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Abstract 

 

 We wanted to create a simple technique that provided a high degree of accuracy 

in the deconvolution of two chromatographic peaks which were severely overlapped in 

the usual time-response domain and substantially overlapped in the potential-response 

domain.  The two compounds we selected for investigation which fulfilled these initial 

criteria were epinephrine (Epi) and L-3,4-dihydroxyphenylalanine (Dopa).  Five two-

component mixture sets were prepared in the following molar response ratios, i.e., the 

moles of compound injected as a function of detector response:  (1) 90% Epi to 10% 

Dopa; (2) 70% Epi to 30% Dopa; (3) 50% Epi to 50% Dopa, (4) 30% Epi to 70% Dopa 

and (5) 10% Epi to 90% Dopa.  Six individual injections were performed for each 

mixture.  These six injections were interspersed between coupled injections of Epi 

controls and Dopa controls.  Thus, we had three injections of an Epi control, three 

injections of a Dopa control, and six injections of a mixture set; this procedure was 

followed for all five mixture sets, and ended with three injections of an Epi  control and 

three injections of a Dopa control.  The tyotal number of injections completed were, thus, 

six for each of mixtures 1 through 5, 18 Epi controls, and 18 Dopa controls.  The current 

response was collected versus time using four electrochemical detectors in series having 

sequentially increasing potentials. 

 Our hypothesis was that a simple deconvolution in the potential-response domain 

at a carefully selected time following injection would yield sufficiently accurate 

determination of the two analytes to 95% confidence levels using the Student’s t-test.  
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Our simple potential-response approach was thus compared to standard and commonly 

employed alternative approaches. 

 Twelve common straight forward time-response curve-fitting methods were 

initially examined.  These included bi-Gaussian, exponentially modified Gaussian 

(EMG), Fraser-Suzuki, log-normal, Haarhoff-Van der Linde, Cauchy-Gaussian, Chesler-

Cram, Giddings, (Gaussian Modified Gaussian (GMG), the 4-Parameter Gaussian-

Exponentially Modified Gaussian (GEMG4), the 5-Parameter Gaussian-Exponentially 

Modified Gaussian (GEMG5), and the Exponentially Modified Gaussian + Gaussian 

Modified Gaussian (EMG+GMG). 

 Three common chemometric procedures using information from only two 

dimensions (time-response) or information from all three dimensions (time-potential-

response) were next employed.  These chemometric procedures included (1) principal 

component regression (PCR), (2) partial least squares (PLS) and (3) the Statistically 

Inspired Modification to the PLS algorithm (SIMPLS). 

 For each method investigated, we determined a mean and standard deviation for 

the calculated/predicted levels of both Epi and Dopa for each of the five separate 

mixtures.  For the determinations involving only the two standard dimensions of 

information (i.e., time-response), this procedure was repeated for each of the four 

electrochemical channels separately.  For the chemometric approaches using information 

from all the dimensions, only one such determination was available for each mixture.  

Likewise, the simple initially described procedure using potential-response time was only 

capable of providing a single outcome (mean ± s.d.) for each of Epi and Dopa for each of 

the five mixtures.  Finally, the individual means were compared to the known standard 
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values in all cases using Student’s t-test to determine if the means were the same as the 

standards at the 95% confidence level. 

 Among the twelve standard two-dimensional (time-response) approaches, analysis 

of the residual sum-of-squares for each clearly showed only five to be reasonably capable 

of approaching this problem.  These five were the EMG, GEMG4, GEMG5, EMG+GMG 

and Cauchy-Gaussian.  To provide these five with the best opportunity to yield the 

desirable deconvolution, we separately examined both the area and simple peak height 

data for each.  Unfortunately, the most accurate of these approaches (EMG using peak 

heights) only predicted with 95% certainty the known content for both Epi and Dopa in 

only 5 out of 20 attempts. 

 The chemometric approaches employing two-dimensional time-response 

information were a bit more reliable in providing accurate outcomes.  Each of the PCR, 

PLS, and SIMPLS approaches accurately predicted with 95% certainty the Epi and Dopa 

levels in 11 out of 20 cases. 

 The chemometric attempts employing information from all three dimensions 

simultaneously surprisingly were capable of accurately predicting the known standard 

values for both Epi and Dopa for only two of the five mixtures.  Perhaps this is a 

reflection of the modest amount of instrumental noise contained in the data in 

combination with an overly inclusive approach. 

 Finally, the initially proposed single analysis of the data using the potential-

response domain and Cramer’s Rule for deconvolution proved to be much easier and 

more accurate than any of the alternatives listed above.  In particular, this approach 

accurately predicted the content of both Epi and Dopa in all of the five mixtures 
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examined at the 95% confidence level.  At the same time, the deconvolution using matrix 

algebra was and is substantially simpler than any of the other alternatives examined. 

 Thus, deconvolution of two severely overlapped chromatographic peaks in the 

time-response domain has been simply and accurately achieved using very limited 

amounts of potential-response information. 

 



 1 

 

Chapter 1 — Introduction 

 

The Problem 

 Of major concern for any chromatographic method is the existence of possible 

overlapping peaks, stemming from insufficient resolution of the analytes by the column, 

and the use of nonselective and nonspecific detectors.  The method discriminates between 

dissimilar analytes, but similar analytes exhibit similar retention times and similar 

responses at the electrodes, resulting in overlapping peaks.  For quantitative 

measurement, positive identification of the peaks and amounts represented by the peaks 

are required.  Methods for this qualitative and quantitative determination have been 

investigated for other detection methods, but not for electrochemical detection.  

Therefore, a simple deconvolution method is needed. 

 

Introduction to Chromatography and Electrochemistry 

 

 The basis of chromatography is separation of analytes.  From its humble 

beginnings by Tswett1 in 1906, the process has since evolved to include the separation of 

a mixture into its components with subsequent detection by a variety of detectors, 

including electrochemical detection, which produce an electronic signal proportional to 

the amount of analyte present.  The current analytical separation methods use a very 

small amount of the mixture and allow for a definitive determination of the amount of 

substances present with the use of a detector specific for the compounds of interest.   
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 In short, a chromatographic system consists of an injection system (“injector”), a 

column to effect the separation, a detector to detect the analytes as they elute from the 

column, and a recorder to record the signals as a plot of electronic signal vs. time (a 

chromatogram).  Figure 1.1 shows a chromatographic system used in liquid 

chromatography with electrochemical detection (LCEC).  

 

 

Figure 1-1:  Schematic of a liquid chromatographic instrument 

 

 As can be seen in Figure 1.1 above, a liquid chromatographic system is fairly 

straightforward.  The sample is introduced at the injector, and then carried through to the 

column, where the analytes are separated based on their relative affinities to the column 

substrate.  They emerge at the end of the column, and are measured at the detector and 

recorded by the recorder.  A liquid mobile phase, either a pure liquid or a solution, is 

pumped through the system and carries the analyte.  Electrochemical detectors produce a 

signal from the pulses the pump produces.  The pulse dampener reduces the pulses from 

the pump and thereby reduces the instrumental noise present at the detector.  The 
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pressure gauge is used to monitor pressure in the system.  It measures the backpressure 

generated by the column and is an indirect measure of how fast the mobile phase is being 

pumped through the system. 

 There are two aspects of the system to be discussed here, the separation of the 

analytes, and the detection of the analytes.  Separation is the purview of chromatography, 

and the detection used in the system is electrochemical in nature.  The mobile phase used 

in the system has characteristics of concern to both separation and detection, and a more 

full discussion of the mobile phase is held until the end of the electrochemistry section. 

 

Separation:  Chromatography 

 The stationary phase in the column is composed of packed silica particles coated 

with a compound designed to interact with the analytes.  The amount of separation 

depends largely on the nature of the packing material itself—if the analytes have no 

affinity for the column, separation will not happen—but it also depends on the nature of 

the mobile phase.  Analytes that strongly interact with the stationary phase over the 

mobile phase will be strongly retained and thus will slowly move through the column, 

resulting in long retention times.  Analytes that weakly interact with the stationary phase 

are weakly retained and have short retention times.  If the analyte does not interact at all 

with the column, it will move through the column at the same rate as the mobile phase 

and will have such a short retention time that it will be lost within the solvent front, 

which consists of all other non-retained substances giving a signal on the chromatogram. 

Ideally, the column will separate each analyte so that each analyte will exit the column at 

distinctly different times. 
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 There are two components of the chromatographic system involved in separations 

one must consider, the mobile phase and the stationary phase as introduced earlier.  The 

interactions between the stationary phase, the mobile phase, and the solute molecule are 

described by current chromatographic theory.  In essence, this theory describes the 

process of separation as an equilibrium process with the solute molecule partitioning 

between the stationary phase and mobile phase.  When an injection is made, the analyte 

mixture is introduced as a single plug which separates according to the affinities of the 

individual analytes, producing chromatographic zones or bands.  Which phase the 

molecule is found in will depend on the concentration gradient established as the 

chromatographic zone passes through the column. 

 The speed at which a given chromatographic zone will pass through the column 

depends on several parameters.  The first and foremost parameter is the retention 

characteristics of the analyte to the column, with structurally and chemically similar 

analytes having similar retention characteristics, and to a lesser degree the type and 

composition of the mobile phase.2 Analytes similar in size, shape, and chemical 

properties tend to group together in time.  As such, there are a limited number of possibly 

active sites available to the analyte molecule, and so there is some competition occurring 

for these sites among similar analytes. 

 The speed of the separation also depends on the flow rate of the mobile phase, 3, 4 

with higher flow rates yielding shorter retention times.  An unnecessarily low flow rate 

tends to be dominated by diffusional processes, and as such the chromatographic 

separation suffers with broader peaks than otherwise attainable.  With a very high flow 

rate, however, the analytes may considerably overlap or even be lost in the solvent front 
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of the chromatogram.  Another parameter is the temperature at which the separation is 

carried out5, this can also have an effect on the retention characteristics of the analytes, 

since this process is governed kinetically.  All these parameters must be considered to 

determine the optimal conditions for the chromatographic system.  There is an optimal 

velocity for the mobile phase that will result in the greatest resolving power achievable 

for the column; this is usually determined experimentally and it is not necessary to locate 

it exactly in practice.  In short, there is a trade-off between speed of the analysis, and the 

resolving power of the column. 

 

Electrochemistry 

 Electrochemical detectors will respond to any compound that is electroactive at 

the potential of the electrode, and hence can be considered to be nonspecific and 

nonselective.  These detectors are sensitive to changes in chromatographic conditions as 

well.  A full description and explanation of the physics of the processes occurring at the 

electrode surface is, once again, beyond the scope of this work, and interested readers are 

referred to the abundant body of literature.6-8  

 The chemical reaction in question, of course, is the oxidation-reduction reaction: 

 

kc

ka

Ox + ne
-

Red

 

Equation 1.1 
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where Ox and Red are the oxidized and reduced forms of the analyte, respectively, and kc 

and ka are the cathodic and anodic heterogeneous rate constants, respectively. 

  All faradaic electrochemistry depends, ultimately, on Faraday’s Law: 

 

! 

Q = nFN  

Equation 1.2 

 

where Q is the number of coulombs passed, and N is the number of moles converted to 

product in the chromatographic zone.  At any instant during the LCEC experiment, the 

current is reflected by the rate of conversion of the reactant to product. 

 Under equilibrium conditions, the net current is zero, and thus the electrode will 

adopt a potential based on the concentrations of the oxidized and reduced species, as 

dictated by the Nernst equation: 
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Equation 1.3 

 

The Nernst equation thus provides a link between electrode potential and the 

concentrations of participants in the electrode process.  If an electrode system follows the 

Nernst equation or an equation derived from it, the electrode reaction is often said to be 

reversible, or Nernstian. 

 With further considerations and substitutions, the Nernst equation can be written 

in a form reflecting the limiting current for a given redox reaction: 
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where il is the limiting current, i is the response current, and E1/2 is the half wave potential 

of the redox reaction involved.  Rearrangement of this equation yields 
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Equation 1.5 

 

 A plot of the current vs. potential gives the normal S-shaped curve associated with 

the Nernst equation, seen in Figure 1.2 below showing the current-potential curves for 

two compounds.   In this figure, the response current rises until it reaches a maximum, 

known as the limiting current.  Problems with using potentials at half the limiting current 

include less current being generated at these potentials.  At regions significantly below 

the limiting current, problems in reproducibility begin to appear.9 The higher along the 

curve one measures, the less these reproducibility problems become but the greater the 

absolute contribution of noise to the signal.  The optimum place along the curve is before 

the curve levels out, but rather high on the curve itself.  The precise potentials used 

depend upon the compounds to be analyzed.  

 



 8 

 

Figure 1-2.  Representative hydrodynamic voltammograms for compounds A and B. 
 

 Figure 1.2 above shows two theoretical hydrodynamic voltammograms, one for 

compound A and one for compound B.  Note that the current attributable to compound A 

reaches a maximum before current from compound B begins to manifest.  In this case, 

compound A can be determined with no contribution from compound B; if one were 

looking only for compound A, an applied potential set lower than that required for 

compound B to become active will separate the two compounds.10  In effect, only one 

compound will be seen.  However, using only one electrode and setting the potential in 

the appropriate range where only A is active will not give a response for B unless the 

same sample is reanalyzed at a potential where both compounds are active.  It is only at 

this point where the fact the sample contains two compounds becomes apparent.  With 

increasing numbers of electrodes, increasing numbers of previously hidden analytes can 

be detected.  This is a common use of multiple electrochemical detectors. 
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 A second case can be seen if one imagines that the two curves are closer together, 

so that there is some overlap in currents developing from their respective compounds.  In 

this case, a lower potential can still be applied, where one compound is absent or 

minimized, but the problem becomes larger still.  In the worst case scenario, both curves 

overlap significantly enough that it is difficult or impossible to determine which 

compound, or what the percentage of the compounds, is responsible for the current seen 

using only one electrode. 

 

Flow and Electrochemistry in Thin-Layer Flow-Through Cells 

 In a liquid chromatographic system using electrochemical detection (LCEC 

system), the chromatographic column provides a good amount of the selectivity due to 

the separating power of the column itself, as discussed above.  As the eluents come from 

the end of the chromatographic column and to the electrochemical detector, the 

concentration gradient rises and falls as it passes through the electrochemical detector, 

yielding first a rising current and then a falling current. 

 Successful use of electrochemical detectors depend on well-defined 

hydrodynamic conditions, as well as a high rate of mass transport.7, 11  The thickness of 

the diffusion layer at the surface of the electrode is related to the solution flow rate.  The 

limiting steady-state response of flow-through electrodes has been determined, and 

solutions of the three-dimensional convective diffusion equation for the limiting currents 

under steady state conditions have been derived for various electrode geometries, using 

the appropriate boundary conditions. For an electrode array arranged in series, this 

solution holds for the first electrode, where reactants are being converted to products at 
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mass-transport controlled rates; in short, by diffusion.  The diffusion layer does not have 

enough time to re-establish itself fully before it passes over the second electrode.9, 12, 13  

This results in less current generated and measured at the second and any subsequent 

electrodes in a series configuration, assuming that all the electrodes are exactly the same 

physically and are set for the same potential.  Differences in the conditions on the 

individual electrode surfaces may make these differences in current more, or less, 

significant.  A detailed examination of the case of dual series electrodes has been done, 

but this discussion is beyond the scope of this work.12   

 

Electrode Material 

 The choice of electrode material is quite important, as the electrode must have the 

required mechanical ruggedness and long term stability required for the application to 

which it is being used.  Glassy carbon, which has excellent mechanical and electrical 

properties, can be brought to a high surface polish with standard techniques, and is 

relatively free of impurities.  In addition, the solvents used in the analyses normally 

performed have no deleterious effect on the electrode.14  Glassy carbon can yield 

reproducible signal values over prolonged time periods;15 virtually the same absolute 

signal values can be obtained after careful repolishing the electrode surface.16  It is these 

characteristics that make glassy carbon electrodes a good choice for most applications. 

 Glassy carbon electrodes are not free from problems, however.  The structure of 

glassy carbon is not homogeneous throughout the electrode, with ribbons of sp2 

hybridized carbons embedded in a sp3 hybridized carbon matrix.  Only the sp2 hybridized 

carbons are electrochemically active.  Thus, at the surface of the electrode there are be 
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regions with slightly different electrochemical properties.  Electrode fouling is common, 

with Dopamine and other biogenic amines known to have a tendency to foul the electrode 

at higher potentials. Such compounds bond to the surface of the electrode and change the 

overall properties of the electrode itself.  After repolishing, the electrode may not yield 

reproducible signals until the surface has been “conditioned,” at which time the electrode 

begins to yield a reproducible signal.  Thus, the use of glassy carbon may not be suitable 

for all analyses, and the diffficulties in its use must be weighed against the advantages. 

 

Mobile Phase 

 The buffered aqueous mobile phase must dissolve the analytes, have sufficient 

ionic strength necessary for conductivity, and be chemically and electrochemically inert 

at the desired range of operating potentials.  The concentration of electrolytes in the 

mobile phase is sufficient to minimize migration as a component in analyte movement.  

At the same time it should minimize the background current due to impurities found in 

the buffering agents17 and dissolved oxygen14 which contribute to baseline problems.  

Additionally, the mode of operation is a potential source of noise or problems; the 

oxidative mode of operation is much less susceptible to baseline problems due to 

reduction of the above mentioned trace impurities.  The potential limits in an aqueous 

solution are from about -1.2V to about 1.2V.15, 17  Any analyte that oxidizes or reduces 

outside of this range is not suitable for detection in an aqueous phase.   

 The mobile phase also should keep the compounds in the desired oxidative state.  

This requires some knowledge on the part of the experimenter.  If the analytes are 

sensitive to oxygen, for example, then the mobile phase should be bubbled with an inert 
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but soluble gas to drive the oxygen from the mobile phase.  Additionally, since the 

mobile phase is high in electrolytes, it sometimes can provide an excellent growth media 

for bacteria, and thus should be checked on a regular basis for bacterial growth.  Some 

analysts will go to the extreme of preparing new mobile phase on a daily or weekly basis.  

Slight changes in the mobile phase, however, can cause significant problems in the 

elution of the compounds; additionally, the column must be conditioned to the new 

mobile phase prior to use.  

 

The Detector:  Thin-Layer Cells 

 The detectors used in many LCEC systems are of a cross-flow thin-layer design 

as shown in Figure 1.3.  In this cell design, the electrochemically active analyte passes 

over the working electrode which is held at a potential sufficiently positive or negative 

enough to induce an electron transfer reaction (oxidation or reduction), producing an 

amperometric current proportional to the concentration of analyte that enters the thin-

layer cell.  The counter electrode supplies the electrons via the potentiostat to maintain a 

constant potential between the working electrode and the reference electrode. 

Amperometric detection can be used to react a negligible amount of the analyte, or nearly 

all of it, depending on the mass transport efficiency of the cell.   
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Figure 1-3:  A typical cross-flow thin-layer electrode cell 

 

 The range of conversion efficiency comes from the area-to-volume ratio of the 

electrode surface to the volume of the cell.  As the electrode surface area increases, the 

conversion efficiency improves.  With the larger electrode areas and their increasing 

background current, detector noise also increases, and the signal-to-noise ratio decreases 

as well; this is problematic when it results in a lowering of the signal/noise ratio.  With 

smaller electrodes, less material is converted, but lower detection limits can be attained 

with concomitant low noise levels.  At extremely low conversion efficiencies, however, 

noise from the electronics becomes the limiting factor, as it becomes as great as, or 

greater than, the signal from the analyte. 

 The construction of the thin layer cell places the working electrode opposite the 

auxiliary or counter electrode, and is shown in Figure 1.3; this construction and the high 

ionic strength of the mobile phase minimizes the large iR drops commonly associated 

with amperometric thin-layer cells.14  This configuration also ensures that the potential at 

all points on the working electrode surface will be uniform and that the uncompensated 

iR drop will be extremely small due to the thinness of the layer of solution between the 
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two plates.17  Since no current passes along the thin layer, there is no resulting iR drop in 

the solution.  The transit time for the molecules moving across the electrode surface is 

short when it is compared to the time it takes to diffuse across the thin layer of solution 

between one side of the electrode and the other, and thus no interference occurs between 

the reactions occurring at the working and auxiliary electrodes.  The reference electrode 

for the cell used in NEUBA® is placed behind the auxiliary electrode, as shown in Figure 

1.4. 

 

 

Figure 1-4.  The detector cell used with NEUBA® 

 

 The Recorded Data and Resultant Peak Shapes  

 Initial chromatographic theory indicated that an ideal eluted peaks exhibited a 

Gaussian distribution.  In truth many things affect the shape of the peak.  A peak that is 

fronting, or showing an asymmetric first half of the peak, can be due to a dead volume 
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between the injector and the column, so that the injection is being made in one long plug 

instead of a short and narrow one.   Tailing of a peak can be due to dead volumes in the 

connections from the column to the detector, or due to detector lag.  Fronting and tailing 

are also functions of the flow rates in the system being used.  A cold spot on a gas 

chromatographic column can have a similar effect.  They can also be due to nonlinear 

distribution coefficients for the analytes.  Distortions such as these lead to poor 

separations and less reproducible elution times, and thus should be avoided. 

 

 

 

Figure 1-5:  Peak types. 

(a)  Fronting peak; (b) symmetrical peak; (c) tailing peak 

 

 Resolution  

 Any column can be measured to determine the resolving power associated with 

that column.  This quantity is known as the number of theoretical plates.  The maximum 

number of separated peaks attainable for the column can also be determined.  For a 

column of 10,000 theoretical plates yielding a resolution of 1, i.e., the peaks overlap by 

approximately 3%, the number of peaks the column can resolve is 25.  In order to get 50 

peaks to resolve on the column, the number of theoretical plates must be 20,000.  Given 
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that biological samples can have hundreds of analytes present, a single column cannot 

resolve them all and thus overlapping peaks will be the rule rather than the exception. 

 Resolution (Rs) is the ability of the column to separate two analytes.  It is a 

quantitative measurement of how well two peaks are separated in the analysis, and is 

determined by Equation 1.6: 
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Equation 1.6 

 

where A and B refer to the first and second peak, respectively, and the retention times of 

the two analytes are found as shown in Figure 1.6.  The widths are measured at the base 

of the peak as shown in Figure 1.7.   

 The retention time of the analyte and as the width of the peak are values 

commonly used in peak shape equation determinations, as discussed later. 

 



 17 

 

Figure 1-6:  A typical chromatogram, and determination of the retention times of a 

nonretained species, tM, and a retained species, tR. 

 
 A resolution of 1.5 gives essentially a complete separation of the two 

components; at a resolution of 1.0, there is an overlap of the two analytes of about 4%.  

Increasing the number of plates of the column increases the resolution of the column; as 

the peak width narrows with retention times remaining constant, the resolution increases. 
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Figure 1-7:  Determination of the width at half height, and the width of the peak at the 

base. 

 

This is illustrated in Figure 1.8, where the resultant peak is the summation of the two 

peaks.  In Figure 1.8(a), the peaks are well resolved and there is no difficulty in 

determining the two analytes.  In 1.8(b), the peaks are moderately resolved, with a 

resolution of 0.50.  The resultant peaks appear to be slightly wider, and the second peak 

begins to appear taller.  In 1.8(c), the resolution is even poorer at 0.39.  The second peak 

is now noticeably taller, and which parts of the doubled peak are attributable to which 

analyte becomes more difficult to determine.  Part (d) shows the two peaks completely 

merged. 
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(a) (b) (c)

Resolution of Chromatographic Peaks

(d)

 

Figure 1-8:  Resolution of two peaks 

Key:  (a)  Well resolved, Rs = 2.78; (b) moderately resolved, Rs = 0.50; (c) poorly 

resolved, Rs = 0.39; (d) completely overlapping 

 

 All real chromatographic peaks exhibit skewed peak shapes, either as a fronting 

peak or a tailing peak.  This skew in the peak shape complicates the quantification of the 

analyte.  Figures 1.6, 1.7 and 1.8 were generated using real data.  Each chromatographic 

peak in these figures exhibits tailing, which contributes to peak overlap. 

 

 Quantitation Issues 

 In the few cases where there is no overlap between the analytes, a direct measure 

of the quantitative amount for the analyte can easily be determined either as the peak 

height or as the integration of the area under the curve.  If the recording device is a strip 

chart recorder, the easier method by far is to measure the peak height and from that value 
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determine the quantitative amount for the analyte.  However, this method is not as precise 

or as reliable as is the integration of the area under the curve. 

 As peaks continue to overlap, the use of peak areas as a quantitative measurement 

becomes problematic.  When the second peak overlaps the first, the region of overlap 

itself will be skewed since the signal will be a linear combination of the two analyte 

signals, thereby yielding a larger signal, as shown in Figure 1.8.  For two peaks whose 

maxima are not involved in the overlap region, quantification based on peak heights 

rather than peak areas is quite straightforward.  For moderately overlapped peaks, where 

the maximum of the second peak lies within the overlap region, there are two strategies 

commonly employed:  the perpendicular drop method, and the tangent skimming method. 

 The perpendicular drop method draws a line between the two peaks based on 

where the minimum occurs in the valley between the peaks.  This method is quick and 

easy, but tends to overestimate one peak while underestimating the other, depending on 

the relative amounts of the analytes and the degree of overlap.  The tangent skimming 

method assumes that the leading or trailing edge of the peak is a continuation of the 

portion of the peak unaffected by the overlap itself.  This method does not suffer as much 

from over- or underestimation of the relative areas of the two peaks.  As the peaks 

become more and more overlapped, however, the valley disappears and any 

uncontaminated trailing edge of the preceding peak becomes less and less.  Additionally, 

the adjacent peaks may not be similar in shape, and the points required to make these 

measurements may not be easily obtainable due to the overlap.  

 For severely overlapping peaks, the use of either perpendicular drop or tangent 

skimming is not appropriate.  In these cases, the sample normally would be analyzed 
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again under different conditions, or additional steps must be taken to eliminate the 

undesired contaminant.   

 

Internal Standards 

 The use of an internal standard is common practice for quantitative work.  The 

purpose of an internal standard is two-fold:  it serves as a peak against which one can 

quantitate, since it is a known amount, and it serves to indicate possible problems in the 

sample itself.  An internal standard is a compound not normally found in the sample.  It is 

added to the sample, either during extraction or just immediately prior to analysis, and is 

similar in structure and chromatographic behavior as the compounds of interest, but is 

chromatographically well separated from them.18 

 The internal standard is a known compound of known amount; hence, the 

response the detector yields for this compound is also known and should be consistent 

from injection to injection.  Any deviations in the response of the internal standard is due 

to effects of the sample matrix.  Since the sample matrix affected the internal standard, it 

is assumed to affect the analytes of interest in a similar manner.  Thus, suppression of a 

signal can be accounted for and corrected. 

 

Deconvolution of Overlapping Peaks 

 Two methods have been used in the past to resolve overlapping peak information:  

iterative curve fitting, and multivariate calibration methods; both are discussed below.  

These methods are not restricted just to chromatographic data. 
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 Iterative curve fitting19 assumes that a continuous function can be found that is the 

sum of one or more independent parts, each one of which can be itself described by a 

known function.  The number parameters required to fit the chromatographic peak, 

however, has a tendency to rise as the peak shape becomes more and more complex.  

Additionally, a large number of equations can been used to fit a single peak to a high 

degree of precision.  For accuracy, the number of analytes contributing to the peak must 

be known, else an inordinate number of “analytes” can be found leading to false 

positives. 

 Multivariate calibration methods have been used to resolve overlapping 

information in various analytical methods since before the birth of the field known as 

chemometrics.  Mass spectrometers have enjoyed an explosion in use due to pattern 

recognition methods, enabling the identification of overlapping analytes.20-22  NMR,23 

UV-Vis,24 guided microwave spectroscopy,25 and IR spectrometry26 likewise have 

enjoyed improvements due to these methods.  Recently, resolution of strongly 

overlapping peaks in capillary electrophoresis was reported.27  The analysis of drinking 

water28 and the characterization of supercritical adsorption processes between salicylic 

acid and various adsorbent materials using principal component analysis and partial least 

squares regression has also been reported. 29 Quantitative structure-activity relationships 

among carbonic anhydrase inhibitors were determined using multiple linear regression 

and computational neural network analyses.30  These methods can also be used to 

determine the origin of various foodstuffs such as potatoes,31, 32 honey,33 the nitrogen 

content in wheat leaves,34 and similarities between natural and accelerated browning of 

sherry wine,35 as well as the source of illegal drugs36 and pharmaceutical fingerprinting.37  
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It has also been used to determine the levels of veterinary drugs in edible tissues of  

animals.38, 39 

 Electrochemical determinations of analytes are not immune to overlapping peaks, 

irrespective of the presence of prior chromatographic separations.  Various strategies and 

configurations have been investigated to overcome this problem.  Voltammetric-

amperometric dual electrode detection,13 difference mode detection,40 redox mode 

detection,41 and the use of dual electrode response methods42, 43 as strategies for LCEC 

detectors have been tried.  Recently, chemometric methods have been applied to the 

problem.  Artificial neural networks, along with partial least squares analysis, was 

applied to dropping mercury electrode polarography to determine the pesticides atrazine-

simazine and terbutryn-prometryn in binary mixtures.44  Coulometric and volumetric 

experiments involving slow titration reactions were also investigated.45  Metal 

complexation determinations using differential-pulse polarography were performed and 

compared to traditional curve fitting least squares approaches.46   

 This work involves the investigation into iterative curve fitting as a method of 

deconvoluting two overlapping chromatographic peaks, as well as principal component 

analysis with linear regression to determine the actual components in the peaks.  A 

simpler method of deconvolution may involve using a single well-chosen time point to 

investigate the data along the signal-potential domain.  Therefore, a discussion of these 

methods is in order.  A full discussion of these topics is well beyond the scope of this 

work. 
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Chromatographic Peak Shape Functions  

 It has been widely believed that if a function could be determined to exactly fit 

the data, then numerical methods could be used to determine the parameters attainable 

from the data, including the retention time of the species.  This will be discussed in more 

detail below.  Work has been done concerning thermodynamic data that can be 

determined from such functions after they have been fitted to the data.  For such a 

scheme to work, however, a well defined peak shape function is required.47, 48  Additional 

problems include:  (a) poor convergence or ambiguous solutions are not uncommon, 

since the exact number of peaks is generally not known; (b) the position of the baseline 

itself is not exactly known, and in most cases is subjective in nature; and finally, (c) the 

initial estimates of the parameters are not accurate, leading to a solution at a local 

minimum as a result of the optimization method.49  Fitting procedures that assume all the 

components have the same peak shape at different concentrations are subject to error.50  It 

must be assumed that the detector response varies linearly with concentration at any time 

during the elution; this has been shown to not be the case except near the peak 

maximum.50  For badly overlapped peaks where the equations being fitted to the data are 

not perfect representations of the data, the minimum found can be a very shallow 

function of the parameters,51, 52 again leading to errors.   

 The method used to determine the curve fitting is usually a variant of the 

Marquardt method for least squares estimation for nonlinear parameters.53  A very 

popular variant is the Levenberg-Marquardt method.54, 55  Prior to Marquardt’s method, 

most least-squares algorithms to determine the parameters used one of two methods;  (a) 

either expanded the model as a Taylor series and made corrections to the several 
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parameters determined at each iteration on the assumption of local linearity, or (b) the 

method of steepest-descent was used.  Steepest-descent methods,49 also known as 

gradient methods, are still being used.  Both methods often have difficulties, as the 

steepest-descent method suffers from slow convergence after the first few iterations, and 

the Taylor series suffers from divergence of successive iterations.53 The sum of squares 

of the residuals is routinely used as a criterion for evaluating the peak shapes used in the 

peak deconvolution.56 

 There is no one single peak shape that can be ascribed as a “one-size-fits-all” 

equation, and the exact peak shape must be experimentally determined.50, 57, 58  It has 

been suggested that different functions could fit the band envelope with equivalent 

statistical validity, and equal fits may be obtained with more than one set of parameters 

depending on the starting values and the methods used to compute the parameters.59, 60  

Because of the extra- and intra-column effects, it has been stated that the experimental 

retention time as well as the variance do not properly describe the shape of the peak 

under experimental conditions; it was further stated by Papoff et. al that these parameters 

do not allow one to predict how the shape will change when the composition of the eluent 

is varied2 in gradient elution chromatography.  Instrumental effects affect the 

chromatography; forms of the exponentially modified Gaussian equation have been used 

to model the instrumental contributions and subsequently subtracting them out of the 

data, allowing for sharpening of the peaks and thus attaining better separation of the 

peaks.61 

 The first and most simple theory developed for chromatography was the plate 

theory.  This theory still accounts for much of what is generally observed in practice.  It 
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describes the chromatographic process as a number of individual steps, and divides the 

chromatographic column into an infinitesimal number of discrete compartments which 

the chromatographic band would travel down in a stepwise fashion.  The resultant band 

shape described by the model is Gaussian.  It was quickly determined that Gaussian band 

shapes did not sufficiently describe the band shape48, 62 for many kinds of 

chromatography and spurred much investigation into the exact nature of chromatographic 

processes.  A stochastic model of chromatography has since evolved.   

 Several groups were working on a “universal” band shape equation.  These 

groups attacked the problem on two competing fronts:  a theoretical approach, and a 

practical approach.  The theoretical approach utilized those equations with parameters 

describing real processes to the parameters in the equations but perhaps were not easy to 

implement.  The practical approach uses those equations that while perhaps do not have 

parameters that are easily identifiable with any particular real phenomena, nevertheless fit 

the data very well and tend to be easier to implement. 

 The “theoretical” equations allow one to calculate thermodynamic data 

concerning the system under study; these equations include the Gaussian and those 

derived from it.  Working with the existing theory led to using either a skewed 

Gaussian,63, 64 a modified Gaussian function with a polynomial standard deviation,2 or the 

Gaussian equation convolved with a variety of other peak shapes,65 from an exponential 

decay47, 66 to a Lorentzian (Cauchy)67, 68 band shape.  These include the exponentially 

modified Gaussian (EMG),2, 3, 47, 48, 54, 55, 57, 58, 60, 62, 66, 68-83 a simplified exponentially 

modified Gaussian,84 the Gaussian-exponentially modified Gaussian (GEMG),67, 83 and 

the derivatives of these two or even the use of two Gaussian functions.2  It also includes 
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the Cauchy-Gaussian58, 59, 82, 83, 85, 86 (CG) equation which fits strongly tailed peaks.  Of 

these equations, the EMG has been used rather extensively to describe chromatographic 

figures of merit87-89 as well as thermodynamic information88 concerning the system at 

hand, since the statistical moments for the equation are well known and this equation has 

sound footing in theory,57, 61, 66 and has been used to study extra-columnar effects in 

chromatographic systems.2  It tends to fit more peaks, including those that front as well as 

those that tail.76, 77  The EMG function also has been examined as a function of more than 

one time constant.83, 90  However, it does contain an integral form (the error function) that 

can be difficult to estimate numerically.91  A hybrid of the exponential and Gaussian 

functions, named the exponential-Gaussian hybrid function (EGH), is: 

 

 “mathematically simple, numerically stable, and its parameters are readily 

determined by making graphical measurements and applying simple 

equations … [and it] serves as a useful alternative to the exponentially 

modified Gaussian (EMG) for modeling slightly asymmetrical peaks since 

the two models produce nearly the same profile at relatively low 

asymmetries.  The EGH also serves as an addition to the extensive list of 

alternative models that are sometimes better than the EMG at describing 

highly asymmetrical peaks.”92   

 

 The peaks at low asymmetries are those that are best described by the EMG.  For 

peaks at higher asymmetries, the EMG often does not describe the shape of the 

experimental peak very well and the function becomes numerically unstable. 
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 Haarhoff and van der Linde54, 55, 58, 81, 83 derived an equation based on the 

Gaussian equation that takes into account nonideality, nonlinearity,93-95 and sorption 

effects94 that will fit both tailing and fronting peaks.  However, this equation shows 

changes in the elution curve with increasing amounts of injected solute; the peak 

maximum shifts to earlier times, and the asymmetry ratio decreases.  Giddings derived an 

equation54, 55, 83 firmly based in theory that can be used for peaks that have moderate 

tailing.  There is even an equation describing nonlinear chromatography,83 which has 

been considered for modeling ideal delta function analyte loading.54 

 The “practical” equations are those that fit the data well, even though there may 

not be any theoretical basis for them and the parameters may not describe real 

phenomena.  These are normally used to determine the identity of the peak based on the 

retention time.  Given that the elution profile is a statistical distribution of the peak, 

statistical functions such as the Poisson distribution,55, 68, 73, 74, 83, 96 a modified Poisson 

distribution,97 the Weibull function,67, 81, 83, 98, 99 the Gamma function,67, 81, 83, 91, 98, 99 the 

log-normal function,67, 81, 83, 87, 98-101 and the Gram-Charlier81, 87, 88, 102 and the Edgeworth-

Cramer series81, 83, 87, 102, 103 have been used.  The latter two approaches are not very 

useful for peaks that are skewed and require series expansions which represent the 

determination of between seven and ten parameters per peak. 

 Additional functions that have been proposed and used in the past include linear 

combinations of two or more skewed Gaussian functions with differing parameters.85  

The bi-Gaussian function, where two half-Gaussian peaks with different widths are 

added, has been used2, 58, 68, 82, 83, 96, 104 as well.  This function will model both fronting 

and tailing peaks.  An interesting parameter is the ratio of the width of the back peak to 
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the width of the front peak, σ1/σ0.  When two overlapping bi-Gaussian peaks with 

differing ratios have a resolution of zero (complete overlap), the double bi-Gaussian 

peaks can be differentiated from a true single bi-Gaussian peak.  This may show that the 

peak is not pure, but does nothing to determine the concentrations of the components.  

The bi-Gaussian equation does not yield correct first-order moment values, and since it 

contains two width values, the second order moments are not directly related to the peak 

shape.2  A model similar to the bi-Gaussian equation was proposed by Li105 wherein he 

transformed the leading and trailing edges of a Gaussian function into step functions to fit 

chromatographic peaks. 

 Chesler and Cram proposed convoluting a Gaussian, an exponential, and a 

hyperbolic tangent joining function, where the front of the peak can be fit with the 

Gaussian, the back side of the peak with the exponential function, and the hyperbolic 

tangent functions as a broadening function to enable the fit.19, 58, 80, 83, 88  This function has 

been used to examine chromatographic processes.106  It contains some eight parameters, 

and even with this large number of parameters used to fit the data, it is still not a very 

useful equation.105  Additionally, derivative functions have been proposed,85 as well as 

using the leading and trailing edges of sigmoid functions.107, 108 

 A recent review found about ninety empirical functions that have been used for 

the representation of chromatographic and spectroscopic peaks.83  A count of those 

equations listed in this review that have been used for chromatography numbered some 

seventy-one.  As noted by the authors, the literature contains instances of two apparently 

different equations representing the same function being presented with different names, 

as well as instances of printing errors, some serious, that have been propagated.  Several 
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equations have more than one name, and some names are currently in use for more than 

one equation.  Different forms of the same equation have been reported. 

 The parameters in the equations themselves are not uniform throughout the 

equations found in the literature.  For instance, the width of a peak depends on where it is 

measured; different equations measure width at different heights.  Thus, uniformity in the 

equations themselves is necessary in order to allow a more direct comparison between the 

different equations.  The parameters are listed with each equation.  The following 

parameters are of note.  The height of the peak can be either exactly the height, in which 

a change in the magnitude of the parameter will change the height, or the height can 

depend on other parameters in the equation.  The stated retention time is either the exact 

retention time, or it can depend on other parameters.  A change in the magnitude of the 

retention time for an equation expressing the exact retention time, of course, will change 

the retention time with no changes to other parameters.  If the retention time depends on 

other parameters, a change in the retention time will change the related parameters as 

well.  Different functions measure the peak width at different heights.  In some cases 

changes in the parameter itself changes the width; or in most cases, the width depends on 

other parameters.  Ideally the symmetry parameter should be positive for fronted peaks, 

zero for symmetric peaks, and negative for tailed peaks, but this is not uniform for all the 

functions.  The physical meaning of this parameter depends on the function itself.  For 

some equations, the symmetry can be changed by changing the parameter itself, and for 

other equations it depends on other parameters. 

 Twelve equations are used in this work.  Since there are some ninety possible 

functions that could be used, only the most common ones used in the literature and those 
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that appeared to be good candidates were evaluated in this work.  These equations are 

discussed below.  Depending on the author, several parameters in the equations may be 

reported in various ways.  An attempt has been made to make the variables uniform to 

allow a more direct comparison between the different functions.    These twelve 

equations are: 

 

1. Haarhoff – Van der Linde (HVL) 
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Equation 1.7 
 

where a0 is the area, a1 is the peak center, a2 is the width, and a3 is the distortion factor.  

Another form of this equation, in more familiar chromatographic terms, is: 
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Equation 1.8 
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where c is the concentration, A is area, tR is the retention time, σ is the standard deviation 

of the Gaussian function, and α values are fitting parameters.  This equation will yield a 

single maximum, and can be used on fronted, symmetrical or nearly symmetrical peaks, 

and also on tailed peaks.  The zeroth statistical moment (area) can be determined exactly 

from this equation.  

 

2. Exponentially Modified Gaussian (EMG) 

 

 In its bi-directional form: 
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where a0 is the area, a1 is the center, a2 is the width, and a3 is the distortion factor.  This 

equation has many forms, among which is 
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where c is concentration of the analyte as a function of time, A is area, tR is the retention 

time, σ is the standard deviation of the Gaussian function, and α values are fitting 
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parameters.  According to a recent review,83 almost 20 formulae for the EMG function 

have been reported in the literature, with the first seven listed are stated as independently 

derived and therefore equivalent to one another; the next four are approximate 

expressions, equivalent to the “true” EMG only when the retention time is much larger 

than the symmetry parameter, which is generally the case.  The remainder in this review 

are all different from one another, and also different from the first twelve; printing errors 

have also crept into the literature of EMG equations.   It has been suggested that the peak 

shape most commonly encountered with chromatographic data is the EMG.75, 83  Much 

work has been done using this equation, and hence it is the best understood of the 

equations commonly in use.  The calculation of the figures of merit for this equation were 

worked out by Foley and Dorsey89 in 1983, and has since been used to determine 

thermodynamic properties of analytes.  

 

3. The Giddings Equation.  This equation does not fit highly skewed peaks.  Since 

the definition of “highly skewed peaks” is not commonly encountered in the literature, 

the Giddings equation was included in this study for completeness.  This equation takes 

the form: 
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where a0 is the area, a1 is the center, a2 is the width, and I1 is the Bessel function for n=1, 

where t<<n: 
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4. Half-Gaussian Modified Gaussian (GMG) 
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Equation 1.13 

 

where a0 is the area, a1 is the center, a2 is the width, and a3 is the distortion factor.  As can 

be surmised, this is a convolution of a half-Gaussian equation with an exponentially 

modified Gaussian equation.  This allows fitting to tailing peaks with more Gaussian 

characteristics in the main part of the peak itself. 
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5. 4 Parameter EMG-GMG hybrid (GEMG4) 
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Equation 1.14 

 

where a0 is the area, a1 is the center, a2 is the width, and a3 is the distortion factor.  This is 

another hybrid EMG peak with a Gaussian-Modified Gaussian peak using four 

parameters. 

 

6. 5 Parameter EMG-GMG hybrid (GEMG5) 
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Equation 1.15 

 

where a0 is the area, a1 is the center, a2 is the width, and finally a3 and a4 are distortion 

factors.  This is another hybrid EMG peak with a Gaussian-Modified Gaussian peak 

using five parameters; the use of additional fitting parameters should allow for a better fit 
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for the equation.  A large number of parameters can only be justified when an even larger 

number of experimental data points are available. 

 

7. EMG + GMG 
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Equation 1.16 

 

where a0 is the area, a1 is the center, a2 is the width, and a3 is the distortion1 factor, and a4 

is the second distortion factor.  This is a summation between the EMG and the Half 

Gaussian-Modified Gaussian equation.  As stated before, better fits to the experimental 

data can be found with increasing numbers of functions being used to fit a peak.  

However, this equation may be problematic for use when using it to deconvolute two 

overlapping peaks, since the two halves of the equation are not coupled.  In this case, a 

total of four equations are actually being used. 

 

8. Bi-Gaussian (BG), in its chromatographic form: 
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where A = area, t is time, tR is the retention time, and σL and σR are the standard 

deviations for the totally symmetric function.  This is a discontinuous and thus 

undifferentiable function; determination of the peak maximum via the first derivative of 

the equation is not available.  However, since it is discontinuous, with the first half of the 

equation having a different standard deviation than the last half, the retention time 

reported by the equation will be the peak maximum. 

 

9. Fraser-Suzuki (FS) 
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Equation 1.18 

 

where A = area, t is time, tR is the retention time, and σL and σR are the standard 

deviations for the totally symmetric function.  This equation has been stated as being the 

same as the log-normal equation. 
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10. Log-Normal 
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Equation 1.19 

 

where A is the area, t is time, tR is the retention time, and σ is the standard deviation, 

supposedly for the totally symmetric function.  This equation has been shown in the 

literature to fit slightly skewed peaks, and has been promoted as a “universal” peak fit 

equation.83 

 

11. Cauchy-Gaussian 

 This function is the result of a convolution between a Gaussian function and a 

Lorentzian, or Cauchy, function. 
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where A = area, t is time, tR is the retention time, and σL and σR are the standard 

deviations for the totally symmetric function.  This is another discontinuous function, and 

as such the retention time is expected to be exact. 

 

12. Chesler-Cram, in its chromatographic form: 
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Equation 1.21 

 

where A = area, t is time, tR is the retention time, and σ is the standard deviation, 

supposedly for the totally symmetric function. 

 Several authors reported the band broadening found in severely tailing peaks to be 

more an instrumental band-broadening effect rather than specific to the physical 

processes of adsorption and desorption of an analyte to the column.  If the peaks are very 

closely eluting, as are the peaks in the present study, this asymmetry can be attributed to 

the chromatographic system, and thus the parameters describing the asymmetry will be 

the same for both peaks.  Initially, both peaks were allowed to find independent 

asymmetry parameters, and these results were compared to the results obtained when the 

asymmetry parameters were the same for both peaks.  The results of this work are 

presented later. 
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Principal Components - Background 

 Principal component analysis is an approach based on linear algebra which allows 

for the reduction in the data but still keep much of the variation in the data set.  The data 

is analyzed in reference to various axes, with the axis of the first principal component 

along the axis describing the most variance in the data; the second principal component is 

then placed orthogonal to the first and is thus uncorrelated.  The result can be considered 

in two ways:  first, the old variables can be considered in terms of linear combinations of 

the new variables, and as such, the old variables can be explained by a smaller set of new 

variables, called factors, and thus reduces the data set.  Alternatively, the new variables 

can be considered as linear combinations of the old ones. 

 To explain this method, consider the problem in two-dimensional space.  The 

linear transformations are: 
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 The variance in u can be made arbitrarily large by multiplication of the 

coefficients a and c, as well as b and d, by some constant value.  Thus, a restriction on 

these coefficients must be made, the so-called normalizing constraint: 
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a
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Equation 1.24 
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Equation 1.25 

 

 Equations 1.22 and 1.23 make the new coordinate system (u1, u2) orthogonal; 

Equations 1.24 and 1.25 make the transformation vectors of unit length.  Furthermore, 

these conditions make the angle θ between u1 and x1 the same as that between u2 and x2 

so that 
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and thus it can be seen that 
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Equation 1.28 
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b = !c = sin"  

Equation 1.29 

 

 In matrix form this can be expressed as: 
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 Equation 1.30 represents the rotation in the coordinate system from the old 

variables to the new.  We wish to maximize the variation encompassed for each of the 

components, and so we look to the general variance-covariance matrix for the u variables 
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which can be written as 
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 Since the new variables are restricted to be uncorrelated, σu1u2 and σu2u1 are both 

zero.  The angle where σu1
2 is maximized can now be found by setting the derivative of 

σu1
2 to zero, and this angle is given by: 
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and 
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 If the variances are equal, the angle becomes 45o:  positive for positively 

correlated variables and negative for negatively correlated variables.  At this point, 

several terms should be mentioned.  Each vector that defines a principal component is 

called an eigenvector of the variance-covariance matrix, and the variance along this 

vector is called its eigenvalue.  These terms will be used again later in this discussion. 

 Now consider the problem in multiple dimensions, m.  The general 

transformations are: 
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Equation 1.35 

 

The coefficients v can be written into a matrix of coefficients, V: 
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Equation 1.36 

 

and the u and x vectors are column vectors of the new and old variables: 
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Equation 1.37 
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The transformation can be shown in matrix form as: 

 

u = V ! x  

Equation 1.39 

 

Once again, there are two conditions that need to be satisfied:  orthogonality and the 

vector having unit length.  Thus, for each new pair of coordinates uk and ur: 
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Equation 1.40 

 

and for each component ur: 
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Equation 1.41 

 

These two conditions, taken together, are equivalent to: 

 

V !V
T

= I  

Equation 1.42 
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where I is the identity matrix.  For the two-dimensional case, V was satisfied by the 

variance-covariance matrix as seen in Equation 1.31 above.  For the multidimensional 

case, however, the use of this approach yields very complex expressions.  However, this 

problem can be approached using matrix mathematics.  The variance-covariance matrix 

of the new variables ur can be stated as a function of the variance-covariance of the x 

variables: 

 

C
u
= V !C

x
!V

T  

Equation 1.43 

 

where Cu and Cx are the variance-covariance matrices of the u and x variables, 

respectively.  The expression to maximize then becomes 

 

Var u
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! v
1
 

Equation 1.44 

 

where vT
•v = 1 and v1

T is a row vector representing the transformation by which we get 

u1; u1 is a linear transformation of the first row of matrix V (the x variables) 
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This equation is equivalent to 

 

C
x
! v = "v  

Equation 1.46 

 

 The vector v is the eigenvector of the variance-covariance matrix Cx and λ is the 

eigenvalue.  The eigenvalue λ can be determined by 

 

v
1
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!C
x
! v
1
= "

1
v
1

T

! v
1( ) = "1 

Equation 1.47 

 

Maximizing Equation 1.47 means maximizing λ, thereby taking the largest eigenvalue 

and its corresponding eigenvector. 

 As stated before, the new variables ur are the principal components, and as such 

are uncorrelated linear functions of the original variables.  The coordinates of the 

corresponding eigenvectors are the coefficients of the original variables for the principal 

component.  The loading for the variable is this coordinate multiplied by the square root 

of the eigenvalue of this principal component.  The term loading is also often applied to 

the coefficients themselves.  The value an object takes for a principal component is the 

score of the object for that principal component. 

 The next step is to decide how many principal components to retain in the model.  

One would usually retain enough of the first principal components to account for 80-90% 

of the total variation.  The total variation of all the variables can be determined by: 
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Equation 1.48 

 

and so the required amount of variance can be determined by 
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Equation 1.49 

 

 Usually only the first two or three principal components are enough to explain an 

important part of the variance.  The variance and hence the error associated with the data 

will be further discussed below. 

 

Factor Analysis 

 Taking this discussion further, a determination of how many factors, or principal 

components, are necessary to explain the variance needs be done.  This determination is 

called factor analysis.  Recall that for the two dimensional space, the transformations are 

(Equations 1.26 and 1.27 respectively): 
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 Generalizing for m-dimensions, the transformation can be written as 

 

  u = V ! x  

Equation 1.50 

 

and the conditions as 

 

  V !V
T

= I  

Equation 1.51 

 

Any matrix that satisfies Equation 1.51 above also has the property that its transpose is 

equal to its inverse: 

 

    V
T

= V
!1 

Equation 1.52 

 

and thus Equation 1.50 can be rewritten as 
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!1
" x = V

T

" u  

Equation 1.53 
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Equation 1.53 can be written out as 

 

      

x
1
= v

11
u

1
+ v

12
u

2
+L +v

1m
u

m

x
2
= v

21
u

1
+ v

22
u

2
+L +v

2m
u

m

M

x
m
= v

m1
u

1
+ v

m2
u

2
+L + v

mm
u

m

 

Equation 1.54 

 

and so, in vector notation, 
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Equation 1.55 

 

Keep in mind that since 
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Equation 1.56 

 

Equation 1.55 therefore can be decomposed into two matrices, multiplied together: 

 

  X =U !V  

Equation 1.57 
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The matrix U are the scores for the data.  The first row contains the scores for the first 

object, the second row for the second, and so on.  The entire matrix can be found using 

multiple linear regression (MLR): 

 

    
U

T

= V
T

!V( )
"1

!V ! X
T  

Equation 1.58 

 

Since the eigenvectors are orthogonal, (VT
 •V) = I, the identity matrix, and thus 

 

    U
T

= V ! X
T

 or U = X !V
T  

Equation 1.59 

 

Since not all of the eigenvectors need be included in V in order to account for the 

unextractable noise inherent in the data, and hence in X, only the first several 

eigenvectors, p, may be required: 

 

  
X =U p !Vp + E  

Equation 1.60 

 

where Vp is the matrix of eigenvectors for the first p rows of V, Up are the corresponding 

scores, and E is the matrix of errors or residuals, which are the difference between the 

values the data set gives and what the model gives for the same value of x. 
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Error 

 All real data sets contain some error, either random or experimental.  The sources 

of the error are generally ascribed to noise, including both experimental and instrumental.  

The amount of error associated with the data set can actually mask the true 

dimensionality of the data set.  The total error associated with a given data set can be 

divided into two sources:  imbedded error and extracted error.  Extracted error is error 

that is found within the minor principal components; it can be removed by discarding the 

minor principal component.  Imbedded error, however, is contained within the first 

several major principal components, and thus cannot be completely removed from the 

data set.  The amount of imbedded error will therefore affect the reproduction of the data 

set. 

 While the imbedded error cannot be removed and is therefore included in the 

reduced data set, the extracted error can and is usually removed.  Thus, the correct 

number of principal components to be retained becomes important; if it is 

underestimated, then important information concerning the structure of the data has been 

removed as extracted error, but if it is overestimated, experimental error is included in the 

principal component model and could cloud or mask the underlying structure contained 

in the data set.  The question to be answered is:  How many principal components does 

one retain? 

 If the objective is just a quick analysis to get an understanding of the data, then 

the additional dimensions and their associated error may not be important.  However, if 

one has mixture data and wants to identify the constants and estimate their proportions in 
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the mixtures, an accurate estimate of the number of dimensions to include becomes 

important.  There are two categories of techniques that have been developed to determine 

the true dimensionality of the data:  those based on knowledge of the experimental error 

associated with the data and techniques that do not require such knowledge and are thus 

approximate.  The various techniques are summarized below.  Among those techniques 

requiring prior knowledge are: 

 1. Residual Standard Deviation (RSD).  The RSD of a matrix is a measure of 

the lack of fit between the principal component model and the data set.  When the 

number of dimensions that are required to reduce the RSD to approximately equal to the 

estimated experimental error of the data, the true dimensionality of the data set is 

revealed. 

 2. Root Mean Square (RMS).  Like the RSD above, the true dimensionality 

of the data set is found to be the number of dimensions that are required to reduce the 

RMS to approximately that of the experimental error.  The RMS and RSD are related to 

one another; however, the RSD measures the difference between the raw and the pure 

data that contains no experimental error, and the RMS measures the differences between 

the raw and the reproduced data using a given number of principal component 

dimensions.  The method of RSD is to be preferred, since it gives a measure of the actual 

error. 

 3. Average error criterion.  The average error is the average of the absolute 

values of the differences between the raw and reproduced data, with the true 

dimensionality being the number of dimensions that are required to reduce the average 

error to be approximately the same as the estimated average error in the data. 
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 4. Chi-squared criterion.  For data sets where the standard deviation changes 

from data point to data point and is not constant, a chi-squared technique has been 

developed.  It takes into account the variability in error from one data point to the next; 

however, one must be reasonably accurate in the error estimate for each data point. 

 5. Distribution of misfit.  In this method, the number of misfits between the 

observed and reproduced data sets are studied as a function of the number of principal 

components employed.  Misfits are defined as data points whose deviation from the 

observed value is more than 3σ, estimated from experimental information.  The true 

dimensionality of the data is the number of principal components required so that either 

none of the data points, or some user specified proportion of data points, are classified as 

misfits. 

 There are methods that do not require prior knowledge of the experimental error 

in the data set and thus can be used to estimate the amount of error in the data set.  These 

methods include: 

 1. Cumulative percent variance.  This method is a measure of the total 

variance accounted for by using p principal component dimensions.  The sum of the 

square of the reproduced data is divided by the sum of the square of the raw experimental 

data, times 100%.  It can also be expressed in terms of the eigenvalues of the data matrix, 

and thus is also known as the percent variance in the eigenvalue.  The criterion is to 

accept the set of largest eigenvalues that account for a specified proportion of the data.  

However, this method can only be used if an accurate estimate is made of the true 

variance in the data, and this cannot be done without knowledge of the errors in the data. 
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 2. Average eigenvalue.  The principal components whose eigenvalues are 

above the average eigenvalue is retained and the others are discarded.  If the analysis is 

done using its correlation matrix, the average eigenvalue will be unity, since the variance 

of each variable is unity.  Thus, only those components whose eigenvalues are more than 

one should be retained, and so this method is also known as the eigenvalue-one criterion. 

 3. Scree test.  This test assumes that the residual variance will level off 

before those dimensions that contain random error will be included in the data.  When the 

residual percent variance is plotted against the number of principal component 

dimensions, the curve will drop rapidly and level off at some point.  The dimensionality 

of the data set is shown to be where the curve levels off or where a discontinuity in the 

curve occurs; successive eigenvalues explain less and less variance in the data and result 

in a drop in the residual percent variance.  In situations where the errors are not random, 

discontinuities in the plot will be seen, since principal component analysis may 

exaggerate any non-uniformity in the data in trying to explain the variation. 

 4. Exner function.  The Exner psi (ψ) function can be used as a method to 

identify the dimensionality of the data set.  This function can vary from zero, which gives 

the best fit, to infinity.  A value of 1.0 gives the upper limit of significance; this means 

that reproducing the data using p principal components is the same as saying each point is 

equal to the mean of the data.  The largest acceptable ψ value has been proposed at 0.5.  

A ψ  value of 0.3 is considered a fair correlation, 0.2 is a good correlation, and 0.1 an 

excellent correlation. 

 5. Imbedded error function.  This function was developed to identify the 

principal component dimensions that contain error, but without relying on an estimate of 
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the error associated with the data.  The value of the function should decrease as the true 

dimensions are being used in reproducing the data; when error dimensions are included in 

the reproduction, the function should increase, because the error dimensions are the sum 

of squares of the projections of the error points on the error axis.  The imbedded error 

function method, however, has difficulties as a steady increase is rarely seen, as principal 

component analysis exaggerates any non-uniformity that exists in the error distribution, 

and hence will result in non-equal error eigenvalues.  The minimization in the function 

may not be clearly seen if systematic errors exist, uniformity in the error distribution in 

the data is not seen, or the errors are not truly random.  In any of these cases, local 

minima may be seen. 

 6. Factor indicator function.  The factor indicator function appears to be 

more sensitive than the imbedded error function.  It also reaches a minimum when the 

correct number of principal components have been reached which is more pronounced 

and can often be seen in cases where the imbedded error function does not show a 

minimum. 

 7. Malinowski F-test.  This test is based on the Fisher variance ratio test (F-

test); the F-test is the ratio of two variances, obtained from two normally distributed data 

samples.  If the errors in the data are not uniform, or if systematic errors exist, the 

variance expressed by the error eigenvalues will not follow a normal distribution.  Since 

the true eigenvectors for the data contain both structural information and imbedded 

experimental error, they have eigenvalues that are statistically greater than the pooled 

variance of the error eigenvalues.  The error of the first eigenvector is set equal to the 

principal component with the smallest eigenvalue.  The next smallest eigenvalue is tested 
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for significance by comparing its variance to the variance of the error set; if this quantity 

exceeds the tabulated value of F for the chosen level of significance, it marks the division 

between the true and error eigenvectors.  If it does not exceed the tabulated value of F, 

the eigenvalue being tested is added to the error eigenvector set and the process is 

repeated with the next smallest eigenvalue until the division line is found.  The advantage 

of the F-test is that it takes into account a model for the noise or errors in the data, even if 

the model is a normal distribution. 

 8. Cross-validation.  The cross-validation method tries to determine which 

principal components have the best predictive ability, and those that contain experimental 

and random errors as do the above methods. It does not identify the breaking point for the 

dimensions that contain sample structure and information.  Cross validation is used in the 

formulation of the principal component model for samples from a known class, and then 

the principal component model is used to classify unknown samples.  The data matrix X 

is divided into a number of small groups; each group is deleted in turn from the data and 

a principal component analysis is performed on the remaining data set.  The deleted 

group is then predicted using the model just found.  The process is then repeated until all 

the groups have been subsequently deleted and predicted.  A suitable criterion of a 

goodness of fit is selected, relating the actual and predicted values, and summed over all 

the groups; the optimal principal component model is then identified using the goodness 

of fit criterion.  This method is used when a large number of possible dimensions are 

inherent in the data matrix.  In the current investigations, there are only four possible 

dimensions, and thus cross-validation as normally used is not necessary, as examination 

of the number of principal component analysis will reveal. 
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 In the present work, three different algorithms were used in conjunction with 

principal component analysis:  partial least squares (PLS), and principal component 

regression (PCR) using the traditional NIPALS (Non-Iterative Partial Least Squares) and 

the SIMPLS (Statistically Improved Partial Least Squares) algorithms.  Each of these 

methods are a two-step procedure, with principal component analysis being performed 

first to obtain the reduced number of variables and the factor scores, and the subsequent 

algorithm is used with these factor scores to determine the analyte concentration or 

amount.  Each of these methods and their respective algorithms will be discussed in turn. 

 

Principal Component Regression. 

 Principal Component Regression (PCR) methods do not require that details of all 

the components in the system be known, but does require a sensible estimate of how 

many significant components are in the mixture.109  A normal regression technique 

relates the original variables to the concentrations; PCR relates a principal component to 

that concentration.  This method is a solution to the factor analysis problem discussed 

above, giving: 

 

  t = Xw + e  

Equation 1.61 

 

where t is a column vector containing n1 rows of  t1 followed by n2 rows of t2, where t is 

the target vectors for the first and second components, respectively, and X is a vertical 

concantenation of data matrices X1 and X2, where each column is the reading from an 
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individual detector in the detector array.  The component w is the weight vector.  The 

quantity e is the error vector, which is minimized to solve the regression problem.  The 

solution is 

 

    
w = X

T

X( )
!1

X
T

t  

Equation 1.62 

 

 If the measurements are highly correlated or are noisy, finding a good value of the 

weight vector can be difficult because of the inverse function in Equation 1.51.  However 

if principal component analysis is first performed on the data, a reduced data set can be 

determined, and directions that correspond to noise in the system can be discarded.  The 

predicted values can now be found using the reduced data set; the projected data are 

commonly called the “score matrix.”  This approach to the problem is called principal 

component regression, and as an alternate solution to Equation 1.51 may be better 

behaved than the standard MLR approach.110 

 

Partial Least Squares. 

 Partial Least Squares (PLS) is related to PCR.  While PCR finds factors that 

capture the greatest amount of variance in the predictor variables, and MLR (discussed 

previously) tries to find a single factor that best correlates predictor variables with 

predicted variables, PLS tries to do both:  it tries to capture the greatest amount of 

variance and it tries to achieve correlation.111  It requires no prior knowledge of the 

system under investigation, and is applicable to non-linear systems.112  It is often 
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regarded as the major regression technique for multivariate data.109  When applied to 

chromatographic data, this method takes into account errors in both the concentration 

estimates and the chromatograms, instead of only in the dependent data (the 

chromatograms).113  This method, however, must be used with caution, as the predictions 

are essentially statistical in nature.  The underlying factors in the method have little or no 

physical meaning, and so a linearly additive model where each underlying factor can be 

physically interpreted is not expected.  Even with these problems, if future samples 

contain similar features as the original data, the model can be very robust. 

 PLS uses both the target vector and the measurements to determine the lower 

dimensional subspace, using an iterative procedure.110  This subspace is then used to 

make the predictions.  Two commonly used algorithms are the traditional NIPALS, for 

Non-Iterative Partial Least Squares, and its relative, SIMPLS (Statistically Improved 

Partial Least Squares).  NIPALS carries the x variance information in the loads, not the 

scores; the X-block (predictor variable) scores are orthogonal to one another and the X-

block loadings are normalized.  SIMPLS has the X-block scores being orthonormal, i.e., 

both orthogonal and normalized, and the X-block loadings are not normalized.  In fact, 

the explicit objective of the SIMPLS algorithm is to maximize covariance, while 

NIPALS does not.  SIMPLS relies on orthogonalization of a Krylof sequence to calculate 

the PLS weights, which is a very fast procedure.111 

 Each of the methods under consideration rely on principal components as the first 

step in the process.  Thus, one of the parameters to be determined was the number of 

principal components required to adequately describe the data. Two commercial 

packages have been used to determine this parameter, Matlab (The MathWorks Inc., 
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Natick NY) and a module to Matlab, PLS_Toolbox 2.1 (Eigenvector Research, Inc., 

Manson, WA).  These packages have been used in the investigation of antibiotics in 

animal tissues,38 the determination of acetonitrile and ethanol in water,25 the 

characterization of impregnated materials,29 the determination of aluminum and iron in 

plant extracts,114 the amount of dermatan sulfate contamination in heparin samples,23 the 

determination of the strongly overlapping peaks of ebrotidine and its metabolites in 

capillary electrophoresis,27 and in standardization techniques for ion-selective sensor 

arrays.115  Other investigations include the determination of tryptophan in feed 

samples,116 and the characterization of dental composites.117  Matlab, with its associated 

functions and toolboxes, has also been used in the analysis of voltammetric data,46 and 

the determination of the hydrocarbon content in naphtha by MIR spectroscopy.118 

 There are two ultimate criteria to consider in determining the applicability of any 

method, including chemometric methods, for determination of quantities of compounds:  

the accuracy and the precision.  Accuracy is defined simply as how well a result 

compares to the known, real value; the precision of a method is a determination of the 

spread in the data.  The determined result may be very accurate, but the precision may be 

so low that the result itself may be called into question.  When there are replicates in the 

theoretical data set for each determination, and the values for each determination is 

measured, accuracy and precision are easily determined.  The issue of accuracy is 

addressed by two methods.  One is the use of a commonly employed diagnostic RMSEC, 

the root mean square error of calibration: 
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Equation 1.63 

 

where n is the number of samples,     ˆ y 
i
 are the predicted y-values when all samples are 

included in the model formation, and yi are the actual values.  The percent RMSEC is 

then determined by 

 

    

%RMSEC = RMSEC
100

y i
 

Equation 1.64 

 

where   y 
i
 is the mean of the y-values.  A similar criterion is used to determine the 

goodness of fit of the predicted values, which uses an equation of the same form, but uses 

the predicted values from a new data set, not the calibration data set, and is termed the 

root mean square error of prediction, RMSEP. 

 Another simpler criterion used was the residual percentage, which is simply the 

difference between the known value and the determined value, expressed as a percent of 

the known value.  This value can be considered also as a difference percentage.  A 

positive residual percentage means that the determination is higher than the known value; 

a negative residual percentage means that the determination is lower than the known 

value.  Additionally, the difference percentage will be examined using clustering analysis 
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to determine which data set is closest to the model set.  The issue of precision is 

expressed as a percent relative standard deviation (percent RSD).  

 

Development of the Cramer’s Rule Approach 

 The Cramer’s Rule Approach depends on the responses of the individual 

electrodes to a compound or compounds at a given time.  It is only used on the potential-

signal domain.  Thus, it requires a description of the individual currents of the analytes.  

We start with the Nernst equation restated here in terms of the concentrations of the 

reduced and oxidized species in a redox reaction: 
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Equation 1.65 

 

where “x = 0” denotes distance from the electrode surface.  Rearrangement of Equation 

1.65 yields: 
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for the reduced species and 
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Equation 1.67 
 

for the oxidized species.  The model also requires an expression for the concentration in 

terms of the reduced species in the bulk solution.  With only the reduced species in the 

bulk of the solution, at the electrode surface we have 
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Equation 1.68 
 

Prior to any potential being applied, at time zero (t=0), i.e., no reaction has taken place 

yet, CO(x=0) = 0 and so CR(x=0) = CR
*.  Substituting Equation 1.67 into Equation 1.68 yields 
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which reduces to 
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 65 

The concentration of the reduced species at the surface of the electrode thus can be 

written as a function of the concentration of the bulk reduced solution, the applied 

potential, the standard potential, and the number of electrons in the balanced chemical 

equation: 
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Equation 1.71 
 

which is further simplified to 
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Equation 1.72 
 

The model also requires an expression for the current in terms of the reduced species in 

the bulk solution.  This is expressed as a function of the moles of electrons involved in 

the reaction, the Faraday constant, the area of the electrode, and the mass constant: 
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Equation 1.72 is then substituted into Equation 1.73, yielding: 
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Equation 1.74 
 

or 
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Equation 1.75 
 

which simplifies to: 
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Equation 1.76 
 

This terms in the bracket simplify and the equation becomes 



 67 

 

    

! 

i = nFAm
R
C

R

*

10

"
E"E

# o ( )n

0.05916

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
" 1+10

"
E"E

# o ( )n

0.05916

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, , 

- 

. 

/ 
/ 
/ / 

1+10

"
E"E

# o ( )n

0.05916

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) 

= nFAm
R
C

R

* "1

1+10

"
E"E

# o ( )n

0.05916

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

=
"nFAm

R
C

R

*

1+10

"
E"E

# o ( )n

0.05916

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

 

Equation 1.77 
 

Equation 1.77 above is in terms of the concentration of the reduced species in the bulk 

solution.  Since the purpose of this study is to deconvolute the overlapping peaks and not 

to determine constants related to the electrode, Equation 1.77 can be simplified by 

collecting the constants together: 
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Equation 1.78 
 

and so we use the simplified equation 
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Equation 1.79 
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to model the current at a given electrode for a single species.  Since the potential of the 

electrode is set is also a constant, and the number of electrons involved in the reaction as 

well as the standard potential are also constants, we can further combine these into the 

overall constant yielding 

 

    i = !K
R

'
C

R

*  

Equation 1.80 
 

Due to the conventional nomenclature used, Equation 1.80 above appears to yield a 

negative current; in practice, however, the current is positive, and hence further 

development of the model using Equation 1.79 will show the results as positive with the 

K’R now being K‡
R. 

 For the oxidized species, we use Equation 1.66, repeated here: 
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Equation 1.66 

 

and the bulk equation for the oxidized species: 
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Equation 1.81 
 

along with the current equation for the oxidized species 
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A similar treatment as above using the appropriate equations yields  
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Equation 1.83 
 

for the current equation for the oxidized species.  Using the corresponding equation to 

collect the electrode parameters into a single constant, and, since the potential is fixed 

during the run for the electrode, and the number of electrons involved is constant as well 

as the standard potential, the constant for the oxidized species takes on the form of: 
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Equation 1.84 
 

gives the final equation as 
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Equation 1.85 
 

for the oxidized species.  Equations 1.80 and 1.85 above imply concentrations; however, 

the amount injected could just as easily be used since the respective constant collects up 

all the respective terms. 

 To finish the model, the total signal is taken as a sum of the individual currents 

for each potential in the time domain: 
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Equation 1.86 
 

shown here for the reduced species in bulk.  For each electrode, there is a separate 

equation.  This set of equations form the simultaneous linear equation set that is to be 

solved to determine the concentration of the respective species.  Thus, four electrodes 

would involve four equations: 
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where the amounts or concentrations of the respective species are expected to remain the 

same.  This method was previously outlined but not described fully by Cao and 

Hoshino119 in 1996; they showed that the method worked, and used it to detect 3,4-

dihydroxyphenylglycol (DHPG).120  The chromatographic traces for the analytes shown 

in both papers indicated a discernable peak, with a minimum in the chromatographic 

trace both before and after it.  This is a case that has been addressed many times by fitting 

the data using the time/signal domain.  They calculated the amounts for the analyte on a 

point-by-point basis over all the elution time points using a least-squares method, but did 

not indicate any problems with possible column overloading.  This method should work 

as long as the potentials used to differentiate between the analytes are different, since the 

separation power of the method depends on the different electrochemical behavior of the 

analytes. 
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Chapter 2 — Experimental 

 

NEUBA® Chromatographic System 

 NEUBA
®
, a “neurobiological analyzer”,121-126 was developed in the late 1980’s 

for the analysis of complex mixtures such as neurochemicals in brain tissue and 

metabolites in urine.  Multiple electrode detectors such as those in NEUBA® have 

recently found use in various applications, from the analysis of beer and wine127 to 

mapping regions of the brain,128 and the use of multi-channel and multi-electrode systems 

are becoming more popular.129-136 

 NEUBA
®
 is a liquid chromatograph system having multiple columns and multiple 

electrochemical detectors.  It has four individual chromatographic columns, with thirteen 

working electrodes arranged in four thin layer cells, all controlled by a single potentiostat 

and using one autosampler to make injections.  Of the four columns, three are used to 

separate most of the desired analytes by dividing them from a simply chromatographic 

standpoint into weakly, moderately, and strongly retained components.  The fourth 

column is devoted to the separation and detection of acetylcholine and choline by use of 

an immobilized enzyme post column reactor. 

 The three primary systems use an electrochemical array detector consisting a 

series of four 1.0 mm glassy carbon electrodes in one thin layer flow through cell.  

System 4, however, has a single 2.0 mm platinum working electrode.  The three-

dimensional nature of the multiple detector LCEC separation thus allows for 

identification and quantification of potentially hundreds of compounds. 
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 NEUBA
®
 consists of a computer interfaced to both an autoinjector and the multi-

electrode potentiostat/controller.  Each sample is injected and a portion directed through a 

six port column selection valve, which then sequentially injects a set amount to each of 

the four analytical columns.  A detector is located immediately at the output of each 

column; to help minimize electronic noise, the working electrodes of each detector are 

contained in a Faradaic cage. The potentiostat/controller controls the applied potential 

and monitors the current at each of the working electrodes.  Control of the six-port 

selection valve and the autoinjector is routed through the potentiostat/controller from the 

computer.  The solvent delivery system has a number of conventional LC connections to 

the six port valve.  There are also a series of flow-through by-pass lines which regulate 

the solvent flow through the column selection valve.  When the valve is not turned so as 

to allow flow through it for a particular system, the by-pass lines allow solvent to 

continue to flow through the affected system. 

 Figure 2-1 below shows the flow diagram for the NEUBA
®
 system.  The heart of 

the system is the six-port tandem injection valve, marked 7066A and 7066B.  This 

tandem rotary valve is used to direct the required mobile phase through the autoinjector 

and into the appropriate column.  Flow continues in the other systems through the by-

pass lines.  The valve then switches to position 2 for the prescribed length of time as 

determined by the autosampler program and flow continues through the other systems, 

again, through their by-pass lines.  The sequence continues all the way around the valve.  

Narrow bore tubing (0.005") begins from the point of the autosampler through to the exit 

from the electrochemical cell.  Stainless steel tubing is used from the pumps throughout  

 



 74 

 

Figure 2-1.  Flow diagram for the NEUBA® system.   

 
From:  D.J. Turk, “Development and Utilization of a Multi-Column, Multi-Electrode 
Detector for the Simultaneous Determination of Multiple Neurochemical Species,” Ph.D. 
Dissertation, University of Oklahoma, Norman, OK 1991. 
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the rest of the system, with the exception of the tubing from the analytical columns to the 

electrochemical cells.  This tubing, although narrow-bore, is teflon tubing to ensure 

electrical isolation of the cell block assembly and still minimize dead volume in the 

system. 

 The components of NEUBA
®
 are, for the most part, commercially available.  The 

PM-48 solvent delivery systems are from Bioanalytical Systems; the QUAD 

electrochemical detectors were purchased commercially (special order), and the 

autoinjector unit is a Dynatech LC2000.  Pressure gauges for monitoring system back 

pressures are also installed.  The potentiostat/controller, however, was manufactured in-

house.  Components were placed to minimize dead volume associated with the LC tubing 

connections that would interfere with the analysis. 

 Multiple electrode cells potentially can use the selectivity of the electrodes to 

resolve overlapping peaks into different chromatogram.  NEUBA® uses a series 

configuration for all four working electrodes on each main electrochemical cell. 

 Any cell that uses more than one electrode set close together, whether the cell is 

configured as a wall-jet, parallel, or serial, is subject to crosstalk between the electrodes.  

Furthermore, if the downstream electrode is set to a lower potential than the upstream 

one, it is subject to interference from the upstream electrode.  The downstream electrode 

has been shown to provide complex biphasic peak patterns, with a negative peak 

corresponding to the positive peak of the upstream electrode, followed by a positive 

peak.137  The electrodes used in this application of NEUBA® were set from a low 

potential successively to higher ones, and thereby eliminated this possible problem. 
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 NEUBA® is interfaced to a 32 bit 16 MHz Macintosh IIx® computer system, with 

a 68020 processor with 5 megabytes of RAM.  The software used in the acquisition and 

initial analysis was specially written for the system. The electronics for NEUBA® were 

either assembled in the laboratory using standard procedures, with readily available chips 

and electronic parts, or were commercially purchased, depending on the requirements.121 

 For this project, only one chromatographic system was used, and a 1.0-mm four-

electrode glassy carbon cell used in the detector assembly, yielding a simplified 

instrument. The work-up of the data, however, would still be applicable to using 

additional systems.  Also, during the course of the investigations, the autosampler had to 

be discontinued, and all subsequent injections made by hand using a manual injector 

(Rheodyne Model 7010, Rheodyne LLC, Rohnert Park CA). 

 

Materials Used 

 All aqueous solutions used 18 MΩ distilled/deionized water, prepared by passing 

distilled water through a Milli-Q Reagent Water System (Millipore, Continental Water 

Systems, El Paso TX).  The solutions made were stored in a Revco Model ULT1985-B-J-

K ultra-low freezer (Rheem Refrigeration Products Division, West Columbia SC), and 

was maintained at –80oC.  Mobile phase solutions were filtered through a Millipore 

membrane filter (Millipore, Bedford MA).  All reagents used in this work were obtained 

from commercial sources in the highest available purity (≥98%) and used without further 

purification. 

 The following reagents were used: 
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3-hydroxytyramine, hydrochloride salt (3,4-dihydroxyphenehylamine, dopamine); 

Sigma Chemical Company, St. Louis MO 

ethylaminediaminetetraacetic acid, disodium salt; Sigma Chemical Company, St. 

Louis MO 

L-3,4-dihydroxyphenylalanine (L-dopa, levodopa, DOPA); Aldrich Chemical 

Company, Milwaukee WI 

sodium hydroxide, Mallinckrodt Analytical Reagent, Mallinrockrodt Baker Inc., 

Phillipsburg NJ 

epinephrine hydrochloride (adrenaline, Epi); Aldrich Chemical Company, 

Milwaukee WI 

citric acid, monohydrate, ACS Reagent Grade; Sigma Chemical Company, St. 

Louis MO 

diethylamine; Sigma Chemical Company, St. Louis MO 

octyl sulfate, sodium salt; Sigma Chemical Company, St. Louis MO 

acetonitrile, HPLC grade; Fisher Scientific Company, Fair Lawn NJ 

 

 Column.  The column used in this study was packed in house using a downward 

feed slurry packer.  The 10 cm x 4.6 mm i.d. column was packed with C18 3µm 

Adsorbosphere (Alltech Associates Inc., Deerfield IL) at 6710 psi for 25 minutes.  After 

packing, the column was rinsed while still on the column packer with about 50 mLs of 

distilled water followed by about 200 mLs of mobile phase prior to connecting the 

column to the chromatographic system.  The column was further allowed to equilibrate 

for at leaset 24 hours prior to use in an analysis. 
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 Mobile Phase.  The mobile phase used in this study was made according to the 

following procedure.  The mobile phase was de-bebubbled by stirring for one hour prior 

to use.  When it was placed on the system, the first 500 mLs of the mobile phase pumped 

through the column was discarded, thereby allowing for equilibration of the column and 

the components of the mobile phase. 

 

To 1850 mL of distilled water add with stirring: 

 Amount Final Concentration 

 0.25 – 0.50 g NaOH 

 37.22 mg Na2H2EDTA•2H2O 0.05 mM 

After dissolving, add: 

 42.02 g citric acid monohydrate 0.10 M 

 1.7 mL diethylamine 0.06% w/v 

 118.45 mg sodium octyl sulfate 0.255 mM 

Adjust to pH 2.45 using concentrated NaOH solution 

Filter through 0.20 µm type FA Millipore filter 

Add this solution to 150 mL acetonitrile, prefiltered  7.5% v/v 

 using a 0.20µm type FH Millipore filter 

 

 Standards 

 Epi.  3.34 mg of Epinephrine were dissolved in distilled water in a 10.00-mL 

volumetric flask to make a 1.002 mM working solution.  This solution was then divided 
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into approximately 1-mL portions and stored in 1-mL polyethylene vials at –80oC until 

just prior to use.  When needed, vials were thawed, and the standard solutions were made 

according to Table 2-1 below using distilled water in 100.00-mL volumetric flasks.  The 

standards were then divided as before and again stored at –80oC.  The appropriate 

number of samples and mixes were thawed just prior to running on NEUBA®. 

 Dopa.  1.97 mg of 4-hydroxylphenylalanine (L-Dopa) were dissolved in distilled 

water in a 50.00-mL volumetric flask to make a 1.00 mM working solution.  This 

solution was then divided, stored, and later working standards were made as shown in 

Table 2-1 in the same manner as for Epi. 

 Dopamine.  Dopamine was used as an internal standard in the study.  1.92 mg of 

Dopamine•HCl were dissolved in distilled water in a 10.00-mL volumetric flask to make 

a 1.01 mM working solution. This solution was then divided and stored as described 

previously, and the working standards were made as shown in Table 2-1. 

 Mixture Sets.  Standard solutions were made as shown below in Table 2-1.  Two 

standards, one containing Epi and Dopamine, and the other containing Dopa and 

Dopamine, were made as check standards for the duration of the experiment.  The 

mixtures contained all three compounds in the amounts shown below. 

 The resultant solutions were injected using a 20.00-µL sampling loop on the 

manual injector, resulting in the amounts injected on column as shown below in Table 2-

2; these are the amounts recognized as the true values for the deconvolution procedure.  

To enable comparison to data and papers previously mentioned, the same mixtures are 

presented in pg amounts. 
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Table 2-1:  Amounts of working standards used to make the standards and mixtures 
 
 Amt Epi (µLs) Amt Dopa (µLs) Amt Dopamine (µLs) 

Epi Std 171 0 231 

Dopa Std 0 333 231 

Mix 1 154 33.3 231 

Mix 2 119.8 99.8 231 

Mix 3 85.5 166.2 231 

Mix 4 51.3 233 231 

Mix 5 17.1 300 231 

 

Table 2-2:  Resultant amounts regarded at true values for standards 

 
 Amt Epi Amt Dopa Amt Dopamine  

 pmol pg pmol pg pmol pg 

Epi Std 68.5 0.206 0 0 92.6 0.488 

Dopa Std 0 0 133. 0.677 92.6 0.488 

Mix 1 61.7 0.185 13.3 0.067 92.6 0.488 

Mix 2 48.0 0.144 40.0 0.203 92.6 0.488 

Mix 3 34.3 0.103 66.6 0.338 92.6 0.488 

Mix 4 20.5 0.062 93.4 0.474 92.6 0.488 

Mix 5 6.85 0.021 120. 0.610 92.6 0.488 

 

 

 



 81 

 Experimental Conditions. 

 Two pure standard solutions of the neurotransmitters Epi and Dopa were made to 

known concentrations, and these two standards were subsequently analyzed on NEUBA®.  

The experimental conditions used for the electrodes are shown in Table 2-3 below. 

 The mobile phase composition was sufficient to allow for the elution of the two 

compounds within one minute from the solvent front.  The amounts of the compounds 

were as shown in Figure 2-2:  68.5 pmol for Epi, 133. pmol for Dopa, and 93.6 pmol for 

Dopamine.  The standard injections were all made from the same working solutions, and 

were not independent samples.  Thus, there is no information concerning variance in 

concentrations.  The mobile phase was run at a rate of 1.2 mLs min-1. 

 

Table 2-3:  Electrode Potentials 
 

 Channel  Potential (mV) 

 1 600 

 2 700 

 3 800 

 4 900 

 

Experimental Data 

 The five mixtures as described were comprised of the three compounds Epi, 

Dopa, and Dopamine.  The ratios used were based on the amounts previously used for the 

pure standards for Epi and Dopa.  The experiment was designed such that up to twice the 

actual amounts of the standards used would not cause the system to switch to a higher 
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attenuation level and thereby cause a signal spike on the system which results in 

difficulties in measuring the signal. 

 Six replicates for each mixture set were injected into NEUBA® in the following 

manner:  three injections of Epi were run followed by three injections of Dopa, then six 

injections of the mix were run.  Each mix set was bracketed by the three injections of Epi 

and three injections of Dopa, and the entire run was ended with three injections of Epi 

and three of Dopa.  The calculated amounts injected on column are shown above in Table 

2-2.  These are the values used in the determinations of the accuracy of the 

deconvolutions. 

 The experimental data consisted of standard mixtures of Epi and Dopa, with 

Dopamine as the internal standard.  As the chromatographic peaks did not contain valleys 

or other visual indications of more than one analyte present, the resolution between the 

two analytes was calculated from their respective standards. The resolution between the 

two peaks was measured at 0.13, indicating severe overlap between these peaks. 

 

Preprocessing of the data.   

 In many cases, the chromatographic traces do not have the same baselines, and 

thus baseline corrections are commonly performed.  Also, it is common that the injection 

starting and ending times are not exactly the same, and thus, for any method that relies on 

exact retention times this problem must be addressed.  An initial examination of the data 

showed that preprocessing of the data was indeed necessary before any deconvolution 

could be attempted.  First, the baselines were not consistent between the injections or 

even between the responses from the electrodes within a single injection.  Secondly, the 
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samples were injected manually on the system.  Thus, each injection started at a slightly 

different time.  Both of these problems would have to be addressed before any additional 

deconvolution could be attempted. 

 Determining baseline correction.  All the data from NEUBA® had offset baselines 

which allow visualization of the signals from each of the four electrodes independently 

from one another.  The actual offsets, or baselines, are variable in nature.  Additionally, 

baseline drift during the course of the injection was present.  Therefore, each injection 

required a baseline correction.  In many cases, the baseline correction was determined to 

be not a single offset number, but rather a linear function with time.  Three areas in the 

chromatographic run were selected for pivot points in the data:  at the beginning of the 

chromatographic run, after the solvent front, and at the end of the run.  These areas are 

short regions where the data has a slope of approximately zero, and are located just 

before the solvent front or the analyte peak.  The number of points in time that were 

selected were sometimes variable but never less than 20 points, corresponding to a two-

second time window. 

 A baseline was determined in the form  of y=mx+b, where y is the signal and x is 

the time, underneath the part of the chromatogram under consideration, as discussed 

above.  The signal associated with the baseline was subtracted from the total signal, 

thereby yielding a baseline corrected signal.  A plot of the baseline corrected signal and 

the time therefore yields a baseline corrected peak that should begin and end at zero.  

However, this baseline is a relative baseline, and the valley between the analyte peak and 

the internal standard peak in many cases did not reach this relative baseline.  All further 

data manipulations were done on the baseline corrected data. 
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 Time Corrections to the Data.  There is known variance in the data set.  Of 

particular interest was in the timing of the injections.  As the data was generated using a 

manual injector, the actual timing from injection to injection can range by several 

seconds, even though every attempt was made to ensure reproducible injection times 

while manually injecting the samples.  Additional hidden variance was found as well; the 

method used to eliminate as much known variance as possible is described below. 

 Run-to-run retention time shifting has been seen and reported previously as a 

severe impediment for separation techniques.138, 139  This problem arises due to 

fluctuating instrumental parameters such as flow rate and temperature.  Fraga et al. had 

devised a complex alignment method using only the data matrices of overlapped peaks of 

interest to minimize the pseudorank of the two matrices and thereby perfectly align the 

data; however, this works only for replicates of the data.  When two closely eluting peaks 

vary in amounts, the resultant single peak will shift in time due to the amounts in the two 

analytes and not due to fluctuating instrumental conditions or parameters.  Aligning only 

the data containing the analyte peaks will cause an artificial shift in the data unrelated to 

experimental realities.  To ensure this does not happen, a wider range of data needs to be 

examined, as discussed below. 

 A representative injection is shown below in Figure 2.2.  The first analyte peak is 

the analyte peak of interest, either Epi or Dopa.  The second peak is Dopamine, which 

was added to each sample prior to injection as an internal standard.  Since each solution 

injected into the system contained 10-4 M hydrochloric acid, the physical properties of the 

injected standard solution are different from those of the mobile phase.  Hydrochloric 

acid is not retained on the column, and this difference in physical properties causes a 
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deflection in signal as the unretained species flow across the electrode surface, as can be 

seen in Figure 4-5 below at between 0.6 minutes and 1.0 minutes.  The deflection is 

reproducible for each of the four channels, giving the same pattern of peaks and valleys 

respective to the channels where the data was acquired, although not always as intensely 

as previous injections, and can be termed as the solvent front peaks.  Upon examination 

of all of the injections for each channel, a feature common in the deflection to all the 

samples on all four channels was chosen as a point to start the time of the analytical run, 

and was denoted as t0.  It is from this point in time that the retention times of all peaks of 

analytical interest will be measured, and is the time whereupon the analysis is considered 

to start.  

 

 

Figure 2-2:  Representative Injection 
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 Determination of time tM.  The solvent front pattern is complex, with several 

peaks, both positive and negative, as shown in Figure 2.3.  This can be understood in 

terms of the conductivity change due to the ionic compounds in each sample solution 

passing across the electrode surface. Additionally, any interruption in the flow of the 

mobile phase will also be detected by the electrochemical cell by a slight deflection, and 

can be seen at approximately 0.22 minutes in Figure 2.3 below.  This feature also 

consistently appeared in each of the injections, but the use of this slight bump in the 

baseline to signal the beginning of the chromatographic run did not result in consistent 

retention times of the compounds. 

 

 

Figure 2-3:  Solvent Front Pattern 
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  An examination of all samples yielded a common solvent front pattern.  This 

pattern, shown in Figure 2.3, are labelled numerically and are the pertinent regions of 

interest as discussed below.  The first feature in the solvent front, labeled as 1, was the 

one initially chosen for the beginning of the solvent front, since it appeared to be the one 

most consistent from injection to injection.  The data corresponding to this peak was first 

fitted using Excel with a minimization of a sum-of-squares of the residual approach, 

fitted using a binomial function.  The number of data points used in the fitting became a 

concern, since Excel does not interpolate the function between the data points.  The data 

was reanalyzed and fitted for a second order polynomial and a third order polynomial in 

DeltaGraph (DeltaPoint, Inc., Monterey, CA) to get a more exact fit to the equation than 

Excel could provide.  The curves were then analyzed using the software package Maple 

(Waterloo Maple, Inc., Waterloo, Ontario Canada), where the first derivatives were 

determined allowing the exact retention times to be found analytically.  The data was 

then compiled again in Excel, and the median time of occurrence for the peak was 

determined for each injection, the difference in the time of the appearance of feature 1 

(Δt) and the median time (tm) for all examples of feature 1 was calculated.  Then each 

injection was adjusted by addition or subtraction of Δt from tm, thereby forcing feature 1 

to coincide for all the injections.  When this was done, it was found that features 2 

through 4 in the unretained solvent front also coincided to a very high degree with one 

another on all the injections.  This entire pattern of peaks (feature 1 through feature 4) 

encompasses the solvent front.  Other peaks within the solvent front could have 

reasonably been chosen as well.  In this case, the other peaks were not always as easily 

defined as shown here; feature 1 was chosen because of it’s consistency and ease of 
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measurement.  Prior to the determination of time t0, the raw retention times of the 

respective analytes were not reproducibly predictable. 

 Adjustment of the data for the non-retained species  After adjusting the data to the 

non-retained species, however, the apparent randomness in the data only somewhat 

decreased, thus revealing itself to be due to differences arising not in the actual injections 

from the manual injection itself, nor from any property of the analyte.   

 After the retention times were corrected using the non-retained species, the 

following pattern emerged for Epi and Dopa in Figures 2.4 and 2.5,  respectively.  These 

figures show the retention time data prior to any corrections being made, after the solvent  

 

 

Figure 2-4:  Retention time of Epi as a function of time corrections 
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front corrections were made, and finally, after the corrections made aligning the internal 

standard.  The data points corresponding to the solvent front peak were fitted with both a 

second order and a third order polynomial fit in DeltaGraph, and then the resultant 

equation was used in Maple to determine the exact time for the unretained peak.  As there 

is very little difference between the value of the retention times found using either the 

second or third order polynomial, the second order polynomial was selected for ease of 

use.  The raw data shows a distinctive, almost S-shaped, curve as shown in Figure 2.4.   

 

 

Figure 2-5:  Retention time of Dopa as a function of retention time corrections 

 

This is the data prior to any corrections.  Each injection was done in triplicate, and the 

scatter in each triplicate set can be attributed to the variance introduced by the manual 
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injection.  After the solvent front corrections, marked as SF corr in the figures, the S-

shape begins to flatten out.  Clearly, there is another component to this variance not 

addressed by the solvent front correction.  After the correction for the internal standard, 

Dopamine, the S-shape to the curve flattens out and disappears.  It is surmised that this 

variance is due to long-term pump oscillations. 

 Figure 2.5 shows the same analysis for Dopa.  Again, the retention time for Dopa 

becomes much more reproducible after the solvent front corrections and the internal 

standard corrections are made.  Figure 2-6 shows the analysis for the internal standard, 

Dopamine.  The curvature in the peak is much pronounced here, simply because 

Dopamine is present in every injection.  This phenomenon appears to begin at  

 

 

Figure 2-6:  Retention time of Dopamine as a function of time corrections 
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 approximately injection 29 and ends at injection 49.  It is hypothesized that this behavior 

is due to pump oscillations.  Since Dopamine is set to the average retention time found 

for the compound, the final data set will show Dopamine at a continuous time with no 

variance. 

 The linear pattern was expected for the raw data, either increasing or most likely 

decreasing.  The internal standard was included to model for the expected decrease in the 

signal over the lengthy analysis time.  As the time between injections was approximately 

6.5 to 7 minutes, the total time for the experiment can be estimated to be between 7 hours 

and 9 minutes and 7 hours, 42 minutes.  An internal standard was used in this work, and 

thus provides a method to adjust the data and thereby compensate for this oscillation. 

 Dopamine was used in this work as an internal standard as it is similar to the 

analytes and behaves similarly.  The use of an internal standard allows for normalization 

of the peak should the amount injected be abnormally high or low.  In this work, the 

Dopamine peak was fitted using the EMG function.  The average time for the occurrence 

of the Dopamine peak in the solvent front corrected data was calculated.   The data was 

then “zeroed” by subtracting the time the solvent front occurred in the solvent front 

corrected data from the data set, and the resultant time was used to create a ratio of the 

average Dopamine time to the actual Dopamine time.  This ratio was then applied to each 

point in the data set, and the solvent front time added back in: 
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where  tcorr,i = the corrected time 

 ti is the time corresponding to the data point 

 tR, SF ave = the average raw solvent front time for the injections made for the 

channel the data was collected on 

 tR, DA ave = the average raw retention time of Dopamine for the injections made for 

the channel the data was collected on 

 tR, DA raw = the raw retention time of Dopamine 

 tSF, diff = the difference between the average raw solvent front time for the 

injections made on the channel the data was collected on and the raw solvent front time 

 

 This procedure had the effect of keeping the solvent front peaks at zero and not 

shifting it due to the Dopamine time correction.  The results of this work is shown in 

Table 2-4. 
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Table 2-4:  Statistics for Channel 4 data 

 Time of Time After Time After 

 Raw Data SF Corr DA Corr 

 (Minutes) (Minutes) (Minutes) 

    

Solvent Front 0.7414 0.7414 0.7414 

Std Dev 0.0223   

%RSD 3.0079   

    

Retention Time, Epi 1.6178 1.6192 1.6206 

Std Dev 0.0448 0.0219 0.0015 

%RSD 2.7676 1.3526 0.0898 

    

Retention Time, Dopa 1.6542 1.6522 1.6500 

Std Dev 0.0462 0.0246 0.0018 

%RSD 2.7913 1.4908 0.1071 

    

Retention Time, DA 2.6501 2.6501 2.6501 

Std Dev 0.0666 0.0462  

%RSD 2.5115 1.7417  

 

 The average retention times for the compounds, their standard deviations, and 

their relative standard deviations are shown above in Table 2-4 for Channel 4, for the raw 
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data, the data after the solvent front correction, and the data after the internal standard 

correction.  As can be seen in this table, the percent RSD for Epi and Dopa both range 

about 2.8%, which amounts to an approximately 5.4 to  5.5 second window for Epi and 

Dopa, respectively, for these compounds prior to any correction to the data.  After the 

solvent front correction, the window narrows to 2.6 seconds for Epi and 3.0 seconds for 

Dopa; finally, after all the corrections are made, the window narrows to 0.18 seconds for 

Epi and 0.22 seconds for Dopa.  Given that the data is measured every 0.1 seconds, this 

precision was deemed acceptable.  The retention times for the analytes Dopa and Epi  

prior to the time corrections were the same within a 95% confidence level, (Student’s t-

test); after the time corrections, the retention times for the two analytes are significantly 

different.  The internal standard, Dopamine, as well as the mixtures were also treated in 

the same manner as for Epi and Dopa. 

 The data for the other channels was then treated in the same manner as for 

Channel 4, with the retention times for the non-retained species and the internal standard 

being set to the respective times found for Channel 4.  Channel 4 data was the first data to 

be analyzed, and thus it was used as the template for time corrections in the remaining 

data sets.  

 Dopa and Epi in this study overlap one another to a very significant degree, with a 

resolution of less than 0.13.  Figure 2-7  below shows the two analytes, Epi and Dopa, at 

peak heights that are roughly equivalent to one another at the potential being measured.  

As can be seen in this figure, the apparent peak shape is a fused peak, with no discernable 

shoulder that could be attributed to either of the two analytes.  The slight bulge occurring  
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Figure 2-7:  Overlap of Epi and Dopa 

 

at approximately 2 minutes in this figure is not Epi nor is it Dopa, but appears to be a 

contaminant peak.  The data presented here is prior to any corrections being made to the 

data.  A total of 481 data point pairs (time and signal) in each data file were used in the 

subsequent deconvolution attempts.  The time range of these data points encompassed 

both peaks, Epi and Dopa.  The same number of data points were used for all data files, 

no matter the method attempted for deconvolution of the data.  There were a total of 66 

data files for each channel, one for each injection. 
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Curve Fitting (time-signal domain) 

 Determination of the chromatographic peak shape.  The data for each standard 

injection was fitted to the twelve previously chosen chromatographic peak shapes using 

Excel (Microsoft, Redmond WA).  Excel is chosen due both to its ease of use140 and the 

ease of obtaining the software.  The data for each standard was fitted to these equations 

using a residual-sum-of-squares (RSS) method in Excel, with Excel’s Solver function.  

Solver uses the Levenberg-Marquardt method of iteration for convergence.  The 

equations were restarted using differing parameters to minimize the possibility of ending 

at a local and not a global minimum.  

 Fitting the data to the model.  The 4 or 5 equations exhibiting the lowest RSS 

values were then used in deconvoluting the mixture data.  The model assumed that the 

mixture data could be represented by a function containing the addition of two such 

equations to total a “combination curve”; and the RSS minimization again using Excel 

enabled the best fit possible.  The models were given the average values of the retention 

time and the peak width for the respective equations as found by fitting the standards.  

Bounding these parameters with upper and lower limits as dictated by the standard 

deviations of these parameters aided in the deconvolution of the mixture sets, and yielded 

results that were more in accord with the known values.  Thus, each equation had two 

parameters with fixed ranges, and the remaining ones were allowed to change until the 

required level of convergence was achieved. 

 Application of the model and obtaining the analyte amounts.  To obtain the peak 

heights, the respective parts of the combination curve were examined to determine the 

highest level the individual curves achieved.  This was reported as the peak height.  To 
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obtain peak areas, the summation of the signal for each time point was obtained and 

reported as the peak area for each individual curve.  The total of the individual peak areas 

thus, under this model, is the area of the experimental curve. 

 To get the respective amounts of the analytes, the combination curve was applied 

to the mixture data.  The curve fitting was repeated several times using slightly different 

parameters to ensure that a global minimum was achieved in the RSS determination. 

 

Using Chemometric Methods.   

 The chemometric methods used in this work begin with PCA to identify the 

number of principal components in the data  The regression methods PCR and PLS, using 

both NIPALS and SIMPLS, were used to determine the relative amounts of the analytes 

in the mixtures.  PCR and PLS were then verified, and the results compared with each 

other and also with the other methods presented in this work.   Since these methods 

require the data to be presented in a matrix form, Matlab (The MathWorks Inc., Natick 

NY) was used as the base application along with PLS Toolbox 2.1 (Eigenvector 

Research, Inc., Manson, WA).  PLS Toolbox 2.1 is a module used with MatLab and 

contains the routines necessary for the chemometric regression methods used herein. 

 

Cramer’s Rule approach in the signal-potential domain 

 Fitting the Data to Electrochemical “Peak” Shape.  The equation used was 

previously derived, giving current as a function of the potential the electrode: 
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Equation 2.2 

 

where the parameters shown above are now those found experimentally during the course 

of the analysis.  Ec is the experimentally determined half-wave potential, s is overall 

experimentally determined number of electrons involved in the reaction, i is the current, 

E is the potential of the electrode, and CR is the concentration of the reduced species.  All 

are constant but for the current and the potential. 

 Determining the amounts of the analytes.  The data for each standard was fitted to 

this equation using a residual-sum-of-squares method in Excel, using Excel’s Solver 

function.  Solver uses the Levenberg-Marquardt method of iteration for convergence.  

These parameters are then used to determine the constants to be used in the final 

simultaneous linear equation solutions, derived in Chapter 1 and reproduced here: 
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Equation 1.87 

 

for the reduced species in bulk.  In this case, there are only two analytes and thus only 

two known sources of current.  However, all four electrodes were in use.  Once again, 
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Solver was employed to determine the best values for Epi and Dopa, using a sum-of-

squares of the residual approach.   
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Chapter 3 — Curve Fitting Results and Discussion 

 

 Curve fitting is one approach to quantifying severely overlapped peaks.  By 

modeling the observed chromatographic peak to an equation, the individual peaks that 

form the observed peak may be mathematically detected, thus allowing each contributor 

peak to be integrated.  We evaluated twelve common curve-fitting equations (bi-

Gaussian, exponentially modified Gaussian (EMG), Fraser-Suzuki, log-normal, 

Haarhoff-van der Linde, Cauchy-Gaussian, Chesler-Cram, Giddings, GMG, GEMG4, 

GEMG5, EMG+GMG) and the best performers (EMG, GEMG4, GEMG5, EMG+GMG 

and Cauchy-Gaussian) were used to deconvolute the observed chromatographic peak into 

two highly overlapped peaks by curve-fitting using the time vs. signal domain.  Both area 

under the curve and peak heights were examined. Five mixture sets were made to 

encompass a range of peak height ratios, as described in Chapter 2. 

 An evaluation of the results must evaluate accuracy, precision, and both accuracy 

and precision.  The results of the model may be accurate, but highly imprecise; the 

uncertainty in such a measurement is huge and thus the results the method yielded cannot 

be used.  The answer may be very precise, but far from accurate, and thus the answer the 

method yielded may again be useless.  Ideally, the model should produce results that are 

both accurate and precise. The results of the analyses were tested using Student’s t-test to 

determine if the results agree with the known values of the standards to 95% certainty.  

 To evaluate the accuracy of the methods, the data is presented as a simple bar 

graph of the difference percentages, that is, the difference between the calculated and the 
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known value calculated as a percentage of the known value.  The sign of the difference is 

an indication of whether the calculated value is higher or lower than the known value.  

The data is also presented as a simple bar graph of the %RSD values for both Epi and 

Dopa for each method.  The methods yielding the lowest %RSD values for both analytes 

are more precise than the rest.  An analysis of variance was also performed, thus giving 

an indication of the precision of the curve fitting methods as a whole.  A final question 

arises as to whether or not some methods used in this work yield the same mean values; if 

this is the case, perhaps more than one method can be said to yield both precise and 

accurate answers, and thus either method could be used.   

 The results for each channel are presented below.  For each channel, the equations 

which yielded the lowest residual sum-of-squares (RSS) was selected as possible 

deconvolution models.  The value of the RSS could not be fixed, since each channel 

yielded varying “low RSS” values.  Thus, the number of equations was arbitrarily chosen, 

based on an evaluation of the data.  The lowest RSS values tended to cluster together, and 

the equations corresponding to these values were used as possible models.  The results of 

the Student t-tests are presented first, followed by the accuracy and precision analysis.  A 

discussion for the results follows. 

 

Channel 1 

 The data from Channel 1 was considered the most likely channel for 

deconvolution of the mixture sets, as this channel is free of any interferences from 

upstream electrodes.  Additionally, Mix 3 was designed to give approximately equal peak 

heights for the two analytes at the potential this channel was set, and thus was believed be 
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the “easiest” of the mixture sets and channels to deconvolute.  The potential for this 

electrode was set for 600 mV, yielding data less susceptible to interferences from other 

higher oxidizing species. 

 

Results 

 As shown in Figure 3-1, only 4 equations out of the 12 investigated met the 

lowest RSS value criteria as discussed above for both Epi and Dopa: the Cauchy- 

 

 

Figure 3-1:  SSR results for Channel 1 

Key:  Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-

Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian; 

GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMG5=5 parameter Half 

Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-

Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified 

Gaussian 
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Gaussian equation, the EMG equation, the EMG+GMG equation, and the GEMG5 

equation.  

 

 Mix 1 

 None of these approaches produced the appropriate results for either analyte using 

the Student’s t-test, 95% certainty using the time vs. signal domain.  The results of the  

 

 

Figure 3-2:  Percent Difference for Channel 1, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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percent differences in the returned values and the known values for Mix 1, Channel 1 are 

shown above in Figure 3-2.  The method that consistently yields the lowest values would 

be the method deemed most accurate. The GEMG4 (both G and H) equation was not used 

in the formation of Channel 1 information, as the sum-of-squares found for the equation 

was outside the range considered acceptable for the residual sum of squares (RSS).  

Therefore, the table does not include these two methods, although the methods were 

performed for the remaining channels.  According to the analysis, the EMG+GMG peak 

height method yielded the best results of all those presented, followed by the 

EMG+GMG Area.  The percent differences found for Dopa for these methods was quite 

large, however, at over 30%. 

  The percent relative standard deviations for the results for all the methods for 

Channel 1, Mix 1, are shown below in Figure 3-3.  Once again, the GEMG4 equation 

(shown as G and H) was not used.  The methods producing the smallest %RSD for both 

Epi and Dopa are: Cauchy-Gaussian Area (A), Cauchy-Gaussian Peak Height (B), EMG 

Area (C) and EMG Peak Height (D).  The lowest %RSD for both analytes was found 

using the Cauchy-Gaussian Peak Height (B).  However, none of the methods produced 

acceptable results at the 95% confidence level.  While these methods produce good 

precision, they do not produce good accuracy. 
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Figure 3-3:  %RSD for Channel 1, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 2 

 For both Epi and Dopa, the following methods yielded accurate results with the 

required certainty of 95% using Student’s t-test:  the GEMG5 Area, the EMG Peak 

Height, and the GEMG5 Peak Height.  The next question is which of these methods are 

the most accurate and/or precise. 

 The percent difference results for the analytes for Channel 1, Mix 2 are shown 

below in Figure 3-4. Once again, the GEMG4 equation was not used in the formation of 

Channel 1 information, as the sum-of-squares found for the equation was outside the 
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range considered acceptable, and thus should be ignored (G and H in Figure 3-4 above). 

t-Tests indicate that for both Epi and Dopa, the GEMG5 Area, the EMG Peak Height, and 

the GEMG5 Peak Height methods are acceptable to 95% certainty.  Of these the EMG 

Peak Height (D) and GEMG5 Peak Height (J) methods are more accurate than the 

GEMG5 Area (I).  In fact, the EMG Area (C) is closer to the known values than is the 

GEMG5 Area. 

 

 

Figure 3-4:  Percent Difference for Channel 1, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Figure 3-5:  %RSD for Channel 1, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The results of the %RSD study are shown above in Figure 3-5.  The most precise 

methods shown here are the EMG+GMG Area method, (E), and the EMG+GMG Peak 

Height method, (F); neither of these two methods are accurate or precise as described by 

the Student’s t-test results, which indicate the GEMG5 Area, the EMG Peak Height, and 

the GEMG5 Peak Height methods are acceptable to 95% certainty.    The GEMG5 

methods are the least precise of the methods examined for this mixture set with %RSD 

values for Dopa at about 78% RSD and high values for Epi.  The EMG Peak Height 

method was much lower, with an approximately 28% RSD value for Dopa, and nearly 



 108 

10% RSD for Epi.  Thus, for the methods found acceptable by Student’s t-test, the EMG 

Peak Height is the most accurate and precise. 

 

Mix 3 

 The results of the Student’s t-test for Mix 3 Channel 1 for both Epi and Dopa 

revealed that only the EMG Peak Height method yields the correct answer to 95% 

confidence.  The percent difference analyses for Dopa and Epi are shown below in Figure 

3-6 below, which indicates the EMG Peak Height method (D) has one of the lowest  

 

 

Figure 3-6:  Percent Difference for Channel 1, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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percent differences for both analytes of the methods investigated.  Once again, the 

GEMG4 equation was not used for Channel 1 because of the higher sum-of-squares 

found for this equation. 

 The %RSD results for this mixture set are shown below in Figure 3-7.  The lowest 

%RSD values were found for the methods other than the EMG Peak Height method (D):  

the Cauchy-Gaussian Peak Height (B) and the Cauchy-Gaussian Area (A) are both 

considerably lower than the EMG Peak Height, which returned values for Dopa and Epi 

at about 21% and 15%, respectively. 

 

 

Figure 3-7:  %RSD for Channel 1, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Mix 4 

 With both analytes, the Cauchy-Gaussian Area and Cauchy-Gaussian Peak Height 

both yields the correct answer to with a confidence of 95%.  As seen in Figure 3-8, the 

Cauchy-Gaussian Peak Height method, (B), gives results closer to the known values than 

does the Cauchy-Gaussian Area method, (A).  Once again, the GEMG4 methods were not 

used in this analysis. 

 

 

Figure 3-8:  Percent Difference for Channel 1, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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 The %RSD results are shown below in Figure 3-9.  As the GEMG4 equation was 

not used for Channel 1, these results indicate that the GEMG5 Area (I) and the GEMG5 

Peak Height (J) methods yield the best %RSD values.  The two methods found to be 

acceptable, according to the Student’s t-test, are the two methods that yield the worst 

%RSD values.  Thus, the use of either of these two methods to determine the values of 

Epi and Dopa in Mix 4 would yield values that, while accurate, are not precise.  Thus, for 

Mix 4, no method can be recommended for deconvolution of the data. 

 

 

Figure 3-9:  %RSD for Channel 1, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Mix 5 

 For this mixture set, none of the method used give acceptable results to 95% 

confidence according to the Student’s t-test.  Figure 3-10 shows that the only method that 

can be considered accurate is the GEMG5 Area method. 

 

 

Figure 3-10:  Percent Difference for Channel 1, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Figure 3-11 below shows the %RSD values for Dopa and Epi.  These values are 

not high for Dopa for any of the methods used; however, the values found for Epi range 

from a reasonable 9% RSD to an unreasonable 21% RSD.  The one method that appeared 
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to be accurate from the percent difference results was shown to be imprecise for the 

determination of Epi, at some 18% RSD. 

 

 

Figure 3-11:  %RSD for Dopa, Channel 1, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Discussion 

 No single method yielded the proper values at the 95% confidence levels for all 

five mixture sets.  Mix 1 contains the largest amount of Epi present at approximately 90% 

of the peak height, and the smallest amount of Dopa at approximately 10% of the peak 

height.  For Mix 5, these numbers are reversed.  The mixtures only examined ratios of 
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10:90, 30:70, 50:50, 70:30 and 90:10 Dopa:Epi of the peak heights for two analytes 

present in a single merged peak.  For the Channel 1 data, no method presented herein 

using the time-response domain was able to deconvolute the merged peak throughout the 

range of amounts used in this study.  This is significant, as this domain is the one most 

commonly and traditionally utilized. 

 Mixes 1 and 5 could not be accurately deconvoluted by any method investigated 

herein.  The remaining mixtures (Mix 2, 3, and 4) were unable to be deconvoluted as a 

group by any of the methods.  The argument that the mixtures with the lowest proportion 

of the “contaminating” peak could not be deconvoluted because the amounts were too 

low cannot be used here, as the remaining mixture sets would have been deconvoluted 

with a consistent method.  Mix 2 was able to be deconvoluted by the GEMG5 Area, the 

EMG Peak Height, and the GEMG5 Peak Height.  Of these three, only the EMG Peak 

Height method could be accurate, but with unacceptable precision (28% RSD) for Dopa.  

For Mix 3, only the EMG Peak Height method was able to deconvolute the mixture set, 

albeit with low precision (21% for Dopa and 15% for Epi).  Mix 3 was expected to be the 

easiest to deconvolute, as the individual component peak are approximately equal in 

height.  For Mix 3, the Cauchy-Gaussian methods were within 95% confidence per the 

Student’s t-test.  Thus, none of the methods presented for Channel 1 could be used for the 

range of molar responses seen in this work. 

 Additionally, the data obtained from the first channel is free from interferences 

arising from the other channels.  If the sample is to be analyzed via LCEC, the use of a 

single detector in the electrochemical cell is a reasonable assumption.  As this work has 
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shown, the use of a single detector set at a low potential of 600mV did not yield data that 

could be deconvoluted using curve fitting methods. 

 

Channel 2 

 Channel 2 was set to oxidize the analytes at a voltage of 700mV.  As it physically 

located behind the electrode used for Channel 1, some differences in the peak shape were 

expected to occur.  Some of the analyte had already been oxidized; however, this amount 

is usually considered minimal given this method of detection.  If any cross-talk were to 

take place between electrodes 1 and 2, it would be expected to be seen here at the second 

electrode due to the flow of the mobile phase across the electrode surfaces.  The longer 

path that the analyte plug had to travel within the electrode cell would be expected to 

contribute to some slight broadening of the peak shape.  Additionally, the larger voltage 

applied to the electrode ensured that the peak height ratios would change as well, 

although the amount presented to the electrode would be considered to be the same. 

 

Results 

 The following five out of the original 12 equations yielded the lowest RSS values:   

the GMG+EMG, the EMG, the GEMG5, the Cauchy-Gaussian, and the GEMG4 

equations.  
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Figure 3-12:  SSR results for Channel 2 

Key:  Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-

Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian; 

GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMG5=5 parameter Half 

Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-

Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified 

Gaussian 

 

Mix 1 

 An evaluation of the results for Mix 1 found none of the methodologies studied 

herein are able to achieve the goals set forth, using the Student’s t-test at 95% confidence.

 The percent differences for Dopa and Epi are shown in Figure 3-13.  The smallest 

percent differences for for both Epi and Dopa appear to be the GEMG5 Area method (I) 

followed by the GEMG4 Area method (G).  While there appear to be small values due to 

the scale of the y-axis, the percent differences for the GEMG5 Area method are above 
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10% to 15%.  Therefore, none of the methods examined here can be considered 

acceptable. 

 

 

Figure 3-13:  Percent Difference for Channel 2, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Figure 3-14 examined the question of precision in this mixture set.  The GEMG4 

Peak Height method (H), the GEMG4 Area method (G), and the Cauchy-Gaussian Peak 

Height method (B) all are precise, returning values less than approximately 5% for both 

Dopa and Epi. 
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Figure 3-14:  %RSD for Channel 2, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 2 

 When both analytes are considered for this mixture set, none of the curve fitting 

methodologies yielded the appropriate values within 95% confidence using the Student’s 

t-test.  The accuracy and precision of these methods is discussed below. 

 The percent difference results for this mixture set are shown below in Figure 3-15.  

The most accurate method for both Dopa and Epi is the EMG Area (C) method, where 

Epi is under-reported by nearly 10%, followed by the EMG+GMG Area (E) method, 

where Dopa is under-reported, again by nearly 10%. 
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Figure 3-15:  Percent Difference Channel 2, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Examination of Figure 3-16 shows the precision of the methods for this mixture 

set.  The most precise methods for both Dopa and Epi appear to be the GEMG4 Peak 

Area (K), the Cauchy-Gaussian Area (A), the EMG+GMG Area (E), the GEMG5 Area 

(I) method.   These methods consistently produced %RSD values near 5%. 



 120 

 

Figure 3-16:  %RSD for Channel 2, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 3 

 When the two analytes are considered together, only the EMG Peak Height and 

EMG+GMG Peak Height yields the required values at 95% confidence for the levels of 

analytes present in this mixture set. 

 The accuracy of the methods for this mixture set can be determined from Figure 

3-17.  The methods yielding the lowest percent differences for both Dopa and Epi are the 

EMG Peak Height method (D), the EMG+GMG Area method (E), and the EMG+GMG 

Peak Height method (F).  These all yielded less than a 10% difference from the known 
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values and the calculated values, with the EMG+GMG Area under-reporting both 

analytes. 

 

 

Figure 3-17:  Percent Difference for Dopa, Channel 2, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 In Figure 3-18, the methods that yield the best precision are the Cauchy-Gaussian 

Area method (A), the Cauchy-Gaussian Peak Height method (B), the GEMG4 Peak 

Height method (H), and the GEMG4 Area method (G), which produced values for both 

analytes that are under 10% RSD.  The Cauchy-Gaussian Peak Height method produced  
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Figure 3-18:  %RSD for Dopa, Channel 2, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

values for both analytes that are under 5%, and hence can be said to be the most precise 

of the curve fitting methods attempted.  The %RSD reported by the EMG Peak Height 

(C) method is twice that found for the Cauchy-Gaussian Area, with about 12% for Epi 

and 5% for Dopa; the EMG+GMG Peak Height method is higher still.  Of the two 

methods that passed the Student’s t-test, the EMG Peak Height is the more precise. 
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Mix 4 

 None of the curve-fitting methodologies are able to yield the correct answer to the 

required levels of accuracy and precision as indicated by the Student’s t-test at 95% 

confidence.  The results are discussed below. 

 The accuracy of the methods attempted in this work is examined below in Figure 

3-19.  For both Dopa and Epi, the EMG+GMG Area method (E) yields the smallest 

percent differences between the calculated and known values for the analytes.  This 

 

 

Figure 3-19:  Percent Difference for Dopa, Channel 2, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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method under-reported both Dopa and Epi, with Epi unacceptably underestimated by 

25%.  Thus, these methods cannot be considered to be very accurate for this mixture set. 

 The results found for Mix 4, Channel 2, are shown in Figure 3-20.  For both Dopa 

and Epi the the GEMG4 Peak Height (H) method gives the best estimate of the values in 

the mixture set.  This was followed closely by the GEMG4 Area method (G).  Both these 

methods gave %RSD values less than 5% for Dopa and less than 8% for Epi. 

 

 

Figure 3-20:  %RSD for Dopa, Channel 2, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 5 
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 No curve-fitting methodology was able to deconvolute to the peaks and yield the 

correct values to 95% confidence, using the Student’s t-test.  Even with this result, an 

examination of the percent differences and %RSD values was performed. 

 The most accurate method can be discerned using Figure 3-21, where the Cauchy-

Gaussian Area method (A) is shown.  This method yields nearly a 30-35% difference for 

Epi.  This value is not completely unexpected, as Epi is the minor component in this 

 

 

Figure 3-21:  Percent Difference for Dopa, Channel 2, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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mixture set.  The next most accurate method appears to be the GEMG4 Peak Height 

method (H), which yielded nearly 40% difference for Epi. 

 Figure 3-22 show the %RSD values for the two analytes.  The methods indicated 

to be the most precise are the Cauchy-Gaussian Peak Height method (B) and the GEMG4 

Peak Height metho (H); these are the only ones to yield results for both Epi and Dopa 

under 10% RSD. 

 

 

Figure 3-22:  %RSD for Dopa, Channel 2, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Discussion 

 Overall, none of the curve fitting methods employed is able to deconvolute the 

entire range of molar response values attempted in this work for Mix 2.  In fact, the only 

mixture set that was successfully deconvoluted was Mix 3, utilizing the EMG Peak 

Height and the EMG+GMG Peak Height methods.  Although the EMG Peak Height 

method was found to be as accurate as the EMG+GMG Peak Height method, it was more 

precise, and thus is recommended for possible deconvolution of such a mixture.  This 

recommendation, however, must take into account the rather high %RSD values found 

for Epi (12%). 

 

Channel 3 

 Channel 3 was set to oxidize the analytes at a voltage of 800mV.  At this 

potential, more compounds will oxidize than at the voltages used for Channels 1 and 2. 

Thus, more interferences to be expected on this channel than for the previous ones. 

 The electrode used for Channel 3 is physically located after those used for 

Channels 1 and 2, some additional differences in the peak shape were expected to occur.  

Some of the analyte had already been oxidized, but this amount is usually considered 

minimal given this method of detection.  If any cross-talk were to take place between 

these three electrodes, it would be expected to be seen at the second or even the third 

electrode due to the flow of the mobile phase across the electrode surfaces.  The 

lengthened flow path that the analyte plug must travel within the electrode cell to the 

third electrode would be expected contribute to some additional slight broadening of the 

peak shape.  Additionally, the larger voltage applied to the electrode ensured that the 
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peak height ratios would change as well, although the amount of analyte exposed to the 

electrode is considered unchanged. 

 

 Results 

 The equations yielding the lowest SSR values for Channel 3 are the GEMG5, the 

GMG+EMG, the EMG, the GEMG4, and the Cauchy-Gaussaian, as shown below in 

Figure 3-23. 

 

 

Figure 3-23:  SSR results for Channel 3 

Key:  Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-

Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian; 

GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMG5=5 parameter Half 

Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-

Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified 

Gaussian 
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Mix 1 

 For Mix 1, Channel 3, only the GEMG5 Peak Height methodology appears to 

yield the correct values per the Student’s t-test to 95% confidence.  

 Figure 3-24 shows the most accurate methods of those used in this study to be the 

EMG+GMG Area method (E), which yields a 20-25% overestimated difference for  

 

 

Figure 3-24:  Percent Difference for Dopa, Channel 3, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Dopa, and underestimates Epi by some 10%.  The next most accurate method was the 

GEMG4 Area method (G), which underestimates both analytes to some 28% for Dopa 

and about 8% for Epi.  The GEMG5 Peak Height method, which passes the Student’s t-

test, gives extremely high percent differences for Dopa (over 150%), and thus does not 

have acceptable accuracy. 

 

 

Figure 3-25:  %RSD for Dopa, Channel 3, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The results of the percent difference for Epi shows a negative bias for all the 

methods; if these differences are due to random error, the bias would be random in nature 
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and would be expected to be randomly positive and negative.  The results here are biased 

by an as yet undetermined process. 

 When Figure 3-25 is examined, it becomes apparent why the GEMG5 Peak 

Height method passed Student’s t-test while the other methods did not.  The %RSD for 

this method is over 80% for Dopa and is approximately 53% for Epi.  With the exception 

of the GEMG5 Area (L), all the other methods yield less than 15% RSD values for both 

Epi and Dopa.  Thus, these methods can be considered to be precise, but are not accurate, 

and thus fail the Student’s t-test as the 95% confidence level does not encompass the true 

values.  The large percent difference for the GEMG4 Peak Height coupled with the large 

%RSD values enables the true value for the analytes to be encompassed within this large 

range of uncertainty, and thus the GEMG4 Peak Height method, while it passed the 

Student’s t-test, cannot be considered to be either accurate or precise. 

 

Mix 2 

 Only the GEMG4 Area and the GEMG4 Peak Height methodologies are able to 

deconvolute the peak as indicated by the Student’s t-test at 95% confidence.  As was seen 

for Mix 1 above, the fact that the method passed the Student’s t-test does not ensure that 

it is either accurate or precise.   

 Figure 3-26 below addresses the question of accuracy.  The most accurate 

methods are the EMG+GMG Area method (E) and the GEMG4 Peak Height method (H), 

which yields results below 10% for both analytes. The two methods that passed the 

Student’s t-test are the GEMG4 Area (G) and the GEMG4 Peak Height (H).  Of these 

two, the GEMG4 Peak Height is clearly more accurate than the GEMG4 Area. 
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Figure 3-26:  Percent Difference for Dopa, Channel 3, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Precision is addressed in Figure 3-27 below.  The methods with the lowest %RSD 

values for both analytes are the EMG+GMG Peak Height (F) which has less than 5% 

RSD, then the EMG+GMG Area (E), the EMG Peak Height (D), the EMG Area (C), and 

finally the Cauchy-Gaussian Peak Height (B), all of which were below 10% RSD for 

both analytes.  The two methods that passed the Student’s t-test were the GEMG4 Area 

(G) and the GEMG4 Peak Height (H), both of which are clearly not very precise.  Thus, 

the use of the GEMG4 Peak Height method, which was more accurate than the GEMG4 
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Area, cannot be considered acceptably precise as it produces %RSD values of 

approximately 41% for Dopa and about a 21% for Epi, the major component in the mix. 

  

 

Figure 3-27:  %RSD for Dopa, Channel 3, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 3 

 For both analytes, only the EMG Peak Height and the GEMG5 Area 

methodologies are able to deconvolute the peak, as shown by Student’s t-test at 95% 

confidence.  As shown in Figure 3-28, the EMG Peak Height (D) method and the 

GEMG5 Area method (I) yield acceptable results, but are not the most accurate of the 
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methods investigated here.  The EMG Area (C), the EMG+GMG Area (E), and 

EMG+GMG Peak Height (F) methods all yields percent differences for both analytes that 

are under 5%. 

 

 

Figure 3-28:  Percent Difference for Channel 3, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The precision of the methods for Channel 3, Mix 3, are shown in Figure 3-29 

below.  Both the EMG Peak Height (D) and the GEMG5 Area (I) methodologies, which 

the Student’s t-test and yield acceptably accurate results; however, when the precision of 

the results is examined, it is clear that the EMG Peak Height method is superior to the 



 135 

GEMG5 Area.  The EMG Peak Height method yielded %RSD values under 10% for both 

analytes, while the GEMG5 Area method yielded %RSD values of just over 10% for 

Dopa and about 19% for Epi.  The EMG Area (C), the EMG+GMG Area (E), and 

EMG+GMG Peak Height (F) methods also are accurate. 

 

 

Figure 3-29:  %RSD for Channel 3, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 

 

 



 136 

Mix 4 

 The Student’s t-test showed that the GEMG5 Area, GEMG5 Peak Height, and the 

EMG+GMG Peak Height methodologies all yield results that are within the 95% 

confidence level.  The accuracies of these methods are shown in Figure 3-30.  The lowest 

percent differences for both Dopa and Epi are the EMG+GMG Peak Height method (F) 

and the EMG Area method (C), both of which yielded values less than 5% different from 

the known values for both analytes.  The GEMG5 Area method yields results that are 

 

 

Figure 3-30:  Percent Difference for Channel 3, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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negatively biased, and the GEMG5 Peak height method is positively biased; both these 

methods yielded results under 10%. 

 The %RSD values for Mix 4 are shown in Figure 3-31.  The GEMG5 Area (I), 

GEMG5 Peak Height (J), and the EMG+GMG Peak Height (F) all yield results that are 

within the 95% confidence level for the Student’s t-test.  No significant difference can be 

found between the GEMG5 Area and the GEMG5 Peak Height methods; both yielded 

large %RSD values (nearly 60%) for Epi.  The EMG+GMG Peak Height method yielded  

 

 

Figure 3-31:  %RSD for Channel 3, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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some 5% RSD for Dopa and some 12% for Epi, and thus was much more accurate than 

the other two.  Thus, the EMG+GMG Peak Height is both accurate and precise when 

used for this mixture set. 

 

Mix 5 

 For both analytes, none of the curve-fittting methodologies are able to produce the 

correct results at 95% confidence, using the Student’s t-test.  However, the question of 

accuracy and precision in the methods was still investigated. 

 

 

Figure 3-32:  Percent Difference for Channel 3, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 



 139 

 

 The percent difference figure, Figure 3-32 above, shows that the most accurate 

methods are the EMG Area (C), the EMG+GMG Area (E), and the GEMG5 Peak Height 

(J).  These methods return percent difference values for both analytes under 5%, and 

hence are considered to be accurate. 

 The precision of the methods is shown in Figure 3-33 below.  The methods 

yielding the lowest %RSD for the mixture is the GEMG4 Area (G), and then the GEMG4 

Peak height (H).  The methods considered accurate in the analysis above are the EMG  

 

 

Figure 3-33:  %RSD for Channel 3, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 
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Area (C),  the EMG+GMG Area (E), and the GEMG5 Peak Height (J), all of which 

returned %RSD values for Epi that are above 10%.  The EMG Area was particularly 

imprecise for this analyte, returning a %RSD value of nearly 60%.  This is not very 

surprising, considering that Epi is the minor component in the peak. 

 

Discussion 

 For Channel 3, no single method was able to deconvolute the entire range of 

molar responses attempted in this work.  For Mix 1, the GEMG5 Peak Height passes the 

Student’s t-test, but has very poor accuracy and precision.  For Mix 2, the GEMG4 Area 

and GEMG4 Peak Heights pass the Student’s t-test.  Of these two, the GEMG4 Peak 

Height has good accuracy, but poor precision.  For Mix 3, two methods passes the t-test:  

the EMG Peak Height and the GEMG5 Area.  The EMG Peak Height method is as 

accurate as the GEMG5 Area, but has better precision.  For Mix 4, the EMG+GMG Peak 

Height method has good accuracy and good precision, and the GEMG5 Area and the 

GEMG5 Peak Height methods have good accuracy but very poor precision.  Finally, no 

method was able to deconvolute the last mixture set, Mix 5, to 95% confidence by the 

Student’s t-test.  As no single method was able to consistently deconvolute the range of 

molar responses, no single curve-fit approach can be recommended for the data on 

Channel 3. 
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Channel 4 

 Channel 4 was set to oxidize the analytes at a voltage of 900mV, and is the last 

electrode in the series.  Again, some differences in the peak shape are expected to occur, 

as some of the analyte has already been oxidized; however, this amount is usually 

considered minimal given this method of detection.  If any cross-talk were to take place 

between the other electrodes, it would be expected to be seen here as well due to the flow 

of the mobile phase across the electrode surfaces.  The longer path the analyte plug must 

travel within the electrode cell contributed to some slight broadening of the peak shape.  

Additionally, the larger voltage applied to the electrode ensured that the peak height 

ratios would change as well, although the amount presented to the electrode would be 

considered to be the same.  It is on this channel that the maximum amount of interference 

from other compounds would be expected. 

 

Results 

 The equations yielding the lowest SSR values are the GEM5, the GMG+EMG, 

the EMG, the GEMG4, and the Cauchy-Gaussian equations, as shown below in Figure 3-

34, with the EMG and the GMG+EMG equations fitting particularly well. 
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Figure 3-34:  SSR results for Channel 4 
 

Key:  Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-

Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian; 

GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMG5=5 parameter Half 

Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-

Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified 

Gaussian 

 

Mix 1 

 For Mix 1, Channel 4, unfortunately, none of the methods used in this study are 

able to return the correct value within 95% confidence for either Epi or Dopa.  To answer 

the question of accuracy, Figure 3-35 above shows the percent differences for Dopa and 

Epi.  The results for Epi showed a definite negative bias in the results, indicating that the 

errors associated with the data are not random.  None of these methods can be considered 
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as accurate; the method yielding the lowest percent difference for Dopa produced a value 

of about 20%, and the lowest for Epi about 5%.  The high percent differences for Dopa is 

not surprising, as Dopa is a minor component in the mixture peak. 

  

 

Figure 3-35:  Percent Difference for Channel 4, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The precision found for the methods is shown below in Figure 3-36 below.  All of 

the methods returned a %RSD value of less than 12% for Dopa, and values of less than 

9% for Epi.  Overall, the precision found for the methods for Mix 1, Channel 4 are good, 
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with the EMG Peak Height (D) considered to be the most precise of the methods for this 

mixture set. 

 

 

Figure 3-36:  %RSD for Channel 4, Mix 1 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 2 

 No one method was able to deconvolute the correct values for both the analytes as 

shown by the Student’s t-test analysis at 95% confidence.  However, the question will 

arise whether these methods failed from imprecision in accuracy, in precision, or in both.  

Figure 3-37 below shows the percent differences found for Dopa and Epi.  The GEMG4 
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Peak Height method (H) produces the best overall percent differences for the mixture set, 

at about 6% for Epi and some 8-9% for Dopa.  The next most accurate method is found to 

be the EMG+GMG Peak Height method, which yields low values for Epi, and high 

values for Dopa. 

 

 

Figure 3-37:  Percent Difference for Channel 4, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The precision of the methods can be seen in Figure 3-38.  The methods yielding 

the lowest %RSD values for the mixture peak are:  the EMG Peak Height (D), the 

GEMG4 Area (G), the GEMG4 Peak Height (H), and the Cauchy-Gaussian Peak Height 
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(B).  The GEMG4 Peak Height method (H) returns the best overall percent differences 

for the mixture set, followed by the EMG+GMG Peak Height method.  Of these two, the 

GEMG4 Peak Height method appears to be more accurate and more precise; however, it 

still does not meet the Student’s t-test criteria. 

 

 

Figure 3-38:  %RSD for Channel 4, Mix 2 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 3 

 The EMG Peak Height method is the only method that is able to successfully 

deconvolute the amounts of Epi and Dopa to 95% certainty, as indicated by the Student’s 
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t-test.  The percent differences for all the methods for Dopa and Epi in Mix 3 are shown 

below in Figure 3-39.  The EMG Peak Height method is clearly more accurate than any 

of the other methods, yielding percent differences less than 4% for each analyte. 

 

 

Figure 3-39:  Percent Difference for Channel 4, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 The %RSD values returned by the methods are presented in Figure 3-40.  The 

methods with the lowest overall %RSD values for the two analytes is the Cauchy-

Gaussian Area (A), followed by the Cauchy-Gaussian Peak Height (B), the GEMG4 Peak 

Height (H), the GEMG4 Area (G), and then the EMG Peak Height (D).  The EMG Peak 
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Height method is not the most precise of the methods, and thus can be considered 

accurate and relatively imprecise, as the %RSD values it returns are an acceptable value 

of about 3.5% for Dopa and an unacceptable value of 10% for Epi. 

 

 

Figure 3-40:  %RSD for Channel 4, Mix 3 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

Mix 4 

 For this mixture set, no curve-fitting method was able to deconvolute the peak and 

give the correct values for Epi and Dopa to 95% confidence as per the Student’s t-test. 
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 To examine accuracy and precision, the percent differences for Mix 4 are shown 

below in Figure 3-41.  In this mixture set, the most accurate methods are the EMG+GMG 

Peak Height (F), the EMG Peak Height (D), and the Cauchy-Gaussian Peak Height (B) 

all of which return values less than 5% for both analytes. 

 

 

Figure 3-41:  Percent Difference for Channel 4, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 An examination of Figure 3-42 shows that the precision of the GEMG4 Area 

method (G) is best for Epi (approximately 11%) but, however, it is  the worst performer 

for Dopa (approximately 5.5%).  A fair compromise for precision for both analytes would 
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be the EMG Area method (C) or the EMG Peak Height method (D), where the %RSD for 

Epi is about 12 to 13% and the %RSD for Dopa is about 3%. 

 

 

Figure 3-42:  %RSD for Channel 4, Mix 4 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Overall, the EMG Area (C), the EMG Peak Height (D), the EMG+GMG Area, 

(E), and the EMG+GMG Peak Height (F) methods are fairly accurate and precise, but not 

so accurate or so precise that they are able to satisfy the Student’s t-test at 95% 

confidence.  Therefore, none of the methods attempted for this mixture set can be 

recommended. 
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Mix 5 

 For Mix 5, Channel 4, the results of the Student’s t-test indicated that none of the 

methods used in this study are able to deconvolute the peak into its component analytes.  

The question of accuracy and precision still remains.  

 

 

Figure 3-43:  Percent Difference for Dopa, Channel 4, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 As can be seen in Figure 3-43 above, for this mixture containing both Epi and 

Dopa, the EMG Area (C), the EMG Peak Height (D) , the EMG+GMG Area (E), the 
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EMG+GMG Peak Height (F), the GEMG5 Area (I), and GEMG5 Peak Height (J) would 

be all good choices based on accuracy.  All these methods yield percent differences that 

are within ± 5%. 

 

 

Figure 3-44:  %RSD for Channel 4, Mix 5 

Key:  A:  Cauchy-Gaussian Area; B:  Cauchy-Gaussian Peak Height; C:  EMG Area; D:  

EMG Peak Height; E:  EMG+GMG Area; F:  EMG+GMG Peak Height; G:  GEMG4 

Area; H:  GEMG4 Peak Height; I:  GEMG5 Area; J:  GEMG5 Peak Height 

 

 Figure 3-44 above shows the %RSD values for both Dopa and Epi.  For Dopa, all 

of these are reasonable, with the highest %RSD being returned using the Cauchy-

Gaussian Area method (A).  The rest of the methods return values of less than 5% RSD.  

High %RSD values are shown for Epi, with the lowest being returned from the GEMG4 
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Area (J) at about 8% and the GEMG4 Peak Height (K) methods at almost 10%.  The 

worst performers are the GEMG5 Area (L) and the GEMG5 Peak Height (M) methods at 

about 58% and 45%, respectively.  Neither of the GEMG5 methods are able to acceptably 

deconvolute the peak.  The most precise method is the GEMG4 Area, followed by the 

GEMG4 Peak Height method. 

 

Discussion 

 For Channel 4, no single method was able to deconvolute the entire range of 

molar response ratios attempted.  In fact, the only mixture set that was able to be 

deconvoluted was Mix 3.  The EMG Peak Height method deconvoluted this mixture set 

with excellent accuracy and good precision.  However, one successful instance of 

deconvolution out of five attempts does not make an endorsement of a method, and so no 

method can be recommended. 

 

Curve-Fitting Methods:  Summary and Conclusions 

 

 The data is summarized in Table 3-1.  This table summarizes the charts shown 

earlier in the chapter, giving the data in a numerical fashion rather than visually.  The 

methods that passed the Student’s t-test are bolded.  As can be seen in this table, for all 

the mixture sets on all four channels, no single curve fitting method was able to properly 

deconvolute the peaks. 
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Table 3-1:  Summary of the data 
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 The use of curve fitting methods fail to properly deconvolute the data as presented 

for all four data channels for the range of molar response ratios studied.  When the curve 

fitting methods were able to properly deconvolute the data for an individual mixture set, 

it was rare that it was able to do so with both good accuracy and good precision.  Within 

the channel itself, several curve fit equations were found to be useful in properly 

deconvoluting the data, however the equations were not consistent from one mix set to 

another, with one equation passing the t-test for one mixture, but failing for the next 

mixture.   

 An argument could be made that the mixtures on the far extremes, i.e., Mixes 1 

and 5, both of which had low amounts of the minor species, are more difficult to properly 

deconvolute and thus could be expected to fail.  If this was the case, then consistency in 

the remaining mixture sets would be expected.  This was not found. 

 The methods failed because of the nature of the surface to be fitted.  The function 

to be fitted to deconvolute the data is in actuality two identical functions added together, 

and then the parameters are allowed to change until a minimum in the sum-of-squares of 

the residual (SSR) is found.  The minimum in the SSR is shallow, and hence a large 

number of possible combinations of the parameters for the equations will satisfy the SSR 

requirements, even with constricting the values to something reasonably or physically 

meaningful.  Some of these combination of parameters, when put back into the equations, 

yield answers that are not in accord with what is actually in the mixture set.  The found 

parameters yielded equations that when added together, resulted in a very low SSR value.  

Of course, one does not know if it is correct without knowing the actual amounts! 
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 The use of curve fitting methods may work well when the peaks are separated by 

a distance sufficient to generate a valley between them, but once the peaks overlap to the 

extent that valley disappears there is nothing for the equation to fit but the peak as a 

whole.  As the two peaks merge into one, the single merged peak takes on characteristics 

of a peak containing a single analyte, and the curve fitting methods cannot distinguish 

between the merged double peak and a single peak. 
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Chapter 4 — 3-Dimensional Chemometric Methods: Results and Discussion 

 

 The difficulties encountered using the data from the individual channel data in the 

previous chapter is not unexpected.  The objective of performing the analysis with 

multiple electrochemical channels is to utilize the information provided by the additional 

channels.  The data was thus examined using the common chemometric methods PCR, 

PLS, and SIMPLS.  

 One may initially consider all the data collected in the analysis to contain 

information concerning five separate, pertinent items in addition to various levels of 

noise in each. The five practical or “real” dimensions of initial concern include (1) time 

measured relative to an initial injection event for each individual injected 

chromatographic sample (the injected sample), (2) the applied electrochemical potential, 

which is different for each of the four electrodes spaced sequentially at the output of the 

chromatographic column, (3) the signal measured as the instantaneous current at each of 

the four electrodes at the specified time intervals following injection, (4) the 

concentration of Epi in the injected sample, and (5) the concentration of Dopa in the 

injected sample. Practically, one typically sees this data collection readily broken into the 

two obvious types of mathematical variables, i.e. independent and dependent. In the 

current situation, most would typically visualize both time and potential as being 

independent variables selected by the analyst. Subsequent measurements of signal at each 

of the electrodes for each of the specified times would contain the concentration 

information which we hope to glean concerning both Epi and Dopa. Of course, we would 
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have to employ standards of Epi and Dopa to determine their responses individually. We 

further typically assume that the contributions of these components to the signal are the 

same when encountered individually as it is in a mixture of the two components. Stated 

another way, we have collected signal data at specific times following injection of 

various samples on electrodes maintained at four different potentials in hopes that the 

result would be able to predict concentrations of both Epi an Dopa when appropriately 

unraveled. The times (J), the signals or current responses on each electrode (I) for each 

injected sample (each row of which are now termed “sample row”, i.e., the row in the 

matrix), and the potentials (K) can be viewed as a three-dimensional matrix as indicated 

in Figure 4-1. 

 

 

Figure 4-1:  A three-dimensional matrix 
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 The chemometic approach to this sort of problem is a bit more obtuse than the use 

of the simple “real” dimensional approach described above entails. In the chemometric 

approach, we must consider all the variables simultaneously and, essentially, let the data 

and associated outcomes from the entire data set create new dimensions or axes to more 

accurately define the data set(s) and subsequently be used to unravel information like 

concentrations of Epi and Dopa in novel injected samples. The new dimensions, known 

as principal components for the method, are obviously related to the original parameters, 

since they are derived from these; however, they no longer have direct and immediate 

practical correlations to the physical parameters originally submitted.    

 A primary step in any chemometric approach is to decide which of the initial 

pieces of information will be considered to be fixed (the independent variables) and 

which will be allowed to vary (the dependent variables). This decision will initially be 

submitted to the Principal Component Analysis (PCA) technique to determine the 

number of principal components in the new n-dimensional space. The identified principal 

components can subsequently be employed to predict the parameters which were 

originally allowed to vary; this allows for the determination of these independent 

variables in subsequent analysis of novel injected samples. In the current situation, we 

selected the time and signal to be fixed or independent variables in our studies. All signal 

vs. time data was submitted to the PCA fitting procedure for the entire data set. For each 

injected sample, this entailed four separate time vs. signal data sets, each with an 

associated applied potential for the electrode at which it was collected. We also submitted 

the Epi concentration and the Dopa concentration for each of these injected samples. The 

entire data set consisted of eighteen injections of an Epi standard, eighteen injections of a 
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Dopa standard, and six injections each of five different mixtures containing different 

amounts of both Epi and Dopa. This constitutes a total of 18 + 18 + 30 = 66 individual 

sample injections.  

 The submission of the entire data set to the PCA procedure yields information 

concerning the inherent dimensionality of the data set.  This fitting procedure provides a 

scree plot and a table of cumulative captured variance, indicating the number of principal 

components necessary to encompass the fundamental underlying informational content of 

the data. The PCA also provides associated loadings plots and scores plots, both of which 

are used to confirm that the number of new principal components chosen is appropriate 

for inclusion of a majority of the information contained in the data sets. The subsequently 

selected number of principal components are then utilized by each of the PCR, PLS, and 

SIMPLS chemometric methods in attempts to fit the data. For each of these three 

chemometric fitting procedures, we initially provided the program with a training or basis 

set selected to comprise exactly half, or 33, of the entire number of injected samples. This 

basis set included the signal vs. time data for the four potentials for each of nine 

injections of an Epi standard, nine injections of a Dopa standard, and three injections 

each of the five different mixtures containing different amounts of both Epi and Dopa. 

The remaining half of the injected samples were subsequently employed by each of these 

three procedures as the “unknown” data to be analyzed by the fitting approach.  

 The number of principal components to employ is selected to include all the 

pertinent informational content while excluding extraneous information (noise).  This 

selection is verified, in part, by the loadings and scores plots. Then the scores and 

loadings plots for the individual principal components are further analyzed to identify 
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potentially smaller regions within the original fundamental dimension (time) to examine. 

The loadings and scores plots identify such regions as containing the most substantial 

fraction(s) of the information content linking us to predictions of the independent 

variables including, most notably, the concentrations of Epi and Dopa. 

 Once the initially employed PCA yielded feedback information concerning the 

region of time which contained the majority of the essential information necessary to 

deconvolute the concentrations of Epi and Dopa, we narrowed our time window and 

repeated what is described above. Thus, with a smaller data set in time, we produced a 

scree plot, selected of the pertinent number of principal components, investigated fitting 

capabilities with the three chemometric procedures, and investigated of the associated 

loading and scores plots to possibly even further narrow our search. The original data set 

contained 481 times at which data was collected at the four electrochemical detectors. 

These 481 time points were reduced to 121 points (the reduced data set) and, finally, to a 

smaller 21 points (the very reduced data set). Each data set was successively treated by 

the same PCA, chemometric, and loading/scores analysis procedures. Along the way, 

examination of the chemometric fitting outcomes to see how well they could predict the 

test injected samples revealed, unfortunately, that our models were not providing as good 

a predictive capability for the Epi and Dopa concentrations as we had hoped. This 

iterative procedure and its associated results are described sequentially below. 

 After all attempts undertaken with the chemometrics procedures provided less 

than satisfactory predictive capabilities for the concentrations of Epi and Dopa in the test 

mixtures, we decided to examine the very simple Cramer’s Rule possibility for 

deconvolution using the signal collected on each of the four electrochemical potentials at 
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single time points with careful selection of the time points to be used. This approach is 

described at the end of this chapter. 

 

A. Principal Component Analysis and Associated Chemometric Analyses for the 481 

Time Data Points 

 

 The entire data set for the 66 individual injections were used as the initial data set 

submitted for principal component analysis (PCA) to determine the inherent 

dimensionality of the data.  Since there are 481 time measurements, each of which are 

related to four potentials, there are 481 dimensions in the data, each containing four 

measurements. The results of the PCA are shown below. 

 The first step in determining the dimensionality of the data is an examination of 

the scree plot, as shown in Figure 4-2.  The term “scree” comes from the appearance of 

the plot itself, where the downward slope resembles the downward slope of a mountain 

and the bottom resembles the scree found at the bottom of such a mountain. 
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Figure 4-2:  Scree plot for the original data set 

 

 The scree plot is, of course, subjectively interpreted to provide the number of 

principal components. In the present case, it would appear from Figure 4-2 that we have 

approximately eight principal components for our data.  Since the plot may appear 

skewed to the eye, or may gradually decrease as seen in the figure above, an examination 

of the cumulative variance table can be of further assistance in assessing the number of 

principal components. The variance associated with Figure 4-2 is shown below in Table 

4-1. 
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Table 4-1:  Percent variance captured by PCA model for the original data set 

 

 Principal Eigenvalue  % Variance % Variance 

 Component  of Captured Captured 

 Number Cov(X) This PC Total 

 ---------  ---------- ---------- ---------- 

 1 1.02e+02 87.87 87.87 

 2 1.18e+01 10.15 98.03 

 3 1.88e+00  1.63  99.65 

 4 1.99e-01 0.17 99.82 

 5 1.12e-01 0.10 99.92 

 6 2.51e-02 0.02 99.94 

 7 1.77e-02 0.02 99.96 

 8 1.38e-02  0.01 99.97 

 9 5.49e-03 0.00 99.97 

 10 4.94e-03 0.00 99.98 

 

 The percent variance captured can be thought of as a measure of the amount of 

signal information found for each principal component (PC) after the contributions from 

the previous PCs have been eliminated.  When the amount of variance found with the 

next PC is approximately equal to the amount of noise in the data set, one can be assured 

that the signal part of the data has been determined and can then use this information as a 

starting point to determine the number of PCs to retain for the model.  According to the 
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table above, two PCs would capture 98% of the variance in the data set, even though 

there are three items under examination:  the concentration of Epi, the concentration of 

Dopa, and the applied potential. 

 Although the scree plot and the percent variance table directs us concerning the 

number of principal components to retain, additional information can often be found by 

an examination of the scores and the loadings.  The scores indicate correlations between 

the new PCs and the original axes of the injected sample.  The loadings provide a 

measure of the perpendicularity of the original individual variable axis to the principal 

component axis, and is reported as the cosine of the angle between the two axes.  If the 

loading value is zero for a variable along a PC axis, then the variable lies perpendicular to 

the PC axis and does not contribute to the variation described by that PC axis.  Care must 

be taken when the PC axis does not capture much of the variance in the data; in this case, 

the loadings plots may have very little meaning.  The loadings plots are correlated to the 

variables, in this case, time.  Between the scores plots and the loadings plots, one can 

determine to a greater degree the dimensionality of the data set. 
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Figure 4-3:  Scores plot for original data set, PC1 

 

 As seen in the scores plot, Figure 4-3 above, there appears to be some structure in 

the data after 66 injection samples, which roughly corresponds to the beginning of the 

data from the second channel.  There were 66 injection samples in the data set. Each 

electrochemical channel data for each of the 66 injected samples is presented in sequence 

as one moves from sample row 1 to sample row 66 in the scores plot of Figure 4-3. The 

sample rows 67-132 are then composed of all the data for channel 2, sample rows 133-

198 are composed of all the data from electrochemical channel 3, and, finally, the sample 

rows 199-264 are all the data from electrochemical channel 4. The dashed lines indicate 

incorporation of  95% of the values. 
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Figure 4-4:  Loadings plot for original data set, PC1 

 

 The loadings plot for PC1 shows how the variables (time) contribute to PC1.  The 

sign of the signal is irrelevant for this determination; if it is positive the axis lies in the 

same direction as the PC, and if it is negative it lies in the opposite direction.  A loading 

value of exactly either 1 or -1 indicates that the variable axis lies exactly parallel to the 

principal axis, and any other value indicates that it lies off at an angle.  Thus, the 

variables with the greatest magnitude from zero are those that contribute the most to the 

principal component.  In this case, variable 100 to 125 contribute the most to PC1 in the 

positive direction, and variables 270 through 310 and 340 to 460 contribute in the 

opposite direction.  Since most of this region lies where the two peaks are tailing, it is 

tempting to attribute this PC to the tailing of the two peaks. 
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Figure 4-5:  Scores plot for original data set, PC2 

 

 The scores plot for PC2 shows quite a bit of structure, with clearly four regions.  

As discussed previously, this must be attributed to the amount of the shift in the axes 

among the samples rows themselves. 

 For the loadings for PC2, two regions, one at variables 85 to 105 (1.541 to 1.574 

minutes) and another region at 140 to 225 (1.633 to 1.774 minutes), contribute to the 

variance for this PC.  It is tempting to assign specific chromatographic features to such 

ranges, but such assignments must be made with caution as erroneous assignments are 

easily made without careful consideration of the other PCs in the data set.  
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Figure 4-6:  Loadings plot for original data set, PC2 

 

 The scores plot for PC3 is shown below in Figure 4-7.  Structure is still present in 

the data, as seen by the regular “pulse” feature at about sample row 66.  Below 67 sample 

rows, in fact, the data appears almost chaotic, and thus information concerning the 

injected samples using the first potential, 600 mV, have been described in previous PCs. 
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Figure 4-7:  Scores plot for original data set, PC3 

 

 The loadings plot for PC3 is shown below in Figure 4-8.  There is a broad feature 

from zero to about 125 variables (1.40 to 1.60 minutes), with the remainder of the 

variables (time points) contributing very little information.  These additional times thus 

contribute noise to the PC3, and can be eliminated if the reduction of noise is desirable.  

The latter part of this feature appears to correspond with the arrival of Epi in the 

chromatogram; thus, a large part of this feature occurs before the peaks elute.  However, 

the decision to eliminate data in this region must consider the other PCs involved in the 

data set. 



 171 

 

Figure 4-8:  Loading plot for original data set, PC3 

 

 The scores plot for PC4 are shown below in Figure 4-9.  The prominent features 

apparent in the earlier scores plots appears to be diminishing, and it appears much more 

chaotic and noisy.  The informational content in the data obtained from channel 1 has 

been described, and channel 2 as well as channel 4 both appear to be nearly completely 

described.  Nevertheless, there still appears to be some structure in the data. 
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Figure 4-9:  Scores plot for original data set, PC4 

 

 The loadings plot for PC4 shows both positive and negative regions that 

contribute most to PC4.  These lie at 30-80 variable numbers (1.449 to 1.533 minutes) 

and 100-120 variable numbers (1.566 to 1.599 minutes).  The rest of the variables appear 

to describe the small contaminant peak often seen on the far shoulder of Epi, but with the 

scale of this plot, it can be difficult to determine specifically what is causing the rise. 
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Figure 4-10:  Loadings plot for original data set, PC4 

 

Results 

 A total of 10 principal components were analyzed in the above manner.  

Subsequently, the dimensionality of the data set was determined to be approximately six, 

and the method subsequently was built using a total of 8 principal components.  Half the 

data set was used to build the model (the basis set), and the remaining was used as the 

test set.  The results of this entirely inclusive model were very poor, with little predictive 

ability either to the model or to the test set, as shown in the following Table 4-2. In this 

table, we have shown the representative data provided for one of the four electrochemical 

channels, in this case channel 2. 
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Table 4-2:  Representative data for the entirely inclusive model, channel 2 
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 The amount of variance found in the results led to consideration of a reduction in 

the data set itself to exclude those times that contributed very little to the signal present in 

the data, and much to the resultant noise.  This determination was made after careful 

consideration of the scores and loadings plots.  A reasonable assumption was also made 

that more than six principal components need not be examined closely, as most of these 

appeared to contain more noise than signal.  This data suggests that a reduced data set of 

121 time points (121 dimensions) may be advantageous.  Chromatographically, the time 

was subsequently set to range from 1.549 minutes to 1.749 minutes, a region which 

encompasses both the Epi and Dopa peak maxima. 

 

B. Principal Component Analysis and Associated Chemometric Analyses for the 

Reduced, 121 Time Data Points 

 

 The reduced data set was then submitted for PCA analysis.  The inherent 

dimensionality and/or number of principal components now appears to be no more than 

4, as shown by the scree plot below in Figure 4-11: 
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Figure 4-11:  Scree plot for the reduced data set 

 

 Examination of the percent variance captured table, Table 4-3 below, confirms 

that with 4 PCs, well over 99.9% of the variance is captured in the model.  As the 

chromatographic signal levels vary as much as 3%, the use of more than 4 PCs is not 

warranted.  In fact, the percent variance captured table indicates that at the level of 

variance we wish to capture, two PCs would be adequate.  Since there are three entities 

changing, concentration of Epi, concentration of Dopa, and the potential, three PCs 

would appear to be warranted.  The principal component analysis was done using 4 PCs, 

as described  below. 
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Table 4-3:  Percent variance captured by the PCA Model, reduced (121 points) data set 

 

 Principal  Eigenvalue  % Variance  % Variance 

 Component  of  Captured  Captured 

  Number  Cov(X)  This  PC Total 

 ---------   ----------  ---------- ---------- 

 1 9.96e+01 89.56 89.56 

 2  1.12e+01 10.11 99.67 

 3 3.09e-01 0.28 99.95 

 4 4.20e-02 0.04  99.99 

 5 5.81e-03 0.01 99.99 

 6 1.45e-03 0.00 99.99 

 7 7.79e-04 0.00 99.99 

 8 6.37e-04 0.00  100.00 

 9 5.04e-04 0.00 100.00 

 

 The scores plot for PC1 is shown below in Figure 4-12.  The previous data set 

showed a scores plot for PC1 having a considerable amount of variation in the first 66 

sample rows; this variation is greatly reduced, and the underlying structure of the data 

can be seen.  The regular rise and fall of the data indicates that the two standards lie along 

different axes, and the relative amount of the two analytes dictate whether the mixture 

group will be high or low. 



 178 

 

 

Figure 4-12:  Scores plot for PC1, reduced data set 

 

 The loadings plot for PC1 shows a very ordered arrangement of the data points, 

and appears almost gaussian in character.  Those new time numbers around 60 contribute 

the most to this PC. 
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Figure 4-13:  Loadings plot for PC1, reduced data set 

 

 The scores plot for PC2 also shows the regular patterns of rising and falling 

values as was found for the first PC, although the magnitude of these oscillations is 

smaller.  Thus, most of the variance that can be attributed to the standards is described 

primarily by PC1, and secondarily by PC2.  The loadings plot for this PC has the 

appearance of a first derivative of the gaussian function, with the most variance described 

by around variable numbers 30-35. 
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Figure 4-14:  Scores plot for PC2, reduced data set 

 

 

Figure 4-15:  Loadings plot for PC2, reduced data set 
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 The scores plot for PC3 shows a loss of structure, indicating more noise is being 

captured by this PC.  However, there still appears to be some structure present; as the 

model uses three changing variables to determine, three principal components are 

required.  The loadings plot for PC3 justifies this as well, as there still appears to be some 

structure present in the data set from sample rows 60 through 120 (channel 2 data), with 

less from 120 through 190 (channel 3 data). 

 

 

Figure 4-16:  Scores plot for PC3, reduced data set 
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Figure 4-17:  Loadings plot for PC3, reduced data set 

 

 The scores plot for PC4 show very little structure is left in the data set, as 

confirmed by the loadings plot for this PC.  Now there are four regions that contribute the 

most to the PC, and it crosses the zero axis three times.  This plot appears to be 

predominantly chaotic in nature and thus has little practical value. 

 



 183 

 

Figure 4-18:  Scores plot for PC4, reduced data set 

 

 

Figure 4-19:  Loadings plot for PC4, reduced data set 
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Results 

 The PCA analysis for the reduced data set included 10 PCs.  The potential PCs 

beyond four showed increasing amounts of noise and contained little, if any, additional 

information.  The chemometric models for the reduced data set were, thus, built using 4 

principal components.  The predictive results of the derived chemometric approaches 

were again disappointing. First, the models did a very poor job predicting themselves, 

indicating they could not be relied upon to predict the test set.  The results from the 

prediction of the test set confirmed that the models had poor predictive ability. The 

individual predicted outcomes for each of the four electrochemical channels is shown 

below in Tables 4-4 through 4-7. 

 Upon examination of the scores and loadings plots for the reduced data set, a 

further reduction in the time values employed appeared to be in order to enhance the 

signal to noise content.  This further reduced data set consisted of some 21 time points, 

and thus was 21-dimensional. Chromatographically, the corresponding time ranges from 

1.6044 minutes to 1.6394 minutes, which barely encompasses both peak maxima. 
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Table 4-4:  Outcome for reduced data set, channel 1 
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Table 4-5:  Outcome for reduced data set, channel 2 
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Table 4-6:  Outcome for reduced data set, channel 3 
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Table 4-7:  Outcome for reduced data set, channel 4 
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C. Principal Component Analysis and Associated Chemometric Analyses for Very 

Reduced, 21 Time Data Points 

 

 The very reduced data set was then submitted to PCA analysis.  The inherent 

dimensionality appeared to be no more than 3, as shown by the scree plot: 

 

 

Figure 4-20:  Scree plot for the very reduced data set 

 

 This need to use no more than three PCs for the very reduced data set was 

confirmed by examination of the percent variance captured, shown in Table 4-8 below. 

This table indicates that three PCs encompassed virtually all the variance found in the 

data set, with diminishingly small amounts of variance found using more than this 



 190 

number.  Obviously, the model incorporates some variance associated with noise that 

could be eliminated by the use of fewer PCs; however, as there are three parameters that 

are changing in this model, concentration of Epi, concentration of Dopa, and the potential 

of the electrodes, the use of less than three is not warranted. 

 

Table 4-8:  Percent variance captured by the PCA Model, very reduced (21 points) data 
set 
 

 Principal Eigenvalue % Variance % Variance 

 Component  of  Captured Captured 

  Number Cov(X) This  PC Total 

 ---------  ---------- ---------- ---------- 

 1 2.32e+01 92.33 92.33 

 2 1.92e+00 7.66  99.99 

 3 1.70e-03 0.01 100.00 

 4 3.45e-04 0.00 100.00 

 

 The scores plot for PC1 is shown in Figure 4-21.  The regular rise and fall of the 

data seen in the previous models is largely gone.  The loadings plot, Figure 4-22, shows a 

very organized arrangement for the data points, with the most contribution for PC1 

coming from the later time points.  These later time points have more Dopa present than 

Epi, and thus this PC might reasonably be coupled to the presence of Dopa in the injected 

sample at that time. 
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Figure 4-21:  Scores plot for PC1, reduced data set 

 

 

Figure 4-22:  Loadings plot for PC1, reduced data set 
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 The scores plot for PC2 also shows the regular patterns of rising and falling 

values as was previously seen.  The upper range of each “rise” can be attributed to those 

injected samples with larger amounts of Dopa in them for each potential; the ordered 

arrangement of four such patterns indicates that this perhaps is related to the potential of 

the samples. 

 

 

Figure 4-23:  Scores plot for PC2, reduced data set 

 

 The loadings plot for this data set shows a slightly sigmoidal shape with an 

inflection point around variable number 11, which corresponds to the retention time of 

Epi, 1.621 minutes.  Thus, the portion of the curve below this point is related to an 
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increasing signal for Epi, while the portion of the curve above this point is related to the 

declining signal for Epi. 

 

Figure 4-24:  Loadings plot for PC2, reduced data set 

 

 The scores plot for PC3, Figure 4-25, shows a loss of structure, indicating that 

fundamentally no further information to noise enhancement is to be gained by trying to 

reduce the data set.  Although little structure appears to be present in the data, there 

remain three principal and fundamental components associated with this data.  The 

loadings plot for PC3 justifies this as well, as there still appears to be some structure 

present in the data set, but not much. 
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Figure 4-25:  Scores plot for PC3, reduced data set 

 

 

Figure 4-26:  Loadings plot for PC3, reduced data set 
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Results 

 As the captured variance table indicated that three PCs would capture all the 

variance in the data, the PCA analysis included only 3 PCs. The results of this work were 

again disappointing, as the model did a very poor job predicting itself  and thus could not 

be depended on to predict the test set.  The results of the test set confirmed that the model 

had poor predictive ability. This is shown below in the Tables 4-9 through 4-12, 

corresponding to the four electrochemical channels reconstructed by the model. 
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Table 4-9:  Results for the PCA Model, very reduced (21 points) data set, channel 1 
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Table 4-10:  Results for the PCA Model, very reduced (21 points) data set, channel 2 
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Table 4-11:  Results for the PCA Model, very reduced (21 points) data set, channel 3 
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Table 4-12:  Results for the PCA Model, very reduced (21 points) data set, channel 4 
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Cramer’s Rule Approach 

 The Cramer’s Rule approach may be considered to be the basis from which the 

chemometric methods were developed. Indeed, such chemometric approaches typically 

employ Cramer’s Rule multiple times to achieve a more comprehensive data treatment.  

The chemometric methods employed in the current investigation may have failed due to 

factors that are specific and/or overly inclusive with these methods. Alternatively, 

chemical interactions between the analytes and/or simple noise content in the data set 

could have been the underlying source of the inadequacy of the chemometric approaches 

to provide the desired deconvolution capabilities.  

 However, while the chemometric approaches had not provided the concentration 

predictive capabilities desired, they did demonstrate that a substantial amount of related 

informational content was contained in the data set. Further, these approaches seemed to 

indicate that the maximal amount of informational content with a relatively minimal 

amount of noise content was contained in the very reduced data set incorporating 21 time 

points. Thus, we decided to examine if the even simpler application of Cramer’s rule to 

the very reduced data set using only the two-dimensional signal vs. potential plane at 

specific time points might be more favorable.  This is simply labeled by us as the 

“Cramer’s Rule” or CR method wherein data from all four channels was used at a single 

specified time point. In fact, it was repeated 21 times, once for each of the time points 

contained in the very reduced data set. 

 The chemometric approach indicated that a maximal information content 

appeared to be associated with the signal vs. potential plane; this was indicated usually in 

the second scores plot, which showed a regular pattern of four jagged plateaus.  The 
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scores and loadings plots seem to indicate that no further reduction in the original time 

parameter could be undertaken to provide more signal to noise information. Stated 

another way, none of the 21 time points of the very reduced data set indicated strikingly 

better signal to noise informational content than any of the other time points in this very 

reduced data set.  Therefore, all 21 points in time for the very reduced data set were 

examined using the CR approach. 

 The CR method was done as follows.  All the data for the Epi standards were 

fitted to Equation 1.79, previously described, giving current as a function of the potential 

of the electrode: 
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Equation 1.79 

 

where Ec is the experimentally determined half-wave potential, s is overall 

experimentally determined number of electrons involved in the reaction, i is the current, 

E is the potential of the electrode, and CR is the concentration of the reduced species.  All 

of these parameters are constant for a given component (Epi or Dopa) except for the 

current and the potential.  The potential vs. signal data was fitted to this equation using a 

residual-sum-of-squares method in Excel, using Excel’s Solver function, which uses the 

Levenberg-Marquardt method of iteration for convergence. This was then repeated for 

the Dopa standards.  This procedure thus yielded constants at given potentials related to 

the currents (Equation 1.80, reproduced below): 



 202 

 

    i = !K
R

'
C

R

*  

Equation 1.80 

 

for both compounds, which now could be used in the final simultaneous linear equation 

solutions as derived in Chapter 1 and again reproduced here: 
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Equation 1.87 

 

Results 

 The results for the Cramer’s Rule approach are given in Table 4-13 below.  As 

this approach uses the data from all four channels, it is presented by each mixture set.  In 

general, the method is generally accurate and reasonably precise, given the actual 

amounts of the analytes in the injected samples themselves.  Although the relative percent 

RSD values appear high for the smaller values for both Epi and Dopa in the extreme 

samples, they are within the amount of signal variance expected for the data. 

 The results that provided proper predictions for the data according to the criteria 

selected by the Student’s t-test (95% confidence levels) are bolded in Table 4-1.  As can 
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be seen, only three times produced successful results.  These were 1.6110, 1.6127, and 

1.6210 minutes, where the latter corresponds to the retention time for Epi. 

 The retention times of Epi and Dopa are fixed as much as possible due to the time 

corrections.  The time corrections fixed the solvent front time and the time of the internal 

standard, Dopamine.  The variance in the retention times of both Epi and Dopa is reduced 

considerably, and is limited to the experimental sampling period.  The data on each 

channel was also normalized in its response, as all the internal standard peaks for a given 

channel were made to be the same height.  Thus, any changes in the current as seen by 

the internal standard could be eliminated.  Since the mixtures are of known composition, 

there are no effects expected from the injected sample matrix. 

 In summary, the PCR chemometric approach clearly guided us to the region of the 

data collected which yielded the maximal amount of signal to noise information. 

However, this approach may be simply too inclusive in its application to the prediction of 

concentrations of the individual components. The much more simplistic Cramer’s Rule 

approach did work in three discrete time domains near the retention time for Epi.  

 The fact that the Cramer’s Rule approach seemed to consistently yield better 

predictability than the more powerful PCR chemometric approach leads us to believe that 

there is, indeed, an underlying more optimal approach to the deconvolution of these 

severely chromatographically and electrochemically overlapped analytes. In fact, one 

might note that, given the substantial overlap of these two analytes in both the 

chromatography and electrochemistry, it is remarkable that modestly reliable prediction 

of concentrations of the individual components within the mixtures was achieved. 
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Table 4-13:  Summary of the data for the Cramer’s Rule Approach 
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Chapter 5 — Conclusions 

 

 Discriminating between and determining individual contributions from severely 

overlapping chromatographic peaks has long been a vexing problem in analytical 

chemistry. The application of three-dimensional instrumental techniques to such difficult 

problems has allowed for some discrimination; the added third dimension typically 

targets a specific property of the analyte, such as its volatility or absorption of light.  The 

utilization of electrochemical information as the third dimension, discussed in Chapter 1, 

has not commonly been found in conjunction with chromatography.  

 The instrument used in this work is HPLC with electrochemical detection.  The 

detector contains four glassy carbon serial electrodes, each set to a progressively higher 

potential.  Thus, the data included time, signal, and the potential of each electrode.  Two 

analytes were chosen:  Epi and Dopa.  These two are overlapped chromatographically so 

severely (Rs = 0.13) that the two peaks, if constructed to be of equal height individually, 

appear to be a single peak with no discernible valley or other indication to the observer 

that they are indeed two peaks.  

 Five mixture sets were made to encompass a range of molar response ratios for 

Epi:Dopa using the signals values on the first electrochemical channel.  The mixtures 

ratios for Epi:Dopa signal were:  90:10, 70:30, 50:50, 30:70, and 10:90.  All Epi:Dopa 

mixtures and all Epi and Dopa standards also contained an internal standard, Dopamine.  

Six replicate injections were made of each set of five mixtures, and three replicates of Epi 

and Dopa standards were injected both before and after each mixture set. 
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 The subsequent data set contained several known and/or assumed sources of 

variance.  These included:  (1) shifts in the solvent front peak times due to manually 

injecting the samples onto the HPLC-ECD system; (2) long-term changes in the retention 

time of the internal standard presumed due to long-term flow rate oscillations in the 

reciprocating pump; and (3) changes in the signal height due to differences in the 

injection volume due at least in part to the use of manual, rather than automated, 

injections.  Fortunately, these known and substantial sources of “noise” in our data set 

were easily corrected, for the most part, through standardization of the individual 

chromatorgrams in both time and signal strength using the retention time of the solvent 

peak, the retention time of the internal standard, and the signal strength of the internal 

standard.  

 Two major methods to deconvolute such highly overlapping chromatographic 

peaks were investigated.  The first method was curve fitting, where twelve common 

curve-fitting models having associated mathematical equations were evaluated. The 

mathematical models included the bi-Gaussian, Exponentially Modified Gaussian 

(EMG), Fraser-Suzuki, log-normal, Haarhoff-van der Linde, Cauchy-Gaussian, Chesler-

Cram, Giddings, GMG, GEMG4, GEMG5, EMG+GMG. Each of these twelve models 

was examined for its ability to fit the Epi and Dopa standard injection data sets.  The 

equations that produced the best results were the EMG, GEMG4, GEMG5, EMG+GMG 

and Cauchy-Gaussian. These five models were subsequently used to deconvolute the two 

highly overlapped peaks using information from the time vs. signal domain for each of 

the four electrochemical detectors, where both area under the curve and peak heights 

were examined.   
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 A second approach involved using common chemometric approaches with an 

initial principal component analysis being followed by submission of the data to PCR, 

PLS, and SIMPLS for deconvolution and prediction of Epi and Dopa concentrations in 

“unknown” samples. An auxiliary to the second approach examined the potential vs. 

signal domain with Cramer’s rule at single data time points.  An acceptable accuracy in 

the predictability of results was set so that the predictions would fall with the 95% 

confidence level (Student’s t-test) for both analytes.  Any results that fell short of this 

requirement were deemed to be unacceptable. Additionally, predictions which met these 

criteria were further examined to guarantee that they possessed a relatively low percent 

relative standard deviation, indicating a reasonable amount of precision in the predictions 

as well.  Ideally, the outcomes should be both accurate and precise. 

 The use of curve fitting methods failed to adequately deconvolute the data as 

presented for all four data channels for the range of molar response ratios studied.  When 

the curve fitting methods were able to deconvolute the data for an individual mixture set, 

it rarely was able to do so with both good accuracy and good precision.  For a given 

mixture examined on a single electrochemical channel, several curve fit equations were 

found to be useful in properly deconvoluting the data. However, the same individual 

equations were not consistently capable of successful and acceptable deconvolution from 

one mixture set to another mixture set and/or from one electrochemical channel to 

another.   

 An argument could be made that the mixtures on the far extremes, i.e., Mixes 1 

and 5, both of which contained 10 % of the minor species, are more difficult to properly 

deconvolute and thus could be expected to fail due to the large difference in molar 
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response ratios.   The argument further could indicate that a method was considered 

successful if it predicted the composition of the “middle” mixture sets, i.e., mixtures 2 

through 4, but this was not observed. 

 These methods may have failed because of the nature of the surface to be fitted.  

An iterative process was used to fit the observed data to the various mathematical 

models.  The “combined” function used to deconvolute the data is in actuality two 

identical functions added together, and then the parameters are allowed to change until a 

minimum in the sum-of-squares of the residual (SSR) is found.  The minimum in the SSR 

is shallow, and a large number of possible combinations of the parameters for the 

equations will satisfy the SSR requirements, even when constricting the values to those 

that are considered to be reasonably or physically meaningful.  Some of these 

combination of parameters, when put back into the equations, were found to be unable to 

accurately quantify the solutions.  The found parameters yielded equations that when 

added together, resulted in a very low SSR value, however, these were not able to 

accurately and precisely determine the known amounts of the analytes in the mixtures. 

 The use of curve fitting methods has previously been shown to work reasonably 

well when the peaks are separated by a distance sufficient to generate an easily 

discernible valley between them. But once the peaks overlap to the extent that valley 

disappears there is nothing for the equation to fit but the peak as a whole.  As the two 

peaks merge into one, the remaining single peak takes on characteristics of a peak 

containing only a single analyte. The curve fitting methods cannot, unfortunately, easily 

distinguish between the merged double peak and a single peak. 
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 The chemometric methods required the data to be presented to the algorithms in a 

structured way, depending on how one wishes to investigate the system.  This structure 

then determines the nature of the information one can and does obtain.  The procedure for 

these methods included (1) the determination of the number of dimensions inherent in the 

n-dimensional data space using the scree plots, percent variance tables, and the loadings 

and scores plots using all the data available; (2) building the model using a subset of the 

data determined to be the basis set; and (3) subsequent prediction of the values for the 

dependent variables based on the remainder of the data, designated the test set.  Building 

the model depends on the correlations constructed with the known values for the 

dependent variables; the subsequent prediction of the “unknowns” depends on the 

strengths of these correlations. 

 The chemometric methods (PCR, PLS, and SIMPLS) all had difficulties.  In all 

three data sets—the entire data set comprised of 481 time points, the reduced data set 

comprised of 121 data points, and the very reduced data set comprised of 21 data 

points—the predictive abilities of the models were overall poor.  However, the PCA 

approaches clearly worked better than the curve fitting methods, as there was some 

informational content which we were able to glean from the data.  The degree of accuracy 

and precision, however, in using the PCA approaches for predictions ranged from 

virtually unusable to modest at best.  The most information concerning prediction of the 

concentrations of Epi and Dopa in the mixtures was obtrained using the simpler Cramer’s 

Rule approach.  Several explanations may be pertinent to this outcome, and some of these 

are discussed below. 
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 Dopa, Epi, and Dopamine are all biogenic amines which almost certainly 

chemisorb to some degree onto the surface of the glassy carbon electrodes used in this 

study.  Previous work involving DOPAC and 5-HIAA in this laboratory141 found that 

both compounds absorbed appreciably in a concentration dependent manner onto 

powdered glassy carbon at room temperature with no applied potential employed 

concentrations similar to those used in the current investigation.  The adsorptions of these 

molecules were described reasonably well by Langmuir isotherms.  These results, as well 

as other work concerning biogenic amines and glassy carbon are consistent with the 

proposal that these compounds form a monolayer of neutral species on the electrode 

surface.142 One could also reasonably surmise that the oxidation products of these 

molecules would likewise undergo chemisorption. 

 The hydrodynamic voltammograms for the two analytes are shown below in 

Figure 5-1.  At the low potential of 600mV, Epi is expected to have a negligible response. 

At 900mV, Epi is expected to contribute appreciably to the current measured at the 

electrode surface.  In the experiment, however, at 600mV there was a considerable 

response from Epi.  Clearly, something is decreasing the effective oxidation potential for 

Epi; we are suggesting that this could due to a chemisorption-coupled or otherwise 

surface alteration enhancement of the electron transfer process. 
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Figure 5-1:  Hydrodynamic voltammograms of Epi and Dopa 
 

 The transfer of electrons in electrochemical detection occurs at the surface of the 

electrode both as inner-sphere and outer-sphere reactions.143  Transmission of electrons 

via other molecules or ions away from the surface of the electrode does not contribute to 

the electrode response.  Inner-sphere reactions involve specific absorption of species 

involved in the reaction with the electrode.  Any chemisorbed species on the electrode 

surface that accepts electrons from compounds in solution can be expected to either 

facilitate or dampen the electron transfer between the analytes and the electrode. One-

component solutions, not mixtures, were used to determine the hydrodynamic 

voltammograms of the analytes, thus, the oxidation potentials determined may not 

accurately reflect the oxidation potentials of the mixtures due to this chemisorption 

phenomenon. 
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 When a biogenic amine passes over the surface of the electrode, the electrode 

provides the energy for a one-electron oxidation to occur.  The biogenic amine briefly 

becomes a radical cation that is expected to immediately deprotonate to form a neutral 

radical that is known to rapidly oxidize and deprotonate  to form the quinone; this second 

electron transfer typically occurs too fast to be seen as a second wave in the HDV, but 

can occasionally be seen in cyclic voltammetry  Each of the species involved have the 

capability of chemisorbing onto the electrode surface. 

 Chemisorbed species can cause a change in the electrochemical behavior of the 

electrode surface, which results in a subsequent shift in experimentally determined E1/2 of 

the hydrodynamic voltammogram.  The reversibility of the reaction at the surface of 

electrode also changes, indicating a shift in the slope of the HDV to a steeper angle.  The 

changes to the HDV are two-fold:  both a shift to lower potentials and a steeper slope of 

the curve, as evidenced by the response for Epi discussed above. 

 Epi is used to illustrate the complexity of the reactions generated by the electrode, 

following the initial two-electron oxidation of Epi to its quinoid form, the unprotonated 

form of the epinephrine quinoid undergoes a further reaction to yield leucoadrenochrome, 

a cyclized hydroquinone.  Leucoadrenochrome is easier to oxidize than epinephrine itself 

and it reacts with another molecule of ephinephrine quinone, giving adrenochrome and 

regenerating epinephrine.  This electron transfer-chemical reaction-chemical (ECC) 

reaction mechanism results in an apparent four electron oxidation of ephinephrine to 

adrenochrome.144  Should the leucoadrenochrome not leave the surface of the electrode 

before it reacts with the ephinephrine quinone, it will result in increased current for Epi. 
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 The standards and samples used herein contained three biogenic amines:  Epi, 

Dopa, and Dopamine.  Dopamine is known to interact with the electrode surface, and can 

adsorb to it.142 All three compounds are very similar chemically to one another, so it 

would not be surprising to find that any of the three, either singly or in combination, may 

be involved in binding to the electrode surface.  Such films that develop on the surface of 

the carbon electrode have spurred research into the field of modified glassy carbon 

electrodes, where a desirable film is bonded to the surface of the electrode and serves 

usually to eliminate an interference.145, 146  In this case, the film is temporary, and can be 

removed to varying levels of success by several methods, including reversing the 

potential on the electrode and allowing the film to dissipate.  With enough time, the film 

will slowly disappear.  A quicker and more thorough method to remove the film is to 

polish the electrode. 

 Studies concerning the nature of the glassy carbon electrode surface have found 

that a freshly polished surface has poor electron-transfer kinetics, with the active sites for 

electron transfer present on the graphite edges inherent in the structure of glassy 

carbon147 and some species can attack basal plane sites as well.148 Activation of the 

electrode surface has been attributed to the formation of graphitic oxide,149 oxygen 

containing functional groups, and edge plane density of the electrode surface itself.150  

Further investigation has shown that an absorption mechanism based on specific 

chemical sites such as oxides or surface radicals cannot account for the absorption seen at 

the surface of the electrode, but rather the absorption of quinones on glassy carbon 

depends on effects such as electrostatic attraction between the adsorbate and partial 

surface charges.151  Thus, the activated areas are larger than the edge plane regions on the 
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electrode surface.  However, if the surface is contaminated with oxygen bound to the 

surface of the electrode, deactivation of the glassy carbon electrode can occur.152  This 

also accounts for the disappearance of the surface layer when the potential is turned off as 

the electrostatic conditions change. 

 The model can apparently partially model this chemisoption phenomenon.  But 

since the effect is also dependent on the potential of the electrode as well as the 

concentration of the analyte in a complex manner, it fails with the rise in potentials and 

the change in the analyte concentrations.  Additionally, the amount of data one submits to 

the model has a large part in the ability of the model to accurately return the expected 

outcomes.  The entire data set, which had 481 time measurements, clearly had some 

measurements that contained no useful information.  When these are eliminated from the 

data set, the predictive ability of the subsequent model increases.  However, when even 

more time points suspected to contain more noise than information are taken out of the 

data, the predictive ability of the new model decreases.  The conclusions one must draw 

are two-fold.   

 The first conclusion is there is some optimum number of variable (time) points to 

be used for the model that eliminates the additional error associated with noise, but 

retains enough of the informational content to enable the models to predict accurately the 

values of the unknowns.  This optimum number of  variables (time) is not easily 

determined using these methods, and may be a matter of experience of the investigator. 

 The second conclusion is that the predictive abilities of the chemometric methods 

are unable to be successfully employed due to the noise and inherent uncertainty in the 

time vs. signal plane.  The separation power found using the Cramer’s Rule approach on 
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individual data points in the potential vs. signal plane is lost in the inability of the models 

to separate the two analytes in the time vs. signal plane.  Some predictive ability is clearly 

being expressed by the chemometric methods, but may be lost in the inherent 

uncertainties found on this time vs. signal plane.  Either the number of PCs used to form 

the models are incorrect, or the model itself has some inherent difficulties in using the 

information present in the third dimension, potential. 

 Increasing the number of PCs from two to higher numbers was investigated; an 

examination of the scree plots for both the reduced model  and the very reduced model 

indicates that about 98% of the variance is encompassed using only two to three PCs.  

Inclusion of more than the minimum number of PCs than necessary will add more noise 

into the model and the results, as the PCs capturing the most variance are those that 

describe the information contained in the signal; the PCs capturing the least amount of 

variance contain noise and thus are not used in the model.  There is still noise embedded 

in the signal that cannot be separated from the signal, however.  The use of a smaller 

number of PCs than required causes more information to be lost and can adversely affect 

the results.  The models assume three changing entities:  the concentration of Epi, the 

concentration of Dopa, and the potential.  Thus, a minimum of three PCs are required to 

build each model and subsequent predictions. This source of noise found in the third PC 

contributes to the difficulties in the deconvolution, especially in the very reduced data set.  

 Another possible explanation for the failure of the chemometric methods is that 

these methods assume a linear inner dimension.  This arises from the requirement that the 

responses found both in the time vs. signal plane and the potential vs. signal plane form 

homogeneous systems of linear equations.  This means that the signal from one electrode 
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cannot be a multiple of another electrode.  This is not normally expected in the data.  

However, there is a high degree of correlation between the responses of the analytes at 

nearby times, and thus the problem is rather ill-conditioned.  The noise and experimental 

error found in nearby data points are expected to be similar, and thus contributing to the 

problem.  However, the noise and experimental error for a given analyte is expected to be 

at their lowest at the top of the analyte peak, exactly where the highest degree of 

correlation are expected to occur.  In addition, the vector of “inner-relationship” 

coefficients which relate the scores from the independent variables and the scores from 

the dependent variables is expected to be linear.  This will not be the case when the 

system itself is highly nonlinear.  If the same value found in the independent variables 

yield multiple values in the dependent variables, these methods can fail.  Thus, it appears 

that the signal values originally input into the model still vary too much, and thus the 

method fails. 

 The Cramer’s Rule method also can yield correct answers to 95% confidence, but 

only at carefully selected points on the chromatogram.  This method is a precursor to the 

chemometric methods also in this work.  The chemometric methods make use of 

Cramer’s rule in determining the models and hence the results, but the chemometric 

methods also have inherent noise smoothing characteristics that the Cramer’s Rule 

method presented herein does not.  More importantly, the use of Cramers Rule in this 

work assumes there is one constant that can be obtained regarding the response of the 

pure analyte at a given electrode, per unit time.  The PCA/PCR/PLS/SIMPLS models 

above assume this constant does not change per unit time.  This is not the case using 
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Cramer’s Rule.  Thus, Cramer’s Rule has a greater chance of success where the 

chemometric methods failed.  

 Can the chemometric methods be used to deconvolute chromatographic data using 

electrochemical detection?  The answer is yes, but with caution.  More work needs to be 

done to determine why specifically the system behaves as it does.  This includes 

investigation as to whether small changes in the dependent variable matrix has a 

discernable effect on the outcomes.  While this investigation may be useful as a 

diagnostic, it is not expected to allow complete deconvolution to occur, as this implies a 

high degree of instability in the algorithms.   

 A second avenue of investigation involves the nature of the adsorption occurring 

at the electrode surface.  Pretreatment of all four electrodes with multiple injections of 

Dopa prior to an HDV analysis of Epi would give a more realistic picture of the true 

chemical system involved in this study.  The HDV used in this work was done using the 

first electrode, as the others were assumed to act similarly.  Comparison of the pretreated 

HDVs to untreated HDVs then will give more complete information concerning the 

nature of the shift in the electrochemical properties of the electrode surface.  Any bias 

introduced because the electrode surface was unstable in regard to building of the surface 

monolayer would then be eliminated.  As it is unknown which one of the three 

compounds is responsible for the effects seen herein, the experiment needs to be 

repeated.  A comparison of the amounts of analyte used in the pretreatment would also be 

useful; the models built in this work indicated that the concentrations used were also a 

factor in the failure of the models.  The methods can be applied to other binary or ternary 
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mixtures only with additional investigations regarding the nature of the interactions of the 

specific compounds on the electrode surface. 
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