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Preface

Hardware saving criteria is one of the research fields in digital signal processing.
Particularly on hardware saving in digital filter designs, which are due to the usefulness
of digital filters in various fields especially in engineering fields. The main advantages in
hardware savings are reduce hardware complexity and reduce the usage of hardware
resources. One particular interest is to write a CAD program that can optimize the require
hardware for the filter design. Many researchers have developed various CAD software
programs for digital filter design with hardware realization capability. Some of the
researchers include the hardware reduction as the main theme of the CAD program.

This whole thesis is related to the second-generation public domain CAD program
and the main priority is to generate a set of FIR filter coefficients that requires little
hardware. The program is to allow users to design any transpose direct form linear phase
FIR filter with the least hardware needed and to be user friendly. However, the main
direction of this thesis is to discuss the techniques and algorithms that are incorporated
into the program with the main goal of meeting the filter specifications configured by the
user. One of the sections discusses the implementation of Canonical Signed Digit (CSD)
representation to the filter coefficients. The CSD coefficients are further optimized by the

three optimization algorithms, which contribute in more hardware savings for the filter.
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Another section introduces another representation technique that provides better results
compared to CSD representation. This technique is called as the Dempster and Macleod
(DM) technique. The Signal Noise Ratio is also included to determine the structural adder
or delay size of the filter. The thesis also covers the details of the CAD programs such as

the instructions to use the program and the block diagrams that construct the program.
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Section One

Introduction

1.1 Introduction

Digital Signal Processing (DSP) has grown widely during the past decades, due to
the technological advancement in computers. DSP has revealed more advantages in terms
of flexibility, cost reduction and performance compared to conventional analog signal
processing. Additionally, its advantages also cover versatility and stability. In the
industry, areas that require DSP applications such as medical applications, time series
analysis, and communication areas use digital signal processors with specialized
hardware, instructions and mathematical computations instructions for processing digital
signal projects.

DSP operations usually have two basic categories, which are signal analysis and
digital filtering. Implementation of new structures using digital filters is very popular due
to the flexibility of various applications of digital filters such as noise elimination and
frequency band separations. In general, a digital filter is a discrete time convolver since

the output of the filter is actually the sum of the weighted previous input and output.



Therefore, a digital filter is actually formed by three basic hardware elements, which are
adders, multipliers and registers.

There are numerous automated software programs available for engineers to
design any type of filter with reduced hardware requirements and the ability to implement
the design in different technologies. Designing a digital filter that has less hardware
complexity is important because reduced complexity can contribute to a reduction in
power, size and cost while increasing speed. The main contribution to complexity for
digital filtering is the coefficient multipliers, which are usually implemented using binary
arithmetic. There are many ways to reduce hardware complexity that range from
Hartley[10] numerical reduction method to direct building (Finite Impulse Response) FIR
filter using components available in the hardware realization software such as KCM
multipliers [20]. With new techniques implemented to improve the digital filter design
with hardware reduction as a goal in mind, both Canonical Signed Digit (CSD), and
Dempster and Macleod (DM) techniques appear very promising for filter design

purposes.

1.2 Objective

Previously, Husinga [1] developed an automated software program to design
highpass and lowpass FIR filters by using the CSD technique to minimize hardware
complexity. This Computer Aided Design Program is designed for linear phase transpose
direct form Finite Impulse Response (FIR) filters with minimal hardware complexity.

There are three optimization techniques that are used to obtain better results with the



CSD technique. The three techniques used are order-wordlength tradeoff, scaling and
adder extraction. These are the three objectives in this thesis. Firstly, Husinga’s work is
revised, identifying some errors and limitations occurring during the optimization
process. Then, the program is expanded by adding more features and selections. Finally,
a new hardware saving technique based upon the Dempster and Macleod (DM)
implementation [6-7] is introduced into the program. This program is aimed at
automatically generating a hardware layout for different targeted technologies such as
Xilinx FPGA’s and MOSIS CMOS processes. This paper will not cover the automation
of hardware layout. However, a script file called the params.vhd is mentioned since it is
included in the GUI program as one of the functions. The program does offer choices for

different targeted technologies that can be added in the future when needed.

1.3 Finite Impulse Response Filter (FIR)

According to many textbooks and articles [1-2],[16-19], FIR filters are simple to
design, flexible and there is no possibility of limit cycles. In addition, the reason that
FIR filters are also stable is because it is guaranteed to be a bounded-input bounded-
output (BIBO) system. Moreover, FIR filters with symmetrical characteristics will
guarantee a linear phase frequency response as linear phase response produces constant
amounts of delays, which make the design problem somewhat simpler. Therefore, the

design of FIR filters is the focus for this thesis.



The transfer function of an FIR filter in the z-domain is
M-l
H(z) =Y blk)z™ (1.1)
k=0
Hence a general difference equation for causal FIR system is represented as
M-
y[n]= > blkix[n k] (1.2)
k=0

This equation shows that if it is subjected to an impulse, the output will equal zero after
the impulse has passed through all the summation. This operation is equivalent to
convolution of input data samples with the desired unit impulse response of the filter,
which is defined as Finite Impulse Response (FIR).

The transfer function from Equation (1.1) can be implemented using a variety of
equivalent structures, which are equivalent in terms of transfer function but differ in
hardware complexity. These structures, which are equivalent in terms of transfer function
have different characteristics depending on quantization results due to finite wordlength
limitation. Mitra [18] does mention a few equivalent FIR filter structures such as the
direct form FIR filter structure, cascade form FIR filter structure, linear phase FIR
structure and polyphase FIR structure. For this thesis, the linear phase form FIR filter is
selected because of its wide applications. A characteristic of the linear phase form is that
the coefficients are in symmetrical form and this can be exploited to reduce the number
of filter coefficients by almost one half. In addition, the filter is selected for its transpose
direct form because it supports the linear phase form FIR structure better in terms of
hardware requirements for the filter coefficients. Transpose direct form also has a better

timing characteristic since the input is directly connected to the filter coefficient



multiplication. Figure 1.1 shows an example of a general transpose direct form of a N-
order linear phase FIR filter. However, there is a disadvantage of using transpose direct
from, which is the size of the delay which must be a reasonable size to prevent
quantization and this problem does not occur in direct form structure because all the
delays are at the input bit size. In fact direct form structure will result in less hardware
requirements compared to transpose direct form. In transpose direct from, half of the total
number of adders are connected at the input bit size whereas the rest of the adders are
connected at the output after the multipliers with the wordlength of input bit size plus the
coefficients bit size. Another interesting point is if the sharing block in the CSD or DM
realization is adapted to both the transpose direct form and direct form structures, the
hardware requirement is much lower. Anyway, this thesis focuses on the transpose direct
form FIR filters with no sharing block in CSD or DM realization, which is presented in

Figure 1.1.

x|n]

AR VA

Figure 1.1 General Transpose Direct Form FIR filter



1.4 Fixed-Point Representation
Fixed-point format is used to represent the coefficients since this format is
flexible both in DSP processing and VLSI implementations. This is because the binary
point is fixed at a certain location of a binary representation of a coefficient. We use this
representation to represent fractional numbers. A general fixed-point format for the
fractional number with a dynamic range of —1 to approximate 1 is shown below:
by @ bybyby ---bpjy (1.3)
where ‘e’ is the binary (radix) point.
According to Mitra [18], when the binary point is fixed, arithmetic operations are simpler
to implement and the positive fixed-point number is easy to represent. In general, there
are three formats to represent a fixed-point negative number. If we consider binary
representation as the main basis to represent the fractions, the three formats are sign
magnitude format, ones’ complement format and twos’ complement format. These
formats do apply to signed radix-2 fixed-point numbers. Note that the binary point plays

an important part in fixed-point representation.

1.5 Thesis Outline
Section 2 reviews previous work and research areas that are related to this thesis
and it will include an overview of the CAD design. Other main topics included are cost
calculations and optimization techniques that reduce the hardware requirement.
The following section will discuss the cost analysis of Binary, Canonical Signed

Digit (CSD) and Dempster and Macleod (DM) techniques. A simple explanation for



these representations is to produce hardware savings. The simulated results are presented
using the Matlab program for the ease of comparing each technique.

Section 4 describes and reviews the CSD optimization techniques that were
implemented in this thesis taken from previous research work done by other authors.
Basically it contains the procedure of all techniques with block diagrams and definition
function, while integrating the algorithm step by step and translating them into block
diagrams for future reference. The example results presented are also compared for
robustness in difference techniques.

Section 5 will introduce the new method, Dempster and Macleod (DM) technique
into the CAD as an added option for users and also to minimize hardware complexity.
The DM optimized algorithm for this technique is also presented with a block diagram.
When the filter coefficients are found, the coefficients will undergo optimization
techniques and then they are implemented only with the DM technique. The reasoning
behind this idea is discussed and example results from the Matlab program are presented.

Section 6 describes the computation of signal to noise ratio (SNR) in both cases.
The first case is one in which the user does not specify a SNR requirement while the
other case is to find the SNR value that meets the SNR requirement specified by the user.
Both the procedures are discussed and a pseudocode and example results are included in
this section.

Section 7 explains the routine of the CAD program. The features and block

diagrams are provided to simplify the explanation. This chapter includes the introduction



of the program and the procedure to run the program. It also discusses the reason that the
new cost function is introduced to the program.

The last section concludes this thesis based on the results discussed from the
previous sections. Future work is also recommended to future researchers who are

interested in improving the work done.



Section 2

Background

2.1 Other Filter Design Programs

Many programs have been written to construct a constant coefficient FIR filter
based on various user-defined parameters. For example, Matlab version 6-demo toolbox
for signal processing has a program that allows the user to compute a FIR filter with
many options. Intensive research into writing software programs that includes a hardware
implementation option has also been done by other researchers in the past. Research done
by Jain et al. [11] produced a FIRGEN program that automatically generated the
architecture and floorplan for integrated circuit fixed point FIR filters that achieves a high
sample rate with compact layout. Another example is the construction of a FIR filter
using the graphical toolbox available in Simulink toolbox provided by Mathworks in
Matlab version 6. The design is then translated into hardware programming language,
which produces hardware in Register-Transfer-Level (RTL) in VHDL that maps into a
FPGA using CAD tools. The paper written by Haldar et al. [12] uses this technique. The
authors presented their MATCH compiler that takes the Matlab input and implements the

digital filter design in a FPGA chip. While Husinga and Darren [1-2] wrote a Matlab



program which does takes certain technological specification into consideration. The
results from the program can be implemented in Xilinx FPGA’s or other targeted

technologies.

2.2 Cost Definition

Cost measurement is essential in order to evaluate the cost needed for a digital
filter design while performing any optimization routines. Most papers define the cost
based on the number of adders/subtractors and delay elements of a filter. Even so, cost
function is not a unique function. In Dempster [8] the cost is defined as a cost equation
for CSD representation, which is based on fewer adders needed for the multipliers
compared to the binary representation. The Dempster cost equation is represented in the

form of,

Cost =M x A(w)+ A+ D+a (2.1)
where
M is the number of multipliers or coefficients; A(w) is the average number of adders
expected from graph multiplier of wordlength, w; 4 is the number of structural adders;
D is the number of structural delays and o is the weighting factor, equivalent to the

number of adders in a delay.

In previous work done by Husinga and Darren[1-2] the cost function is defined
based on specific target technology. Therefore, different technology has a different
fundamental unit size and this will result in a different cost value for the different

technologies. Both Husinga and Darren estimated the cost using lookup tables, which

10



contain a list of fundamental cost units that represent a particular size of adders and delay
elements of the specific targeted technology. The following shows the general cost
function used by Husinga and Darren:

Cost = a(w)4 + B(w)D 2.2)
Both the a(w) and ﬂ(w) are technology dependent cost units of each adder and delay of
wordlength, w. The 4 and D are the number of adders and delays. The cost function is
just an estimated number to describe the hardware complexity. Cost function will vary
within different filter structures, hence cost is generalized as a function evaluation to aid

the optimization algorithms.

2.3 Order- Wordlength Tradeoff
There are different ways to compute the minimum wordlength required for a
digital filter. One approach is the use of the coefficients sensitivity function to compute
the required wordlength for each coefficient. Debrunner [21] uses this technique for
Infinite Impulse Response (IIR) filter design implementation. However, both Husinga
and Daren use the order and wordlength tradeoff technique introduced by Kodek [9].
Kodek introduced the construction of a graph where the cost product of order and
wordlength, Cost(Nb) versus the wordlength, b, is shown in Figure 2.1. Kodek found
out that at a certain point there is an optimum point that optimizes both the order and the
wordlength. The optimum point is referred to as a global minimum. He also noticed that,
as the wordlength increases further than the optimum wordlength, the curve becomes a

constant positive slope. On the other hand, when the wordlength decreases from

11



optimum wordlength towards zero, the wordlength will be too small to represent the
filter coefficient. Therefore, the filter specification will not be met. By observing the
characteristic of the graph, which is shown in Figure 2.1, Kodek drew some conclusions
and derived an equation that can compute the minimum wordlength from minimum
order. This method is very useful because when the order of the filter is increased
without changing the filter specifications, it will result in the decrease of wordlength
needed in the filter. This tradeoff provides the ability to find the best quantized
coefficients that will reduce the hardware area such as the number of CLBs for Xilinx’s
FPGA'’s. Section 4 explains the algorithm used for this method and for future reference

the notation N and b refer to order and wordlength respectively.
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Figure 2.1: Graph of Cost (Nb) vs b

Source: D. L. Husinga, Digital of Optimized Filter Using CSD Coefficient
Representation [1]. Master’s Thesis, University of California, Davis,
CA.1995.
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2.4 Scaling

Though scaling has been the oldest technique, it is still the best in DSP or
hardware applications. The drawback of using fixed point arithmetic for every addition or
subtraction operation in each stage of the filter is that overflows may occur. DSP
textbooks [17-19] use the norm and bound conditions to describe the scaling equation.
While Darren’s [2] approach is by scaling both the numerator coefficients and
denominator coefficients (for IIR filter only) separately, and Husinga [1] scales down the
inverse sum of the coefficients since the filter design is FIR filter. In previous papers,
there are several techniques such as using scale factor to reduce the number of nonzero
digits suggested by Serna [14] and using minimum weight representation (MWR)
approach by Yagyu [22], which modifies the filter coefficients with CSD representation
by using a scale factor approach. Another advantage of using scaling is to find the
coefficients with minimum hardware implementation cost. This thesis will use scaling
introduced by Husinga to overcome overflow and reduce the hardware complexity.
Section 4.3 explains the search method to find the optimum scale factor that will result in

the minimum hardware requirement.

2.5 Adder Extraction

The adder extraction technique was based on the work done by both
Soderstrand and Serna [15]. In previous work, Darren, Hunsinga and Balasubramanian
[1-3] used this method to further minimize the coefficients hardware requirement cost.

The idea is to reduce the number of adders by replacing the non-zero digit with zero and

13



check for specifications response of the new filter to make sure that the specifications are

still met; both Daren and Husinga included this technique in their programs.

2.6 Roundoff Error Analysis
Rounding and truncation after multiplication is often needed since all devices
only have finite wordlength. Roundoff error is modeled as noise, while roundoff error
can be avoided in FIR filters by making sure that the wordlengths are sufficient to
accommodate all mathematical operations. This leads to excessive hardware. Signal to
Noise ratio (SNR) is evaluated to make sure that the filter has a decent output
performance. Usually, for FIR filter the SNR is relatively large due to the zero feedback,
which means that it is easier to maintain the precision of the FIR filter coefficients.
Hartley’s [10] method of calculating SNR is used because the coefficients are
represented in CSD representation. Section 6 will explain the procedure for computing

SNR using Hartley’s method.
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Section 3

Cost Analysis of Binary, CSD and
DM Implementation

3.1 Introduction

In digital signal processing theory, the coefficient multipliers are represented in
the real number system with infinite precision. However, in order to implement these
coefficients in the digital hardware, a digital number system with finite length
coefficients that are compatible with the digital hardware is required. Since the ideal
coefficients are expressed in infinite precision, the hardware implementation of the digital
processing systems may not be able to represent the coefficients very precisely or
accurately. There are various types of digital number representations and usually digital
hardware, such as DSP chips and digital computers, use a form of the binary number
system or representation. Therefore, in this thesis, the digital number system or
representation will represent the coefficient multipliers of the FIR filter. Finally, the
digital number representations play an important role in hardware reduction of the filter

so Section 3.3 will demonstrate the hardware cost reduction using three different digital

number representations.
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3.2 Number Representations

U+

) 2 s
+T\ +

25
+ U by g N ) 1 =
LA S + F F
v v v
93 93 93

Figure 3.1: (a) Binary Implementation of Multiply by 93

(b) CSD Implementation of Multiply by 93
(c) DM Implementation Multiply by 93

3.2.1 Binary Representation

The binary number system is mainly used in modern digital systems and is
actually the combination of the digits {1,0}. In fact binary representation is favored by
digital applications because it is simple to represent the inherent on or off nature of
digital hardware. Fractional numbers can also be represented by radix-2 binary number
system by using a binary point to separate the integer part and the fractional part. That is
how binary representation can represent the coefficient multiplications of the filter. For
example, taking a simple example of a multiplier with the value 93, it can be represented
as

93=2%4+2*42"42242° (3.1)

16



From this representation, the number 93 can be written as an eight bit wordlength, which
is 01011101,. Figure 3.1(a) also shows the equivalent model of a multiplier of the value
of 93 in a binary representation. Also note that there would be four elements multiplied
by the power of two and four adders. Since the elements are just multiplied by the power
of two, this represents shifts of number that can be accomplished by appropriate hardware
wiring. Hence, multiplying by positive or negative integer powers of two does not require
real hardware. In the case of Figure 3.1(a) the four adders are considered the real

hardware while the multipliers are just hard wiring.

3.2.2 CSD Representation

A “signed digit” (SD) number system has the combination of {i, 0, 1}, where 1
represents a negative one. The signed digit number system is useful in designing high-
speed arithmetic machines. Since this is a radix-2 number system with three possible
digits (ternary), there are redundancies to represent a simple decimal number, which
make SD representation not unique. However, by selecting the SD representation with the
fewest non-zero bits from the list of redundant representations, we can minimize the
hardware required to represent a binary number. Canonical signed digit is a unique

representation of signed digit numbers such that there are no adjacent nonzero digits.

CSD format has a maximum of M nonzero bits, which is roughly one half that of

binary representation. Taking the same example as above, the CSD representation is

93=2"-2°-2"+2° (3.2)

177



The implementation of multiplying by 93 is shown in Figure 3.1(b). Comparing this to
the binary implementation, CSD only requires three adders or subtractors. Based on this
example, there is a 25% hardware saving over binary implementation. In addition, using
signed digit for fixed-point format will allowed negative fractions to be represented in
fixed-point format. The algorithm (described by Hwang [5]) that converts binary

representation of a constant number to canonical signed digit is presented in Appendix A.

3.2.3 DM Representation
The Dempster and Macleod (DM) [6-7] technique is another technique to
represent the multipliers in digital applications. The basic idea proposed by Dempster is
a multiplier that is factorized into a set of prime numbers, where the constraint is that the
coefficient must not be a prime number. To use the same example discussed previously,
the factored numbers are 3 and 31, which now can be two module multipliers. Notice that
the numbers are now prime numbers, therefore each factored number or module will be
represented by a new number system, which is the best way is to represent the factored
numbers in CSD representation. The following demonstrates that example in a
mathematical form.
93=3x31=(2' +2°)x(2° -2°) 3.3)
Figure 3.1(c) is the equivalent model of the Equation 3.3. The figure shows that the
multiplier is connected in a cascading style, so for this example, only two adders or

subtractors are required. In this case, there will be a 50% and 33% hardware savings over

binary and CSD implementation respectively.



3.3  Cost Analysis of Binary, CSD and DM Representation

Section 3.2 describes the three digital number representations with an example
multiplier that results in the reduction of hardware complexity. As the wordlength
represented by the multipliers becomes smaller, the chances of hardware savings by using
Dempster and Macleod (DM) technique over CSD technique are reduced. Table 3.1
shows the average number of adders needed for all combinations with the positive
dynamic range of four bits for each of the digital number representations mentioned in
Section 3.2. In other words, for a four bit wordlength, there are 0 to 2*-1 combinations,
which means there are combinations that range from 0 to 15. The phrase number of
combinations represents the number of multipliers. These multipliers are also used to
calculate the average number of adders by taking the sum of the adders for all the
combinations and dividing by the total number of combinations. For Table 3.1, total

number of combinations is 16.

Number Of Combinations Total Adders

Adder Binary CSD DM Binary | CSD | DM

0 5 5 5 0 0 0

1 6 9 9 6 9 9

2 4 2 2 8 4 4

3 1 0 0 3 0 0
Total 16 16 16 17 13 13

Average 1 1 1 1.0625 |0.8125|0.8125

Table 3.1 Average Number of Adders for 4-bit Number of Combinations
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By examining Table 3.1, the ADDER column means the number of adders. The Number
of combinations column gives the number of combinations while it is related to a specific
number of adders by referring to the ADDER column. The Total ADDERS column
displays the total number of adders of the required number of combinations. Observing
the highlighted row of the table on the previous page, it can be seen that under the
Number of combinations heading, there is only one combination for binary representation
and zero combinations for both CSD and DM representations. Therefore, the total adders
required are three for binary representation and zero for both CSD and DM
representation. The average number of adders produced by CSD and DM representation
is 0.8125. Nevertheless, both CSD and DM techniques show a 23.53% savings of adders
required over binary representation. For large numbers, which are determined by their
available wordlength, if they are represented in CSD representation, an additional bit is

required. For example, the number ‘14" in a four bit word length is ///0; in binary

representation, but in CSD representation, it is represented as / 00}03 .

The earlier case shows the average numbers for DM and CSD is the same due to
the fact that the wordlength is small. However with larger wordlength, the chances of
hardware savings using DM technique over CSD technique are much higher. For
discussion, observe Table 3.2 with eight bit dynamic range, which means that the
numbers range from 0 to 2%-1. The average numbers of adders for Binary, CSD and DM
representation are 3.0038, 2.1133 and 2.0078 respectively. The percentage savings for

CSD and DM over Binary representations are 29.65% and 33.16% respectively.
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Number Of Combinations Total Adders
Adders | Binary CSD DM Binary CSD DM
0 9 9 9 0 0 0
1 28 49 49 28 49 49
2 56 110 133 112 220 266
3 70 80 61 210 240 183
4 56 8 4 224 32 16
5 28 0 0 140 0 0
6 8 0 0 48 0 0
i 1 0 0] F 0 0
Total 256 256 256 769 541 514
Average 1 1 1 3.0039 2.1133 2.0078

Table 3.2 Average Number of Adders for 8-bit Number of Combinations

Number of combinations
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Figure 3.2: Histogram of Number of adders Vs Number of
Combinations for 8-bit wordlength

21




The histogram presented in Figure 3.2 is based on the data from Table 3.2. The vertical
axis represents the number of combinations that are required by the number of adders,
while the horizontal axis represents the number of adders. From this histogram, notice
that for the DM technique there are no combinations available starting from five adders
onwards which is the same for CSD representation. When the number of adders is two,
both CSD and DM technique achieve the highest number of combinations.

Another result is presented in Table 3.3 and the result is the average adder number
for all the positive combinations of sixteen bit wordlength. The average number of adders
for each combination is 7, 4.7778 and 4.3261 for binary, CSD and DM representations
respectively. Hence, in this case, the percentage savings for CSD representation over
binary representation is much higher, which is 31.45%. Similarly, the percentage savings
for DM technique over Binary representation is 38.2%. The results show a higher savings
for sixteen bit wordlength due to the number of combinations is significantly large
compared to the case for eight bit wordlength. If taking the consideration of comparing
DM technique over CSD representation, the percentage savings for eight bit and sixteen
bit wordlength are 4.98% and 9.45% respectively. The savings is increased by
approximately 5% between eight bit to sixteen bit wordlength. Relatively speaking, as the
wordlength increases the percentage hardware savings will also increase. The histogram
presented in Figure 3.3 is the graphical representation of the results from Table 3.3. By
obsewiné the histogram in Figure 3.3, the number of adders at the highest number of
combinations for CSD representation is five while for DM technique, the number of

adders where the highest number of combination is achieved is four. Also notice that for
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both the CSD and DM representations, there are no more combinations left starting from

nine adders onwards.

Number Of Combinations Total Adders
Adders | Binary CSD DM Binary CSD DM
0 17 17 17 0 0 0
1 120 225 225 120 225 225
2 560 1638 2133 1120 3276 4266
3 1820 6864 10140 5460 20592 30420
4 4368 16632 24631 | 17472 66528 98524
5 8008 22176 21072 40040 110880 105360
6 11440 14400 6522 68640 86400 39132
T 12870 3456 778 90090 24192 5446
8 11440 128 18 91520 1024 144
9 8008 0 0 72072 0 0
10 4368 0 0 43680 0 0
11 1820 0 0 20020 0 0
12 560 0 0 6720 0 0
13 120 0 0 1560 0 0
14 16 0 0 224 0 0
15 1 0 0 15 0 0
Total | 65536 65536 65536 | 458753 313117 283517
Average 1 1 1 7 4.7778 4.3261

Table 3.3 Average Number of Adders for 16-bit Number of Combinations
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Figure 3.3: Histogram of Number of adders Vs Number
of Combinations for 16-bit Wordlength

Table 3.4 shows the average adders for each combination for three different
number representations from four bit to twenty bit wordlength. Basically, Table 3.4 is
obtained by finding the average adder number for each combination for every
wordlength, which ranges from four bits to twenty bits. Figure 3.4 is plotted based upon
the data presented in Table 3.4. The plot illustrates the three different curves that explain
the adders savings using the three different techniques described by the legend. Overall,
the performances of DM and CSD representations are better than Binary representation.
By comparing DM and CSD representation, DM representation shows a promising result
in hardware reduction as the wordlength increases, but note that at wordlength from 4 bits

to approximately 5.5 bits both CSD and DM implementation produce the same average
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number of adders. By observing Figure 3.4, the slope computed for the binary, CSD and
DM technique are 0.498, 0.333 and 0.29 respectively. The slope for binary representation
is steeper than that for DM and CSD representation. Also note that the slope for CSD
representation is steeper than that for DM representation. This pattern shows a distinct
result that more adders are saved as the wordlength increases for both CSD and DM
representation. By taking Figure 3.4 as a reference to obtain the average number of adder

information, A(w), the cost function derived by Demspter shown in Section 2 can be put

into full use.
Wordlength Av?rage Adder Number for each Combination
Binary CSD DM

4 1.0625 0.8125 0.8125
5 1.5313 1.125 0.125
6 2.0156 1.4531 1.4188
7 2.5078 1.7813 1.7109
8 3.0039 2.1133 2.0078
9 3.5020 2.4453 2.3008
10 4.0010 2.7783 2.5986
11 4.5005 3.1113 2.8911
12 5.0002 3.4446 3.1785
13 5.5001 3.7778 3.4644
14 6.0000 4.1111 3.7525
15 6.5000 4.4445 4.0391
16 7.0000 4.7778 4.3261
17 7.5000 51111 4.6128
18 8.0000 5.4444 4.8999
19 8.5000 5.7778 5.1873
20 9.0000 6.1111 5.4751

Table 3.4: Average Adder Number for each Implementation
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Figure 3.4: Plot of Average Adder for Coefficient Multipliers with
Wordlength Range from 4-bits to 20-bits
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Section 4

CSD Optimization Techniques

4.1 Introduction

In previous work, Husinga [1] has demonstrated her ingenuity by incorporating
the three optimization techniques to find a set of optimum coefficients represented in
CSD representation. It is worthwhile to mention and revise all these techniques. Recall
that the three optimization techniques are order-wordlength tradeoff, scaling and adder
extraction. The purpose of optimization is to eliminate the adders’ requirement of the
filter coefficients. The restriction for each optimization process is that the specification of
the FIR filter must be maintained. The following subsections describe the three

optimization techniques and the results analysis which results in a reduction of adders.

4.2 Order- Wordlength Tradeoff

Matlab program is used to determine the coefficients and the order of a FIR filter
with required filter specifications. The coefficients are in infinite precision so in order to
determine the optimum wordlength that represents the coefficients, the optimum order

filter is computed. This optimum wordlength and order will be the guideline for the next
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optimization technique, and it is the primary step of the three optimization process. This
optimization technique is the implementation of Kodek’s [9] idea discussed in Section 2.
The idea is to determine an optimum filter order that meets the specifications with
optimum wordlength to represent the filter coefficients. This will result in the minimized

coefficients wordlength and consequently reduce hardware requirement.

4.2.1 Procedure for Determining Optimum Order and Wordlength

Remezord and Remez function available in Matlab will determine the overall
order and coefficients for any type of FIR filter. First of all remezord function will
produce an equivalent filter order and a set of coefficients that meets the filter
specifications. By taking these parameters as a guideline, remez function is used again to
determine the optimum filter order. This is done by reducing the overall order one at a
time and for each order we apply to the remez function again to generate a new set of
coefficients. These coefficients are feed to the fregz function to obtain the frequency
response data. This data will be evaluated to check if the filter specifications are met.
This process will repeat itself until an optimum order is found. The objective function
that describes the task of obtaining the optimum order is shown below:

mi

n ;
Nopt = arg i {reinez function that meet filter specﬁmnons} (4.1)
order

where Nopt is the optimum order.
Since there are four types of filters, which are lowpass filter, highpass filter, bandpass

filter and bandreject filter, the specifications are classified as the constraints for all the
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objective functions. The notation used to represent the filter specifications for all filter
types is presented as follow:

e Fsamp (fs) — Sampling Frequency (Hz)

e Fpland Fp2 - Passband Frequency (Hz)

e [s] and Fs2 — Stopband Frequency (Hz)

e Rp - Passband Ripple (dB)

e Rs— Stopband Ripple (dB)

These frequencies and ripple parameters give the characteristic of the frequency response

of the filter. To determine if the filter design meets the specifications constraint, the
specific magnitude frequency response,H(e""') is evaluated. There are two inequality

constraints and they are determined based on the criteria and the filter type prompt by the

user. The following are the two general inequality constraints.

max|201og, | (e ||-min|2010g,,|[H(e™ | |< &, 4.2)
max ZOIoglo‘H(ef“'] <R, (4.3)
. Frequency Range for Frequency Range for
Fiiter Type Passband Ripple,Rp Stopband Ripple,Rp
Lowpass O<w=<wp OsSOSON
Highpass OsSOSON 0<w<w,
Bandpass 0p1SO<Wp2 0<0<ms , Os2<O<ON
Band reject 0<w<wp1 , ®p2<O<ON 0s1<O<Ms2

Table 4.1: Frequencies Range For Passband Ripple and Stopband Ripple
of All Filter Types.
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Figure 4.1 presents the frequencies range corresponds to the two inequalities constrains
shown in Equation 4.2 and Equation 4.3. The purpose of inequality constraint is to meet
the passband and 