitor matching is typically easier to achieve than resistor matching [18]. 

Better matching accuracy can be expected from a capacitor string. MOS capacitors 

have a low voltage coefficient (appx 20ppm/v) and a temperature coefficient (appx 

25ppm) than resistors [18]. 

The major sources of component mismatches in integrated circuits are the 

uncertainties in photolithographic edge definition [ 19]. In the case of a pair of 

nominally identical resistors, an edge uncertainty in resistor length (taL) and width 

{t-W) results in a mismatch given by 

(8) 

because Lr >> W r· 

For a pair of nominally identical capacitors this mismatch due to edge 

uncertainties is 

(9) 

Since the capacitance value is determined by the capacitor area as opposed to 

L/W for resistors, the freedom exists to optimize capacitor geometries in order to 

reduce the mismatch sensitivity due to uncertainties in edge definition. Thus, for a 

given area it is possible to have 

(10) 

Hence, 
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AC< AR 
C R 

(11) 

Thus it is seen that it is easier to achieve a high degree of matching with a 

capacitor string as opposed to a resistor string. To achieve a high degree of matching 

in a resistor string, the reference banks must be trimmed~ this is a lengthy and 

therefore costly process. Thus a capacitor string typically offers better performance. 

But a mismatch in the case of a resistor string will only cause nonlinearity without 

producing non-monotonic behaviour [18] which cannot be guaranteed in case of a 

capacitor array. Therefore, a tradeoff is again involved as to how much mismatch can 

be tolerated and how crucial the monotonicity requirement is for the reference string. 

Very often the resistor string is a better choice because it occupies less space 

and the recovery error can be minimized. The error in the tap voltage (caused due to 

the formulation of a voltage divider between the source impedance of a reference 

voltage and a reference ladder) can be minimized by making the tap resistance much 

larger than the source impedance of the reference voltage. As previously noted, the 

mismatch in the resistor string does not result in non-monotonic behaviour, which can 

be the case in a capacitor ladder. 

2.4 Comparator Circuit 

The most critical component of a flash ADC design is the analog comparator 

[7]. In particular a comparator operating in a radiation environment requires a circuit 

design that is virtually independent of threshold voltage shift, increased leakage, and 



22 

reduced mobility of the MOSFETs. In a flash ADC, internal comparators must amplify 

small voltages into logic levels. In general the comparators either feed a PLA encoder 

or latches, which in tum feed the encoder. In either approach, the encoding process 

can often be pipelined with the comparator function. The encoding process is faster 

than the comparator function; for this reason the maximum conversion rate for the 

ADC is limited by the response time of its comparators. Therefore, the design and 

optimization of the comparators is of critical importance. 

A comparator design focuses on meeting several specifications; typically, these 

are gain, propagation delay, and associated offset cancellation. The main comparator­

related errors are: fast high-gain comparators, offset voltage from transistor 

mismatches, power supply noise, and the charge injection error from the comparator's 

autozero switches. As a rule-of-thumb, comparator gain is usually about 2n for an n-bit 

ADC [7]. This requirement comes from the need to amplify a voltage that is less than 

l/2 LSB up to a compatible logic level. The total error due to the feedback switch 

charge injection, the offset voltage, the power supply noise, and a mismatch in the 

reference ladder must be less than 112 LSB [7,23]. This section deals with the 

optimization of the number of comparator stages and autozeroing techniques along 

with a review of previous AID architectures. 

2.4.1 Optimum Number of Comparator Stages 

Doemberg (1989) studied analytically and verified experimentally the optimum 

of number of comparator stages required to achieve a fixed gain, a maximum 
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bandwidth, and minimum area requirements. For n gain stages, each with gain A, the 

total gain will be 

G=AN (12) 

Each stage is assumed to have a single dominant pole and will have a constant gain-

bandwidth product (GBW), 

l 

A Gn 
GBW=A6> =-=­

s 't' 't' 

where r-= the single stage delay = !/stage bandwidth (co.). 

The comparison time (n-stage delay) is 

(13) 

(14) 

To minimize the comparison delay with respect to the number of stages, the partial 

differentiation of td with respect to n is set equal to zero and n is found: 

n=ln{G) (15) 

From equations (12) and (15), A= e. 

The optimum number of stages (n) for the fastest response is ln(G), and the 

gain per stage (A) is 'e'. For an 8-bit ADC, the optimum number of stages is 5 and the 

gain per stage is 2.718. The fastest response is obtained with five stages, but 

conversion time remains almost constant from three to over ten stages [7]. It can be 

concluded that 3 stages as practical solution for most AID converters, since the 

increased conversion delay is negligible, while the savings in area and power is 
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approximately 50 percent. 

2.4.2 Autozero Technigue 

Autozeroing is the process of cancelling the offset voltage of the comparator by 

storing the offset voltage on a series coupling capacitor [22]. If the input terminals of 

a comparator are connected to ground. the voltage which appears at the output of the 

comparator is refered to as the amplified input offset voltage. The offset voltage is 

typically a small de voltage in the range of 1 to 20mv. Offset voltage is a serious 

problem in the design of ladder comparators which are used in AID converters of more 

than 6 bits [7,23]. Using offset cancellation techniques, a significant portion of the 

offset voltage can be removed. Conceptually offset reduction is limited by the 

willingness to compromise area and speed by increasing the value of Cc. Offset voltage 

is measured. stored on the capacitor, and summed with the input offset voltage, 

effectively canceling the offset [22]. 

A practical implementation of an auto-zeroed comparator is shown in Figure 5. 

This inverting comparator is modeled with an offset-voltage source V os· A known 

polarity is given to the offset voltage for convenience. Neither the polarity nor the 

value can be predicted [22]. Figure 5(b) shows the state of the circuit during the first 

phase of an autozero cycle when switches s2 and s4 are closed. The offset voltage is 

stored across the capacitor Cc. Figure 5(c) shows the circuit in the second phase of the 

autozero cycle when switches s) and s3 are closed. The offset is cancelled by the 

addition of V os to the potential across Cc. It is during this portion of the cycle that the 
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circuit functions as a comparator. Applying KCL to node A in Figure 5(b) results in 

(16) 

Output voltage of comparator is given by 

(17) 

Substituting equation (17) in (16) and solving the equation results in the following 

transfer function: 

(18) 

(19) 

(20) 

(21) 

With a time constant 

(22) 

for X% accuracy, k time constants are required [23], which results in an accurate 

settling time of 

(23) 



where 'tsellling is the time required for the input signal of the circuit to settle after the 

autozero switches are closed. Gain considerations demand that the differential signal 
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be transmitted essentially unattenuated via coupling capacitor Cc. For this reason Cc >> 

Camp + Csw, where Camp is the parasitic capacitance losses of the input stage and c.w is 

the parasitic capacitance of the autozero switch. Typically, Cc is more than 10 times 

the parasitic capacitance losses of the input stage [17]. This maintains accuracy in the 

subtraction of common-mode charge injection errors and the balanced differential gain, 

which requires an accurate Cc. 

2.5 Radiation-hardened CMOS logic circuits 

Chen et al. (1992) proposed a technique for the design of digital CMOS 

circuits that are almost insensitive to radiation. By adding three n-channel transistors to 

the conventional digital CMOS circuits, good radiation hardened behaviour is observed 

in the inverter, NOR, and NAND gates under SPICE simulation. The method, its 

merits and its demerits will be discussed in this section. 

As noted previously, for a NMOSFET with a positive threshold voltage V TN 

and a PMOSFET with a negative threshold voltage V TP• radiation results in the 

decrease of IV TN I and the increase of IV TP I. Also it is known that b V TN is much 

greater than bVrp in general operating conditions [25]. It is noted that 1-V 

characteristics of a MOSFET under radiation exposure changes slightly except for the 

V r shift [25]. Thus, the design of a radiation-hardened circuit can be simplified as the 

design of a threshold voltage variation inherent circuit. 
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This technique of design of radiation-hardened CMOS logic circuits will be 

discussed with respect to the inverter circuit. The same technique can be applied to 

NOR and NAND gate circuits. For a traditional CMOS inverter circuit as shown in 

Figure 6, the transfer curves before and after irradiations are quite different and are 

shown in the same figure. Also in Figure 6, V01 and V10 represent the transition point 

of output changing from 0 state to 1 stateand from 1 state to 0 state, respectively. The 

noise margin of this circuit is defined as 

(24) 

(25) 

where NMo and NM1 are the noise margins of input at 0 state and at 1 state, 

respectively. After radiation both v'01 and v'10 shift toward the left, and equations (24) 

and (25) can be written as 

11JM?--v1 ....... "'()- 10 

.. viN 
=V~-jt. Vmi 

(26) 

(27) 

where t. V TN and t. V TP are the threshold voltage shifts due to the radiation of NMOS 

and PMOS, respectively. From equations (26) and (27), it can be seen that the noise 

margin of 0 state after radiation exposure (NM1 0) will be smaller and that of 1 state 

will be larger. Hence, the main aim of the author was to design some compensation 
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circuits to make NM1 
0 as little correlated to t.. V TN as possible. 

An improved CMOS inverter with three additional NMOSFETs (i.e., N2, N3, 

and N4), is shown in Figure 7. Since it is necessary to improve NM1
0 , just consider 

the case that V out varies from 1 state to 0 state. If this circuit is designed to let V x 

follow t.. V TN (i.e., V x = t.. V TN) by the way of adjusting the gate bias of N4, then the 

transition point of v out changing from 1 to 0 becomes 

(28) 

From the above equation it can be seen that NMa does not vary with t.. V TN; therefore 

NMa is not affected by radiation exposure. 

applied to transistors N3 and N4, respectively, where V8 is an arbitrary voltage. 

Assuming both N3 and N4 operate in saturation region results in the limitation that 

(29) 

According to current equality,the following equations can be written: 

(30) 

For ~4 = 4~3 , the above equation simplifies to 

(31) 

Obviously, the result of the above equation is the required condition as described in 
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equation (28). Substituting equation (31) into (29) results in 

• (32) . 
A constant current bias circuit has been proposed by the author, which can be 

used to bias the transistor N4. However, equation (32) is the limitation for AV rn· Also, 

the addition of three extra transistors, N2, N3, and N4, slows down the switching 

speed considerably. Another limitation of this approach is need for bias voltage 2Vg-

V0rn to bias N3 into saturation. Apparently, this bias voltage has to be supplied 

externally. 

2.6 Previous work on flash AID Converters 

Heuner et al. (1988) conducted studies on the design of radiation-hardened data 

converters. They used a radiation hardening CMOS/SOS process to minimize the 

threshold shifts and the device leakage current. CMOS/SOS devices are made with 

epitaxial silicon islands on a sapphire substrate. This technique greatly reduces device 

capacitance and completely eliminates latch-up. 

The most critical component of a radiation-hardened AID converter is the 

analog comparator. The necessity of a rail to rail (V 00 to V ss) dynamic range for the 

comparator ruled out the use of conventional CMOS type comparator. This AID 

converter uses a McGrogan comparator, which consists of two sampling transmission 

gates AC coupled to a self-biasing autozeroed CMOS/SOS inverter amplifier. The 

autozeroing property of this inverter automatically compensates for dynamic threshold 

variations. Under radiation the threshold (V rn) of an n-channel MOSFET shifts 
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towards depletion and channel transconductance (&nn) increases, while &.,p of the p­

channel MOSFET tends to decrease. Over a limited radiation dose (i.e., up to lMrad), 

the increasing &nn and the decreasing &.,p tend to add up to a constant value. 

Another characteristic of this comparator for operation in radiation 

environments is its relative insensitivity to increased leakage current. The inverter 

amplifiers are typically biased in a class A configuration with an approximately 50J.!A 

bias current. The leakage current associated with this comparator is less than S011A, so 

any radiation-induced leakage current is a small portion of the overall quiescent bias 

current. 

Yukawa (1985) reported the design of a high-speed (20Msamples/s), low-power 

dissipation (350mW), 8-bit fully parallel AID converter IC. This converter basically 

consists of 259 identical transistors, 256 comparators, 255 AND gates, a PLA, a gray 

code to binary code converter, and n+ 1 output latches. The outputs of all the 

comparators are transfered to the AND gates, which detect the transition point from 

logical '0' to '1 '. This information obtained at the 255 AND gates is converted to an 8-

bit gray code by the PLA. When the PLA latches the data from the AND gates at 

transition, there is the possibility that two successive AND gates will give a logical 1 

level. The gray code is employed to eliminate a large code jump in this condition. The 

code conversion logic, from the gray code to binary code, is placed between the 

master and slave output latches. 

This paper emphasizes the importance of transistor dimension optimization in 

the design of comparator circuits, instead of employing an offset canceling technique. 
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A standard deviation of the offset voltage has been designed at less than one third of 

the AID converter minimum resolution for ±l LSB accuracy, through a novel 

comparator circuit design. The comparator circuit consists of a differential amplifier 

and a novel CMOS latch circuit. The differential amplifier with p-channel input 

transistors increase the input voltage range to V ss level, protects signals from noise 

sources, and decreases the feedthrough from the latch stage to the reference voltage 

network. The latch stage consists of discharge transistors, an n-channel flip-flop with a 

pair of n-channel transfer gates for strobing, a p-channel flip-flop, and p-channel 

precharge transistors. Advantages for a flip-flop strobed at drain node over a flip-flop 

strobed at source node exist in regard to the regeneration speed and offset. Offset 

voltage caused by a channel-length fluctuation is much lower at a zero substrate bias. 

Therefore, transistor channel lengths can be decreased and the flip-flop speed can be 

increased. 

Kumamoto et al. (1986) reported the design of an 8-bit high-speed (30 

Msamples/s) and low-power {60mW) flash AID converter in a l.5J.1m bulk CMOS 

technology. The architecture of this converter is similar to the previous architecture. 

Simultaneously, 256 comparators compare an input voltage with each ladder tap 

voltage, which is made by dividing the reference voltage by the resistor ladder. The 

minimum ladder tap voltage which exceeds the input voltage is identified by the 

transition detection logic. The encoder circuit converts the identified ladder tap voltage 

to a binary code. In this encoder circuit, the gate voltages of load transistors are 

controlled by a clock signal, which reduces the power dissipation. 
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In order to achieve a high-speed, low-power AID converter, a fine pattern 

process technology and a new capacitor structure, referred to as shielded-capacitor 

structure, have been employed and the transistor sizes of a chopper-type comparator 

have been optimized. This shielded-capacitor structure has two advantages: decreasing 

the parasitic capacitance, and shielding from noise at the output node. 

The primary objective of this work is to design a radiation-hardened 

CMOS/SOS comparator circuit processed using thin-film technology and implement it 

in an 8-bit, fully parallel (flash) AID converter IC. This AID converter features a high­

speed (greater than 25 Msamples/s) operation and a lowpower consumption (less than 

800mW) and a total-dose radiation goal of lMrad. The design of the comparator is 

discussed thoroughly in the next chapter. 



CHAPTER ill 

SYSTEM BUllDING BLOCKS 

This chapter discusses in detail the design of all the building blocks of a 

prototype radiation-hardened, high-speed, low-power 8-bit CMOS/SOS AID converter. 

The design, analysis, and simulation results of the novel comparator circuit and other 

building blocks are presented. The error sources in the architecture are described. The 

layout topology of comparators and ladder resistors is also presented. 

The primary objective of this thesis is to design a radiation-hardened high­

speed CMOS/SOS comparator circuit processed using thin-film technology, and to 

implement it in an 8-bit fully parallel (flash) AID converter IC. The specifications of 

this AID converter are as given below: 

• Conversion rate in excess of 25 MHz 

• Power dissipation less than 800m W 

• Total-dose radiation of IMrad(Si) 

• Analog full-scale range of ±1 v 

• Binary output code 

3.1 CMOS/SOS Process 

The major CMOS technologies used in the radiation-hardened community are 
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bulk CMOS and CMOS/SOS (Silicon on Sapphire); however, CMOS/SOI (Silicon on 

Insulator) is Wider active evaluation. A cross-section of these CMOS IC technologies 

is shown in Figure 8. The bulk CMOS technology uses a silicon substrate (sometimes 

epitaxial substrate), and junction isolation to form both n- and p-channel transistors. 

The CMOS/SOS process utilizes an epitaxial silicon film, which is deposited on an 

insulating substrate (i.e., sapphire). CMOS/SOI structures can be formed with a variety 

of processes, including ion implanted oxygen (SIMOX), recrystallized polysilicon, and 

anodic oxidation of silicon, but generally they all utilize silicon substrate. The merits 

and demerits of CMOS/SOS will be discussed in this section, since it has been 

selected as the technology of choice for the design of radiation-hardened AID 

converter. 

The CMOS/SOS technology employs insulator isolation, as opposed to the 

junction isolation of the bulk technology. This approach offers a substantial advantage 

in latch-up, transient upset, single event upset (SEU), and elevated temperatures. Bulk 

CMOS devices, for example, require a generic cure for latch-up, while latch-up for 

SOS devices is physically precluded due to the insulator junction isolation. Similarly, 

bulk devices also have parasitic field devices that may have a considerable impact on 

circuit performance in a radiation environment, while these particular parasitic devices 

do not exist in SOS circuits. 

The polysilicon gates of the transistors are deposited over the thin gate oxide 

before the source and drain diffusions are defined. Ion implantation is then used to 

form the source and drain areas, with the polysilicon gates acting as a mask for the 
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implantation. The source and drain are automatically aligned to the gate~ hence the 

expression "self-aligned-gate process". In this way, gate-to-source and gate-to-drain 

capacitances are minimized. Since the devices are made with epitaxial silicon islands 

on a sapphire substrate, there is no body (substrate) contact on the device. Basically, 

CMOS/SOS devices are three terminal devices. Thus, for CMOS/SOS devices the bulk 

threshold parameter (y) is approximately zero. All though in practice this is not the 

case, the threshold voltage (Vr) for an n-channel transistor is given by 

VT = VTo+Y [y'2I<PIF+VSB ~] (33) 

where 

VTO :;:: V r at zero source to body potential 

y :;:: bulk threshold parameter 

<l> = strong inversion surface potential 

VsB = source to body potential 

For CMOS/SOS devices, V r = V ro· Thus threshold shifts are minimized to a 

great extent. Also source-to-body and drain-to-body capacitance is very negligible. The 

only parasitic capacitance which affects the speed of operation of SOS circuits is gate­

to-source capacitance. The analysis by Dingwall (1979) showed that the accuracy of 

AID converters is critically dependent upon minimum input capacitance. CMOS/SOS 

devices with "dielectrically-isolated" transistors formed over insulating sapphire have 

exceptionally low capacitive parasitics and can also perform complex logic functions 

in excess of l.OGHz clock rates. This level of high speed performance is necessary in 

carrying out a high speed AID conversion. 
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Since the CMOS/SOS process isolates n- and p-channel transistors from each 

other, this structure is highly immune to transient radiation, total-dose radiation, and 

single event upset. Overall, the CMOS/SOS technology not only offers superior 

radiation tolerance, high-speed, low-power, and good noise immunity, but also operates 

well over the entire military temperature range (-55° to +125°C). 

CMOS/SOS technology, however, has its own set of unique limitations, which 

includes a back-channel parasitic MOS device as well as a sidewall MOS device [6]. 

The formation of a back-channel parasitic transistor leads to a radiation-induced, back­

channel leakage current. Consider an n-channel SOS transistor. Under radiation, 

positive charges will be trapped in the sapphire substrate immediately under the active 

p-type Si layer. The normal device channel occurs in the p-type Si region next to the 

gate oxide region. However, because of the positive charging of the sapphire substrate, 

an inversion layer can be induced on the backside of the p-type Si region, resulting in 

the back channel leakage current between source and drain. 

A second unique radiation concern for SOS structures is the sidewall SOS 

region where the gate electrode covers a gate oxide in the channel width direction as it 

traverses to its next appointed node. This region, like the back channel, may also 

provide a parallel depletion-mode device to the active transistor. The side wall 

parasitic transistor can be eliminated, however, by defining the SOS island beyond the 

gate region at the expense of packing density. 

Finally, the substrate in SOS circuits is not necessarily connected to a fixed 

potential, which may permit abnormal potentials during a radiation exposure; such as a 



negative substrate bias on an n-channel device. Usually the bias dependent threshold 

voltage shift is significantly worse for these conditions, so it is prudent to clamp all 

substrate regions for SOS circuits designed for a radiation environment. 

3 .2 Circuit Configuration 
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A block diagram of the radiation-hardened flash AID converter is shown in 

Figure 9. The AID converter is composed of 255 fully differential comparators, 258 

identical ladder resistors, tap detection logic, a 255-to-8 PLA encoder, a clock 

generator, and eight output buffers. Simultaneously, 255 comparators compare an input 

voltage with each ladder tap voltage; the comparison is achieved by dividing the 

reference voltage through the use of a resistor ladder. The minimum ladder tap voltage 

which exceeds the input voltage is identified by the transition detection logic. The 

encoder circuit converts the identified ladder tap voltage to a binary code. The eight 

outputs of this encoder circuit are followed by eight output registers and buffers. 

3.3 Radiation-Hardened Comparator Circuit 

The key effects of total dose radiation on MOSFETs (refer to Section 2.1.1) 

are: a negative shift in the threshold voltages of n- and p-channel transistors, which 

results in the increased( decreased) transconductance of NMOS(PMOS); an increased 

device leakage current, which reduces the output impedance and alters the dynamic 

behavior of the circuit; also reduced mobility in the MOSFETs, which results in a 

reduced gain bandwidth product for both n- and p-channel devices. The operation of 
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comparators in a radiation environment requires a circuit design that is insensitive to 

threshold voltage shifts, increased leakage, and reduced mobility of the MOSFETs. 

Such a high radiation-immune analog comparator is described in this section. 

The comparator design is essential in meeting several specifications, including 

gain, propagation delay, slew rate, and common mode range, in addition to the 

associated offset cancellation. The critical comparator performance issues are: high 

gain and high bandwidth, monotonicity, the power supply rejection ratio, and the 

charge injection error from the comparator's autozero switches. In order to reject power 

supply noise and reduce charge injection errors, the circuits are fully differential. To 

insure monotonicity the comparators utilize an offset cancellation technique which will 

be explained later. Multistage feedforward comparators are employed in order to 

achieve fast and high-gain comparators. 

The comparator design is centered on meeting several specifications. In general 

the comparator gain is about 2n for an n-bit AID convertor [7], so that it can amplify a 

voltage that is less than 112 LSB up to a compatible logic level. Here a gain of 1000 is 

desired. The motivation for the gain of 1000 was for future use in a 1 O-bit A!D 

converter. As described in Section 2.4.1, a 3-stage comparator with a gain of 10 per 

stage is employed in this design. 

The total error due to the feedback switch charge injection, the offset voltage, 

the power supply noise, and a mismatch in the reference ladder must be less than 112 

LSB. Charge injection errors are minimized by: using a fully differential architecture, 

choosing small feedback switches, and cancelling any residual error as shown in the 
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next section. The comparator offset voltage must be less than 1 LSB to guarantee 

monotonicity. This is achieved by storing the offset voltage on the coupling capacitor 

during the first phase of an autozero cycle as explained in Section 2.4.2. 

3.3.1 Analysis of First and Second Stage Comparators 

As previously noted, the most speed critical component of a flash AID 

converter design is the analog comparator. Under the effects of radiation, the operating 

point and dynamic range of a conventional CMOS comparator will normally shift so 

that the device would not operate according to the specified dynamic range, even with 

autozero techniques. For this reason the use of a conventional CMOS-type comparator 

is not desirable. To circumvent this problem, a novel all-NMOS differential 

comparator is employed and is shown in Figure I 0. It is similar to a conventional 

CMOS comparator, except that the active loads are realized using NMOS transistors 

and all bias currents are independent of radiation exposure. The radiation independent 

bias circuit will be explained in Section 3.5. 

The small signal analysis of the differential-in/differential-out comparator of 

Figure 10 can be accomplished with the assistance of the model shown in Figure 11. 

A valid assumption has been made in this simplified model that both sides of the 

amplifier are perfectly matched. If this condition is satisfied, then the point where the 

two sources of transistors Ml and M3 are connected can be considered as AC 

grounded. Assuming that the differential stage is unloaded, the voltage transfer 

function of this amplifier can be written as follows: 
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The node equation for the left half of the circuit is 

gmJ.Vgsl (S) +Vol (S) [gmz+gasl+SCgs2+SCdbl] = 0 

where V sst = V 1 and &u1 << &.2. 

Equation (34) can be written as 

where (I) 1 is given as 

The node equation for the right half of the circuit is 

gmJ Vgs3-Vo2 [g1114+gds3+SCgs4+SCdb3] "' 0 

where V ss3 = -V 2 and &!.3 << &n4· 

Equation (3 7) simplifies to 

where (1) 2 is given as 
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(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

From equations (35) and (38), the differential voltage transfer function can be written 

as 

Vo2 (S) -Vol (S) 
V1 (S) -v2 {S) 

= Vout (S) = 

via<s> 
(40) 



Thus, the first-order analysis of the frequency response of the differential amplifier 

consists of a single pole at the output given by &aiC8•2• 

The output resistance of the left half of the circuit is 

v 
I =~ out I 

out 

1 - 1 
glll2 

Similarly, for the right half of the circuit 

rout = 
1 

g1114 

The output capacitance of this circuit is 

Cout = Cgs2+Cdb1 - Cgs2 

From equations (41) and (43), the bandwidth of this circuit is 

From equations (40) and (44), 

GBP = gml 
Cgs2 

(41) 

(42) 

(43) 

(44) 

(45) 

Thus the following gain, gain bandwidth product, and bandwidth equations 

describe the performance of the first two stages of the comparator: 

(46) 

where &., 1 and &.,2 are given as 

(47) 
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and 

g 1112 = J2J3 2 ID2 = J2KN(W/L) 2 I 2 

Substituting equations (47) and (48) in (46) results in 

where X= Iw/IMNI· 

From equation ( 44 ), the bandwidth of this circuit is 

Substituting for &.,4 and Cas4 in the above equation results in 
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(48) 

(49) 

(50) 

(51) 

Substituting for &., 1 and Cout in equation (45) results in 

(52) 

Both the differential transistor and the load are NMOS transistors; therefore, 

gain (refer to equation (49)) is strictly a function of device geometry ratios and 

constant current ratios. Only the BW and GBP (refer to equations (51) and (52)) are 

proportional to the square root of the mobility variation. Therefore, under total dose 

radiation conditions, this comparator circuit works as desired with some reduction in 

bandwidth. The comparator, therefore, is designed for more bandwidth than actually 

required in anticipation of the reduction in bandwidth. 
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3.3.2 Design of First and Second Stage Comparators 

The main requirements in designing this comparator are: a differential gain of 

10, a bandwidth of 50MHz, a less than lmW power dissipation and a minimized 

layout area. This circuit operates on a ±3.3v dual power supply. The power dissipation 

requirement limits the current sourced or sunk into the output capacitor to 1 OOuA. Of 

this IOOuA, the current sources MPI and MP2 supply 40uA each and lOuA flows 

through each of the active loads M2 and M4. Substituting Av=IO and X=0.4 in 

equation (49) results in 

10 = (53) 

Substituting Ll=Lmin=2!l and W2=Wmin=3J..L in the above equation results in 

( Wl) = ~ 
Ll 2j.L 

(54) 

Since the device geometry of both the differential transistors and the active loads is the 

same, then 

{ Wl) = ( W3) =~ 
Ll L3 2Jl 

(55) 

and 

( W2) = ( W4) = ~ 
L2 L4 12Jl 

(56) 

The drain current of an NMOS transistor is given by 
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(57) 

Substituting VGs=2V1 , 10 =100J.1A and ~=25J.1A/~ in the above equation and 

simplifying it results in the device geometty of transistor MNI as 

(58) 

Similarly, substituting V Gs=2V 1 , ID=40JJ.A, and ~ =20J,1A/~ in the above equation and 

simplifying it results in the device geometty of current sources MPl and MP2 as 

(59) 

3.3.3 Simulations 

The SPICE simulations of the DC transfer characteristics of the first stage 

comparator along with the differential gain is shown in Figure 12. The second stage 

comparator is exactly identical to the first stage. This simulation was performed by 

ramping the differential input voltage from -500mV to +500mV. The output voltage is 

almost linear for the range -150m V to +150m V of input voltage and a DC gain of 10 

is achieved for this range. 

The SPICE simulation of the transient characteristics of the first stage 

comparator is shown in Figure 13. The figure indicates the response of the comparator 

for a differential pulse signal of ±2mV. The propagation delay was found to be 8f)S. 

Figure 14 shows the frequency response of the comparator. A bandwidth of 42:MH.z 
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Figure 12. Gain and DC Transfer Characteristics of Single Stage Comparator 
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with a gain of 18.45dB is achieved. 

3.3.4 Analysis of Third Stage Comparator 

The third stage comparator, along with its small signal model, is shown in 

Figure 15. This is a standard CMOS differential-in, single-ended amplifier. This 

comparator uses p-channel MOS devices, M2PA and M2PB, as the differential pair. 

The loads for M2PA and M2PB are obtained from a simple n-channel current mirror. 

The performance of this comparator is dependent on the threshold shift and mobility 

variations, unlike the first- and second-stage comparators. Therefore, the third stage 

comparator should be designed to anticipate performance degradation under radiation 

exposure as explained in the next section. The node equation for this small signal 

model (refer to Figure 15) is 

-gmPBVgsPB(S) +gmPAVgsPA (S) +Vout(s) gdsNB+gdsPB+SCribNB+SCdbPB+2 (S) Cgs. 

(60) 

where 2CgsMIN is the input capacitance of the inverter connected at the output of the 

comparator. The above equation is simplified to obtain the differential gain as 

gmPB (1)3 --
gdsPB+gdsNB 8+(1)3 

(61) 

where V id is the differential input voltage and 

(62) 

Thus, the first-order analysis of the frequency response of this comparator consists of a 
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single pole at the output given by ro 3. 

The output resistance of this circuit is 

Iout = 
g dsNB +g dsPB 

1 
(63) 

The output capacitance of this circuit is 

(64) 

From equations (63) and (64), the bandwidth of this circuit is 

(65) 

From equations (61) and (62) the gain-bandwidth product of this circuit is, 

(66) 

Thus the following gain, bandwidth, and gainbandwidth product equations describe the 

performance of the third stage comparator: 

(67) 

where gmPB, gdsPB, and gdsNB are given as 

(68) 

(69) 

and 
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(70) 

Substituting equations (68), (69), and (70) in equation (67) and simplifying results in 

Substituting equations (69) and (70) in equation (65) and simplifying results in 

BW = (i.p+i.N) ~(A V) 2 

4Cgamin 

Substituting equation (67) in equation (66) and simplifying results in 

~ AVp 
GBP == p-

2CgBHIN 

(71) 

(72) 

(73) 

Since the gain of the third stage comparator (refer to equation (71)) is inversely 

proportional to threshold voltage, under radiation exposure the gain increases. 

Bandwidth reduces proportionally to mobility variation and the square of the threshold 

variation. 

3.3.5 Design of Third Stage Comparator 

As noted earlier, the bandwidth of the comparator reduces under radiation 

exposure; therefore, the third stage comparator is designed for a bandwidth of 75MHz 

instead of 50MHz (required BW) in anticipation of the reduction in bandwidth. 

·Substituting ro 3dB=75MHz, A.N=0.0345, A.P=0.033, KP=20J.IA/v2, Vgs=2VT; and 

CgsMIN=8fF in equation (72) results in 

Since J,LN •2J,LP, the aspect ratio of M2NA and M2NB is 1.5; therefore, 
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(74) 

(75) 

3.3.6 Simulations 

The SPICE simulation of the DC transfer characteristics of second and third 

stage (double-stage) comparator is shown in Figure 16. The simulations were done on 

the circuit given in Figure 17. The simulation was performed by ramping the 

differential input voltage from -1OOm V to +I OOm V. A differential gain of 90 was 

achieved for the second and third stage comparators together. 

The SPICE simulation of the transient characteristics of the second and third 

stage comparators together is shown in Figure 13. The figure shows the response of 

the circuit for a differential input signal of 16m V. The propagation delay was found to 

be 1 OnS. Figure 14 shows the frequency response of the circuit, and indicates that a 

bandwidth of 45MHz with a gain of 38.5dB was achieved. 

3.4 Three-Stage Comparator Bank 

In order to reject power supply noise and reduce charge injection errors, the 

first two stages of comparators are fully differential and capacitor coupled as shown in 

Figure 18. Below the circuit diagram is a timing diagram for opening the autozero 

switches. In this circuit the first two comparators are identical differential-in! 

differential-out amplifiers designed in the earlier sections. The third comparator is the 
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differential-in, single-ended amplifier which was designed in the previous section. This 

comparator bank has a gain of 10 per stage and a total bandwidth of 50Ml:Iz. 

Offset cancellation ensures monotonicity for the comparator bank. This offset 

cancellation method is common to most CMOS flash ADCs [5,7]. First, the feedback 

switch is closed around each individual comparator, one at a time, storing the 

comparator's offset voltage on coupling capacitors. At the same time the capacitor 

input switch is in the autozero position, storing the unknown input voltage on the 

capacitor. Thus the comparator offset voltage is canceled and does not cause an error. 

Next, the feedback switches are opened and the bottom-plate switch is thrown to the 

compare postion. Charge injection due to switch closure results in both differential and 

common mode errors. By implementing the timing diagram shown in Figure 18 and 

developed by Allstot (1982), the differential charge injection error from the first stage 

is canceled. Cancellation of the common mode charge injection error depends on the 

amplifier's CMRR. When switch $1 opens, its charge injection error results in a 

voltage on the capacitors eel and cc2 and it is amplified by the first stage and stored 

on capacitors cc3 amd cc4 before the second feedback switches $2 are opened. 

A practical implementation of a fully differential autozeroed comparator is 

shown in Figure 19(a). This comparator is modeled with an offset voltage source, Vos. 

Figure 19(b) shows the state of the circuit during the first phase of the auto zero cycle 

when switches q, 1, S2, and 83 are closed. Due to the presence of offset voltage, both 

the capacitors Cc1 and Cc2 will be charged equally to a voltage Vos/2 with the polarity 

shown. Figure 19(c) shows the circuit in the second phase of the autozero cycle when 
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switches S1 and S4 are closed. Now the appropriate input and reference voltages will 

be applied to the circuit. Applying KVL to each arm of the comparator of Figure 19(c) 

results in 

v+ v 
= V _ OB 
fi-

2 
(76) 

and 

v- = 
v v +~ ref 2 

(77) 

The differential output of this comparator is given by 

(78) 

Substituting equations (76) and (77) in the above equation and simplifying it results in 

(79) 

Thus the offset voltage is effectively cancelled. An analysis was performed in Section 

2.4.2 regarding the time required for the input signal of the circuit to settle after the 

auto zero switches are closed. Settling time ( 't5 ) is given by 

(80) 

Settling time is not readily predictable from other amplifier parameters, such as 

bandwidth, slew rate, or overload recovery time, although it depends on all of these 

[23]. The settling time of the comparator is composed of two regions of operation: 

large signal and small signal. By combining the time in both regions, the estimated 
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settling time is given by 

(81) 

where T Ls = time due to large signal response, and 

T ss = time due to small signal response. 

Simplifying the above equation results in 

(82) 

3.5 Radiation-Hardened Bias Circuit 

As explained in the Section 3.3.1, the gain of the comparator is a function of 

the device geometry ratios of differential transistors and of current ratios; therefore, the 

gain performance of comparators under radiation depends only on the accuracy of the 

current ratio. Such a bias circuit, which will supply constant current under radiation, is 

described in this section. 

Under the effects of radiation, the operating point and dynamic range of a 

conventional CMOS voltage reference circuit will normally shift so that the device will 

not operate according to the specified dynamic range. To circumvent this problem, a 

bias circuit is employed in the design of the flash AID converter which will supply a 

constant current under radiation. The functionality of this bias circuit is based on the 

current conveyor concept. 

Current conveyor circuits began to emerge as an important class of circuits 
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during the early 70s. They have proven to be functionally flexible and versatile. 

gaining acceptance as both theoretical and practical building blocks and offering an 

alternative way of abstracting complex functions. Current conveyors offer several 

advantages over conventional opamps [27]. The block diagram of a current conveyor is 

shown in Figure 20, although a detailed discussion of a CC is beyond the scope of this 

thesis. Class-! (CCI±) and Class-IT (CCII±) conveyors have defined properties [26]. A 

ccn± can be expressed mathematically as 

I~ to 0 vj V "' 0 0 I 

I 0 ±1 0 V 

(83) 

The above equation states that no current flows into terminal Y; thus terminal 

Y exhibits an infinite input impedance. The operation of this device is such that if a 

voltage is applied to the input terminal Y, an equal potential will appear on the input 

terminal X. Also, an input current on terminal X is conveyed to high impedance output 

terminal Z. The positive sign denotes that at any instant both ~ and Iz flow into or 

away from the conveyor, signifying ccn +, while the negative sign denotes the 

opposite direction of the currents, signifying CCll-. 

The radiation-hardened bias circuit is shown in Figure 21. The functionality of 

this circuit is based on the negative current conveyer (CCll-) principle. The right half 

of the circuit is a classical bias circuit, while the left half is composed of a radiation-

hardened, double-stage comparator that was designed earlier. As mentioned in the 

design of the comparator, the total current sunk in the circuit is 1 OOJJ.A. For 

convenience this bias circuit is designed to supply IOOJ..I.A constant current with 
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Y00+2Vrp and V55+2Vrn bias voltages for current source and current sink, 

respectively, in the comparator circuit In this circuit the accuracy of the constant 

current under radiation depends primarily on the accuracy of the poly resistor and to a 

lesser degree, on the opamp gain (see equation (86)). 

The left half of the circuit in Figure 21, which is comprised of a NMOS 

transistor in the negative feedback loop of a comparator, constitutes a negative current 

conveyer. In this CCII- realization, current is restricted to flow out of terminal X. A 

voltage source, vref• is applied to the positive terminal of the comparator and -vref is 

applied to the negative terminal through a poly resistor R. As described previously, 

when a potential vref is applied to terminal y of the comparator, an equal potential 

will appear at terminal X. So the current that flows through the NMOS transistor MIX 

is the current that must flow through R, which is given by 

(84) 

This is the current that flows through all the four arms of the bias circuit due to the 

use of complementary current mirrors. It was decided earlier that I,. should be 1 OOJ.LA 

and Vrer be 1 v. From equation (84) the value of R can be found as 20Kohm. 

The above equation represents the desired current The actual current is given 

by 

zl 
X 

(85) 

From equations (84) and (85), the error in the bias current can be written as 
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(86) 

where 10 is the bias current, A is the gain of opamp, and J3, V TN• and I 

correspond to the transistor MIX. Under radiation the gain of oparnp (A) remains 

almost constant and V TN decreases. So it is clear from the above equation that the 

accuracy of the bias current depends on the accuracy of poly resistor R. 

The operation of this bias circuit (refer to Figure 21) is simple. The current 

through transistor MIX, which constitutes the first arm of the bias circuit, will be 

constant (IOOJ..IA) even under radiation. Of course, the accuracy of this constant current 

depends on the accuracy of the poly resistor alone. This constant current will be 

mirrored in the second and third arms through the use of a p-type current mirror. Since 

the current ratio (In(M3xfin<M2,q) of the current mirror depends only on the device 

geometry ratio of transistors M2X and M3X, it is guaranteed that even under radiation 

the same current will be flowing in all the first three arms of the bias circuit. The 

current in the third arm will be mirrored on to 4th arm through n·type current mirror 

formed by M4A and M4B. Here the diode-configured transistors M3C and M3D are 

used to generate the bias for cascode transistor M3A. To reduce the channel length 

modulation (lambda) effect of transistor M4X, the cascode transistor has been used. 

Since the bias voltage (V 8 p) needed for the current sources in the comparator 

circuit is Vn0 +2VTP, the device geometry of transistor M2X is calculated as follows: 

(87) 



simplifying results in 

(W/L)H2X = 10 (88) 

Since the same current (IOOJ.LA) is mirrored in all three arms of the bias circuit, the 

device geometries of the other PMOS transistors will be 

( W/ L) H2X= ( W/ L) H3X= ( W/ L) H3A= { W/ L) H3B= { W/ L) H3c= ( W/ L) H3D=10 =~ 
4~ 

(89) 

The bias voltage required for the current sink in the comparator circuit is 
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V 55+2V TN· As done for the PMOS transistors, the device geometries of all the NMOS 

transistors can be found as 

{ W/ L) HlX= ( W/ L) H4X= (W/ L) M4A= ( W/ L) M4B=B =E.~! 
4~ 

3.6 Ladder Resistor 

For the reasons explained in Section 2.3, a resistor ladder is employed to 

(90) 

generate voltage reference potentials. This resistor ladder is formed from a linear string 

of polysilicon with equidistantly spaced contacts providing an input to the CMOS/SOS 

comparators. The low resistance of the polysilicon ladder network makes it relatively 

immune to total-dose radiation exposure [5]. In addition, equidistant voltage taps on 

the ladder makes the network dependent only on resistor ratios rather than on 

individual resistor values. No ohmic contacts are necessary to connect the ladder 
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resistors to the differential comparators. 

The ladder resistors are made of doped polysilicon whose sheet resistance is 

60/sq; the ladder resistor is approximately 8 ohms. The total ladder impedance is 2K 

ohms. The matching of individual resistors is not critical, but the matching requirement 

increases for series combinations of these resistors. According to the analysis 

performed in Section 2.3 .2, the matching requirement of the resistor ladder to achieve 

8-bit accuracy is 4 percent. This matching requirement is readily accomplished by 

dividing the resistor string into four equal lengths (20] and locating them in close 

proximity. This approach reduces the effect of the resistivity gradient across the die. 

The comparator bank should be laid out in a straight line configuration [ 5]. The 

monolithic design requires that each of the comparators track each other, and the 

straight line configuration does not produce extraneous boundary conditions that could 

lead to comparator mismatch and differential nonlinearity. 

3. 7 PLA Encoder Design 

In this AID converter, 256 comparators simultaneously compare an input 

voltage with each ladder tap voltage, which is made by dividing the reference voltage 

through the use of a resistor ladder. The resulting comparator outputs are in a 

thermometer code: ONEs up to the comparator whose input is the resistor string tap 

voltage below the unknown input voltage, then ZEROs above the tap that is just below 

the input voltage. This information is transferred to a series of NOR gates which form 

the transition detection logic. There a transition point from logical 0 to 1 is detected 
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by two adjacent comparator products. The transition information, obtained at 255 NOR 

gates, is converted to an 8-bit binary code by the PLA encoder. 

Two CMOS minimum geometry inverters are connected at the output of each 

comparator string which forms the part of thermometer code discontinuity detection 

logic. Under radiation the transfer curve simply shifts towards the left, corroborating 

the previously described threshold variations [5]. The inverter will continue to operate 

along its region of maximum small-signal gain. As described in Section 2.6, the gmn 

tends to increase and ~P tends to decrease. Over a limited radiation dose (i.e., up to 

lMrad) the increasing ~n and the decreasing ~P tend to sum to a constant value [5]. 

However, the post-radiation noise margin of the 0 state will be slightly reduced, while 

that of the 1 state will be increased, due to uneven shifts in Vrn and VrP· But the 

traditional inverter gate continues to perform with a reduced noise margin. 

The outputs of two successive comparators will be fed to a NOR gate which 

forms the transition detection logic. The input to these 25 5 NOR gates is in the form 

of thermometer code. The transition detection logic circuit is shown in Figure 22 along 

with the truth table. The operation of the circuit is clear from the truth table. All the 

transition detection logic does is to detect the position of two adjacent comparators 

whose outputs are different. The output of transition detection logic is fed to the PLA 

encoder. 

The PLA encoder shown in Figure 23 is comprised of two levels of encoding 

to speed up the encoding operation and the reduction of the parasitic capacitances. 

This encoder converts the 256 inputs into an 8-bit binary code which feeds the output 
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buffers. The first level encoder is an OR plane comprised of sixteen 16-to-8 blocks. 

The second level encoder is comprised of eight, eight-input NOR gates, the outputs of 

which are the binary outputs of the AID converter. Finally, the output buffers consist 

of four stages of inverters with a scale factor of six. The output buffers are designed to 

drive a 2pF load. 

3.7.1 Simulations 

The SPICE simulation of the transient response of the PLA encoder along with 

the tap detection logic are shown in Figure 24. The encoder simulation was realized by 

lumping all the parasitic capacitances into a single capacitor as shown in Figure 25. 

The propagation delay of the encoder from simulation was found to be 4nS for a 

±3.3v input signal. 

The SPICE simulation of the transient characteristics of the output buffers is 

shown in Figure 26. The propagation delay of the output buffers is 7.2nS. The total 

delay of the digital circuitry is 7.2nS. Now that the propagation delay of all the 

building blocks are available, the timing diagram of the flash AID converter is realized 

as shown in Figure 27. 

Since the comparator delay is 17nS and the encoder delay is 4ns, the AID 

converters output will be available in 2lnS. Through the use of a pipelined operation, 

the AID converter can easily achieve a 50MHz conversion rate. The autozeroing 

operation can be pipelined with the result latching. Figure 27 indicates that the AID 

operation starts with all the autozero switches closed and the input to the comparators 
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connected to ground. The autozero switches of the first stage comparator will be 

opened after 4nS, while the autozero switches of the second stage comparator will be 

opened after 6nS. See Section 3.4 for an explanation on autozero operation. From the 

timing diagram and the state diagram of Figure 28, it is clear that this high-speed, 

radiation-hardened, 8-bit AID converter runs at a speed of 50Msamples/s. 

3.8 Summary 

Table I shows the AID converter's measured (SPICE simulation) performance 

characteristics and other key specifications. An 8-bit, 50Msamples/S AID converter in 

a radiation environment and fabricated in CMOS/SOS process is now possible with a 

new, fully-parallel (flash) architecture based on the resistor string. Key to the design 

was the 3-stage radiation-hardened fully-differential comparator. 
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TABLE I 

IUGH-SPEED AID CONVERTER PERFORMANCE AND SPECIFICATIONS 

Resolution 

Conversion rate 

Technology 

Power supply voltage 

Input voltage range 

Linearity 

Signal bandwidth 

Summary 

Power dissipation at 25MHz clock rate 

Ladder impedance 

8 bits 

50MSamples/S 

2J.l CMOS/SOS 

±3.3v 

±lv 

±1/2 LSB 

25MHz 

500mW 

2K.O 
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3.9 8-bit Radiation-Hardened Low-power AID Converter 

The second objective of the thesis is the design of an 8-bit radiation-hardened, 

"very low power", flash AID converter. This AID converter features very low power 

(less than IOmW), low speed (less than lMHz) and a total-dose radiation goal of 

lMrad(Si). The design procedure is exactly the same as the design of high-speed AID 

converter explained in Sections 3.2 to 3.6. The only two building blocks that differ 

from the high-speed version are: the design of the analog comparators and the 

radiation-hardened bias circuit. Therefore, only these two circuits will be discussed in 

this section. 

As discussed in Section 3.3, a three-stage comparator with a differential gain of 

10 per stage is employed here. The autozero operation used here is exactly like the 

one discussed in Section 3.4. Since the power dissipation was the main criteria here, 

the current sourced or sunk into the output capacitor of the comparator was limited to 

less than 2J.1A. The need for such a low current eliminates the use of current sources in 

the comparator. Basically, the low-power, radiation-hardened comparator consists of 

two differential transistors, two active loads and a current sink constituting an "all 

NMOS" design. For the reasons explained in Section 3.3, this comparator would 

function satisfactorily under radiation environment. This low-power first stage 

comparator is shown in Figure 29, and the corresponding SPICE simulations in Figures 

30, 31, and 32. 

The double-stage (second and third stage) comparator is shown in Figure 33. 

This circuit is similar to the high-power version except for the absence of current 
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sources. The differential-in, single ended output third stage comparator uses PMOS 

transistors (M2PA and M2PB) as a differential pair. The loads for M2PA and M2PB 

are obtained from a simple n-channel current mirror. The performance of this 

comparator is dependent on the threshold shift and mobility variations, unlike the first­

and second-stage comparators. Thus the third-stage comparator is designed to 

anticipate performance degradation under radiation exposure as explained in Section 

3.3.5. The SPICE simulations for Figure 33 are given in Figures 34, 31, and 32. 

The radiation-hardened bias circuit is exactly the same as the bias circuit 

explained in Section 3.5. The only difference is that this bias circuit is designed to 

supply a constant current of 1.9~ and a bias voltage of 2VTN. The bias circuit is 

shown in Figure 3 5. The transition detection logic and PLA encoder explained in 

Sections 3.6 and 3.7 are used here also. The timing diagram employed in this AID 

converter is shown in Figure 36. 

Table IT shows the AID converter's measured (SPICE simulation) performance 

characteristics and other key specifications. An 8-bit, radiation-hardened CMOS/SOS 

flash AID converter which consumes only lOmW power is achieved. 
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TABLE IT 

LOW -POWER AID CONVERTER PERFORMANCE AND SPECIFICATIONS 

Summary 

Resolution 

Power dissipation 

Conversion rate 

Technology 

Input voltage range 

Linearity 

Power supply 

Signal bandwidth 

Ladder impedance 

8 bits 

lOmW 

lMSamples/S 

2J.L CMOS/SOS 

±lv 

±1/2 LSB 

±3.3v 

188KHz 

2Kn 

95 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

The design of an 8-bit, high-speed CMOS/SOS flash AID converter has been 

proposed with a tolerance to total-dose radiation up to IMrad(Si). The AID converter 

features high-speed (50Msamples/s) operation and low power consumption (500mW). 

The heart of the radiation-tolerant AID design is a novel "all NMOS" differential 

comparator. The comparator is tolerant to voltage threshold variations associated with 

total-dose radiation. 

Also, an 8-bit, very low power CMOS/SOS flash AID converter has been 

proposed which is tolerant to total-dose radiation of up to lMrad(Si). This AID 

converter features a low-speed (lMsamples/s) operation with a power dissipation of 

only lOmW. The radiation-hardened AID converter presented here is open to many 

improvements. The following recommendations have been made for further 

improvement of the radiation-hardened AID converter. 

There is scope for improvement in the design of the logic gates used in the 

AID converter. As discussed in Section 2.5, Chet and others (1992) have proposed a 

technique for the design of radiation-hardened CMOS logic circuits. This technique 

has its own drawbacks. A better design technique is required to improve the noise 

margin of radiation-hardened logic circuits. 
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The clock generator circuit needs to be developed in accordance to the timing 

diagram proposed in Section 3.7. The state diagram given in Figure 28 will be helpful 

in developing the clock generator. This circuit should be immune to a total-dose 

radiation of I Mrad. 
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