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Abstract

We wanted to create a simple technique that provided a high degree of accuracy
in the deconvolution of two chromatographic peaks which were severely overlapped in
the usual time-response domain and substantially overlapped in the potential-response
domain. The two compounds we selected for investigation which fulfilled these initial
criteria were epinephrine (Epi) and L-3,4-dihydroxyphenylalanine (Dopa). Five two-
component mixture sets were prepared in the following molar response ratios, i.e., the
moles of compound injected as a function of detector response: (1) 90% Epi to 10%
Dopa; (2) 70% Epi to 30% Dopa; (3) 50% Epi to 50% Dopa, (4) 30% Epi to 70% Dopa
and (5) 10% Epi to 90% Dopa. Six individual injections were performed for each
mixture. These six injections were interspersed between coupled injections of Epi
controls and Dopa controls. Thus, we had three injections of an Epi control, three
injections of a Dopa control, and six injections of a mixture set; this procedure was
followed for all five mixture sets, and ended with three injections of an Epi control and
three injections of a Dopa control. The tyotal number of injections completed were, thus,
six for each of mixtures 1 through 5, 18 Epi controls, and 18 Dopa controls. The current
response was collected versus time using four electrochemical detectors in series having
sequentially increasing potentials.

Our hypothesis was that a simple deconvolution in the potential-response domain
at a carefully selected time following injection would yield sufficiently accurate

determination of the two analytes to 95% confidence levels using the Student’s t-test.
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Our simple potential-response approach was thus compared to standard and commonly
employed alternative approaches.

Twelve common straight forward time-response curve-fitting methods were
initially examined. These included bi-Gaussian, exponentially modified Gaussian
(EMGQG), Fraser-Suzuki, log-normal, Haarhoff-Van der Linde, Cauchy-Gaussian, Chesler-
Cram, Giddings, (Gaussian Modified Gaussian (GMG), the 4-Parameter Gaussian-
Exponentially Modified Gaussian (GEMG4), the 5-Parameter Gaussian-Exponentially
Modified Gaussian (GEMGS), and the Exponentially Modified Gaussian + Gaussian
Modified Gaussian (EMG+GMGQG).

Three common chemometric procedures using information from only two
dimensions (time-response) or information from all three dimensions (time-potential-
response) were next employed. These chemometric procedures included (1) principal
component regression (PCR), (2) partial least squares (PLS) and (3) the Statistically
Inspired Modification to the PLS algorithm (SIMPLS).

For each method investigated, we determined a mean and standard deviation for
the calculated/predicted levels of both Epi and Dopa for each of the five separate
mixtures. For the determinations involving only the two standard dimensions of
information (i.e., time-response), this procedure was repeated for each of the four
electrochemical channels separately. For the chemometric approaches using information
from all the dimensions, only one such determination was available for each mixture.
Likewise, the simple initially described procedure using potential-response time was only
capable of providing a single outcome (mean =+ s.d.) for each of Epi and Dopa for each of

the five mixtures. Finally, the individual means were compared to the known standard
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values in all cases using Student’s t-test to determine if the means were the same as the
standards at the 95% confidence level.

Among the twelve standard two-dimensional (time-response) approaches, analysis
of the residual sum-of-squares for each clearly showed only five to be reasonably capable
of approaching this problem. These five were the EMG, GEMG4, GEMGS5, EMG+GMG
and Cauchy-Gaussian. To provide these five with the best opportunity to yield the
desirable deconvolution, we separately examined both the area and simple peak height
data for each. Unfortunately, the most accurate of these approaches (EMG using peak
heights) only predicted with 95% certainty the known content for both Epi and Dopa in
only 5 out of 20 attempts.

The chemometric approaches employing two-dimensional time-response
information were a bit more reliable in providing accurate outcomes. Each of the PCR,
PLS, and SIMPLS approaches accurately predicted with 95% certainty the Epi and Dopa
levels in 11 out of 20 cases.

The chemometric attempts employing information from all three dimensions
simultaneously surprisingly were capable of accurately predicting the known standard
values for both Epi and Dopa for only two of the five mixtures. Perhaps this is a
reflection of the modest amount of instrumental noise contained in the data in
combination with an overly inclusive approach.

Finally, the initially proposed single analysis of the data using the potential-
response domain and Cramer’s Rule for deconvolution proved to be much easier and
more accurate than any of the alternatives listed above. In particular, this approach

accurately predicted the content of both Epi and Dopa in all of the five mixtures
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examined at the 95% confidence level. At the same time, the deconvolution using matrix

algebra was and is substantially simpler than any of the other alternatives examined.
Thus, deconvolution of two severely overlapped chromatographic peaks in the

time-response domain has been simply and accurately achieved using very limited

amounts of potential-response information.
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Chapter 1 — Introduction

The Problem

Of major concern for any chromatographic method is the existence of possible
overlapping peaks, stemming from insufficient resolution of the analytes by the column,
and the use of nonselective and nonspecific detectors. The method discriminates between
dissimilar analytes, but similar analytes exhibit similar retention times and similar
responses at the electrodes, resulting in overlapping peaks.  For quantitative
measurement, positive identification of the peaks and amounts represented by the peaks
are required. Methods for this qualitative and quantitative determination have been
investigated for other detection methods, but not for electrochemical detection.

Therefore, a simple deconvolution method is needed.

Introduction to Chromatography and Electrochemistry

The basis of chromatography is separation of analytes. From its humble
beginnings by Tswett' in 1906, the process has since evolved to include the separation of
a mixture into its components with subsequent detection by a variety of detectors,
including electrochemical detection, which produce an electronic signal proportional to
the amount of analyte present. The current analytical separation methods use a very
small amount of the mixture and allow for a definitive determination of the amount of

substances present with the use of a detector specific for the compounds of interest.



In short, a chromatographic system consists of an injection system (“injector”), a
column to effect the separation, a detector to detect the analytes as they elute from the
column, and a recorder to record the signals as a plot of electronic signal vs. time (a
chromatogram).  Figure 1.1 shows a chromatographic system used in liquid

chromatography with electrochemical detection (LCEC).

Presswe Gauge

Pulse Dampener

i

w'I'

Recorder

Figure 1-1: Schematic of a liquid chromatographic instrument

As can be seen in Figure 1.1 above, a liquid chromatographic system is fairly
straightforward. The sample is introduced at the injector, and then carried through to the
column, where the analytes are separated based on their relative affinities to the column
substrate. They emerge at the end of the column, and are measured at the detector and
recorded by the recorder. A liquid mobile phase, either a pure liquid or a solution, is
pumped through the system and carries the analyte. Electrochemical detectors produce a
signal from the pulses the pump produces. The pulse dampener reduces the pulses from

the pump and thereby reduces the instrumental noise present at the detector. The



pressure gauge is used to monitor pressure in the system. It measures the backpressure
generated by the column and is an indirect measure of how fast the mobile phase is being
pumped through the system.

There are two aspects of the system to be discussed here, the separation of the
analytes, and the detection of the analytes. Separation is the purview of chromatography,
and the detection used in the system is electrochemical in nature. The mobile phase used
in the system has characteristics of concern to both separation and detection, and a more

full discussion of the mobile phase is held until the end of the electrochemistry section.

Separation: Chromatography

The stationary phase in the column is composed of packed silica particles coated
with a compound designed to interact with the analytes. The amount of separation
depends largely on the nature of the packing material itself—if the analytes have no
affinity for the column, separation will not happen—but it also depends on the nature of
the mobile phase. Analytes that strongly interact with the stationary phase over the
mobile phase will be strongly retained and thus will slowly move through the column,
resulting in long retention times. Analytes that weakly interact with the stationary phase
are weakly retained and have short retention times. If the analyte does not interact at all
with the column, it will move through the column at the same rate as the mobile phase
and will have such a short retention time that it will be lost within the solvent front,
which consists of all other non-retained substances giving a signal on the chromatogram.
Ideally, the column will separate each analyte so that each analyte will exit the column at

distinctly different times.



There are two components of the chromatographic system involved in separations
one must consider, the mobile phase and the stationary phase as introduced earlier. The
interactions between the stationary phase, the mobile phase, and the solute molecule are
described by current chromatographic theory. In essence, this theory describes the
process of separation as an equilibrium process with the solute molecule partitioning
between the stationary phase and mobile phase. When an injection is made, the analyte
mixture is introduced as a single plug which separates according to the affinities of the
individual analytes, producing chromatographic zones or bands. Which phase the
molecule is found in will depend on the concentration gradient established as the
chromatographic zone passes through the column.

The speed at which a given chromatographic zone will pass through the column
depends on several parameters. The first and foremost parameter is the retention
characteristics of the analyte to the column, with structurally and chemically similar
analytes having similar retention characteristics, and to a lesser degree the type and
composition of the mobile phase.” Analytes similar in size, shape, and chemical
properties tend to group together in time. As such, there are a limited number of possibly
active sites available to the analyte molecule, and so there is some competition occurring
for these sites among similar analytes.

The speed of the separation also depends on the flow rate of the mobile phase, ***
with higher flow rates yielding shorter retention times. An unnecessarily low flow rate
tends to be dominated by diffusional processes, and as such the chromatographic
separation suffers with broader peaks than otherwise attainable. With a very high flow

rate, however, the analytes may considerably overlap or even be lost in the solvent front



of the chromatogram. Another parameter is the temperature at which the separation is
carried out’, this can also have an effect on the retention characteristics of the analytes,
since this process is governed kinetically. All these parameters must be considered to
determine the optimal conditions for the chromatographic system. There is an optimal
velocity for the mobile phase that will result in the greatest resolving power achievable
for the column; this is usually determined experimentally and it is not necessary to locate
it exactly in practice. In short, there is a trade-off between speed of the analysis, and the

resolving power of the column.

Electrochemistry

Electrochemical detectors will respond to any compound that is electroactive at
the potential of the electrode, and hence can be considered to be nonspecific and
nonselective. These detectors are sensitive to changes in chromatographic conditions as
well. A full description and explanation of the physics of the processes occurring at the
electrode surface is, once again, beyond the scope of this work, and interested readers are
referred to the abundant body of literature.®®

The chemical reaction in question, of course, is the oxidation-reduction reaction:

kC
Ox +nee ———= Red

k

a

Equation 1.1



where Ox and Red are the oxidized and reduced forms of the analyte, respectively, and k.
and k, are the cathodic and anodic heterogeneous rate constants, respectively.

All faradaic electrochemistry depends, ultimately, on Faraday’s Law:

O =nFN

Equation 1.2

where Q is the number of coulombs passed, and N is the number of moles converted to
product in the chromatographic zone. At any instant during the LCEC experiment, the
current is reflected by the rate of conversion of the reactant to product.

Under equilibrium conditions, the net current is zero, and thus the electrode will
adopt a potential based on the concentrations of the oxidized and reduced species, as

dictated by the Nernst equation:

Equation 1.3

The Nernst equation thus provides a link between electrode potential and the
concentrations of participants in the electrode process. If an electrode system follows the
Nernst equation or an equation derived from it, the electrode reaction is often said to be
reversible, or Nernstian.

With further considerations and substitutions, the Nernst equation can be written

in a form reflecting the limiting current for a given redox reaction:



E=E,,+ X 1
nkF \i -1

Equation 1.4

where i; is the limiting current, i is the response current, and E;; is the half wave potential

of the redox reaction involved. Rearrangement of this equation yields

Equation 1.5

A plot of the current vs. potential gives the normal S-shaped curve associated with
the Nernst equation, seen in Figure 1.2 below showing the current-potential curves for
two compounds. In this figure, the response current rises until it reaches a maximum,
known as the limiting current. Problems with using potentials at half the limiting current
include less current being generated at these potentials. At regions significantly below
the limiting current, problems in reproducibility begin to appear.” The higher along the
curve one measures, the less these reproducibility problems become but the greater the
absolute contribution of noise to the signal. The optimum place along the curve is before
the curve levels out, but rather high on the curve itself. The precise potentials used

depend upon the compounds to be analyzed.
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Figure 1-2. Representative hydrodynamic voltammograms for compounds A and B.

Figure 1.2 above shows two theoretical hydrodynamic voltammograms, one for
compound A and one for compound B. Note that the current attributable to compound A
reaches a maximum before current from compound B begins to manifest. In this case,
compound A can be determined with no contribution from compound B; if one were
looking only for compound A, an applied potential set lower than that required for
compound B to become active will separate the two compounds.'® In effect, only one
compound will be seen. However, using only one electrode and setting the potential in
the appropriate range where only A is active will not give a response for B unless the
same sample is reanalyzed at a potential where both compounds are active. It is only at
this point where the fact the sample contains two compounds becomes apparent. With
increasing numbers of electrodes, increasing numbers of previously hidden analytes can

be detected. This is a common use of multiple electrochemical detectors.



A second case can be seen if one imagines that the two curves are closer together,
so that there is some overlap in currents developing from their respective compounds. In
this case, a lower potential can still be applied, where one compound is absent or
minimized, but the problem becomes larger still. In the worst case scenario, both curves
overlap significantly enough that it is difficult or impossible to determine which
compound, or what the percentage of the compounds, is responsible for the current seen

using only one electrode.

Flow and Electrochemistry in Thin-Layer Flow-Through Cells

In a liquid chromatographic system using electrochemical detection (LCEC
system), the chromatographic column provides a good amount of the selectivity due to
the separating power of the column itself, as discussed above. As the eluents come from
the end of the chromatographic column and to the electrochemical detector, the
concentration gradient rises and falls as it passes through the electrochemical detector,
yielding first a rising current and then a falling current.

Successful use of electrochemical detectors depend on well-defined
hydrodynamic conditions, as well as a high rate of mass transport.” '' The thickness of
the diffusion layer at the surface of the electrode is related to the solution flow rate. The
limiting steady-state response of flow-through electrodes has been determined, and
solutions of the three-dimensional convective diffusion equation for the limiting currents
under steady state conditions have been derived for various electrode geometries, using
the appropriate boundary conditions. For an electrode array arranged in series, this

solution holds for the first electrode, where reactants are being converted to products at



mass-transport controlled rates; in short, by diffusion. The diffusion layer does not have
enough time to re-establish itself fully before it passes over the second electrode.” ' !?
This results in less current generated and measured at the second and any subsequent
electrodes in a series configuration, assuming that all the electrodes are exactly the same
physically and are set for the same potential. Differences in the conditions on the
individual electrode surfaces may make these differences in current more, or less,

significant. A detailed examination of the case of dual series electrodes has been done,

but this discussion is beyond the scope of this work."?

Electrode Material

The choice of electrode material is quite important, as the electrode must have the
required mechanical ruggedness and long term stability required for the application to
which it is being used. Glassy carbon, which has excellent mechanical and electrical
properties, can be brought to a high surface polish with standard techniques, and is
relatively free of impurities. In addition, the solvents used in the analyses normally
performed have no deleterious effect on the electrode.” Glassy carbon can yield
reproducible signal values over prolonged time periods;" virtually the same absolute
signal values can be obtained after careful repolishing the electrode surface.'® It is these
characteristics that make glassy carbon electrodes a good choice for most applications.

Glassy carbon electrodes are not free from problems, however. The structure of
glassy carbon is not homogeneous throughout the electrode, with ribbons of sp
hybridized carbons embedded in a sp® hybridized carbon matrix. Only the sp” hybridized

carbons are electrochemically active. Thus, at the surface of the electrode there are be

10



regions with slightly different electrochemical properties. Electrode fouling is common,
with Dopamine and other biogenic amines known to have a tendency to foul the electrode
at higher potentials. Such compounds bond to the surface of the electrode and change the
overall properties of the electrode itself. After repolishing, the electrode may not yield
reproducible signals until the surface has been “conditioned,” at which time the electrode
begins to yield a reproducible signal. Thus, the use of glassy carbon may not be suitable

for all analyses, and the diffficulties in its use must be weighed against the advantages.

Mobile Phase

The buffered aqueous mobile phase must dissolve the analytes, have sufficient
ionic strength necessary for conductivity, and be chemically and electrochemically inert
at the desired range of operating potentials. The concentration of electrolytes in the
mobile phase is sufficient to minimize migration as a component in analyte movement.
At the same time it should minimize the background current due to impurities found in
the buffering agents'’ and dissolved oxygen'* which contribute to baseline problems.
Additionally, the mode of operation is a potential source of noise or problems; the
oxidative mode of operation is much less susceptible to baseline problems due to
reduction of the above mentioned trace impurities. The potential limits in an aqueous
solution are from about -1.2V to about 1.2V.">'7 Any analyte that oxidizes or reduces
outside of this range is not suitable for detection in an aqueous phase.

The mobile phase also should keep the compounds in the desired oxidative state.
This requires some knowledge on the part of the experimenter. If the analytes are

sensitive to oxygen, for example, then the mobile phase should be bubbled with an inert
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but soluble gas to drive the oxygen from the mobile phase. Additionally, since the
mobile phase is high in electrolytes, it sometimes can provide an excellent growth media
for bacteria, and thus should be checked on a regular basis for bacterial growth. Some
analysts will go to the extreme of preparing new mobile phase on a daily or weekly basis.
Slight changes in the mobile phase, however, can cause significant problems in the
elution of the compounds; additionally, the column must be conditioned to the new

mobile phase prior to use.

The Detector: Thin-Layer Cells

The detectors used in many LCEC systems are of a cross-flow thin-layer design
as shown in Figure 1.3. In this cell design, the electrochemically active analyte passes
over the working electrode which is held at a potential sufficiently positive or negative
enough to induce an electron transfer reaction (oxidation or reduction), producing an
amperometric current proportional to the concentration of analyte that enters the thin-
layer cell. The counter electrode supplies the electrons via the potentiostat to maintain a
constant potential between the working electrode and the reference -electrode.
Amperometric detection can be used to react a negligible amount of the analyte, or nearly

all of it, depending on the mass transport efficiency of the cell.
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Figure 1-3: A typical cross-flow thin-layer electrode cell

The range of conversion efficiency comes from the area-to-volume ratio of the
electrode surface to the volume of the cell. As the electrode surface area increases, the
conversion efficiency improves. With the larger electrode areas and their increasing
background current, detector noise also increases, and the signal-to-noise ratio decreases
as well; this is problematic when it results in a lowering of the signal/noise ratio. With
smaller electrodes, less material is converted, but lower detection limits can be attained
with concomitant low noise levels. At extremely low conversion efficiencies, however,
noise from the electronics becomes the limiting factor, as it becomes as great as, or
greater than, the signal from the analyte.

The construction of the thin layer cell places the working electrode opposite the
auxiliary or counter electrode, and is shown in Figure 1.3; this construction and the high
ionic strength of the mobile phase minimizes the large iR drops commonly associated
with amperometric thin-layer cells."* This configuration also ensures that the potential at
all points on the working electrode surface will be uniform and that the uncompensated

iR drop will be extremely small due to the thinness of the layer of solution between the
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two plates.'” Since no current passes along the thin layer, there is no resulting iR drop in
the solution. The transit time for the molecules moving across the electrode surface is
short when it is compared to the time it takes to diffuse across the thin layer of solution
between one side of the electrode and the other, and thus no interference occurs between
the reactions occurring at the working and auxiliary electrodes. The reference electrode
for the cell used in NEUBA® is placed behind the auxiliary electrode, as shown in Figure

1.4.

Reference Elechode

Counter Electrode

Working Elec trode

Figure 1-4. The detector cell used with NEUBA®

The Recorded Data and Resultant Peak Shapes

Initial chromatographic theory indicated that an ideal eluted peaks exhibited a
Gaussian distribution. In truth many things affect the shape of the peak. A peak that is

fronting, or showing an asymmetric first half of the peak, can be due to a dead volume
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between the injector and the column, so that the injection is being made in one long plug
instead of a short and narrow one. Tailing of a peak can be due to dead volumes in the
connections from the column to the detector, or due to detector lag. Fronting and tailing
are also functions of the flow rates in the system being used. A cold spot on a gas
chromatographic column can have a similar effect. They can also be due to nonlinear
distribution coefficients for the analytes. Distortions such as these lead to poor

separations and less reproducible elution times, and thus should be avoided.

(a) (b) (c)

Figure 1-5: Peak types.

(a) Fronting peak; (b) symmetrical peak; (c) tailing peak

Resolution

Any column can be measured to determine the resolving power associated with
that column. This quantity is known as the number of theoretical plates. The maximum
number of separated peaks attainable for the column can also be determined. For a
column of 10,000 theoretical plates yielding a resolution of 1, i.e., the peaks overlap by
approximately 3%, the number of peaks the column can resolve is 25. In order to get 50

peaks to resolve on the column, the number of theoretical plates must be 20,000. Given
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that biological samples can have hundreds of analytes present, a single column cannot

resolve them all and thus overlapping peaks will be the rule rather than the exception.
Resolution (Rg) is the ability of the column to separate two analytes. It is a

quantitative measurement of how well two peaks are separated in the analysis, and is

determined by Equation 1.6:

A0~ ()]

* W, +W,

Equation 1.6

where A and B refer to the first and second peak, respectively, and the retention times of
the two analytes are found as shown in Figure 1.6. The widths are measured at the base
of the peak as shown in Figure 1.7.

The retention time of the analyte and as the width of the peak are values

commonly used in peak shape equation determinations, as discussed later.
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Figure 1-6: A typical chromatogram, and determination of the retention times of a

nonretained species, 7y, and a retained species, #z.

A resolution of 1.5 gives essentially a complete separation of the two
components; at a resolution of 1.0, there is an overlap of the two analytes of about 4%.
Increasing the number of plates of the column increases the resolution of the column; as

the peak width narrows with retention times remaining constant, the resolution increases.
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Figure 1-7: Determination of the width at half height, and the width of the peak at the

base.

This is illustrated in Figure 1.8, where the resultant peak is the summation of the two
peaks. In Figure 1.8(a), the peaks are well resolved and there is no difficulty in
determining the two analytes. In 1.8(b), the peaks are moderately resolved, with a
resolution of 0.50. The resultant peaks appear to be slightly wider, and the second peak
begins to appear taller. In 1.8(c), the resolution is even poorer at 0.39. The second peak
is now noticeably taller, and which parts of the doubled peak are attributable to which
analyte becomes more difficult to determine. Part (d) shows the two peaks completely

merged.
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Resolution of Chromatographic Peaks

(a) (b) (c) (d)

UL L

Figure 1-8: Resolution of two peaks

Key: (a) Well resolved, Ry = 2.78; (b) moderately resolved, Ry = 0.50; (c) poorly

resolved, Ry = 0.39; (d) completely overlapping

All real chromatographic peaks exhibit skewed peak shapes, either as a fronting
peak or a tailing peak. This skew in the peak shape complicates the quantification of the
analyte. Figures 1.6, 1.7 and 1.8 were generated using real data. Each chromatographic

peak in these figures exhibits tailing, which contributes to peak overlap.

Quantitation Issues

In the few cases where there is no overlap between the analytes, a direct measure
of the quantitative amount for the analyte can easily be determined either as the peak
height or as the integration of the area under the curve. If the recording device is a strip

chart recorder, the easier method by far is to measure the peak height and from that value
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determine the quantitative amount for the analyte. However, this method is not as precise
or as reliable as is the integration of the area under the curve.

As peaks continue to overlap, the use of peak areas as a quantitative measurement
becomes problematic. When the second peak overlaps the first, the region of overlap
itself will be skewed since the signal will be a linear combination of the two analyte
signals, thereby yielding a larger signal, as shown in Figure 1.8. For two peaks whose
maxima are not involved in the overlap region, quantification based on peak heights
rather than peak areas is quite straightforward. For moderately overlapped peaks, where
the maximum of the second peak lies within the overlap region, there are two strategies
commonly employed: the perpendicular drop method, and the tangent skimming method.

The perpendicular drop method draws a line between the two peaks based on
where the minimum occurs in the valley between the peaks. This method is quick and
easy, but tends to overestimate one peak while underestimating the other, depending on
the relative amounts of the analytes and the degree of overlap. The tangent skimming
method assumes that the leading or trailing edge of the peak is a continuation of the
portion of the peak unaffected by the overlap itself. This method does not suffer as much
from over- or underestimation of the relative areas of the two peaks. As the peaks
become more and more overlapped, however, the valley disappears and any
uncontaminated trailing edge of the preceding peak becomes less and less. Additionally,
the adjacent peaks may not be similar in shape, and the points required to make these
measurements may not be easily obtainable due to the overlap.

For severely overlapping peaks, the use of either perpendicular drop or tangent

skimming is not appropriate. In these cases, the sample normally would be analyzed
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again under different conditions, or additional steps must be taken to eliminate the

undesired contaminant.

Internal Standards

The use of an internal standard is common practice for quantitative work. The
purpose of an internal standard is two-fold: it serves as a peak against which one can
quantitate, since it is a known amount, and it serves to indicate possible problems in the
sample itself. An internal standard is a compound not normally found in the sample. It is
added to the sample, either during extraction or just immediately prior to analysis, and is
similar in structure and chromatographic behavior as the compounds of interest, but is
chromatographically well separated from them.'®

The internal standard is a known compound of known amount; hence, the
response the detector yields for this compound is also known and should be consistent
from injection to injection. Any deviations in the response of the internal standard is due
to effects of the sample matrix. Since the sample matrix affected the internal standard, it
is assumed to affect the analytes of interest in a similar manner. Thus, suppression of a

signal can be accounted for and corrected.

Deconvolution of Overlapping Peaks
Two methods have been used in the past to resolve overlapping peak information:
iterative curve fitting, and multivariate calibration methods; both are discussed below.

These methods are not restricted just to chromatographic data.
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Iterative curve fitting'® assumes that a continuous function can be found that is the
sum of one or more independent parts, each one of which can be itself described by a
known function. The number parameters required to fit the chromatographic peak,
however, has a tendency to rise as the peak shape becomes more and more complex.
Additionally, a large number of equations can been used to fit a single peak to a high
degree of precision. For accuracy, the number of analytes contributing to the peak must
be known, else an inordinate number of “analytes” can be found leading to false
positives.

Multivariate calibration methods have been used to resolve overlapping
information in various analytical methods since before the birth of the field known as
chemometrics. Mass spectrometers have enjoyed an explosion in use due to pattern
recognition methods, enabling the identification of overlapping analytes.’’** NMR,”

> and IR spectrometry”® likewise have

UV-Vis,” guided microwave spectroscopy,’
enjoyed improvements due to these methods. Recently, resolution of strongly
overlapping peaks in capillary electrophoresis was reported.”” The analysis of drinking
water”® and the characterization of supercritical adsorption processes between salicylic
acid and various adsorbent materials using principal component analysis and partial least
squares regression has also been reported. 2 Quantitative structure-activity relationships
among carbonic anhydrase inhibitors were determined using multiple linear regression
and computational neural network analyses.”” These methods can also be used to
determine the origin of various foodstuffs such as potatoes,’”” ** honey,” the nitrogen

content in wheat leaves,** and similarities between natural and accelerated browning of

sherry wine,” as well as the source of illegal drugs®® and pharmaceutical fingerprinting.*’
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It has also been used to determine the levels of veterinary drugs in edible tissues of
animals.** %’

Electrochemical determinations of analytes are not immune to overlapping peaks,
irrespective of the presence of prior chromatographic separations. Various strategies and

configurations have been investigated to overcome this problem. Voltammetric-

amperometric dual electrode detection,13 difference mode detection,40 redox mode

1 42, 43

detection,”' and the use of dual electrode response methods as strategies for LCEC
detectors have been tried. Recently, chemometric methods have been applied to the
problem. Artificial neural networks, along with partial least squares analysis, was
applied to dropping mercury electrode polarography to determine the pesticides atrazine-
simazine and terbutryn-prometryn in binary mixtures.*® Coulometric and volumetric
experiments involving slow titration reactions were also investigated.”  Metal
complexation determinations using differential-pulse polarography were performed and
compared to traditional curve fitting least squares approaches.*°

This work involves the investigation into iterative curve fitting as a method of
deconvoluting two overlapping chromatographic peaks, as well as principal component
analysis with linear regression to determine the actual components in the peaks. A
simpler method of deconvolution may involve using a single well-chosen time point to
investigate the data along the signal-potential domain. Therefore, a discussion of these

methods is in order. A full discussion of these topics is well beyond the scope of this

work.
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Chromatographic Peak Shape Functions

It has been widely believed that if a function could be determined to exactly fit
the data, then numerical methods could be used to determine the parameters attainable
from the data, including the retention time of the species. This will be discussed in more
detail below. Work has been done concerning thermodynamic data that can be
determined from such functions after they have been fitted to the data. For such a
scheme to work, however, a well defined peak shape function is required.””** Additional
problems include: (a) poor convergence or ambiguous solutions are not uncommon,
since the exact number of peaks is generally not known; (b) the position of the baseline
itself is not exactly known, and in most cases is subjective in nature; and finally, (c) the
initial estimates of the parameters are not accurate, leading to a solution at a local
minimum as a result of the optimization method.* Fitting procedures that assume all the
components have the same peak shape at different concentrations are subject to error.”® It
must be assumed that the detector response varies linearly with concentration at any time
during the elution; this has been shown to not be the case except near the peak
maximum.” For badly overlapped peaks where the equations being fitted to the data are
not perfect representations of the data, the minimum found can be a very shallow

31:32 a0ain leading to errors.

function of the parameters,

The method used to determine the curve fitting is usually a variant of the
Marquardt method for least squares estimation for nonlinear parameters.” A very
popular variant is the Levenberg-Marquardt method.”* > Prior to Marquardt’s method,

most least-squares algorithms to determine the parameters used one of two methods; (a)

either expanded the model as a Taylor series and made corrections to the several
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parameters determined at each iteration on the assumption of local linearity, or (b) the
method of steepest-descent was used. Steepest-descent methods,”’ also known as
gradient methods, are still being used. Both methods often have difficulties, as the
steepest-descent method suffers from slow convergence after the first few iterations, and
the Taylor series suffers from divergence of successive iterations.” The sum of squares
of the residuals is routinely used as a criterion for evaluating the peak shapes used in the
peak deconvolution.™

There is no one single peak shape that can be ascribed as a “one-size-fits-all”
equation, and the exact peak shape must be experimentally determined.’® > °® It has
been suggested that different functions could fit the band envelope with equivalent
statistical validity, and equal fits may be obtained with more than one set of parameters
depending on the starting values and the methods used to compute the parameters.”
Because of the extra- and intra-column effects, it has been stated that the experimental
retention time as well as the variance do not properly describe the shape of the peak
under experimental conditions; it was further stated by Papoff et. al that these parameters
do not allow one to predict how the shape will change when the composition of the eluent
is varied’ in gradient elution chromatography. Instrumental effects affect the
chromatography; forms of the exponentially modified Gaussian equation have been used
to model the instrumental contributions and subsequently subtracting them out of the
data, allowing for sharpening of the peaks and thus attaining better separation of the
peaks.*!

The first and most simple theory developed for chromatography was the plate

theory. This theory still accounts for much of what is generally observed in practice. It
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describes the chromatographic process as a number of individual steps, and divides the
chromatographic column into an infinitesimal number of discrete compartments which
the chromatographic band would travel down in a stepwise fashion. The resultant band
shape described by the model is Gaussian. It was quickly determined that Gaussian band
shapes did not sufficiently describe the band shape®™ ®* for many kinds of
chromatography and spurred much investigation into the exact nature of chromatographic
processes. A stochastic model of chromatography has since evolved.

Several groups were working on a “universal” band shape equation. These
groups attacked the problem on two competing fronts: a theoretical approach, and a
practical approach. The theoretical approach utilized those equations with parameters
describing real processes to the parameters in the equations but perhaps were not easy to
implement. The practical approach uses those equations that while perhaps do not have
parameters that are easily identifiable with any particular real phenomena, nevertheless fit
the data very well and tend to be easier to implement.

The “theoretical” equations allow one to calculate thermodynamic data
concerning the system under study; these equations include the Gaussian and those
derived from it. Working with the existing theory led to using either a skewed

63, 64

Gaussian, a modified Gaussian function with a polynomial standard deviation,” or the

Gaussian equation convolved with a variety of other peak shapes,® from an exponential

decay*”: ¢

to a Lorentzian (Cauchy)®” ®® band shape. These include the exponentially
modified Gaussian (EMG),” > 47> 48 34. 33, 57 58, 60, 62, 66. 6883 5 ‘gimplified exponentially

modified Gaussian,™ the Gaussian-exponentially modified Gaussian (GEMG),*” * and

the derivatives of these two or even the use of two Gaussian functions.” It also includes
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58, 59, 82, 83, 85, 86

the Cauchy-Gaussian (CG) equation which fits strongly tailed peaks. Of

these equations, the EMG has been used rather extensively to describe chromatographic

87-89

figures of merit as well as thermodynamic information® concerning the system at

hand, since the statistical moments for the equation are well known and this equation has

sound footing in theory,’” ¢! %

and has been used to study extra-columnar effects in
chromatographic systems.? It tends to fit more peaks, including those that front as well as
those that tail.”>”” The EMG function also has been examined as a function of more than
one time constant.***® However, it does contain an integral form (the error function) that

can be difficult to estimate numerically.”’ A hybrid of the exponential and Gaussian

functions, named the exponential-Gaussian hybrid function (EGH), is:

“mathematically simple, numerically stable, and its parameters are readily
determined by making graphical measurements and applying simple
equations ... [and it] serves as a useful alternative to the exponentially
modified Gaussian (EMG) for modeling slightly asymmetrical peaks since
the two models produce nearly the same profile at relatively low
asymmetries. The EGH also serves as an addition to the extensive list of
alternative models that are sometimes better than the EMG at describing

highly asymmetrical peaks.”"*

The peaks at low asymmetries are those that are best described by the EMG. For

peaks at higher asymmetries, the EMG often does not describe the shape of the

experimental peak very well and the function becomes numerically unstable.
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Haarhoff and van der Linde®* > *® ¥ % derived an equation based on the

Gaussian equation that takes into account nonideality, nonlinearity,””

and sorption
effects’ that will fit both tailing and fronting peaks. However, this equation shows
changes in the elution curve with increasing amounts of injected solute; the peak
maximum shifts to earlier times, and the asymmetry ratio decreases. Giddings derived an
equation®® *> * firmly based in theory that can be used for peaks that have moderate
tailing. There is even an equation describing nonlinear chromatography,® which has
been considered for modeling ideal delta function analyte loading.>

The “practical” equations are those that fit the data well, even though there may
not be any theoretical basis for them and the parameters may not describe real
phenomena. These are normally used to determine the identity of the peak based on the
retention time. Given that the elution profile is a statistical distribution of the peak,

55, 68, 73, 74, 83, 96

statistical functions such as the Poisson distribution, a modified Poisson

67, 81, 83, 98, 99 67, 81, 83, 91, 98, 99
B B B B B B B B B the

distribution,97 the Weibull function, the Gamma function,

67, 81, 83, 87, 98-101 81, 87, 88, 102

log-normal function, and the Gram-Charlier and the Edgeworth-
Cramer series® % 87 19219 have been used. The latter two approaches are not very
useful for peaks that are skewed and require series expansions which represent the
determination of between seven and ten parameters per peak.

Additional functions that have been proposed and used in the past include linear
combinations of two or more skewed Gaussian functions with differing parameters.®
The bi-Gaussian function, where two half-Gaussian peaks with different widths are

added, has been used” ® 6% 82 83.96. 104 5 well. This function will model both fronting

and tailing peaks. An interesting parameter is the ratio of the width of the back peak to
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the width of the front peak, o;/00p. When two overlapping bi-Gaussian peaks with
differing ratios have a resolution of zero (complete overlap), the double bi-Gaussian
peaks can be differentiated from a true single bi-Gaussian peak. This may show that the
peak is not pure, but does nothing to determine the concentrations of the components.
The bi-Gaussian equation does not yield correct first-order moment values, and since it
contains two width values, the second order moments are not directly related to the peak
shape.” A model similar to the bi-Gaussian equation was proposed by Li'®® wherein he
transformed the leading and trailing edges of a Gaussian function into step functions to fit
chromatographic peaks.

Chesler and Cram proposed convoluting a Gaussian, an exponential, and a
hyperbolic tangent joining function, where the front of the peak can be fit with the
Gaussian, the back side of the peak with the exponential function, and the hyperbolic
tangent functions as a broadening function to enable the fit.'”>* 5* 5% Thjs function has
been used to examine chromatographic processes.'” It contains some eight parameters,
and even with this large number of parameters used to fit the data, it is still not a very

5

useful equation.'” Additionally, derivative functions have been proposed,” as well as

using the leading and trailing edges of sigmoid functions.'*” '*®

A recent review found about ninety empirical functions that have been used for
the representation of chromatographic and spectroscopic peaks.®> A count of those
equations listed in this review that have been used for chromatography numbered some
seventy-one. As noted by the authors, the literature contains instances of two apparently

different equations representing the same function being presented with different names,

as well as instances of printing errors, some serious, that have been propagated. Several
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equations have more than one name, and some names are currently in use for more than
one equation. Different forms of the same equation have been reported.

The parameters in the equations themselves are not uniform throughout the
equations found in the literature. For instance, the width of a peak depends on where it is
measured; different equations measure width at different heights. Thus, uniformity in the
equations themselves is necessary in order to allow a more direct comparison between the
different equations. The parameters are listed with each equation. The following
parameters are of note. The height of the peak can be either exactly the height, in which
a change in the magnitude of the parameter will change the height, or the height can
depend on other parameters in the equation. The stated retention time is either the exact
retention time, or it can depend on other parameters. A change in the magnitude of the
retention time for an equation expressing the exact retention time, of course, will change
the retention time with no changes to other parameters. If the retention time depends on
other parameters, a change in the retention time will change the related parameters as
well. Different functions measure the peak width at different heights. In some cases
changes in the parameter itself changes the width; or in most cases, the width depends on
other parameters. Ideally the symmetry parameter should be positive for fronted peaks,
zero for symmetric peaks, and negative for tailed peaks, but this is not uniform for all the
functions. The physical meaning of this parameter depends on the function itself. For
some equations, the symmetry can be changed by changing the parameter itself, and for
other equations it depends on other parameters.

Twelve equations are used in this work. Since there are some ninety possible

functions that could be used, only the most common ones used in the literature and those
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that appeared to be good candidates were evaluated in this work. These equations are
discussed below. Depending on the author, several parameters in the equations may be
reported in various ways. An attempt has been made to make the variables uniform to
allow a more direct comparison between the different functions. These twelve

equations are:

1. Haarhoff — Van der Linde (HVL)

2
_aa, l(x—al)
—F=—exp|-—
aa;N 2 2\ 4
+=|1+erf
2 [‘/_az)

Equation 1.7

where ay is the area, a; is the peak center, a, is the width, and a3 is the distortion factor.

Another form of this equation, in more familiar chromatographic terms, is:

5]

Tl

Ao’

L,

C =

Equation 1.8
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where c is the concentration, A is area, tg is the retention time, o is the standard deviation
of the Gaussian function, and a values are fitting parameters. This equation will yield a
single maximum, and can be used on fronted, symmetrical or nearly symmetrical peaks,

and also on tailed peaks. The zeroth statistical moment (area) can be determined exactly

from this equation.

2. Exponentially Modified Gaussian (EMG)

In its bi-directional form:

2
-
y= 2 exp( = +a1 )erf =4
1

20 20} ‘/—az ‘/_al |oc|

Equation 1.9

where ag 1s the area, a; is the center, a, is the width, and a3 is the distortion factor. This

equation has many forms, among which is

‘/ZAGexp(GZ te — )1+erf a
\/_o \2q,

Equation 1.10

where c is concentration of the analyte as a function of time, A is area, tg is the retention

time, o is the standard deviation of the Gaussian function, and o values are fitting
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parameters. According to a recent review,® almost 20 formulae for the EMG function
have been reported in the literature, with the first seven listed are stated as independently
derived and therefore equivalent to one another; the next four are approximate
expressions, equivalent to the “true” EMG only when the retention time is much larger
than the symmetry parameter, which is generally the case. The remainder in this review
are all different from one another, and also different from the first twelve; printing errors
have also crept into the literature of EMG equations. It has been suggested that the peak
shape most commonly encountered with chromatographic data is the EMG.”> ® Much
work has been done using this equation, and hence it is the best understood of the
equations commonly in use. The calculation of the figures of merit for this equation were
worked out by Foley and Dorsey®™ in 1983, and has since been used to determine

thermodynamic properties of analytes.

3. The Giddings Equation. This equation does not fit highly skewed peaks. Since
the definition of “highly skewed peaks” is not commonly encountered in the literature,
the Giddings equation was included in this study for completeness. This equation takes

the form:

2yat —t -
Sy v WEEA
a, V1 a, a,

Equation 1.11
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where ay is the area, a; is the center, a, is the width, and I, is the Bessel function for n=1,

where t<<n:

Equation 1.12

4. Half-Gaussian Modified Gaussian (GMG)

(t—a) al(t—al)
a,exp 1 L\ 1+ erf
2al +a, \/Eal"af + @

Equation 1.13

where ay is the area, a; is the center, a, is the width, and a3 is the distortion factor. As can
be surmised, this is a convolution of a half-Gaussian equation with an exponentially
modified Gaussian equation. This allows fitting to tailing peaks with more Gaussian

characteristics in the main part of the peak itself.
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5. 4 Parameter EMG-GMG hybrid (GEMG4)

ey L aral |l [ @-ali-a)
' o +a \Eaﬂ/af +a;

\/Z‘/af + aferf(% -1

Equation 1.14

where ay is the area, a; is the center, a, is the width, and a; is the distortion factor. This is
another hybrid EMG peak with a Gaussian-Modified Gaussian peak using four

parameters.

6. 5 Parameter EMG-GMG hybrid (GEMGSY)

5 2
1 (azt - aa, +a1)
a, exp| - —
0
2 af(af+a22)

2
ozl(—a2 + ot - alaz)

V2a,0,q0l + d
2ol + azzerf(\/Ea‘ —1)
a,

l+erf

y=

2

Equation 1.15

where ag is the area, a; is the center, a, is the width, and finally a; and a4 are distortion

factors. This is another hybrid EMG peak with a Gaussian-Modified Gaussian peak

using five parameters; the use of additional fitting parameters should allow for a better fit
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for the equation. A large number of parameters can only be justified when an even larger

number of experimental data points are available.

7. EMG + GMG

2 2
y= a, exp 200 - 204t + a, erfe a, -ot+a, N
4o, Q, \/Eazal

(a1 —t)2 Ocz(a1 —t)

a, 1
exp| —— erfc
2 2
2\/2n\/a22 +a; 2 a,+a, \2aa +

Equation 1.16

where ay is the area, a; is the center, a, is the width, and a3 is the distortion]1 factor, and a4
is the second distortion factor. This is a summation between the EMG and the Half
Gaussian-Modified Gaussian equation. As stated before, better fits to the experimental
data can be found with increasing numbers of functions being used to fit a peak.
However, this equation may be problematic for use when using it to deconvolute two
overlapping peaks, since the two halves of the equation are not coupled. In this case, a

total of four equations are actually being used.

8. Bi-Gaussian (BG), in its chromatographic form:
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Equation 1.17

where A = area, t is time, tg is the retention time, and op and or are the standard
deviations for the totally symmetric function. This is a discontinuous and thus
undifferentiable function; determination of the peak maximum via the first derivative of
the equation is not available. However, since it is discontinuous, with the first half of the
equation having a different standard deviation than the last half, the retention time

reported by the equation will be the peak maximum.

0. Fraser-Suzuki (FS)

¢ = Aexp| —In2; >

Equation 1.18

where A = area, t is time, tg is the retention time, and op and or are the standard
deviations for the totally symmetric function. This equation has been stated as being the

same as the log-normal equation.
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10. Log-Normal

Equation 1.19

where A is the area, t is time, tg is the retention time, and o is the standard deviation,
supposedly for the totally symmetric function. This equation has been shown in the

literature to fit slightly skewed peaks, and has been promoted as a “universal” peak fit

equation.®

11. Cauchy-Gaussian

This function is the result of a convolution between a Gaussian function and a

Lorentzian, or Cauchy, function.

c=Ayf, exp > + =l <tz;0< f; <1

c= Ay frexp > + st >1,,0< fp <1

Equation 1.20
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where A = area, t is time, tg is the retention time, and op and or are the standard
deviations for the totally symmetric function. This is another discontinuous function, and

as such the retention time is expected to be exact.

12. Chesler-Cram, in its chromatographic form:

c= Ayexp % +[1— %(1— tanh{al(t —az)})]a3 exl{—%a4{|t —oc5|+ (t —065)}]

Equation 1.21

where A = area, t is time, tgr is the retention time, and o is the standard deviation,
supposedly for the totally symmetric function.

Several authors reported the band broadening found in severely tailing peaks to be
more an instrumental band-broadening effect rather than specific to the physical
processes of adsorption and desorption of an analyte to the column. If the peaks are very
closely eluting, as are the peaks in the present study, this asymmetry can be attributed to
the chromatographic system, and thus the parameters describing the asymmetry will be
the same for both peaks. Initially, both peaks were allowed to find independent
asymmetry parameters, and these results were compared to the results obtained when the
asymmetry parameters were the same for both peaks. The results of this work are

presented later.
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Principal Components - Background

Principal component analysis is an approach based on linear algebra which allows
for the reduction in the data but still keep much of the variation in the data set. The data
is analyzed in reference to various axes, with the axis of the first principal component
along the axis describing the most variance in the data; the second principal component is
then placed orthogonal to the first and is thus uncorrelated. The result can be considered
in two ways: first, the old variables can be considered in terms of linear combinations of
the new variables, and as such, the old variables can be explained by a smaller set of new
variables, called factors, and thus reduces the data set. Alternatively, the new variables
can be considered as linear combinations of the old ones.

To explain this method, consider the problem in two-dimensional space. The

linear transformations are:

u = a(y1 - )71)+b(y2 - Z) =ax, + bx,
Equation 1.22
u,= c(y1 - )71)+ d(y2 - g) =cx, + dx,

Equation 1.23
The variance in u can be made arbitrarily large by multiplication of the

coefficients a and ¢, as well as b and d, by some constant value. Thus, a restriction on

these coefficients must be made, the so-called normalizing constraint:
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a’+b*=1

Equation 1.24

Equation 1.25

Equations 1.22 and 1.23 make the new coordinate system (u;, u;) orthogonal;

Equations 1.24 and 1.25 make the transformation vectors of unit length. Furthermore,

these conditions make the angle 6 between u; and x; the same as that between u, and x;

so that

u, = cosblx, + sinOx,

Equation 1.26

u, = —sin Ox, + cosOx,

Equation 1.27

and thus it can be seen that

a=d=cosO

Equation 1.28
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b =—-c=sinf

Equation 1.29

In matrix form this can be expressed as:

u, cosf sinf
[MZ] - l— sin@ cos 9}

X

Xy
Equation 1.30

Equation 1.30 represents the rotation in the coordinate system from the old

variables to the new. We wish to maximize the variation encompassed for each of the

components, and so we look to the general variance-covariance matrix for the u variables

Equation 1.31

which can be written as

0. =cos’ 00> +sin’ 0> +2sinf cosOo,
1 2 172

Ll

= variance along u,

Equation 1.32
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Since the new variables are restricted to be uncorrelated, Ouyuy and Oy, are both
zero. The angle where ou12 is maximized can now be found by setting the derivative of

ou12 to zero, and this angle is given by:

1 20, ., 5
0= EArctan% ifo, >0,
o, -0

X1 X2

Equation 1.33

and

1 zaxx e 2 2
6 =90 +5Arctan2—”2 if o,<0,
o -0

X1 X2

Equation 1.34

If the variances are equal, the angle becomes 45°: positive for positively
correlated variables and negative for negatively correlated variables. At this point,
several terms should be mentioned. Each vector that defines a principal component is
called an eigenvector of the variance-covariance matrix, and the variance along this
vector is called its eigenvalue. These terms will be used again later in this discussion.

Now consider the problem in multiple dimensions, m. The general

transformations are:
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U =v X +v,Xx, +--+v, X

Uy = Vy X| + VX +0+V, X

U, =V, X +V,, X ++V, X

m mm”-m

The coefficients v can be written into a matrix of coefficients, V-

Vit Vi Vim
A% A% 1%
21 2 om
V= .
vml Vm2 me

and the u and x vectors are column vectors of the new and old variables:
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Equation 1.35

Equation 1.36

Equation 1.37

Equation 1.38



The transformation can be shown in matrix form as:

Equation 1.39

Once again, there are two conditions that need to be satisfied: orthogonality and the

vector having unit length. Thus, for each new pair of coordinates ux and u;:

vklvrl + Vk2 vr2 +ooet vkmvrm = O

Equation 1.40

and for each component u;:

2,2 2 _q
VitV ety =

rm

Equation 1.41

These two conditions, taken together, are equivalent to:

v-vi =1

Equation 1.42
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where [ is the identity matrix. For the two-dimensional case, V was satisfied by the
variance-covariance matrix as seen in Equation 1.31 above. For the multidimensional
case, however, the use of this approach yields very complex expressions. However, this
problem can be approached using matrix mathematics. The variance-covariance matrix
of the new variables u, can be stated as a function of the variance-covariance of the x

variables:

c,=v-C V'

Equation 1.43

where C, and C, are the variance-covariance matrices of the u and x variables,

respectively. The expression to maximize then becomes

Var(ul) = vlT C.v,

Equation 1.44

where v'ev = 1 and v,” is a row vector representing the transformation by which we get

uy; up 1s a linear transformation of the first row of matrix V (the x variables)

T
Vi =(V11 Vio Vi3 vlm)

Equation 1.45
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This equation is equivalent to

C.-v=»Av

Equation 1.46

The vector v is the eigenvector of the variance-covariance matrix C, and A is the

eigenvalue. The eigenvalue A can be determined by

vlT-Cx-vl =)\.1(V]T'V])=)\,l

Equation 1.47

Maximizing Equation 1.47 means maximizing A, thereby taking the largest eigenvalue
and its corresponding eigenvector.

As stated before, the new variables u; are the principal components, and as such
are uncorrelated linear functions of the original variables. The coordinates of the
corresponding eigenvectors are the coefficients of the original variables for the principal
component. The loading for the variable is this coordinate multiplied by the square root
of the eigenvalue of this principal component. The term loading is also often applied to
the coefficients themselves. The value an object takes for a principal component is the
score of the object for that principal component.

The next step is to decide how many principal components to retain in the model.
One would usually retain enough of the first principal components to account for 80-90%

of the total variation. The total variation of all the variables can be determined by:
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=

Equation 1.48

and so the required amount of variance can be determined by

p)»

=—— > (0.8 or whatever criterion selected

ix

r=1

”

r

Equation 1.49

Usually only the first two or three principal components are enough to explain an
important part of the variance. The variance and hence the error associated with the data

will be further discussed below.

Factor Analysis

Taking this discussion further, a determination of how many factors, or principal
components, are necessary to explain the variance needs be done. This determination is
called factor analysis. Recall that for the two dimensional space, the transformations are

(Equations 1.26 and 1.27 respectively):

u, = cosblx, + sinOx,

u, = —sin Ox, + cosOx,
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Generalizing for m-dimensions, the transformation can be written as

Equation 1.50

and the conditions as

Vvt =1

Equation 1.51

Any matrix that satisfies Equation 1.51 above also has the property that its transpose is

equal to its inverse:

Equation 1.52

and thus Equation 1.50 can be rewritten as

Equation 1.53
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Equation 1.53 can be written out as

X, =V + vy, +-0-+v, U,

Xy =V Uy +Vpolly +---+V, U

X, =Vl +V, U+ 4V, U

mm - m

and so, in vector notation,

X, =u, 'V
Keep in mind that since
X1 X Xim
X _ th xi2 xim
xnl an xnm

Equation 1.54

Equation 1.55

Equation 1.56

Equation 1.55 therefore can be decomposed into two matrices, multiplied together:
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The matrix U are the scores for the data. The first row contains the scores for the first
object, the second row for the second, and so on. The entire matrix can be found using

multiple linear regression (MLR):

Equation 1.58

Since the eigenvectors are orthogonal, (V' +¥) = I, the identity matrix, and thus

U'=v-X"TorU=x-V"

Equation 1.59

Since not all of the eigenvectors need be included in ¥ in order to account for the
unextractable noise inherent in the data, and hence in X, only the first several

eigenvectors, p, may be required:

X=U,V,+E

Equation 1.60

where V), is the matrix of eigenvectors for the first p rows of V, U, are the corresponding
scores, and E is the matrix of errors or residuals, which are the difference between the

values the data set gives and what the model gives for the same value of x.
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Error

All real data sets contain some error, either random or experimental. The sources
of the error are generally ascribed to noise, including both experimental and instrumental.
The amount of error associated with the data set can actually mask the true
dimensionality of the data set. The total error associated with a given data set can be
divided into two sources: imbedded error and extracted error. Extracted error is error
that is found within the minor principal components; it can be removed by discarding the
minor principal component. Imbedded error, however, is contained within the first
several major principal components, and thus cannot be completely removed from the
data set. The amount of imbedded error will therefore affect the reproduction of the data
set.

While the imbedded error cannot be removed and is therefore included in the
reduced data set, the extracted error can and is usually removed. Thus, the correct
number of principal components to be retained becomes important; if it is
underestimated, then important information concerning the structure of the data has been
removed as extracted error, but if it is overestimated, experimental error is included in the
principal component model and could cloud or mask the underlying structure contained
in the data set. The question to be answered is: How many principal components does
one retain?

If the objective is just a quick analysis to get an understanding of the data, then
the additional dimensions and their associated error may not be important. However, if

one has mixture data and wants to identify the constants and estimate their proportions in
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the mixtures, an accurate estimate of the number of dimensions to include becomes
important. There are two categories of techniques that have been developed to determine
the true dimensionality of the data: those based on knowledge of the experimental error
associated with the data and techniques that do not require such knowledge and are thus
approximate. The various techniques are summarized below. Among those techniques
requiring prior knowledge are:

1. Residual Standard Deviation (RSD). The RSD of a matrix is a measure of
the lack of fit between the principal component model and the data set. When the
number of dimensions that are required to reduce the RSD to approximately equal to the
estimated experimental error of the data, the true dimensionality of the data set is
revealed.

2. Root Mean Square (RMS). Like the RSD above, the true dimensionality
of the data set is found to be the number of dimensions that are required to reduce the
RMS to approximately that of the experimental error. The RMS and RSD are related to
one another; however, the RSD measures the difference between the raw and the pure
data that contains no experimental error, and the RMS measures the differences between
the raw and the reproduced data using a given number of principal component
dimensions. The method of RSD is to be preferred, since it gives a measure of the actual
error.

3. Average error criterion. The average error is the average of the absolute
values of the differences between the raw and reproduced data, with the true
dimensionality being the number of dimensions that are required to reduce the average

error to be approximately the same as the estimated average error in the data.
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4. Chi-squared criterion. For data sets where the standard deviation changes
from data point to data point and is not constant, a chi-squared technique has been
developed. It takes into account the variability in error from one data point to the next;
however, one must be reasonably accurate in the error estimate for each data point.

5. Distribution of misfit. In this method, the number of misfits between the
observed and reproduced data sets are studied as a function of the number of principal
components employed. Misfits are defined as data points whose deviation from the
observed value is more than 30, estimated from experimental information. The true
dimensionality of the data is the number of principal components required so that either
none of the data points, or some user specified proportion of data points, are classified as
misfits.

There are methods that do not require prior knowledge of the experimental error
in the data set and thus can be used to estimate the amount of error in the data set. These
methods include:

1. Cumulative percent variance. This method is a measure of the total
variance accounted for by using p principal component dimensions. The sum of the
square of the reproduced data is divided by the sum of the square of the raw experimental
data, times 100%. It can also be expressed in terms of the eigenvalues of the data matrix,
and thus is also known as the percent variance in the eigenvalue. The criterion is to
accept the set of largest eigenvalues that account for a specified proportion of the data.
However, this method can only be used if an accurate estimate is made of the true

variance in the data, and this cannot be done without knowledge of the errors in the data.
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2. Average eigenvalue. The principal components whose eigenvalues are
above the average eigenvalue is retained and the others are discarded. If the analysis is
done using its correlation matrix, the average eigenvalue will be unity, since the variance
of each variable is unity. Thus, only those components whose eigenvalues are more than
one should be retained, and so this method is also known as the eigenvalue-one criterion.

3. Scree test. This test assumes that the residual variance will level off
before those dimensions that contain random error will be included in the data. When the
residual percent variance is plotted against the number of principal component
dimensions, the curve will drop rapidly and level off at some point. The dimensionality
of the data set is shown to be where the curve levels off or where a discontinuity in the
curve occurs; successive eigenvalues explain less and less variance in the data and result
in a drop in the residual percent variance. In situations where the errors are not random,
discontinuities in the plot will be seen, since principal component analysis may
exaggerate any non-uniformity in the data in trying to explain the variation.

4. Exner function. The Exner psi (1) function can be used as a method to
identify the dimensionality of the data set. This function can vary from zero, which gives
the best fit, to infinity. A value of 1.0 gives the upper limit of significance; this means
that reproducing the data using p principal components is the same as saying each point is
equal to the mean of the data. The largest acceptable y value has been proposed at 0.5.
A ¢y value of 0.3 is considered a fair correlation, 0.2 is a good correlation, and 0.1 an
excellent correlation.

5. Imbedded error function. This function was developed to identify the

principal component dimensions that contain error, but without relying on an estimate of
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the error associated with the data. The value of the function should decrease as the true
dimensions are being used in reproducing the data; when error dimensions are included in
the reproduction, the function should increase, because the error dimensions are the sum
of squares of the projections of the error points on the error axis. The imbedded error
function method, however, has difficulties as a steady increase is rarely seen, as principal
component analysis exaggerates any non-uniformity that exists in the error distribution,
and hence will result in non-equal error eigenvalues. The minimization in the function
may not be clearly seen if systematic errors exist, uniformity in the error distribution in
the data is not seen, or the errors are not truly random. In any of these cases, local
minima may be seen.

6. Factor indicator function. The factor indicator function appears to be
more sensitive than the imbedded error function. It also reaches a minimum when the
correct number of principal components have been reached which is more pronounced
and can often be seen in cases where the imbedded error function does not show a
minimum.

7. Malinowski F-test. This test is based on the Fisher variance ratio test (F-
test); the F-test is the ratio of two variances, obtained from two normally distributed data
samples. If the errors in the data are not uniform, or if systematic errors exist, the
variance expressed by the error eigenvalues will not follow a normal distribution. Since
the true eigenvectors for the data contain both structural information and imbedded
experimental error, they have eigenvalues that are statistically greater than the pooled
variance of the error eigenvalues. The error of the first eigenvector is set equal to the

principal component with the smallest eigenvalue. The next smallest eigenvalue is tested
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for significance by comparing its variance to the variance of the error set; if this quantity
exceeds the tabulated value of F for the chosen level of significance, it marks the division
between the true and error eigenvectors. If it does not exceed the tabulated value of F,
the eigenvalue being tested is added to the error eigenvector set and the process is
repeated with the next smallest eigenvalue until the division line is found. The advantage
of the F-test is that it takes into account a model for the noise or errors in the data, even if
the model is a normal distribution.

8. Cross-validation. The cross-validation method tries to determine which
principal components have the best predictive ability, and those that contain experimental
and random errors as do the above methods. It does not identify the breaking point for the
dimensions that contain sample structure and information. Cross validation is used in the
formulation of the principal component model for samples from a known class, and then
the principal component model is used to classify unknown samples. The data matrix X
is divided into a number of small groups; each group is deleted in turn from the data and
a principal component analysis is performed on the remaining data set. The deleted
group is then predicted using the model just found. The process is then repeated until all
the groups have been subsequently deleted and predicted. A suitable criterion of a
goodness of fit is selected, relating the actual and predicted values, and summed over all
the groups; the optimal principal component model is then identified using the goodness
of fit criterion. This method is used when a large number of possible dimensions are
inherent in the data matrix. In the current investigations, there are only four possible
dimensions, and thus cross-validation as normally used is not necessary, as examination

of the number of principal component analysis will reveal.
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In the present work, three different algorithms were used in conjunction with
principal component analysis: partial least squares (PLS), and principal component
regression (PCR) using the traditional NIPALS (Non-/terative Partial Least Squares) and
the SIMPLS (Statistically /mproved Partial Least Squares) algorithms. Each of these
methods are a two-step procedure, with principal component analysis being performed
first to obtain the reduced number of variables and the factor scores, and the subsequent
algorithm is used with these factor scores to determine the analyte concentration or

amount. Each of these methods and their respective algorithms will be discussed in turn.

Principal Component Regression.
Principal Component Regression (PCR) methods do not require that details of all
the components in the system be known, but does require a sensible estimate of how

many significant components are in the mixture.'”’

A normal regression technique
relates the original variables to the concentrations; PCR relates a principal component to

that concentration. This method is a solution to the factor analysis problem discussed

above, giving:

t=Xw+e

Equation 1.61

where 7 is a column vector containing n; rows of ¢; followed by n, rows of #,, where t is

the target vectors for the first and second components, respectively, and X is a vertical

concantenation of data matrices X; and X, where each column is the reading from an
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individual detector in the detector array. The component w is the weight vector. The
quantity e is the error vector, which is minimized to solve the regression problem. The

solution is

W= (XTX)_IXTt

Equation 1.62

If the measurements are highly correlated or are noisy, finding a good value of the
weight vector can be difficult because of the inverse function in Equation 1.51. However
if principal component analysis is first performed on the data, a reduced data set can be
determined, and directions that correspond to noise in the system can be discarded. The
predicted values can now be found using the reduced data set; the projected data are
commonly called the “score matrix.” This approach to the problem is called principal
component regression, and as an alternate solution to Equation 1.51 may be better

behaved than the standard MLR approach.'"®

Partial Least Squares.

Partial Least Squares (PLS) is related to PCR. While PCR finds factors that
capture the greatest amount of variance in the predictor variables, and MLR (discussed
previously) tries to find a single factor that best correlates predictor variables with
predicted variables, PLS tries to do both: it tries to capture the greatest amount of

1

variance and it tries to achieve correlation.''' It requires no prior knowledge of the

system under investigation, and is applicable to non-linear systems.''> It is often
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regarded as the major regression technique for multivariate data.'®

When applied to
chromatographic data, this method takes into account errors in both the concentration
estimates and the chromatograms, instead of only in the dependent data (the
chromatograms).'" This method, however, must be used with caution, as the predictions
are essentially statistical in nature. The underlying factors in the method have little or no
physical meaning, and so a linearly additive model where each underlying factor can be
physically interpreted is not expected. Even with these problems, if future samples
contain similar features as the original data, the model can be very robust.

PLS uses both the target vector and the measurements to determine the lower

dimensional subspace, using an iterative procedure.''

This subspace is then used to
make the predictions. Two commonly used algorithms are the traditional NIPALS, for
Non-Iterative Partial Least Squares, and its relative, SIMPLS (Statistically Improved
Partial Least Squares). NIPALS carries the x variance information in the loads, not the
scores; the X-block (predictor variable) scores are orthogonal to one another and the X-
block loadings are normalized. SIMPLS has the X-block scores being orthonormal, i.e.,
both orthogonal and normalized, and the X-block loadings are not normalized. In fact,
the explicit objective of the SIMPLS algorithm is to maximize covariance, while
NIPALS does not. SIMPLS relies on orthogonalization of a Krylof sequence to calculate
the PLS weights, which is a very fast procedure.'"!

Each of the methods under consideration rely on principal components as the first
step in the process. Thus, one of the parameters to be determined was the number of

principal components required to adequately describe the data. Two commercial

packages have been used to determine this parameter, Matlab (The MathWorks Inc.,
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Natick NY) and a module to Matlab, PLS Toolbox 2.1 (Eigenvector Research, Inc.,
Manson, WA). These packages have been used in the investigation of antibiotics in
animal tissues,38 the determination of acetonitrile and ethanol in water,25 the
characterization of impregnated materials,” the determination of aluminum and iron in

114

plant extracts,''* the amount of dermatan sulfate contamination in heparin samples,* the

determination of the strongly overlapping peaks of ebrotidine and its metabolites in

capillary electrophoresis,?’

and in standardization techniques for ion-selective sensor
arrays.'””  Other investigations include the determination of tryptophan in feed
samples,''® and the characterization of dental composites.''” Matlab, with its associated
functions and toolboxes, has also been used in the analysis of voltammetric data,46 and
the determination of the hydrocarbon content in naphtha by MIR spectroscopy.''®

There are two ultimate criteria to consider in determining the applicability of any
method, including chemometric methods, for determination of quantities of compounds:
the accuracy and the precision. Accuracy is defined simply as how well a result
compares to the known, real value; the precision of a method is a determination of the
spread in the data. The determined result may be very accurate, but the precision may be
so low that the result itself may be called into question. When there are replicates in the
theoretical data set for each determination, and the values for each determination is
measured, accuracy and precision are easily determined. The issue of accuracy is

addressed by two methods. One is the use of a commonly employed diagnostic RMSEC,

the root mean square error of calibration:
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Equation 1.63

where n is the number of samples, J, are the predicted y-values when all samples are

included in the model formation, and y; are the actual values. The percent RMSEC is

then determined by

100
%RMSEC = RMSEC —

Vi

Equation 1.64

where ), i1s the mean of the y-values. A similar criterion is used to determine the
goodness of fit of the predicted values, which uses an equation of the same form, but uses
the predicted values from a new data set, not the calibration data set, and is termed the
root mean square error of prediction, RMSEP.

Another simpler criterion used was the residual percentage, which is simply the
difference between the known value and the determined value, expressed as a percent of
the known value. This value can be considered also as a difference percentage. A
positive residual percentage means that the determination is higher than the known value;
a negative residual percentage means that the determination is lower than the known

value. Additionally, the difference percentage will be examined using clustering analysis

62



to determine which data set is closest to the model set. The issue of precision is

expressed as a percent relative standard deviation (percent RSD).

Development of the Cramer’s Rule Approach

The Cramer’s Rule Approach depends on the responses of the individual
electrodes to a compound or compounds at a given time. It is only used on the potential-
signal domain. Thus, it requires a description of the individual currents of the analytes.
We start with the Nernst equation restated here in terms of the concentrations of the

reduced and oxidized species in a redox reaction:

+0.05916 . Cy,p)
- log
h Cox-0)

E=E°

Equation 1.65

where “x = 0” denotes distance from the electrode surface. Rearrangement of Equation

1.65 yields:

(E-E“')n
0.05916

CR(x=0) = CO(x=0)10

Equation 1.66

for the reduced species and
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CR (x=0)
(E—E“')n
0.05916

CO(x=0) =

10

Equation 1.67

for the oxidized species. The model also requires an expression for the concentration in

terms of the reduced species in the bulk solution. With only the reduced species in the

bulk of the solution, at the electrode surface we have

*

CO(x=O) + CR(){=O) =Cy

Equation 1.68

Prior to any potential being applied, at time zero (t=0), i.e., no reaction has taken place

yet, Cox=0) = 0 and so Cr(x=0) = CR*. Substituting Equation 1.67 into Equation 1.68 yields

Cy (x=0) *
(E_Eor)n + CR(x:O) = CR
7 0.05916
10
which reduces to
1 "
CR(x=0) (E_Eor)n +1|= CR
" 0.05916
10
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The concentration of the reduced species at the surface of the electrode thus can be
written as a function of the concentration of the bulk reduced solution, the applied
potential, the standard potential, and the number of electrons in the balanced chemical

equation:

s

C
CR(x=O) = .
! —+1
(E-E” )n
"1 0.05916
10
Equation 1.71
which is further simplified to
(E—E”')n
. . 0.05916
Gy Ci10
CR(X=0) =T (E—E”')n 1~ (E_EU')n
17005916 | 0.05916
1+10 1+10
(E-E"')n
7| 0.05916
i 10

Equation 1.72

The model also requires an expression for the current in terms of the reduced species in
the bulk solution. This is expressed as a function of the moles of electrons involved in

the reaction, the Faraday constant, the area of the electrode, and the mass constant:
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I
nFA

=g [CR (x=0) ~ C;]

Equation 1.72 is then substituted into Equation 1.73, yielding:

or

i=nFAm,

which simplifies to:

i =nFAm,C,

(E-E"')n a
0.05916

1410

This terms in the bracket simplify and the equation becomes
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Equation 1.74

Equation 1.75
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(E—E”')n (E—E“')n ]
7| 0.05916 71 0.05916
10 —-[1+10
i = nFAm,C, = nFAm,C, -1
L=nbAamgly (5-£)n = AR S (E-E)n
| 0.05916 7| 0.05916
1+10 1+10
B ~nFAm,C,
- (E-E”')n
7 0.05916
1+10

Equation 1.77

Equation 1.77 above is in terms of the concentration of the reduced species in the bulk
solution. Since the purpose of this study is to deconvolute the overlapping peaks and not
to determine constants related to the electrode, Equation 1.77 can be simplified by

collecting the constants together:

K, = nFAm,
Equation 1.78
and so we use the simplified equation
_ -K,C,

i= ,
(E-E“ )n

1 0.05916

1+10

Equation 1.79
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to model the current at a given electrode for a single species. Since the potential of the
electrode is set is also a constant, and the number of electrons involved in the reaction as
well as the standard potential are also constants, we can further combine these into the

overall constant yielding

Equation 1.80

Due to the conventional nomenclature used, Equation 1.80 above appears to yield a
negative current; in practice, however, the current is positive, and hence further
development of the model using Equation 1.79 will show the results as positive with the
K’r now being K R-

For the oxidized species, we use Equation 1.66, repeated here:

(E-E“')n
0.05916

CR(x=0) = CO(x=0)10

Equation 1.66

and the bulk equation for the oxidized species:

CO(x=O) + CR(){=0) =G

Equation 1.81

along with the current equation for the oxidized species
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A similar treatment as above using the appropriate equations yields

n(E-E°
0.05916

10

. *

i =nFAm,C ;
0 n(E-E

0.05916

1+10

Equation 1.82

Equation 1.83

for the current equation for the oxidized species. Using the corresponding equation to

collect the electrode parameters into a single constant, and, since the potential is fixed

during the run for the electrode, and the number of electrons involved is constant as well

as the standard potential, the constant for the oxidized species takes on the form of:

n(E-E°
0.05916

K, =nFAm, 10

n(E-E"
0.05916

1+10

gives the final equation as
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i-K,C,

Equation 1.85

for the oxidized species. Equations 1.80 and 1.85 above imply concentrations; however,
the amount injected could just as easily be used since the respective constant collects up
all the respective terms.

To finish the model, the total signal is taken as a sum of the individual currents

for each potential in the time domain:

i = + ot
t01,Chl R™R Jon,Cmpdl R™R Jcn,cmpa R R Jen,Cmpd(n)

Equation 1.86

shown here for the reduced species in bulk. For each electrode, there is a separate
equation. This set of equations form the simultaneous linear equation set that is to be
solved to determine the concentration of the respective species. Thus, four electrodes

would involve four equations:

biorcn = ( ;C; Chl,Cmpdl * (K;C; )cm,Cmpaz Tt (K’:C; )Chl,Cmpd<n)

Lotci ( Ky C; )C,Q,Cm,,d[ + ( Ky CR )chz,cmpaa ( )ChZ,Cmpd(n)
ltot CcB (K )C}B,Cmpdl + (K C; )c}a,cmpaz ( )Ch3 Cmpd(n)
Liot,cna = (K;C )Ch4,Cmpdl + (K )Ch4 Cmpgz ( )Ch4 Cmpd(n)

Equation 1.87
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where the amounts or concentrations of the respective species are expected to remain the
same. This method was previously outlined but not described fully by Cao and
Hoshino'"”” in 1996; they showed that the method worked, and used it to detect 3,4-
dihydroxyphenylglycol (DHPG)."”® The chromatographic traces for the analytes shown
in both papers indicated a discernable peak, with a minimum in the chromatographic
trace both before and after it. This is a case that has been addressed many times by fitting
the data using the time/signal domain. They calculated the amounts for the analyte on a
point-by-point basis over all the elution time points using a least-squares method, but did
not indicate any problems with possible column overloading. This method should work
as long as the potentials used to differentiate between the analytes are different, since the
separation power of the method depends on the different electrochemical behavior of the

analytes.
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Chapter 2 — Experimental

NEUBA" Chromatographic System

NEUBA®, a “neurobiological analyzer”,'*'"'*® was developed in the late 1980°s

for the analysis of complex mixtures such as neurochemicals in brain tissue and
metabolites in urine. Multiple electrode detectors such as those in NEUBA® have

127

recently found use in various applications, from the analysis of beer and wine ~" to

mapping regions of the brain,'** and the use of multi-channel and multi-electrode systems

are becoming more popular.'**"%

NEUBA® is a liquid chromatograph system having multiple columns and multiple
electrochemical detectors. It has four individual chromatographic columns, with thirteen
working electrodes arranged in four thin layer cells, all controlled by a single potentiostat
and using one autosampler to make injections. Of the four columns, three are used to
separate most of the desired analytes by dividing them from a simply chromatographic
standpoint into weakly, moderately, and strongly retained components. The fourth
column is devoted to the separation and detection of acetylcholine and choline by use of
an immobilized enzyme post column reactor.

The three primary systems use an electrochemical array detector consisting a
series of four 1.0 mm glassy carbon electrodes in one thin layer flow through cell.
System 4, however, has a single 2.0 mm platinum working electrode. The three-
dimensional nature of the multiple detector LCEC separation thus allows for

identification and quantification of potentially hundreds of compounds.
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NEUBA® consists of a computer interfaced to both an autoinjector and the multi-
electrode potentiostat/controller. Each sample is injected and a portion directed through a
six port column selection valve, which then sequentially injects a set amount to each of
the four analytical columns. A detector is located immediately at the output of each
column; to help minimize electronic noise, the working electrodes of each detector are
contained in a Faradaic cage. The potentiostat/controller controls the applied potential
and monitors the current at each of the working electrodes. Control of the six-port
selection valve and the autoinjector is routed through the potentiostat/controller from the
computer. The solvent delivery system has a number of conventional LC connections to
the six port valve. There are also a series of flow-through by-pass lines which regulate
the solvent flow through the column selection valve. When the valve is not turned so as
to allow flow through it for a particular system, the by-pass lines allow solvent to

continue to flow through the affected system.

Figure 2-1 below shows the flow diagram for the NEUBA® system. The heart of
the system is the six-port tandem injection valve, marked 7066A and 7066B. This
tandem rotary valve is used to direct the required mobile phase through the autoinjector
and into the appropriate column. Flow continues in the other systems through the by-
pass lines. The valve then switches to position 2 for the prescribed length of time as
determined by the autosampler program and flow continues through the other systems,
again, through their by-pass lines. The sequence continues all the way around the valve.
Narrow bore tubing (0.005") begins from the point of the autosampler through to the exit

from the electrochemical cell. Stainless steel tubing is used from the pumps throughout

73



Neurobiological Analyzer
Flow Configuration
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Figure 2-1. Flow diagram for the NEUBA" system.

From: D.J. Turk, “Development and Utilization of a Multi-Column, Multi-Electrode

Detector for the Simultaneous Determination of Multiple Neurochemical Species,” Ph.D.
Dissertation, University of Oklahoma, Norman, OK 1991.
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the rest of the system, with the exception of the tubing from the analytical columns to the
electrochemical cells. This tubing, although narrow-bore, is teflon tubing to ensure
electrical isolation of the cell block assembly and still minimize dead volume in the

system.

The components of NEUBA® are, for the most part, commercially available. The
PM-48 solvent delivery systems are from Bioanalytical Systems; the QUAD
electrochemical detectors were purchased commercially (special order), and the
autoinjector unit is a Dynatech LC2000. Pressure gauges for monitoring system back
pressures are also installed. The potentiostat/controller, however, was manufactured in-
house. Components were placed to minimize dead volume associated with the LC tubing
connections that would interfere with the analysis.

Multiple electrode cells potentially can use the selectivity of the electrodes to
resolve overlapping peaks into different chromatogram. NEUBA® uses a series
configuration for all four working electrodes on each main electrochemical cell.

Any cell that uses more than one electrode set close together, whether the cell is
configured as a wall-jet, parallel, or serial, is subject to crosstalk between the electrodes.
Furthermore, if the downstream electrode is set to a lower potential than the upstream
one, it is subject to interference from the upstream electrode. The downstream electrode
has been shown to provide complex biphasic peak patterns, with a negative peak
corresponding to the positive peak of the upstream electrode, followed by a positive
peak."””” The electrodes used in this application of NEUBA® were set from a low

potential successively to higher ones, and thereby eliminated this possible problem.
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NEUBA" is interfaced to a 32 bit 16 MHz Macintosh IIx® computer system, with
a 68020 processor with 5 megabytes of RAM. The software used in the acquisition and
initial analysis was specially written for the system. The electronics for NEUBA® were
either assembled in the laboratory using standard procedures, with readily available chips
and electronic parts, or were commercially purchased, depending on the requirements.'*'

For this project, only one chromatographic system was used, and a 1.0-mm four-
electrode glassy carbon cell used in the detector assembly, yielding a simplified
instrument. The work-up of the data, however, would still be applicable to using
additional systems. Also, during the course of the investigations, the autosampler had to

be discontinued, and all subsequent injections made by hand using a manual injector

(Rheodyne Model 7010, Rheodyne LLC, Rohnert Park CA).

Materials Used

All aqueous solutions used 18 MQ distilled/deionized water, prepared by passing
distilled water through a Milli-Q Reagent Water System (Millipore, Continental Water
Systems, El Paso TX). The solutions made were stored in a Revco Model ULT1985-B-J-
K ultra-low freezer (Rheem Refrigeration Products Division, West Columbia SC), and
was maintained at —80°C. Mobile phase solutions were filtered through a Millipore
membrane filter (Millipore, Bedford MA). All reagents used in this work were obtained
from commercial sources in the highest available purity (=98%) and used without further
purification.

The following reagents were used:
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3-hydroxytyramine, hydrochloride salt (3,4-dihydroxyphenehylamine, dopamine);
Sigma Chemical Company, St. Louis MO

ethylaminediaminetetraacetic acid, disodium salt; Sigma Chemical Company, St.
Louis MO

L-3,4-dihydroxyphenylalanine (L-dopa, levodopa, DOPA); Aldrich Chemical
Company, Milwaukee WI

sodium hydroxide, Mallinckrodt Analytical Reagent, Mallinrockrodt Baker Inc.,
Phillipsburg NJ

epinephrine hydrochloride (adrenaline, Epi); Aldrich Chemical Company,
Milwaukee WI

citric acid, monohydrate, ACS Reagent Grade; Sigma Chemical Company, St.
Louis MO

diethylamine; Sigma Chemical Company, St. Louis MO

octyl sulfate, sodium salt; Sigma Chemical Company, St. Louis MO

acetonitrile, HPLC grade; Fisher Scientific Company, Fair Lawn NJ

Column. The column used in this study was packed in house using a downward

feed slurry packer. The 10 cm x 4.6 mm i.d. column was packed with CI18 3um

Adsorbosphere (Alltech Associates Inc., Deerfield IL) at 6710 psi for 25 minutes. After

packing, the column was rinsed while still on the column packer with about 50 mLs of

distilled water followed by about 200 mLs of mobile phase prior to connecting the

column to the chromatographic system. The column was further allowed to equilibrate

for at leaset 24 hours prior to use in an analysis.
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Mobile Phase. The mobile phase used in this study was made according to the
following procedure. The mobile phase was de-bebubbled by stirring for one hour prior
to use. When it was placed on the system, the first 500 mLs of the mobile phase pumped
through the column was discarded, thereby allowing for equilibration of the column and

the components of the mobile phase.

To 1850 mL of distilled water add with stirring:
Amount Final Concentration
0.25 -0.50 g NaOH
37.22 mg Na,H,EDTA+2H,0 0.05 mM

After dissolving, add:

42.02 g citric acid monohydrate 0.10 M
1.7 mL diethylamine 0.06% w/v
118.45 mg sodium octyl sulfate 0.255 mM

Adjust to pH 2.45 using concentrated NaOH solution
Filter through 0.20 um type FA Millipore filter
Add this solution to 150 mL acetonitrile, prefiltered 7.5% viv

using a 0.20um type FH Millipore filter

Standards

Epi. 3.34 mg of Epinephrine were dissolved in distilled water in a 10.00-mL

volumetric flask to make a 1.002 mM working solution. This solution was then divided
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into approximately 1-mL portions and stored in 1-mL polyethylene vials at —80°C until
just prior to use. When needed, vials were thawed, and the standard solutions were made
according to Table 2-1 below using distilled water in 100.00-mL volumetric flasks. The
standards were then divided as before and again stored at —80°C. The appropriate
number of samples and mixes were thawed just prior to running on NEUBA®.

Dopa. 1.97 mg of 4-hydroxylphenylalanine (L-Dopa) were dissolved in distilled
water in a 50.00-mL volumetric flask to make a 1.00 mM working solution. This
solution was then divided, stored, and later working standards were made as shown in
Table 2-1 in the same manner as for Epi.

Dopamine. Dopamine was used as an internal standard in the study. 1.92 mg of
Dopamine*HCI were dissolved in distilled water in a 10.00-mL volumetric flask to make
a 1.01 mM working solution. This solution was then divided and stored as described
previously, and the working standards were made as shown in Table 2-1.

Mixture Sets. Standard solutions were made as shown below in Table 2-1. Two
standards, one containing Epi and Dopamine, and the other containing Dopa and
Dopamine, were made as check standards for the duration of the experiment. The
mixtures contained all three compounds in the amounts shown below.

The resultant solutions were injected using a 20.00-ulL sampling loop on the
manual injector, resulting in the amounts injected on column as shown below in Table 2-
2; these are the amounts recognized as the true values for the deconvolution procedure.
To enable comparison to data and papers previously mentioned, the same mixtures are

presented in pg amounts.
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Table 2-1: Amounts of working standards used to make the standards and mixtures

Epi Std
Dopa Std
Mix 1
Mix 2
Mix 3
Mix 4

Mix 5

Table 2-2: Resultant amounts regarded at true values for standards

Epi Std
Dopa Std
Mix 1
Mix 2
Mix 3
Mix 4

Mix 5

Amt Epi (uLs)

171
0

154
119.8
85.5
51.3

17.1

Amt Epi
pmol
68.5

0

61.7
48.0
343
20.5

6.85

pg

0.206

0.185

0.144

0.103

0.062

0.021

Amt Dopa (uLs)

0

333

33.3

99.8

166.2

233

300

Amt Dopa

pmol
0
133.
13.3
40.0
66.6
93.4

120.

80

Amt Dopamine (uLs)

0.677

0.067

0.203

0.338

0.474

0.610

231

231

231

231

231

231

231

Amt Dopamine

pmol
92.6
92.6
92.6
92.6
92.6
92.6

92.6

pg

0.488

0.488

0.488

0.488

0.488

0.488

0.488



Experimental Conditions.

Two pure standard solutions of the neurotransmitters Epi and Dopa were made to
known concentrations, and these two standards were subsequently analyzed on NEUBA®.
The experimental conditions used for the electrodes are shown in Table 2-3 below.

The mobile phase composition was sufficient to allow for the elution of the two
compounds within one minute from the solvent front. The amounts of the compounds
were as shown in Figure 2-2: 68.5 pmol for Epi, 133. pmol for Dopa, and 93.6 pmol for
Dopamine. The standard injections were all made from the same working solutions, and
were not independent samples. Thus, there is no information concerning variance in

concentrations. The mobile phase was run at a rate of 1.2 mLs min.

Table 2-3: Electrode Potentials

Channel Potential (mV)
1 600
2 700
3 800
4 900

Experimental Data

The five mixtures as described were comprised of the three compounds Epi,
Dopa, and Dopamine. The ratios used were based on the amounts previously used for the
pure standards for Epi and Dopa. The experiment was designed such that up to twice the

actual amounts of the standards used would not cause the system to switch to a higher
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attenuation level and thereby cause a signal spike on the system which results in
difficulties in measuring the signal.

Six replicates for each mixture set were injected into NEUBA® in the following
manner: three injections of Epi were run followed by three injections of Dopa, then six
injections of the mix were run. Each mix set was bracketed by the three injections of Epi
and three injections of Dopa, and the entire run was ended with three injections of Epi
and three of Dopa. The calculated amounts injected on column are shown above in Table
2-2.  These are the values used in the determinations of the accuracy of the
deconvolutions.

The experimental data consisted of standard mixtures of Epi and Dopa, with
Dopamine as the internal standard. As the chromatographic peaks did not contain valleys
or other visual indications of more than one analyte present, the resolution between the
two analytes was calculated from their respective standards. The resolution between the

two peaks was measured at 0.13, indicating severe overlap between these peaks.

Preprocessing of the data.

In many cases, the chromatographic traces do not have the same baselines, and
thus baseline corrections are commonly performed. Also, it is common that the injection
starting and ending times are not exactly the same, and thus, for any method that relies on
exact retention times this problem must be addressed. An initial examination of the data
showed that preprocessing of the data was indeed necessary before any deconvolution
could be attempted. First, the baselines were not consistent between the injections or

even between the responses from the electrodes within a single injection. Secondly, the
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samples were injected manually on the system. Thus, each injection started at a slightly
different time. Both of these problems would have to be addressed before any additional
deconvolution could be attempted.

Determining baseline correction. All the data from NEUBA® had offset baselines
which allow visualization of the signals from each of the four electrodes independently
from one another. The actual offsets, or baselines, are variable in nature. Additionally,
baseline drift during the course of the injection was present. Therefore, each injection
required a baseline correction. In many cases, the baseline correction was determined to
be not a single offset number, but rather a linear function with time. Three areas in the
chromatographic run were selected for pivot points in the data: at the beginning of the
chromatographic run, after the solvent front, and at the end of the run. These areas are
short regions where the data has a slope of approximately zero, and are located just
before the solvent front or the analyte peak. The number of points in time that were
selected were sometimes variable but never less than 20 points, corresponding to a two-
second time window.

A baseline was determined in the form of y=mx+b, where y is the signal and x is
the time, underneath the part of the chromatogram under consideration, as discussed
above. The signal associated with the baseline was subtracted from the total signal,
thereby yielding a baseline corrected signal. A plot of the baseline corrected signal and
the time therefore yields a baseline corrected peak that should begin and end at zero.
However, this baseline is a relative baseline, and the valley between the analyte peak and
the internal standard peak in many cases did not reach this relative baseline. All further

data manipulations were done on the baseline corrected data.
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Time Corrections to the Data. There is known variance in the data set. Of

particular interest was in the timing of the injections. As the data was generated using a
manual injector, the actual timing from injection to injection can range by several
seconds, even though every attempt was made to ensure reproducible injection times
while manually injecting the samples. Additional hidden variance was found as well; the
method used to eliminate as much known variance as possible is described below.
Run-to-run retention time shifting has been seen and reported previously as a

severe impediment for separation techniques.”® '’

This problem arises due to
fluctuating instrumental parameters such as flow rate and temperature. Fraga et al. had
devised a complex alignment method using only the data matrices of overlapped peaks of
interest to minimize the pseudorank of the two matrices and thereby perfectly align the
data; however, this works only for replicates of the data. When two closely eluting peaks
vary in amounts, the resultant single peak will shift in time due to the amounts in the two
analytes and not due to fluctuating instrumental conditions or parameters. Aligning only
the data containing the analyte peaks will cause an artificial shift in the data unrelated to
experimental realities. To ensure this does not happen, a wider range of data needs to be
examined, as discussed below.

A representative injection is shown below in Figure 2.2. The first analyte peak is
the analyte peak of interest, either Epi or Dopa. The second peak is Dopamine, which
was added to each sample prior to injection as an internal standard. Since each solution
injected into the system contained 10 M hydrochloric acid, the physical properties of the

injected standard solution are different from those of the mobile phase. Hydrochloric

acid is not retained on the column, and this difference in physical properties causes a
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deflection in signal as the unretained species flow across the electrode surface, as can be
seen in Figure 4-5 below at between 0.6 minutes and 1.0 minutes. The deflection is
reproducible for each of the four channels, giving the same pattern of peaks and valleys
respective to the channels where the data was acquired, although not always as intensely
as previous injections, and can be termed as the solvent front peaks. Upon examination
of all of the injections for each channel, a feature common in the deflection to all the
samples on all four channels was chosen as a point to start the time of the analytical run,
and was denoted as to. It is from this point in time that the retention times of all peaks of
analytical interest will be measured, and is the time whereupon the analysis is considered

to start.

Representative Sample of Injection
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Figure 2-2: Representative Injection
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Determination of time ty. The solvent front pattern is complex, with several
peaks, both positive and negative, as shown in Figure 2.3. This can be understood in
terms of the conductivity change due to the ionic compounds in each sample solution
passing across the electrode surface. Additionally, any interruption in the flow of the
mobile phase will also be detected by the electrochemical cell by a slight deflection, and
can be seen at approximately 0.22 minutes in Figure 2.3 below. This feature also
consistently appeared in each of the injections, but the use of this slight bump in the
baseline to signal the beginning of the chromatographic run did not result in consistent

retention times of the compounds.
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Figure 2-3: Solvent Front Pattern
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An examination of all samples yielded a common solvent front pattern. This
pattern, shown in Figure 2.3, are labelled numerically and are the pertinent regions of
interest as discussed below. The first feature in the solvent front, labeled as 1, was the
one initially chosen for the beginning of the solvent front, since it appeared to be the one
most consistent from injection to injection. The data corresponding to this peak was first
fitted using Excel with a minimization of a sum-of-squares of the residual approach,
fitted using a binomial function. The number of data points used in the fitting became a
concern, since Excel does not interpolate the function between the data points. The data
was reanalyzed and fitted for a second order polynomial and a third order polynomial in
DeltaGraph (DeltaPoint, Inc., Monterey, CA) to get a more exact fit to the equation than
Excel could provide. The curves were then analyzed using the software package Maple
(Waterloo Maple, Inc., Waterloo, Ontario Canada), where the first derivatives were
determined allowing the exact retention times to be found analytically. The data was
then compiled again in Excel, and the median time of occurrence for the peak was
determined for each injection, the difference in the time of the appearance of feature 1
(At) and the median time (t,) for all examples of feature 1 was calculated. Then each
injection was adjusted by addition or subtraction of At from ty, thereby forcing feature 1
to coincide for all the injections. When this was done, it was found that features 2
through 4 in the unretained solvent front also coincided to a very high degree with one
another on all the injections. This entire pattern of peaks (feature 1 through feature 4)
encompasses the solvent front. Other peaks within the solvent front could have
reasonably been chosen as well. In this case, the other peaks were not always as easily

defined as shown here; feature 1 was chosen because of it’s consistency and ease of
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measurement. Prior to the determination of time ty, the raw retention times of the
respective analytes were not reproducibly predictable.

Adjustment of the data for the non-retained species After adjusting the data to the

non-retained species, however, the apparent randomness in the data only somewhat
decreased, thus revealing itself to be due to differences arising not in the actual injections
from the manual injection itself, nor from any property of the analyte.

After the retention times were corrected using the non-retained species, the
following pattern emerged for Epi and Dopa in Figures 2.4 and 2.5, respectively. These

figures show the retention time data prior to any corrections being made, after the solvent
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Figure 2-4: Retention time of Epi as a function of time corrections
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front corrections were made, and finally, after the corrections made aligning the internal
standard. The data points corresponding to the solvent front peak were fitted with both a
second order and a third order polynomial fit in DeltaGraph, and then the resultant
equation was used in Maple to determine the exact time for the unretained peak. As there
is very little difference between the value of the retention times found using either the
second or third order polynomial, the second order polynomial was selected for ease of

use. The raw data shows a distinctive, almost S-shaped, curve as shown in Figure 2.4.
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Figure 2-5: Retention time of Dopa as a function of retention time corrections

This is the data prior to any corrections. Each injection was done in triplicate, and the

scatter in each triplicate set can be attributed to the variance introduced by the manual

89



injection. After the solvent front corrections, marked as SF corr in the figures, the S-
shape begins to flatten out. Clearly, there is another component to this variance not
addressed by the solvent front correction. After the correction for the internal standard,
Dopamine, the S-shape to the curve flattens out and disappears. It is surmised that this
variance is due to long-term pump oscillations.

Figure 2.5 shows the same analysis for Dopa. Again, the retention time for Dopa
becomes much more reproducible after the solvent front corrections and the internal
standard corrections are made. Figure 2-6 shows the analysis for the internal standard,
Dopamine. The curvature in the peak is much pronounced here, simply because

Dopamine is present in every injection. This phenomenon appears to begin at
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Figure 2-6: Retention time of Dopamine as a function of time corrections
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approximately injection 29 and ends at injection 49. It is hypothesized that this behavior
is due to pump oscillations. Since Dopamine is set to the average retention time found
for the compound, the final data set will show Dopamine at a continuous time with no
variance.

The linear pattern was expected for the raw data, either increasing or most likely
decreasing. The internal standard was included to model for the expected decrease in the
signal over the lengthy analysis time. As the time between injections was approximately
6.5 to 7 minutes, the total time for the experiment can be estimated to be between 7 hours
and 9 minutes and 7 hours, 42 minutes. An internal standard was used in this work, and
thus provides a method to adjust the data and thereby compensate for this oscillation.

Dopamine was used in this work as an internal standard as it is similar to the
analytes and behaves similarly. The use of an internal standard allows for normalization
of the peak should the amount injected be abnormally high or low. In this work, the
Dopamine peak was fitted using the EMG function. The average time for the occurrence
of the Dopamine peak in the solvent front corrected data was calculated. The data was
then “zeroed” by subtracting the time the solvent front occurred in the solvent front
corrected data from the data set, and the resultant time was used to create a ratio of the
average Dopamine time to the actual Dopamine time. This ratio was then applied to each

point in the data set, and the solvent front time added back in:
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tR, DA ave tR, SF ave

+ tR, SF ave

tcorr,i = (tl - tR, SF ave)
(tR, pArw T Lsp, diff) — IR, sFave

Equation 2.1

where teori = the corrected time

ti is the time corresponding to the data point

tr, sF ave = the average raw solvent front time for the injections made for the
channel the data was collected on

tr. DA ave = the average raw retention time of Dopamine for the injections made for
the channel the data was collected on

tr. DA raw = the raw retention time of Dopamine

tsr, ¢ir = the difference between the average raw solvent front time for the

injections made on the channel the data was collected on and the raw solvent front time

This procedure had the effect of keeping the solvent front peaks at zero and not
shifting it due to the Dopamine time correction. The results of this work is shown in

Table 2-4.
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Table 2-4: Statistics for Channel 4 data
Time of Time After Time After
Raw Data SF Corr DA Corr

(Minutes) (Minutes) (Minutes)

Solvent Front 0.7414 0.7414 0.7414
Std Dev 0.0223

%RSD 3.0079

Retention Time, Epi 1.6178 1.6192 1.6206
Std Dev 0.0448 0.0219 0.0015
%RSD 2.7676 1.3526 0.0898
Retention Time, Dopa 1.6542 1.6522 1.6500
Std Dev 0.0462 0.0246 0.0018
%RSD 2.7913 1.4908 0.1071
Retention Time, DA 2.6501 2.6501 2.6501
Std Dev 0.0666 0.0462

%RSD 2.5115 1.7417

The average retention times for the compounds, their standard deviations, and

their relative standard deviations are shown above in Table 2-4 for Channel 4, for the raw
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data, the data after the solvent front correction, and the data after the internal standard
correction. As can be seen in this table, the percent RSD for Epi and Dopa both range
about 2.8%, which amounts to an approximately 5.4 to 5.5 second window for Epi and
Dopa, respectively, for these compounds prior to any correction to the data. After the
solvent front correction, the window narrows to 2.6 seconds for Epi and 3.0 seconds for
Dopa; finally, after all the corrections are made, the window narrows to 0.18 seconds for
Epi and 0.22 seconds for Dopa. Given that the data is measured every 0.1 seconds, this
precision was deemed acceptable. The retention times for the analytes Dopa and Epi
prior to the time corrections were the same within a 95% confidence level, (Student’s t-
test); after the time corrections, the retention times for the two analytes are significantly
different. The internal standard, Dopamine, as well as the mixtures were also treated in
the same manner as for Epi and Dopa.

The data for the other channels was then treated in the same manner as for
Channel 4, with the retention times for the non-retained species and the internal standard
being set to the respective times found for Channel 4. Channel 4 data was the first data to
be analyzed, and thus it was used as the template for time corrections in the remaining
data sets.

Dopa and Epi in this study overlap one another to a very significant degree, with a
resolution of less than 0.13. Figure 2-7 below shows the two analytes, Epi and Dopa, at
peak heights that are roughly equivalent to one another at the potential being measured.
As can be seen in this figure, the apparent peak shape is a fused peak, with no discernable

shoulder that could be attributed to either of the two analytes. The slight bulge occurring
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Mixture 3, Channel 1: Combined Peak of Epi and Dopa

Bcsponsc (n)
o e B o R
L LA T - .

=N
a0 =

-l

1.2 1.4 1.6 .8 2 22 24 2.6

Time (Minutes)

Figure 2-7: Overlap of Epi and Dopa

at approximately 2 minutes in this figure is not Epi nor is it Dopa, but appears to be a
contaminant peak. The data presented here is prior to any corrections being made to the
data. A total of 481 data point pairs (time and signal) in each data file were used in the
subsequent deconvolution attempts. The time range of these data points encompassed
both peaks, Epi and Dopa. The same number of data points were used for all data files,
no matter the method attempted for deconvolution of the data. There were a total of 66

data files for each channel, one for each injection.
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Curve Fitting (time-signal domain)

Determination of the chromatographic peak shape. The data for each standard
injection was fitted to the twelve previously chosen chromatographic peak shapes using
Excel (Microsoft, Redmond WA). Excel is chosen due both to its ease of use'*” and the
ease of obtaining the software. The data for each standard was fitted to these equations
using a residual-sum-of-squares (RSS) method in Excel, with Excel’s Solver function.
Solver uses the Levenberg-Marquardt method of iteration for convergence. The
equations were restarted using differing parameters to minimize the possibility of ending
at a local and not a global minimum.

Fitting the data to the model. The 4 or 5 equations exhibiting the lowest RSS

values were then used in deconvoluting the mixture data. The model assumed that the
mixture data could be represented by a function containing the addition of two such
equations to total a “combination curve”; and the RSS minimization again using Excel
enabled the best fit possible. The models were given the average values of the retention
time and the peak width for the respective equations as found by fitting the standards.
Bounding these parameters with upper and lower limits as dictated by the standard
deviations of these parameters aided in the deconvolution of the mixture sets, and yielded
results that were more in accord with the known values. Thus, each equation had two
parameters with fixed ranges, and the remaining ones were allowed to change until the
required level of convergence was achieved.
Application of the model and obtaining the analyte amounts. To obtain the peak

heights, the respective parts of the combination curve were examined to determine the

highest level the individual curves achieved. This was reported as the peak height. To
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obtain peak areas, the summation of the signal for each time point was obtained and
reported as the peak area for each individual curve. The total of the individual peak areas
thus, under this model, is the area of the experimental curve.

To get the respective amounts of the analytes, the combination curve was applied
to the mixture data. The curve fitting was repeated several times using slightly different

parameters to ensure that a global minimum was achieved in the RSS determination.

Using Chemometric Methods.

The chemometric methods used in this work begin with PCA to identify the
number of principal components in the data The regression methods PCR and PLS, using
both NIPALS and SIMPLS, were used to determine the relative amounts of the analytes
in the mixtures. PCR and PLS were then verified, and the results compared with each
other and also with the other methods presented in this work. Since these methods
require the data to be presented in a matrix form, Matlab (The MathWorks Inc., Natick
NY) was used as the base application along with PLS Toolbox 2.1 (Eigenvector
Research, Inc., Manson, WA). PLS Toolbox 2.1 is a module used with MatLab and

contains the routines necessary for the chemometric regression methods used herein.

Cramer’s Rule approach in the signal-potential domain

Fitting the Data to Electrochemical “Peak™ Shape. The equation used was

previously derived, giving current as a function of the potential the electrode:
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Equation 2.2

where the parameters shown above are now those found experimentally during the course
of the analysis. FE. is the experimentally determined half-wave potential, s is overall
experimentally determined number of electrons involved in the reaction, i is the current,
E is the potential of the electrode, and Ck is the concentration of the reduced species. All
are constant but for the current and the potential.

Determining the amounts of the analytes. The data for each standard was fitted to
this equation using a residual-sum-of-squares method in Excel, using Excel’s Solver
function. Solver uses the Levenberg-Marquardt method of iteration for convergence.
These parameters are then used to determine the constants to be used in the final

simultaneous linear equation solutions, derived in Chapter 1 and reproduced here:

it‘”’c;’l = ( OC;)Chl,Cmpdl + (KVOC;)Chl,Cmpﬂ oo (K;) C:;)Chl,CmPc(ﬂ)

itot,C}Q = (KOC;)C,Q Cmpdl +(K0 C;)chz,c,n,,ag ot (KO O)CIQ Cmpdn)
itm,ClB = (KOC )Ch‘i Cmpl +(K0C;)ch3,cmpaz o ( OCZ)CIB,Cmpc{n)
biorcha = (Ké )Ch4Cmpdl +(KOC;)C114,CMP0B o (KOC*)Cm,Cmpa(n)

Equation 1.87

for the reduced species in bulk. In this case, there are only two analytes and thus only

two known sources of current. However, all four electrodes were in use. Once again,
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Solver was employed to determine the best values for Epi and Dopa, using a sum-of-

squares of the residual approach.
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Chapter 3 — Curve Fitting Results and Discussion

Curve fitting is one approach to quantifying severely overlapped peaks. By
modeling the observed chromatographic peak to an equation, the individual peaks that
form the observed peak may be mathematically detected, thus allowing each contributor
peak to be integrated. We evaluated twelve common curve-fitting equations (bi-
Gaussian, exponentially modified Gaussian (EMG), Fraser-Suzuki, log-normal,
Haarhoff-van der Linde, Cauchy-Gaussian, Chesler-Cram, Giddings, GMG, GEMG4,
GEMGS, EMG+GMGQG) and the best performers (EMG, GEMG4, GEMGS5, EMG+GMG
and Cauchy-Gaussian) were used to deconvolute the observed chromatographic peak into
two highly overlapped peaks by curve-fitting using the time vs. signal domain. Both area
under the curve and peak heights were examined. Five mixture sets were made to
encompass a range of peak height ratios, as described in Chapter 2.

An evaluation of the results must evaluate accuracy, precision, and both accuracy
and precision. The results of the model may be accurate, but highly imprecise; the
uncertainty in such a measurement is huge and thus the results the method yielded cannot
be used. The answer may be very precise, but far from accurate, and thus the answer the
method yielded may again be useless. Ideally, the model should produce results that are
both accurate and precise. The results of the analyses were tested using Student’s t-test to
determine if the results agree with the known values of the standards to 95% certainty.

To evaluate the accuracy of the methods, the data is presented as a simple bar

graph of the difference percentages, that is, the difference between the calculated and the
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known value calculated as a percentage of the known value. The sign of the difference is
an indication of whether the calculated value is higher or lower than the known value.
The data is also presented as a simple bar graph of the %RSD values for both Epi and
Dopa for each method. The methods yielding the lowest %RSD values for both analytes
are more precise than the rest. An analysis of variance was also performed, thus giving
an indication of the precision of the curve fitting methods as a whole. A final question
arises as to whether or not some methods used in this work yield the same mean values; if
this is the case, perhaps more than one method can be said to yield both precise and
accurate answers, and thus either method could be used.

The results for each channel are presented below. For each channel, the equations
which yielded the lowest residual sum-of-squares (RSS) was selected as possible
deconvolution models. The value of the RSS could not be fixed, since each channel
yielded varying “low RSS” values. Thus, the number of equations was arbitrarily chosen,
based on an evaluation of the data. The lowest RSS values tended to cluster together, and
the equations corresponding to these values were used as possible models. The results of
the Student t-tests are presented first, followed by the accuracy and precision analysis. A

discussion for the results follows.

Channel 1

The data from Channel 1 was considered the most likely channel for
deconvolution of the mixture sets, as this channel is free of any interferences from
upstream electrodes. Additionally, Mix 3 was designed to give approximately equal peak

heights for the two analytes at the potential this channel was set, and thus was believed be
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the “easiest” of the mixture sets and channels to deconvolute. The potential for this
electrode was set for 600 mV, yielding data less susceptible to interferences from other

higher oxidizing species.

Results
As shown in Figure 3-1, only 4 equations out of the 12 investigated met the

lowest RSS wvalue criteria as discussed above for both Epi and Dopa: the Cauchy-

Channel 1: Sum of Squares of Residuals for All Equations
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Figure 3-1: SSR results for Channel 1

Key: Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-
Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian;
GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMGS5=5 parameter Half
Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-
Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified

Gaussian
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Gaussian equation, the EMG equation, the EMG+GMG equation, and the GEMGS5

equation.

Mix 1
None of these approaches produced the appropriate results for either analyte using

the Student’s t-test, 95% certainty using the time vs. signal domain. The results of the

Percent Differences for Channel 1, Mix 1
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Figure 3-2: Percent Difference for Channel 1, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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percent differences in the returned values and the known values for Mix 1, Channel 1 are
shown above in Figure 3-2. The method that consistently yields the lowest values would
be the method deemed most accurate. The GEMG4 (both G and H) equation was not used
in the formation of Channel 1 information, as the sum-of-squares found for the equation
was outside the range considered acceptable for the residual sum of squares (RSS).
Therefore, the table does not include these two methods, although the methods were
performed for the remaining channels. According to the analysis, the EMG+GMG peak
height method yielded the best results of all those presented, followed by the
EMG+GMG Area. The percent differences found for Dopa for these methods was quite
large, however, at over 30%.

The percent relative standard deviations for the results for all the methods for
Channel 1, Mix 1, are shown below in Figure 3-3. Once again, the GEMG4 equation
(shown as G and H) was not used. The methods producing the smallest %RSD for both
Epi and Dopa are: Cauchy-Gaussian Area (A), Cauchy-Gaussian Peak Height (B), EMG
Area (C) and EMG Peak Height (D). The lowest %RSD for both analytes was found
using the Cauchy-Gaussian Peak Height (B). However, none of the methods produced
acceptable results at the 95% confidence level. While these methods produce good

precision, they do not produce good accuracy.
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%RSD for Channel 1, Mix 1
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Figure 3-3: %RSD for Channel 1, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 2

For both Epi and Dopa, the following methods yielded accurate results with the
required certainty of 95% using Student’s t-test: the GEMGS5 Area, the EMG Peak
Height, and the GEMGS5 Peak Height. The next question is which of these methods are
the most accurate and/or precise.

The percent difference results for the analytes for Channel 1, Mix 2 are shown
below in Figure 3-4. Once again, the GEMG4 equation was not used in the formation of

Channel 1 information, as the sum-of-squares found for the equation was outside the

105



range considered acceptable, and thus should be ignored (G and H in Figure 3-4 above).
t-Tests indicate that for both Epi and Dopa, the GEMGS5 Area, the EMG Peak Height, and
the GEMGS5 Peak Height methods are acceptable to 95% certainty. Of these the EMG
Peak Height (D) and GEMGS5 Peak Height (J) methods are more accurate than the
GEMGS Area (I). In fact, the EMG Area (C) is closer to the known values than is the

GEMGS Area.

Percent Differences for Channel 1, Mix 2
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Figure 3-4: Percent Difference for Channel 1, Mix 2
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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%RSD for Channel 1, Mix 2
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Figure 3-5: %RSD for Channel 1, Mix 2

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The results of the %RSD study are shown above in Figure 3-5. The most precise
methods shown here are the EMG+GMG Area method, (E), and the EMG+GMG Peak
Height method, (F); neither of these two methods are accurate or precise as described by
the Student’s t-test results, which indicate the GEMGS5 Area, the EMG Peak Height, and
the GEMGS5 Peak Height methods are acceptable to 95% certainty. The GEMGS5
methods are the least precise of the methods examined for this mixture set with %RSD
values for Dopa at about 78% RSD and high values for Epi. The EMG Peak Height

method was much lower, with an approximately 28% RSD value for Dopa, and nearly
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10% RSD for Epi. Thus, for the methods found acceptable by Student’s t-test, the EMG

Peak Height is the most accurate and precise.

Mix 3

The results of the Student’s t-test for Mix 3 Channel 1 for both Epi and Dopa
revealed that only the EMG Peak Height method yields the correct answer to 95%
confidence. The percent difference analyses for Dopa and Epi are shown below in Figure

3-6 below, which indicates the EMG Peak Height method (D) has one of the lowest

Percent Differences for Dopa, Channel 1, Mix 3
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Figure 3-6: Percent Difference for Channel 1, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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percent differences for both analytes of the methods investigated. Once again, the
GEMG4 equation was not used for Channel 1 because of the higher sum-of-squares
found for this equation.

The %RSD results for this mixture set are shown below in Figure 3-7. The lowest
%RSD values were found for the methods other than the EMG Peak Height method (D):
the Cauchy-Gaussian Peak Height (B) and the Cauchy-Gaussian Area (A) are both
considerably lower than the EMG Peak Height, which returned values for Dopa and Epi

at about 21% and 15%, respectively.
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Figure 3-7: %RSD for Channel 1, Mix 3

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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Mix 4

With both analytes, the Cauchy-Gaussian Area and Cauchy-Gaussian Peak Height
both yields the correct answer to with a confidence of 95%. As seen in Figure 3-8, the
Cauchy-Gaussian Peak Height method, (B), gives results closer to the known values than
does the Cauchy-Gaussian Area method, (A). Once again, the GEMG4 methods were not

used in this analysis.

Percent Differences for Channel 1, Mix 4
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Figure 3-8: Percent Difference for Channel 1, Mix 4
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

110



The %RSD results are shown below in Figure 3-9. As the GEMG4 equation was
not used for Channel 1, these results indicate that the GEMGS Area (I) and the GEMGS5
Peak Height (J) methods yield the best %RSD values. The two methods found to be
acceptable, according to the Student’s t-test, are the two methods that yield the worst
%RSD values. Thus, the use of either of these two methods to determine the values of
Epi and Dopa in Mix 4 would yield values that, while accurate, are not precise. Thus, for

Mix 4, no method can be recommended for deconvolution of the data.

%RSD for Channel 1, Mix 4
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Figure 3-9: %RSD for Channel 1, Mix 4
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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Mix 5
For this mixture set, none of the method used give acceptable results to 95%
confidence according to the Student’s t-test. Figure 3-10 shows that the only method that

can be considered accurate is the GEMGS5 Area method.

Percent Differences for Channel 1, Mix 5
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Figure 3-10: Percent Difference for Channel 1, Mix 5
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Figure 3-11 below shows the %RSD values for Dopa and Epi. These values are
not high for Dopa for any of the methods used; however, the values found for Epi range

from a reasonable 9% RSD to an unreasonable 21% RSD. The one method that appeared
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to be accurate from the percent difference results was shown to be imprecise for the

determination of Epi, at some 18% RSD.

%RSD for Channel 1, Mix 5
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Figure 3-11: %RSD for Dopa, Channel 1, Mix 5

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Discussion

No single method yielded the proper values at the 95% confidence levels for all
five mixture sets. Mix 1 contains the largest amount of Epi present at approximately 90%
of the peak height, and the smallest amount of Dopa at approximately 10% of the peak

height. For Mix 5, these numbers are reversed. The mixtures only examined ratios of
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10:90, 30:70, 50:50, 70:30 and 90:10 Dopa:Epi of the peak heights for two analytes
present in a single merged peak. For the Channel 1 data, no method presented herein
using the time-response domain was able to deconvolute the merged peak throughout the
range of amounts used in this study. This is significant, as this domain is the one most
commonly and traditionally utilized.

Mixes 1 and 5 could not be accurately deconvoluted by any method investigated
herein. The remaining mixtures (Mix 2, 3, and 4) were unable to be deconvoluted as a
group by any of the methods. The argument that the mixtures with the lowest proportion
of the “contaminating” peak could not be deconvoluted because the amounts were too
low cannot be used here, as the remaining mixture sets would have been deconvoluted
with a consistent method. Mix 2 was able to be deconvoluted by the GEMGS5 Area, the
EMG Peak Height, and the GEMGS5 Peak Height. Of these three, only the EMG Peak
Height method could be accurate, but with unacceptable precision (28% RSD) for Dopa.
For Mix 3, only the EMG Peak Height method was able to deconvolute the mixture set,
albeit with low precision (21% for Dopa and 15% for Epi). Mix 3 was expected to be the
easiest to deconvolute, as the individual component peak are approximately equal in
height. For Mix 3, the Cauchy-Gaussian methods were within 95% confidence per the
Student’s t-test. Thus, none of the methods presented for Channel 1 could be used for the
range of molar responses seen in this work.

Additionally, the data obtained from the first channel is free from interferences
arising from the other channels. If the sample is to be analyzed via LCEC, the use of a

single detector in the electrochemical cell is a reasonable assumption. As this work has
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shown, the use of a single detector set at a low potential of 600mV did not yield data that

could be deconvoluted using curve fitting methods.

Channel 2

Channel 2 was set to oxidize the analytes at a voltage of 700mV. As it physically
located behind the electrode used for Channel 1, some differences in the peak shape were
expected to occur. Some of the analyte had already been oxidized; however, this amount
is usually considered minimal given this method of detection. If any cross-talk were to
take place between electrodes 1 and 2, it would be expected to be seen here at the second
electrode due to the flow of the mobile phase across the electrode surfaces. The longer
path that the analyte plug had to travel within the electrode cell would be expected to
contribute to some slight broadening of the peak shape. Additionally, the larger voltage
applied to the electrode ensured that the peak height ratios would change as well,

although the amount presented to the electrode would be considered to be the same.

Results

The following five out of the original 12 equations yielded the lowest RSS values:
the GMG+EMG, the EMG, the GEMGS, the Cauchy-Gaussian, and the GEMG4

equations.
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Channel 2: Sum of Squares of Residuals for All Equations
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Figure 3-12: SSR results for Channel 2

Key: Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-
Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian;
GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMGS5=5 parameter Half
Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-
Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified

Gaussian

Mix 1
An evaluation of the results for Mix 1 found none of the methodologies studied
herein are able to achieve the goals set forth, using the Student’s t-test at 95% confidence.
The percent differences for Dopa and Epi are shown in Figure 3-13. The smallest
percent differences for for both Epi and Dopa appear to be the GEMGS5 Area method (1)
followed by the GEMG4 Area method (G). While there appear to be small values due to

the scale of the y-axis, the percent differences for the GEMGS5 Area method are above
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10% to 15%. Therefore, none of the methods examined here can be considered

acceptable.

Percent Differences for Channel 2, Mix 1
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Figure 3-13: Percent Difference for Channel 2, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Figure 3-14 examined the question of precision in this mixture set. The GEMG4
Peak Height method (H), the GEMG4 Area method (G), and the Cauchy-Gaussian Peak
Height method (B) all are precise, returning values less than approximately 5% for both

Dopa and Epi.
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%RSD for Channel 2, Mix 1
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Figure 3-14: %RSD for Channel 2, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 2

When both analytes are considered for this mixture set, none of the curve fitting
methodologies yielded the appropriate values within 95% confidence using the Student’s
t-test. The accuracy and precision of these methods is discussed below.

The percent difference results for this mixture set are shown below in Figure 3-15.
The most accurate method for both Dopa and Epi is the EMG Area (C) method, where
Epi is under-reported by nearly 10%, followed by the EMG+GMG Area (E) method,

where Dopa is under-reported, again by nearly 10%.
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Percent Differences for Channel 2, Mix 2
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Figure 3-15: Percent Difference Channel 2, Mix 2
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Examination of Figure 3-16 shows the precision of the methods for this mixture
set. The most precise methods for both Dopa and Epi appear to be the GEMG4 Peak
Area (K), the Cauchy-Gaussian Area (A), the EMG+GMG Area (E), the GEMGS5 Area

(I) method. These methods consistently produced %RSD values near 5%.
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Figure 3-16: %RSD for Channel 2, Mix 2

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:

EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 3

When the two analytes are considered together, only the EMG Peak Height and

EMG+GMG Peak Height yields the required values at 95% confidence for the levels of

analytes present in this mixture set.

The accuracy of the methods for this mixture set can be determined from Figure

3-17. The methods yielding the lowest percent differences for both Dopa and Epi are the

EMG Peak Height method (D), the EMG+GMG Area method (E), and the EMG+GMG

Peak Height method (F). These all yielded less than a 10% difference from the known
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values and the calculated values, with the EMG+GMG Area under-reporting both

analytes.

Percent Differences for Dopa, Channel 2, Mix 3
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Figure 3-17: Percent Difference for Dopa, Channel 2, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

In Figure 3-18, the methods that yield the best precision are the Cauchy-Gaussian
Area method (A), the Cauchy-Gaussian Peak Height method (B), the GEMG4 Peak
Height method (H), and the GEMG4 Area method (G), which produced values for both

analytes that are under 10% RSD. The Cauchy-Gaussian Peak Height method produced
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Figure 3-18: %RSD for Dopa, Channel 2, Mix 3

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

values for both analytes that are under 5%, and hence can be said to be the most precise
of the curve fitting methods attempted. The %RSD reported by the EMG Peak Height
(C) method is twice that found for the Cauchy-Gaussian Area, with about 12% for Epi
and 5% for Dopa; the EMG+GMG Peak Height method is higher still. Of the two

methods that passed the Student’s t-test, the EMG Peak Height is the more precise.
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Mix 4

None of the curve-fitting methodologies are able to yield the correct answer to the
required levels of accuracy and precision as indicated by the Student’s t-test at 95%
confidence. The results are discussed below.

The accuracy of the methods attempted in this work is examined below in Figure
3-19. For both Dopa and Epi, the EMG+GMG Area method (E) yields the smallest

percent differences between the calculated and known values for the analytes. This

Percent Differences for Channel 2, Mix 4
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Figure 3-19: Percent Difference for Dopa, Channel 2, Mix 4
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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method under-reported both Dopa and Epi, with Epi unacceptably underestimated by
25%. Thus, these methods cannot be considered to be very accurate for this mixture set.
The results found for Mix 4, Channel 2, are shown in Figure 3-20. For both Dopa
and Epi the the GEMG4 Peak Height (H) method gives the best estimate of the values in
the mixture set. This was followed closely by the GEMG4 Area method (G). Both these

methods gave %RSD values less than 5% for Dopa and less than 8% for Epi.
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Figure 3-20: %RSD for Dopa, Channel 2, Mix 4
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Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 5
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No curve-fitting methodology was able to deconvolute to the peaks and yield the
correct values to 95% confidence, using the Student’s t-test. Even with this result, an
examination of the percent differences and %RSD values was performed.

The most accurate method can be discerned using Figure 3-21, where the Cauchy-
Gaussian Area method (A) is shown. This method yields nearly a 30-35% difference for

Epi. This value is not completely unexpected, as Epi is the minor component in this
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Figure 3-21: Percent Difference for Dopa, Channel 2, Mix 5
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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mixture set.

method (H), which yielded nearly 40% difference for Epi.

The next most accurate method appears to be the GEMG4 Peak Height

Figure 3-22 show the %RSD values for the two analytes. The methods indicated

to be the most precise are the Cauchy-Gaussian Peak Height method (B) and the GEMG4

Peak Height metho (H); these are the only ones to yield results for both Epi and Dopa

under 10% RSD.
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Figure 3-22: %RSD for Dopa, Channel 2, Mix 5
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Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:

EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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Discussion

Overall, none of the curve fitting methods employed is able to deconvolute the
entire range of molar response values attempted in this work for Mix 2. In fact, the only
mixture set that was successfully deconvoluted was Mix 3, utilizing the EMG Peak
Height and the EMG+GMG Peak Height methods. Although the EMG Peak Height
method was found to be as accurate as the EMG+GMG Peak Height method, it was more
precise, and thus is recommended for possible deconvolution of such a mixture. This
recommendation, however, must take into account the rather high %RSD values found

for Epi (12%).

Channel 3

Channel 3 was set to oxidize the analytes at a voltage of 800mV. At this
potential, more compounds will oxidize than at the voltages used for Channels 1 and 2.
Thus, more interferences to be expected on this channel than for the previous ones.

The electrode used for Channel 3 is physically located after those used for
Channels 1 and 2, some additional differences in the peak shape were expected to occur.
Some of the analyte had already been oxidized, but this amount is usually considered
minimal given this method of detection. If any cross-talk were to take place between
these three electrodes, it would be expected to be seen at the second or even the third
electrode due to the flow of the mobile phase across the electrode surfaces. The
lengthened flow path that the analyte plug must travel within the electrode cell to the
third electrode would be expected contribute to some additional slight broadening of the

peak shape. Additionally, the larger voltage applied to the electrode ensured that the
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peak height ratios would change as well, although the amount of analyte exposed to the

electrode is considered unchanged.

Results
The equations yielding the lowest SSR values for Channel 3 are the GEMGS, the
GMG+EMG, the EMG, the GEMG4, and the Cauchy-Gaussaian, as shown below in

Figure 3-23.

Channel 3: Sum of Squares of Residuals for All Equations
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Figure 3-23: SSR results for Channel 3

Key: Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-
Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian;
GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMGS5=5 parameter Half
Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-
Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified

Gaussian
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Mix 1
For Mix 1, Channel 3, only the GEMGS5 Peak Height methodology appears to
yield the correct values per the Student’s t-test to 95% confidence.

Figure 3-24 shows the most accurate methods of those used in this study to be the

EMG+GMG Area method (E), which yields a 20-25% overestimated difference for
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Figure 3-24: Percent Difference for Dopa, Channel 3, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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Dopa, and underestimates Epi by some 10%. The next most accurate method was the
GEMG4 Area method (G), which underestimates both analytes to some 28% for Dopa
and about 8% for Epi. The GEMGS5 Peak Height method, which passes the Student’s t-
test, gives extremely high percent differences for Dopa (over 150%), and thus does not

have acceptable accuracy.
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Figure 3-25: %RSD for Dopa, Channel 3, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The results of the percent difference for Epi shows a negative bias for all the

methods; if these differences are due to random error, the bias would be random in nature
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and would be expected to be randomly positive and negative. The results here are biased
by an as yet undetermined process.

When Figure 3-25 is examined, it becomes apparent why the GEMGS Peak
Height method passed Student’s t-test while the other methods did not. The %RSD for
this method is over 80% for Dopa and is approximately 53% for Epi. With the exception
of the GEMGS Area (L), all the other methods yield less than 15% RSD values for both
Epi and Dopa. Thus, these methods can be considered to be precise, but are not accurate,
and thus fail the Student’s t-test as the 95% confidence level does not encompass the true
values. The large percent difference for the GEMG4 Peak Height coupled with the large
%RSD values enables the true value for the analytes to be encompassed within this large
range of uncertainty, and thus the GEMG4 Peak Height method, while it passed the

Student’s t-test, cannot be considered to be either accurate or precise.

Mix 2

Only the GEMG4 Area and the GEMG4 Peak Height methodologies are able to
deconvolute the peak as indicated by the Student’s t-test at 95% confidence. As was seen
for Mix 1 above, the fact that the method passed the Student’s t-test does not ensure that
it is either accurate or precise.

Figure 3-26 below addresses the question of accuracy. The most accurate
methods are the EMG+GMG Area method (E) and the GEMG4 Peak Height method (H),
which yields results below 10% for both analytes. The two methods that passed the
Student’s t-test are the GEMG4 Area (G) and the GEMG4 Peak Height (H). Of these

two, the GEMG4 Peak Height is clearly more accurate than the GEMG4 Area.
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Percent Differences for Channel 3, Mix 2
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Figure 3-26: Percent Difference for Dopa, Channel 3, Mix 2
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Precision is addressed in Figure 3-27 below. The methods with the lowest %RSD
values for both analytes are the EMG+GMG Peak Height (F) which has less than 5%
RSD, then the EMG+GMG Area (E), the EMG Peak Height (D), the EMG Area (C), and
finally the Cauchy-Gaussian Peak Height (B), all of which were below 10% RSD for
both analytes. The two methods that passed the Student’s t-test were the GEMG4 Area
(G) and the GEMG4 Peak Height (H), both of which are clearly not very precise. Thus,

the use of the GEMG4 Peak Height method, which was more accurate than the GEMG4
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Area, cannot be considered acceptably precise as it produces %RSD values of

approximately 41% for Dopa and about a 21% for Epi, the major component in the mix.
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Figure 3-27: %RSD for Dopa, Channel 3, Mix 2

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 3

For both analytes, only the EMG Peak Height and the GEMGS5 Area
methodologies are able to deconvolute the peak, as shown by Student’s t-test at 95%
confidence. As shown in Figure 3-28, the EMG Peak Height (D) method and the

GEMGS Area method (I) yield acceptable results, but are not the most accurate of the
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methods investigated here. The EMG Area (C), the EMG+GMG Area (E), and
EMG+GMG Peak Height (F) methods all yields percent differences for both analytes that

are under 5%.
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Figure 3-28: Percent Difference for Channel 3, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The precision of the methods for Channel 3, Mix 3, are shown in Figure 3-29
below. Both the EMG Peak Height (D) and the GEMGS5 Area (I) methodologies, which
the Student’s t-test and yield acceptably accurate results; however, when the precision of

the results is examined, it is clear that the EMG Peak Height method is superior to the
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GEMGS Area. The EMG Peak Height method yielded %RSD values under 10% for both
analytes, while the GEMGS5 Area method yielded %RSD values of just over 10% for
Dopa and about 19% for Epi. The EMG Area (C), the EMG+GMG Area (E), and

EMG+GMG Peak Height (F) methods also are accurate.
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Figure 3-29: %RSD for Channel 3, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

135



Mix 4

The Student’s t-test showed that the GEMGS5 Area, GEMGS5 Peak Height, and the
EMG+GMG Peak Height methodologies all yield results that are within the 95%
confidence level. The accuracies of these methods are shown in Figure 3-30. The lowest
percent differences for both Dopa and Epi are the EMG+GMG Peak Height method (F)
and the EMG Area method (C), both of which yielded values less than 5% different from

the known values for both analytes. The GEMGS5 Area method yields results that are
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Figure 3-30: Percent Difference for Channel 3, Mix 4
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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negatively biased, and the GEMGS5 Peak height method is positively biased; both these
methods yielded results under 10%.

The %RSD values for Mix 4 are shown in Figure 3-31. The GEMGS Area (1),
GEMGS Peak Height (J), and the EMG+GMG Peak Height (F) all yield results that are
within the 95% confidence level for the Student’s t-test. No significant difference can be
found between the GEMGS Area and the GEMGS5 Peak Height methods; both yielded

large %RSD values (nearly 60%) for Epi. The EMG+GMG Peak Height method yielded
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Figure 3-31: %RSD for Channel 3, Mix 4

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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some 5% RSD for Dopa and some 12% for Epi, and thus was much more accurate than
the other two. Thus, the EMG+GMG Peak Height is both accurate and precise when

used for this mixture set.

Mix 5
For both analytes, none of the curve-fittting methodologies are able to produce the
correct results at 95% confidence, using the Student’s t-test. However, the question of

accuracy and precision in the methods was still investigated.

Percent Differences for Channel 3, Mix 5

25

20

10

5 = |

° a4 Eca m | b
i M Epi

-20

i:]
i:]

-25

-30

Figure 3-32: Percent Difference for Channel 3, Mix 5
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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The percent difference figure, Figure 3-32 above, shows that the most accurate
methods are the EMG Area (C), the EMG+GMG Area (E), and the GEMGS5 Peak Height
(J). These methods return percent difference values for both analytes under 5%, and
hence are considered to be accurate.

The precision of the methods is shown in Figure 3-33 below. The methods
yielding the lowest %RSD for the mixture is the GEMG4 Area (G), and then the GEMG4

Peak height (H). The methods considered accurate in the analysis above are the EMG
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Figure 3-33: %RSD for Channel 3, Mix 5

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height
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Area (C), the EMG+GMG Area (E), and the GEMGS5 Peak Height (J), all of which
returned %RSD values for Epi that are above 10%. The EMG Area was particularly
imprecise for this analyte, returning a %RSD value of nearly 60%. This is not very

surprising, considering that Epi is the minor component in the peak.

Discussion

For Channel 3, no single method was able to deconvolute the entire range of
molar responses attempted in this work. For Mix 1, the GEMGS5 Peak Height passes the
Student’s t-test, but has very poor accuracy and precision. For Mix 2, the GEMG4 Area
and GEMG4 Peak Heights pass the Student’s t-test. Of these two, the GEMG4 Peak
Height has good accuracy, but poor precision. For Mix 3, two methods passes the t-test:
the EMG Peak Height and the GEMGS5 Area. The EMG Peak Height method is as
accurate as the GEMGS5 Area, but has better precision. For Mix 4, the EMG+GMG Peak
Height method has good accuracy and good precision, and the GEMGS5 Area and the
GEMGS Peak Height methods have good accuracy but very poor precision. Finally, no
method was able to deconvolute the last mixture set, Mix 5, to 95% confidence by the
Student’s t-test. As no single method was able to consistently deconvolute the range of
molar responses, no single curve-fit approach can be recommended for the data on

Channel 3.
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Channel 4

Channel 4 was set to oxidize the analytes at a voltage of 900mV, and is the last
electrode in the series. Again, some differences in the peak shape are expected to occur,
as some of the analyte has already been oxidized; however, this amount is usually
considered minimal given this method of detection. If any cross-talk were to take place
between the other electrodes, it would be expected to be seen here as well due to the flow
of the mobile phase across the electrode surfaces. The longer path the analyte plug must
travel within the electrode cell contributed to some slight broadening of the peak shape.
Additionally, the larger voltage applied to the electrode ensured that the peak height
ratios would change as well, although the amount presented to the electrode would be
considered to be the same. It is on this channel that the maximum amount of interference

from other compounds would be expected.

Results
The equations yielding the lowest SSR values are the GEMS, the GMG+EMG,
the EMG, the GEMG4, and the Cauchy-Gaussian equations, as shown below in Figure 3-

34, with the EMG and the GMG+EMG equations fitting particularly well.
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Channel 4: Sum of Squares of Residuals for All Equations
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Figure 3-34: SSR results for Channel 4

Key: Gid=Giddings; CC=Chesler-Cram; FS=Frazier-Suzuki; LN=Log Normal; BG=Bi-
Gaussian, HVL=Haarhoff-Van der Linde; GMG=Half Gaussian-Modified Gaussian;
GEMG4=4 parameter Half Gaussian-Modified Gaussian; GEMGS5=5 parameter Half
Gaussian-Modified Gaussian; EMG=Exponentially Modified Gaussian; CG=Cauchy-
Gaussian; GMG+EMG=Half Gaussian Modified Gaussian + Exponentially Modified

Gaussian

Mix 1

For Mix 1, Channel 4, unfortunately, none of the methods used in this study are
able to return the correct value within 95% confidence for either Epi or Dopa. To answer
the question of accuracy, Figure 3-35 above shows the percent differences for Dopa and
Epi. The results for Epi showed a definite negative bias in the results, indicating that the

errors associated with the data are not random. None of these methods can be considered
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as accurate; the method yielding the lowest percent difference for Dopa produced a value

of about 20%, and the lowest for Epi about 5%. The high percent differences for Dopa is

not surprising, as Dopa is a minor component in the mixture peak.
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Figure 3-35: Percent Difference for Channel 4, Mix 1

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:

EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The precision found for the methods is shown below in Figure 3-36 below. All of

the methods returned a %RSD value of less than 12% for Dopa, and values of less than

9% for Epi. Overall, the precision found for the methods for Mix 1, Channel 4 are good,
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with the EMG Peak Height (D) considered to be the most precise of the methods for this

mixture set.
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Figure 3-36: %RSD for Channel 4, Mix 1
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 2

No one method was able to deconvolute the correct values for both the analytes as
shown by the Student’s t-test analysis at 95% confidence. However, the question will
arise whether these methods failed from imprecision in accuracy, in precision, or in both.

Figure 3-37 below shows the percent differences found for Dopa and Epi. The GEMG4
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Peak Height method (H) produces the best overall percent differences for the mixture set,
at about 6% for Epi and some 8-9% for Dopa. The next most accurate method is found to
be the EMG+GMG Peak Height method, which yields low values for Epi, and high

values for Dopa.
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Figure 3-37: Percent Difference for Channel 4, Mix 2
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The precision of the methods can be seen in Figure 3-38. The methods yielding
the lowest %RSD values for the mixture peak are: the EMG Peak Height (D), the

GEMG4 Area (G), the GEMG4 Peak Height (H), and the Cauchy-Gaussian Peak Height
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(B). The GEMG4 Peak Height method (H) returns the best overall percent differences
for the mixture set, followed by the EMG+GMG Peak Height method. Of these two, the
GEMG4 Peak Height method appears to be more accurate and more precise; however, it

still does not meet the Student’s t-test criteria.
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Figure 3-38: %RSD for Channel 4, Mix 2
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Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 3
The EMG Peak Height method is the only method that is able to successfully

deconvolute the amounts of Epi and Dopa to 95% certainty, as indicated by the Student’s
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t-test. The percent differences for all the methods for Dopa and Epi in Mix 3 are shown
below in Figure 3-39. The EMG Peak Height method is clearly more accurate than any

of the other methods, yielding percent differences less than 4% for each analyte.
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Figure 3-39: Percent Difference for Channel 4, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

The %RSD values returned by the methods are presented in Figure 3-40. The
methods with the lowest overall %RSD values for the two analytes is the Cauchy-
Gaussian Area (A), followed by the Cauchy-Gaussian Peak Height (B), the GEMG4 Peak

Height (H), the GEMG4 Area (G), and then the EMG Peak Height (D). The EMG Peak
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Height method is not the most precise of the methods, and thus can be considered
accurate and relatively imprecise, as the %RSD values it returns are an acceptable value

of about 3.5% for Dopa and an unacceptable value of 10% for Epi.
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Figure 3-40: %RSD for Channel 4, Mix 3
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Mix 4

For this mixture set, no curve-fitting method was able to deconvolute the peak and

give the correct values for Epi and Dopa to 95% confidence as per the Student’s t-test.
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To examine accuracy and precision, the percent differences for Mix 4 are shown
below in Figure 3-41. In this mixture set, the most accurate methods are the EMG+GMG
Peak Height (F), the EMG Peak Height (D), and the Cauchy-Gaussian Peak Height (B)

all of which return values less than 5% for both analytes.
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Figure 3-41: Percent Difference for Channel 4, Mix 4
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

An examination of Figure 3-42 shows that the precision of the GEMG4 Area
method (G) is best for Epi (approximately 11%) but, however, it is the worst performer

for Dopa (approximately 5.5%). A fair compromise for precision for both analytes would

149



be the EMG Area method (C) or the EMG Peak Height method (D), where the %RSD for

Epi is about 12 to 13% and the %RSD for Dopa is about 3%.

%RSD for Channel 4, Mix 4
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Figure 3-42: %RSD for Channel 4, Mix 4

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Overall, the EMG Area (C), the EMG Peak Height (D), the EMG+GMG Area,
(E), and the EMG+GMG Peak Height (F) methods are fairly accurate and precise, but not
so accurate or so precise that they are able to satisfy the Student’s t-test at 95%
confidence. Therefore, none of the methods attempted for this mixture set can be

recommended.
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Mix 5
For Mix 5, Channel 4, the results of the Student’s t-test indicated that none of the
methods used in this study are able to deconvolute the peak into its component analytes.

The question of accuracy and precision still remains.

Percent Differences for Channel 4, Mix 5
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Figure 3-43: Percent Difference for Dopa, Channel 4, Mix 5
Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

As can be seen in Figure 3-43 above, for this mixture containing both Epi and

Dopa, the EMG Area (C), the EMG Peak Height (D) , the EMG+GMG Area (E), the
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EMG+GMG Peak Height (F), the GEMGS Area (I), and GEMGS5 Peak Height (J) would
be all good choices based on accuracy. All these methods yield percent differences that

are within £+ 5%.

%RSD for Channel 4, Mix 5
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Figure 3-44: %RSD for Channel 4, Mix 5

Key: A: Cauchy-Gaussian Area; B: Cauchy-Gaussian Peak Height; C: EMG Area; D:
EMG Peak Height; E: EMG+GMG Area; F: EMG+GMG Peak Height; G: GEMG4

Area; H: GEMG4 Peak Height; I: GEMGS5 Area; J: GEMGS5 Peak Height

Figure 3-44 above shows the %RSD values for both Dopa and Epi. For Dopa, all
of these are reasonable, with the highest %RSD being returned using the Cauchy-
Gaussian Area method (A). The rest of the methods return values of less than 5% RSD.

High %RSD values are shown for Epi, with the lowest being returned from the GEMG4
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Area (J) at about 8% and the GEMG4 Peak Height (K) methods at almost 10%. The
worst performers are the GEMGS Area (L) and the GEMGS Peak Height (M) methods at
about 58% and 45%, respectively. Neither of the GEMGS5 methods are able to acceptably
deconvolute the peak. The most precise method is the GEMG4 Area, followed by the

GEMG4 Peak Height method.

Discussion

For Channel 4, no single method was able to deconvolute the entire range of
molar response ratios attempted. In fact, the only mixture set that was able to be
deconvoluted was Mix 3. The EMG Peak Height method deconvoluted this mixture set
with excellent accuracy and good precision. However, one successful instance of
deconvolution out of five attempts does not make an endorsement of a method, and so no

method can be recommended.

Curve-Fitting Methods: Summary and Conclusions

The data is summarized in Table 3-1. This table summarizes the charts shown
earlier in the chapter, giving the data in a numerical fashion rather than visually. The
methods that passed the Student’s t-test are bolded. As can be seen in this table, for all
the mixture sets on all four channels, no single curve fitting method was able to properly

deconvolute the peaks.

153



Summary of the data

Table 3-1
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The use of curve fitting methods fail to properly deconvolute the data as presented
for all four data channels for the range of molar response ratios studied. When the curve
fitting methods were able to properly deconvolute the data for an individual mixture set,
it was rare that it was able to do so with both good accuracy and good precision. Within
the channel itself, several curve fit equations were found to be useful in properly
deconvoluting the data, however the equations were not consistent from one mix set to
another, with one equation passing the t-test for one mixture, but failing for the next
mixture.

An argument could be made that the mixtures on the far extremes, i.e., Mixes 1
and 5, both of which had low amounts of the minor species, are more difficult to properly
deconvolute and thus could be expected to fail. If this was the case, then consistency in
the remaining mixture sets would be expected. This was not found.

The methods failed because of the nature of the surface to be fitted. The function
to be fitted to deconvolute the data is in actuality two identical functions added together,
and then the parameters are allowed to change until a minimum in the sum-of-squares of
the residual (SSR) is found. The minimum in the SSR is shallow, and hence a large
number of possible combinations of the parameters for the equations will satisfy the SSR
requirements, even with constricting the values to something reasonably or physically
meaningful. Some of these combination of parameters, when put back into the equations,
yield answers that are not in accord with what is actually in the mixture set. The found
parameters yielded equations that when added together, resulted in a very low SSR value.

Of course, one does not know if it is correct without knowing the actual amounts!
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The use of curve fitting methods may work well when the peaks are separated by
a distance sufficient to generate a valley between them, but once the peaks overlap to the
extent that valley disappears there is nothing for the equation to fit but the peak as a
whole. As the two peaks merge into one, the single merged peak takes on characteristics
of a peak containing a single analyte, and the curve fitting methods cannot distinguish

between the merged double peak and a single peak.
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Chapter 4 — 3-Dimensional Chemometric Methods: Results and Discussion

The difficulties encountered using the data from the individual channel data in the
previous chapter is not unexpected. The objective of performing the analysis with
multiple electrochemical channels is to utilize the information provided by the additional
channels. The data was thus examined using the common chemometric methods PCR,
PLS, and SIMPLS.

One may initially consider all the data collected in the analysis to contain
information concerning five separate, pertinent items in addition to various levels of
noise in each. The five practical or “real” dimensions of initial concern include (1) time
measured relative to an initial injection event for each individual injected
chromatographic sample (the injected sample), (2) the applied electrochemical potential,
which is different for each of the four electrodes spaced sequentially at the output of the
chromatographic column, (3) the signal measured as the instantaneous current at each of
the four electrodes at the specified time intervals following injection, (4) the
concentration of Epi in the injected sample, and (5) the concentration of Dopa in the
injected sample. Practically, one typically sees this data collection readily broken into the
two obvious types of mathematical variables, i.e. independent and dependent. In the
current situation, most would typically visualize both time and potential as being
independent variables selected by the analyst. Subsequent measurements of signal at each
of the electrodes for each of the specified times would contain the concentration

information which we hope to glean concerning both Epi and Dopa. Of course, we would
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have to employ standards of Epi and Dopa to determine their responses individually. We
further typically assume that the contributions of these components to the signal are the
same when encountered individually as it is in a mixture of the two components. Stated
another way, we have collected signal data at specific times following injection of
various samples on electrodes maintained at four different potentials in hopes that the
result would be able to predict concentrations of both Epi an Dopa when appropriately
unraveled. The times (J), the signals or current responses on each electrode (I) for each
injected sample (each row of which are now termed “sample row”, i.e., the row in the
matrix), and the potentials (K) can be viewed as a three-dimensional matrix as indicated

in Figure 4-1.

~ O\

;}

Figure 4-1: A three-dimensional matrix
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The chemometic approach to this sort of problem is a bit more obtuse than the use
of the simple “real” dimensional approach described above entails. In the chemometric
approach, we must consider all the variables simultaneously and, essentially, let the data
and associated outcomes from the entire data set create new dimensions or axes to more
accurately define the data set(s) and subsequently be used to unravel information like
concentrations of Epi and Dopa in novel injected samples. The new dimensions, known
as principal components for the method, are obviously related to the original parameters,
since they are derived from these; however, they no longer have direct and immediate
practical correlations to the physical parameters originally submitted.

A primary step in any chemometric approach is to decide which of the initial
pieces of information will be considered to be fixed (the independent variables) and
which will be allowed to vary (the dependent variables). This decision will initially be
submitted to the Principal Component Analysis (PCA) technique to determine the
number of principal components in the new n-dimensional space. The identified principal
components can subsequently be employed to predict the parameters which were
originally allowed to vary; this allows for the determination of these independent
variables in subsequent analysis of novel injected samples. In the current situation, we
selected the time and signal to be fixed or independent variables in our studies. All signal
vs. time data was submitted to the PCA fitting procedure for the entire data set. For each
injected sample, this entailed four separate time vs. signal data sets, each with an
associated applied potential for the electrode at which it was collected. We also submitted
the Epi concentration and the Dopa concentration for each of these injected samples. The

entire data set consisted of eighteen injections of an Epi standard, eighteen injections of a
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Dopa standard, and six injections each of five different mixtures containing different
amounts of both Epi and Dopa. This constitutes a total of 18 + 18 + 30 = 66 individual
sample injections.

The submission of the entire data set to the PCA procedure yields information
concerning the inherent dimensionality of the data set. This fitting procedure provides a
scree plot and a table of cumulative captured variance, indicating the number of principal
components necessary to encompass the fundamental underlying informational content of
the data. The PCA also provides associated loadings plots and scores plots, both of which
are used to confirm that the number of new principal components chosen is appropriate
for inclusion of a majority of the information contained in the data sets. The subsequently
selected number of principal components are then utilized by each of the PCR, PLS, and
SIMPLS chemometric methods in attempts to fit the data. For each of these three
chemometric fitting procedures, we initially provided the program with a training or basis
set selected to comprise exactly half, or 33, of the entire number of injected samples. This
basis set included the signal vs. time data for the four potentials for each of nine
injections of an Epi standard, nine injections of a Dopa standard, and three injections
each of the five different mixtures containing different amounts of both Epi and Dopa.
The remaining half of the injected samples were subsequently employed by each of these
three procedures as the “unknown” data to be analyzed by the fitting approach.

The number of principal components to employ is selected to include all the
pertinent informational content while excluding extraneous information (noise). This
selection is verified, in part, by the loadings and scores plots. Then the scores and

loadings plots for the individual principal components are further analyzed to identify
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potentially smaller regions within the original fundamental dimension (time) to examine.
The loadings and scores plots identify such regions as containing the most substantial
fraction(s) of the information content linking us to predictions of the independent
variables including, most notably, the concentrations of Epi and Dopa.

Once the initially employed PCA yielded feedback information concerning the
region of time which contained the majority of the essential information necessary to
deconvolute the concentrations of Epi and Dopa, we narrowed our time window and
repeated what is described above. Thus, with a smaller data set in time, we produced a
scree plot, selected of the pertinent number of principal components, investigated fitting
capabilities with the three chemometric procedures, and investigated of the associated
loading and scores plots to possibly even further narrow our search. The original data set
contained 481 times at which data was collected at the four electrochemical detectors.
These 481 time points were reduced to 121 points (the reduced data set) and, finally, to a
smaller 21 points (the very reduced data set). Each data set was successively treated by
the same PCA, chemometric, and loading/scores analysis procedures. Along the way,
examination of the chemometric fitting outcomes to see how well they could predict the
test injected samples revealed, unfortunately, that our models were not providing as good
a predictive capability for the Epi and Dopa concentrations as we had hoped. This
iterative procedure and its associated results are described sequentially below.

After all attempts undertaken with the chemometrics procedures provided less
than satisfactory predictive capabilities for the concentrations of Epi and Dopa in the test
mixtures, we decided to examine the very simple Cramer’s Rule possibility for

deconvolution using the signal collected on each of the four electrochemical potentials at
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single time points with careful selection of the time points to be used. This approach is

described at the end of this chapter.

A. Principal Component Analysis and Associated Chemometric Analyses for the 481

Time Data Points

The entire data set for the 66 individual injections were used as the initial data set
submitted for principal component analysis (PCA) to determine the inherent
dimensionality of the data. Since there are 481 time measurements, each of which are
related to four potentials, there are 481 dimensions in the data, each containing four
measurements. The results of the PCA are shown below.

The first step in determining the dimensionality of the data is an examination of
the scree plot, as shown in Figure 4-2. The term “scree” comes from the appearance of
the plot itself, where the downward slope resembles the downward slope of a mountain

and the bottom resembles the scree found at the bottom of such a mountain.
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Figure 4-2: Scree plot for the original data set

The scree plot is, of course, subjectively interpreted to provide the number of

principal components. In the present case, it would appear from Figure 4-2 that we have
approximately eight principal components for our data.

Since the plot may appear
skewed to the eye, or may gradually decrease as seen in the figure above, an examination

4-1

of the cumulative variance table can be of further assistance in assessing the number of
principal components. The variance associated with Figure 4-2 is shown below in Table
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Table 4-1: Percent variance captured by PCA model for the original data set

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 1.02e+02 87.87 87.87
2 1.18e+01 10.15 98.03
3 1.88e+00 1.63 99.65
4 1.99¢-01 0.17 99.82
5 1.12e-01 0.10 99.92
6 2.51e-02 0.02 99.94
7 1.77e-02 0.02 99.96
8 1.38e-02 0.01 99.97
9 5.49¢-03 0.00 99.97
10 4.94e-03 0.00 99.98

The percent variance captured can be thought of as a measure of the amount of
signal information found for each principal component (PC) after the contributions from
the previous PCs have been eliminated. When the amount of variance found with the
next PC is approximately equal to the amount of noise in the data set, one can be assured
that the signal part of the data has been determined and can then use this information as a

starting point to determine the number of PCs to retain for the model. According to the
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table above, two PCs would capture 98% of the variance in the data set, even though
there are three items under examination: the concentration of Epi, the concentration of
Dopa, and the applied potential.

Although the scree plot and the percent variance table directs us concerning the
number of principal components to retain, additional information can often be found by
an examination of the scores and the loadings. The scores indicate correlations between
the new PCs and the original axes of the injected sample. The loadings provide a
measure of the perpendicularity of the original individual variable axis to the principal
component axis, and is reported as the cosine of the angle between the two axes. If the
loading value is zero for a variable along a PC axis, then the variable lies perpendicular to
the PC axis and does not contribute to the variation described by that PC axis. Care must
be taken when the PC axis does not capture much of the variance in the data; in this case,
the loadings plots may have very little meaning. The loadings plots are correlated to the
variables, in this case, time. Between the scores plots and the loadings plots, one can

determine to a greater degree the dimensionality of the data set.
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Sample Scores with 95% Limits
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Figure 4-3: Scores plot for original data set, PC1

As seen in the scores plot, Figure 4-3 above, there appears to be some structure in
the data after 66 injection samples, which roughly corresponds to the beginning of the
data from the second channel. There were 66 injection samples in the data set. Each
electrochemical channel data for each of the 66 injected samples is presented in sequence
as one moves from sample row 1 to sample row 66 in the scores plot of Figure 4-3. The
sample rows 67-132 are then composed of all the data for channel 2, sample rows 133-
198 are composed of all the data from electrochemical channel 3, and, finally, the sample
rows 199-264 are all the data from electrochemical channel 4. The dashed lines indicate

incorporation of 95% of the values.
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Variable Mumber vs. Loadings for PC# 1
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Figure 4-4: Loadings plot for original data set, PC1

The loadings plot for PC1 shows how the variables (time) contribute to PC1. The
sign of the signal is irrelevant for this determination; if it is positive the axis lies in the
same direction as the PC, and if it is negative it lies in the opposite direction. A loading
value of exactly either 1 or -1 indicates that the variable axis lies exactly parallel to the
principal axis, and any other value indicates that it lies off at an angle. Thus, the
variables with the greatest magnitude from zero are those that contribute the most to the
principal component. In this case, variable 100 to 125 contribute the most to PC1 in the
positive direction, and variables 270 through 310 and 340 to 460 contribute in the
opposite direction. Since most of this region lies where the two peaks are tailing, it is

tempting to attribute this PC to the tailing of the two peaks.
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Sample Scores with 95% Limits
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Figure 4-5: Scores plot for original data set, PC2

The scores plot for PC2 shows quite a bit of structure, with clearly four regions.
As discussed previously, this must be attributed to the amount of the shift in the axes
among the samples rows themselves.

For the loadings for PC2, two regions, one at variables 85 to 105 (1.541 to 1.574
minutes) and another region at 140 to 225 (1.633 to 1.774 minutes), contribute to the
variance for this PC. It is tempting to assign specific chromatographic features to such
ranges, but such assignments must be made with caution as erroneous assignments are

easily made without careful consideration of the other PCs in the data set.

168



Variable Number vs. Loadings for PC# 2
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Figure 4-6: Loadings plot for original data set, PC2

The scores plot for PC3 is shown below in Figure 4-7. Structure is still present in
the data, as seen by the regular “pulse” feature at about sample row 66. Below 67 sample

rows, in fact, the data appears almost chaotic, and thus information concerning the

injected samples using the first potential, 600 mV, have been described in previous PCs.
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Figure 4-7: Scores plot for original data set, PC3

The loadings plot for PC3 is shown below in Figure 4-8. There is a broad feature
from zero to about 125 variables (1.40 to 1.60 minutes), with the remainder of the
variables (time points) contributing very little information. These additional times thus
contribute noise to the PC3, and can be eliminated if the reduction of noise is desirable.
The latter part of this feature appears to correspond with the arrival of Epi in the
chromatogram; thus, a large part of this feature occurs before the peaks elute. However,

the decision to eliminate data in this region must consider the other PCs involved in the

data set.
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Variable Number vs. Loadings for PC# 3
0.14

T T T

T T T

012} f‘u
8

003 ;@i
&
i

2
o
&

Loadings for PC# 3

o
o
=

T

g, 1
S
. e I
i A AT
1

0.02

SN
=

&

-0.02 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
Variable Number

Figure 4-8: Loading plot for original data set, PC3

The scores plot for PC4 are shown below in Figure 4-9. The prominent features
apparent in the earlier scores plots appears to be diminishing, and it appears much more
chaotic and noisy. The informational content in the data obtained from channel 1 has
been described, and channel 2 as well as channel 4 both appear to be nearly completely

described. Nevertheless, there still appears to be some structure in the data.
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Figure 4-9: Scores plot for original data set, PC4

The loadings plot for PC4 shows both positive and negative regions that
contribute most to PC4. These lie at 30-80 variable numbers (1.449 to 1.533 minutes)
and 100-120 variable numbers (1.566 to 1.599 minutes). The rest of the variables appear
to describe the small contaminant peak often seen on the far shoulder of Epi, but with the

scale of this plot, it can be difficult to determine specifically what is causing the rise.
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Variable Number vs. Loadings for PC# 4
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Figure 4-10: Loadings plot for original data set, PC4

Results

A total of 10 principal components were analyzed in the above manner.
Subsequently, the dimensionality of the data set was determined to be approximately six,
and the method subsequently was built using a total of 8 principal components. Half the
data set was used to build the model (the basis set), and the remaining was used as the
test set. The results of this entirely inclusive model were very poor, with little predictive
ability either to the model or to the test set, as shown in the following Table 4-2. In this

table, we have shown the representative data provided for one of the four electrochemical

channels, in this case channel 2.
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The amount of variance found in the results led to consideration of a reduction in
the data set itself to exclude those times that contributed very little to the signal present in
the data, and much to the resultant noise. This determination was made after careful
consideration of the scores and loadings plots. A reasonable assumption was also made
that more than six principal components need not be examined closely, as most of these
appeared to contain more noise than signal. This data suggests that a reduced data set of
121 time points (121 dimensions) may be advantageous. Chromatographically, the time
was subsequently set to range from 1.549 minutes to 1.749 minutes, a region which

encompasses both the Epi and Dopa peak maxima.

B. Principal Component Analysis and Associated Chemometric Analyses for the

Reduced, 121 Time Data Points

The reduced data set was then submitted for PCA analysis. The inherent

dimensionality and/or number of principal components now appears to be no more than

4, as shown by the scree plot below in Figure 4-11:

175



Eigenvalue vs. PC Number
100

T T 1

sof |
of |
sl |

50

Eigerwalue
T

40t |
30 |

20 ]

0 2 4 5] g 10 12 14 16 18 20
FC MNumber

Figure 4-11: Scree plot for the reduced data set

Examination of the percent variance captured table, Table 4-3 below, confirms

that with 4 PCs, well over 99.9% of the variance is captured in the model. As the

chromatographic signal levels vary as much as 3%, the use of more than 4 PCs is not

warranted. In fact, the percent variance captured table indicates that at the level of

variance we wish to capture, two PCs would be adequate. Since there are three entities
changing, concentration of Epi, concentration of Dopa, and the potential, three PCs

would appear to be warranted. The principal component analysis was done using 4 PCs,

as described below.
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Table 4-3: Percent variance captured by the PCA Model, reduced (121 points) data set

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 9.96e+01 89.56 89.56
2 1.12e+01 10.11 99.67
3 3.09¢-01 0.28 99.95
4 4.20e-02 0.04 99.99
5 5.81e-03 0.01 99.99
6 1.45e-03 0.00 99.99
7 7.79¢-04 0.00 99.99
8 6.37e-04 0.00 100.00
9 5.04e-04 0.00 100.00

The scores plot for PC1 is shown below in Figure 4-12. The previous data set
showed a scores plot for PC1 having a considerable amount of variation in the first 66
sample rows; this variation is greatly reduced, and the underlying structure of the data
can be seen. The regular rise and fall of the data indicates that the two standards lie along
different axes, and the relative amount of the two analytes dictate whether the mixture

group will be high or low.
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Sample Scores with 95% Limits
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Figure 4-12: Scores plot for PC1, reduced data set

The loadings plot for PC1 shows a very ordered arrangement of the data points,

and appears almost gaussian in character. Those new time numbers around 60 contribute

the most to this PC.
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Variable Number vs. Loadings for PC# 1
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Figure 4-13: Loadings plot for PC1, reduced data set

The scores plot for PC2 also shows the regular patterns of rising and falling
values as was found for the first PC, although the magnitude of these oscillations is
smaller. Thus, most of the variance that can be attributed to the standards is described
primarily by PCI, and secondarily by PC2. The loadings plot for this PC has the
appearance of a first derivative of the gaussian function, with the most variance described

by around variable numbers 30-35.
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Figure 4-14: Scores plot for PC2, reduced data set
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Figure 4-15: Loadings plot for PC2, reduced data set
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The scores plot for PC3 shows a loss of structure, indicating more noise is being
captured by this PC. However, there still appears to be some structure present; as the
model uses three changing variables to determine, three principal components are
required. The loadings plot for PC3 justifies this as well, as there still appears to be some
structure present in the data set from sample rows 60 through 120 (channel 2 data), with

less from 120 through 190 (channel 3 data).
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Figure 4-16: Scores plot for PC3, reduced data set
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Variable Mumber vs. Loadings for PC#3
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Figure 4-17: Loadings plot for PC3, reduced data set

The scores plot for PC4 show very little structure is left in the data set, as
confirmed by the loadings plot for this PC. Now there are four regions that contribute the
most to the PC, and it crosses the zero axis three times. This plot appears to be

predominantly chaotic in nature and thus has little practical value.
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Sample Scores with 95% Limits
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Figure 4-18: Scores plot for PC4, reduced data set
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Figure 4-19: Loadings plot for PC4, reduced data set
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Results

The PCA analysis for the reduced data set included 10 PCs. The potential PCs
beyond four showed increasing amounts of noise and contained little, if any, additional
information. The chemometric models for the reduced data set were, thus, built using 4
principal components. The predictive results of the derived chemometric approaches
were again disappointing. First, the models did a very poor job predicting themselves,
indicating they could not be relied upon to predict the test set. The results from the
prediction of the test set confirmed that the models had poor predictive ability. The
individual predicted outcomes for each of the four electrochemical channels is shown
below in Tables 4-4 through 4-7.

Upon examination of the scores and loadings plots for the reduced data set, a
further reduction in the time values employed appeared to be in order to enhance the
signal to noise content. This further reduced data set consisted of some 21 time points,
and thus was 21-dimensional. Chromatographically, the corresponding time ranges from

1.6044 minutes to 1.6394 minutes, which barely encompasses both peak maxima.
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Outcome for reduced data set, channel 1

Table 4-4
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Outcome for reduced data set, channel 2

Table 4-5
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Outcome for reduced data set, channel 3

Table 4-6
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Outcome for reduced data set, channel 4

Table 4-7
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C. Principal Component Analysis and Associated Chemometric Analyses for Very
Reduced, 21 Time Data Points

The very reduced data set was then submitted to PCA analysis.

The inherent
dimensionality appeared to be no more than 3, as shown by the scree plot:

Eigenvalue vs. PC Number
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Figure 4-20: Scree plot for the very reduced data set

This need to use no more than three PCs for the very reduced data set was

confirmed by examination of the percent variance captured, shown in Table 4-8 below.
This table indicates that three PCs encompassed virtually all the variance found in the

data set, with diminishingly small amounts of variance found using more than this
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number. Obviously, the model incorporates some variance associated with noise that
could be eliminated by the use of fewer PCs; however, as there are three parameters that
are changing in this model, concentration of Epi, concentration of Dopa, and the potential

of the electrodes, the use of less than three is not warranted.

Table 4-8: Percent variance captured by the PCA Model, very reduced (21 points) data
set

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov(X) This PC Total
1 2.32e+01 92.33 92.33
2 1.92e+00 7.66 99.99
3 1.70e-03 0.01 100.00
4 3.45e-04 0.00 100.00

The scores plot for PC1 is shown in Figure 4-21. The regular rise and fall of the
data seen in the previous models is largely gone. The loadings plot, Figure 4-22, shows a
very organized arrangement for the data points, with the most contribution for PCI
coming from the later time points. These later time points have more Dopa present than

Epi, and thus this PC might reasonably be coupled to the presence of Dopa in the injected

sample at that time.
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Sample Scores with 95% Limits
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Figure 4-21: Scores plot for PC1, reduced data set
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Figure 4-22: Loadings plot for PC1, reduced data set
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The scores plot for PC2 also shows the regular patterns of rising and falling
values as was previously seen. The upper range of each “rise” can be attributed to those
injected samples with larger amounts of Dopa in them for each potential; the ordered
arrangement of four such patterns indicates that this perhaps is related to the potential of

the samples.

Sample Scores with 95% Limits
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Figure 4-23: Scores plot for PC2, reduced data set
The loadings plot for this data set shows a slightly sigmoidal shape with an

inflection point around variable number 11, which corresponds to the retention time of

Epi, 1.621 minutes. Thus, the portion of the curve below this point is related to an
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increasing signal for Epi, while the portion of the curve above this point is related to the

declining signal for Epi.

Variable Number vs. Loadings for PC# 2
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Figure 4-24: Loadings plot for PC2, reduced data set

The scores plot for PC3, Figure 4-25, shows a loss of structure, indicating that
fundamentally no further information to noise enhancement is to be gained by trying to
reduce the data set. Although little structure appears to be present in the data, there
remain three principal and fundamental components associated with this data. The
loadings plot for PC3 justifies this as well, as there still appears to be some structure

present in the data set, but not much.
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Sample Scores with 95% Limits
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Figure 4-25: Scores plot for PC3, reduced data set
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Figure 4-26: Loadings plot for PC3, reduced data set
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Results

As the captured variance table indicated that three PCs would capture all the
variance in the data, the PCA analysis included only 3 PCs. The results of this work were
again disappointing, as the model did a very poor job predicting itself and thus could not
be depended on to predict the test set. The results of the test set confirmed that the model
had poor predictive ability. This is shown below in the Tables 4-9 through 4-12,

corresponding to the four electrochemical channels reconstructed by the model.
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Results for the PCA Model, very reduced (21 points) data set, channel 1

Table 4-9
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Results for the PCA Model, very reduced (21 points) data set, channel 2

Table 4-10
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Results for the PCA Model, very reduced (21 points) data set, channel 3

Table 4-11
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Results for the PCA Model, very reduced (21 points) data set, channel 4

Table 4-12
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Cramer’s Rule Approach

The Cramer’s Rule approach may be considered to be the basis from which the
chemometric methods were developed. Indeed, such chemometric approaches typically
employ Cramer’s Rule multiple times to achieve a more comprehensive data treatment.
The chemometric methods employed in the current investigation may have failed due to
factors that are specific and/or overly inclusive with these methods. Alternatively,
chemical interactions between the analytes and/or simple noise content in the data set
could have been the underlying source of the inadequacy of the chemometric approaches
to provide the desired deconvolution capabilities.

However, while the chemometric approaches had not provided the concentration
predictive capabilities desired, they did demonstrate that a substantial amount of related
informational content was contained in the data set. Further, these approaches seemed to
indicate that the maximal amount of informational content with a relatively minimal
amount of noise content was contained in the very reduced data set incorporating 21 time
points. Thus, we decided to examine if the even simpler application of Cramer’s rule to
the very reduced data set using only the two-dimensional signal vs. potential plane at
specific time points might be more favorable. This is simply labeled by us as the
“Cramer’s Rule” or CR method wherein data from all four channels was used at a single
specified time point. In fact, it was repeated 21 times, once for each of the time points
contained in the very reduced data set.

The chemometric approach indicated that a maximal information content
appeared to be associated with the signal vs. potential plane; this was indicated usually in

the second scores plot, which showed a regular pattern of four jagged plateaus. The
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scores and loadings plots seem to indicate that no further reduction in the original time
parameter could be undertaken to provide more signal to noise information. Stated
another way, none of the 21 time points of the very reduced data set indicated strikingly
better signal to noise informational content than any of the other time points in this very
reduced data set. Therefore, all 21 points in time for the very reduced data set were
examined using the CR approach.

The CR method was done as follows. All the data for the Epi standards were
fitted to Equation 1.79, previously described, giving current as a function of the potential

of the electrode:

"
_KR CR
(E-E.)s
0.05916

i=

1+10

Equation 1.79

where E. is the experimentally determined half-wave potential, s is overall
experimentally determined number of electrons involved in the reaction, i is the current,
E is the potential of the electrode, and Ck is the concentration of the reduced species. All
of these parameters are constant for a given component (Epi or Dopa) except for the
current and the potential. The potential vs. signal data was fitted to this equation using a
residual-sum-of-squares method in Excel, using Excel’s Solver function, which uses the
Levenberg-Marquardt method of iteration for convergence. This was then repeated for
the Dopa standards. This procedure thus yielded constants at given potentials related to

the currents (Equation 1.80, reproduced below):
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Equation 1.80

for both compounds, which now could be used in the final simultaneous linear equation

solutions as derived in Chapter 1 and again reproduced here:

it‘”’c;’l = (K;)C;)ChLCmpdl + (KVOC;)Chl,Cmpﬂ oo (K;) C:;)Chl,CmPa(ﬂ)

Locr = (KVOC;)C,Q’C,”M +(K‘0C;)Ch2,c,n,,ag toot (Kécg)cm,Cmpdn)
itot,ClB = (Kécg)cm,Cmpd +(K'0C;)ch3,cmpaz oo (KéCg)CB,Cmpdll)
biorcha = (KéCS )Ch4,Cmpdl * (Kécg)c114,0mp@ o (Kécg )Ch4,Cmpa(n)

Equation 1.87

Results

The results for the Cramer’s Rule approach are given in Table 4-13 below. As
this approach uses the data from all four channels, it is presented by each mixture set. In
general, the method is generally accurate and reasonably precise, given the actual
amounts of the analytes in the injected samples themselves. Although the relative percent
RSD values appear high for the smaller values for both Epi and Dopa in the extreme
samples, they are within the amount of signal variance expected for the data.

The results that provided proper predictions for the data according to the criteria

selected by the Student’s t-test (95% confidence levels) are bolded in Table 4-1. As can
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be seen, only three times produced successful results. These were 1.6110, 1.6127, and
1.6210 minutes, where the latter corresponds to the retention time for Epi.

The retention times of Epi and Dopa are fixed as much as possible due to the time
corrections. The time corrections fixed the solvent front time and the time of the internal
standard, Dopamine. The variance in the retention times of both Epi and Dopa is reduced
considerably, and is limited to the experimental sampling period. The data on each
channel was also normalized in its response, as all the internal standard peaks for a given
channel were made to be the same height. Thus, any changes in the current as seen by
the internal standard could be eliminated. Since the mixtures are of known composition,
there are no effects expected from the injected sample matrix.

In summary, the PCR chemometric approach clearly guided us to the region of the
data collected which yielded the maximal amount of signal to noise information.
However, this approach may be simply too inclusive in its application to the prediction of
concentrations of the individual components. The much more simplistic Cramer’s Rule
approach did work in three discrete time domains near the retention time for Epi.

The fact that the Cramer’s Rule approach seemed to consistently yield better
predictability than the more powerful PCR chemometric approach leads us to believe that
there is, indeed, an underlying more optimal approach to the deconvolution of these
severely chromatographically and electrochemically overlapped analytes. In fact, one
might note that, given the substantial overlap of these two analytes in both the
chromatography and electrochemistry, it is remarkable that modestly reliable prediction

of concentrations of the individual components within the mixtures was achieved.
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Summary of the data for the Cramer’s Rule Approach

Table 4-13
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Chapter 5 — Conclusions

Discriminating between and determining individual contributions from severely
overlapping chromatographic peaks has long been a vexing problem in analytical
chemistry. The application of three-dimensional instrumental techniques to such difficult
problems has allowed for some discrimination; the added third dimension typically
targets a specific property of the analyte, such as its volatility or absorption of light. The
utilization of electrochemical information as the third dimension, discussed in Chapter 1,
has not commonly been found in conjunction with chromatography.

The instrument used in this work is HPLC with electrochemical detection. The
detector contains four glassy carbon serial electrodes, each set to a progressively higher
potential. Thus, the data included time, signal, and the potential of each electrode. Two
analytes were chosen: Epi and Dopa. These two are overlapped chromatographically so
severely (Rs = 0.13) that the two peaks, if constructed to be of equal height individually,
appear to be a single peak with no discernible valley or other indication to the observer
that they are indeed two peaks.

Five mixture sets were made to encompass a range of molar response ratios for
Epi:Dopa using the signals values on the first electrochemical channel. The mixtures
ratios for Epi:Dopa signal were: 90:10, 70:30, 50:50, 30:70, and 10:90. All Epi:Dopa
mixtures and all Epi and Dopa standards also contained an internal standard, Dopamine.
Six replicate injections were made of each set of five mixtures, and three replicates of Epi

and Dopa standards were injected both before and after each mixture set.
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The subsequent data set contained several known and/or assumed sources of
variance. These included: (1) shifts in the solvent front peak times due to manually
injecting the samples onto the HPLC-ECD system; (2) long-term changes in the retention
time of the internal standard presumed due to long-term flow rate oscillations in the
reciprocating pump; and (3) changes in the signal height due to differences in the
injection volume due at least in part to the use of manual, rather than automated,
injections. Fortunately, these known and substantial sources of “noise” in our data set
were easily corrected, for the most part, through standardization of the individual
chromatorgrams in both time and signal strength using the retention time of the solvent
peak, the retention time of the internal standard, and the signal strength of the internal
standard.

Two major methods to deconvolute such highly overlapping chromatographic
peaks were investigated. The first method was curve fitting, where twelve common
curve-fitting models having associated mathematical equations were evaluated. The
mathematical models included the bi-Gaussian, Exponentially Modified Gaussian
(EMGQG), Fraser-Suzuki, log-normal, Haarhoff-van der Linde, Cauchy-Gaussian, Chesler-
Cram, Giddings, GMG, GEMG4, GEMGS5, EMG+GMG. Each of these twelve models
was examined for its ability to fit the Epi and Dopa standard injection data sets. The
equations that produced the best results were the EMG, GEMG4, GEMGS5, EMG+GMG
and Cauchy-Gaussian. These five models were subsequently used to deconvolute the two
highly overlapped peaks using information from the time vs. signal domain for each of
the four electrochemical detectors, where both area under the curve and peak heights

were examined.
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A second approach involved using common chemometric approaches with an
initial principal component analysis being followed by submission of the data to PCR,
PLS, and SIMPLS for deconvolution and prediction of Epi and Dopa concentrations in
“unknown” samples. An auxiliary to the second approach examined the potential vs.
signal domain with Cramer’s rule at single data time points. An acceptable accuracy in
the predictability of results was set so that the predictions would fall with the 95%
confidence level (Student’s t-test) for both analytes. Any results that fell short of this
requirement were deemed to be unacceptable. Additionally, predictions which met these
criteria were further examined to guarantee that they possessed a relatively low percent
relative standard deviation, indicating a reasonable amount of precision in the predictions
as well. Ideally, the outcomes should be both accurate and precise.

The use of curve fitting methods failed to adequately deconvolute the data as
presented for all four data channels for the range of molar response ratios studied. When
the curve fitting methods were able to deconvolute the data for an individual mixture set,
it rarely was able to do so with both good accuracy and good precision. For a given
mixture examined on a single electrochemical channel, several curve fit equations were
found to be useful in properly deconvoluting the data. However, the same individual
equations were not consistently capable of successful and acceptable deconvolution from
one mixture set to another mixture set and/or from one electrochemical channel to
another.

An argument could be made that the mixtures on the far extremes, i.e., Mixes 1
and 5, both of which contained 10 % of the minor species, are more difficult to properly

deconvolute and thus could be expected to fail due to the large difference in molar
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response ratios. The argument further could indicate that a method was considered
successful if it predicted the composition of the “middle” mixture sets, i.e., mixtures 2
through 4, but this was not observed.

These methods may have failed because of the nature of the surface to be fitted.
An iterative process was used to fit the observed data to the various mathematical
models. The “combined” function used to deconvolute the data is in actuality two
identical functions added together, and then the parameters are allowed to change until a
minimum in the sum-of-squares of the residual (SSR) is found. The minimum in the SSR
is shallow, and a large number of possible combinations of the parameters for the
equations will satisfy the SSR requirements, even when constricting the values to those
that are considered to be reasonably or physically meaningful. Some of these
combination of parameters, when put back into the equations, were found to be unable to
accurately quantify the solutions. The found parameters yielded equations that when
added together, resulted in a very low SSR value, however, these were not able to
accurately and precisely determine the known amounts of the analytes in the mixtures.

The use of curve fitting methods has previously been shown to work reasonably
well when the peaks are separated by a distance sufficient to generate an easily
discernible valley between them. But once the peaks overlap to the extent that valley
disappears there is nothing for the equation to fit but the peak as a whole. As the two
peaks merge into one, the remaining single peak takes on characteristics of a peak
containing only a single analyte. The curve fitting methods cannot, unfortunately, easily

distinguish between the merged double peak and a single peak.
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The chemometric methods required the data to be presented to the algorithms in a
structured way, depending on how one wishes to investigate the system. This structure
then determines the nature of the information one can and does obtain. The procedure for
these methods included (1) the determination of the number of dimensions inherent in the
n-dimensional data space using the scree plots, percent variance tables, and the loadings
and scores plots using all the data available; (2) building the model using a subset of the
data determined to be the basis set; and (3) subsequent prediction of the values for the
dependent variables based on the remainder of the data, designated the test set. Building
the model depends on the correlations constructed with the known values for the
dependent variables; the subsequent prediction of the “unknowns” depends on the
strengths of these correlations.

The chemometric methods (PCR, PLS, and SIMPLS) all had difficulties. In all
three data sets—the entire data set comprised of 481 time points, the reduced data set
comprised of 121 data points, and the very reduced data set comprised of 21 data
points—the predictive abilities of the models were overall poor. However, the PCA
approaches clearly worked better than the curve fitting methods, as there was some
informational content which we were able to glean from the data. The degree of accuracy
and precision, however, in using the PCA approaches for predictions ranged from
virtually unusable to modest at best. The most information concerning prediction of the
concentrations of Epi and Dopa in the mixtures was obtrained using the simpler Cramer’s
Rule approach. Several explanations may be pertinent to this outcome, and some of these

are discussed below.
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Dopa, Epi, and Dopamine are all biogenic amines which almost certainly
chemisorb to some degree onto the surface of the glassy carbon electrodes used in this
study. Previous work involving DOPAC and 5-HIAA in this laboratory'*' found that
both compounds absorbed appreciably in a concentration dependent manner onto
powdered glassy carbon at room temperature with no applied potential employed
concentrations similar to those used in the current investigation. The adsorptions of these
molecules were described reasonably well by Langmuir isotherms. These results, as well
as other work concerning biogenic amines and glassy carbon are consistent with the
proposal that these compounds form a monolayer of neutral species on the electrode
surface.'*? One could also reasonably surmise that the oxidation products of these
molecules would likewise undergo chemisorption.

The hydrodynamic voltammograms for the two analytes are shown below in
Figure 5-1. At the low potential of 600mV, Epi is expected to have a negligible response.
At 900mV, Epi is expected to contribute appreciably to the current measured at the
electrode surface. In the experiment, however, at 600mV there was a considerable
response from Epi. Clearly, something is decreasing the effective oxidation potential for
Epi; we are suggesting that this could due to a chemisorption-coupled or otherwise

surface alteration enhancement of the electron transfer process.
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Hydrodynamic Voltammograms for Epi and Dopa
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Figure 5-1: Hydrodynamic voltammograms of Epi and Dopa

The transfer of electrons in electrochemical detection occurs at the surface of the
electrode both as inner-sphere and outer-sphere reactions.'*’ Transmission of electrons
via other molecules or ions away from the surface of the electrode does not contribute to
the electrode response. Inner-sphere reactions involve specific absorption of species
involved in the reaction with the electrode. Any chemisorbed species on the electrode
surface that accepts electrons from compounds in solution can be expected to either
facilitate or dampen the electron transfer between the analytes and the electrode. One-
component solutions, not mixtures, were used to determine the hydrodynamic
voltammograms of the analytes, thus, the oxidation potentials determined may not

accurately reflect the oxidation potentials of the mixtures due to this chemisorption

phenomenon.
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When a biogenic amine passes over the surface of the electrode, the electrode
provides the energy for a one-electron oxidation to occur. The biogenic amine briefly
becomes a radical cation that is expected to immediately deprotonate to form a neutral
radical that is known to rapidly oxidize and deprotonate to form the quinone; this second
electron transfer typically occurs too fast to be seen as a second wave in the HDV, but
can occasionally be seen in cyclic voltammetry Each of the species involved have the
capability of chemisorbing onto the electrode surface.

Chemisorbed species can cause a change in the electrochemical behavior of the
electrode surface, which results in a subsequent shift in experimentally determined E,,; of
the hydrodynamic voltammogram. The reversibility of the reaction at the surface of
electrode also changes, indicating a shift in the slope of the HDV to a steeper angle. The
changes to the HDV are two-fold: both a shift to lower potentials and a steeper slope of
the curve, as evidenced by the response for Epi discussed above.

Epi is used to illustrate the complexity of the reactions generated by the electrode,
following the initial two-electron oxidation of Epi to its quinoid form, the unprotonated
form of the epinephrine quinoid undergoes a further reaction to yield leucoadrenochrome,
a cyclized hydroquinone. Leucoadrenochrome is easier to oxidize than epinephrine itself
and it reacts with another molecule of ephinephrine quinone, giving adrenochrome and
regenerating epinephrine. This electron transfer-chemical reaction-chemical (ECC)
reaction mechanism results in an apparent four electron oxidation of ephinephrine to
adrenochrome.'* Should the leucoadrenochrome not leave the surface of the electrode

before it reacts with the ephinephrine quinone, it will result in increased current for Epi.
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The standards and samples used herein contained three biogenic amines: Epi,
Dopa, and Dopamine. Dopamine is known to interact with the electrode surface, and can

adsorb to it.'*?

All three compounds are very similar chemically to one another, so it
would not be surprising to find that any of the three, either singly or in combination, may
be involved in binding to the electrode surface. Such films that develop on the surface of
the carbon electrode have spurred research into the field of modified glassy carbon
electrodes, where a desirable film is bonded to the surface of the electrode and serves
usually to eliminate an interference.'*> ' In this case, the film is temporary, and can be
removed to varying levels of success by several methods, including reversing the
potential on the electrode and allowing the film to dissipate. With enough time, the film
will slowly disappear. A quicker and more thorough method to remove the film is to
polish the electrode.

Studies concerning the nature of the glassy carbon electrode surface have found
that a freshly polished surface has poor electron-transfer kinetics, with the active sites for
electron transfer present on the graphite edges inherent in the structure of glassy

7

carbon'?’ and some species can attack basal plane sites as well.'*® Activation of the

electrode surface has been attributed to the formation of graphitic oxide,'*” oxygen
containing functional groups, and edge plane density of the electrode surface itself.'”’
Further investigation has shown that an absorption mechanism based on specific
chemical sites such as oxides or surface radicals cannot account for the absorption seen at
the surface of the electrode, but rather the absorption of quinones on glassy carbon

depends on effects such as electrostatic attraction between the adsorbate and partial

surface charges.'”' Thus, the activated areas are larger than the edge plane regions on the
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electrode surface. However, if the surface is contaminated with oxygen bound to the
surface of the electrode, deactivation of the glassy carbon electrode can occur.'™® This
also accounts for the disappearance of the surface layer when the potential is turned off as
the electrostatic conditions change.

The model can apparently partially model this chemisoption phenomenon. But
since the effect is also dependent on the potential of the electrode as well as the
concentration of the analyte in a complex manner, it fails with the rise in potentials and
the change in the analyte concentrations. Additionally, the amount of data one submits to
the model has a large part in the ability of the model to accurately return the expected
outcomes. The entire data set, which had 481 time measurements, clearly had some
measurements that contained no useful information. When these are eliminated from the
data set, the predictive ability of the subsequent model increases. However, when even
more time points suspected to contain more noise than information are taken out of the
data, the predictive ability of the new model decreases. The conclusions one must draw
are two-fold.

The first conclusion is there is some optimum number of variable (time) points to
be used for the model that eliminates the additional error associated with noise, but
retains enough of the informational content to enable the models to predict accurately the
values of the unknowns. This optimum number of variables (time) is not easily
determined using these methods, and may be a matter of experience of the investigator.

The second conclusion is that the predictive abilities of the chemometric methods
are unable to be successfully employed due to the noise and inherent uncertainty in the

time vs. signal plane. The separation power found using the Cramer’s Rule approach on
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individual data points in the potential vs. signal plane is lost in the inability of the models
to separate the two analytes in the time vs. signal plane. Some predictive ability is clearly
being expressed by the chemometric methods, but may be lost in the inherent
uncertainties found on this time vs. signal plane. Either the number of PCs used to form
the models are incorrect, or the model itself has some inherent difficulties in using the
information present in the third dimension, potential.

Increasing the number of PCs from two to higher numbers was investigated; an
examination of the scree plots for both the reduced model and the very reduced model
indicates that about 98% of the variance is encompassed using only two to three PCs.
Inclusion of more than the minimum number of PCs than necessary will add more noise
into the model and the results, as the PCs capturing the most variance are those that
describe the information contained in the signal; the PCs capturing the least amount of
variance contain noise and thus are not used in the model. There is still noise embedded
in the signal that cannot be separated from the signal, however. The use of a smaller
number of PCs than required causes more information to be lost and can adversely affect
the results. The models assume three changing entities: the concentration of Epi, the
concentration of Dopa, and the potential. Thus, a minimum of three PCs are required to
build each model and subsequent predictions. This source of noise found in the third PC
contributes to the difficulties in the deconvolution, especially in the very reduced data set.

Another possible explanation for the failure of the chemometric methods is that
these methods assume a linear inner dimension. This arises from the requirement that the
responses found both in the time vs. signal plane and the potential vs. signal plane form

homogeneous systems of linear equations. This means that the signal from one electrode
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cannot be a multiple of another electrode. This is not normally expected in the data.
However, there is a high degree of correlation between the responses of the analytes at
nearby times, and thus the problem is rather ill-conditioned. The noise and experimental
error found in nearby data points are expected to be similar, and thus contributing to the
problem. However, the noise and experimental error for a given analyte is expected to be
at their lowest at the top of the analyte peak, exactly where the highest degree of
correlation are expected to occur. In addition, the vector of “inner-relationship”
coefficients which relate the scores from the independent variables and the scores from
the dependent variables is expected to be linear. This will not be the case when the
system itself is highly nonlinear. If the same value found in the independent variables
yield multiple values in the dependent variables, these methods can fail. Thus, it appears
that the signal values originally input into the model still vary too much, and thus the
method fails.

The Cramer’s Rule method also can yield correct answers to 95% confidence, but
only at carefully selected points on the chromatogram. This method is a precursor to the
chemometric methods also in this work. The chemometric methods make use of
Cramer’s rule in determining the models and hence the results, but the chemometric
methods also have inherent noise smoothing characteristics that the Cramer’s Rule
method presented herein does not. More importantly, the use of Cramers Rule in this
work assumes there is one constant that can be obtained regarding the response of the
pure analyte at a given electrode, per unit time. The PCA/PCR/PLS/SIMPLS models

above assume this constant does not change per unit time. This is not the case using
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Cramer’s Rule. Thus, Cramer’s Rule has a greater chance of success where the
chemometric methods failed.

Can the chemometric methods be used to deconvolute chromatographic data using
electrochemical detection? The answer is yes, but with caution. More work needs to be
done to determine why specifically the system behaves as it does. This includes
investigation as to whether small changes in the dependent variable matrix has a
discernable effect on the outcomes. While this investigation may be useful as a
diagnostic, it is not expected to allow complete deconvolution to occur, as this implies a
high degree of instability in the algorithms.

A second avenue of investigation involves the nature of the adsorption occurring
at the electrode surface. Pretreatment of all four electrodes with multiple injections of
Dopa prior to an HDV analysis of Epi would give a more realistic picture of the true
chemical system involved in this study. The HDV used in this work was done using the
first electrode, as the others were assumed to act similarly. Comparison of the pretreated
HDVs to untreated HDVs then will give more complete information concerning the
nature of the shift in the electrochemical properties of the electrode surface. Any bias
introduced because the electrode surface was unstable in regard to building of the surface
monolayer would then be eliminated. As it is unknown which one of the three
compounds is responsible for the effects seen herein, the experiment needs to be
repeated. A comparison of the amounts of analyte used in the pretreatment would also be
useful; the models built in this work indicated that the concentrations used were also a

factor in the failure of the models. The methods can be applied to other binary or ternary
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mixtures only with additional investigations regarding the nature of the interactions of the

specific compounds on the electrode surface.
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