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CHAPTER I

INTRODUCT ON

Background and Signiiicance

Ticks and Mites

Ticks and Inites belong to the order Acari and the class Arachnida. The

Arachnida constitute the largest class ofChelicerata (approximately 65,000 described

species) with about 8,000 in North America (Borror et, al 1992). It has been estimated

that over 30,000 species have been described with another half-million still undescribed.

The characteristic body shape of the Acari is oval with little or no differentiation of the

body regions with 4 pairs of legs, the exception being larvae which have 3 pairs. The

Acari have four life stages: egg, larva, nymph and adult.

The suborder Ixodida is one of the suborders of Acari and can be further divided

into two main families, the Aragasidae (soft ticks) and the Ixodidea (hard ticks). Ixodid

ticks have four stages in their life cycle (embryo, larva, nymph and adult stages) whereas

argasid ticks have two or more nymphal stages and feed more rapidly than ixodid ticks.

The general shape of the hard tick is one that is flattened dorsoventrally with an

oval shape. Ixodid felnales are slightly larger than the lnales and imbibe much larger

blood meals. The scutum found in hard ticks (referred to as a shield) is absent in soft

ticks. In male hard ticks, the scutum is relatively large and covers most of the dorsal

surface. In females, the scutum is smaller and is located posterior to the capitulum.

Certain species of ticks may have ornamental or color markings located on the scutum.

Each species ofhard ticks has variable life cycles and variable seasonal activity. Hard
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ticks can be further classified according to the type of host-feeding cycle: one, two or

three host ticks.

Ticks play an important role in medical and veterinary medicine throughout the

world and vector pathogens that cause diseases such as Rocky Mountain spotted fever

and Lyme disease in humans and ehrlichiosis in domestic animals (Service, 1996).

Lone Star Tick: Amblyomma americanum (L.)

The lone star tick is a three-host ixodid tick that is an important pest in Oklahoma.

This tick can attack man in all three of the feeding/developmental stages. The lone star is

commonly found in the Ozarks and southeastern regions of the United States. The lone

star tick is considered a three-host tick because it feeds on three different hosts in each of

its parasitic life stages. The lone star tick can be found around trails or pathways in

natural fields or parks, waiting for a suitable host to pass by and attach to. The adult lone

star tick;s active period occurs during May and June, continuing on into early July.

Larval or "seed ticks" appear in mid- to-late summer parasitizing cattle and potentially

man because of their small size and difficulty of detection on clothing. Nymphs are

active May through early August, with a peak in activity during Mayor June. The lone

star tick receives its name from the white spot on the scutum ofthe female. The male has

non-connected white markings around its posterior margin. The female ingests an

enormous blood meal that may be more than 100 times her own weight.
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Tick-host interaction

The lone star tick undergoes a slow or long feeding stage that lasts seven to

fourteen days followed by a quick feeding period of24 to 48 hours. During the slow

feeding period, the tick may encounter several defense mechanisms initiated by the host:

inflammatoryiimmune responses, clotting or blood vessel constriction. The salivary

glands secrete molecules to counter the host's defense system including a cocktail of

proteins and high concentrations ofPGEz and PGF2a (Bowman et aI., 1996).

Prostaglandins of the 2-series belong to a group of compounds called eicosanoids. Most

eicosanoids are derivatives of the 20-carbon polyunsaturated fatty acid arachidonate and

are referred to as "local hormones" functioning primarily on the cells near the point of

release or on the same cell. Prostaglandins regulate a variety of physiological processes

and can be involved in host parasite interaction (Daugschies and Joachim, 2000). In

order for prostaglandins ofthe 2-series to be synthesized, there has to be free arachidonic

acid available fOf the cyclooxygenase enzyme in the glands. Cyclooxygenase acitivity

has been demonstrated in the salivary glands of the lone star tick (Aljamali et aI., 2002).

Prostaglandin production and dopamine stimulation

Dopamine belongs to a group of compounds called catecholamines which are

derived from tyrosine. Several other members include norepinephrine and epinephrine.

These molecules are synthesized in the brain and other neural tissue where they function

as neurotransmitters. Dopamine (DA) released from nerves impinging upon the tick

salivary glands stimulates salivary secretion. An activated dopamine D1 receptor

stimulates adenylate cyclase, which then converts ATP to cAMP and cAMP is involved

in fluid secretion (Schmidt et at, 1981; 1982). Dopamine also stimulates an influx of
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Ca2
+ into the cell, which activates an intracellular phospholipase (cPLA2) (Bowman et at,

1995). Activation of the phospholipase A2 cleaves arachidonic acid from the sn-2

position on the phospholipid bilayer. Free arachidonic acid is converted to

prostaglandins by the cyclooxygenase pathway (Aljamali et aL, 2002)

Dopamine Receptors

Dopamine (DA) is the predominant catecholamine neurotransmitter in the

Inalnmalian brain (Missale et aI, 1998). In mammals, dopamine controls a variety of

functions like locomotive activity, food intake and endocrine regulation. Human

disorders such as Parkinson's disease, schizophrenia, Touretle's syndrome and

hyperprolactinemia have been linked to unnatural control ofdopaminergic transmission.

Dopamine is known to act through multiple receptors in mammalian cells (Anderson et

aI, 1990). Work by Spano et al. (1978) demonstrated that DA receptors exist as two

discrete populations, (1) positively coupled to adenylate cyclase (Ae) and (2)

independent of the cAMP system. Kebabian and CaIne (1979) found that dopamine

interacts with the D] receptor and activates AC. From these studies, the activation ofAC

via a D 1 receptor allowed for the accumulation of cAMP (Zhou et aI, 1990). The

dopamine, D] receptor was first cloned by Zhou et aI. (1990). In the early 1980s, the

function of the D2 receptor \vas shown to inhibit AC (Enjalbert and Bockaert, 1983).

From these studies and others, and subsequent cloning of the D2 receptor its role

inhibiting AC was confirmed (Gingrich and Caron, 1993).

Shipley et al. (1996) suggested that both D] and D2 receptors may be present in

the salivary glands ofDermacentor variablis (Say) based upon dose-dependent dopamine

and dopamine receptor agonists and antagonist affects on cAMP accumulation in the
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salivary glands ofDermacentor andersoni. It was suggested that the D 1 receptor was

stimulated by dopamine thr,ough activation of AC via a G-protein. This activation then

causes the conversion ofATP to cAMP and causes the activation of a protein kinase. The

authors presented evidence suggesting that dopamine binding to a D2 receptor inhibited

this activation of AC, thus lowering the amount of cAMP at high concentrations of

dopamine.

Arachidonic Acid Release

Piomelli et aI., (1991) suggested that arachidonic acid could be released via

dopamine interaction with a Dz receptor in Chinese hamster ovarian (CHO) cells. This

observation was further supported when D2 agonists caused the potentiation of AA

release in striated neuron cells in the presence of calcium (Schinelli et a!., 1994). Despite

work on the mechanism of dopamine-stimulated release, a true understanding is not clear.

One suggested mechanism is D2 receptor linkage to protein kinase C (PKC) activation. It

was shown that this activation increases the AA release in the presence ofD2 agonists

and a calcium ionophore (DiMarzo et aI., 1993). Activation of a D 1 receptor

demonstrated that this receptor did not affect the release ofAA in CHO cells (Piomelli et

a!., 1991). This result was confirmed in studies that involved the use ofDt agonists,

which caused an inhibition ofcalcium-evoked AA release, which was also mimicked by

forskolin (Schinelli et aI., 1994).
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Dopamine D2 receptors and G-Proteins

In later experiments, Dz transfected CHO cells activated by DA or a known D2

agonist R- (+)-3-(3-Hydroxyphenyl)-N-propylpiperidine;(3-PPP) stimulated AA release

without requiring the use ofa Ca2
+ mobilizing agent (Nilsson et aI., 1998). The same

authors were able to show involvement ofD2 receptors in AA release by inhibiting

dopamine-stimulated release by a known D2 antagonist, raclopride. In their findings, AA

release was abolished by pertussis toxin (PTX), which suggests that the receptor is linked

to a G-protein before releasing AA. Similar results were observed in earlier studies that

demonstrated coupling of D2 receptors to adenylate cyclase inhibition via a G-protein

(Gi ) in mammalian cells (Cockcroft et aI., 1991). With studies involving PTX, D2

inhibition ofAC occurred when the Gi was inhibited. (Cockcroft et aI., 1991).

G-proteins

At the cellular level, many hormones, neurotransmitters and other ligands effect

cells by binding to G-protein coupled receptors. An important role for membrane­

associated trimeric G-proteins is to determine the specificity and temporal characteristics

of cellular responses to hormones and neurotransmitters. Trimeric G-proteins serve as a

mechanism for information transfer across the lipid membrane (Stryer, 1988). Trimeric

G-proteins consist of: a (45 kDa), p (35 kDa) and r (7 kDa) subunits. There are four

main classes ofG-Proteins: Gs which activate adenylate cyclase, Gi which inhibit

adenylate cyclase, Gq which activate phospholipase C (PLC) and G12/G13 whose function

is currently unknown (Hamm, 1998).
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At rest, trimeric G-proteins are in the GDP-G-protein-inactive state. An exchange

of Guanosine triphophate (GTP) for bound GDP causes the G-protein to become active

with the heterotrimer dividing into Gu-GTP and GJYy subunits. The disassociated Ga

subunit is the target of specific bacterial toxins (pertussis and cholera) that have a high

affinity for GTP binding sites; and is an effector for intracellular regulatory enzymes like

adenylate cyclase (Ae) and cGMP phosphodiesterase (Jelsema andAxelrod, 1987). The

GTP-bound a subunit's surface changes allowing for a 20-100 fold higher affinity to

binding effectors compared to the GDP-hound inactive form( Hamm, 1998).

Effects of Gfty

GfYy subunits are involved in facilitating the re-association of the complete G

protein complex and both are required for specific G-protein interaction with receptor.

Currently, not much is known about the exact role of the ~y-dimer upon release from the

whole G-protein after ligand-receptor interactions. Originally the main function was

thought to be deactivation of the Ga subunit (Clapham and Neer, 1997). Later evidence

emerged showing that the Gf3y dimer itself could regulate effectors. The first proof came

when Logothetis et al. (1987) demonstrated that the Gf3y activated a K+-ion channel in

cardiac cells. In the following years, more evidence was presented, supporting the

hypothesis that dimeric GJrt subunits activate numerous effectors. A variety of effectors

have been found to be regulated by one or both subunits. Numerically these effectors are

regulated by one or two subunits particularly with 20 Ga , 6 Gpand 12 Gy subunits

providing 1440 possible combinations of signal transduction options (Chapman and Neer,

1997).
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In recent years, work linking GJYy to Ca2
+ mobilization has surfaced. Jelsema and

Axelrod (1987) demonstrated that Gf31 stimulated Ca2
+-dependent phospholipase A2 in

rod outer segments (ROS) of bovine retina. A direct role for the dimer stimulation of

calcium influx was not shown. More recently, Thomason et aI., (1994) demonstrated that

Gp1 of a G-protein coupled receptor activates PI (phosphoinositide) 3-kinase. PI-3 kinase

is a heterodimer of an 85kDa regulatory subunit (p85a,~) and a 160 kDa catalytic subunit

(pl10a,~) and converts phosphatidylinositol (4,5)-bisphosphate (PIP2) to

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) ((Ui et aI., 1995; Demirovic et aI.,

2000). Wortmannin has proven to be an important tool in assessing a role for PI-3 kinase

because of its ability to specifically inhibit the enzyme (Ui et at., 1995; Thomason et al.,

1994). Significantly, Viard et al., (1999) reported that GJYy stimulate L-type voltage­

dependent Ca2
+ channels via PI-3 kinase and stimulation is inhibited by wortmannin.

Objectives and Specific Aims

Ticks are important pests of humans and other mammals. When ticks feed, the

salivary glands act as the organs of fluid secretion to concentrate the blood meal.

Coincidentally the salivary glands serve as a conduit for pathogen transmission to the

host. The salivary glands also counter the host's defense system by secreting a cocktail

ofbioactive molecules, which includes prostaglandins (Sauer et aI, 2000). It has been

shown that high levels of prostaglandin E2 (PGE2) and PGF2a are found in the saliva of

the lone star tick (Bowman et ai, 1996~ Aljamali et aI., 2002).
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For prostaglandins of the 2-series to be synthesized, the salivary glands must

regulate release of their precursor, arachidonic acid. Previous work has shown that

dopamine (the primary agonist stimulating secretion) initiates an influx of Ca2
+ into the

glands, activating an intracellular phospholipase (PLA2) leading to the release of

arachidonic acid (Bowman et aI., 1995). Arachidonic acid is then converted to

prostaglandins via the cyclooxygenase pathway (Aljamali et aI., 2002). The goal ofmy

research was to learn more about how AA is released from salivary glands after

stimulation by dopamine. As part of this objective, I wanted to see if intracellular

"second messenger" molecules are involved in release ofarachidonic acid after gland

stimulation by dopamine.

My specific aims are:

1. To determine the concentration of dopamine required to release AA.

2. To see if dopamine D 1 and D2 agonists and antagonists affect the release of AA.

3. To determine the effects of second messenger molecules (Ca 2+, cAMP) and signal

transduction pathways (protein kinase C) on AA release.

4. To detennine if dopamine-stimulated release ofAA occurs via a G-protein linked

receptor mechanism and whether this G-protein action can be inhibited.
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Chapter

MATERIALS AND METHODS

Tick salivary gland collection

Adult female lone star ticks were reared on sheep according to the methods of

Patrick and Hair (1975) at Oklahoma State University's Tick Rearing Facility. The

females were removed during the "slow feeding" phase. Salivary glands then were

dissected while submerged in ice-cold M199 buffer solution. Upon exposure, the right

gland was removed and deemed the experimental gland and the left gland was removed

and deemed the control gland. The dissected glands were transferred to microcentrifuge

tubes (three pairs per tube) containing 400JlI, ice-cold M199 solution. For all the

experiments, ticks were used within two hours of their removal from the sheep and the

glands were dissected (Bowman et al., 1995). Salivary glands were rinsed twice with

400f.l1 ice-cold M199 with ,,-,20s centnfugation at 5600g in between.

Incorporation of [3HJ arachidonic acid and first incubation

Salivary glands were resuspended in 150JlI-oxygenated M199 containing O.15J.lCI

[3H] AA and incubated for 60 min in a shaking water bath at 37°C to label cellular lipids.

Equilibrium Phase

At the end of the first incubation, the salivary glands were removed from the

water bath and centrifuged for 20 seconds at 5600g. The labeling solution was discarded

and the glands were resuspended in 400JlI of M199 medium. Then the glands were
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centrifuged for 20 seconds at the same speed as before and wash was repeated four times.

At the end of the fourth centrifugation, the supernatant was removed and 150J.lI of

oxygenated, ice-cold M199 added. The glands were then placed in a shaking water bath

at 37°C for 60 minutes.

Testing of agonistic or antagonistic compounds

At the end of this "equilibrium period" the supernatant was discarded and the

cells rinsed twice \vith 400J.!1 of M199 medium. The pre-labeled salivary glands were

resuspended and incubated, as before, in 150Jll oxygenated M199 with and without

various agonists and antagonists for 60 minutes. At the end of the incubation period,

325~1 ice-cold 120-mM NaCl, 2.7 tnM KCl in lOmM phosphate buffer, pH 7.4

containing 5mM EGTA was added to stop the reaction.

Lipid extraction

The cells and supernatant were then transferred to glass/glass homogenizers

together with a further 325JlI of the phosphate buffer, which was used to rinse the

microcentrifuge tube. Lipids were extracted from the combined cells and media

according to Bligh and Dyer (1959) and stored in chlorofonn containing 0.05% butylated

hydroxytoluene (BHT) at -20°C.

Lipid analyses

Cellular lipid extracts were separated into neutral lipids, free fatty acids and

phospholipids on aminopropyl solid phase extraction columns (500mg) by the method of
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Kaluzny et a1. (1985) as described by Shipleyet a1. (1994) and Bowman et al. (1995).

Aminopropyl solid phase extraction colwnns with fitted stainless-steel [rits are supplied

by Varian, Harbor City, CA. The lipid fractions were dried down under a gentle stream of

nitroge~ re-dissolved in O.5ml methanol: acetic acid (99: 1 v/v) and then mixed with 5ml

BioCount (Research Products International Corp., Mount Prospect, IL) scintillation

cocktail. The radioactivity was determined by liquid scintillation counting (Beckman

LS6000SC, Fullerton, CA) employing an automatic quench correction curve.

Lipid extraction contirmation

In some samples, to validate the column solid-phase extraction method for

separating and identifying labeled lipid classes, lipid extracts were separated by thin-layer

chromatography on 20 x 20 cm silica gel G plates, 250 J...lrn thickness in hexane/diethyl

ether/acetic acid (75:25:1, v/v/v). Lipid classes were identified by comparing known

lipid standards under iodine vapor. Silica bands corresponding to the lipids were scraped

into vials and vortexed with 500JlI methanol/acetic acid (99: 1) and then 5ml Biocount

scintillation fluid. Silica was allowed to settle for at least 5" h before radioactivity was

determined by liquid scintillation counting.

Cyclic AMP assay

Lone star tick salivary glands were removed according to procedures previously.

Two pairs of left and right glands were placed in separate pools of M199 medium. After

removing excess trachea and gut material, the glands were resuspended in 150 fll of

M199 medium containing theophylline. The left glands were deemed the control and not
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stimulated, while the right glands were deemed the experimental. The experimental

samples were stimulated with lOJlM PPHT-HCI, a known D2 receptor agonist. Both sets

of glands were placed in a shaking water bath for 60 minutes.

After the 60 minutes incubatio~ the glands were removed. The control and

experimental glands were homogenized in 7ml ground glass homogenizers for 10

minutes. The homogenate of both samples were transferred to two microcentrifuge tubes

labeled "c" for control and "E" for experimental and placed in boiling water for 10

minutes. The assay developed by Amersham is based on the competition between

unlabelled cyclic AMP versus a fixed quantity of the tritium labeled compound. The two

compete for the binding to a protein which has a high affinity and specificity for cAMP.

The amount of labeled protein-cAMP complex that is fonned is inversely related to the

amount of unlabeled cAMP that is created. Separation of bound protein-cAMP from the

unbound nucleotide is carried out by charcoal absorption of the free nucleotide.

Reagents were prepared according to protocol outlined by Amersham. A Tris­

EDTA buffer, binding protein, charcoal absorbent, labeled tracer and cAMP standard

were reconstituted with correct buffers supplied by Amersham. Next, five cyclic AMP

standards were prepared in microcentrifuge tubes: 16, 8, 4, 2, and 1 pmol using serial

dilution. After incubation the tubes were placed in an ice water bath. 150JlI of reagent 1

(Tris-EDTA buffer) was loaded into two microcentrifuge tubes to serve as a blank. 50111

of reagent 1 was loaded into two other tubes to detennine the binding of label in the

absence of unlabeled cAMP. The next ten tubes were loaded, starting with the lowest

level of cAMP standard with 50J.ll in successive pairs of.assay tubes (5-14). Then tubes

15-26 had 50JlI of unknown homogenate added to them. Next all assay tubes had 50J.11 of
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reagent 3 (labeled cAMP) added. Lastly tubes 3-26 then had reagent 2 (binding protein)

added to them for a final volume of200tll.

The assay tubes were then vortexed for 5 seconds and placed back into the ice

bath. The ice bath was then placed into a 4°'C refrigerator for two hours. At the

completion of the two hour incubation, IOOJlI of charcoal suspension was added to all

assay tubes. The tubes were then centrifuged for 10 minutes at 15,OOOg's. Without

disturbing the charcoal, 200Jll of the supernatant was removed and placed into a

scintillation vial with 20ml of scintillation fluid and radioactivity was counted with a

Beckman L56000SC liquid scintillation counter.

Protein Assay

To determine the proteiD concentration in the cAMP assays, a standard protein

assay was carried out. Prior to the assay, eight standards were prepared according to the

procedure prescribed by BioRad (Hercules, CA). The eight protein standards were

composed of BSA/dH20 and had final concentrations of: 0.025,0.0375,0.10,0.15,0.20,

0.25 and .20~g/ml. Dye reagent was diluted to a working concentration according to

manufacture's instructions.

A Falcon #3915-96 well plate was used to conduct the protein assay. In the fIrst

three spaces (moving from left to right) a blank was loaded into the wells. Next 20111 of

standard #1 was added into the next three wells. Each standard continuing from 2-8 was

added in triplicate with 20fll into each well. After standards were loaded, 180Jll of the

dye reagent was added. It was previously determined that 5Jll of the unknown -(control

and experimental homogenates) would be loaded in the well with 15fll of dH20 and
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180fll of dye reagent. According to manufacture's instructions, plate must incubate after

dye has been added for 5 minutes but no long,er than one hour. After incubation, plate

was read on a Thermomax microplate reader (Molecular Devices, Sunnyvale, CA) at 595

nm. Unknown protein concentration was calculated usingSoftmax Pro software ver.

1.1 (Molecular Devices, Sunnyvale CA).

Presentation ofData

Data were calculated to show the percent difference in distribution of labeled AA

in experimental salivary glands as compared to distribution in control glands. Percent

differences were calculated as follows:

1. The total radioactivity found in all three fractions (PLs, NLs,

FAA) was determined and the percent radioactive AA of each

fraction was calculated.

2. Results in figures are expressed as the differences in the

percent of each fraction between the experimental and control

glands.

Statistical Analysis

The results are expressed as mean ± standard error. Percent differences between

control and experimental amounts of labeled AA in phospholipids (PL), free fatty acid

(FFA) and neutral lipids (NL) were tested for significance by the Student's t-test. A P­

value (p<O.05) was considered significant.
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Materials

Chemicals were obtained from the following sources: Dopamine, Ca2
+ ionophore

A-23187, forskolin, PPHT-HeI, haloperidol, spiperone, R-(+)-SKF-38393, (±)SFK­

82958 hydrobromide, R-(+)-SCH-23390, quinelorane, wortmannin, theophylline, M199

medium and phosphate buffered saline solution are purchased from Sigma, S1. Louis,

MO. Arachidonic acid [S,6,S,9,11,12,14,15-3H(N)]- (100Ci/mmol) was purchased from

DuPont®-New England Nuclear, Wilmington, DE. The cyclic AMP (3H) assay system

complete with reagents were purchased from Amersham. Aminopropyl solid phase

extraction columns with fitted stainless-steel frits were purchased from Varia~ Harbor

City, CA.
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CHAPTER III

RESU-LTS

Effects ofdopamine on the release oflabeled arachidonic acidfrom tick salivary gland
lipids.

Previous work demonstrated that stimulation of salivary glands by dopamine

evoked release of AA from phospholipids via a verapamil-sensitive mechanism (Bowman

et, al 1995). Verapamil is a known inhibitor of voltage-dependent Ca2
+ channels,

suggesting that dopamine stimulates influx of Ca2
+ and activates a Ca2

+-sensitive

phospholipase A2 (PLA2).

DA stimulated a dose-dependent release of arachidonic acid from salivary glands,

that was significant at 1.0 and 10.0 11M, (p<O.05) (Figure 1). The amount of AA in the

phospholipid fraction decreased with increasing dopamine concentration. There was a

corresponding increase in labeled AA in the neutral lipid (NL) fraction. Bowman et al.

(1995) have shown a similar shift of labeled AA into the neutral lipid fraction during

gland stimulation and that almost all the neutral lipid is in the [onn of triglyceride

(Bowman et aI., 1995). As demonstrated before by Bowman et. al. (1995), verapamil

blocked the ability ofdopamine to release AA but substantially only if glands were pre-

incubated with verapamil prior to stimulation with DA (Figure 2). Statistically

significant changes were observed in the fatty acid and neutral lipid fractions (p<O.05).

The effects ofdopamine D1 and D2 receptor agonists/antagonists on release oflabel~d
AA.

Stimulation ofDz receptors in eRO cells elicits release of free AA (Piomelli et

aI., 1991). This was shown further by Schinelli et al. (1994) who demonstrated AA
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release in neurons via D2-receptor activation. Two mammalian D 1 receptor agonists

(SKF-38393 and SKF-82958) stimulated an apparent release ofAA but the changes noted

were highly variable and not statistically significant (Figure 3).

Previous work demonstrated a dopamin,e D1-like receptor in the salivary glands of

the lone star tick (Schmidt et aI., 1981, 1982). PPHT-HCI, a D2-receptor agonist in

mammals potentiated a significant release ofAA from salivary phospholipids (p<O.05),

with a corresponding increase in AA associated with the neutral lipid fraction (p<O.05)

(Figure 4). Quinelorane, another mammalian D2-receptor agonist was ineffective in

stimulating re-distribution ofAA in lipid fraction (Figure 4). Neither D2 receptor

antagonists (spiperone and haloperidol in combination with dopamine; lOflM) had any

affect on release ofAA (Figure 5). To investigate further whether a D2-like receptor is

present in the tick salivary gland and involved in release of free AA, a known mammalian

D1 antagonist (SCH-23390~ 10flM) was used in combination with dopamine (Figure 6).

The D 1 receptor antagonist did not affect significant changes in redistribution of labeled

AA as compared to dopamine.

Effects ofsecond messengers on the release oflabeled AA from tick salivary gland

phospholipids.

Prostaglandin production in the lone star tick relies on the availability of AA. AA

is released from phospholipids via the activation of a phospholipase (PLA2), which

cleaves AA from the sn-2 position. Free AA is then converted to prostaglandin via the

cyclooxygenase pathway (Bowman et al., 1995). Dillwith et al. demonstrated Ca+2

dependent PLA2 activities in the salivary glands of the lone star tIck (unpublished data).
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Three different concentrations of the calcium ionophore A-23187 (0.1,1.0.,

10.0flM) displayed an apparent increase in release of free arachidonic acid with release

significant at lO.OflM; p<O.05 (Figure 7). The next experiment was to see whether

verapamil (Ca2
+ channel blocker) could block AA release stimulated by A-23187, a

known calcium ionophore. Surprisingly statistically significant inhibition (p<O.05) was

recorded in the free fatty acid fraction as compared to that stimulated by lOflM A-23187

(Figure 8).

Verapamil was tested to see if it affected redistribution ofAA, as compared to

that seen by dopamine D 1 and D2 agonists alone. Although SKF-82958 on its own did

not affect release ofAA, verapamil co-incubated with SKF-82958 significantly inhibited

release (p<0.05) of AA. A similar result was not seen with PPHT-HCI possibly because

the salivary glands were not pre-incubated with verapamil prior to adding PPHT-HCI

(Figure 9).

As noted a dopamine D1-like receptor is present in tick salivary glands (Schmidt

et al., 1981, 1982). Stimulation ofD1 receptor in tick salivary gland activates adenylate

cyclase converting ATP into cAMP. Neither forskolin nor dibutryl cAMP stimulated

AA release but instead caused an apparent re-incorporation of labeled AA into the

phospholipid fraction. Forskolin was more effective than dibutyrl cAMP in this process

(Figure 10).

D2 receptors have been linked to Gi protein mediated activation of protein kinase

C (PKC) in certain cells (Cockcroft et al., 1991). In Chinese hamster ovary (CHO) cells,

release of AA occurs via D2 receptor occupation and coupling to a Gi protein, activation

ofPKC and inhibition ofcAMP levels (Di Marzo et. aI., 1993). Experiments involving
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the use ofphorbol ester, PMA (PKC agonist) and A-23187 togeth,er stimulated release of

AA from CHO cells (Di Marzoet. a!., 1993). In my experiments O.lflM A-23187 and

PMA stimulated a statistically significant release offree fatty acid, p<O.05 (Figure 11).

The effect ofPMA by itself on the release of labeled AA was not investigated. The same

concentration of A-23187 on its own had no affect on re-distribution of AA (Figure 7).

Salivary glands were incubated with PPHT-Hel to see whether the known D2

receptor agonist decreased lev,els of cAMP production in the tick salivary glands.

Surprisingly the D2 receptor agonist caused a statistically significant increase (p<O.05) in

cAMP levels (Table 1).

Role ofG-proteins on the release oflabeled AA from tick salivary glands

phospJlolipids.

To further assess whether dopamine-stimulated release occurs via a G-protein,

pre-labeled salivary glands were incubated with varying concentrations ofGTPy-S, a

non-hydrolyzable analogue of GTP, pertussis toxin, cholera toxin and wortmannin

(fungal metabolite). It is known that wortmannin can inhibit the release ofAA by

blocking PI-3 kinase (Viard et aI., 1999). PI-3 kinase was shown to stimulate L-type

calcium channels (Viard et al., 1999).

GTPy-S potentiated an apparent release ofAA but the effect was not statistically

significant (Figure 12). However, GTPy-S together with PPHT-HCI, stimulated a

substantial and significant release of free fatty acid from the phospholipid fractions at

IOJlM; (p<O.05) (Figure 12).
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Pertussis toxin had no affect on the release ofAA~ on th,e other hand, cholera

toxin stimulated a significant release ofAA from the neutral lipid and phospholipid

fractions (p<O.05) (Figure 13). Both experiments were compared to a blank control.

To investigate whether G-protein-linked release ofAA involves GfYy salivary

glands were pre-incubated with wortmannin for 10 or 60 min prior to stimulation with

lOJlM ofPPHT-HCl and GTPy-S. Salivary glands pre-incubated with wortmannin for 60

min inhibited release ofAA (p<O.005) (Figure 14).

In other experiments, salivary glands were pre-incubated with wortmannin for one

hour prior to and then stimulated with GTPy-S in the absence ofwortmannin. There was

no difference in the amount of AA released in salivary glands pre-incubated with or

without wortmannin. On the other hand, salivary glands pre-incubated with wortmannin

for one hour, and then stimulated with GTPy-S and wortmannin together inhibited release

of AA as compared to that release stimulated by GTPy-S (p<O.05) (Figure 15).
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CHAPTERI'V

DISCUSSIO

Results indicate that factors controlling release and re-distribution of arachidonic

acid in tick salivary glands are linked to a dopamine stimulated, G-protein-linked

receptor that evokes an influx ofCa2
+ and activation ofPLA2. My results confinn that

dopamine potentiates release of free arachidonic acid in a dose-dependent manner and

that release is inhibited by voltage-dependent Ca2
+ blocker verapamil. The inhibition by

verapamil was most effective if salivary glands were pre-incubated ,\lith verapamil before

stimulation. Verapamil inhibition ofarachidonic acid release stimulated by A-23187 and

SKF 82958 is unclear. The inhibition could reflect inhibition of release that occurs as a

result ofan endogenous activation of Ca2
+ channels. This hypothesis is supported by

substantially more inhibition of Ca2
+ release than that seen in DA-stimulated glands. A

similar result was seen by Bowman et al. (1995). The dopamine results were the basis for

further investigation into the type ofdopamine receptor in the salivary glands that may be

involved in release of free levels ofAA. Shipley et aI., (1996) suggested that D 1and D2

receptors may be present in the salivary glands ofD. variables ticks based upon changes

in levels of cAMP after stimulation of salivary glands with different concentrations of

dopamine and use of ,dopamine receptor antagonists. An interesting observation was

made from the D1-receptor agonist experiment. Both agonists caused an apparent release

of labeled AA, but the distribution was not consistent.SKF-82958 had measurable

amounts of labeled AA in the NL and FFA fractions while SKF-38393 had measurable

amounts of labeled AA in the PL and FFA fractions. The exact reason for this varied
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distribution is unclear. However, results suggest that the salivary glands may not have

more than one dopamine receptor linked to release ofAA. This hypothesis is supported

by increased levels of cAMP after stimulation of glands by dopamine, D2-receptor

agonist PPHT-Hel (Table 2). StimulationofD2 receptors is expected to inhibit adenylate

cyclase and thwart the production ofcAMP (Enjalbet and Bockaet, 1983).

An interesting observation from these experiments was the significant findings

involving the NL fractions. Whenever DA (or dopamine receptor agonist) was used to

stimulate AA release the change in the amount of labeled AA associated with the neutral

lipid fraction was significant. I hypothesize that the NLs function as a "sink" or way­

station for free AA before transfer to PLs. Evidence in support of this hypothsis comes

from the work ofBowman et al. (1995) who demonstrated that labeled AA is first

esterfied into PL. Only trace amounts of [3H]-AA become incorporated in the neutral

lipid (NL) fraction primarily in the fonn oftriglycerides (TGs). However at higher

concentrations of free AA, more labeled AA became esterified in the neutral lipid

fraction presumably due to activity of a diacylglycerol acyl transferase (DAT) (Bowman

et aI., 1995). It was hypothesized that at high concentrations of free AA, the fatty acid

was esterfied into TGs due to saturation oflysophosphatide acyl transferase (LAT).

Bowman et a!., (1995) also suggested that dopamine stimulates an influx of

extracelluar calcium which activates an intracellular phospholipase (cPLA2). My results

support the importance of extracellular Ca2
+ as shown by increasing release of free AA

with increasing concentrations of the Ca2
+ ionophore A-23187. PLA2 cleaves AA fro~

the sn-2 position of phospholipids freeing the fatty acid which can be converted to

prostaglandins via the cyclooxygenase pathway (Aljamali et a!., 2002). However, as the
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concentration ofA-23187 was increased, the amount of free AA increased but little

change was seen in labeled AA associated with the NL fraction in contrast to that seen

with dopamine. Clearly factors regulating re-distribution ofAA between PLs, NLs, and

free AA differ depending upon the method of stimulation. A series ofexperiments were

conducted to investigate the role of second messengers (cAMP and PKC) in the release of

arachidonic acid. It is known that dopamine stimulates a dopamine D}-like receptor and

adenylate cyclase activity that converts ATP to cAMP (Schmidt et al., 1981, 1982). Two

experiments were conducted to investigate whether cAMP potentiates the release of

arachidonic acid. Both forskolin (a direct activator of adenylate cyclase, (Schinelli et al.,

1994) and dibutryl cAMP were ineffective and instead stimulated an apparent re­

esterification ofAA into the gland phospholipids. In an experiment to investigate

whether PKC activation could potentiate the release of arachidonic acid, phorbol ester

was used. I followed the protocol described by Di Marzo et al. (1993), where they used

the PKC activator in conjunction with a low concentration ofthe A-23187 and dopamine.

The results were inconclusive. A possible role for PKC in affecting release ofAA

requires further investigation or possibly testing the effect of phorbol ester on its own or

under other conditions.

G- proteins perform an important function in coupling occupied receptors to

effector enzymes and cellular signaling. Trimeric G-proteins serve as a mechanism for

information transfer across the lipid membrane. Trimeric (heterotrimeric) G-proteins

consist ofan: a (45 kDa), p(35 kDa) and y (7 kDa) subunits. Upon stimulation by

effector ligands, inactive trimeric G-proteins exchanges GTP for bound GDP, thus

activating the G-protein. This activation causes the trimeric G-protein to rapidly separate
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into an Ga subunit and a dimeric GfYy subunit (Hamm, 1998). Axelrod and Jelsema

(1987), suggested that G-proteins activated an influx of extracellular ea2
+ and

cytoplasmic PLA2 (cPLA2). Viard et a!., (1999) reported that dimeric GfYy stimulates an

influx of calcium via activation of phosphoinositide 3-kinase (PI-3 kinase) and

downstream activation of voltage-dependent Ca2
+ channels. PI-3 kinase converts PIP2to

PIP3 and is specifically inhibited by the fungal metabolite, wortmannin (Viardet aI.,

1999). Indirect evidence suggests that PIP2 is present in the tick salivary glands based

upon increased levels ofIP3 after stimulating glands with a protein factor in the tick

synaganglion or PGE2 (McSwain et a!., 1989; Qian et aI., 1998). In order to test the

possibility of G-proteins being involved with AA release, tick salivary glands were

incubated with a G-protein activator, GTPy-S. GTPy-S is a non-hydrolyzable analogue

of GTP which keeps the G-protein in an active state. Incubation with this activator

caused an apparent release of labeled AA. In other experiments, salivary glands were co­

incubated with GTPy-S and PPHT-He!. A statistically significant increase in the FFA

fraction was observed in the latter experiment. The cause for this unusualy large

increase in free AA is unclear. One possibility is that the dopamine receptor agonists

stimulate another intracellular component that in conjunction with an activated G-protein,

causes the release of labeled AA. Significantly, my results indicate that AA release in

response to GTPy-S and PPHT-Hel is consistently and significantly inhibited by

wortmannin when salivary glands were pre-incubated with wortmannin for either 10 or

60 minutes when stimulated with PPHT-HCl and GTPy-S. Glands pre-incubated with

wortmannin, significantly inhibited release ofAA stimulated by GTPy-S alone. The

results suggest at least a partial role for dimeric G~ in effecting release of AA from
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salivary gland PLs hypothesized to be via activation ofPI-3 kinase and opening of a Ca2
+

channel.

To help identify what type of G-protein involved in release of AA in the salivary

glands, two toxins known to affect two different kinds ofG-proteins were used. An

apparent and significant release of labeled arachidoruc acid was stimulated by cholera

toxin but not petrussis toxin (Figure 12).

Overall, I propose the following tentative model to help explain how free levels of

AA are regulated in ixodid tick salivary glands. I suggest that after binding of dopamine

to a D}-like G-protein linked receptors, a Gf3y subunit is produced that causes an influx of

calcium via activation ofa PI-3 kinase. The influx of Ca2
+ activates PLA2, which

hydrolyzes arachidonic acid from the sn-2 position ofPLs. Free arachidonic acid is then

converted to P~E2 via the COX pathway (Figure 16). Identification of'PI-3 kinase and

its role in tick salivary glands and possible molecular work on the cholera sensitive G­

protein needs further investigation.
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CHAPTER V

SUMMARY

Ticks play an important role in medical and veterinary medicine throughout the

world. The lone star tick feeds on three different hosts for each of its parasitic life cycle

stages. The adult female undergoes slow feeding that lasts seven to fourteen days

followed by a more rapid feeding period that lasts 24 to 48 hours. During tick feeding,

the salivary glands counter the host's defense system by secreting a cocktail ofbioactive

molecules. An important component of saliva is prostaglandins (PGs). OUf laboratory

has identified high concentrations of two PGs: PGE2 and PGE2a (Aljamali et aI., 2002).

For PGs to be synthesized, free arachidonic acid (FAA) must be released and

transfonned by the cyclooxygenase pathway (COX). Dopamine (DA) released from

nerve endings controls tick salivary fluid secretions. DA binds to a Dl-like receptor and

stimulates adenylate cyclase (Ae) that converts ATP to cAMP. cAMP stimulates fluid

secretion (Schmidt et aI., 1981; 1982). Related work in the laboratory has shown that DA

stimulates an influx of Ca2
+ into the glands and activates an intracellular phospholipase

(cPLA2) that cleaves AA from the sn-2 position of the phospholipids (PLs) (Bowman et

aI., 1995).

My studies have shown that AA is released in a dose-dependent manner, by

dopamine. AA release is inhibited through pre-incubation with verapamil (Ca2
+ channel

blocker) prior to stimulation with DA.

Shipley et ai. (1996) suggested that both D1 and D2-like receptors might be

present in the salivary glands ofDermacentor variables (Say). It was believed that the
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Dl-receptor (stimulated by DA) linked to a G-protein could activate AC and cause the

conversion of ATP to cAMP. Shipley et a!. (1996), found that at high concentrations of

DA, the amount ofcAMP was lowered and suggested that a D2 receptor was involved in

this inhibition. PiomeIliet a!., (1991) suggested that AA could be released through the

activation ofD2 receptors in Chinese hamster ovarian (CHO) cells.

The possibility of two DA receptors envolved in AA release was studied further.

A series of experiments was conducted using mammalian D 1 and D2 receptor agonists.

Use of either D 1 receptor agonists invoked release of AA. D2-receptor antagonists were

ineffective in inhibiting the release of AA in the presence of DA. Only the D) receptor

antagonist SCH-23390 was successful in inhibiting the release of AA stimulated by DA.

The results do not support the hypothesis that an additional dopamine, D2-like

receptor is important in effecting release ofAA. Release of free AA via stimulation by

either D] or D2 receptors was blocked by pre-incubating salivary glands with verapamil.

Cockcroft et al.(1991) presented evidence that activated D2 receptors typically

inhibit AC and decrease cAMP levels. In my researc~ salivaI)' glands stimulated with a

mammalian D2-receptor agonist, PPHT-Hel did not cause an increase in cAMP during a

radio-immune assay. In fact, the agonist caused an increase in cAMP levels, thus

suggesting that PPHT-HCI may work through a D)-like receptor.

As mentioned before, free AA is converted to PGs via the COX pathway

(Bowman et aI., 1995) and to release this AA, the presence ofCa2
+ is needed to activate

PLA2. In unpublished data, Ca2
+ dependent PLA2 was seen to have high activity in the

salivary glands of the lone star tick. In order to further study this activity of second .

messengers on the release ofAA in the salivary glands, a known calcium ionophore (A-
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23187) was used. In these studies, increasing concentrations of A-23187 were able to

stimulate release of AA further supporting the theory that release is via activation ofa

Ca2
+ dependent PLA2. Just as in the study with DA-induced release ofAA, the calcium

channel blocker verapamil was used. In these studies, verapamil was able to block the

release of AA in glands that were co-incubated with the ionophore and the calcium

channel blocker. An explanation for this blockage could be that verapamil inhibits an

endogenous factor that stimulates the release of AA. A similar result was observed by

Bowman et aI. (1995). Even though these results were comparable to those achieved by

the dopamine studies, the involvement ofa second messenger on the release ofAA is not

believed to be direct.

In researching the mechanism of how AA is released in the salivary glands, other

cellular membrane pathways were investigated. Axelrod and Jelsema (1987) suggested

that activation of a heterotrimeric G-protein produced a dimeric G~y that could have a

possible role in the release ofAA. Viard et aI., (1999), found that Gf3r (following ligand

binding to a G-protein linked receptor) stimulates voltage-dependent L-type Ca2
+

channels via activation ofphosphotidylinositol-3-kinase (PI-3 kinase). I was able to

show release ofAA when glands were incubated with a non-hydrolyzable analogue of

GTP, GTPy-S. However, the greatest release achieved occurred when salivary glands

were co-incubated with GTPy-S and PPHT-HCl. I also showed that release of AA was

sensitive to cholera-toxin.

In order to see if the GfYy subunit was linked to the release ofAA, wortmannin was

used in a series of experiments. Gf3'y stimulates PI-3 kinase and wortmannin is a specific

inhibitor ofPI-3 kinase (Viard- et aI., 1999). The first series of experiments examined
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length of incubation involving wortmannin and the release of AA. Both time periods of

10 minutes and 60 minutes incubations inhibited the release ofAA, with significant

results in the latter incubation. With release of AA using GTPl'-S, the next series of

experiments examined whether or not wortmannin could inhibit the release of AA in the

presence of GTPl'-S. It was determined that salivary glands pre-incubated with

wortmannin for one hour and then stimulated with GTPl'-S plus wortmannin,

significantly inhibited the release of AA as compared to GTPy-S alone.

Overall, I hypothesize the following: dopamine is released from nerve endings

and binds to a G-protein-linked dopamine D1-like receptor. Upon interation with the

ligand occupied receptor, the G-protein separates into On and a dimeric G~'Y. The G~y

subunit then activates an influx ofCa2
+ via a PI-3 kinase stimulation. This influx ofCa2

+

activates a PLA2 which cleaves AA from the sn-2 position of the PL. Free AA is then

converted to POE2 via the COX pathway. My results do not preclude that other

intracellular factors may be involved in regulatory re-distribution of AA following

salivary gland stimulation by DA. Further work is needed to confirm this hypothesis.
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Figure 1. Dose-dependent re-distribution of [3H] arachidonic acid amongst

phospholipids (PL), free arachidonic acid (FAA) and neutral lipids (NL) from isolated

salivary glands of the lone star tick during 60 minute incubations with dopamine. The

results are expressed as changes in the percentage of total incorporated [3H] arachidonic

acid as compared to unstimulated control glands. Values are expressed as the mean ± SE,

n == 8 and statistically significant results are identified with an asterisk.
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Figure 2. Effect of IOJ.J,M dopamine and ImM verapamil on the re-distribution of

[3H] arachidonic acid in isolated A. americanum salivary glands during 60 minute

incubations. Salivary glands were either pre-incubated with ImM verapamil for 7.5

minutes prior to stimulation with dopmnine or were not pre-incubated at all. The results

are expressed as the percent change of total incorporated [3H] arachidonic acid from

glands stimulated with DA and verapamil (experimental) relative to glands only

stimulated with DA (control). Values are expressed as the mean ± SE, n == 4 and

statistically significant results are identified with an asterisk.
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Figure 3. The effects of lOlJ,M mammalian dopamine D1 receptor agonists (SKF-

82958 & SKF-38393) on the re-distribution of [3H] arachidonic acid from isolated A.

americanum salivary glands during 60 min incubations. Results are expressed as percent

change of [3H] arachidonic acid incorporated from stimulated glands (experimental)

relative to unstimulated glands (control). Values are expressed as the mean ±SE, n == 8.
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Figure 4. The effects of lOf.lM mammalian dopamine D2 receptor agonists (PPHT-

Hel & Quinelorane) on the re-distribution of [3H] arachidonic acid from isolated A.

americanum salivary glands during 60 min incubations. Results are expressed as percent

change of total incorporated [3H] arachidonic acid from stimulated glands (experimental)

relative to unstimulated glands (control). Values are expressed as the mean ± SE, n == 8

and statistically significant results are identified with an asterisk.
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Figure 5. Effect of IOf.lM dopamine co-incubated with IOf.lM of two known

mammalian D2 receptor antagonists (spiperone and haloperidol) on the re-distribution of

[3H] arachidonic acid in isolated salivary glands during 60 minute incubations. The

results are expressed as the percent change of total incorporated [3H] arachidonic acid

from co-stimulated glands relative to dopamine stimulated glands (control). Values are

expressed as the mean ± SE, n == 4.
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Figure 6. The apparent re-distribution of [3H] arachidonic acid upon stimulation

with lOJ,JMdopamine in the presence ,of a mammalian D 1 receptor antagonist, lOJlM

SCH-23390 in isolated A. americanum salivary glands during 60 min incubations. The

results are expressed as percent change of the total [3H] arachidonic acid incorporated

[roln glands incubated with dopamine and SCH-23390 (experimental) relative to

dopamine stimulated glands (control). Values are expressed as the mean ±SE, n === 8.
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Figure 7. Dose-dependent effect of calcium ionophore, A-23187 on re-distribution

of [3H] arachidonic acid amongst phospholipids (PL), free arachidonic acid (FAA) and

neutral lipids (NL) from isolated A. americanum salivary glands during 60 min

incubations. The results are expressed as percent change of total incorporated [3H]

arachidonic acid from stimulated glands (experimental) relative to unstimulated glands

(control). Values are expressed as the mean ± SE, n == 8 and statistically significant

results are identified with an asterisk.
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Figure 8. Effect of 10JlM calcium ionophore, A-23187 stimulation in the presence

of 10JlM verapamil, on the re-distribution of [3H] arachidonic acid in isolated salivary

glands ofA. americanum. Results are expressed as the percent change in total [3H]

arachidonic acid incorporated from glands co-incubated with A-23187 and verapamil

(experimental) relative to glands incubated only with A-23187 (control). Glands were

not pre-incubated with verapamil. Values are expressed as the mean ±SE, n == 8 and

statistically significant results are identified with an asterisk.
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Figure 9. Effect of ImM verapamil and lOflM SKF-82958 and PPHT-HCI (D1 and D2

receptor agonists respectively) on the re-distribution of [3H] arachidonic acid from isolated

A. americanum salivary glands during 60 min incubations. Results are expressed as

percent total of [3H] arachidonic acid incorporated from glands co-incubated with

verapamil and either D1 or D2 receptor agonist (experimental) relative to glands

stimulated with only dopamine receptor agonists (control). Values are expressed as the

mean ± SE, n == 8 and statistically significant results are identified with an asterisk.
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Figure 10. Effect on the fe-distribution of [3H] arachidonic acid from isolated salivary

glands ofA. americanum incubated fOf 60 min with lOJlM forskolin and dibutryl cAMP

(cAMP analogue). The results are expressed as the percentage of total [3H] arachidonic

acid incorporated from stimulated glands (experimental) relative to unstimulated glands

(control). Values are expressed as the mean ±SE, n === 8.

49



6-,-------------------------.

« 4«
I....

J:r::
t') 0 2.......-

~

C:~
-- .c
(1).-
0)::'

0c.!
cue.c:
0
~ -20 _ Phospholipids

~ FreeAA
Neutral Lipids

-4....l...------~---------.-----------'

Forskolin

50

Dibutryl cAMP



Figure 11. Re-distribution of [3H] arachidonic acid from A. americanum salivary

glands incubated with O.lJ.1M A-23 187, IOJ.lM dopamine and O.lJ.!M PMA for 60

minutes. Results are expressed as percentage of total incorporated [3H] arachidonic acid

from stimulated glands (experimental) relative to unstimulated glands (control). Values

are expressed as the mean ± SE, n == 4 and statistically significant results are identified

with an asterisk.

51



8

< 6 I
*<C 4

I
~

::J:C
2M .2

.... +'"
~:::s
o .c 0C·C:.- ..
CD.! -20)0
C
ca
.c -4
0

-6

-8
PL FAA NL

52



Figure 12. Effect of 10JlM GTPy-S (alone) and 10JlM PPHT-HCI & GTPy-S on the

redistribution of [3H] arachidonic acid from isolated A. americanum salivary glands

during 60 minute incubations. Results are expressed as percentage of total incorporated

[3H] arachidonic acid from stimulated glands (experimental) relative to unstimulated

glands (control). Values are expressed as the mean ±SE, n == 8 and statistically

significant results are identified with an asterisk.
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Figure 13. Effect of 10~g pertussis toxin or 100~g cholera toxin on the re-

distribution of [3H] arachidonic acid in isolated salivary glands ofA. americanum during

60 min incubations. Results are expressed as the percent change in total incorporated

[3H] arachidonic acid from stimulated glands (experimental) relative to unstimulated

glands. Values are expressed as the mean ± SE, n == 8 and statistically significant results

are identified with an asterisk.
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Figure 14. Effects ofO.1~ wortmannin pre-incubated for 10 min or 60 min on the

re-distribution of [3H] arachidonic acid in isolated salivary glands ofA. americanum.

Control and experimental salivary glands were pre-incubated with 10JlM wortmannin.

Experimental salivary glands were stimulated with 10JlM PPHT-HCI & GTPy-S. Results

are expressed as the percent change in total [3H] arachidonic acid incorporated in

stimulated glands (experimental) relative to unstimulated glands (control). Values are

expressed as the mean ±SE, n == 8 and statistically significant results are identified with

an asterisk.
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Figure 15. Effects ofO.l~Mwortmannin and lO~GTPy-S on the re-distribution of

[3H] arachidonic acid in isolated salivary glands ofA. americanum during 60 min

incubations as compared to salivary glands incubated with lOIJ.M GTPy-S. Experimental

salivary glands were pre-incubated for 10 min with wortmannin prior to stimulation by

GTPy-S. In one experiment, experimental glands were incubated with GTPy-S alone (no

co-incubation with wortmannin) and in the other group, experimental glands were

incubated with both wortmannin and GTPy-S. Results are expressed as percentage of

total [3H] arachidonic acid incorporated from glands stimulated with wortmannin and

GTPy-S together compared to glands stimulated with GTPy-S (control). Values are

expressed as the mean ± SE, n == 8 and statistically significant results are identified with

an asterisk.
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Illustration 16. Dopamine released from nerve endings surrounding the salivary

glands, binds to a receptor that is bound to heterotrimeric G-protein. Upon binding, the

G-protein separates into two subunits: a Ga and a GfYy subunit. The Ga subunit could be

involved in activation ofAC, thus converting ATP to cAMP. This activation needs to be

further investigated. The G(3r subunit then activates an influx of Ca2
+ via a PI-3 kinase

stimulation. This influx of Ca2
+ activates an intracellular PLA2 which cleaves AA from

the sn-2 position of the salivary gland PL. Free AA is then converted to PGE2 via the

COX pathway.
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Table 1. The amount of cAMP measured through a RIA assay from the salivary

glands of the lone star tick that was stimulated with a mammalian D2 receptor agonist

(PPHT-Hel). Salivary glands were incubated in similar conditions as previously reported

experiments for 60 min. These results are compared to unstimulated glands (control).

Values are expressed as mean ±SE, n == 18. Findings were statistically significant~

p<O.05.
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Specific activity of cAMP produced in salivary glands of the lone star tick

(-)

(+)

Control

Experimental

.0743 ±.00585 (pmol cAMP/Jlg/hr)

.254 ± .1353 (pmol cAMP/~g/hr)

(-) == Unstimulated Glands
(+) == Stimulated Glands with PPHT-HeI (1 OIlM)

64



CHAPTER VI

BIBLIOGRAPHY

Aljamali, M., Bowman, A.S., Dillwith, J.W., Tucker, 1.S., Yates, G.W.,

Essenberg, R.C., Sauer, J.R., 2002. Identity and synthesis of prostaglandins in

the lone star tick, Amblyomma americanum (L.) as assessed by radio­

immunoassay and gas chromatography/mass spectrometry. Ins Biochem Molec

BioI. 32,331-341.

Anderson, P.H., Gingrich, J.A., Bates, M.D., Dearry, A., Falardeau, P.,

Senogles, S.E., Carton, M.G., 1990. Dopamine receptor subtypes beyond the

D 1/D2 classification. Trends Pharmacol. Sci. 11, 231-236.

Bligh, L.M., Dyer, W.J., 1959. A rapid method of total lipid extraction and

purification. Canad. J. Biochem. Phy. 37,911-917.

Borror, D.J., Triplehorn, C.A., Johnson, N.F., 1992. An introduction to the study

of insects, 6th edition, Harcourt Brace College, Fort Worth.

Bowman, A.S., Dillwith, J.W., Madden, R.D., Sauer, J.R., 1995. Regulation of

free arachidonic acid levels in isolated salivary glands from the lone star tick:

A role for dopamine. Arch Insect Biochem. Phys. 29, 309-327.

Bowman, A.S., Dillwith, J.W., Sauer, J.R., 1996. Tick Salivary

Prostaglandins: Presence, Origin and Significance. Parasite Today 12, 388­

395.

Clapham, D.E., Neer, E.J., 1997. G protein ~'Y subunits. Annu Rev Pharmacol

Taxico!. 37, 167-203.

65



Cockcroft, S., Nielson, C.P., Stutchfield, J., 1991. Is phospholipase A2

activation regulated by G-proteins? Biochem Soc Trans. 19, 333-336.

Daugchies, A., Joachim, A., 2000. Eicosanoid in parasites and parasitic

infections. Adv Parasit. 46, 181-240.

Demirovic, A., Czech, P., 2000. PIP3 and P1P2: Complex Roles at the cell

surface. Cell 100, 603-606.

Di marzo, V.D., Vial, D., Sokoloff, P., Schwartz, J.-C., Piomelli, D., 1993.

Selection of alternative Gi-mediated signaling pathways at the dopamine D2

receptor by protein kinase C. J. Neurosci. 13, 4846-4853.

Enjalbert, A., Bockaert, J., 1983. Pharmacological characterization of the D2

dopamine receptor negatively coupled with adenylate cyclase in rat anterior

pituitary. Mol. Pharmacol. 53, 576-584.

Gingrich, J.A., Caron, M.G., 1993. Recent advances in the molecular biology

of dopamine receptors. Annu. Rev. Neurosci. 16, 299-321.

Hamm, H. E., 1998. The many faces of G protein signaling. J. BioI Chern. 273,

669-672.

Jelsema, C.L., Axelrod, J., 1987. Stimulation of phospholipase A2 activity in

bovine rod outer segments by the ~'Y subunits of transducin and its inhibition

by the a subunit. Prac. Natl. Acad. Sci., USA 84, 3623-3627.

Kaluzny, M.A., Duncan, L.A., Merritt, M.V., Epps, D.E., 1985. Rapid

separation of lipid classes in high yield and purity using bonded phase

columns. J. Lipid Res. 26, 135-140.

66



Kebabian, J.W., CaIne, D.B., 1979. Multiple receptors for dopamine. Nature

277, 93-96.

Logothetis, D., Kurachi,Y., Galper, J., Neer, E.J., Clapham, D.E., 1987. The

fly subunits of GTP-binding proteins activate the muscarinic K+ channel in

heart. Nature 325,321-326.

Me Swain, J.L., Tucker, J.S., Essenberg, R.C., Sauer, J.R., 1989. Brain factor

induced formation of inositol phosphates in tick salivary glands. Insect

Biochem 19, 343-349.

Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G., 1998.

Dopamine Receptors: From Structure to Function. Physi. Reviews. 78, 189­

225.

Nilsson, C.L., Hellstrand, M., Ekman, A., Eriksson, E., 1998. Direct dopamine

D2-receptor mediated modulation of arachidonic acid release in transfeeted

CHO cells without the concomitant administration of a Ca2
+-moblizing agent.

Brit J. Pharmac. 124, 1651-1658.

Patrick C.D., Hair, I.A., 1976. Laboratory rearing procedures and equipment

for multihost ticks (Acarina: Ixodidae). J. Med Entomol 12, 389-390

Piomelli, D., Pilon, C., Giros, B., Sokoloff, P., Martres, M.-P., Schwartz, J.-C.,

1991. Dopamine activation of the arachidonic acid cascade as a basis for

D 11D2 receptor synergism. Nature 353, 164-167.

Qian, Y., Yuan, J., Essenberg, R.C., Bowman, A.S., Shook, A.L., Dillwith, J.W.,

Sauer, J.R., 1998. Prostaglandin £2 in the salivary gland of the female tick,

Amblyomma americanum (L.): calcium mobilization and exocytosis. Insect

67



Biochem Mol Bioi 28, 221-228.

Sauer, J.R., Essenberg, R.C., Bowman, A.S., 2000. Salivary glands in ixodid

ticks: control and mechanism of secretion J. Insect Phys. 46,1069-1078.

Schinelli, S., Paolillo, M., Corona, G.L., 1994. Opposing actions ofD1-D2­

dopamine receptors on arachidonic acid release and cyclic AMP production in

striatal neurons. J. Neurochem. 62, 944-949.

Schmidt, S. P., Essenberg, R.C., Sauer, J.R., 1981. Evidence for a D1

dopamine receptor in the salivary glands ofAmblyomma americanum (L.). J.

Cycl Nucleot Res. 7, 375-384.

Schmidt, S. P., Essenberg, R.C., Sauer, J.R., 1982. Dopamine sensitive

adenylate cyclase in the salivary glands of the lone star tick. Camp Biochem

Phys. 72, 9-14.

Service, M.W., 1996. Medical entomology for students, 2nd edition, Cambridge

University Press, Cambridge.

Shipley, M.M., Dillwith, J.W., Bowman, A.S., Essenberg, R.C., Sauer, J.R.,

1994. Distribution of arachidonic acid among phospholipid subclasses of

lone star tick salivary glands. Insect Biochem Molec BioI. 24, 663-670.

Shipley, M.M., Sauer, J.R., McSwain, J.L., Essenberg, R.C., Forest, D.A.,

Hickey, R.D., Barker, R.W., 1996. Indication of Dopamine D1 and 02

Receptors in the salivary glands of Dermacentor variabilis (Say) (Ixodidae).

Proc ofNinth Intern Congrs. 689-692.

Spano, P.F., Govoni, S., Trabucchi, M., 1978. Studies on the pharmacological

properties of dopamine receptors in various areas of the central nervous

68



system. Adv. Biochem. Psychophannacol. 19 155-165.

Stryer, L., 1998. Biochemistry, 3rd edition, W.H. Freeman and Co., New York.

Thomason, P.A., James, S.R., Casey, P.J., Downes, C.P., 1994. A G-protein ~'Y­

subunit responsive phosphoinositide 3-kinase activity in human platelet

cytosol. J. BioI. Chern. 269, 16525-16528.

Ui, M., Okada, T., Hazeki, K., Hazeki, 0., 1995. Wortmannin as a unique probe

for an intracelluar signalling protein, phosphoinositide 3-kinase. Trends

Biochem. Sci. 20, 303-307.

Viard, P., Exner, T., Maier, V., Mironneau, J., Nurnberg, B., Macrez, N., 1999.

G~y dimmers stimulate vascular L-type Ca2
+ channels via phosphoinositide 3­

kinase. FASEB. 13,685-694.

Zhou, Q.-Y., Grandy, D.K., Thambi, L., Kushner, J.A., Van Tol, H.H.M., Cone,

R., Pribnow, D., Salon, J., Bunzow, J.R., Civelli, 0., 1990. Cloning and

expression ofhuman and rat Dl dopamine receptors. Nature 347, 76-80.

69



VITA

Jorge Omero Lopez

Candidate for the Degree of

Master of Science

Thesis: REGULATION OF FREE ARACHIDONIC ACID LEVELS BY
SALIVARY GLANDS OF THE LONE STAR TICK, Amblyomma
americanum(L. )

Major Field: Entomology

Biographical:

Personal Data: Born in San Antonio, Texas, On January 9, 1975, the son of Jorge
and Delia Lopez.

Education: Graduated from East Central High School, San Antonio, Texas in
May 1993; received Bachelor of Science degree in Entomology
from Texas A&M University, College Station, Texas in December
1997. Completed the requirements for the Master of Science
degree \vith a major in Entomology at Oklahoma State University
in May, 2002.

Experience: Employed as a research assistant in Dr. John F. Alderete's
microbiology laboratory at the University of Texas Health Science
Center, San Antonio, Texas. During undergraduate summers
elnployed as an ornamental pest scout for the Texas A&M
Experiment Station and as a crop scout for the United States
Department of Agriculture-Agricultural Research Station, College
Station, Texas; employed as a graduate research assistant,
Oklahoma State University, Stillwater, Oklahoma.

Professional Membership: Entomological Society of America, Society for the
Advancement of Chicanos and Native Americans in
Science, Omega Delta Phi Fraternity, Incorporated.


	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf
	Thesis-83.pdf

