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CHAPTER I 

INTRODUCTION 

Humans and animals are in constant interaction with the microbiology of the 

environment. Perhaps the most interesting part concerns the interaction between 

microorganisms and their digestive systems. Food is the major source of microorganisms 

that can improve health or cause illnesses to the human or animal host. Digestive 

secretions such as saliva, gastric juice, immunoglobulins, bile and proteolytic enzymes are 

factors that determine which single species of microorganisms or a group of them can 

inhabit the gastrointestinal tract ( GIT) of humans and animals. The intestinal tract is of 

great importance since most of the nutrients are absorbed through it. Bile and pancreatic 

secretions as well as bowel movement are perhaps the most important factors for 

determining the selection of microorganisms which can remain in the GIT. Of these, bile 

secretion may be the most important since it is linked to mechanisms that can improve 

health or create health problems in humans. Among those microorganisms, which can 

survive conditions of the gastrointestinal tract, is Lactobacillus acidophilus. 

Lactobacillus acidophilus is a gram positive microorganism that is strictly fermentative 

and has complex nutritional requirements. It grows in a variety of habitats where large 

levels of soluble carbohydrates, protein breakdown products, vitamins, and low oxygen 

tension occur. The gastrointestinal tracts of humans and animals such as pigs, calves and 

chickens are suitable habitats for it. Lactobacillus acidophilus can colonize the neonatal 

infant such as the human, piglet, and calf whose intestinal tracts are sterile at birth. Such 

colonization is achieved probably with the mother's vaginal and perianal population 

(Knoke and Bernhardt, 1986). The balance of the microbial population is then controlled 
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by acid secretion in the stomach that may be buffered by the milk imbibed by the infant; so 

that, lactobacilli may become the predominant microorganism. Bile resistant lactobacilli 

such L. acidophilus prevail in the upper part of the small intestine (Gilliland et al, 1984), 

but in the large intestine strict anaerobes such bacteroides predominate (Mitsuoka, 1978). 

This desirable predominance of lactobacilli in the upper intestine helps to prevent diarrhea 

or scouring that occurs in young animals when enterophatogenic bacteria proliferate in the 

upper gastrointestinal tract. One of the most interesting characteristic of L. acidophilus is 

its bile salt deconjugation activity that may provide health benefits to humans. Moreover, 

L. acidophilus is a microorganism generally recognized as safe (GRAS) which gives it 

more advantages over others as a dietary component for human and animal consumption. 

To obtain strains ofL. acidophilus that may improve the health of humans or animals, it is 

necessary to isolate microorganisms that can survive the acidic conditions of the stomach, 

the bile acids and digestive enzymes of the upper digestive tract. Also, L. acidophilus 

should resist the human or animal body's immune response and should be able to compete 

with other microorganisms of the intestinal microflora. 

The objectives of this research were to study the bile salt deconjugation ability of three 

bile resistant strains of L. acidophilus under in vitro conditions and to characterize the bile 

salt hydrolase from these microorganisms. 
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CHAPTER II 

REVIEW OF LITERATURE 

Enterohepatic circulation 

Eutherian mammals usually synthesize cholic and chenodeoxycholic acids as primary 

bile acids, which are conjugated in the liver with glycine or taurine; in the remainder of the 

animal kingdom only taurine conjugates are found (Elliot, 1985). Bile acids are C24 

steroids with a carboxyl group at the end of the side chain. Bile acids are structurally 

related to cholesterol from which they are formed. After birth most of the bile acids are 

conjugated with taurine (Jonsson et al, 1995). However, for the adult man the glycine to 

taurine ratio in conjugated bile salts is 2.2 to 3.0, and the cholic to chenodeoxycholic ratio 

(trihydroxy to dihidroxy ratio) is 1.0 to 1.2 (Burnett, 1965; Haslewood, 1967, 1978; 

Mallory et al, 1973; Sandine, 1979). Bile salts represent from 40 to 50% of the bile 

composition (Haslewood, 1967, 1978). The bile acids are secreted by the liver as 

constituents of bile which is carried through the biliary duct system to the gallbladder. Bile 

helps to emulsify the dietary lipids increasing the contact between lipases and lipid 

substrates. The dispersion of lipids in the gut also facilitates their absorption by the 

intestinal mucous (Margalith, 1986). Bile is concentrated in the gallbladder for ultimate 

discharge into the duodenum where the bile salts are intimately associated with dietary 

lipids and various digestive products. Most of the latter constituents are absorbed in the 

upper small intestine. While conjugated bile salts are absorbed from all sites of the small 

gastrointestinal tract, most are absorbed in the ileum by active transport mechanisms. 

Bacteria in the intestines can biotransform bile salts by three principal types of reactions: 
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hydrolysis of the amide linkage of the conjugate to liberate free bile acids (deconjugation), 

removal of hydroxyl groups principally the 7 carbon hydroxyl group of the cholic acid 

moiety, and oxidative and reductive reactions of the existing hydroxyl groups (Drasar and 

Hill, 1974). After absorption, this mixture of modified bile acids is in part returned to the 

liver by the hepatic portal circulation in the process known as enterohepatic circulation. 

Some bile acids are lost from the body as fecal bile acids. Bile acids chemically modified 

by the intestinal microflora can be returned to the liver. The modified products which 

survive the enterohepatic cycle several times are known as secondary bile acids such as 

deoxycholic and lithocholic acids. 

Gastrointestinal flora and bile acids 

Bile acids are excreted into the human intestine as conjugates with glycine or taurine, 

and less frequently with sulfate or ornithine via bile. The bile acid conjugation is performed 

in the liver while in the intestines microbial activity can split the conjugates into free acids 

(Midtvedt, 1974). The peptide-like bond between the bile acid and taurine or glycine is not 

cleaved by most proteolytic enzymes, but it is by bile salt hydrolases. Deconjugation has 

been demonstrated in vitro with intestinal genera of Clostridium (Aries and Hill, 1970a), 

Lactobacillus (Gilliland and Speck, 1977), Streptococcus (Aries and Hill, 1970a), 

Bacteroides (Stellwag and Hylemon, 1976), and Bifidobacterium (Aries and Hill, 1970a). 

The fecal microflora is a very complex ecosystem and consists of a multitude of bacteria, 

predominantly obligatory anaerobes. The composition of the fecal microflora of a normal 

adult is comprised ofless than one percent of aerobic microorganisms. Bile salt hydrolases 

produced by intestinal microorganisms are involved in the first steps of bile acid 

transformations. They catalyze the hydrolysis of conjugated bile acids (Hylemon, 1985). In 

fact, feces do not contain any conjugated bile acids. That intestinal bacteria are responsible 

for this deconjugation can be demonstrated with gnotobiological (germ-free) animals 
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where the conjugates appear intact in the feces. 

The formation of the typical secondary bile acids ( deoxy- and litho-cholic acids) from 

their primary counterparts ( cholic and chenodeoxycholic acids) depends mainly on the 7 D­

dehydroxylation reaction. Hydrolysis of the conjugated bile acids is a prerequisite for 

dehydroxylation. Dehydroxylating bacteria seem to inhabit the cecum. Most intestinal 

bacteria capable of such reaction have been identified as members of the genera 

Clostridium (Hayakawa, 1973; Stellwag and Hylemon, 1979) and Eubacterium (Hirano et 

al, 1981; Gustafsson et al, 1966) 

Deconjugated bile acids also are subject to oxidation and reduction processes by 

intestinal microflora. Oxidation at· C-3, C-7, and C-12 may be caused by various 

microorganisms yielding the corresponding oxo or ketonic compounds. These 

oxidoreductases known as bile acid dehydrogenases (HSDH) are nicotinamide adenine 

dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) 

dependent. The major transformation of bile acids resulting form HSDH activities is the 

epimerization of various hydroxyl groups through oxo intermediates which may represent 

a significant fraction of human fecal bile acids (Margalith, 1986). The epimerization of bile 

acids can be carried out by a single organism containing both D- and D-HSDH or by a 

collaboration of two organisms one species containing the D-HSDH and a second 

containing the D-HSDH (Hylemon, 1985). HSDH activities are found in members of the 

genera: Bacteroides, Eubacterium, Clostridium, Bifidobacterium and Escherichia (Aries 

and Hill, 1970b; Mcdonald et al, 1979; Hirano and Masuda, 1981; Hylemon and Sherrod, 

1975). 

Potential health benefits from Lactobacillus acidophilus 

The growth and/or action of L. acidophilus in the gastrointestinal system of humans has 

some potential health benefits, such as prevention of bacterial infection, anticarcinogenic 
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action, prevention of gallstone formation, and control of serum cholesterol among others. 

First, the production of antimicrobial substances by lactobacilli may contribute to 

protecting the young and adult animal against intestinal infections. Antibacterial 

substances produced by L. acidophilus include bacteriocins such as acidolin (Hamdan and 

Mikolajcik, 1974), lactacin B (Barefoot and Klaenhammer, 1983) and acidophilin (Shahani 

et al, 1977). 

Second, secondary bile acids formed in the large intestine after enzymatic 

deconjugation and 70-dehydroxylation of primary bile acids can have tumor-promoting 

capacities in animal experiments (Aries et al, 1995). The activity of intestinal bacterial 

enzymes, implicated in colon carcinogenesis, may be elevated by high meat consumption. 

In serum and bile of patients with colonic adenomas, more deoxycholic acid was detected 

than in healthy controls (Bayerdorffer et al, 1995). Secondary bile acids are toxic to 

several cell systems at physiological concentrations. The exact mechanism by which these 

acids exert their action is not well understood, but they might act through membrane 

damage or genotoxic effects (Nagengast et al, 1995). Intestinal bacteria capable of 

carrying 7 D-dehydroxylation of primary bile acids represent a small :fraction of the human 

intestinal flora and do not include lactic acid bacteria such as bifidobacteria and lactobacilli 

which are considered to improve and maintain health (Takahashi and Morotomi, 1994). 

Fermentation of starch by bifidobacteria and lactobacilli in the large intestine can enhance 

an acidic pH in colonic lumen by producing short chain fatty acids and lactic acid which 

inhibit the bacterial degradation of primary to secondary bile acids (Bartram et al, 1994; 

Van Munster et al, 1994). Some strains of L. acidophilus have been shown to have 

anticarcinogenic activities. Colon cancer patients given fermented milk with L. acidophilus 

showed a decrease in levels of soluble fecal bile acids and fecal bacterial enzymes, two risk 

markers for colon cancer (Lidbeck, et al, 1992). Moreover, Some strains ofL. acidophilus 

have the ability to reduce the activity of fecal bacterial enzymes such a D-glucoronidase, 

azoreductase and nitroreductase that catalyze the conversion of procarcinogens to 
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carcinogens in the large bowel (Goldin and Gorbach, 1984; McConnell and Tannock, 

1993). 

Third, intestinal bacteria effect the turnover and secretion of bile acids (Eyseen, 1973). 

Some strains of L. acidophilus have been shown to stimulate the secretion of bile acid and 

the activity of cholesterol 7 D-hydroxylase an enzyme which controls bile acid synthesis 

from cholesterol (Imaizumi et al, 1992). By increasing synthesis of bile acids from 

cholesterol the level of serum cholesterol can be decreased or maintained in homeostatic 

levels thus helping avoid cholesterol related health problems in humans. Other ways for 

decreasing serum cholesterol by L. acidophilus are cholesterol uptake or cholesterol 

adsorption by the lactobacilli cells during growth of the organism in the intestines. 

Cholesterol might be lowered as free bile acids or cholesterol itself if excreted from the 

body via the intestinal route. Some strains ofL. acidophilus as well as other inhabitants of 

the gastrointestinal tract produce an enzyme named bile salt hydrolase (BSH). Such an 

enzyme hydrolyzes conjugated bile acids forming free bile acids in the GIT under in vivo 

conditions (Tannock et al, 1989; Tannock et al, 1994). For example, the presence of bile 

salt hydrolase activity and free bile salts in intestinal contents of mice is due mainly to the 

presence of lactobacilli (Tannock, 1995). Deconjugation of bile acids by BSH can 

decrease serum cholesterol (De Rodas et al, 1996). Since conjugated bile acids are 

necessary to emulsify cholesterol and other hydrophobic materials during food digestion, 

deconjugation of bile acids by BSH can decrease intestinal absorption of cholesterol. Free 

bile acids such as cholic and chenodeoxycholic acids as well as cholesterol are less soluble 

than the conjugated bile acids. Therefore, few free bile acids and cholesterol are absorbed 

through the enterohepatic circulation and most of them are easily excreted via feces. 

Serum cholesterol can then be reduceg from the body's pool by synthesizing new 

conjugated bile acids to replace the excreted ones in the form of free bile acids (De Smet 

et al, 1994). Moreover, dietary cholesterol is not totally absorbed due to bile salt 

deconjugation. Thus, bile salt hydrolase from L. acidophilus may be an important factor in 
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reducing serum cholesterol and gallstone formation. Gallstone formation is positively 

correlated with high serum cholesterol and negatively correlated with the excretion of bile 

acids (Danzinger et al, 1972; Hosomi et al, 1982). Since gallstones are caused mainly by 

cholesterol accumulation into the gallbladder (Haslewood, 1967), increasing excretion of 

free bile acids and cholesterol also may help prevent gallstone formation. 

Bile salt hydrolase 

Bile salt hydrolase is an enzyme which has been observed in several bacterial species of 

the gastrointestinal tract. Some researchers have purified BSH from Lactobacillus sp. 

strain 100-100 (Lundeen and Savage, 1990), Bifidobacterium longum BB536 (Grill et al, 

1995), Clostridium perfringens MCV815 (Gopal-Srivastava and Hylemon, 1988), 

Bacteroides fragilis ssp. fragilis (Stellwag and Hylemon, 1976). These all were active on 

both glycine and taurine conjugated bile salts. Such enzymes have more activity on sodium 

glycocholate than on sodium taurocholate conjugates. Other researchers have shown that 

specific enzymes for sodium taurocholate and sodium glycocholate exist in other 

microorganisms; for example, Kobashi et al (1978) reported an enzyme which only 

hydrolyzed taurine conjugates of bile acids. Such an enzyme was obtained from 

Peptostreptococcus intermedius. The enzyme was active on taurocholate, 

taurodeoxycholate and taurochenodeoxycholate bile salts, but not on glycine conjugated 

bile salts. However, the enzyme in Streptococcus faecalis and Lactobacillus brevis 

preferentially hydrolyzed the glycine conjugates. Also, Kawamato et al (1989) purified an 

enzyme from Bacteroides vulgatus which was active only on taurine conjugates. Thus 

BSH can be specific for taurine or glycine conjugated bile salts or for both taurine and 

glycine conjugated bile salts. 
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Physical and chemical characteristics of bile salt hydrolases 

Nair et al (1967) partially purified the BSH from Clostridium perfringens. The enzyme 

was intracellular and had a pH optimum between 5. 6 and 5. 8. It was inhibited by 

iodoacetate and p-chloromercuribenzoate suggesting the presence of sulfhydryl groups on 

the enzyme. 

Aries and Hill (1970a) studied the conditions for production and optimal activity of the 

BSH in two species each ofEnterococcus, Bacteroides, Bifidobacterium, and Clostridium. 

They observed that BSH suffered irreversible loss of activity in the absence of a reducing 

agent or in the presence of 02. Sodium thioglycolate was a more effective reducing agent 

than was cystine, glutathione, or D-mercaptoethanol. The BSH from Streptococcus 

faecalis was stored at -10°C for six months with an 18 % reduction in activity, but the 

enzymes from other microorganisms lost all their activity. Most of the enzymes had a pH 

optimum between 5 and 6. The BSH produced by these microorganisms, except for 

Bifidobacterium, was intracellular. 

Stellwag and Hylemon (1976) studied the BSH from Bacteroides fragilis. It was able to 

hydrolyze taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and 

deoxycholic acid. Lithocholic acid conjugates were not hydrolyzed. The enzyme had a 

molecular weight of 250 KDa. 

Gilliland and Speck (1977) grew cultures of Lactobacillus species in MRS broth 

containing 1 x 1 o-3 M sodium taurocholate under low oxidation/reduction conditions 

using the GasPak system or sodium thioglycolate. The bile salt deconjugation of sodium 

taurocholate by L. acidophilus strain NCFM required low oxidation/reduction conditions 

and such deconjugation by resting cells had an optimum pH of 6.0. Also, Gilliland and 

Speck (1977) pointed out that cholic acid was not metabolized and the enzyme system 

was constitutive in L. acidophilus NCFM. 

Lundeen and Savage (1990, 1992a, 1992b) reported that bile salt hydrolase activity in 
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Lactobacillus sp. strain 100-100 was strictly intracellular and was regulated by a factor 

induced by conjugated bile salts. The authors proposed that the factor facilitated the entry 

of conjugated bile salts into the cell where they were hydrolyzed by the enzyme. They 

found four isozymes of bile salt hydrolase with a pH optima between 4.2 and 4.5. The 

molecular weights were 115, 105, 95 and 80 K.Da. They suggested that the isoenzymes 

were trimers of two peptide units of 42 and 38 K.Da respectively. 

Walker and Gilliland (1993) studied 19 cultures of L. acidophilus in Mann-Rogosa­

Sharp (MRS) broth supplemented with sodium taurocholate. The cultures ATCC 4356, 

ATCC 43121 and NCFM-L deconjugated the sodium taurocholate within 18 hours. They 

suggested that the deconjugation activity was correlated with the cell growth and was 

inhibited by an acidic pH 

Grill et al (1995) purified the BSH from Bifidobacterium longum BB536. This BSH 

was capable of hydrolyzing taurine and glycine conjugates of cholate, deoxycholate, and 

chenodeoxycholate. The optimum pH was from 5.5 to 6.5 and the optimum temperature 

from 35 to 42°C. It had a molecular weight of250 K.Da in non-denaturing gels. Moreover, 

the enzyme was probably a hexamer as its relative molecular weight in denaturing gels was 

about 40 K.Da. They also indicated that BSH was constitutive in this microorganism. 

Genetics of bile salt hydrolase 

Although many biological functions in lactobacilli are encoded by plasmid DNA (i.e., 

carbohydrate metabolism, proteolytic activity, citrate utilization, bacteriocins) (Sandine, 

1987), there is no evidence ofBSH being plasmid encoded. Studies on the BSH gene have 

been done by isolating the gene from the chromosomal DNA of Lactobacillus plantarum 

and cloning it into an Escherichia coli plasmid (Christiaens, et al, 1992). After cloning the 

plasmid into a Lactobacillus vector and introducing it into the parental strain, a 

homologous double cross-over recombination occurred suggesting that the BSH gene was 
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more likely chromosomal than plasmid encoded (Leer et al, 1993). The BSH gene also has 

been cloned from the chromosomal DNA of Clostridium perfringens and expressed in E. 

coli (Coleman and Hudson, 1995). Walker (1990) reported no evidence of plasmid 

encoded BSH in nine strains ofL. acidophilus. 

The importance of bile salt hydro lases 

Gilliland and Speck (1977) have suggested that deconjugation of bile salts by bile salt 

hydrolase may enhance antagonist action of autochthonous microorganisms of the 

intestinal flora such as lactobacilli against pathogens in the intestines. Deconjugation of 

bile salts results in the formation of cytotoxic secondary bile salts such as cholic acid 

(Floch et al, 1972; Van der Meer et al, 1991). Therefore, deconjugated bile acids may 

have a higher effect on pathogenic bacteria than on indigenous microorganisms in the 

intestinal tract. 

BSH also may have potential benefits in lowering both serum cholesterol and gallstone 

formation by increasing biliary secretion. Excretion of bile acids can cause the catabolism 

of cholesterol to form replacement bile acids (Eyseen, 1973; Gilliland et al, 1985, De Smet 

et al, 1994). 

Feighner and Dashkevicz (1988) have demonstrated a correlation between growth 

depression of poultry and elevated levels of bile salt hydrolase activity in the intestines. 

High concentrations of BSH may influence lipid absorption since free bile salts do not 

have the emulsifying activity of conjugated bile salts. Such an effect could affect growth of 

animal species because conjugated bile acids are required for efficient lipid absorption. 

However, De Smet (1996) in swine and Bateup et al (1995) in mice did not find any 

significant differences in body weight between aminals treated with an active BSH 

lactobacilli and control group animals. In some species, phospholipids play a larger role in 

emulsifying lipids than do conjugated bile acids. Therefore, growth depression by high 
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levels of bile salt hydrolase might not be as important in swine and mice as in other 

species. 

Methods of bile salt hydrolase quantification 

Bile salt hydrolase activity has been quantified by radiochemical assays using tauro 

( carbonyl-14c) cholic acid as a substrate and measuring ( carbonyl-14c) cholic acid as the 

product of such enzymatic activity after an ethyl acetate extraction under acidic conditions 

(Feighner and Dashkevicz, 1988; Lundeen and Savage, 1990). Also, BSH activity has 

been measured by quantification of bile conjugates and free acids using spectrophotometry 

at 385 nm (Aries and Hill, 1970a) or at 660 nm (Walker and Gilliland, 1993). BSH activity 

can be quantified by measuring taurine and glycine as products of bile conjugates using 

spectrophotometry at 570 nm (Stellwag and Hylemon, 1976). Qualitative assays of bile 

acid deconjugation have also been performed by thin-layer chromatography (Aries and 

Hill, 1970a; Stellwag and Hylemon, 1976). Recently, a continuous spectrophotometric 

method involving the chromophore, 5-amino-2-nitro-benzoic acid has been developed 

(Jupille, 1979; Kirby et al, 1995). Because of bile salt hydrolases have activity on bile salt 

conjugates enzymatic activity can be measured by the enzymatic deconjugation of sodium 

taurocholate or sodium glycocholate to sodium cholate. These three bile salts as well as 

other bile acids can be detected by HPLC using a C 18 column or cartridge with a suitable 

mobile phase (Scalia, 1987; Dekker et al, 1991; Klaver and Van der Meer, 1993; De Smet 

et al, 1994). Therefore, bile salt hydrolase activity can be quantified by measuring the 

formation of cholic acid or by the disappearance of sodium glycocholate or sodium 

taurocholate using HPLC methods of analysis. An internal standard can be used to obtain 

a response without too much variation (Muraca and Ghoos, 1985). Since radiochemical 

assays are quite expensive and since spectrophotometric assays may be not very accurate 

because of the possible interference of other substances that absorb light at the wavelength 
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of the assay, HPLC assays offer the best approach. 
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CHAPTER III 

MATERIALS AND METHODS 

Sources and maintenance of cultures 

The three strains ofLactobacillus acidophilus used in this study were obtained from the 

stock culture collection of the Food Microbiology Lab in the Department of Animal 

Science at Oklahoma State University (see Table Al in Appendix A). All cultures were 

maintained by subculturing in MRS broth (Difeo laboratories, Detroit, MI) using 1 % 

inocula and 18 to 24 hours incubation at 37°C. They were stored at 5-7°C between 

subcultures in MRS agar stabs. 

Bile salt deconjugation during growth without pH control 

MRS broth (100 ml) supplemented with 1 rnM sodium taurocholate and 1 rnM sodium 

glycocholate (Sigma Chemicals Co., St. Louis, MO) was prepared and placed in 100 ml 

volumes into dilution bottles of about 180 ml capacity. The bottles containing the broth 

were autoclaved at 121 °C for 15 min. After cooling, freshly prepared Mann-Rogosa­

Sharp broth cultures of L. acidophilus were inoculated (1%) into the medium. After 

mixing for 1 min, a series of 10 ml aliquots were withdrawn aseptically from the bottle and 

placed into sterile screw cap test tubes (12 x 1.8 cm). Cultures were incubated at 37 °C 

for 24 hours. A tube was taken every two hours for 14 hours and at the end of the 24 

hours incubation. Growth was monitored by plate count and absorbance at 620 nm. 

Samples also were analyzed for pH and bile salt deconjugation. 
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Bile salt deconjugation during growth with pH control 

MRS broth (300 ml) supplemented with 1 mM sodium taurocholate and 1 mM sodium 

glycocholate was prepared and placed into a fermentor of about 1 liter capacity. The 

fermentor was equipped with an a:utoclavable combination pH electrode (Ingold 

Electrodes, Inc., Wilmington, MA). It also was equipped with a port for the addition of 

neutralizer and a line to permit continuous sparging with nitrogen gas. The fermentor 

containing the broth was autoclaved at 121 °C for 15 min. After cooling, it was placed in a 

3 7 °C water bath. The pH was controlled by using a mixed solution of 10 % sodium 

carbonate and 10 % ammonium hydroxide (v/v) as described by Gilliland and Rich (1990). 

The flask, containing the neutralizer, was connected to the fermentor. The neutralizer was 

delivered to the fermentor by a peristaltic pump (Masterflex, Cole-Parmer Inst. Co., 

Chicago, Il,) connected to an automatic pH controller (Model 5997, Horizon Ecology 

Co., Chicago, Il,) that was adjusted to maintain the desired pH of the broth. Nitrogen gas 

was continuously sparged through the broth from bottom to top at about 5 ml per min. 

After mixing for 5 min, a freshly prepared MRS broth culture of L. acidophilus was 

inoculated (1 % ) into the fermentor. After mixing for 1 min, 10 ml was withdrawn 

aseptically from the fermentor and placed into a sterile test tube to serve as the initial 

sample (i.e. 0 hour). The fermentor containing the cultures was incubated at 37 °C for 24 

hours. Samples were taken aseptically every three hours for 12 hours incubation and at the 

end of the 24 hours. Growth was monitored by plate count and absorbance at 620 nm. 

Samples also were analyzed for bile salt deconjugation. 

Measuring of culture growth 

A 1:10 dilution was made from each sample using sterile peptone diluent (1 %) and the 

absorbance at 620 nm (Spectronic 21D, Milton Roy, Rochester, NY) was measured to 
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determine the relative cell growth. The absorbance readings were plotted against 

incubation time. Growth also was measured by plate count using MRS agar. Appropriate 

dilutions, prepared using 1 % sterile peptone, were plated by the pour plate method with 

MRS agar. The plates were overlayed with the same medium and incubated 48 hours at 37 

~C after which colonies were counted with the aid of a Quebec colony counter. Colony 

forming units (CFU) per ml expressed as LoglO were plotted against incubation time. 

Bile acids analyses 

Instruments 

An ISCO HPLC model 2350 equipped with a variable wavelength ultraviolet (UV) 

detector model v4 (ISCO Inc. Lincoln, NE) and Valeo injector, model C6W (Valeo 

Instruments Co. Inc., Houston, TX), was used. A radial compression module, RCM-100 

(Waters Ass., Milford, MA), was used with a flexible-walled reverse-phase column of 100 

mm x 8 mm (I.D.) packed with Nova-Pak C18 (4 µm) from Waters Associates. The flow 

rate was adjusted at 1.0 ml/min for detection of conjugated bile salts and at 2.0 ml/min for 

detection of free bile salts. Ultraviolet detection was performed at 205 nanometers and 0.2 

AUF. The injection quantity was 20 µI. Peak areas were calculated by the ChemResearch 

software version 2.4 (ISCO Inc.). 

Chemicals 

All organic solvents were high purity, methanol was HPLC grade (EM Industries, Inc., 

Gibbstown, NJ) and water had a resistivity of 18.2 megaohm-cm (Milli Q plus, Millipore 

Co., Bedford, MA). Conjugated and free bile salts used as standards had a purity of 98 % 

or more. Sodium taurocholate, sodium taurodeoxycholate, sodium 
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taurochenodeoxycholate, sodium glycocholate, sodium glycochenodeoxycholate and 

sodium cholate were purchased from Sigma Chemicals Co. Sodium glycodeoxycholate 

acid was purchased from Steraloids Inc., Wilton, NH. Dexamethasone and testosterone 

were.purchased from Sigma Chemicals Co. Sep-pak C18 cartridges were obtained from 

Waters Associates. 

Solvents 

As mobile phase, 700 ml methanol and 300 ml 0.02 M acetic acid was used. The pH of 

this mixture was increased to exactly 5.4 by adding 5 M NaOH. Further purification 

through a 0.45 µm nylon filter (Gelman Sciences, Ann Arbor, MI) was performed. The 

mixture used for dilution of supematants from cell cultures was the mobile phase, as 

described above and 0.2 M NaOH in 0.9 % NaCl (mixture A). 

Recovery of bile salts from MRS broth and quantification of conjugated and free bile salts. 

The method of Ruben and Berge-Henegouwen (1982) was modified. A five milliliter 

sample of culture was centrifuged (10 min, 10,000 x g). Supematants were filtered 

through a 0.45 µm polysulfone filter (Whatman Inc., Clifton, NJ). Mixture A (14 ml) was 

added two milliliters of filtrates using a Vortex mixer. The solution was passed through a 

Sep-Pak C18 cartridge (Waters Ass.) after preparation of the cartridge as indicated in the 

manufacturer's instructions. Subsequently, the Sep-Pak cartridge was washed once with 

10 ml water, once with 5 ml 10 % acetone and again with 10 ml water (Zhang et al, 

1988). The conjugated and free bile acids were extracted from the cartridge by 5 ml 

methanol. The methanolic filtrate was evaporated to dryness under a stream of nitrogen 

gas at 60 °C. The residue was dissolved in 2 ml mobile phase and filtered through a 0.45 

µm polysulfone filter to clarify the sample. 
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Quantification of conjugated bile salts. Two hundred microliters of sample or bile salt 

standards were mixed with 50 µl of an internal standard ( dexamethasone, 0.2 mg/ml), then 

20 µl of the mixture were injected into the HPLC. Sodium glycocholate and sodium 

taurocholate were recovered at 100.2 % ± 8.38 %. Detection of sodium glycocholate and 

sodium taurocholate was linear from O to 25 nmoles. Their determination coefficients were 

0.996 and 0.998 respectively (see Figures Al and A2 in Appendix A). 

Quantification of free bile salts. Five hundred microliters were taken for cholic acid 

derivatization according to "method C" of Iida et al (1985). Two hundred microliters of 

the final free bile salt derivative was filtered through a 0.45 µm polysulfone filter and 

mixed with 50 µl of an internal standard (testosterone, 2 mg/ml). Then, 20 µl of this 

mixture was injected into the HPLC. Detection of sodium cholate was linear from Oto 37 

nmoles and its determination coefficient was 0.998 (see Figures Al and A3 in Appendix 

A). 

Assay for bile salt hydrolase activity 

A methanolic solution of 0.01 M sodium taurocholate and 0.01 M sodium glycocholate 

was prepared. Twenty five microliters of the methanolic solution was pippeted into small 

screw cap test tubes (10 x 1.2 cm) that had been previously washed with 50 % nitric acid. 

The methanol was evaporated under a stream of nitrogen gas at room temperature. The 

tubes with 0.25 µmoles of each conjugated bile salt were stored at room temperature for 

no more than four weeks. 

The enzyme activity was measured placing 100 µl of sample containing BSH into the 

assay tubes. After vortexing, the samples were incubated at 37 cc for 5 to 30 min. One 

hundred microliters of HPLC mobile phase was added to the assay tubes to stop the 

enzymatic reaction. Then, the mixture was clarified by filtering through a 0.45 µm 

polysulfone filter (Whatman Inc.). The filtrates were placed on ice at O cc and the contents 
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analyzed by HPLC. 

One BSH enzymatic unit was defined as the nanomoles of either sodium taurocholate 

or sodium glycocholate deconjugated per minute based on disappearance of each from the 

assay mixture. The validation of the assay for bile salt hydrolase activity is shown in 

AppendixB. 

Purification of bile salt hydrolase 

Bile salt hydrolase was purified from cell free extracts from cultures grown in MRS 

broth without conjugated bile salts, and from spent broth from cultures grown in MRS 

broth supplemented with 2 rnM each sodium taurocholate and sodium glycocholate. 

After 24 hours growth in MRS broth without conjugated bile salts, the broth culture 

(200 ml) was centrifuged at 10,000 x g for 10 min at 5 °C. The spent broth was discarded. 

The cell pellet was resuspended and washed twice with acetate buffer (50 rnM, pH 4.0, 20 

ml) and centrifuged at 10,000 x g for 10 min at 5 °C. The cells were resuspended in 50 

rnM (pH 5.4) to 0.1 of the volume of the original culture. The cells were disrupted by 

sonication (5µm peak to peak of amplitude, and 85 watts delivered to the cell suspension) 

five times for 2 min each at 5 °C with a Sonic Dismembrator model 550 (Fisher Scientific, 

Pittsburgh, PA). The lysed cell suspension (cell free extract) was used for enzyme 

isolation. 

After 24 hours growth in MRS broth containing 2 rnM sodium glycocholate and 2 rnM 

sodium taurocholate, the broth culture (200 ml) was centrifuged at 10,000 x g for 10 min 

at 5 °C. The cell pellet was discarded and the spent broth was saved for enzyme isolation. 

Spent broth or cell free extract was mixed with methanol in a ratio 2 to 1 to obtain a 

final concentration of 33% methanol (v/v). After one hour, the spent broth-methanol or 

cell free extract-methanol mixture was centrifuged at 10,000 x g for 10 min at 5 °C to 

pellet the precipitate. The precipitate was dissolved in 50 rnM acetate and 1 rnM EDTA 

19 



buffer pH 5.4 (buffer A). 

The dissolved methanol precipitate was fractionated by ammonium sulfate precipitation 

(40-80% saturation). The precipitated fraction was harvested by centrifugation at 5,000 x 

g for 15 min at 5 °C and resuspended in buffer A. The ammonium sulfate fractions ( 4 ml) 

were vortexed for complete dissolution and dialyzed for 18 hours in buffer A (2 L) 

through dialysis membranes (Spectra/Par, Spectrum Medical Instruments, Inc. Los 

Angeles, CA) with molecular cut off from 12 to 14 KDa. The dialyzed ammonium sulfate 

fraction was stored at -20°C for no more than four weeks. 

Three grams of Sephadex G-200 powder with a particle size from 40 to 120 µm 

(Pharmacia, Sweden) was added to 100 ml working buffer B (50 mM acetate pH 5.4 with 

1 mM EDTA and 0.02% sodium azide) with slow stirring. The suspension was held 24 

hours at 40°C and then, stored at 5°C for one day. The slurry was poured into a 2.5 x 50 

cm glass column (Bio-Rad, Richmond, CA). After the gel was settled completely, excess 

buffer was removed and the column was washed with two to four times its volume of 250 

ml. A 1 % blue dextran {Sigma Chemicals) was used as a marker to determine the void 

volume of the column (Stellwagen, 1990). The flow rate of the mobile phase was 

controlled at 0.16 ml/min by using a pump (Cole-Parmer, Chicago, IL) attached to the 

column inlet. The sample with a protein concentration of no more than 2 mg/ml and a 

volume of no more than 2 ml was loaded onto the column and samples of 0.8 ml each 

were collected by an automatic fraction collector (Retriever II, ISCO Co.), and monitored 

manually for absorbance at 280 nm (Spectronic 21D, Milton Roy). The fractions also were 

analyzed for BSH activity. 

Fractions with BSH activity from spent broth were pooled and concentrated with 

Centricell 60 membranes (Polysciences, Warrington, PA) with molecular cut off of 30 

KDa. The pooled fractions were centrifuged at 1,500 x g for 20 to 60 min at 4 °C or until 

desired concentration were reached. Volumes of pooled fractions and filtrates were 

recorded. 

20 



Protein determination 

The protein content of the fraction(s) at each step of purification as well as fractions 

from the gel chromatography was determined by the method of Bradford (1976). Bovine 

serum albumin (Sigma Chemicals Co.) was used as the standard. 

Polyacrylamide gel electrophoresis 

Non-denaturing protein separations were carried out in 7.5 % slab gels. Peptide 

separation by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis (SDS-P AGE) 

also was carried out in 10 % slab gels (Laemmli, 1970) using Mini-Protein slab cell (Bio­

Rad Laboratories, Inc., Hercules, CA). Gels were developed using coomassie brilliant blue 

G-250 and silver stain (Bio-Rad Laboratories, Inc.). 

Statistical analysis 

Bile salt deconjugation, growth and pH were analyzed using the general linear model 

correlation procedure from SAS to determine if significant relationships occurred among 

these variables. Specific bile salt deconjugation and growth rates of L. acidophilus were 

analyzed by the modified logistic model (Zwietering et al, 1990) using the non-linear 

model procedure from SAS (see Table F3 in Appendix F). The least significant difference 

method (LSD) was used to determine if statistically significance differences occurred 

among means. Physical and chemical properties affecting enzymatic activity such as 

temperature, EDT A, pH, and D-mercaptoethanol, also were analyzed as dependent 

variables using the GLM procedure of SAS (see Table F4 in Appendix F). 
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CHAPTER IV 

RESULTS 

Bile salt deconjugation by Lactobacillus acidophilus 

Influence of sodium thioglycolate and heat sterilization on bile salt deconjugation 

Three different treatments were applied to MRS broth media containing the conjugated 

bile salts (1 mM sodium glycocholate and 1 mM sodium taurocholate). For the first one 

the broth was sterilized by heating at 121 °C for 15 min. The second one included 

supplementation of the broth with 0.2% sodium thioglycolate to provide low oxidation­

reduction (0/R) potential prior to being heat sterilized (121°C for 15 min). The third one 

involved sterilization of the broth (without sodium thioglycolate) by passage through a 

sterile membrane filter (0.45 µm pores). The three media were inoculated (1 %) using a 

freshly prepared MRS broth culture of L. acidophilus ATCC 43121. Sample controls were 

taken immediately after inoculation. All three inoculated media were incubated at 3 7 °C 

for 24 hours. The amounts of conjugated bile salts remaining in the three media at the end 

of the incubation compared to the amounts at the beginning showed that deconjugation 

was not affected by heat sterilization and that low 0/R potential was not an important 

factor for deconjugation by L. acidophilus ATCC 43121 (Table 1). The sodium 

glycocholate and sodium taurocholate in the media were almost completely deconjugated 

during the 24 hours incubation. The disappearance of the conjugated bile salts in each case 

was associated with increases in free cholic acid ( data not shown). 
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TABLE 1 

DECONJUGATION OF SODIUM GL YCOCHOLATE AND SODIUM 
TAUROCHOLATE BY L, ACIDOPHILUS ATCC 43121 AS INFLUENCED BY 

DIFFERENT TREATMENTS OF THE CULTURE MEDIUM 

Glycocholatel (mM) Taurocholatel (mM) 

Treatment 0 hours 24 hours 0 hours 24 hours 

Heat sterilization plus 0.98(0.03) 0.002(0.002) 0.98(0.04) 0.021(0.020) 
0.2 % thioglycolate 

Heat sterilization 1.01(0.02) 0.012(0.009) 0.99(0.01) 0.008(0.002) 

Sterilization by filtration 0.99(0.04) 0.010(0.010) 0.97(0.04) 0.010(0.006) 

1 Each value is the average of two trials; numbers in parentheses represent the standard 
deviations. There were no significant differences among treatments for either time period 
for either bile salt (P>0.05). 

Bile salt deconjugation and cell growth in static cultures 

Three strains of L. acidophilus were grown in MRS broth supplemented with 1 mM 

each sodium glycocholate and sodium taurocholate without pH control. The media were 

heat sterilized and did not contain 0.2 % thioglycolate to provide low 0/R potential. 

Figure IA shows the deconjugation of sodium taurocholate and sodium glycocholate 

by L. acidophilus 016 during incubation at 37 °C for 24 hours. The pH dropped as growth 

of the culture occurred (Figure IA). 

Growth of the culture monitored by plate counts and absorbance increased during the 

first 8-12 hours of incubation (Fig. lB). The plate count decreased after 12 hours showing 

less viable cells towards the end of the incubation time. The reduction in plate count 

beyond 12 hours was probably because of bile salt deconjugation. Sodium cholate, the 
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product of the hydrolysis of sodium glycocholate and sodium taurocholate, is toxic for L. 

acidophilus and other intestinal microorganisms (Aries and Hill, 1970). However, the 

absorbance, an indirect method for measuring cell growth, was constant indicating cell 

lysis was not involved. 

Figure 2A shows the bile salt deconjugation ofL. acidophilus Ll. Sodium taurocholate 

was deconjugated slower than sodium glycocholate. The pH was also reduced as 

deconjugation occurred and was related to growth of the culture (Fig. 2A and 2B). Figure 

2B shows the growth of L. acidophilus L 1 as measured by plate count and absorbance. 

After 10 hours of incubation a decline in plate count was observed, but the absorbance 

remained constant. 

Figure 3 shows the bile salt deconjugation and the growth of L. acidophilus ATCC 

43121. Both conjugated bile salts were hydrolyzed completely during the 24 hours of 

incubation. The viable count and absorbance during the growth of L. acidophilus ATCC 

43121 had quite similar patterns to those of the other strains of L. acidophilus analyzed. 

The plate count of strain ATCC 43121 was reduced earlier than those of strains of 016 

and L 1, but the absorbance remained constant after reaching its maximum value. 

Bile salt deconjugation and growth of all three strains of L. acidophilus were analyzed 

by the modified logistic equation according with Zwietering et al (1990). The purpose of 

such analysis was to determine if there were any significant differences in the specific 

deconjugation rate between sodium glycocholate and sodium taurocholate. 

Since deconjugation of sodium taurocholate and sodium glycocholate releases free 

sodium cholate which could affect the survival of the culture, these data were analyzed to 

determine if significant differences in the kinetic parameters of growth of the 

microorganisms occurred when using absorbance and plate count as measurements of cell 

growth. 
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Figure 1. Bile salt deconjugation (A), acid production (A), and growth (B) of 
Lactobacillus acidophilus O 16 in MRS broth supplemented with 1 mM sodium 
glycocholate and 1 mM sodium taurocholate. Each point represents a mean of three trials 
(S.E. sodium glycocholate = 0.043; S.E. = sodium taurocholate = 0.016; S.E. pH= 0.078; 
S.E. LoglO of count plate= 0.13; S.E. absorbance = 0.004; 40 dt). 
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Lactobacillus acidophilus L 1 in MRS broth supplemented with 1 mM sodium glycocholate 
and 1 mM sodium taurocholate. Each point represents a mean of three trials (S.E. sodium 
glycocholate = 0.005; S.E. = sodium taurocholate = 0.004; S.E. pH= 0.031; S.E. LoglO 
of count plate= 0.045; S.E. absorbance = 0.0006; 40 dt). 
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Table 2 shows the deconjugation rates of both sodium taurocholate and sodium 

glycocholate in static cultures. The deconjugation rates of sodium glycocholate did not 

differ significantly among strains of L. acidophilus. The deconjugation rates of sodium 

taurocholate were not significantly different for strains ATCC 43121 and 016. However, 

L. acidophilus Ll exhibited a significantly lower deconjugation rate (P<0.05) for 

taurocholate than did the other two strains. Glycocholate was totally deconjugated by all 

strains during the 24 hours of incubation. However, taurocholate was totally deconjugated 

only by strains 016 and ATCC 43121. L. acidophilus Ll had deconjugated only 76% of 

taurocholate after 24 hours incubation. No significant differences in the lag phases were 

observed among the strains ofL. acidophilus on either bile salt. The lag phases, however, 

for the deconjugation of sodium glycocholate for all three strains appeared shorter than for 

taurocholate. These results suggest that L. acidophilus ATCC 43121, 016 and Ll might 

prefer deconjugating sodium glycocholate better than sodium taurocholate. 

The logistic model was not efficient in modeling the growth of L. acidophilus when 

using the colony forming units per milliliter because of the death (loss of CFU/ml) that 

occurred after 10 hours of incubation. The plate count was strongly correlated to the 

absorbance at 620 nm during the first 10 hours of growth (P<0.0001, Table F2 in 

Appendix F). However, when correlating the same variables for 24 hours of incubation the 

correlation factor dropped from 0. 770 to 0.446. Therefore, the kinetic parameters of the 

cell growth for all three strains of L. acidophilus were analyzed by the plate count and by 

absorbance only from the lag phase to the stationary phase. The death phase was not 

considered. Table 3 shows the cell growth parameters of all three strains of L. acidophilus 

in static cultures. The lag time and specific growth rate of all strains of L. acidophilus were 

not significantly different (P>0.05) when measuring the growth by either. However, the 

maximum growth was significantly higher {P<0.05) for the two strains of human origin 

than that of pig origin when measuring the cell growth by plate count, but significant 

differences were not detected by the absorbance. 
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TABLE2 

KINETIC PARAMETERS OF BILE SALT DECONJUGATION OF 
LACTOBACILLUS ACIDOPHILUS 016, Ll, AND ATCC 43121 IN STATIC 

CULTURESl 

Deconjugation Lag phase Deconjugation rate Deconjugation 
(hours) (mM/h) (%) 

Glycocholate 

016 5.51(0.65)a 0.18(0.041)a 102(6.9)a 

Ll 4.23(0.19)a 0.26(0.024)a 100(1.7)a 

ATCC 43121 4.82(0.36)a 0.20(0.026)a 99(3.4)a 

Taurocholate 

016 6.60(0.48)a 0.17(0.024)a 108(5.3)3 

Ll 6.53(0.56)a 0.07(0.0IO)h 76(3.3)b 

ATCC 43121 5.64(0.SO)a 0.18(0.03 l)a 98(5.2)a 

1 Based on growth in MRS broth supplemented with 1 mM glycocholate and 1 mM 
taurocholate bile salts. Each value is the average of three trials; numbers in parentheses 
represent the standard errors. Values in the same column within the same substrate 
followed by different superscript letters differ significantly (P<0.05). 
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TABLE3 

KINETIC PARAMETERS OF CELLULAR GROWTH OF LACTOBACILLUS 

ACIDOPHILUS 016, Ll, AND ATCC 43121 IN STATIC CULTURESl 

Cell growth 

Plate count 

016 

Ll 

ATCC 43121 

Absorbance 

016 

Ll 

ATCC 43121 

Lag phase 
(hours) 

1.62(0.44)B 

1.18(0.37)B 

1.25(0.07)B 

l.63(0.47)B 

0.58(0.27)B 

0.59(0.47)B 

Growth rate 
(1/h) 

1.49(0.31)a 

1.54(0.26)B 

1.74(0.06)B 

1.07(0. l 7)B 

1.19(0.12)B 

0.89(0.12)B 

Maximum growth2 

5.54(0.23)B 

5.92(0.22)a 

5.14(0.04)b 

5.71(0.3 l)a 

5.86(0. lS)a 

5.12(0.12)B 

1 Based on growth in MRS broth supplemented with 1 mM glycocholate and 1 mM 
taurocholate bile salts. Each value is the average of three trials; numbers in parentheses 
represent the standard errors. Values in the same column and within same method of cell 
growth measurements followed by different superscript letters differ significantly 
(P<0.05). 

2Maximum growth is represented as Ln (x/xo ). 
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Bile salt deconjugation and culture growth in pH controlled cultures 

Some conjugated bile salts such the sodium glycocholate have a pKa between 3 and 4. 

Disappearance of sodium glycocholate from the medium during growth thus, could be the 

result of precipitation because of its low solubility at acidic pH created by acid produced 

by the lactobacilli during growth. Therefore, experiments were conducted by growing the 

cultures in MRS broth supplemented with conjugated bile salts maintained at pH higher 

than the pKa of sodium glycocholate to prevent any precipitation due to low pH. 

Figure 4A shows the bile salt deconjugation of both sodium glycocholate and sodium 

taurocholate by L. acidophilus 016 during growth at pH 5.0. Sodium glycocholate was 

deconjugated faster than sodium taurocholate. L. acidophilus O 16 did not grow well at pH 

5.0 as observed by small increases in plate count and absorbance (Figure 4B). The plate 

count of L. acidophilus decreased 3 LoglO cycles during the 24 hours incubation. The 

deconjugation, thus, was apparently due to the enzymatic activity of the inoculum. 

Figures SA and SB show the bile salt deconjugation and growth, respectively, of L. 

acidophilus 016 at pH 5.4. Bile salt deconjugation appeared faster at pH 5.4 than 

observed at pH 5.0 in Figure 4A. Moreover, cell growth was also greater than that shown 

in Figure 4B at pH 5.0. The plate count declined slightly beyond 14 hours. However, the 

absorbance remained constant. 

Figure 6A shows the bile salt deconjugation of L. acidophilus O 16 during growth at pH 

6.0. Deconjugation of sodium taurocholate seemed slightly faster than that of sodium 

glycocholate. Figure 6B shows that the plate count decreased 1 LoglO cycle during the 

period beyond 8 hours. There also was a slight decrease in the absorbance toward the end 

of the incubation. 

31 



1.2 

<ll A 8 Taurocholate 
i 1 - - Glycocholate 
(I) 

:= 
,l:l 

i 0.8 ..... 
I ~ -~1 
cs '-' 

0.6 "· (I) 

I 0.4 " ~ «I 
<ll 0.2 ' 

.... 
~ ...._ 

0 
0 4 8 12 16 20 24 

Time (h) 

0.01 

107 

- i 9 

' ~ 106 
0 
(',I 

u 

" 
\0 

'-' '-' 

§ 

' i 0 u ,e 
~ 105 " 

0 
<ll 

a: ~ 
D Absorbance 

' - - Plate count 

10 4 0 
0 4 8 12 16 20 24 

Time (h) 
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sodium taurocholate at pH 5.0. Each point represents a mean of two trials (S.E. sodium 
glycocholate = 0.008; S.E. = sodium taurocholate = 0.037; S.E. LoglO of count plate = 

0.28; S.E. absorbance = 7.6e-7; 18 df). 

32 



"' i 
Cl) -.... ,&l 

] 

·h 
c...,-
0 
Cl) 

ffl 
Cl) 
Q, 

Ji .... 
t:.:l 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 4 8 

B 

D Taurocholate 

- - Glycocholate 

12 16 20 

Time (h) 

D Absorbance 

- - Plate count 

24 

1 

0.1 

i' 
0 
N e 
Cl) 

~ 
0.01 i 

~ 

10 7-+-~~-+-~~+-~--ii--~-+~~-+-~~~ 0 
24 0 4 8 12 16 20 

Time (h) 
Figure 5. Disappearance of conjugated bile salts (A), and growth (B) of Lactobacillus 
acidophilus O 16 in MRS broth supplemented with 1 mM sodium glycocholate and 1 mM 
sodium taurocholate at pH 5.4. Each point represents a mean of three trials (S.E. sodium 
glycocholate = 0.009; S.E. = sodium taurocholate = 0.011; S.E. LoglO of count plate= 
0.10; S.E. absorbance = 0.002; 55 df). 

33 



1.2 

~ 1 

~ 
,l:J 

'§ 0.8 
C"a 

~ .§1 0.6 ..., _ 
Q 

i 
CIJ 

0.4 

8: 
OJ 0.2 .... 
0 

0 
0 4 8 

1011 

1010 

] 
~ 

109 

-§ 108 
Q 
u 
CIJ 
~ a:: 10 7 

106 

0 4 8 

8 Taurocholate 

- - Glycocholate 

\ 
\ 
~ 

" '--

12 16 20 

Time (h) 

......_ 
......_ ......_ 

8 Absorbance 
- - Plate count 

12 16 20 

Time (h) 

24 

24 

1 

0.1 

i 
0 
N e 
CIJ 

~ 
0.01 ,e 

5l 
~ 

0 

Figure 6. Disappearance of conjugated bile salts (A), and growth (B) of Lactobacillus 
acidophilus O 16 in MRS broth supplemented with 1 mM sodium glycocholate and 1 mM 
sodium taurocholate at pH 6.0. Each point represents a mean of two trials (S.E. sodium 
glycocholate = 0.006; S.E. = sodium taurocholate = 0.010; S.E. LoglO of count plate= 
0.010; S.E. absorbance = 0.0004; 18 df). 

34 



<I.I 

i 
~ .... 
.c 

i 
i:'tl 

,gj 
5 
u '-' 
"S 

i 
~ 
~ .... 
0 

1.2 

1 

0.8 

0.6 

0.4 

0.2 D Taurocholate 

- - Glycocholate 

0 
0 4 8 12 16 20 24 

Time (h) 

1 

B 

0 Absorbance 
- - Plate count 

10 7--~~--~----~-+~~--~~+-~--I 0 
24 0 4 8 12 16 20 

Time (h) 
Figure 7. Disappearance of conjugated bile salts (A), and growth (B) of Lactobacillus 
acidophilus O 16 in MRS broth supplemented with 1 mM sodium glycocholate and 1 mM 
sodium taurocholate at pH 7.0. Each point represents a mean of two trials (S.E. sodium 
glycocholate = 0.006; S.E. = sodium taurocholate = 0.002; S.E. LoglO of count plate= 
0.04; S.E. absorbance = 0.0005; 18 df). 

35 



Figure 7 shows the bile salt deconjugation and growth ofL. acidophilus 016 at pH 7.0. 

Bile salt deconjugation of both sodium glycocholate and sodium taurocholate was much 

slower at pH 7.0 than at pH 5.0, 5.4 and 6.0 shown in the previous figures. The plate 

count decreased dramatically toward the end of the incubation. However, no decrease in 

absorbance was noted. 

Deconjugation and growth at the different pH levels also were analyzed by the logistic 

equation to determine the lag phase, maximum rates, and percentages of total 

deconjugation by L. acidophilus 016. 

Table 4 shows that the lag phase of deconjugation of sodium glycocholate was 

significantly longer (P<0.05) at pH 5.4 than at pH 5.0, 6.0 and 7.0. It also shows that the 

lag phase of deconjugation of taurocholate was significantly longer (p<0.05) at pH 5.0, 

5.4, and 6.0 than that at pH 7.0. The deconjugation rate of sodium glycocholate by L. 

acidophilus 016 was significantly higher (P<0.05) at pH 5.4 than any other pH tested. The 

deconjugation rate of sodium taurocholate was significantly higher (P<0.05) at pH 5.4 and 

6.0 than at either pH 5.0 or 7.0. The significant differences in deconjugation of both 

glycocholate and taurocholate bile salts at different pHs indicate there was an optimum pH 

for deconjugating sodium glycocholate and another optimum pH for sodium taurocholate 

by the culture. Low bile salt deconjugation for both sodium taurocholate and sodium 

glycocholate was observed at pH 7. 0 where significant cell growth was observed. 

However, high bile salt deconjugation was detected at pH 5.0 where cellular growth was 

not observed. An explanation for this result could be that some cells of lactobacilli were 

disrupted at low pH and the bile salt hydrolase (BSH), which is responsible for bile salt 

deconjugation, was released to the medium. Then, the enzyme hydrolyzed the conjugated 

bile salts. Most intestinal microorganisms contain an intracellular BSH, and their optimum 

pH for BSH is in a range from 3.8 to 5.5 rather than at neutral pH (Grill et al, 1995; 

Stellwag and Hylemon, 1976; Lundeen and Savage, 1990; Gopal-Srivastava and Hylemon, 

1988). 
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TABLE4 

KINETIC PARAMETERS OF BILE SALT DECONJUGATION OF 

LACTOBACILLUS ACIDOPHILUS 016 IN DYNAMIC CULTURES1 

Deconjugation Lag phase Deconjugation ratel Deconjugation 
(hours) (mM/h) (%) 

Glycocholate 

5.0 0.04(0.85)h 0.06(0.006)C 96(4.5)3 

5.4 6.05(0.15)3 0.26(0.020)3 100(2.6)3 

6.0 2.25(1.14)h 0.18(0.022)b 101(6.8)3 

7.0 2.35(1. 1o)h 0.01(0,004)d 29(3.l)b 

Taurocholate 

5.0 8.35(1.98)3 0.07(0.042)b 70(9.2)b 

5.4 6.90(0.18)3 0.23(0.021)3 102(3.6)3 

6.0 8.00(0.36)3 0.24(0.044)3 96(4.8)3 

7.0 3.60(1.32)b O.Ol(0.003)b 36(4.9)C 

1 Based on growth in MRS broth supplemented with 1 mM glycocholate and 1 mM 
taurocholate bile salts. Each value is the average of three trials; numbers in parentheses 
represent the standard errors. Values in the same column within the same substrate 
followed by different superscript letters differ significantly (P<0.05). 
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TABLES 

KINETIC PARAMETERS OF CELL GROWTH OF LACTOBACILLUS 

ACIDOPHILUS 016 IN DYNAMIC CULTURES I 

Cell growth 

Plate count 

5.0 

5.4 

6.0 

7.0 

Absorbance 

5.0 

5.4 

6.0 

7.0 

Lag phase 
(hours) 

1.38(0.74)a 

0.88(0.43)a 

1.92(0.41)a 

_3 

1.29(0.25)a 

1.84(0.40)a 

0.55(0.65)a 

Growth rate 
(1/h) 

0.84(0.13)a 

1.04(0. ll)a 

1.16(0.19)a 

1.11(0.07)a 

0.97(0.12)a 

1.23(0.32)a 

Maximum growth2 

6.05(0.32)b 

7.60(0.SS)a 

5.34(0.3I)h 

5.68(0.06)a 

5.45(0.33)ab 

5.29(0.16)b 

1 Based on growth in MRS broth supplemented with 1 mM glycocholate and 1 mM 
taurocholate bile salts. Each value is the average of three trials; numbers in parentheses 
represent.the standard errors. Values in the same column and within same method of cell 
growth measurements followed by different superscript letters differ significantly 
(P<0.05). 

2Maximum growth is represented as Ln (x/xo). 

3n was not determined. 
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The deconjugation capacity for L. acidophilus O 16 for sodium glycocholate was not 

significantly different (P<0.05) at pH 5.0, 5.4 and 6.0. It was, however, lower (P<0.05) at 

pH 7. 0 than at the lower pH levels. Deconjugation of sodium taurocholate was not 

significantly different (P<0.05) at pH 5.4 and 6.0, but significantly less (P<0.05) was 

deconjugated at pH 5 and 7. 

Table 5 shows the analysis of data from the plate count and the absorbance values by 

the modified logistic equation. The lag time and specific growth rate at all pH conditions 

of L. acidophilus 016 cultures were not significantly different (P>0.05) when measuring 

the cell growth by either plate count or absorbance (Data for pH 5 was not included since 

the culture failed to grow at this pH). There were significant differences in the values of 

maximum growth. Significantly higher (P<0.05) growth was obtained at pH 6.0 when 

measuring the cell growth by plate count. However, the maximum growth was 

significantly higher (P<0.05) at pH 5.4 when measuring the growth by the absorbance than 

it was at pH 7. 

Deconjugation of sodium glycocholate, based on its disappearance from the growth 

medium, was observed 1.6 pH units above its pKa; consequently, most of the glycocholate 

was ionized. Thus the apparent deconjugation was not due to precipitation of the bile salt. 

Moreover, the uninoculated controls at pH 5.0, 5.4, 6.0, and 7.0 showed no precipitation. 

Bile salt deconjugation at pH 6.5. Additional experiments were conducted for all three 

strains ofL. acidophilus in which the growth medium was maintained at pH 6.5. This pH 

level is similar to that of the small intestine in healthy humans (Mitsuoka, 1978). For these 

experiments, the concentration of sodium glycocholate and sodium taurocholate were 

modified to more closely resemble the ratio encountered in healthy humans. This involved 

a sodium glycocholate to sodium taurocholate molar ratio of 2.3 (Burnett, 1965; 

Haslewood, 1967; Mallory et al, 1973; Sandine, 1979) so that the growth medium was 

supplemented with 2.8 mM sodium glycocholate and 1.2 mM sodium taurocholate. Such 
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culture conditions were an approach to observe the behavior of L. acidophilus at higher 

concentrations of conjugated bile salts and a nearly neutral pH that may resemble the 

intestinal environment. Figure 8 shows the bile salt deconjugation and plate count data for 

L. acidophilus 016 during growth at pH 6.5. After 24 hours incubation 46 % of the 

sodium glycocholate and 79 % of the sodium taurocholate had been deconjugated. The 

plate count decreased 1 Log 10 cycle beyond 8 hours of incubation. 
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Figure 8. Disappearance of conjugated bile salts and growth of Lactobacillus acidophilus 
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Figure 9 shows that L. acidophilus L 1 deconjugated less sodium taurocholate than 

sodium glycocholate. The plate count did not decrease during incubation beyond 8 hours. 

Figure 10 shows that both sodium taurocholate and sodium glycocholate were almost 

totally deconjugated by L. acidophilus ATCC 43121. The plate count for this culture did 

not decline toward the end of incubation. 

Table 6 shows that the deconjugation rates for both sodium glycocholate and sodium 

taurocholate by L. acidophilus ATCC 43121 were significantly higher (P<0.05) than those 

for strains Ll and 016. The deconjugation rate of sodium glycocholate was higher for all 

three strains ofL. acidophilus than that of sodium taurocholate (P<0.05). 

TABLE6 

SPECIFIC DECONJUGATION RATES OF ALL THREE STRAINS OF 

LACTOBACILLUS ACIDOPHILUS AT pH 6.51 

Deconjugation rate (mM/h) 

Strain Glycocholate Taurocholate 

016 0.10(0.018)bA 0.058(0.00S)hB 

Ll 0.09(0.012)bA 0.01 l(0.009)CB 

ATCC 43121 0.28(0.0lS)aA 0.107(0.0lO)aB 

lBased on growth in MRS broth supplemented with 2.8 mM glycocholate and 1.2 mM 
taurocholate bile salts. Each value is the average of two trials; numbers in parentheses 
represent the standard errors. Means in the same column and without common superscript 
letters differ significantly (P<0.05). Means in the same row and without common upper 
case superscript letters differ significantly (P<0.05). 
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Effect of conjugated bile salt and cholic acid on culture growth 

A death phase was observed for the cultures in some experiments after reaching their 

maximum growth. Such a death phase was speculated to be the result of the release of free 

cholic acid by deconjugation. This death was more intense in the cultures grown without 

pH control. The combined effect of the cholic acid and low pH could be toxic to the 

cultures. Therefore, L. acidophilus O 16 was grown in different bile salt concentrations to 

determine if apparent cell death was related to the amount of deconjugation. Table 7 

shows the effect of various concentrations of conjugated bile salts on the plate counts. 

Plate counts and pH were determined following 8 and 20 hours of incubation. 

TABLE 7 

EFFECT OF THE CONCENTRATION OF CONJUGATED BILE SALTS ON THE 
GROWTH OF LACTOBACILLUS ACIDOPHILUS 016 IN STATIC CULTURES. 

Conjugated 

bile saltsl 

0 

1 

2 

4 

pH2 

8 hours 20 hours 

4.35±0.07b 3.95±0.07C 

4.35±0.07b 4.10±0.00C 

4.40±0.ooh 4.20±0.ooh 

4.55±0.07a 4.65±0.07a 

Log 10 Plate count2 
(LoglO CFU/ml) 

8 hours 20 hours 

9.2±0.03a 9.4±0.04a 

9.2±0.03a 9.2±0.12b 

9.2±0.02a 7.7±0.63C 

8.9±0.02b 4.4±0.77d 

lconjugated bile salts represent the total of equal amounts of sodium glycocholate and 
sodium taurocholate. 

2Each value is the average of two trials; numbers in parentheses represent the standard 
deviations. Means without common superscript letters differ significantly (P<0.05). 
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During the first 8 hours of incubation, there were no significant differences (P>0.05) 

among the control and the media containing 1 and 2 mM conjugated bile salts, but the 

medium containing 4 mM bile salts had significantly lower (P<0.05) numbers compared to 

the other three media. At 8 hours the populations (plate count) were significantly higher 

(P<0.05) for the culture grown in the media containing 0, 1, and 2 mM bile salts than in 

the one containing 4 mM bile salts. After 20 hours of incubation, the plate count decreased 

significantly (P<0.05) with each increase in concentration of bile salts. The control 

maintained a higher viable population than any of the media supplemented with bile salts. 

Analysis of the media for conjugated bile salts following 20 hours indicated complete 

deconjugation of the bile salts (data not shown). 

Bile salt hydrolase from Lactobacillus acidophilus 

Location of bile salt hydrolase 

Lactobacillus acidophilus O 16 was grown in MRS broth with and without sodium 

taurocholate, sodium glycocholate, a mixture of both sodium taurocholate and sodium 

glycocholate. After· 18 hours incubation, the spent broth of all media which had contained 

conjugated bile salts exhibited more BSH activity than did the spent broth of the media 

which had been prepared without conjugated bile salts. These results suggested that the 

enzyme was inducible rather than constitutive. It further suggests that the BSH is an 

extracellular enzyme. However, BSH could have been released into the medium as a 

consequence of cell lysis caused by cholic acid formation. Experiments with resting cells 

that were collected from cultures grown in MRS broth without conjugated bile salts were 

conducted .to observe the BSH activity in all three strains of L. acidophilus. Cells of the 

lactobacilli were harvested after 18 hours of growth and washed twice with 50 mM (pH 

5.4) acetate buffer. The cells were resuspended in the buffer (0.1 the volume of the 
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original culture) and were used for measuring BSH activity within 30 min. Plate counts 

were performed on the suspensions. After sonication, plate counts were again determined 

and BSH activity was measured. 

Bile salt hydrolase activity of whole cells of L. acidophilus Ll was significantly greater 

(P<0.05) than for L. acidophilus 016 but not significantly greater (P>0.05) for strain 

ATCC 43121 (Table 8). After disrupting the cells by sonication, the BSH activity of the 

strain 43121 was increased significantly (p<0.05) to 32-fold compared to the whole cells. 

The BSH of strains 016 and Ll for the lysed cells also was somewhat greater 1.08 and 

1.15 times respectively than the intact cells (P>0.05). For the lysed cells the BSH for 

strain 43121 was significantly (P<0.05) greater than for either of the other two strains. 

These data suggest that most BSH was intracellular or membrane bound, and that the 

enzyme was released by sonication. 

TABLE 8 

BILE SALT HYDROLASE ACTIVITY ON SODIUM GL YCOCHOLATE BY 
RESTING CELLS ANDBYLYSED CELLS OF ALL THREE STRAINS OF 

LACTOBACILLUS ACIDOPHILUS 

BSH activityl 

(x 10-9 nmol/min/CFU) 

Whole cells Lysed cells 
Strain 

ATCC 43121 2.4(0.24)ab 79(6.s)a 

016 0.86(0.30)h 0.93(0.4)b 

Ll 2.6(0.58)a 3.0(0.36)h 

1 Each value is the average of two trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 
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L. acidophilus O 16 was grown in MRS broth free of conjugated bile salts and the cells 

were collected for locating the BSH. Cells were harvested after 18 hours of growth and 

washed twice with 50 mM (pH 5.4) acetate buffer. The cells were resuspended in buffer to 

the original volume of the culture and they were used for measuring BSH activity within 

30 min. Such cells were fractionated according with the procedure of Otto et al (1982). 

The membranes and the intracellular material were tested for BSH activity. The enzyme 

was present in the cytosol and the cell membrane fractions (Table 9). Whole cells and cell 

membranes had significantly higher (P<0.05) total BSH activity than did the cytosol. 

Protein content was also higher in whole cells and membranes than in cytosol. 

TABLE9 

LOCATION OF BSH ACTIVITY IN LACTOBACILLUS ACIDOPHILUS O 16 

BSH activityl Proteinl Specific activityl 
Fraction (nmol/min/ml) (mg/ml) (nmol/min/mg) 

Whole cells 13.9(2.3)ft 0.21(0.0l)a 66.8(15.6)ft 

Cell membranes 17.9(2.7)ft 0.24(0.0l)a 74.6(13.9)a 

Cytosol 3.8(0.76)b 0.08(0.02)b 48.1(21. l)a 

1 Each value is the average of two trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 

The specific activity was similar in all three cell fractions. The results suggested that the 

enzyme might be bound to the cell membrane of L. acidophilus. Cell membranes of L. 

acidophilus were treated with Tween 80 and Tween 20 to try to remove the enzyme from 

the cell membrane, but non-significant increases in activity were obtained when compared 

to the control without Tween (data not shown). 

46 



Effect of conjugated bile salts on bile salt hydrolase 

Because bile salt hydrolase was always found in the spent broth when strains of L. 

acidophilus were incubated in the presence of conjugated bile salts, L. acidophilus O 16 

was tested for its BSH content in spent broth and cells at different concentration of 

conjugated bile salts. Cells of the lactobacilli were collected from MRS broth with and 

without conjugated bile salts after 18 hours of growth and washed twice with 50 rnM (pH 

5.4) acetate buffer. The cells were resuspended in buffer to the original volume of the 

culture and disrupted by sonication. Five milliliters of spent broth from media with 

conjugated bile salts was dialyzed through 12, 000 to 14, 000 cut off dialysis membranes 

against 1 liter 50 rnM (pH 5.4) acetate buffer for 18 hours. BSH activity of both cell 

extracts and spent broth was measured within 30 min. 

Table 10 shows the effect of the concentration of sodium glycocholate and sodium 

taurocholate on the BSH activity in the spent broth and cells. The BSH activity in spent 

broth from cultures with concentrations of 2 and 4 rnM of conjugated bile salts was 

significantly higher (P<0.05) than the BSH activity in cultures without and with 1 rnM 

conjugated bile salts. Contrary to the results of BSH activity in the spent broth, BSH 

activity in cells grown from cultures with concentrations of 2 and 4 rnM conjugated bile 

salts was significantly lower (p<0.05) than the BSH activity in cultures grown without and 

with 1 rnM conjugated bile salts. 

To demonstrate that bile salt hydrolase activity in the spent broth was a consequence of 

cell lysis at high concentrations of conjugated bile salts, L. acidophilus ATCC 43121 was 

grown in the presence of 4 rnM conjugated bile salts (2.8 rnM sodium glycocholate and 

1.2 rnM sodium taurocholate), and without conjugated bile salts (control). The BSH 

activity was quantified at 4 hours intervals during 24 hours of incubation. 
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TABLE 10 

EFFECT OF THE CONCENTRATION OF CONillGATED BILE SALTS IN 
GROWTH MEDIUM ON THE BILE SALT HYDROLASE OF LACTOBACILLUS 

ACIDOPHILUS 016. 

Bile salt hydrolase activity 
( nmol/min/ml) 

Conjugated bile saltsl Spent broth2 Cells2 

0 4.8(1.7)C 14.2(2.5)3 

1 12.4(3.3)C 13.1(1.8)3 

2 31.3(6.8)b 4.6(1.2)b 

4 43.9(5.7)3 2.l(0.2)b 

lconjugated bile salts represents 50:50 mixture of sodium taurocholate and sodium 
glycocholate. 
2Each value is the average of two trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 

Figure 11 shows the growth and BSH activity of L. acidophilus ATCC 43121 when 

growing in the presence of conjugated bile salts ( after 24 hours incubation, all sodium 

taurocholate and sodium glycocholate were deconjugated). The number of CFU decreased 

seven log cycles after 4 hours in the broth containing the conjugated bile salts. The spent 

broth from the culture contained very low BSH activity, and after reaching its maximum 

growth, the plate count remained constant through the end of the incubation for this 

medium. The increases in BSH activity of the spent broth from the bile salt culture 

medium coincided with decreases in the number of CFU/ml in the same culture medium. 
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Figure 11. Plate count and bile salt hydrolase activity (spent broth) in cultures of 
Lactobacillus acidophilus ATCC 43121 supplemented with 2.8 mM sodium glycocholate 
and 1.2 mM sodium taurocholate. Bile salt hydrolase activity was measured using sodium 
glycocholate as a substrate. 

The spent broths of from L. acidophilus Ll and 016 also were observed to contain 

high amounts ofBSH when the microorganisms were grown in MRS broth supplemented 

with 2.8 mM sodium taurocholate and 1.2 sodium taurocholate. Table 11 shows the 

content ofBSH activity in spent broth of all three strains of L. acidophilus grown in static 

cultures. The spent broth from L. acidophilus ATCC 43121 had much more BSH activity 

on both sodium taurocholate and sodium glycocholate than did the spent broth from 

strains Ll and 016 (P<0.05). 
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TABLE 11 

BILE SALT HYDROLASE ACTIVITY IN SPENT BROTH AFTER CELL GROWTH 
IN MRS BROTH SUPPLEMENTED WITH 2.8 mM SODIUM GLYCOCHOLATE 

AND 1.2 mM SODIUM TAUROCHOLATE 

Bile salt hydrolase activityl (nmol/min/ml) 

Strain Sodium taurocholate Sodium glycocholate 

016 

Ll 

ATCC 43121 

37.2(4. l)C 

63.8(10.4)b 

477.1(7.9)ft 

152.9(6.S)h 

189.0(1.6)h 

577.7(13.5)a 

1 Each value is the average of two trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 

Purification of bile salt hydrolase 

Bile salt hydro lase was partially purified from the spent broth of cultures of L. acidophilus 

which had been grown in MRS broth supplemented with 2 mM sodium glycocholate and 2 

mM sodium taurocholate and from cell free extracts of cultures of L. acidophilus grown in 

the absence of conjugated bile salts. All strains of lactobacilli were grown in static 

cultures. 

Methanol precipitation. Table 12 shows that fractions precipitated by 0-33.3 % of the 

enzyme solution with methanol contained the highest total activity and the highest specific 

activity. The specific activity in fraction 33.3-50 % was significantly higher (P<0.05) than 
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that in fraction 50-66.6 %, but significantly lower (P<0.05) than in the 0-33.3 %. 

TABLE12 

EFFECT OF METHANOL IN PRECIPITATING BILE SALT HYDROLASE FROM 
SPENT BROTH FROM LACTOBACILLUS ACIDOPHILUS 016 AT pH 4.0 

Methanol fraction Bile salt hydrolase Specific activityl 
(% v/v) activityl (nmol/min/ml) (nmol/min/mg) 

0-33.3 23.9(0.?0)a 183.5(4.94)a 

33.3-50.0 5.56(0.65)b 148.0(8.97)b 

50.0-66.6 0.25(0.20)C 10.62(8.54)C 

1 Each value is the average of three trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 

Ammonium sulfate precipitation. As a second step in BSH purification, the BSH, in the 

methanol :fraction, was dissolved in 10 ml buffer A (see Materials and Methods) and 

precipitated by ammonium sulfate. Four concentrations of ammonium sulfate were tested 

for recovering BSH. Table 13 shows that fractions precipitated by 40-60 % and 60-80 % 

saturation of the enzyme solution with ammonium sulfate contained the highest total 

activity and the highest specific activity. The specific activity in :fraction 0-20 was 

significantly higher (P<0.05) than that in fraction 20-40, but significantly lower (P<0.05) 

than in the 40-60% and 60-80% :fractions. Similar recoveries of BSH were obtained from 

metanolic :fractions of spent broth and cell free extracts from strains L 1 and ATCC 43121 

(data not shown). 
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TABLE 13 

AMMONIUM SULFATE PRECIPITATION OF BILE SALT HYDROLASE OF 
LACTOBACILLUS ACIDOPHILUS O 16 

Ammonium sulfate fraction Activityl (nmol/min/ml) Specific activityl 
(% of saturation) ( nmol/min/mg) 

0-20 1.67(0.38)C 23.97(5.0l)b 

20-40 4.90(1.97)b 7.29(3.62)C 

40-60 24.17(3.09)a 51.22(8.ll)a 

60-80 22.35(1.97)a 43.42(1.69)a 

1 Each value is the average of three trials; numbers in parentheses represent the standard 
deviation. Means in the same column followed by different superscript letters differ 
significantly (P<0.05). 

Gel filtration. The bile salt hydrolase obtained by the methanol and ammonium sulfate 

fractionation from spent broth and from intracellular material was further purified by gel 

chromatography. Figure 12 shows the elution profile from gel chromatography of BSH 

purified from the spent broth ofL. acidophilus ATCC 43121. Three absorbance (280nm) 

peaks were observed in this chromatogram. The first one was eluted with the void volume 

and contained no enzyme activity. The enzyme activity was eluted between the second and 

third absorbance peaks. The largest portion of material absorbing light at 280 nm was in 

the third peak in which only small amounts of enzyme activity were found in comparison 

with the second peak. 
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Figure 12. Elution profile of ammonium sulfate precipitate from spent broth of bile salt 
hydrolase activity produced by Lactobacillus acidophilus ATCC 43121 on Sephadex G-
200. Each 0.8 ml fraction was monitored at 280 nm and fractions containing protein were 
assayed for bile salt hydrolase activity. 
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Figure 13. Elution profile of ammonium sulfate precipitate from cell extracts of bile salt 
hydrolase activity produced by Lactobacillus acidophilus ATCC 43121 on Sephadex G-
200. Each 0.8 ml fraction was monitored at 280 nm and fractions containing protein were 
assayed for bile salt hydrolase activity. 
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Figure 13 shows the gel chromatogram of BSH from the intracellular material of a L. 

acidophilus ATCC 43121. Two absorbance peaks were eluted in that chromatogram. An 

absorbance peak was observed in the fraction corresponding to the void volume. The first 

peak also had a much larger portion of material absorbing light at 280 nm than that of the 

second peak. In addition, the first peak did not contain BSH activity. The BSH activity 

was associated with the second peak, but the maximum absorbance value did not 

correspond to the maximum enzymatic activity. Enzyme purification from strain ATCC 

43121 was higher from the spent broth than that from crude cell extracts. Similar gel 

chromatograms were observed for strains 016 and Ll (Figures Cl through C4 show both 

BSH from spent broth and BSH from intracellular material chromatograms from those 

strains in Appendix C). The active fractions from gel chromatography of all spent broth 

material were pooled and concentrated with Centricell membranes. The concentrated 

solutions increased the purification of BSH from 59. 7 in L. acidophilus L 1 to 115 in L. 

acidophilus ATCC 43121 (Tables Cl through C6 in Appendix C show the BSH 

purification from spent broth and intracellular material using both glycocholate and 

taurocholate bile salts). The BSH from all three strains of L. acidophilus from different 

sources (spent broth and intracellular) were quite similar in their elution times in gel 

chromatography suggesting that the BSH molecular weight was similar in all three strains 

of L. acidophilus. 

Molecular weight ofBSH from L. acidophilus 

A protein cocktail with three different proteins of different molecular weights were 

chromatographed on Sephadex G-200. The conditions of elution were similar to those 
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used on the BSH gel chromatography. Blue Dextran was included to show the void 

volume of the column. The protein cocktail and Blue Dextran 2000 chromatogram were 

compared to the chromatogram of BSH from L. acidophilus ATCC 43121. Bile salt 

hydrolase activity was eluted between the peaks corresponding to Immunoglobulin G and 

Human Serum Albumin with a molecular weight of 158 KDa and 69 KDa respectively (see 

Figure Dl in Appendix D). The retention factor of all three proteins and BSH were 

obtained and plotted against their molecular weight (see Figure D2 in Appendix D). A 

molecular weight of about 126 KDa for BSH from strain ATCC 43121 was calculated by 

gel filtration chromatography. Bile salt hydrolase from L. acidophilus strains 016 and Ll 

had similar elution times; so that, their molecular weights were calculated to be similar to 

that of the BSH of ATCC 43121. 

Polyacrylamide gels 

The active fractions from gel chromatography from L. acidophilus ATCC 43121 were 

electrophoresed in non-denaturing gels. As demonstrated in Figure 14, two major bands 

showed increasing levels of Coomassie blue dye. Those two bands as well as the protein 

bands observed between those two were removed from a gel without Coomassie blue stain 

treatment. The small pieces of polyacrylamide gel containing the proteins were submerged 

in buffer A supplemented with 2.5 mM glycocholate. 

After 30 min reaction, the amount of BSH activity was measured. Most of the BSH 

activity was found in the second major band that presented increases in protein specificity. 

Little bile salt hydrolase activity was observed in other protein bands. 
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Figure 14. Non-denaturing gel chromatograms of several fractions of Lactobacillus 
acidophilus 43121. Lane 1 and 7, protein markers; Lane 2, spent-broth; Lane 3, methanol 
fraction; Lane 4, Ammonium sulfate fraction; Lane 5, Sephadex G-200 fraction (1); Lane 
6, Sephadex G-200 fraction (2). 
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Figure 15 . Non-denaturing gel chromatograms of Sephadex G-200 fractions of all three 
strains ofLactobacillus acidophilus. Lane 1 and 8, protein markers; Lane 2, ATCC 43121 
cells; Lane 3, ATCC 43121 spent-broth; Lane 4, Ll cells; Lane 5, Ll spent-broth; Lane 6, 
016 cells; Lane 7, 016 spent-broth. 
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Gel chromatography fractions of the other strains of L. acidophilus from both spent 

broth and intracellular content also were electrophoresed on non-denaturing gels, but no 

BSH activity was detected in those fractions (Figure 15). L. acidophilus ATCC 43121 

produced more BSH than that of the other two strains. The lower levels ofBSH activity in 

the other two strains may have made it impossible to detect activity in the gel fractions. 

Physical and chemical characteristics ofBSH 

Effect of pH on BSH activity. Table 14 shows the pH ranges supporting optimum BSH 

activity from all three strains of L. acidophilus on both sodium glycocholate and sodium 

taurocholate. In general, all three strains of L. acidophilus had optima BSH activity at 

relatively low pH (see figures El, E2 and E3 in Appendix E). The optimum pH range was 

not the same for each conjugated bile salt. Bile salt hydro lase from L. acidophilus O 16 was 

most active on sodium taurocholate at pH 5.0-6.0 and on sodium glycocholate at pH 3.5-

5.0. However, strains Ll and ATCC 43121 were most active on taurocholate at pH 3.5-

4.5 and on glycocholate at pH 4.0-6.0. 

TABLE14 

OPTIMUM pH OF BILE SALT HYDROLASE FROM LACTOBACILLUS 

ACIDOPHILUS 

Strain Taurocholatel Glycocholate 1 

016 5.0-6.0 3.5-5.0 

Ll 3.5-4.0 4.0-6.0 

ATCC 43121 3.5-4.5 4.0-5.5 

1 Based on activity on acetate-phosphate buffer 50 mM, 1 mM EDTA at different pH 
Each value is the average of two trials. 
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Enzymatic efficiency of BSH. Enzyme efficiency, defined as Vmax/Ks[=]µM/min/mM, 

was higher for strain ATCC 43121 than for either strains Ll (150-fold) or 016 (500-

fold)(Figure 16). 

8 Ll, Vmax/Ks = 1.4 ± 0.11 

• 016, Vmax/Ks = 0.4 ± 0.02 

• ATCC 43121, Vmax/Ks = 205.3 ± 9.31 
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Figure 16. Lineweaver-Burk plots based on sodium glycocholate as the substrate. 

Substrate competition and product inhibition in BSH. Table 15 and 16 shows that bile salt 

hydrolase activity on sodium taurocholate was inhibited 31 % by the presence of 2 mM 

sodium glycocholate and on sodium glycocholate was inhibited 5 % by the presence of 2 

mM sodium taurocholate for strain ATCC 43121. Bile salt hydrolase activity on sodium 

taurocholate was inhibited 58 % in the presence of 2 mM sodium glycocholate and 16 % 

on sodium glycocholate in the presence of 2 mM sodium taurocholate for strain Ll. Bile 

salt hydrolase activity on sodium taurocholate was more inhibited by the presence of 

sodium glycocholate. This may be explained because of a higher affinity of B SH for 
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sodium glycocholate than that for sodium taurocholate. Besides substrate inhibition of 

BSH, it was found that sodium cholate was a strong inhibitor of BSH activity on both 

sodium taurocholate and sodium glycocholate (Figures E4 and ES in Appendix E). 

TABLE 15 

BILE SALT HYDROLASE ACTIVITY IN THE PRESENCE OF TAUROCHOLATE 
AND A MIXTURE OF BOTH GL YCOCHOLATE AND TAUROCHOLATE 

Strain 

016 

Ll 

ATCC 43121 

TBSHl 

17.1(0.6)3 

89.4(3.5)3 

Bile salt hydrolase activity 
(nmol/min/ml) 

TB SH + Glycocholate2 

nd 

7.1(1.l)b 

61.0(0. l)b 

lBased on BSH activity on 2 mM taurocholate; 2Based on BSH activity on 2 mM 
taurocholate in the presence of 2 mM glycocholate; Each value is the average of two 
trials; numbers in parentheses represent the standard deviation. Treatments in the same 

row followed by different superscript letters differ significantly (P<0.05).3It was not 
determined. 
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TABLE16 

BILE SALT HYDROLASE ACTIVITY IN THE PRESENCE OF TAUROCHOLATE 
AND A MIXTURE OF BOTH GL YCOCHOLATE AND TAUROCHOLATE 

Strain 

016 

Ll 

ATCC 43121 

Bile salt hydrolase activity 
( nmol/min/ml) 

GBSHl 

69.3(0.S)A 

102.8(1.7)A 

2337.0(9.l)A 

GBSH + Taurocholate2 

68.8(0.63)A 

86.5(5.7)B 

2212.9(18)B 

lBased on BSH activity on glycocholate; 2Based on BSH activity on glycocholate on the 
presence of 2 mM taurocholate. Each value is the average of two trials; numbers in 
parentheses represent the standard deviation. Treatments in the same row followed by 
different superscript letters differ significantly (P<0.05). 

Activity of BSH on different conjugated bile salts. Bile salt hydrolase from L. acidophilus 

ATCC 43121 was tested for its activity towards dihydroxy and trihydroxy conjugated bile 

salts. Table 17 shows that BSH from strain ATCC 43121 had significantly more activity 

towards dihydroxy-glycoconjugated bile salts than towards trihydroxy-glycoconjugated 

bile salts. There were no significant differences (P>0.05) among the bile salt conjugates of 

taurine. 
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TABLE17 

BILE SALT HYDROLASE ACTIVITY IN THE PRESENCE OF TRIHYDROXY AND 
DIHYDROXY BILE SALT CONillGATES OF GLYCINE AND TAURINE 

Substrate 

Glycocholate (3 0, 7 D, 12 0-trihydroxy-) 

Taurocholate 

Glycochenodeoxycholate (3 0, 7 0-dihydroxy-) 

Taurochenodeoxycholate 

Glycodeoxycholate (3 D, 12 0-dihydroxy-) 

Taurodeoxycholate 

Bile salt hydrolase activity 1 
(runol/min/ml) 

1,405(70.7)h 

122(38. l)C 

4,685(77.0)3 

174(10.6)C 

4,755(70.7)3 

72(4.24)C 

lBased on BSH activity on 5 mM glycoconjugated or 5 mM tauroconjugated bile salts; 
Each value is the average of two trials; numbers in parentheses represent the standard 
deviation. Means followed by different superscript letters differ significantly (P<0.05). 
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CHAPTER V 

DISCUSSION 

The HPLC method for quantifying BSH permitted the detection of both sodium 

taurocholate and sodium glycocholate that have different retention times. Bile salt 

hydrolase from all three strains of L. acidophilus presented a kinetic of zero order at pH 

5.4 and at 37 °C. Substrate limitation was observed after 90 % of consumption. Therefore, 

special care was taken when higher enzymatic activities were observed and more than 90 

% of the substrate was consumed. In such a case lesser amounts of enzyme were used 

and/or shorter time of reaction was employed. 

Bile salt hydrolase stability was improved m the presence of EDT A. This salt 

complexes with heavy metal ions that may inhibit some proteases. Proteases might 

adversely affect BSH activity as suggested by Lundeen and Savage (1990). The enzyme 

was also stable in various buffer salts such a citrate, phosphate and acetate. These buffer 

salts have been used during purification of BSH from different intestinal microorganisms 

(Lundeen and Savage, 1990; Grill et al, 1995; Gopal-Srivastava and Hylemon, 1988; 

Stellwag and Hylemon, 1976). Reducing agents such a D-mercaptoethanol did not 

improve bile salt hydrolase activity. This suggests the BSH is not susceptible to oxidative 

damage. Storage at -20 °C was more efficient for maintaining BSH activity than was 5 °C. 

Proteases may also cause failure ofBSH activity at 5 °C. 

Because bile salt deconjugation was observed in media without thioglycolate, low 

oxidation/reduction (0/R) potential was not necessary for the deconjugation activity. 

Masuda (1981) found that BSH activity of four strains ofBacteroides and four strains of 
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Clostridium, which were strict anaerobic intestinal microorganisms, was insensitive to 

oxygen. However, Aries and Hill (1970a) reported that anaerobiosis was necessary for 

optimal production of bacterial BSH in the intestinal tract. Moreover, Gilliland and Speck 

(1977) also reported that deconjugation of bile salts by L. acidophilus required low 0/R 

potential. Contrary to the results of Aries and Hill (1970a), and Gilliland and Speck 

(1977), but in agreement with the results of Masuda (1981), the results described here 

show that deconjugation does not require low 0/R potential and there were no harmful 

effects on BSH activity in the absence of a reducing agent such a thioglycollic acid or 0-

mercaptoethanol. 

Grill et al (1995b) reported that heat sterilization of conjugated bile salts such a sodium 

taurocholate in broth caused partial hydrolysis of the bile salt. However, Gilliland and 

Speck (1977) observed that heat sterilization of MRS broth supplemented with sodium 

taurocholate did not affect the bile salt or deconjugation. In agreement with the results of 

Gilliland and Speck (1977), it was observed that heat sterilization of both sodium 

taurocholate and sodium glycocholate did not affect the concentration of conjugated bile 

salts nor bile salt deconjugation. 

Bile salt deconjugation, as a response of BSH activity, increased only when the cultures 

reach their maximum cell growth in static culture conditions. High BSH activity was 

observed at the stationary phase of growth ofB. fragilis by Hylemon and Stellwag (1976), 

and of Lactobacillus sp. strain 100-100 by Lundeen and Savage (1990). The latter 

researchers suggested that the BSH activity was regulated by the growth phase. Since the 

lowest pH of all strains of L. acidophilus in static cultures was always found in the 

stationary phase and the BSH activity occurred preferentially at low pH, BSH 

deconjugation likely was not the result of the growth phase, but the result of the pH. The 

pH and the cell growth were positively and negatively correlated, respectively, with both 

sodium taurocholate and sodium glycocholate bile salt deconjugation (P<0.0001, see 
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Table G 1 in Appendix F). Acid hydrolysis of conjugated bile acids is not common 

(Haslewood, 1967), but precipitation at acidic pH can occur. The pKa of sodium 

glycocholate is 3.9 ± 0.1 (Fini and Roda, 1987) and that of sodium taurocholate is 0.0 ± 

1.0 (Irving et al, 1982). Therefore, conjugated bile acids are less soluble at low pH than at 

neutral or alkaline pH Apparent bile salt deconjugation could be due to precipitation or 

hydrolysis at acidic pH (Zhu and Brown, 1990). Moreover, bile salt precipitation by salt 

formation with calcium ions that may be present in biological fluids and culture media has 

been observed (Hofmann and Mysels, 1992). 

In some experiments cholic acid released during deconjugation was measured. 

Theoretically, 2 mM cholic acid should have been detected at the end of a total bile salt 

deconjugation ofa mixture of 1 mM sodium glycocholate and 1 mM sodium taurocholate. 

However, the solubility of cholic acid at acidic pH is lower than that of conjugated bile 

acids. Because of this, measurements of cholic acid had more variability than that of 

conjugated bile salts. The low solubility of cholic acid at low pH was probably responsible 

for the crystals observed at the bottom of the sample tubes after 24 hours of sample 

storage. Such crystals were difficult to dissolve and thus probably affected the 

concentration of cholic acid detected. However, cholic acid measurements were valuable 

for verifying that deconjugation was truly occurring due to enzymatic hydrolysis. Stability 

of conjugated bile salts at different pH levels also was verified by incubating MRS broth 

containing conjugated bile salts at pH 5.0, 5.4, 6.0 and 7.0 for 24 hours at 37 °C without 

microorganisms. There was no chemical hydrolysis or bile salt precipitation at these pH 

levels. Moreover, sodium glycocholate in 5 mM concentration was tested in a range of pH 

1 to 7. There was no significant (P>0.05) precipitation at pH 4.0 which was the lowest pH 

observed after 24 hours incubation of cultures ofL. acidophilus in MRS broth (Figure B2 

in Appendix B). Thus, disappearance of sodium glycocholate in the cultures was not due 

to precipitation by low pH but due to deconjugation. 

All three strains of L. acidophilus used were previously compared for their cholesterol 
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assimilation capacity and their bile tolerance. All them showed non-significant differences 

in their ability to assimilate cholesterol (Buck and Gilliland, 1994). Also, L. acidophilus 

ATCC 43121 and 016 did not show significant differences in their ability to deconjugate 

taurocholate. However, L. acidophilus Ll had significantly less ability to deconjugate 

sodium taurocholate compared to the strains ATCC 43121 and 016. The results by Buck 

and Gilliland (1994) are in agreement with those results shown in this study. That is, L. 

acidophilus L 1 had a lower deconjugation rate on sodium taurocholate than did the two 

other strains. 

In this study, sodium glycocholate also was used as a substrate for testing bile 

deconjugation activity. L. acidophilus LI had a higher deconjugation rate on sodium 

glycocholate than on sodium taurocholate as did strain 016. Therefore, these two strains 

might be important for potential hypocholesterolemic activity based on their capacity to 

hydrolyze sodium glycocholate since it is the major conjugated bile salt in human beings. 

The cell growth was measured by absorbance and count plate. The lag time of all three 

strains of L. acidophilus was not significantly different when measuring the cell growth in 

static cultures by absorbance or by plate count. However, absorbance measurements could 

not detect the reduction of viable cells in later phases of growth in static cultures after bile 

salt deconjugation began. Moreover, the absorbance measurements could not discriminate 

between the maximum cell growth among all three strains of L. acidophilus in static and 

pH controlled cultures. The formation of free cholic acid at acidic pH may have affected 

absorbance measurements. Therefore, culture growth should be measured by plate count 

when free bile salts or any other precipitable components are present in the culture media. 

Deconjugation of both sodium glycocholate and sodium taurocholate was pH 

dependent. L. acidophilus 016 had its maximum cell growth at pH 6.0, but its maximum 

deconjugation rate for sodium glycocholate was observed at pH 5 .4 and its maximum 

deconjugation rate for sodium taurocholate was observed at pH 5.4 and at pH 6.0. There 

is no data available in the literature about bile salt deconjugation in culture conditions by 
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any intestinal microorganisms. However, Stellwag and Hylemon (1976) observed that 

whole cell suspensions of Bacteroides fragilis subsp. fragilis deconjugated sodium 

glycocholate optimum at pH 4.2. Also Gilliland and Speck (1977) observed that resting 

cells ofL. acidophilus NCFM deconjugated sodium taurocholate optimum by at a pH near 

6.0. By growing L. acidophilus 016 in pH controlled cultures, it was observed that pH is 

more important than cell growth for bile salt deconjugation. That is, L. acidophilus O 16 

deconjugated both sodium glycocholate and sodium taurocholate at pH 5. 0 where little 

cell growth was observed. However, L. acidophilus O 16 exhibited poor deconjugation of 

both sodium glycocholate and sodium taurocholate at pH 7. 0 where much more growth 

ocurred than that at pH 5. 0. 

Conjugated bile salts are found in a 2.2-3.0 molar ratio of glycocholate per 

taurocholate in the gallbladder of the human adult, and the amount of conjugated bile salts 

secreted to the gastrointestinal tract (GIT) is about 10 to 15 mmol (Hofinann, 1977). 

Considering that the volume of the gallbladder is smaller than that of the GIT, the 

conjugated bile salts are diluted when entering to the upper part of the small intestine. The 

GIT from the duodenum to the ileum has an approximate volume between 3. 5 and 4 liters 

(Bodansky et al, 1957). Therefore, the highest bile salt molarity that might occur 

throughout the small intestine is between 2.8 and 4 mM as a consequence of such a 

dilution. However, a higher concentration might be expected in the duodenum where the 

bile is secreted, and a lower concentration might be found at the end of the ileum because 

of diffusion mechanisms, microbial transformations, and absorption of bile salts to the 

portal vein throughout the intestinal wall. The GIT may also undergo pH changes during 

food digestion. Since the stomach has a pH between 1 and 3 and its content is mixed with 

an alkaline pH between 7 and 9 of pancreatic and bile secretions, a variable pH is expected 

in the upper part of the GIT. However, a pH of 6. 5 to 7 .1 might be expected because of 

the digestive buffer system in the intestinal lumen (Mitsuoka, 1978). 
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All three strains of L. acidophilus deconjugated both sodium taurocholate and sodium 

glycocholate at pH 6.5. These two strains of human origin had lower deconjugation rates 

than strain ATCC 43121 of pig origin. Studies by De Rodas et al {1996) and Gilliland et al 

(1985) have shown that strain ATCC 43121 of pig origin is able to reduce the serum 

cholesterol in pigs. This strain has been shown to assimilate cholesterol (Gilliland et al, 

1985) as have the two strains of human origin (Buck and Gilliland, 1994). While 

cholesterol assimilation is not correlated to sodium taurocholate deconjugation (Walker 

and Gilliland, 1993), high bile salt deconjugation at neutral pH is another important 

characteristic to consider when selecting strains for their potential use to help to reduce 

serum cholesterol. Strains Ll and 016 had three times less deconjugation activity than did 

strain ATCC 43121 when grown in culture conditions at pH 6.5. 

The effect of conjugated bile salts and cholic acid on bacterial growth was pointed out 

by Floch et al (1970, 1972). They found that conjugated bile salts were less inhibitory than 

free bile salts to intestinal microorganisms at pH 7.2. The results in the present study 

revealed that L. acidophilus ATCC 43121 grew much more in the presence of 4 mM 

conjugated bile salts than in the presence of 4 mM free sodium cholate. The acidity of the 

media enhanced the inhibitory effect of unconjugated bile salts on L. acidophilus ATCC 

43121. The mechanisms by which conjugated and unconjugated bile salts inhibit bacterial 

growth are still unclear. 

Sodium glycocholate was hydrolyzed by all resting cells of L. acidophilus. However, 

after sonication (i.e. lysed cells), much more BSH activity was detected than when intact 

resting cells were tested. This difference was most pronounced for strain ATCC 43121. 

Thus, bile salt deconjugation activity may be affected by the permeability of cells to 

substrates. For example, Kobashi et al {1978) demonstrated that resting cells of 

Streptococcus faecalis and L. brevis split glycine conjugates only, but that their cell-free 
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extracts hydrolyzed both glycine and taurine conjugates. De Smet et al (1995) 

demonstrated by 14C-labeled glycocholic acid that conjugated bile salt hydrolysis by 

resting cells of L. plantarum occurred intracellularly and the product cholic acid was 

released to the medium. De Smet (1994) also found that resting cells ofL. plantarum had 

higher activity towards sodium glycochenodeoxycholate than towards 

taurochenodeoxycholate at pH 6.5. No one has suggested in the literature that cell 

permeability or lysis may be responsible for differences in an organism's ability to 

deconjugate different conjugated bile acids. The only comparisons that have been reported 

are from comparing actions of purified or partially purified BSH enzymes. It has been 

suggested that BSH from intestinal microorganisms shows different substrate specificity 

depending on the glycine, taurine or hydroxyl groups in the bile salt moiety (Christiaens et 

al, 1992, Gopal-Srivastava and Hylemon, 1988; Kawamoto et al, 1989; Lundeen and 

Savage, 1990; Stellwag and Hylemon, 1976; Nair et al, 1967). 

All three strains of L. acidophilus contained BSH activity, irrespective of having been 

grown in the presence or absence of a conjugated bile, indicating that BSH was 

synthesized constitutively. The enzyme was found in cell membranes and in the cytosol. 

These results agreed with those found by Aries and Hill (1970a). They found BSH activity 

in both intracellular and cell membranes of gram positive intestinal microorganisms such 

Clostridia, Bacteroides and Streptococci. They also found extracellular activity in 

Bifidobacterium species. Most of the BSH that has been purified from intestinal 

microorganisms was intracellular (Lundeen and Savage, 1990; Grill et al, 1995; Gopal­

Srivastava and Hylemon, 1988; Stellwag and Hylemon, 1976). 

In the present study, BSH was released into the growth medium during bile salt 

deconjugation. Bile salt deconjugation may occur in the cytosol and alter cell permeability 

causing an increase in cellular permeability and/or some cell lysis. This is probably the 

reason that many intestinal microorganisms exhibit extracellular BSH activity. Masuda 
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(1981) found more BSH in culture supernatants after 24 hours of incubation than at earlier 

times for different strains of Bacteroides and of Clostridium. Kishinaka et al (1994) 

reported that high concentrations of conjugated bile acids induced extracellular BSH in C. 

perfringens. The specific BSH activity per cell in C. perfringens increased as the 

concentration of conjugated bile acids was increased. Moreover, Taranto et al (1996) 

showed that the most bile sensitive strain demonstrated the better deconjugation. It is 

likely the permeability of the most bile sensitive strain would be increased in the presence 

of conjugated and unconjugated bile salts thus permitting bile salt hydrolase to be released 

into the growth medium. 

According to Scopes (1982), methanol is a good organic precipitant for proteins. He 

studied the effect of various alcohols on yeast glyceraldehyde phosphate deshydrogenase 

activity. He found that the longer the aliphatic chain the more the denaturating the alcohol 

was. Thus, it was suggested that the methanol was organic solvent of choice for 

precipitation of enzymes. Moreover, methanol is a suitable solvent for extracting 

conjugated and unconjugated bile acids, the latter of which has been shown to be an 

strong inhibitor of BSH (Nair et al, 1967). Therefore, the use of methanol to precipitate 

the enzyme would prevent any precipitation of residual bile acids from the spent broth 

which could interfere during enzyme activity assays. 

After extracting the BSH from the spent broth, the total BSH activity in the methanol 

fraction was higher than that in spent broth. Bile salt hydrolase might have been inhibited 

by intracellular factors because both the BSH from spent broth and the BSH from cellular 

extracts resulted in low total BSH compared to the total BSH in the methanol fraction 

(see Tabless Cl to C6 in Appendix C). Similar observations were reported by Nair et al 

(1967) when purifying the BSH from cellular extracts of C. perfringens. They attributed 

such differences in BSH yield to the presence of an inhibitor within the crude extracts of 

C. perfringens. However, BSH from cellular extracts was recovered in lower percentages 
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from their methanol fractions. These results suggested that the stability of BSH from spent 

broth might be better than that from cell free extracts. Instability of B SH might be linked 

to proteases, since Lundeen and Savage (1990) reported a decline in BSH purity during 

gel filtration. They suggested that proteases that attacked BSH were involved in such a 

reduction. Bile salt hydrolase was better purified from the ammonium sulfate fraction 

resulting from 40 to 80 % saturation than from the fraction resulting from 20 to 40 % 

saturation. Several studies on BSH purification have shown that 40 to 75 % with 

ammonium sulfate resulted in best recovery of BSH (Lundeen and Savage, 1990; Gopal­

Srivastava and Hylemon, 1988). Gel chromatograms ofBSH from all three strains of L. 

acidophilus showed that ammonium sulfate fractions from spent broth were more 

contaminated than ammonium sulfate fractions from cell free extracts. Gel chromatograms 

of the ammonium sulfate protein fraction of L. acidophilus O 16 showed that it may 

contain two types of bile salt hydrolase. One of them for deconjugating sodium 

taurocholate and another for deconjugating sodium glycocholate. Gel fractions showed 

that the peak of highest BSH on sodium glycocholate (GBSH) did not correspond to the 

peak of highest BSH on sodium taurocholate (TBSH). To our knowledge, this is the first 

report of two BSH from a single microorganism having different specificity for sodium 

taurocholate and sodium glycocholate. Lundeen and Savage (1992) found four isozymes 

of BSH from Lactobacillus sp. strain 100-100 which had different values in their kinetic 

parameters towards the same substrate (sodium taurocholate). Bile salt hydrolase active 

on sodium taurocholate (TBSH) may have higher molecular weight than that active on 

sodium glycocholate (GBSH) as observed by the elution profile on G-200 Sephadex 

column gel. The fact that the optimum pH of TB SH is 5 .4 and that of GB SH is about 4. 0 

to 5.0 also indicates the possibility of two different BSH in L. acidophilus 016. The 

molecular weight of the BSH from all three strains of L. acidophilus was approximately 

126 KDa, which is smaller than the molecular weight reported for other BSH (i.e. 250 000 

in B. fragilis subsp. fragilis, Stellwag and Hylemon, 1976; B. longum BB536, Grill et al, 
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1995; 250 000 C. perfringens, Gopal-Srivastava and Hylemon, 1988), but it is in the range 

of the BSH from 115 000 in Lactobacillus sp. strain 100-100 (Lundeen and Savage, 1992) 

to 140 000 in B. vulgatus (Kawamato et al, 1989). The similar molecular weights ofBSH 

suggests that the B SH of strains of human origin ( 016 and L 1) and of the strain ATCC 

43121 of pig origin are closely related. 

There are no reports in the literature on the optimum pH for deconjugation of sodium 

taurocholate or sodium glycocholate by the same enzyme from the same microbial origin. 

In this study, the optimum pH for BSH of both L. acidophilus strains ATCC 43121 and 

Ll was in the range of 4.0 to 5.0. The optimum pH for BSH ofL. acidophilus strain 016 

was between 5.5 and 6.5. The values are in good agreement with most of the optimal 

values of BSH previously reported. Lundeen and Savage (1990), who studied BSH from 

Lactobacillus sp., found an optimum pH between 3.8 and 4.5 when using taurocholate as a 

substrate. Kawamoto et al (1989) and Gilliland and Speck (1977) showed that the 

optimum pH for taurocholate deconjugation by Bacillus vulgatus was in the range of 5.6 

to 6.4 and by L. acidophilus NCFM was 6.0, respectively. The pH optimum in B. longum 

(Grill et al, 1995) and C. perfringens (Gopal-Srivastava and Hylemon, 1988) was in the 

range of 5.5 to 6.5. Stellwag and Hylemon (1976) reported an optimum pH of 4.2 for 

BSH of B. fragilis subsp. fragilis. 

Enzyme efficiency in L. acidophilus ATCC 43121 was approximately similar to those in 

B. longum BB536 from human origin (Grill et al, 1995) and in B. fragilis subsp. fragilis 

(Stellwag and Hylemon, 1976). Moreover, it was higher than that found in Lactobacillus 

sp. strain 100-100 from rat stomach (10-fold)(Lundeen and Savage, 1992) and in C. 

perfringens (1,000-fold)(Gopal-Srivastava and Hylemon, 1988). 

Bile salt hydrolase has been purified from different intestinal microorganisms in which 

BSH activities range from micromoles per minute to millimoles per minute. For example, 
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Gopal-Srivastra and Hylemon (1988) reported 1.34 µmol/min/mg in C. perfringens. 

Lundeen and Savage (1990) reported 30.3 µmol/min/mg in Lactobacillus sp., and Stellwag 

and Hylemon (1976) reported a maximum of 160.2 µmol/min/mg in B. fragilis subsp. 

fragilis ATCC 25285. Moreover, Grill et al (1995) have reported the highest BSH activity 

of 178.2 mmol/min/mg in B. longum which is a microorganism widely used in fermented 

milks as probiotic. The BSH activities found in the strains 016, LI and ATCC 43121 

were 2.3, 3.8, and 25.8 µmol/min/mg respectively. 

During the isolation of BSH, sodium glycocholate was used as the principal substrate 

for measuring enzyme activity because of the high affinity of BSH towards this substrate. 

Lundeen and Savage (1990) and Grill et al (1995) did not find any significant differences 

in BSH deconjugating sodium taurocholate or sodium glycocholate in Lactobacillus sp. 

100-100 and B. longum BB536 respectively. There are reports of some stains capable of 

splitting glycine conjugates only (Aries and Hill, 1970a; Dickinson et al, 1971; Norman 

and Grubb, 1955) and some strains hydrolyzing taurine conjugates only (Dickinson et al, 

1971; Kobayashi et al, 1978). In this study, the BSH from all three strains of L. 

acidophilus were more active against glycine conjugates than taurine conjugates, and they 

hydrolyzed both trihydroxi- and dihydroxi-bile salt conjugates. In using L. acidophilus for 

treatment of hypocholesterolemia by bile salt deconjugation, a wide substrate specificity 

towards di- and tri-hydroxy conjugates of taurine and glycine is recommended. Since 

glycine conjugates are more prevalent in human bile (Burnett, 1965; Haslewood, 1967, 

1978; Mallory et al, 1973; Sandine, 1979), the preference of the human strains toward 

these conjugates should be advantageous. 

Lactobacilli are used commonly as a probiotics that are characterized as having 

potential for improving health conditions of animals and humans. A microbial strain may 

be a good candidate for a probiotic if it is genetically stable, survives the environmental 

conditions of the host until reaching the location where it is expected to exert maximum 
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activity and is safe for human or animal consumption. It also must produce the desired 

effect. 

Since the half-life of cl4_cholic acid in germ-free rats is five times larger than in 

normal animals (Gustafsson et al, 1957), intestinal microorganisms are intimately related 

to the bile and steroid metabolism in those animals. It also has been observed that 

supplementation of the diet of pigs with L. acidophilus increased the output of free bile 

salts (Mott et al, 1973). Such results may be extrapolated to other species including man. 

Lin et al (1989) reported that ingestion of commercially available Lactobacillus tablets, 

which contain about 2 x 106 CFU/tablet ofL. acidophilus and L. bulgaricus cells in a dose 

of four tablets per day, did not affect serum cholesterol concentrations. The strains used 

did assimilate some cholesterol only when cells were alive at numbers above 108 CFU/ml, 

but BSH activity was not tested. Tannock and McConnell (1995) reported that lactobacilli 

inhabiting the digestive tract of mice did not influence serum cholesterol concentrations, 

but they failed to report the number of viable cells within the intestinal tract nor were the 

animals reported to be hypocholesterolemic. High BSH activity in intestinal 

microorganism has not been entirely correlated to health benefits in animals, since high 

BSH activity in chicks resulted in poor weight gain (Feighner and Dashkevicz, 1988). 

However, high BSH activity, among other characteristics, may be an important factor in 

selecting microorganisms to induce health benefits in humans and animals. De Smet 

(1996), De Rodas et al (1996) and Gilliland et al (1985) have reported that strains of 

lactobacilli with high BSH activity decrease significantly serum cholesterol and serum bile 

acids in pigs. De Smet (1996) in swine and Bateup et al (1995) in mice did not find any 

significant differences in body weight between aminals treated with an active BSH 

lactobacilli and control group animals. Since cholesterol is not well absorbed in the 

presence of unconjugated bile acids as it is in the presence of conjugated ones (Holt, 

1972), bile salt hydrolase activity may also reduce the absorption of cholesterol. 

In this study lactobacilli from human origin (L 1 and O 16) showed less deconjugation 
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activity than a strain from pig (ATCC 43121). Strain ATCC 43121 has been associated 

with cholesterol uptake in vitro and also has been shown to reduce blood serum 

cholesterol in pigs (Gilliland et al, 1985; De Rodas et al, 1996). Isolates of L. acidophilus 

from pigs seem to have the higher and more frequent BSH activity than several other 

animal species. De Smet (1996) in a screening of BSH positive lactobacilli from different 

species found that the lactobacilli from pigs had much more BSH activity than did those 

isolates from man, rat, dog and rabbit. All isolates also had more activity towards 

glycocholate than towards taurocholate. Dashkevics and Feighner (1989) also found a 

high frequency of Lactobacillus spp. with BSH activity from swine origin when developing 

a differential medium for identifying bile salt hydrolase-active Lactobacillus spp. 

The results of the present study suggest that cells of L. acidophilus should be present at 

numbers above 108 CFU/ml to obtain a significant deconjugation rate at pH 6.5. If a strain 

ofL. acidophilus is used for reducing blood serum cholesterol by increasing the cholic acid 

output through feces, the lactobacilli should reach the upper part of the GIT in a desirable 

cell concentration from 108 to 109 CFU per gram. Moreover, the microorganisms may 

have to remain in the GIT from 6 to 8 hours to deconjugate significant amounts of bile 

salts. Normal concentration of lactobacilli from the duodenum to the ileum is from 1 o2 to 

10 7 CFU per gram in a human adult (Mitsuoka, 1978), and the transit time is from 3 to 10 

hours. The conditions for reducing serum blood cholesterol by bile salt deconjugating 

bacteria are not far from real since a dairy diet including 109 CFU/g of viable 

microorganisms is accessible for many consumers. For example, L. acidophilus 016 and 

Ll deconjugated sodium glycocholate in a rate of 0.1 mM/h and 0.09 mM/h at pH 6.5, 

respectively. Such rates were obtained with 2x109 CFU/ml. A 200 ml diet of any of those 

microorganisms can deconjugate 120 micromoles of sodium glycocholate in an average of 

6 hours of transit time throughout the small intestine. If 40 % of the deconjugated bile 

salts are excreted in the feces (De Smet, 1994) then 48 micromoles of free bile salts would 

be excreted, the same amount needs to be synthesized from cholesterol to replenish the 
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lost free bile salts. An heterozygous familial hypercholesterolemic patient with 2.5 times 

more LDL-cholesterol (8.0 mM) than a normal patient (3.2 mM) would have 44, 000 

micromoles (8.0 mM) ofLDL-cholesterol in his body (i.e. the average of blood in a human 

adult is 5. 5 L ). Such an amount would have to be reduced to 17, 600 micromoles (3 .2 

mM) of LDL-cholesterol to be in normal conditions. Therefore 26, 400 micromoles of 

serum cholesterol could be reduced in 275 days with a consumption of 400 ml diet of L. 

acidophilus strain 016 or Ll. Using a strain such ATCC 43121 the same amount of 

cholesterol could be reduced in 99 days. It is important to obtain human strains of L. 

acidophilus with higher BSH activity to reduce the time of treatment. Moreover, some 

dietary and bile cholesterol also would be excreted because of less efficient absorption in 

absence of adequate conjugated bile salts. 
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APPENDIX A 

API 50 CH CHARACTERIZATION OF LACTOBACILLUS ACIDOPHILUS O 16, Ll 
AND ATCC 43121 
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TABLE Al 

IDENTIFICATION OF THE THREE STRAINS OF LACTOBACILLUS 

ACIDOPHILUS BY THEIR FERMENTATION OF VARIOUS CARBOHYDRATES 1 

Carbohydrate 

Galactose 
D-Glucose 
D-Fructuose 

Bergey's2 

+ 
+ 

D-Mannose + 
L-Sorbose 
Mannitol 
N-acetyl glucosamine 
Amygdalin + 
Arbutin 
Esculin + 
Salicin + 
Cellobiose + 
Maltose + 
Lactose + 
Melibiose +/-
Sucrose + 
Trehalose + 
D-Raffinose +/-
Starch 
Glycogen 
b-Gentibiose 
D-Tagatose 
Ribose 
Rhamnose 
Arabinose 
Melezitose 
Sorbitol 
X lose 

016 ATCC 43121 Ll 

+ + + 
+ + + 
+ + + 
+ + + 
+ + + 

+ 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 
+ + + 

+ 
+ + + 
+ + + 

+ + 
+ + + 

+ 
+ + + 
+ + 

1 Based in the API 50 CH system (bioMerieux sa, France). All three strains were Gram 
positive catalase negative rods. 

2 Reactions that are listed for Lactobacillus acidophilus in the 8th edition of Bergey's 
Manual of Determinative Bacteriology. 
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Figure Al. Standard curves of the ratios of sodium glycocholate, sodium taurocholate and 
sodium cholate with their respective internal standard. The concentration of internal 
standard was kept constant at different concentrations of bile salts. 
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Figure A2. Chromatograms of sodium glycocholate and sodium taurocholate from an 
MRS broth sample. 

Figure A3. Chromatogram of sodium cholate from an MRS broth sample. 
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APPENDIXB 

DETERMINATION RATE OF THE BILE SALT HYDROLASE AND STABILITY OF 
THE BILE SALT HYDROLASE IN THE PRESENCE OF EDTA AND AT 

DIFFERENT STORAGE TEMPERATURES 
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Determination of rate of bile salt hydrolase 

As mentioned in Material and Methods, Bile salt hydrolase activity (BSH) activity was 

measured by quantification of sodium glycocholate or sodium taurocholate deconjugation 

at pH 5.4 and at 37 °C. The substrates were in 2.0 mM concentration in 50 mM acetate 

buffer, pH 5.4. Bile salt hydrolase was measured using fixed time assay. To assure that the 

measurements would provide true reaction rates, BSH activity was measured at different 

times to determine the range of time where reaction rates were constant. 

Table Bl shows that BSH activity based on 30 to 120 min incubation did not differ 

significantly (P<0.05). However, other analyses involving samples with higher BSH 

activity than that of samples used in Table B 1 resulted in reaction rates based on substrate 

limiting conditions which can be a typical error when using fixed-time enzymatic assays. 

This problem was improved by carefully selecting a shorter incubation time for the 

measurement. Another way used to improve the BSH fixed-time assay for samples having 

different amounts of activity was by diluting samples containing the enzyme and correcting 

the activity using the dilution factor. 

Table B2 the BSH sample which was diluted 1: 1 contained 0.60 mg/ml protein. and 

consumed all substrate during the 120 min of incubation. After diluting the sample, less 

substrate was consumed and the rate of activity based on 120 min incubation increased. 

The increase in rate of enzymatic activity was because the enzyme in the dilute samples 

were not under substrate limiting conditions by the end of the 120 min incubation. 

The bile salt hydrolase enzymatic assay was stopped by adding one volume of methanol 

to the enzymatic reaction mixture and placing it on ice. Table B3 shows that there were no 

significant differences (P>0.05) in BSH activity when the amount of remaining conjugated 

bile acid was quantitated from O to 24 hours after stopping the reaction with such a 

solvent. Methanol might function in one of two ways to stop the BSH activity. First, 
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methanol could denature the enzyme; second, methanol could sequester the conjugated 

bile salts and make them inaccessible for the enzyme. Bile salt hydrolase activity was 

measured by deconjugation of the substrates sodium glycocholate or taurocholate. The 

product of deconjugation, cholic acid, was formed in stoichiometric amounts as shown in 

Figure B 1. Since the measurement of sodium taurocholate and sodium glycocholate was 

faster and simpler than the measurement of cholic acid, the BSH activity assay was based 

on the disappearance of sodium glycocholate or sodium taurocholate. To demonstrate that 

bile salts did not merely precipitate at pH 5.4, sodium glycocholate (5 mM) was dissolved 

in 25 mM acetate-phosphate buffer and adjusted at different pH levels and held for 12 

hours at 37 C. Fifty percent of sodium glycocholate was precipitated at pH 1, such a 

precipitation was dependent of pH from pH 1 to 4, but no significant differences were 

observed from pH 5 to 7 (Figure B2). Most of the research on purification and activity of 

BSH has involved the use of buffers containing D-mercaptoethanol to maintain reduced 

condition in the proteic solution (Gopal-Srivastava and Hylemon, 1988; Grill et al, 1995). 

Also, those buffers always contained phosphates and EDTA that were important in 

maintaining stability of BSH against proteases. In the present study citrate, acetate and 

phosphate salts were tested for buffering the BSH enzymatic assay at pH 5.4. The effect 

of D-mercaptoethanol in each of the buffers on BSH activity also was analyzed. As 

suggested by the results in Table B4, any of the buffers analyzed at pH 5.4 was 

appropriate for measuring BSH activity. Moreover, low RIO potential created by the 

presence of D-mercaptoethanol did not increase bile salt hydrolase activity. 
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TABLE Bl 

EFFECT OF INCUBATION TIME ON DETERMINATION OF RATE OF FIXED­
TIME BILE SALT HYDROLASE ACTIVITY 

Time Bile salt hydrolase activityl 
(min) (nmoles/min/ml) 

30 6.14{0.91)8b 

60 6.87(0.57)8 

90 6.31(0.99)8 

120 · 5.98{0.57)ab 

180 4.66{0.57)bC 

240 3.92(0.0S)C 

420 2.34{0.16)d 

lBased .on the deconjugation of 2 mM sodium glycocholate at 37°C and pH 5.4 by an 
enzymatic sample from methanol precipitate from spent broth produced by Lactobacillus 
acidophilus 016. Each value is the average of two trials; numbers in parentheses represent 
the standard deviation. Means in the same column without common superscript letters 
differ significantly (P<0.05). 
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TABLEB2 

EFFECT OF ENZYME DILUTION ON FIXED-TIME BILE SALT HYDROLASE 
ACTIVITY 

Protein Dilution Sodium glycocholate consumed Final bile salt hydrolase 
(mg/ml) factor (nmol) activityl 

( nmol/min/ml) 
0.60 1: 1 197.0(4.24)a 8.2(0.14)d 

0.45 3:4 195.5(2.12)a 10.8(0.ll)C 

0.30 1:2 187.0(1.41)b 15.6(0.12)b 

0.15 1:4 109.5(2.12)C 18.2(0.28)a 

lBased on 200 nmol total sodium glycocholate deconjugation in 120 min at 37°C and pH 
5.4 by an enzymatic sample from methanol precipitate from spent broth produced by 
Lactobacillus acidophilus 016. Each value is the average of two trials; numbers in 
parentheses represent the standard deviation. Means in the same column followed by 
different superscript letters differ significantly (P<0.05). 

TABLEB3 

BILE SALT HYDROLASE ACTIVITY INACTIVATION BY METHANOL 

Time after enzyme inactivation 
(hours) 

0 

1 

2 

24 

Bile salt hydrolase activityl 
( nmol/min/ml) 

25.5(0.65)a 

25.2(0.46)a 

25.3(0.45)a 

25.6(0.36)a 

lBased on the deconjugation of 2 mM sodium glycocholate at 37°C and pH 5.4 by an 
enzymatic sample from methanol precipitate from spent broth produced by Lactobacillus 
acidophilus 016. Each value is the average of two trials; numbers in parentheses represent 
the standard deviation. Means in the same column followed by different superscript letters 
differ significantly (P<0.05). 
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TABLEB4 

EFFECT OF BUFFER AND D-MERCAPTOETHANOL IN THE ACTIVITY OF BILE 
SALT HYDROLASE. 

Buffer 

Acetate 

Phosphate 

Citrate 

Bile salt hydrolase activityl 
( nmol/min/ml) 

with 

MercaptoethanolA 

14.15(0.21)8 

13.10(0.42)8 

12.15(1.34)8 

without 

MercaptoethanolA 

13 .40(0. 70)8 

12.85(0.35)8 

12.40(0.14)b 

lBased on the deconjugation of 2 mM sodium glycocholate at 37 °C and pH 5.4 by an 
enzymatic sample from methanol precipitate from spent broth produced by Lactobacillus 
acidophilus 016. Concentration of buffers were 50 mM each and 10 mM 0-
mercaptoethanol when needed. Each value is the average of two trials; numbers in 
parentheses represent the standard deviation. Values in the same column followed by 
different lower case superscript letters differ significantly (P<0.05); values in the same row 
followed by different upper case superscript letters differ significantly (P<0.05). 
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Figure B 1. Stoichiometric comparison of free bile salts formed by bile salt hydrolase 
activity from Lactobacillus acidophilus O 16 on sodium glycocholate and sodium 
taurocholate. 
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Stability of bile salt hydro lase 

Effect ofEDTA and storage temperature on BSH activity. 

Bile salt hydrolase had a relative short half life time at S°C. Bile salt hydrolase activity 

on sodium glycocholate was reduced significantly after 2 or 3 days of storage. L. 

acidophilus is a microorganism which uses carbohydrates as its mainly carbon source while 

its nitrogen is mainly obtained by the breakdown of proteins. Species of lactobacilli 

contain high levels of acidic proteases and peptidases that are generally bound to the cell 

wall. These proteases also may act on cell material after lysis (Hammes et al, 1992). 

EDTA has been used mainly for its chelative properties in controlling proteases which 

need minerals for presenting enzyme activity. Different concentrations of EDTA were 

used to observe BSH stability. 

The results in Table BS showed that BSH activity can be stored for short periods at S 

°C in the presence of EDTA. BSH activity probably is lost during storage at 5 °C due to 

the action of proteases. Buffer solutions with concentrations of EDT A above 1 mM 

maintained significantly more activity than those without EDT A. Moreover, buffer 

solutions with concentrations of 2 and 4 mM EDT A can maintain initial activities of B SH 

up to 2 days at 5 °C. 

Bile salt hydrolase stability was also observed at temperatures below 0°C. BSH from 

intestinal microorganisms has been reported to maintain significant levels of activity after 

storage at -20°C for up to 8 weeks. 

The results in Table B6 showed that BSH can be stored at -20°C up to one month in 

the presence of at least 1 mM EDTA with no significant (P>0.05) decreases in its activity 

for up to 3 weeks. 
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TABLE BS 

EFFECT OF EDTA ON BILE SALT HYDRO LASE ACTIVITY OF 
LACTOBACILLUS ACIDOPHILUS 016 AT 5°C 

EDTAl (mM) 

Time (days) oB 1A 2A 4A 

0.0 14.96(0.23)3 15.15(0.63)3 15.03(0.28)3 15.10(0.28)3 

1.0 12.26(0.20)h 13.55(0.0?)h 14.45(0.35)3h 14.75(0.49)3b 

2.0 9.95(0.21)C 13.50(0.42)b 14.40(0.28)3b 14.83(0.10)3h 

3.0 8.28(0.3 l)d 13.85(0.21)h 13.55(0.77)h 14.59(0.34)b 

4.0 5.50(0.30)e 12.56(0. lS)C 12.80(0.28)C 12.95(0.21)C 

5.0 3.82(0.17)f 10.50(0.28)d 1 l .24(0.48)d 11.20(0.14)d 

6.0 l.15(0.49)g 9.60(0.14)e 9.80(0.14)e 10.85(0.91)e 

1 Based on the deconjugation of 2 mM sodium glycocholate at 3 7 °C and pH 5. 4 by an 
enzymatic sample from methanol precipitate from spent broth produced by Lactobacillus 
acidophilus 016. Each value is the average of two trials; numbers in parentheses represent 
the standard deviation. Values in the same column followed by different lower case 
superscript letters differ significantly (P<0.05); values in the same row followed by 
different upper case superscript letters differ significantly (P<0.05). 
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TABLEB6 

EFFECT OF EDTA ON BILE SALT HYDROLASE ACTIVITY OF 
LACTOBACILLUS ACIDOPHILUS 016 AT-20°C. 

EDTAl (mM) 

Time (weeks) oA 1A 2A 4A 

0.0 14.96(0.23)3 14.95(0.3 5)3b 15.03(0.28)3 15.10(0.28)3 

1.0 15.20(0.84)3 15.65(0.63)3 15.55(0.63)3 14.64(0.36)3 

2.0 14.30(0.42)3b 14.40(0.42)bC 14.45(0.63)3b 14.17(0.89)3b 

3.0 13.44(0.36)bC 14.70(0.14)bC 15.29(0.13)3 14.75(0.21)3 

4.0 12.80(0.14)C 13.75(0.2l)C 13. 80(0.42)b 13.25(0.49)3 

lBased on the deconjugation of 2 mM sodium glycocholate at 37 °C and pH 5.4 by an 
enzymatic sample from methanol precipitate from spent broth produced by Lactobacillus 
acidophilus 016. Each value is the average of two trials; numbers in parentheses represent. 
the standard deviation. Values in the same column followed by different lower case 
superscript letters differ significantly (P<0.05); values in the same row followed by 
different upper case superscript letters differ significantly (P<0.05). 

98 



APPENDIXC 

ENZYME PURIFICATION 
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Figure C 1. Elution profile of ammonium sulfate precipitate from spent broth of bile salt 
hydrolase activity produced by Lactobacillus acidophilus 016 on Sephadex G-200. Each 
0.8 ml fraction was monitored at 280 nm and fractions containing protein were assayed for 
bile salt hydrolase activity. 
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Figure C2. Elution profile of ammonium sulfate precipitate from cell extracts of bile salt 
hydrolase activity produced by Lactobacillus acidophilus 016 on Sephadex G-200. Each 
0.8 ml fraction was monitored at 280 nm and fractions containing protein were assayed for 
bile salt hydrolase activity. 
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Figure C3. Elution profile of ammonium sulfate precipitate from spent broth of bile salt 
hydrolase activity produced by Lactobacillus acidophilus Ll on Sephadex G-200. Each 0.8 
ml fraction was monitored at 280 nm and fractions containing protein were assayed for 
bile salt hydrolase activity. 
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Figure C4. Elution profile of ammonium sulfate precipitate from cell extracts of bile salt 
hydrolase activity produced by Lactobacillus acidophilus Ll on Sephadex G-200. Each 0.8 
ml fraction was monitored at 280 nm and fractions containing protein were assayed for 
bile salt hydrolase activity. 
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TABLE Cl 

PURIFICATION OF BILE SALT HYDROLASE FROM SPENT BROTH OF 
CULTURE OF L. ACIDOPHILUS 016 USING SODIUM GLYCOCHOLATE AS A 

SUBSTRATE 

Sp act 
Total Total (Upermg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Spent broth 200.0 17.2 3376 100.0 1.0 
196 

Methanol 20.0 4.8 3058 637 90.6 3.25 

(NH4)2S04 4.0 2.4 3453 1463 102.3 7.45 

Gel Sp-200 20.0 0.182 384 2136 11.4 10.8 

Micro- 1.5 0.15 342 2280 10.1 11.6 
concentrate 

TABLEC2 

PURIFICATION OF BILE SALT HYDROLASE FROM SPENT BROTH OF 
CULTURE OF L. ACIDOPHILUS Ll USING SODIUM GLYCOCHOLATE AS A 

SUBSTRATE 

Sp act 
Total Total (Upermg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Spent broth 200.0 20.0 1378 68.9 100.0 1.0 

Methanol 20.0 5.52 3758 681 272.7 9.88 

(NH4)2S04 4.0 2.4 3450 1437 250.3 20.9 

Gel Sp-200 12.0 0.156 580 3717 42.1 53.9 

Micro- 1.0 0.150 568 3786 41.2 59.7 
concentrate 
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TABLEC3 

PURIFICATION OF BILE SALT HYDROLASE FROM SPENT BROTH OF 
CULTURE OF L. ACIDOPHILUS ATCC 43121 USING SODIUM GLYCOCHOLATE 

AS A SUBSTRATE 

Sp act 
Total Total (U per mg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Spent broth 200.0 39.2 8150 208 100.0 1.0 

Methanol 20.0 10.4 11554 1110 141.7 5.33 

(NH4)2S04 4.0 4.8 11657 2429 143.0 11.6 

Gel Sp-200 10.0 0.64 10701 16720 131.3 80.4 

Micro- 0.41 0.32 7686 24018 94.31 115 
concentrate 

TABLEC4 

PURIFICATION OF BILE SALT HYDROLASE FROM CELLS OF L. ACIDOPHILUS 
016 USING SODIUM GL YCOCHOLATE AS A SUBSTRATE 

Sp act 
Total Total (U per mg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Cell free 10.0 53.6 3731 69.6 100.0 1.0 
extracts 
Centrifug. 10.0 7.80 315 40.3 8.44 0.57 

Methanol 7.5 4.87 1427 293 38.2 4.20 

(NH4)2S04 2.0 3.1 977 315 26.1 4.52 

Gel Sp-200 1.2 0.04 62.8 1570 1.68 22.5 
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TABLEC5 

PURIFICATION OF BILE SALT HYDROLASE FROM CELLS OF L. ACIDOPHILUS 
LI USING SODIUM GLYCOCHOLATE AS A SUBSTRATE 

Sp act 
Total Total (Upermg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Cell free 10 44.8 1696 37.8 100.0 1.0 
extracts 
Centrifug. 10 12.9 334 25.9 19.7 0.68 

Methanol 9 9.09 1571 173 92.6 4.57 

(NH4)2S04 3 6.0 1172 195 69.1 5.15 

Gel Sp-200 1.2 0.04 79.3 1983 4.67 52.4 

TABLEC6 

PURIFICATION OF BILE SALT HYDROLASE FROM CELLS OF L. ACIDOPHILUS 
ATCC 43121 USING SODIUM GLYCOCHOLATE AS A SUBSTRATE 

Sp act 
Total Total (Upermg 

Volume protein activity of protein) Recovery Purification 
Step (ml) (mg) (U) (%) (fold) 

Cells free 10 66.3 53726 810 100.0 1.0 
extracts 
Centrifug. 10 14.8 38918 2630 72.4 3.24 

Methanol 8 9.0 35588 3954 66.2 4.88 

(NH4)2S04 3 3.1 22324 7201 41.5 8.89 

Gel Sp-200 1.2 0.01 258 25800 0.5 31.8 
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Figure D 1. Gel chromatography of a protein cocktail to determine the relative molecular 
weight of bile salt hydrolase on Sephadex G-200. BD (Blue dextran 2000 KDa); IG 
(Immunoglobulin G, M.W. 158 KDa); HSA (Human Serum Albumin, M.W. 69 KDa); L 
(Lyzozyme, M.W. 14.3 KDa). 
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Figure D2. Estimation of the molecular weight of the bile salt hydrolase by Sephadex G-
200 gel filtration. BD (Blue dextran 2000 KDa); IG (Immunoglobulin G, M.W. 158 KDa); 
HSA (Human Serum Albumin, M.W. 69 KDa); L (Lyzozyme, M.W. 14.3 KDa). Ve, 
volume of elution of protein; Vo, volume of elution of blue dextran. 
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Figure E 1. Relative bile salt hydro lase activity of Lactobacillus acidophilus L 1 on sodium 
glycocholate and sodium taurocholate at different pH. 
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Figure E2. Relative bile salt hydrolase activity of Lactobacillus acidophilus ATCC 43121 
on sodium glycocholate and sodium taurocholate at different pH. 
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Figure E3 . Relative bile salt hydrolase activity ofLactobacillus acidophilus 016 on sodium 
glycocholate and sodium taurocholate at different pH. 
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Figure E4. Inhibition of bile salt hydrolase activity on sodium glycocholate by sodium 
taurocholate and sodium cholate. 
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Figure ES. Inhibition of bile salt hydrolase activity on sodium taurocholate by sodium 
glycocholate and sodium cholate. 
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TABLE Fl 

CORRELATION ANALYSIS OF ABSORBANCE AND pH WITH BOTH SODIUM 
TAUROCHOLATE AND SODIUM GLYCOCHOLATE DECONWGATION 

Variable n Mean Std Dev Sum Minimum Maximum 

Absorbance 112 0.2008 0.1588 22.4910 0.0010 0.401 

pH 112 5.1089 1.0242 572.200 3.8000 6.700 

Glycocholate 112 0.5082 0.4436 56.9210 0 1.000 

Taurocholate 112 0.6525 0.3711 73.0800 0 1.000 

Pearson Correlation Coefficients I Prob> IR I under Ho: Rho=O IN= 112 

Absorbance 

pH 

Sodium glycocholate 
deconjugation 

-0.94362 
(0.0001) 

0.90171 
(0.0001) 
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Sodium taurocholate 
deconjugation 

-0.79235 
(0.0001) 

0.71915 
(0.0001) 



TABLEF2 

CORRELATION ANALYSIS BETWEEN ABSORBANCE AND COUNT PLATE 
NUMBER FOR OTO 10 HOURS OF INCUBATION 

Variable n Mean Std Dev Sum Minimum Maximum 

Absorbance 78 0.2152 0.1757 54.2550 0.001 0.4870 

Count plate 78 2.lxl09 2.8x109 5.3x1Ql 1 1300 1.3x1010 

Pearson Correlation Coefficients I Prob > I R I under Ho: Rho=O IN= 78 

Absorbance Count plate 

Absorbance 1.00000 0.77090 
(0.000) (0.0001) 

Count plate 0.77090 1.00000 
(0.0001) (0.000) 
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TABLEF3 

ANALYSIS OF VARIAN CE OF TABLE 1 - KINETIC PARAMETERS OF BILE SALT 
OECONJUGATION OF LACTOBACILLUS ACIDOPHILUS 016, Ll, AND ATCC 

43121 IN STATIC CULTURES 

Source OF Sum of squares 
Strain 016 

Model 3 22.747360184 
Error 45 1.774953816 
Total 48 24.522314000 

Parameter Estimate 
Lag phase 5.511003758 
Oeconjugation rate 0.188825526 
Total deconjugation 1.020579823 

Source OF Sum of squares 
Strain Ll 

Model 3 17.901329917 
Error 45 0.211306083 
Total 48 18.112636000 

Parameter Estimate 
Lag phase 4.234572266 
Oeconjugation rate 0.260897302 
Total deconjugation 1.003042328 

Source OF Sum of squares 
Strain ATCC 43121 

Model 3 20.667543911 
Error 45 0.563410089 
Total 48 21.23095400 

Parameter Estimate 
Lag phase 4.823595700 
Oeconjugation rate 0.202554183 
Total deconjugation 0.991708041 

Pooled standard error (pse)= -.Jse\ + se\ 

t = µ1-µz/pse 

degrees offredom = n1-3 + n2 -3 

t = Student's t, µ = means, n = observations 
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Mean square F Value 

7.582453395 192.2363 
0.039443418 

Std. error 
0.657557612 
0.041425140 
0.069432252 
Mean square F Value 

5.967109972 1270.7875 
0.004695691 

Std. error 
0.1993361722 
0.0247702211 
0.0172469605 
Mean square F Value 

6.889181304 550.24531 
0.012520224 

Std. error 
0.3610185483 
0.0266844630 
0.0340422357 



TABLEF4 

ANALYSIS OF VARIANCE OF TABLE B5 - EFFECT OF EDTA ON BILE SALT 
HYDROLASE ACTIVITY OF LACTOBACILLUS ACIDOPHILUS 016 AT 5°C 

Source DF Sum of squares Mean square F Value 

Model 3 262.46900536 87.48966845 11.23 

Error 52 405.21929286 7.79267871 

Total 55 667.68829821 
OSL< 0.05 
LSDo.os = 2.1172 
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