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EXISTENCE AND OSCILLATION THEOREMS FOR A CLASS OF

NON-LINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

1. Introduction. This paper is concerned with the existence
and oscillation of solutions of some initial value problems and boundary

value problems associated with the real, scalar differential equation
(1.1) y" + yF(t,y,y') = 0, astsb,

where F is a real-valued continuous function bounded above and below by
non-negative continuous functions F(y) and F(y) which satisfy certain
monotoneity properties. Section 2 below gives a more precise formula-
tion of the problem.

Nehari [5], [6], has established conditions under which, for

any positive integer n, the boundary problem

y" + yF(t,5°) = 0,

y(a) = 0 = y(b),

‘(1.2)

has a solution which vanishes precisely n - 1 times in the open interval
(a,b), (see[6; Thm. 3.2]). The conditions required by Nehari will be
seen, in Section 6 below, to imply the conditions which we require here
for equation (1.1), with the exception that Nehari does not assume a
Lipschitz condition on F, as is done in the present work. Because of

this assumption of a Lipschitz condition, the results of this paper>do
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not include the corresponding results of Nehari. However, since equation
(1.1) may involve y' explicitly, and since the function F of equation
(1.1) need not be an even function of y, the class of equations discussed
here differs considerably from that discussed by Nehari.

The differential equation

(1.3) g+ Y¢(tsy, A) = 0,

where A is a real parameter, was studied by Moroney (4], who employed a
Prufer transformation to obtain results concerning the existence and
oscillation of solutions of (1.3) on the interval [0,1], for boundary
conditions y(0) = 0 = y(1), y'(0) = 1, and also for more general boun-
dary conditions. The function ¢ was assumed to be continuous and non-
negative on 0 € t £ 1, -ee<y<eo, &t<A<oo, and to satisfy certain
conditions on behavior with respect to the variables y and A, and
extensive use was made of functions ;(y,)\) and c;(y,,\), defined, respec-
tively, as the supremum and infimum of ¢(t,y,A) on @ <= t<1. The
functions :F'(y) and %(y) used in this paper will be seen to have several
properties in common with the functions gand $ of Moroney. i
Section 3 below is devoted to results on existence and
oscillatory behavior of solutions of (1.1) which satisfy initial con-
ditions y(a) = 0, y'(a) = M. The principal theorems of this paper
appear in Section 4, where it is shown that for each positive integer n
the differential equation (1.1) has a solution which satisfies y(a) = O

= y(b) and vanishes exactly n - 1 times in (a,b). A similar result is

given for the boundary conditions y(a) = 0 = y'(b).
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In Section 5, a variational problem with an inequality side
condition is employed to give an alternate treatment of some of Nehari's
results concerning the boundary problem (1.2), under the additional
assumption that F(t,s) has a continuous partial derivative Fg(t,s).
Section 6 gives a discussion of a particular class of differential
equations of the form (1.1), which in turn includes the equation treated
in Section 5. The hypotheses used in Sectién 6 are similar in some
respects to the conditions assumed by Moroney [4], and the results of
the section serve to clarify the relationship between the results of

the present paper and the corresponding results of Nehari and Moroney.

2. Formulation of the problem. If F = F(t,y,r) is a real-

valued continuous function defined on
D: a=st=b, ww<y<oo, —0<r<oo,

a real-valued function y = y(t) defined on an interval [®,g] & [a,b]

will be called a solution of the differential equation
(2.1) y" + yF(t,y,5') =0

on [a,p] if y € C"[x,p] and y(t) satisfies (2.1) for all t e Ex,p].
We will be concerned with existence and oscillation of solutions

of the initial value problem

(2.1)  y" + yF(t,y,y") =

(2.2) y(a) =0, y'(a)

!
(@
-

IH:

s

and of the boundary problems
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(2.1)  y" + yFt,y,5') = O,
(2.3) y(a) = 0= y(b);
(2.1)  y" + yFt,y,5') = 0,
Bo:
(2.4) y(a) =0=y'(b).
The symbol D will always be used below to denote the set
[a,b]>< R X R, as at the beginning of this section. It will be assumed
throughout Sections 2, 3, and 4 that F(t,y,r) is continuous on D and
satisfies the following conditions:

CONDITION (I). F = F(t,y,r) is defined on D, and there exist

continuous functions F = F(y) and F= F(y), defined on (-oo,e0 ), with the
following properties:

(2.52) 0= ﬁ‘(y) < F(t,y,r) = E\‘,(y) for all (t,y,r) € D,

(2.50) #(y) = 0 if and only if y = 0, F(y) = 0 if and only if y = O,
(2.5¢)  y3>y1=0 or yp < yy =0 implies Flyp) = Flyy) and Flry) = F(yy),
(

2.54) lim F(y) = lim F(y) = +oe.

y » teo y » —eco

CONDITION (II). F(t,y,r) is locally Lipschitzian in (y,r) on

D; that is, for each point (T,N,p) € D there is a neighborhood V:

|t-T} < ., |y-nl< |r-p|<¥, and a k > O such that if (t,yy,77) and

(t,¥y5,75) are in VND then
IF(t,50,7)-Flt,55,r0)| = k(|yy-75| + |r-r,]).

A v
The functions $(y,A) and ¢(y,A) which are used by Moroney [4] in
discussing the equation y" + y¢(t,y,A) = O, as noted above in Section 1,
also have the properties (2.5a, b, c) for fixed A. The conditions (2.5)

arise quite naturally in attempting to generalize the problem (1.2) of
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Nehari. For example, if n is a positive integer, the differential

equation

(2.6) 7" + plt,y!) ¥ =0

satisfies the hypotheses required by Nehari in [5] and [6] if p(t,r) is
a positive continuous function which is independent of r. On the other
hand, (2.6) satisfies the conditions of the present paper if p(t,r) is

a continuous function having uniform positive lower and upper bounds on
[a,b] X R and satisfying a local Lipschitz condition with respect to r.
This can be seen by noting first that (2.6) is of the form (2.1) with
F(t,y,r) = p(t,r)y°® for all (t,y,r) € D; if P and p are defined as the
respective supremum and infimum of p(t,r) on [a,b] X R then E(y) = ; yA8,

F(y) = p y*® satisfy properties (2.5), and F(t,y,r) satisfies conditions

(I) and (II).

Let F = F(t,y,r) be continuous on D and satisfy the local Lipschitz
condition (II). It follows from standard existence and uniqueness
theorems, (e.g. [2; pp. 156-157]), that for each real number J there is
a largest half-open interval [a,ﬁﬂ)c:[a,b] such that the problem Ip

has a solution defined on [a,pﬂ). Furthermore, it follows that:

(i) yp(t) is the unique solution of I“ on any subinterval [a,F)
of [a’Pﬂ)’ and

TR

(i1) the functions y(t,ﬂ) = Xu(t) and y'(t,,O = v (t) are continuous

in (t,}l) on [a,/}lu), —00 < i< oo,

The symbol [a,pﬂ) will always denote the largest half-open

subinterval of [a,b] on which T

jl

has a solution. In particular, if ;P
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has a solution &(t) on the whole interval [a,b], then Pu= b and yM(t)

|t

!

s the unique solution of Ilugg [a,b].

It may be noted that the only use made of the local Lipschitz
condition (II) in Sections 3 and 4 is to insure the uniqueness of solu-
tions of (2.1), so that a uniqueness assumption could be substituted for
condition (II). The local Lipschitz condition is retained, however, for
simplicity of statement in referring to classical results.

THEOREM 3.1. Let F(t,y,r) be continuous on D and satisfy

conditions (I) and (II), and let m > O satisfy the condition

(3.1) F(m(b-a)) =

<

4(b-a)?

Then for all u €(0,m) the solution ylu(t) of the initial value problem
Iy exists on [a,b], and ylb'((t) >0 on (a,b); in particular, y,u(t) # 0 on
(a,b] for such values u.

For arbitrary M>0 let yM(t) be the unique solution of Iy
on [a’,@,u)' The continuity of yll on [a,/@#) insures the existence of an

interval [a,T) throughout which y,;(t) > 0. Define T =T, by

(3.2)  T=sw {T|Tela,p), 7,(t) >0 forall t < [2,0)}.

We note that a < T sp,u and that T is a well-defined function of M
Clearly Xu(t) >0ona<t<T, so(2.1), with (2.5a), implies 3?1'(‘0) <0
on a <t <T; hence yl;(t) is decreasing on [a,T) and satisfies

0 < y/;(t)<,u for all t € (a,T). Therefore, L = limt-»T-y/:l(t) exists
and satisfies 0 = L < M.  Also, since y/;(t) >0 on [a,T), ylu(t) is

increasing on [a,T), and
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t !
0 < %(t) =[ yﬂ(s)ds < /u(t—a), a<t<T,

so that n Elimt_’T_sy‘(t) exists and satisfies

(3.3) 0= n= uT-a).

If T= p/u = b, and y,u('l‘) and y/:((T) are not defined, we may

define

(3.4) (D) =1 = tmg g 3,(0), 7u(T) = Timgp 74 (%),

The function yy(t) is then a solution of (2.1) on the closed interval
[a,b], with y/:((t) >0ona<t<band yﬂ(t) >0ona<t=b, so that
y,u(t) is the desired solution of IM on [a,b]. Thus, to complete the
proof of the theorem, it suffices to show that T = Bu = b holds for all
M€ (0,m), where m satisfies (3.1). That such an m exists follows from
the properties of the function \15

In the remainder of the proof, the subscript u on y,u will be
omitted, so that y#(t) is denoted simply by y(t). For M >0, we note
first that if T < g, then y'(T) = 0, for otherwise y'(T) > 0, and the
continuity of y' then implies that y'(t) > O in some interval [a,T+€),
€ >0, which contradicts the definition of T.

Now assume that T < B, so that y'(T) = 0. If both sides of
(2.1) are multiplied by 2y', and use is made of the condition y'(T) = O,

it follows that
(3.5) 2(¢) /TF[ (s), y'(s) Ioy(s)y' (s)a A
. 1 = 3 ) ! ! ’ = t < .
y . S,y\{s y'(s yis)y'(s)ds a 7

The function z = y(s), a< s = T, is strictly increasing on [a,T] and

therefore has an inverse s = Y(z), 0=z = y, where 1 = y(T).



Substituting in (3.5), one obtains

(3.6) y'2(t) f(FF/’ ,2,1/¥ (2) ] 2zdz.
vyt

Using (3.6), we write
T-a _f dt _ITM f f FW(z),2,1/¥'(2)] 22dz) 1/ '(t)dt.

Since y(a) = 0 and y(T) =%, this implies

n o -
(3.7) T—a=L ([ F¥(z),z,1/¥'(z) ] 2zdz) 1/2dy,
Y

and (2.5a) and (3.7) imply

T-a Zf”(fn (z)2zdz)

0 7y

Substitution of y = Qv gives

1 M, -1/2
T-a ?.j;) (j;lvF(z)dez) ndv

and substituting z = ys then yields

1 5 1, 1,
T-a 2] (f]f F(Y)s)ZSds Y)dv = f / r)s 2sds) " “av.
0 v v

el

By (2.5c), F(ys) < F(N) for all se[v,1], so

T-a = f fv 2sds ] = [P T7V/2 fo A 24,



and therefore

(3.8) T - a2 Z(Em) Y2,

From (3.3), we have the inequality
0O<n= Iu(T—a) = fl(b—a),
which, with (2.5¢) and (3.8), implies

1-a > DHp-a))) 2

For m as in the statement of the theorem, it follows that if O <M=mn
then T - a =2b - a. Since ﬁ,u"' b, this contradicts the assumption made
above that T <pﬂ, and hence T =/3,u = b holds if O <M < m. The case

T =, < b is impossible, for y(T) and y'(T) could then again be defined
by (3.4), and y(t) could be continued as a solution of (2.1) to an
interval [a, /B,u+6)’ § > 0, which cgntradicts the definition of 8.
Therefore T = /B'u = b for all u such that O < 4 < m, which, as noted
above, completes the proof of the theorem.

We now prove two lemmas which will be needed for Theorem 3.2
and for the results in Section 4. In both these lemmas, the interval
[a,/e/a) is again defined as in the remarks preceding Theorem 3.1. -
LEMMA 3.1. Let F(t,y,r) be continuous on D and satisfy

conditions (T) and (IT), and for € R let y/u(t) be the unique solution

f the initial value problem I, defined on [a,/sﬂ). If y'u(t) has only

finitely many zeros on [a,/eﬂ), then Bu= b, and yﬂ(t) can be extended to

the closed interval [a,b] as a solution of I
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We again omit the subscript on Yu and write y(t) = Xu(t).
Given y(t) = Xﬂ(t) as stated, let T be the largest zero of y(t) on
{a,ﬁw). Attention will be restricted to the case in which y(t) > 0 on
(Z,ﬁ%); the proof for the case y(t) < 0 on (T,8,) is similar. From
(2.1) and (2.5a) it follows that y"(t) =< 0 on (7,4,), so y'(t) is
decreasing on [T,/%). Therefore L = limt’ﬁu_y'(t) exists and satisfies
—0o = L <y!'(T). Also y(t) is bounded above on (’C,/Glu), so that there
exists a finite constant M > 0 such that y(t) < M on (T}/%).

To see that L # —eo, note that if t; and t are in (T,Au)

then

t2 )
rileg) - (e = [ Fnear = | Pp(e)sley(e),y (0)]at,
% b

and hence

. .
(3:9)  |7(t) - 3 ()] = | ]t (0 (e))at | = 100" leyty
1

Thus y'(t) is Lipschitzian on (T,A,) and hence bounded, so L is finite.
# 3

From (3.9) it follows also that lim y(t) exists. If y(t) and y'(t)

"
are defined at t =/3/X by

(3.10) v(gy) = 1imt,ﬂﬂ_y(t), v () = Ly

then y(t) is a solution of (2.1) on [a,éu], and if Bu< b then y(t) can
be extended as a solution of (2.1) to an interval [a,;&(+ ), 6 >0,
which contradicts the definition of;%. Therefore /%(= b, and y(t) as
extended by (3.10) is a solution of I# on [a,b], which completes the

proof'.
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LEMMA 3.2. Let F(t,y,r) be continuous on D and satisfy

conditions (I) and (II). For Yo € Ry let yo(t) be the unique solution

of the initial value problem Iﬂo on some closed interval [a,c] € [a,b].

Then there exists an m > O such that for all u e Q&)- m, My + m) the

solution %u(t) of %u is defined on the interval [a,c]. If yb(t) has

precisely n zeros on the open interval (a,c), then: (i) if yo(c) # 0,

there exists a 6 € (0,m) such that for all me(ug -&,Mo +6) the

M
and xu(c) 0; (ii) if yo(e) = 0, there exists a 8 € (O,m) such that

solution Xu(t) of I, defined on [a,c] vanishes exactly n times in (a,c),

for all M €(uy - 6%, Mg + 67) the solution y,(t) of I, defined on
[a,c] vanishes either n or n + 1 times in (a,c].

The first conclusion of the lemma follows from stanéa;d
embedding theorems for solutions of differential equations, (e.g.
[2; pp. 163-164])).

To proceed to the proof of the second part of the lémma; let
tgst1s ++-stp€[a,c) be such that
(1) a=ty<ty<..=t <c,
(i1) yo<tj) =0, (j=1,...,n),
(iii) yo(t) # 0 for t € (tj_l,tj), (j =1,...,n), and for t € (tysc).
Then yé(tj) #0, (j =0,1,...,n), because the only solution of (2.1)
satisfying y(T) = 0, y'(T) = O for some T € [a,b] is y(t) =0, a = t = b.

Thus there exists a ¥ >0 such that for each of the intervals

Vg = [2,a%®), ;= (t5-% t4%),  (§ = 1,...,n),

yé(t) is of constant sign in Vs, Vif\Vj =@ for i # j, and Vj<:[a,c),
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(j =0,1,...,m). Form >0 as in the first conclusion of the lemma,
the continuity of yﬂ(t) = y(t,u) and yl&(t) = y'(t,/u) in (t,,U), as noted
in the remarks preceding Theorem 3.1, insures that y(t,u) and y'(t,u)
are uniformly continuous on any compact set S: a=t<=c, l/.A-,uOI = my,
where my is an arbitrary fixed number satisfying 0= m,; < m. Thus for
arbitrary € >0 there exists a O € (O,ml) such that if hu—)uo‘ <6
then |y(t,u) - yo(t)l< € and |y'(t,u) - y4(t)] < & for a1l t € [a,c].

It follows that there exists a 61 € (O,ml) such that if
l,u-,uol < 8y then y}l(t) does not change sign on Vj,(j =0,1,...,n), so
y'u(t) has at most one zero on each Vj,(j =0,1,...,n), and, in particu-
lar, the only_zero of %(t) in Vy is t = a. Now if yo(q) # 0, the only -
zeros of yo(t) on (a,c] occur in the intervals Vj’ (j=1,...,n), and
¥o(t) changes sign in each Vj’ (j =1,...,n); consequently there exists
a 6, €(0,m) such that if |u-ug|=< 6, then y'u(t) vanishes in Vs,

n
(3 =1,...,n), and y,(t) # 0 for t € [a,c] - jL:JO Vj' Therefore, if

Y,
4 H
8=min{51,82} then Ip—pol < § implies that y,u(t) exists on [a,c] and has
exactly n zeros in (a,c), and y)u(c) # 0, which completes the proof for
the case yo(c) $ 0.

| If yo-(c) = 0, then for cq €(ty,c) the preceding argument assures
the existence of a &3 € (O,my) such that if |p-py| < 83 then y,u(t) is
defined on [a,c] and has exactly n zeros in (a,cl), and y#(cl) 0. A

similar type of argument shows that there exists a 64 € (0,m,) such that

1
if t,u—,uol < 84 then yp(t) has at most one zero in (cl,c]. Thus if
§ = min {63, 64}, then '/“'/“O‘ < g* implies that ylu(t) exists on [a,c]

and has precisely n or n + 1 zeros in (a,c], which completes the

proof.
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Again, let F(t,y,r) be continuous on D and satisfy conditions
(I) and (II),and fér eacir; MER let y,u(t) be the solution of the
initial value problem I u on [a, ,3,,_(). It will be proved inductively that

for every positive integer n there exists an Mn > 0 such that if /A>Mn

then y,u(t) has at least n zeros on (a,IB,u)., The theorem will be stated
formally following the discussion for the case n = 1, because certain
expressions in the statement of the theorem arise naturally in this
discussion.

As before, the subscript u on 3:0( is omitt.ed. Assume that

>0, and, as in the proof of Theorem 3.1, define T = T/“ by
= sup {T | Tela,By), y'(t) >0 for all t € [a,7) 3 -

Then T is a well-defined function of  for >0 and satisfies
a<T é[Bﬂ. As shown in the proof of Theorem 3.1, either T 4(3/45 b so
that y(T) and y'(T) exist, or T = b and y(t) can be extended to [a,b] as
" & solution of (2.1) by use of equations (3.4); also, if T<,B,u, then
y'(T) = 0.

Multiplying both sides of (2.1) by 2y' and integrating, we
obtain B

t

(3.11) 712(¢) - y'2(a) +f Pls,y(s),7'(s) oy (e)y' (s)ds
a

t

0, a=t=h.

i

y(s), s =¥(2),

As noted following equation (3.5), one may substitute z

0=z =y(T), to obtain, with y'(a) = M, the equation

(t)
(3.12)  y'3(t) = 42 -fy F[Y(z), z, 1/¥'(2)]22dz, a < t = T.
0
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In particular, with N=y(T),

7
(3.12)) y12(T) =,u2 -jo F[¥(z),2,1/4'(2)]2zdz,

which implies that
2 0
(3.13) u- = F #(z),2,1/¥'(2)]2zdz,
0
with equality holding if and only if y'(T) = 0. From (3.12) and (3.13),
it follows that

712 (t) zf;(?tl)? W(z),2,1/¥'(z)]22dz,

and the use of property (2.5a) then shows that

(3.14) y'z(t) Zf?t§(2)2zdz, ast=T.
y

Now

T ~-a-=

and, in view of (3.14), it follows that

T
T-a<= ﬁ‘( 2zdz _1/2 '(t)dt.
L(fy(t)a 12011

By a change of variable of integration, with y(a) = 0, y(T) =7, this

takes the form

(3.15) T-a sfc)”(f”ﬁ‘(zﬁzdz)—l/zdy,
y
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and the substitution y =1Nv, followed by the substitution z =ns,
leads to

1 rl.
T-a .<_f ([ F(Y[S)QSdS)_l/de
0 v :

1/2 1, )
f [ qs 23ds dv +[ j F r)s\?.sds) L/2dv
v 1/2

1/2 1

1 1
= ( ()?S )2sds) 1/2dv +f (f %‘(%—n)2sds)-l/2dv.
}1/2 1/2 Jv

Consequently,

1/2 1
T - as(ﬁ%m)'m[fo /u-(%)Z)"l/ fav + [ (1vA) Y 2]

1/2

L .1 1/2L
- (ﬁ(%)?))'l/z[ﬁ +sin 1 - sin”t %‘] = (FEM) 1/2(1/5 +‘13'T),

and thus

(3.16) v-a=xBEN, k=104 /)

In order to make use of this inequality, we need to show that

) > o0 as oo, From (3.12') it follows that

(3.17) _,/L(z = y'2(T) +fo)?F["-}/(z),z,l/’l}/'(z)}szz, )
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and hence, by (2.5a),

2 5 n.
= y!*(T) + F(z)2zdz.
/IA y j;) 2dz

By (2.5¢), F(z) is non-decreasing on [0, 1), and consequently
/uzs y'Z(T) + ]'”F‘()?)szz,
0
so that
(3.18) ,u2 = 73(1) + nF(y).

As noted above, v'(T) = 0 if a< T < b, while if T = b, the fact that

y'(t) is decreasing on [a,T] implies that y'(T) < —)_7" Thus, in either
b-a

case,

and therefore []»oe as Mweo. Now (3.16) and (2.5d) imply that

(T - a) >0 as N> oo, and consequently that (T - a) =0 as Moo,

In particular, there exists an M > 0 such that u=>M implies T < b,
Assume that M >M so that T < b. Then, as noted previously,

y'(T) =0 and T< ,6/'(. If tl is defined as
ty = sup {T|Te(T,p), y(t) >0 forall t € (1,7) },

then, since y(T) > 0, it follows that T < t; = @, If £, < By then y(t)

and y'(t) are defined at t = ty; if ty = Pus then y(t) has no zeros on
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(a,p/l), so that Lemma 3.1 implies that B, = b and y(t) can be continued
to the closed interval [a,b] as a solution of (2.1), and y(tl) and y'(tq)
are defined by this extension. Thus, in either case, y(tl) and y'(tl)
exist; in particular, if t1< /3/1’ it follows from the definition of t;
that y(t;) = O.

Multiplying both sides of (2.1) by 2y' and integrating, and
using the fact that y'(T) = 0, we find that

t
(3.19)  y'3(t) +L Fls,y(s),y'(s)] 2y(s)y'(s)ds = 0, T =t = tq.

Since y(t)> 0 on (T,t;), (2.1) implies that y"(t) < O on (T,t1), so
that y'(t) is decreasing on [T,t1], and consequently, y'(t)< O oﬁ

(T,t7]. Thus y(s) is strictly decreasing on [T,tl),- so the function
z = y(s), T =s= t1, has an inverse s = ¢(z), y(t) = z=n=y(1).

Substitution in (3.19), followed by the use of (2.5a), then yields

(3.20) 712(t) Zj'/(?tj‘(zﬁzdz.
y

Now

t, - T= dt =
T T

Jyre(e)
so, from (3.20),

Y107, -
ty - TéfT-—-(f(tg'(z)sz@ 1/2 y'(t)at .
v(t)

Changing the variable of integration and using y(T) = /) gives



” p )?I\
(3.21) ;-7 s[ §f)7b”“(z)2zdz)‘l/2dy ﬁfo (f P(3)22dz2)" Y 2ay.
y{t )7y y

The right-hand side of inequality (3.21) is precisely the same as that
of ineqﬁality (3.15), and hence the same steps that led to (3.16) now

lead to the inequality
(3.22) t; - T =K (ﬁ“(%—n))'l/z, K= %—(77+‘/§),

Together, (3.16) and (3.22) imply that

(3.23) t] -a= K (ﬁ(%)]))'l/z, K = 2K.

It follows from (2.5d) and (3.23) that (tl - a) %0 as ) = o2, and
hence that (tl -2a) >0 as Moo, since oo as e oo,

Thus, for sufficiently large positive Y, the value tl exists
and satisfies t; < b. Because t; < b implies that y(t,) = 0, there
exists an My > 0 such that if 4 >M; then y(t) = ylu(t) has at least
one zero on (a,b).

To obtain an inequality for t1 - a directly in terms of M, we

recall that if T < b then y'(T) = 0. With y'(T) = 0, (3.18) becomes

(3.24) mo=n" F).

Now ¥() increases from 0 to oo as n increases from 0 to oo, so for

every M = O there exists a unique U = U(/u) such that
(3.25) =17 ¥u).

U(,u) is an increasing function of u on [0,e0) and satisfies U(0) = 0,
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U(lu) > 0 as J=oo. From (3.24) and (3.25) and the monotoneity of

¥, it follows that

(3.26) N =N = T(W,

which, with (3.23) and the monotoneity of F, implies that
(3.27) 6, - a=k (Fluw) 2,

which is the desired inequality.
For pM>M;, so that t, € (a,b) and y(ty) = 0, we also obtain
an inequality for Iy'(tl)l in terms of j; indeed, if y(t;) = O,

inequality (3.20) implies that
12 > n. _ R
(3.28) y (tl) = . F(z)2zdz =V°(R).

The function V(}) = V2(N) thus defined in an increasing function of N
on [0,0), with V(0) = 0, V(§) =00 as N+ ee. Consequently, by (3.28)

and (3.26), we have
(3.29) [y (el = v(p) = v(U(W) = w(w).

The function W(Iu) thus defined is also increasing on [0, o) and
satisfies W(0) = 0, W(/tl) = o0 as M=oo; hence (3.29) implies Iy'(tl)lvw
as [+ oo .

Tt has been assumed above that y'(a) = 4 >0. If M=<0, =
similar discussion holds. In this case the results corresponding to

(3.27) and (3.29) are

/2

(3.27") 6 - a=k (FloCiun) ™7,



(3.291) Iy (6| = w(ul)

With U, W, and Kl as above, we have the following theorem,
which has just been proved for the case n = 1:

THEOREM 3.2. Let F(t,y,r) be continuous on D and satisfy

conditions (I) and (II). For M €R, let ylu(t) be the unique solution

f the initial value problem I,u defined on [a, /B/‘) Then, for each

positive integer n, there exists an M, > O such that if /‘>Mn then

yM(t) has at least n distinct zeros on (a,/BA).

For IL,(>Mn, if tg,tq,...,t, are the first n + 1 zeros of yﬂ(t)
on [a,/s,a), arranged so that a = t5 < t] < ... < t;, and if d; (t ),

(jF: 1,2,...,n), then
(1) la;) = W, (5=1,...,n), and
(i1) 6oty < KRGO} Y2, =),

where the exponent denotes repeated composition of functions and WO

denotes the identity function on [0,e0).

The theorem has been proved for the case n = 1. Suppose that
it holds for n = k, and for U >M, let y(t) be the corresponding
solution of IM on [a,p/-‘). If ¢ = y'(ty), where t, is the k™0 zero
of y(t) on /3/4 then dj # 0, because of the assumption that (i)
holds for n = k. We restrict attention to the case in which dk > 0,
since the discussion for_ the case dk< 0 is similar. With 4, > 0,

define

Teer = swo{T|Telt,,B), v'(t) > 0 for a1l ¢ € [t,,7)} .
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Then Tk+l is a function of M for M >Mk’ and by arguments similar to
those used in the proof of Theorem 3.1, either Tk+1<,3,u§ b, so t}lat
y(Tk+1) and y‘(Tk+1) exist e2d y'(Ty4q) = 0, or Tyt1 = b and y(t) can
be extended to [a,b] as a solution of (2.1), so that y(Ty4q) and
y'(Tk+l) can be defined by equations similar to equations (3.4).

Let Nyqq = y(Tk+l). The argument used in the case n = 1 to
derive the inequality (3.16), with a, M, 1, and T replaced by tys dys

I?k+1, and Tk+l’ respectively, now shows that
A -1/2 1
(3.30) Teey - b = KER M@ D72, k= 274 y/3).

The argument used following (3.16) to show that ] » oo as oo now
shows that /]y, #eoas 4 »oo. From (i), with n = k, and the

properties of W, we have Idkl oo as Us oo, and hence My .q > ocas
JA=oo. Therefore, from (3.30), Ty,q - ty =0 as U +oo. From (ii),

with n = k, it follows that tk - a +0 as U+oo, (onsequently,

Uiy ol Tygg = @) = Limy [Ty - 1) + (4 - 2)] =0,

00

S0 Tk+1< b for sufficiently large (4 >0.
As noted above, y'(Ty ;) = O if Ty43 < b, and for M large
enough so that Ty, < b it follows, as in the proof of the inequality

(3.26), that

(3.31) M+ = 0(dy),

where U is the function defined by (3.25). Then (3.30) and (3.31)

imply

(3.32) Tyt - = K(f‘[%‘U(dk)])-l/2°



22

Next, for Tk+1< b, we define
tyrn = 59 T T€(Ty, 80, v(t)> 0 for all ¢ < (T,7)} .

It follows, as in the proof for the case n = 1, that either t .4 =
P'ur b and y(t) can be extended to [a,b] as a solution of (2.1), or
ty47 < b, in which case tk+1</3,4( and y<tk+l) = 0.

It now follows as in the proof of (3.22) that

Arl -1/2
tk-f-l - Tk+15 K (F[§ nk"‘l]) ’

and hence that

(3.33) Yy = Tyn = & (PLlua) D72,

From (3.32) and (3.33), it then follows that

A -1/2
tiery - S K (FIRUQ) D 7, Ky = 2K,

and application of (i), with n = k, then gives the inequality

ard -1/2
beer - b = K (FIS0(00 ) 2,
k
where W denotes repeated composition of the function W defined by
(3.29). Thus (ii) holds for n = k + 1.
k
Since (ii) holds for n =k + 1 and UW (U) » ec as Moo,

there exists an My, > O such that if Iu>Mk+l then ty4q < b, so that
tre1 = By 2nd y(tyiq) = 0. Thus M >Myyy implies that the solution

of I,u has at least k + 1 zeros in (a,/B/a).
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Finally, for p>M ., so that ty) < Pu and y(ty) = 0, it

follows as in the proof of (3.29) that

(3.34) ldk+1| = W(dy).

Then (3.34) and (i), with n = k, and the fact that W is an increasing

function, imply that

8l = W),

so that (i) holds for n = k + 1. Thus we have shown that if the theorem
holds for n = k, and if dk > 0, then the theorem holds for n = k + 1.
Since for d; < O the desired result follows by a similar

argument, the result of the theorem follows by induction.

4. Existence theorems for the boundary problems B and Bj.

The boundary problem B, restated here for reference, is

y" + yF(t,y,y') =0, a=t=b,

y(a) = 0 = y(b).

Using the results of Section 3, we now prove the following result:
THEOREM 4.1, Let F(t,y,r) be continuous on D and satisfy

conditions (I) and (II). Then there exist values Uy, (n= 1,2,...),

0<fy<My< ...<u, < ..., such that for each n the solution Y (t)

n

of the initial value problem I,U is defined on [a,b], has exactly
n

n - 1 zeros on (a,b), and is a solution of the boundary problem B.

For each M € R, let y}i(t) be the unique solution of the
initial value problem I U defined on the largest possible subinterval of

[a,b]. 1f Xu(t) is not defined for all t € [a,b], its domain is then

-~
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a half-open interval [a, Iglu), as noted in the remarks preceding Theorem
3.1.

Given a positive integer n, we define

M, = sup { m|m >0; if O<pM<m then Xu(t) ig defined on [a,b] and has

at most n - 1 geros on (a,b) } .

Such values of m > O exist, by Theorem 3.1, so Y, > O, and Theorem 3.2
implies that M, = M, where M, is defined as in Theorem 3.2, so O=M < ©2,

Immediately from the definition of Mo the following condition holds:

(C): If O< U<M, then ylu(t) is defined on [a,b] and vanishes at

most n - 1 times on (a,b).

y, (t) of I, is not defined on [a,b]. By Lemma
My My
3.1, % (t) then has infinitely many zeros on its domain [a,/a/a). There-
n
fore we may choose wé[a,p ) such that y (w) # 0 and y_ (t) vanishes n
" An A
times in (a,w). By Lemma 3.2, there exists a &; > 0 such that if

Suppose the solution

I’.( -,un|< 51 then y:(t) is defined on [a,w] and has n zeros in (a,w).

s

Thus if M —61 <M< (M, then (t) has n zeros in (a,w), which con-

Tu
tradicts condition (C). Therefore y#(t) is defined on [a,bl].
Next, suppose that ;5:“ (t) has k zeros on (a,b) for some

n
k>n -1, Then Lemma 3.2 implies the existence of a 62 > 0 such that

if 'Iu—}.(n|< 62 then ylu(t) has at least k zeros on (a,b). Thus, if
My - 6o <M< M, then y'u(t) has at least k zeros on (a,b), which contra-
dicts condition (C), since k >n - 1. Therefore y (t) has at most n - 1

: n
zeros on (a,b).
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Next we show that (b) = 0. Assume the contrary, and let k

T
(

be the number of zeros of y (t) on (a,b). By the above, k = n - 1. By

Lemma 3.2, there exists a 53n> 0 such that if |/“‘/"n| < 83 then yp(t)
is defined on [a,b] and has exactly k zeros in (a,b). For m satisfying
o= m< pp +53 it follows that if O<p<m then ylu(t) is defined on
[a,b] and has at most n - 1 zeros on (a,b). This contradicts the defi-
nition of i, and therefore 3;un(b)_ = 0.

Now with y, (b) = 0, supvose that 374 (t) has exactly k zeros
in (a,b), where k < 2 - 1. Then Lemma 3.2 asrslures the existence of a
84> 0 such that if l/,( - Ml = 54 then y}l(t) is defined on [a,b] and has
either k or k + 1 zeros in (a,b). Since k + 1= n - 1, this leads, as
in the preceding paragraph, to a contradiction of the definition of P
Therefore y, (t) has at least n - 1 zeros in (a,b).

Comgining these results, we conclude that M, > 0 and that
y,un(b) = 0 and yﬂn(t) has exactly n - 1 zeros in (a,b). Since n was an
arbitrary positive integer, these results hold for n = 1,2,... . The
fact that PnE Mg for n< m follows from the definition of Hn and Ao
and since y,“ (t) has exactly n ~ 1 zeros on (a,b), it follows that

n

Pn< My for n< m, which completes the proof of the theorem.

The boundary problem BO is defined by

y" o+ yF(t’y,.V') =0, a=t=b,

y(a) = 0 = y'(b).

THEOREM 4.2. Let F(t,y,r) be continuous on D and satisfy

conditions(I) and (IT). Then there exist values )\n, (n=1,2,...),

0< >\1< el < ?\n< «««, Such that for each n the solution 7\ (t) of
n
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the initial value problem I,\ is defined on [a,b], has exactly n - 1
n

R T L

For each M€R, let ylu(t) be defined as in the proof of
Theorem 4.1, For each positive integer n, let Ay be as in Theorem 4.1,
so that y‘un(t) is a solution of the boundary problem B with precisely
n - 1 zeros on (a,b), and ylu(t) exists on [a,b] for all positive

U= iy Then yl;n(b) + 0, and we define
A, = inf {a|o<p, yA(b)yAn(b)> 0 for o<u=p,}-

From the continuity of y/l(t) as a function of (t,fl), yll(b) is contin-

uous in f4, and consequently (b)y' (b) > 0 for all M sufficiently near

y-l
MMy
Ji,» So that )\n< JTae
If y)'\ (b)y}l (b) > 0, then, by the continuity of yl"((b) with
n 0 y
respect to M there exists a 81 > 0 such that if “’L—/\n' < 51 then

yll(b)y/;n(b) > 0. Thus y/l(b);;‘ln(b) >0 for A — 6= M <M, which con-

tradicts the definition of )\n, and therefore y)'\ (b)y! (b)= 0. If
n n

y,'\n(b)y}'ln(b) < 0, then, by the continuity of y,&(b) in 4, there exists
a §,> 0 such that yll'l(b)y,ln(b) <0 for |u- )‘“,' < 6,, and, in particu-
lar, for /\n< M= /\n + 82. This contradicts the definition of /\n, and
it follows that y/{n(b)ylin(b) = 0, so that y){n(b) = 0.

If k is the number of zeros of yhn(t) on (a,b), condition (C)
) o_f the proof of Théorem 4ol implies that k€ n - 1. It will be shown
that the assumption that k « n - 1 leads to a contradiction of the
definition of A, so that k= n - 1. If k<n - 1, then since y) (b) = 0,
we have yl\n(b) # 0, and it follows from Lemma 3.2 that y,u(t) has Ie}xactly

k zeros in (a,b) for all H sufficiently near A, - Because vy (t) vanishes
n



27
exactly n - 1 times in (a,b), it follows from Lemma 3.2 and condition (C)
of the proof of Theorem 4.1 that XM(t) has exactly n - 1 zeros in (a,b)

for all M in some interval (,“ - £, ,un] . Then, if % is defined as

n

¥ = inf {0‘{)\n 2 0= Uy, ylu(t) has exactly n— 1 zeros in

(a,b) for Tg<u é/,(n} ’

it follows from the preceding remarks that )\n< ¥ < ,L(n.

Let h be the number of zeros of y,z\(t) in (a,b). If y,a‘(b) F o,
then Lemma 3.2 implies that y#(t) has exactly h zeros in (a,b), for
all M sufficiently near %, and it then follows from the definition of
¥ that h = n - 1. Thus there exists a 63 > 0 such that if ¥- 8, <p="
then yM(t) has exactly n - 1 zeros on (a,b), which contradicts the defi-
nition of ¥; therefore y,x(b) = 0.

Since y%(b) = 0, Lemma 3.2 implies that for M sufficiently near
v, ylu(t) has precisely h or h + 1 zeros in (a,b), and it then follows
from the definition of ? that either h=n-lorh+1=n-1, If

=n -1, then ylu(t) has exactly n - 1 or n zeros in (a,b) for u

~sufficiently near %, and since y“(t) has at most n - 1 zeros in (a,b)
for M<M , it follows that there exists a 84 > 0 such that if
T - 64 < M <7 then y,u(t) has exactly n - 1 zeros in (a,b), which con-
tradicts the definition of %. Therefore, h+ 1 =n - 1, so that ya‘(t)
has exactly n - 2 zeros in (a,b) and satisfies y,d‘(b) = 0, while y:“ (t)

n
has exactly n - 1 zeros in (a,b) and satisfies y (b) = 0. Since all
n
the zeros of 3:u (t) and y’d‘(t) are simple zeros, it follows that
n
y,b"(b)y' (b)< 0, and since ?‘>)\n,'this contradicts the definition of
n
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’\n' Thus the assumption that k< n - 1 has led to a contradiction, so
k=n -1, and the proof is complete.
It may be noted that, under the hypotheses of Theorems 4.1 and
4.2, there also exist negative values ,un, 0 >,ul > ... >Iun> «vey and

}\n, O>)\l> >}\n> «++y such that the conclusions of Theorems 4.1

and 4.2 hold for the corresponding solutions y

My

value problems I,U and IA , (n=1,2,...). To obtain these results, we
n n

first note that, if F(t,y,r) satisfies conditions (I) and (II), then

and y/\ of the initial
n

G(t,y,r)= F(t,-y,-r) also satisfies conditions (I) and (II), and, if
y(t) is a solution of y" + y G(t,y,y') = 0, then u(t) = -y(t) satisfies
the equation u" + uF(t,u,u') = 0. The application of Theorems 4.l and
4.2 to the differential equation y" + y G(t,y,y') = O then gives the

desired conclusions. Similar remarks hold concerning Theorems 3.1 and

3.2.

5. An alternate proof of some results of Nehari. This section

is devoted to the boundary problems

g + yF(t,7°) = 0, a< t = b,

(5.1)

y(a) = 0 = y(b),
and

y" + up(t)y + YF(t,yz) =0, a=t=b,
(5.2)

y(a) = 0 = y(b),

where U is a non-negative parameter and p(t) and F(t,s) satisfy condi-

tions to be stated below.
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The main result of this section is Theorem 5.1 below. This
result is included in Theorems 2.1 and 7.1 of Nehari [6]. The matter
of interest here is the alternate method of proof, which employs a
variational problem with an inequality side condition and makes a some-
what more extensive use of variational ideas than does Nehari's argument.

Let p = p(t) be a continuous function on [a,b] satisfying p(t)=>0
for all t € [a,b]. Let F= F(t,s) be defined on A: a =t= b,

0 =s= oo, and satisfy the following conditions:
(5.3a) F(t,s) is continuous on A,

(5.3b) F(t,s) > 0 for all (t,s) € & such that s > 0,

(5.3¢) there exists a 7'>0 such that if 0 < sy < sp< oo, then

s, P R(t,57) = 5,7 P F(t,s,) for all t € [a,b],

(5.3d) the partial derivative Fs(t,s) exists and is continuous for

all (t,s) € A,

The existence of Fs(t,s) was not assumed by Nehari, so because
of this extra hypothesis, Theorem 5.1 does not include the corresponding

results of Nehari.

THEOREM 5.1. Given M= 0, and p and F satisfying the above

conditions, the boundary problem (5.2) has a solution which does not

vanish on the open interval (a,b) if and only if M=y, where ty is the

smallest proper value of the system

"+ up(t)y = 0, <t<b,
(5.4) R )
y(a) = 0 = y(b).
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In particular, the boundary problem (5.1) has a solution which does not

vanish on (a,b).

The proof of this theorem will be given following some
preliminary definitions, two lemmas, and the statement of the variational
problem to be used in the proof. Several of the early steps in the dis-
cussion below parallel certain stages of Nehari's argument [5], [6], and
Nehari's notation has been used wherever possible.

The class of functions of integrable square on [a,b] will be

denoted below by :Ib[a,b]. We define

S

(5.5) G(t,s>=f F(t,0)dc, (t,s)€d,
0

and

(5.6) P(t,s,u) = F(t,s) +up(t), (t,s)e A, uelo,e).

For p=z0, let B,“ denote the variational problem of minimizing

the functional

b
(5.7) iy) :f [y2(8)F(b,52(8)) - G(t,y~(t))lat
a

subject to ihe conditions

(5.8a) y is a.c. on [a,b], and y' € Lyla,b],
(5.8b) y(a) = 0 = y(b),
(5.8¢c) y(t) £ 0 on [a,b],

b
(5.84) Plyspl = f [7'2(t) - ¥ (£)P(t,5%(¢),W]at < 0,
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For convenient reference, the class of functions satisfying

conditions (5.8a-c) will be denoted by £, and for lL(zO the class of

functions in o which also satisfy (5.8d) will be denoted by ,0/’(

LEMMA 5.1. If F(t,s) satisfies conditions (5.3), then for

is a continuous, strictly increasing function of

each t € [a,b], F(t,s)
s on Q=g <eoo, yith lims_’OF(t,s) = 0 and lims’wF(t,s) = e0o, Also,
Fy(t, s) >0 for all (t,s) € A with s > 0.

The first statement of the lemma follows immediately from
conditions (5.3a-c). To prove that Fs(t,s) > 0 for all (t,s) € &\, one
notes that (5.3c) implies

9 (E(La‘il) = s"b‘F (t,s) - 'D's'?_lF(t,s) 20,
Os S S

and hence
= -1
P (t,s) = s "F(t,s).

If s >0, then s1F(t,s) > 0 by (5.3b), and >0 by hypothesis, so
that F_(t,s) > 0 for all (t,s) € A with s > 0.

LEMMA 5.2. Let /ul be the smallest proper value of the system

(5.4). Then there exists a continuous, strictly increasing function

Y= W(Y[), defined on 0 £ /) <eo and satisfying V¥ (0) = 0,

limy ¥(p) = e0, such that if O =u<f then

n-boo

b
(5.9) [ y'2(e)at = V(1-pp,) for y € L

-a

For all y € &, we have, by the Schwarz inequality, that
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t t
2 = ! 2:6 t- '2'Cd, =t =D,
2(t) [faymdz] <a>fay<>r .

and hence that

b
(5.10) y2(t) = (t-a) f y'2(t)dt, a=t= b,
a
Condition (5.84) and definition (5.6) imply that for y e £,

b b b
(5.11) fy'z(t)dtfj 72 (6)F(t,y2(t))at +,uf 7 (£)p(t)dt.
a a a

With the notation

b
B) =f y'2(t)at,

a
inequality (5.10) may be written as
(5.10") 72 (t) = By) (t-a).

By Lemma 5.1, F(t,s) is increasing in s for each t € [a,b], and it then

follows from (5.10') and (5.11) that, if y € 4,

b b,
(5.12) Bly) = [p(Y)(t-a)F[t,,B(y)'(t~a)]dt +,uf y~(t)p(t)at.
~“a a

To simplify (5.12), we define

b
d) = f (t-2)F[t, A(t-a)]dt, 0= A<eo,

From Lemma 5.1, it is clear that o= ¢ (A) is a continuous, strictly

increasing function of A on [0,e0), and that $(0) = 0 and F(A) = oo
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as Awoo. The inequality (5.12) can then be written as

b 2
(5.12) B 26 Blply) 1+ pf Flepleae.

For y ¢ £, condition (5.8c) implies that ﬁ(y) > 0, and division by

B(y) in (5.12') yields the inequality

b
(5:13) 1= BAN ]+ fupln)] [ PFleelelas iy e b
a

By a classical result, the least proper value of (5.4) is

= I;]ié‘ fby'z dt] [_I;byz(t)p(t)dt]—l )

(see, for example, [7; §31, 3(f)]). Therefore

given by

E 2 1
My f/B(Y)(j' y*(t)p(t)dt) “for y € £,
a
and consequently

® 2
(5.14) | f y (t)p(t)dt = B(y)/u; for y €8,
. a

which, with (5.13), implies that

(5.15) 1-pp, = @la(y)] it ye '?a

Let ¥= "I’()z), 0= )?< co, be the inverse of the function ®. Then Tis
a continuous, increasing function on [0,ee) such that ¥0) = 0 and

¥(n) » 0o as p=oce. Therefore, by (5.15),
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B) = Fapfpy) iLye L,

which completes the proof of the lemma.

PROOF OF THEOREM 5.1: For some fixed U=z0, let yg = yo(t) be
a solution of the boundary problem (5.2) such that yo(t) does not vanish
on (a,b). We wish to show that /,4</11, where M, is the smallest proper
value of (5.4). If /.l= 0, this is trivial, since U, > 0. If U>0
the proof is essentially the same as that given by Nehari [6; p. 228],
and is repeated here for completeness. If )u>0, then yg is a solution

of the linear systemr

y" + pp(t) " }le(t,y%)]y =0, a=t=h,

Suppose that /Aalul. Then
Mlp(t) +HIR(,55(8)) 12 up(t) 2 pp(e),  a= £ = b,

with strict inequality holding except at t = a and t = b. It follows
from Sturm's comparison theorem (see Ince [ 3, p. 228]) that yo(’C) =0
for some T € (a,b), which is a contradiction, so that necessarily,
K= My

The proof of sufficiency is divided into two parts:

Part I: If }A</L(l,@variatic5nalproblem ﬁ/u has a solution.

Part II: Every solution of the variational problem Bﬂi_s a

vanish on (a;b).
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In order to establish Part I, let/u satisfy O s/.(<,b(l, where
/,(1 is the least proper value of (5.4). We note, as in Nehari [5; p. 1101,

that

(5.16) G(t,s) = LSF(t,a)da: fosa?’“a-'”F(t,of)dcr,

and hence, by (5.3c) that
° -1
(5.17) 6(t,s) = s-”F<t,s)fab‘aa= (1+2)"LsF(t,s).
0
Consequently, for all y € /0, the functiomald[y] of (5.7) satisfies the

inequality

b

Iy ] = 21499 L f P2 (4)E(,52(5)) dt,

a

and application of (5.6) then shows that

b
(5.18) J[y]zw(m)‘lf 72 (£){Plt,5°(2) - pp(t)}at.

a

From (5.84) and (5.18) one obtains, for ally € o(?a , the inequality

b
(5.19) Tyl= g™ [ ) - prde(e) Jas.
a

Inequality (5.17) also implies that
sF(t,s) - G(t,s)=0forall (t,s) €A,

so that it follows from definition (5.7) that J[y] = 0 for all ye &,

and hence inf{J[yl: y e@u} exists. Let {y .}, (n=1,2,...) be a sequence

- -
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of functions satisfying y, stéh, (n=1,2,...), and
(5.20) lim _ Jly,)} = inf {aly]: yeo%}.

ok ]

The sequence {J[yn]} is bounded, so from (5.19) there exists a com$tant

>0 such that
R

(5.21) [z -pRwpmla < o, = 12,00,
. ,

From (5.21) and (5.14), it then follows that

b b
[zt = aeppr)f = auhn) [ w2,

which implies that

b 1
(5.22) [wrersn m=1z.0,
a

where k = oz/(l-Mul). It follows from (5.10) and (5.22) that
y2(t) = k(t-a) = k(b-a), a=t=b, (n=1,2,...),

and thus the sequence {yn} is uniformly bounded on [a,b].
For arbitrary t; and to on [a,b] » the Schwarz inequality,

together with inequality (5.22), implies that, for n = 1,2,...,
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t t
[ralte) - 7)) = ([ Pra(a® =lep-e| Zri2(e)at
tl tq

b,
= -t f 7, (t)at
a

= k [to-tqly

from which it follows that the sequence {y,} is equicontinuous on [a,b].
The Ascoli theorem then implies that {yn} has a subsequence, also denoted
by {y,}, (n=1,2,...), which converges uniformly on [a,b] to a function
Yo+ This sequence has, in turn, another subsequence, which will still
be denoted by {y }, (n= 1,2,...), such that {yr'l} converges weakly
in ofz[a,b] to yé € L,[a,b], and Yo is a.c. on [a,b] and satisfies
vola) = 0 = yo(b), (see [8; §832, 99]). By the bounded convergence
theorem, J{y,] » J[yp] as n=ee, so, by (5.20), Iyyl = inf {3[y]: ye»@lu},
Thus, to prove that y, is a solution of the variational problem Bﬂ, it
remains to show that Yo € ’(9/4'

It has already been shown that y, satisfies (5.8a) and (5.8b).

To show that'yy satisfies (5.8d), we note first that, for n'= 1,2,...,

b b

bl b 1 ! 2 ' 1 1
Lyf(t)dt - f [yL(6) - yo(0)Tas + zfa 7 (88t - f Yo (t)as;

the first term on the right is non-negative for n= 1,2,..., and the
b,
second term converges to 2[ yoz(t)dt as n+ oo, by the weak convergence

a
of y' to yy. Tt then follows that
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b b
t 1
(5.23) lim infn,wf yn2(t)dt 2] yo'?'(t)dt.
a a
Also, by the bounded convergence theorem,

b b
(5.24) 1imnmfa ya(£)P[,5°(t),udt =Ly§(t)P[t,y§(t),/‘ﬂdt,

and, therefore, if d)[y,/u] is the function defined in condition (5.8d),
(5.25) lim infnm4>[yn,/,(]2 Plyg, Ml

Since y, € .(3«, (n=1,2,...), y, satisfies (5.84), so that 4)[yn,lA]5 0,
and thus it follows from (5.25) that ¢[yo,,u]f 0, and yo, satisfies __
(5.8d).

Finally, since (5.8d) holds for each Yp» Lemma 5.2 implies
that

b, b
0 < H(1-pfty) Efa yo- (£)dt sfa ya(t)Ple,y5(8) pMlat, (n=1,2,...),

and consequently, by (5.24),
b 2 2
[l B e = Ty = o.
a

Therefore yo(t) # 0 on [a,b], and yo satisfies (5.8a-d), so yj € o&,u.
Consequently Yo is a solution of the variational problem ﬁﬂ, which
completes Part I of the proof of the theorem.

We proceed to establish Part II, that is, to prove that every

solution of the variational problem Bﬂ is a solution of the corresponding



39
problem (5.2). The first step is to show that,if yq5 € ,ﬂ# is a solution
of By, then ¢[y0,ﬁﬂ = 0. Condition (5.8d) implies ¢[yoyu]=5 0, and it
will be shown that the assumption that ¢[yo,/4]< 0 leads to a contra-

diction. For every real number q > 0, let
t) = qeyait a=<t=bh.
Y(q)( ) q yO( )

Since Y(l)(t) = yo(t), and
b !
$ly(q) M = q2_/; (75 (t) - yg(t)P(t,qzyg(t),F)]dt,

it follows that if ¢[yo,/..L:|<O then cp[y(q),/u]< 0 for all g in some
. - =

neighborhood N of q = 1. If q € N, then y(q)éoq‘, S0 J[y(q)] J'[yo:l

inf {J[y]: y € o@,a}, from the minimizing property of Yo+ Thus, since

NP & . _
J[Y(l)]- J[yo], the derivative qu[y(q)] vanishes at q = 1. Now

b
Iy (q) = j; [qzyg(t)F(t,qzyg(t)) - G(t,qzyé(t))]dt,
so that

]

4
qu[y(q)

b
. = gj; yg(t)Fs(t,yg(t))dt = 0.

Since Fg(t,s) is continuous and positive for all (t,s) € A\ satisfying

s > 0, this can hold only if yo(t) = 0 on [a,b], which contradicts

(5.8¢), since y, € -(% Therefore (M yo,/u] = 0, which was to be shown.
Since (PI: yo,/lx] =0, 7o minimizes J[y] in the subclass of °‘§lu

consisting of those functions y in ,ﬁ# which satisfy (N_y,/.(.] = 0. It
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follows from the multiplier rule, (see [1; p. 202]), that there exist

multipliers Al’ Az, not both zero, such that the function defined by
H(t,y,r = A [y F(t - G(t 9y )]+ )\2[1' -y P(t,y ’Iu ]

satisfies

b
(5.26) fa {Hy[t,yo<t),y5(t)]n(t) + B [t,50(8),55(8) In' (£)}ae = 0

for all N =N (t) satisfying (5.8a) and (5.8b), and by the usual proof
of the Euler necessary condition in the calculus of variations, it

follows that there exists a constant ¢ such that

t .
(5.27) Hr[t,YO ;yo t)] "f Hy[T:}ro(f)) Yé(’()]d’c =¢c
a

)

for t a.e. in [a,b]. By the definition of the function H, equation

(5.27) implies that

t
(5.28)  2h,y(t) =f{2r\ly3('t>Fs[7:,yo (0] - 2dy0(D)PLT,55(T), M
a

- 23 OPIT,y5(0), ulY 4T + c

for t a.e. on [a,b]. From (5.6), we have Ps(t,s,fO = Fy(t,s) for all

(t,s) € A, so that (5.28) simplifies to

(5.29) Ay(t) f {A M) (R y5(0)] - Agyo (D) P{’C,yo T),m1}aT + c.
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If Ay = 0, then /\1 # 0, and (5.29) implies
J[ ( )aT = —c/A for t a.e. on [a,b].

This equation can hold only if ¢ = 0 and yy(t)= 0, a =t = b, which is
a contradiction to yq € ‘2&! and thus we have Ay # O.

Since the right-hand member of (5.29) is continuous and AZ # 0,

it follows that Yo is an absolutely continuous function with derivative
equal a.e. on [a,b] to a continuous function, and hence y; is continuously
differentiable. Thus (5.29) holds for all t € [a,b], which in turn implies

~ that y, has a continuous second derivative, and
(5.30)  Aowg(t) = (A-Ax)yd(6)Fg(t,53(t)) - Aoy (£)P(t,55(t),0)
holds on [a,b]. We rewrite (5.30) as

(5.31)  MIg(e) + yp(0)2(6,75(6),p0 ] = (h1-ho)yd(8)Fg(e,55(0)).

Multiplication by o and integration yield the equation

b b
Aofrolesi(s)| f 2t )a +Ly§<t>P<t,y§(t>,/x>at}=

b,
(A1-A5) f (£, 75(t)

Since yo(a) = 0 = yp(b), this simplifies to
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b b,
/\gfa [752(8) - yB(t)P(t,55(t), )]t = (/\z—hl)/;yg(t)Fsu,yg(t))dt.

The integral on the left is ¢[yo,/u ], which has been shown to equal O,
while the integral on the right is positive for y, e 00/4 Therefore

)\2-—,\1 = 0, so (5.31) implies that

T(t) + 3o (0)P(t,75(t), ) =0, a=t=b.

From (5.6), this equation may be written as

vo * pp(t)yg + yoF(t,58) =0, a=t=b,

and v, is thus seen to be a solution of the boundary problem (5.2).
Thus, for arbitrary /U 2 0, it has been shown that every solution in
.ﬂﬂ of the variational problem B,u is a solution of (5.2).

Finally, we want to show that if M=Z0 and yg e.@# is a
solution of Bﬂ, then yq(t) # 0 on a< t <b. Suppose that yg is a
solution of B/“ and that yo(T) = 0 for some T € [a,b]. By (5.8c), there
exists a T; € (a,T) or fl € (T,b) such that y5(T,) # 0. Assume that
1:1 € (a,T) and yo(fl) > 0; if Ty € (T,b) or yo(T1) < 0, the proof is

similar. Let

W = inf {tlt € (fl;b): y(t) = O}-

Clearly yo(t) > 0 for all t € [’(l,w), and yo(w) = 0. It was shown above
that yo is a solution of the boundary problem (5.2), and the form of
the differential equation of (5.2), together with the hypotheses on P

and F, implies that yS(t) < 0 if yo(t) > 0, and hence yg(t) < 0 for
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Tﬁ_f t = w, Therefore, yé(t) is decreasing on [fl,aﬂ, so that by the
mean-value theorem there exists a (2 € (Ti,aﬂ such that y'(T,)< 0, and
consequently y'(w)= 0.

Now y, € {% implies |yb| € é%, and since J[yo] = J[|y0|],
the function |yO| is also a solution of the variational problem ;&.
Therefore ]ybf is a solution of the boundary problem (5.2), so
7| € C"[a,b]. But since y4(w) # O and yy(w) = 0, [yg| is not defined
at t =w, a contradiction. Therefore yy(t) does not vanish on (a,b),
which completes the proof of Part II.

From the results of Parts I and II it follows that if 0= U <[y,
then the boundary problem (5.2) has a solution which does not vanish on
(a,b). For U= 0, (5.2) reduces to (5.1) and hence (5.1) has a solution
‘which does not vanish on (a,b), which completes the procf of Theorem
5.1.

From the proof above and the necessity of the condition
y-cfﬁ_of Theorem 5.1, one may note the following result:

COROLLARY. For M =0, the variational problem Bﬂh;aS_ a
solution if and only if u<py, where Uy is the least proper value of

the system (5.4).

6. A special case of equation (2.1). In this section the

differential equation
(6.1) y" + yf(t,y) = 0,

with f£(t,y) satisfying conditions given below, is shown to be a special

case of equation (2.1),withF(t,y,r) satisfying conditions (I) and (II).
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The function f(t,y) is assumed to be defined and continuous on

DO: a<t<s b, .o = y<oo, and to satisfy the following hypotheses:

(6.22) £(t,y) = 0 for all (t,y) € Dp,
(6.2b) f(t,y) = 0 if and only if y = O,
(6.2¢) Vo> ¥, 2 00ory,< y; =0 implies that £(t,y0) = £(t,y7)

for every t € [a,b],

(6.2d) 1imy’+wf(t,y) = limy’_wf(t,y) = +oo | for every t € [a,b],

(6.2e) for each (T,]) € Dy» there is a neighborhood V of (T,7) such

that £(t,y) satisfies a Lipschitz condition with respect to y

in VND,.

It is readily verified that if £(t,y) = F(t,yz) for all (t,y) € D,
where F(t,s) is the function appearing in the boundary problem (5.1) and
satisfying conditions {5.3), then f(t,y) satisfies conditions (6.2).
Therefore the problem (5.1) is a special case of the boundary problem
defined by the equation (6.1) with boundary conditions y(a) = 0 = y(b).

The conditions (6.2a, b, ¢, and e) are similar to conditions on

ﬁb(t,y,r;\) assumed by Moroney [4] in connection with the characteristic value

problem

y" + y#(t,y,A) =0, O=t=1l,
y(0) =0, y'(0O) =1,
v(1)

]
@]

However, in place of condition (6.2d), Moroney assumes a condition called
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the "regenerative property" which involves the behavior of ¢(t,y,A) with

respect to A

In order to state the result of this section, the following
definition is needed:

Given f(t,y) defined on Dy, define

(6.3) f(y) = sup f(t,y), #(y) = inf £(t,y).
- a=t=b a=t=b

THEOREM 6.1. If £ = f(t,y) is continuous on D, and satisfies

conditions (6.2), and.if f and f are defined by (6.3), then f and £ are

continuous on -o0 < y<oo and satisfy conditionms (2.5), and the func-

tion £(t,y,r) = £(t,y), (t,y) € D, r € R, is continuous on D = [a,b]XRXR

and satisfies properties (I) and (II) of Section 2.

From the continuity of f(t,y) and from (6.2e), it is clear that
f(t,y,r) is continuous on D and satisfies condition (II). Thus we need
only show that ¥ and f are continuous and that conditions (2.5) are
satisfied.

It follows immediately from (6.2a5 énd (6.3) that 0 = f(y)=
£(t,y,r) = t(y) for-all (t,y,r) € D, so that (2.5a) is satisfied.

If y = 0, then (6.2b) implies f(t,y) = O for-all t € [a,b], so
that f(y) = 0. Conversely, if f(yo) = 0 for some yg € R, then the con-

tinuity of f£(t,yy) on [a,b] implies the existence of a value tg € [a,b]

i

such that f(t,yg) f(yo), and hence £(t,,7,) = 0, so that Vo = 0 by
(6.2b). Thus £(y) = 0 if and only if y = 0. Similarly, £(y) = O if and
only if y = 0, so (2.5b) is satisfied.

To prove that T satisfies (2.5c), we note that if Vo< y1= 0

or yo» > y1 = 0, then (6.2c) and (6.3) imply that
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%(yl) = f(t,y) = £(t,y2), a=t=b.

The continuity of £(t,y>) on [a,b] implies that f‘(yz): £(t,y2) for
some t € [a,b], and it follows that f‘(yl) = f‘(yz), so that ¥ satisfies
(2.5¢). The proof for £ is similar.

To prove that (2.5d) holds, it must be shown that f‘(y) > 4 oo
as y+4oand as y» -oo. For M >0, condition (6.2d) implies that for
each t € [a,b] there exists a B, such that if y = B, then f(t,y) = M.
For fixed T € [a,b] and for £ >0, the continuity of f implies the exis-~
tence of a &> 0 (depending on§g) such that if |t -T| < 6,,: and t € [a,b]

then f(t,B,L.) > f(’C,B,L.) - £. By property (6.2¢), if y =z B then

(6.4) £(t,y) = £(t,B.) > £(T,B,) - £ zM - €

for |t-T|< 6,5 and t € [a,b]. Since the class of intervals ('C-éz.l,’&&r),
T €(a,b), is an open covering of the compact interval [a,b], there is a
finite set of intervals ('Ei—&ti,‘['i‘i"&zi), (i=1,...,K), whose union con-
tains [a,b]. If y =B = ma_x{B'c‘: i=1,+-+,K}, then (6.4) implies that
£(t,y) =M -£& for all t € [a,bﬁ, so that £(y)= M -€ for y = B. Since
this holds for arbitrary £ >0, we have f(y) = M for y = B, which completes
the proof of (2.5d). -

Pinally, it must be shown that £ and f are continuous. Given
g € R, let {yn$ » (n=1,2,...,), be a sequence of real numbers con-
verging to Vg For eachn =0, 1, 2,..., f(t,yn) is continuous on
a=t=D, so there exists a t, € [a,b] such that f(tn,yn) = f‘(yn). The
sequence {tn}, (n=1,2,...), has a subsequence, which we also denote by

{tlil}, converging to a point t__ in [a,b]. From the continuity of £(t,y)
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it follows that
]_imn,mf‘(yn) = limp . F(ty,¥n) = £(te,¥0),
and by definition of f, f£(t,,y,) = £(yg), so that
limn_wf'(yn) = f‘(yo).
Also, f(yn) s;f(to,yn), (n=1,2,...), hence

vim  F(y,)) = lin _ _f(tq,y,) = £(tg,59) = £(¥g)-

N >oco

A ~

Therefore 1lim ,  f(y,) = £(yg), so that f is continuous. A similar
argument shows that f is continuous, which completes the proof of the
theorem.

Thus the equations y" + y F(t,y?) = 0, where F(t,s) satisfies
the conditions of Section 5, and y" + yf(t,y) = O, where f(t,s) satis~
fies the conditions of the present section, are special instances of

the equation (2.1) of Sections 3 and 4, so that the results of those

sections apply to these equations.
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