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Abstract 

Learning from imbalanced data sets is one of the aspects of predictive modeling and 

machine learning that has taken a lot of attention in the last decade. Multiple research 

projects have been carried out to adjust the existing algorithms for accurate predictions of 

both classes.  The model proposed in this thesis is a linear Support Vector Machine model 

with L1-norm objective function with applications on weather data collected from the 

Bureau of Meteorology system in Australia. Apart from model selection and modifications 

we have also introduced a parametric modeling algorithm based on a novel parametric 

simplex approach for parameter tuning of Support Vector Machine. The combination of 

the two proposed approaches has yielded a significant improvement in predicting the 

minority class and decrease the model’s bias towards the majority class as is seen in most 

machine learning algorithms.  



1 

1 Introduction 

In recent years, the use of machine learning, and data mining techniques have 

gained a lot of attention from the data analytics society. The generality and functionality 

of these techniques have made them applicable in vast areas of science and technology. 

Meteorology is one of the fields that has greatly benefitted from these techniques. Machine 

learning algorithms such as Support Vector Machines and Artificial Neural Networks have 

been used to classify large amounts of data and extract knowledge from historical data to 

be used in predicting future data.  

This work is organized into four chapters. In the first chapter, we will go over the 

problem of imbalanced learning, popular techniques in supervised learning and a literature 

review of the related work.  

In chapter 2, the methodology of this work is discussed. The first part of chapter 2 

focuses on preprocessing techniques, feature selection, and feature extraction. After that, 

we will go over the theory of Support Vector Machines and parametric modeling as a 

replacement for a grid search for finding the best regularization parameter. And a new L1-

norm SVM with the kernel is introduced to be used for classifying imbalanced data sets. 

Finally, the evaluation metrics used for imbalanced learning are discussed. 

In chapter 3, the results obtained from implementing the algorithms discussed in 

the chapter is presented. Finally, chapter 4 includes the conclusion and some of our ideas 

for future work.  
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1.1  Imbalanced learning 

Imbalanced learning has taken a lot of attention in recent years from industry to 

academia. Imbalanced learning is the art of retaining knowledge from a data set where the 

number of instances in one class called the majority class is significantly larger than the 

number of instances in the other class known as the minority class. The minority class 

consists of rare cases that are more important from the learning perspective. The main 

concern in imbalanced learning is that most classifiers are biased towards the majority class, 

and despite having high accuracy score, they fail to classify the instances in the minority 

class correctly, and the misclassification error of the minority class is often ignored [1]. 

From the ratio of the minority to the majority class, imbalanced learning problems are 

categorized into three sections:  

• Marginally imbalanced: the imbalance ratio is 2:1 

• Modestly imbalanced: the imbalance ratio is 10:1 

• Extremely imbalanced: the imbalance ratio is 1000:1 

Generally, class imbalance refers to the relative proportion of instances belonging 

to each class; however, the absolute number of examples available for learning is 

significant. Based on the type of data we are dealing with the issue of imbalanced learning 

can rise at different levels.  

• Problem definition issues: This problem is caused by lack of enough information to 

accurately define the learning problem. 

• Data issues: The problem of an absolute rarity occurs where there are not enough examples 

associated with one or more classes to effectively learn the class. 
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• Algorithm issues: This problem is the result of inadequacies in a learning algorithm that 

may cause poor performance. 

Table 1-1 briefly describes the general approaches towards the different types of 

imbalanced learning problems mentioned before. 

Table 1-1: General approaches to imbalanced learning 

 

 

The problem definition issue is mostly concerned with the evaluation metrics used 

to assess the classifier. Accuracy and error rate which are two commonly used evaluation 

metrics, usually fail to represent misclassification in the minority class. These metrics 

perform reasonably well only when the respective error of both classes have uniform cost. 

However, with datasets that suffer from the imbalanced issue, the costs of errors are not 

symmetric. 

A lack of adequate training data causes data issues, that can result in imbalanced 

data. When there are fewer instances in the minority class, they are more likely to be 

selected in the sample, and the class will be misrepresented in the model, which leads to 

higher misclassification rate for the minority class.  

Another problem with data is when noise exists in the data. Generally, having a robust 

model that can handle noisy data is challenging. This problem is magnified with 
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imbalanced data as noise can affect the rare instances more severely and makes it more 

difficult to identify and correctly label those instances [2][3]. 

Algorithm issues focus on the model’s failure in reaching optimization while 

learning the criteria necessary for classification. This issue is concerned with ample focus 

on accuracy as an evaluation metric, while metrics that evaluate the performance of the 

classifier for each class can provide more insight and avoid misclassification in each class 

regardless of the size of the class [4]. 

The problem with the rare cases is that their true nature is not known; hence they 

are difficult to identify. Training classifiers for imbalanced data is a critical issue in 

machine learning. Throughout the years, researches have done extensive work to resolve 

this matter, and have proposed different solutions. Multiple machine learning algorithms 

have been used to classify the data concerning both cases accurately, but none of these 

approaches has reached optimization yet, and the need for more powerful algorithms still 

exists.  

1.2 Related work and existing models  

All research projects start with learning about the nature of the problem and 

characteristics which make it unique. Learning about the problem and the literature leads 

us toward the problem statement and helps developing ideas to address the issue.  

As science and technology evolve, we are exposed to larger and more complex 

datasets. It is not always easy to interpret the patterns and extract knowledge from the data, 

so the demand for high performance and more accurate algorithms are not lessening in the 

foreseeable future. Machine learning is the art of gaining knowledge and discovering 

patterns from data, and there are many studies on ways to improve the existing algorithms. 
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In machine learning, there is no best model and model selection is based on the type of data 

we are using. To start the learning process, we must split the data set into a training, and 

testing dataset. The goal is to train the model based on the training set and predict or classify 

the output variable in the test data. Based on the knowledge we have about the output 

variable in the historical data, we have three approaches towards learning.  

• Supervised learning: In supervised learning we know the class each data point belongs to 

before running the algorithm, known as the label, and we use that to evaluate the 

performance of the model.  

• Unsupervised learning: Unlike supervised learning, the output variable is not known in 

advance, and we try to find the patterns in the data.  

• Semi-supervised learning: this is the most common type of data in the real world, which 

means some of the observations are labeled, and some of them are not.  

The models discussed in this work are commonly used for supervised learning. The 

goal is to predict new data based on historical input data which is known as predictive 

modeling. In predicting modeling, we try to minimize the error by making the most 

accurate predictions, while being able to explain the behavior of the model. These 

predictive models are used for classification, meaning that we are trying to develop a 

concise model of the class label distribution using the features in the data, then use that 

model to predict the output value also known as a label for the instances in the test data. In 

other words, a classification model uses the known data to train the model and predict the 

output value for the unknown instances in the test data. An overview of the state-of-the-art 

algorithms is presented in this chapter as follows [5]. 
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1. Logistic Regression (LR): Linear/Logistic Regression is probably the most well-known 

and widely used machine learning algorithm. Linear regression is used for predicting 

values that are in a range, but logistic regression is appropriate when we are trying to 

predict categorical output values such as binary classification. Logistic regression is 

presented by a non-linear function, and the data is classified based on the features 

correlated with the output variable [6]. 

2. Support Vector Machine (SVM): SVMs are commonly used for classifying large data 

sets. The data is classified based on its location on either side of a hyperplane, which splits 

the input variable space. The separating hyperplane is not unique; however, the best 

hyperplane is the one that maximizes the margin of separation while minimizing the 

misclassification error. SVM is the main algorithm used in this work for classification, and 

we will discuss the relevant concepts in more detail in section 2.5. 

3. K-Nearest Neighbors (KNN):  KNN is a simple yet efficient algorithm which uses the 

whole dataset for classification. To classify a new data point, KNN uses the data points 

closer to the designated point based on their Euclidean distance. Then it summarizes their 

output values and assigns the result as the label of the new data point. In KNN, training, 

and testing is combined in one step which increases the effectiveness of the model.  

4. Naïve Bayes: The first assumption in this method is that all the data points are 

independent of one another, which is unrealistic, but this technique uses this assumption to 

predict new data effectively. In this method, the training data is used to calculate the 

probability of each class and the conditional probability of each class for a given data point. 

These two pieces of information are used to predict the class of new data points. 
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5. Gaussian Naïve Bayes: It is a modification of Naïve Bayes method, except that for the 

input data in ℝ (Real values), a Gaussian distribution is assumed, which makes calculating 

the probabilities easier.  

6. Perceptron: Perceptron algorithm is one of the oldest machine learning algorithms. In 

this method, we need to associate a weight to the data points and define a threshold, known 

as bias. The weights and the threshold are extracted from the data. The weighted sum of 

the input data is calculated for predicting the output value. The label is one if the sum is 

greater than the designated threshold, and zero otherwise. In the Perceptron algorithm, the 

goal is to find the set of weights that best classifies the data.    

7. Stochastic Gradient Descent: Stochastic Gradient Descent method is based on 

minimizing the misclassification error by predicting each point in the training set and 

calculating the error. Then the model is optimized, so the error is minimized for the next 

prediction. 

8. Decision Tree: Decision Tree is a classification algorithm that splits the data set into 

smaller subsets to predict the output value of the test data. The conditions by which the 

data is split are called leaves, and the decision is known as a branch. The data is split until 

we have reached the depth of the tree and no further split is possible. Decision Tree is a 

fast and simple algorithm in which the process of classification and inquiries made are 

clear.  

9. Random Forest: Random Forest is a powerful ensemble method, which is an aggregation 

of less accurate predictive models to create a better model. This model is used for 

regression or classification. In random forest classification, decision trees are used to 



8 

introduce randomness when selecting the suboptimal splits, and the goal is to aggregate as 

many uncorrelated trees as possible and improve the accuracy at each step.  

10. Linear Discriminant Analysis: This method is used for both binary and multi-class 

classification, and it uses statistical parameters such as the mean value of each class and 

the overall variance of the classes to calculate a discriminant value for each class and 

predict the output value of the class. The data is assumed to follow a Gaussian distribution 

and removing the outliers is an important step since it can affect the variance significantly 

[7]. 

None of these methods is superior over the other ones. So, for a given dataset, 

multiple machine learning algorithms must be used, and the most suitable model is the one 

with the most accurate predictions based on its application on real-world data. Among all 

areas that have benefited from advances in machine learning, weather applications in 

machine learning have been one of the most popular fields, that has been growing 

extensively in the past few decades. 

1.3 Literature review 

The use of machine learning algorithms in weather applications was initiated to 

improve the lead times to important events such as thunderstorms or tornadoes. In the 

research carried out by Marzban and Stumpf [8] the MDA- Mesocyclone Detection 

Algorithm attributes based on Doppler radar observations were used to train artificial 

neural network algorithms and predict tornadic events. Later Lakshmanan combined MDA 

data with near storm environment (NSE) data which improved the results marginally [9]. 

In recent years, other data collection methods based on observations made by polarimetric 

radar have become available. The dual polarized polarimetric radar observations provide a 
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2-dimensional snapshot of the data that can provide more insight into weather phenomena 

and new advances specially in phased array radar is required to significantly imporve storm 

and rain detection algorithms [10] [11] [12] [13][14].      

Since weather events such as rain are considered less common in some locations, 

the data could be imbalanced, and most machine learning algorithms are biased towards 

the majority class. So, the interest in machine learning algorithms that can be used with 

imbalanced data has grown significantly. Different algorithms such as ANNs and SVM 

were used to improve the accuracy of predictions in the minority class [15]. The problem 

of imbalanced data has attracted a lot of attention from the data mining community. In a 

paper published by He and Garcia in 2009, they have explored different sampling methods 

to address the data-related issues in imbalanced learning. Cost-sensitive methods have also 

been studied to address the issues regarding the problem definition. Kernel-based learning 

methods such as Support Vector Machine have also been investigated as an algorithmic 

approach [16]. An important issue that arises with imbalanced learning is that the standard 

evaluation metrics do not provide an appropriate representative of both classes and they 

fail to assess the performance of the classifier in each class. Shaza et al. [17] have provided 

a broad review of different evaluation metrics developed for imbalanced learning such as 

F-measure and Geometric mean which are thoroughly explained in section 2.8. In addition, 

convenient visualization tools such as Receiver Operating Characteristic (ROC) curve and 

Area Under the Curve (AUC) as a means of performance assessment are discussed. 

To explore the distinctive features of imbalanced data sets, Lopez et al. [18] did 

extensive work on using the intrinsic characteristics for classification and the issues related 

to these characteristics. In this paper different experiments were carried out to investigate 
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the approaches suitable for imbalanced data in the presence of small disjuncts, the absence 

of density and enough information in the training data, the presence of noisy data, etc.  

SVM is a popular approach to imbalanced learning. Trafalis et al. [19] explored the 

use of SVMs for classifying imbalanced data, and they found that SVM can out-perform 

ANNs for imbalanced learning. They have also investigated modified SVMs such as 

Bayesian SVM and SVM-RFE with threshold adjustment on SVM.  These algorithms 

proved to be more accurate and performed better in comparison with previous work. 

Throughout the years, various changes have been made to SVM algorithm to make it more 

efficient with imbalanced data. A modification to the objective function and using different 

norms is a simplified approach as it is discussed by Zhu et al. [20]. In this paper, L1-norm 

SVM is introduced as a replacement for quadratic SVM in case of redundant and noisy 

data. This approach provides a linear programming problem which can be solved using 

existing software. Zhou et al. also investigated L1-norm SVMs [21]. In this work linear 

and kernelized Support Vector Machines with L1-norm objective function is introduced 

and simulated to be compared with quadratic SVMs and the results of the experiments are 

presented [22].   

In another paper by Askan and Sayin [23], a multi-objective approach is introduced 

which incorporates an individual objective function for the positive and negative error 

sums of minority and majority class. This three-objective optimization model with the L1-

norm SVM approach presents a significant improvement in the performance of the 

classifier. Another work that implements the principles of multi-objective optimization in 

classification is carried out by Paolo Soda [24]. He proposed using an algorithm that can 

compare and choose between an algorithm trained on the skewed data set and one that is 
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expected to be suitable for imbalanced learning. This paper shows that accuracy of the 

classifier and the geometric mean are improved with their proposed approach. In another 

paper published by Suttorp and Igel [25], a multi-objective SVM approach is represented 

which investigates the trade-offs between the set of Pareto-optimal points and finds the 

optimal solution from that set [26]. This approach is relatively new as many multi-objective 

problems are solved through scalarization. The model is implemented using the pedestrian 

detection problem, which is a real-life problem. This approach has had promising results 

that were evaluated and visualized with a ROC curve. 
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2 Methodology 

Data preprocessing is the initial step in machine learning. Some of the issues that 

need to be addressed before any further analysis is making sure that the data is clean, 

without noise, missing values and it is scaled. Although data analysts are continually trying 

to improve the robustness of machine learning algorithms to be capable of high 

performance in the presence of missing values or noise, the quality of the results is still 

affected by the input data.  

2.1 Missing value imputation 

Preliminary analysis of the data reveals that there are missing values in the data set 

and for the first step we need to address this issue and impute the missing values.  

Having missing values is common in weather data, and there are a variety of 

methods we can use to handle this issue, some of which are more complicated than the 

others. To handle missing values, knowing the reason behind having missing values in the 

dataset is helpful and based on the randomness of missing values we have several 

categories: 

• Missingness completely at random 

• Missingness at random 

• Missingness that depends on unobserved predictors 

• Missingness that depends on the missing value itself 

Among the four types, the last two are more difficult to handle because the replaced 

value might not represent the actual observation. The easiest way of handling missing value 

is discarding features with the missing value. Removing incomplete features is not the best 
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approach because the number of complete cases might be too few. It is also possible that 

the discarded values include valuable information and removing them might bias the 

results.  

Instead of deleting features with a missing value, we can impute the missing values, 

which is replacing the missing data with a new value. Various imputation methods can 

retain the dataset and use the complete data set [27].  

Although removing the features with missing values is the obvious solution, it can 

result in losing valuable information. So, we can use imputation methods to replace the 

missing values with new data systematically. Imputing missing values allows us to consider 

more features rather than removing all the observations with missing values. Imputing 

missing values keeps the full data set and avoids biased results. However, it can alter the 

results to some extent too. After dropping the features with the highest percentage of 

missing values, we decided to impute the remaining missing values using mean imputation 

technique. In this method, which is one of the most accessible and commonly used 

methods, the missing value in each feature is filled in with their respective mean of the 

observed values. This method is implemented in Python. It is worth mentioning that 

imputing the missing values is an important step in data preprocessing as it is the input for 

other steps. There are more advanced imputation methods from linear correlation to 

Support Vector Regression.  

2.2 Feature selection  

The next step in preprocessing the data is feature selection. In recent years, 

development of technology has resulted in an exponential growth in the amount of data 

stored, in terms of size and dimensionality. Hence, storing, managing and analyzing large 



14 

scale problems is an increasing challenge. In the last decade, many machine learning 

algorithms have been developed to help remove irrelevant and redundant data and extract 

features that can contribute most to understanding the patterns and knowledge in the data. 

Feature selection methods provide a subset of the full-size data, in which only the relevant 

features are selected [28] [29].   

Dimensionality reduction approaches are among the most frequently used 

techniques in machine learning. These techniques can be divided into two categories, 

feature selection, and feature extraction. Learning from a smaller subset not only increases 

the learning speed, and makes the process less computationally expensive, it can lead to 

better performance, with improved learning accuracy and the model is more interpretable.  

Apart from feature selection, feature extraction techniques such as Principal 

Component Analysis try to reduce the dimensionality by creating a new set of features that 

can capture the variations in the data and reduce the dimensionality without compromising 

the performance of the classification algorithms.  

Both feature selection and feature extraction techniques are essential steps in 

preparing the data for classification. They can enhance the performance of the classifiers 

and decrease the computational complexity which reduces the time and storage required to 

build and run the model. 

In general, feature selection methods are divided into three categories: 

• Filter method: This approach is a preprocessing method that ranks the variables based on 

their correlation coefficient. According to the filter method, a useful feature is one that is 

highly correlated with the class, but uncorrelated with other features. Such methods 

perform independently of machine learning algorithms. 
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• Wrapper methods: This approach uses a machine learning algorithm to rank the features 

based on their importance to the model. Then the classifier is validated using Cross-

validation, and the subset that has the highest accuracy is selected. 

• Embedded methods: Embedded methods perform feature selection as part of the learning 

process, without splitting the data into train/test set. 

Before proceeding with future selection and feature extraction techniques, the data 

must be scaled. Scaling is necessary for preparing the data because we can avoid having 

features in different numeric ranges, which can affect the classifier if some of the features 

are in a significantly higher numerical range and cause problems in the classification 

process. Scikit-learn preprocessing package in python is used to scale the data to the range 

of [-1, 1] before further analysis. The same method of scaling is used for both training and 

test set. After scaling the data, having a visual understanding of the data and how it is 

dispersed can be useful in making decisions in the next steps. Here, we have used violin 

plots to show how the data is distributed in each class. It is essential to make sure that the 

data is scaled or normalized before plotting.   
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Figure 2-1: Violin plot of scaled data 

 

As it is shown in Figure 2-1, the features that have a significant difference in the 

median of the two classes potentially provide more information for classification. However, 

more accurate methods are needed to find the best feature set for classification.    

Some of the popular feature selection methods in the literature are described below: 

1. Feature selection with correlation 
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The goal of feature selection is to use an algorithm that can identify and select the 

features that are not correlated with each other yet are predictive of the class so if a variable 

is independent of the class, it is considered irrelevant and it can be discarded. This task is 

accomplished by evaluating the inner feature correlation in the data set and their 

contribution to the classification model and determine its worth. 

Pearson correlation coefficient is one of the most straightforward criteria for 

evaluating the interdependencies in the data. If xi is the ith observation in the data set and y 

is the class label, the Pearson correlation coefficient is defined as: 

 

 
𝑅(𝑖) =

𝑐𝑜𝑣(𝑥𝑖, 𝑦)

√𝑣𝑎𝑟(𝑥𝑖)𝑣𝑎𝑟(𝑦)
 

 

2.1 

 

In this equation, cov designates the covariance and var is the variance. The 

complete mathematical formulation is given by:  

 
𝑅(𝑖) =

∑ (𝑥𝑘,𝑖 − 𝑥̅𝑖)(𝑦𝑘 − 𝑦̅)
𝑚

𝑘=1

√∑ (𝑥𝑘,𝑖 − 𝑥̅𝑖)2𝑚

𝑘=1
∑ (𝑦𝑘 − 𝑦̅)2𝑚

𝑘=1

 
 

2.2 

 

For implementation, a correlation map is a visual tool for demonstration of the 

correlation between the columns. As it is shown in Figure 2-2 the highest score on the map 

is 1. 



18 

 

Figure 2-2: Correlation Matrix of the scaled data 

 

In this algorithm, highly correlated features are selected in each pair and one of 

them is dropped. Then we will use a classification algorithm to see how the performance 

of the classifier changes with the new subset. At this step, looking closely at the correlation 

between the highly correlated set of features is useful [30]. Although feature selection with 



19 

correlation coefficient can provide valuable insight into the data set, it relies mostly on 

tried and error and the results are not optimized. 

2. Recursive Feature Elimination  

A more recently developed method of feature selection is Recursive Feature 

Elimination (RFE). RFE is a wrapper method that starts with all the features in the data set. 

RFE is designed to find the best features by fitting the model and removing the least 

discriminant feature until the model reaches optimization or the desired number of features 

remains. 

To implement RFE, we need to split the data into train/test sets. A machine learning 

algorithm such as SVM or Random Forest is required to calculate the feature relevance 

weights. The absolute value of the relevance weights is calculated to rank the features 

according to their importance; the lowest weights are the least important and the highest 

ones are the most important features. After dropping the least important feature, the model 

is trained on the new subset using the selected machine learning algorithm. The accuracy 

of the classifier is used to evaluate the model’s performance. This process is repeated until 

all the desired number of features is obtained.  

In the fitting part, a classification model is required to analyze how the accuracy 

measure improves after a new subset is created. The most common versions of RFE are 

recursive feature elimination with a linear SVM at its core or random forest. Both 

classifiers provide good learning performance, high accuracy and in many cases an 

acceptable computational time. 

3. Recursive Feature Elimination with Cross-Validation 
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In most cases the preferred number of features is not determined in advance so by 

combining RFE with Cross Validation, a new subset is selected at each iteration. After 

fitting the model, we can compare the cross-validated scores and decide on the best number 

of features that yields higher classification accuracy. Implementing RFE as a preprocessing 

technique before classification is a useful tool to recognize the inter-correlated features and 

the patterns in the data. RFE can efficiently remove non-relevant and redundant data. 

However, there are a few drawbacks to this method. Computational intensity is an 

important issue to consider. RFE requires the user to select the number of features before 

training the data. To address this issue, other feature selection methods have been used to 

reach the optimal data set.  

4. Tree-based feature selection (Random Forest Feature importance) 

Random forest is a fast-growing algorithm used for large-scale data analysis. 

Random forest applies to high dimensional data with nonlinear interactions among the 

features. It is also capable of ranking the variables to assess their importance in predicting 

the desired value, by finding the features that contribute most to the predictor variable.  

2.3 Feature extraction 

Principal Component Analysis is one of the most popular feature extraction 

techniques designed to find a lower dimensional basis from the original data set that can 

capture most of the variance in the data. The lower dimensional basis is constructed from 

the linear transformation of the correlated features into fewer uncorrelated ones, known as 

principal components. 

What we try to do in PCA is finding the lower dimensional surfaces, onto which to 

project the data to minimize the projection error. The lower dimensional surfaces are a set 
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of vectors. In general, the best surface is the one that can satisfy two conditions. First, 

maximizing the projected variance, and the second, minimizing the mean squared error. 

These conditions must be true in all dimensionalities. The vectors in PCA are called 

principal components, and they are the dimensions or directions that capture the most 

variance. For example, the first principal component is the direction that has the largest 

projected variance. The second principal component is the vector perpendicular to the first 

component and captures the second largest projected variance. All the principal 

components are the directions that satisfy both conditions mentioned above and yield an 

optimal subspace. Principal components are always sorted from the largest captured 

variance, so we can determine the number of components that capture a specific desired 

threshold named α, that is usually 99% or 95% of the variance.  

From the mathematical point of view, PCA is a linear transformation that rotates 

the points to a new coordinate system, making the correlation between them vanish. PCA 

does the transformation through projecting the data into a lower dimensional space while 

minimizing the mean squared projected error which is the difference between the original 

data and the projected data. The mean squared projection error is formulated as: 

 Mean square projection error = 
1

𝑚
∑ ‖𝑥𝑖 − 𝑥𝑎𝑝𝑝𝑟𝑜𝑥

𝑖 ‖
2𝑚

𝑖=1
         2.3 

To determine the variance retained by the components, we need the ratio of the 

mean squared projection error over the total variance to be less than (1-α) % or 1% for 99% 

threshold, which is formulated as: 

 1

𝑚
∑ ‖𝑥𝑖−𝑥𝑎𝑝𝑝𝑟𝑜𝑥

𝑖 ‖
2𝑚

𝑖=1

1

𝑚
∑ ‖𝑥𝑖‖

2𝑚

𝑖=1

 ≤ 0.01        

 

2.4 
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The steps of the PCA algorithm for a given threshold of α is: 

1. Compute the mean 

2. Center the data 

3. Compute the covariance matrix 

4. Compute the eigenvalues 

5. Compute the eigenvectors 

6. Compute the fraction of total variance using equation 2.4 

7. Select the dimensionality that is the smallest number of components, so the fraction of total 

variance is less than α. 

Now we can create a reduced basis and have the data with lower dimensionality 

[31]. Since many features in real life data sets are correlated or redundant, reducing the 

dimensionality using PCA can still retain the variance, and the accuracy of the classifier 

will be intact, yet it helps the learning algorithms run more efficiently and decrease the 

computation time.  

2.4 Resampling Techniques for imbalanced learning 

When dealing with imbalanced data, resampling methods can enhance the 

performance of the classifier. In this work, we have combined resampling techniques with 

an algorithmic approach through modifications in the classifier to address the issue of 

imbalanced learning in the data set. Resampling techniques improve the performance of 

classifier by trying to create a balance between the classes. Generally, resampling methods 

follow two strategies: one is removing instances from the majority class known as under-

sampling and second is adding new instances to the minority class, which is known as over-

sampling. The sampling tool used in this work is Imbalanced-learn API package in Python, 
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which provides fast and accurate sampling strategies for imbalanced data. The available 

under-sampling methods include: 

1. Under-sampling based nearest neighbor method with multiple variations such as 

condensed nearest neighbor edited the nearest neighbor and repeated edited nearest 

neighbor.  

2. Under-sampling based on the instance hardness threshold.  

3. Under-sampling based on random under-sampling and also using Tomek’s links.  

This package also provides multiple over-sampling techniques such as: 

1. Over-sampling based on Adaptive Synthetic sampling method (ADASYN) 

2.Random Over-sampling  

3. Over-sampling based on Synthetic Minority Over-sampling Technique (SMOTE) 

These methods can be applied alone or in combination with each other to 

imbalanced data sets to improve classification results. The explanation and the details 

regarding these methods are beyond the scope of this work [32].  

The sampling method used in the preprocessing part of this work is  Over-sampling 

with Synthetic Minority over-sampling Technique (SMOTE). Using SMOTE, we are 

trying to increase the number of instances in the minority class by syntactically creating 

new instances instead of merely replicating the existing instances. Therefore the classifier 

tends to be biased towards the minority class [33]. SMOTE generates data in feature space, 

and it depends on introducing new instances based on the nearest neighbors. In this method, 

the new examples are added near the line segment that joins the nearest neighbors of the 

minority class. The nearest neighbors are selected to create the instances required for over-
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sampling. To implement this method, we have used the Python Imbalanced-learn API 

package for resampling the imbalanced data.  

2.5 Classification – Support Vector Machines 

SVM is a popular classification algorithm with applications in fraud detection, 

identifying cancer cells from healthy ones, face recognition, weather predictions, etc. SVM 

is developed to find a binary classifier using the training data, for which the data is already 

labeled by the supervisor, hence it is called a supervised learning classifier. There are 

multiple variations of this problem in the literature, but binary SVM classification is the 

most popular one [34][35].  

First, we will discuss the theory behind classic SVM and some general properties 

of this algorithm. 

Classification algorithms are used to maximize performance while maintaining the 

generalization for unknown data. In other words, there is a trade-off between fitting the 

data and the model’s generalization ability. SVM algorithm classifies the data by finding a 

hyperplane that can separate the two classes. This approach is represented as 2.5 in the 

compact form: 

 𝑦̂ = sign (H(x)), 2.5 

 

where H(x) is the decision function in this formulation. The separating hyperplane 

is the set of all points that can satisfy the following condition 2.6:  

 H(x) = wTx + b = 0, 

 x, w ∈ ℝn, and b ∈ ℝ, 

 

2.6 
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Where x is the vector of features, w is the weight vector, and b is the offset. In the 

linear equation above, the weight vector determines the orientation of the hyperplane in 

space. The hyperplane is perpendicular to the weight vector, and b is the offset or the 

distance of the hyperplane from the origin. The hyperplane divides the input space into two 

half-spaces. The important property of this hyperplane is that H(x) > 0 in one of the half 

spaces and H(x) < 0 in the other one and H(x) = 0 for all the data points on the hyperplane. 

This hyperplane is used for classifying the test data into two classes, where H(x) > 0 

corresponds to +1 label and H(x) < 0 corresponds to -1 label. 

 
𝑦̂ = {1         𝑤𝑇𝑥 +  𝑏 > 0 

−1     𝑤𝑇𝑥  +  𝑏 < 0 
 

 

2.7 

 

The distance from the nearest data point in the training set to the separating 

hyperplane is called the margin of separation. Although we can find multiple hyperplanes 

that satisfy condition 2.7, the hyperplane that has the maximum margin of separation 

between the two classes is unique and is found through optimization. The maximum margin 

of separation is necessary because it increases the model’s generalization or the ability to 

better handle the noise in the test data and the data points that lie on the margin are 

classified based on their location on the band. 

Another critical term that this method is named after are Support Vectors. Support 

Vectors are the data points that their distance from the separating hyperplane is equal to 

one after normalization. 

2.5.1 Linearly Separable Data – Hard margin Support Vector Machines  

As it is mentioned before, the goal of SVM is to find a hyperplane that separates the data 

points in two classes. As it is shown in Figure 2-3 achieving this goal is easier if the data 
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is linearly separable, meaning there exists a hyperplane that can perfectly separate the data 

points into two classes without having any points labeled +1 that lies on the subspace H(x) 

< 0 and points labeled -1 that rests on the subspace H(x) > 0. In the case of separable data, 

multiple hyperplanes exist that can classify the data, so an optimization problem is defined 

to find the hyperplane with a maximum margin of separation.   

 
Figure 2-3: Linearly separable SVM 

 

An SVM problem is designed to find a hyperplane with the maximum margin of 

separation that can classify the data points into two classes.  

As discussed earlier, the separating hyperplane is defined as H(x) = wTx + b = 0, 

where x, w ∈ ℝn   and b ∈ ℝ. In this equation, w is the N-dimensional weight vector, and b 

is the offset. The margin of separation denoted as 
1

ǁ𝑤ǁ
 is defined as the distance between the 

support vectors and the hyperplane. To find the maximum margin of separation, instead of 

maximizing 
1

ǁ𝑤ǁ
 we can minimize ǁ𝑤ǁ subject to the constraints. Referring to the definition 

of support vectors, and the separable data, for a given data set D =  {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛  that xi ∈ ℝn 

and yi ∈ {-1, +1}, the solution of the optimization problem is optimal if it satisfies the 

following constraint:  

 yi (w
Txi + b) ≥ 1, ∀xi ∈ D 2.8 
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So, the problem is formulated as:  

 

 𝑀𝑖𝑛
𝑤,𝑏

 {
 ǁ𝑤ǁ2

2
} 

Subject to:  yi (w
Txi + b) ≥ 1, ∀xi ∈ D 

 

2.9 

 

This problem is a convex quadratic minimization problem that can be solved using 

quadratic programming algorithms in existing software such as MATLAB and Python.  

2.5.2 Linearly non-separable data – Soft margin Support Vector Machines  

One drawback of this approach is that most real-life, large data sets are not linearly 

separable and perfect separation of the two classes is not possible; that is why Soft Margin 

SVM is introduced.  

 

Figure 2-4: Non-linearly separable SVM 

As it is shown in Figure 2-4, in soft margin SVM, some of the points might be on the 

separating margin or the wrong side of the hyperplane; therefore, the violation from the 

separating condition, previously defined as 

H(x) = wTx + b = 0, where x, w ∈ ℝ n and b ∈ ℝ must be measured. Thus, the slack 

variables ζi are introduced to handle non-separable cases. The value of ζi can be within 
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three ranges. If ζi = 0, then there is no misclassification cost for xi and the point is either a 

support vector or on the right side of the margin. Next, if 0 < ζi < 1, that the point is located 

on the margin and its distance from the separating hyperplane is less than 
1

ǁ𝑤ǁ
 . Finally, ζi ≥ 

1 indicates that the point is on the wrong side of the margin and it is misclassified.   

Now, the objective is to maximize the margin of separation, while minimizing the 

slack variables with the correct regularization parameter. Regularization parameter denoted 

as C is defined in the objective function to control the trade-off between the two terms, 

maximizing the margin of separation and minimizing the slack variables that represents the 

cost of misclassification.  

Mathematical formulation of Soft Margin SVM is: 

 

 𝑀𝑖𝑛
𝑤,𝑏,𝜁𝑖

 {
 ǁ𝑤ǁ2

2
 + C ∑  𝑛

𝑖=1 ( ζi)
k} 

Subject to:   yi (w
Txi + b) ≥ 1- ζi, ∀xi ∈ D 

ζi ≥ 0, ∀xi ∈ D 

 

 

 

2.10 

In this problem, the term ∑  𝑛
𝑖=1 ( ζi)

k represents the misclassification cost and it is 

known as the loss, that is deviation from the separable case. Usually, k is set to be equal to 

1 or 2. K=1 is called hinge loss and k=2 is known as the quadratic loss. The goal is to 

minimize the sum of slack variables or the squared slack variables, respectively. In this 

work, since we are trying to solve a linear programming problem, we have assumed k = 1.  

Once the problem is solved, the values of wi determine the support vectors. If wi = 

0, the corresponding xi is not a support vector, and if wi > 0, the corresponding data points 
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satisfy the separating condition and yi (w
Txi + b) = 1- ζi. In this case, support vectors are all 

the points on the margin with ζi = 0 or ζi > 0.   

SVM is a systematic approach based on minimizing a convex cost function. Due to the 

properties of convex functions, local minima do not exist, which makes the optimization 

problem less complicated. Also, SVM performs better with kernels. Therefore, they are 

beneficial for the problems with non-linearly separable data. To summarize, SVM is based 

in the theory of convex optimization. However, for training, we need to solve a quadratic 

optimization problem which is computationally complex, and it requires powerful 

computer systems for large scale problems. Based on the theory of quadratic SVM, linear 

SVM is proposed, which is less complicated and computationally expensive in comparison 

with the classic SVM. 

 

2.6 Defining norms 

In linear algebra, the norm of a vector 𝑣⃗ is a useful way of measuring the size or 

length of the vector. A vector norm is a function defined from ℝn → ℝ and based on its 

definition it has different properties. In general, Lp-norm is defined as:  

 ǁ𝑣⃗ǁp = √∑ |𝑣𝑖|𝑝𝑚
𝑖=1

𝑝
 2.11 

 

Lemma 1: For any given vector in N-dimension linear space Vn, let ǁ𝑥⃗ǁα   and ǁ𝑥⃗ǁβ be any 

vector norms in Vn, there exist two positive constants 0 < 𝑐1 < +∞ and 0 < 𝑐2 < +∞ 

such that condition: 

 𝐶1‖𝑥‖𝛽 ≤ ‖𝑥‖𝛼 ≤ 𝐶2‖𝑥‖𝛽,  ∀x ∈ Vn  2.12 

 

holds.  
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This lemma proves that based on the definition of convergence if a set of vectors 

converges to a vector C with respect to a specific norm, it converges to the same vector 

when using other norms. So, we can say that for two constants C1 and C2, if condition 2.12 

stands, we say that the two vector norms are equivalent.  

Theorem 1: Given the examples set {(𝑥1, 𝑦1),…, (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑙, 𝑦𝑙)}, (x, y) ∈ (Rn, R) and 

the vectors x belong to a sphere of radius R. If the set of 𝑚𝛥 − margin separating 

hyperplanes of H(x,w,b) = wTx + b classifies vectors x as follows: 

 
𝑦̂ = {

1         𝑤𝑇𝑥 +  𝑏 > 𝛥,

−1      𝑤𝑇𝑥 +  𝑏 < 𝛥 ,
    𝛥 ≥ 0 

2.13 

 

Then there exists a constant 0 < 𝐶 < +∞ without depending on examples (x, y) 

and the parameters w and b such that the bound inequality holds: 

 
ℎ ≤ 𝑚𝑖𝑛 ([

𝑐2. 𝑅2. ‖𝑤‖𝛽
2

𝛥2
] , 𝑛) + 1 

 

2.14 

 

            where ||w||β is any vector norm.  

The lemma and theorem can be found in [15].  

Based on the above lemma and theorem, SVM formulation can be modified using different 

norms other than just L2-norm.  

The most commonly used norms are L1-norm, L2-norm, and L∞-norm denoted as ǁ𝑣⃗ǁp 

where p is 1, 2, or ∞, respectively. In this section, we will discuss how each norm is defined 

and we’ll touch upon their properties. 

One Norm (L1-norm or mean norm) is defined as the sum of the absolute values of the 

vector components: 
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 ǁ𝑣⃗ǁ1 = ∑ |𝑣𝑖|𝑚
𝑖=1  2.15 

 

Two Norm (L2-norm or least squares norm) is defined as the square root of the sum of the 

squares of the absolute values of the vector components: 

 ǁ𝑣⃗ǁ2 = √∑ |𝑣𝑖|2𝑚
𝑖=1  2.16 

 

Infinity-Norm (L∞-norm, max norm or uniform norm) is defined as the maximum of the 

absolute values of the vector components: 

 ǁ𝑣⃗ǁ∞ = max {|𝑣𝑖| for i = 1, 2…, m} 2.17 

 

We can use these variations of norms to define the distance between the points in feature 

space. These terms are used to define a modified SVM problem where the quadratic 

objective function is replaced with a linear function using L∞-norm function. For the weight 

vector w = (w1, w2, …, wn) where n ϵ ℕ is the size of the features set. If 𝜏 = 𝑀𝑎𝑥 {|𝑤1|, 

|𝑤2|, … , |𝑤𝑛|}, SVM is formulated as: 

 

 𝑀𝑖𝑛
𝑤,𝑏,𝜁𝑖

{ 𝜆1𝜏+ λ2 ∑  𝑛
𝑖=1  ζi} 

Subject to:   yi (w
Txi + b) ≥ 1- ζi, ∀xi ∈ D 

ζi ≥ 0, ∀xi ∈ D 

|𝑤𝑖|  ≤  𝜏 

𝜆1 +  𝜆2 = 1 

𝜆1, 𝜆2 ≥ 0 

2.18 
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Another vector norm that could replace the L2-norm SVM is L1-norm that yields a 

linear programming problem, which is of more interest to us. As it is shown before, classic 

SVM is defined as a quadratic problem, and it is popular due to its acceptable performance. 

Although L2-norm SVM has a reasonable performance in binary classification problems, 

L1-norm SVM is more suitable for datasets with redundant noisy features. In the case of 

imbalanced data, the size of the error vectors is crucial for us because we can compare the 

accuracy of the classifier in each class. So, using L1-norm is preferable, and after 

minimization, in most cases, the slack variable will have a value of 0 or close, and a few 

variables will have a high error. The drawback of this approach is the existence of outliers, 

which we have dealt with this issue in the preprocessing section. 

For the weight vector w = (w1, w2, …, wn) where n ϵ ℕ is the size of the feature set and l ϵ 

ℕ is the number of observations, the mathematical formulation of an L1-norm SVM is 

presented below:  

 Min w,b,ζ { 𝜆1 ∑  𝑙
𝑖=1 |𝑤i| + λ2 ∑  𝑛

𝑖=1  ζi} 

Subject to:   yi (wT xi + b) ≥ 1 - ζi 

ζi ≥ 0 , ∀xi ∈ D 

𝜆1 +  𝜆2 = 1 

𝜆1, 𝜆2 ≥ 0 

 

2.19 

To classify the data, we need to train the classifier based on the model, which is attained 

after optimizing the LP problem.  
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So far, the standard SVM with modification to the objective function is presented. 

However, SVM classifier as discussed in the previous section does not yield the most 

accurate results, so Kernel SVM has risen to improve the performance of the classifier.  

Kernel trick is a method of data presentation based on similarity in the data which 

facilitates the analysis and classification of data. The data is generally presented in the input 

space, and kernel trick is used to map the data to a higher dimensional space called feature 

space. To do so, for a given data point x, we need a map denoted as 𝜑(x), which is a vector 

representation of the data point in feature space and 𝜑 is the function that transforms the 

data from input space to the feature space. This transformation makes a complex analysis 

of the data using numerical probabilistic and algebraic methods attainable. The drawback 

to this transformation is that feature space is a high dimensional space, and consequently, 

the curse of dimensionality is unavoidable. Another challenge while mapping the data is 

finding the kernel map. However, this issue is solved by transforming the data using the 

similarity values between the points or the kernel matrix denoted as K(xi, xj). K is the kernel 

function and it is defined for any two points in the input pace via the dot product between 

the images of the two points in the feature space. The kernel function K must satisfy 

condition 2.20: 

 K(xi, xj) = 𝜑(xi)
T. 𝜑(xj) 2.20 

 

This condition proves that we can map the data from the input space into the feature space 

without explicitly defining the kernel function and avoid the computational complexity; 

this is known as the kernel trick. Kernelization is widely used in various machine learning 

algorithms, and it can considerably enhance their performance. One of the algorithms that 
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have greatly benefited from kernelization is SVM. Comparing to non-kernelized SVM, 

kernel-SVM is more flexible, and it can predict non-linearly separable data better.  

One of the most important characteristics of the kernel matrix is that the matrix is 

symmetric and positive semidefinite, meaning that for a function K that maps the data from 

input space to the feature space using their respective dot product, K(xi, xj) = 𝜑(xi)
T. 𝜑(xj). 

Function K is positive semidefinite if and only if K(xi, xj) =  K(xj, xi) which shows that K 

is symmetric.  

So, the kernel matrix K is also symmetric and positive semidefinite if for any given vector  

 q ϵ ℝn:  

QTKQ ≥ 0 

 

2.21 

This equation can be rewritten as:  

 ∑ ∑ 𝑞𝑖𝑞𝑗𝐾𝑛
𝑗=1 (𝑥𝑖, 𝑥𝑗) 𝑛

𝑖=1 ≥ 0 2.22 

 

Based on these conditions, it could be said that we can create many positive 

semidefinite kernels that correspond to the dot product of the data points in a feature space. 

According to this, different kernel functions have been developed and used over the years. 

Some of the most popular ones are presented in Table 2-1. 

Table 2-1: Kernel functions 
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Choosing the suitable kernel and assigning the best parameter value is very important as it 

can significantly affect the performance of the classifier. To better understand the role of 

the kernel in SVM classification, four SVMs with and without kernels are defined to 

classify a randomly generated dataset, and the results are presented in Figure 2-5. 

 
Figure 2-5: Kernel SVM 

 

 

For implementing the kernel matrix into classification problems using SVM, the 

decision function and the constraint must be reformulated to reflect the use of kernel and 

transform the data from input space into feature space. The mathematical formulation of 

SVM for the weight vector wi where l ϵ ℕ is the number of observations in the data set,  

with a given kernel K(xi, xj) is presented as follows:  

 

 Min w,b,ζ { 𝜆1 ∑  𝑙
𝑖=1 |𝑤i|+ 𝜆2 ∑  𝑙

𝑖=1 ζi
 } 2.23 
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Subject to:  yi [∑  𝑙
𝑖=1 ∑  𝑙

𝑗=1 𝑤i. k(xi, xj) + b] ≥ 1 - ζi  

𝜆1 + 𝜆2 = 1 

ζi  ≥ 0, wi≥ 0 

𝜆1, 𝜆2 ≥ 0 

 

2.7 Parametric modeling 

SVM is a powerful algorithm for predictive analysis. However, it can be 

computationally expensive. To achieve the best results using SVM we need to tune the 

model parameters through a regularization parameter which is usually denoted by C. The 

regularization parameter controls the trade-off between the two objectives, which are 

minimizing the error term and minimizing the norm of the weight vector and achieving the 

maximum margin of separation. Tuning this parameter is quite essential as it can affect the 

performance of SVM classifier. There are not many robust approaches for parameter tuning 

in SVM, and grid search is often used for this purpose. To perform a grid search for 

parameter selection, the model is trained over a set of hyperparameters to find the optimal 

parameters for the given model. A grid search is computationally expensive, and it requires 

powerful computing systems if the data set is large, because it builds multiple combinations 

of the model with the given parameter values and selects the best one after comparing the 

results for all combinations.  

In this work, we have proposed using an algorithmic approach based on the parametric 

simplex method to exhaustively search the solution path and find the optimal value of the 

regularization parameter.  
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Since the proposed SVM algorithm proposed in this work is a linear programming 

problem, by defining this issue as parametric linear programming, we can use parametric 

simplex method to attain all the values for the parameter and choose the optimal value 

among a small set of potential values. Various versions of the parametric simplex method 

exist which are different in the variables we choose to update at each iteration [36]. In a 

paper published by Nguyen Dinh Dan and Le Dung Muu [37], the parametric simplex 

algorithm for multi-objective optimization problems is introduced. In this paper, the 

proposed algorithm finds the global solution of the linear programming problem.  

The method used in this work was initially introduced in a book by Ehrgott et al. 

[38]. Using the parametric simplex algorithm for two-objective linear optimization 

problems, we can find the optimal value of the regularization parameter of an optimization 

model in SVM. In theory, the general form of this algorithm applies to multi-objective 

linear programming problems too.  

Before further discussing the algorithm, a few terms must be defined. As mentioned 

before, the algorithm starts with solving the augmented form of the original problem to 

check the feasibility of the problem. The solution obtained from solving this problem is the 

augmented solution which is the optimal values of the decision variables in the augmented 

LP. The corner-point solution of the augmented LP is a basic solution. The basic solution 

can be either feasible or not, and it is called a basic feasible solution (BFS) if it is feasible. 

The corner point solution and a basic solution are only different in including the value of 

slack variables. The corner-point solution consists of basic variables and non-basic 

variables. Non-basic variables are the values set equal to zero in the basic solution, and the 

remaining variables are the basic variables. The set of all basic variables is known as the 
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basis. Another term that needs to be defined is the reduced cost vector, which is the amount 

the coefficients of the objective function have to decrease when minimizing the objective 

function, to achieve the optimal value. Reduced cost vector is denoted as 𝑐̅. In a two-

objective LP,  𝑐̅i1 represents the components of the reduced cost vector corresponding to 

the first objective and 𝑐̅i2 represents the components corresponding to the second objective.  

Based on the inseparable data, kernelized Support Vector Machine with L1-norm is 

introduced for classification and the problem is formulated as: 

 

 Min w,b,ζ { 𝜆1 ∑  𝑙
𝑖=1 |𝑤i|+ 𝜆2 ∑  𝑙

𝑖=1 ζi
 } 

 Subject to: yi [∑  𝑙
𝑖=1 ∑  𝑙

𝑗=1 𝑤i. k(xi, xj) + b] ≥ 1 - ζi  

𝜆1 + 𝜆2 = 1 

ζi  ≥ 0, wi≥ 0 

𝜆1, 𝜆2 ≥ 0 

 

2.24 

There are multiple methods for solving a multi-objective problem [39]. The 

objective function in this problem is a weighted sum of two separate objective functions 

that we are trying to minimize simultaneously. The goal is to find the optimal value of 𝜆1 

and 𝜆2 . To make the problem compatible to the form mentioned in [32]  let’s set 𝜆1 = 𝜆 and 

𝜆2 = 1 – 𝜆.  

Theorem 2: Let 𝑥̂ ∈ X be an optimal solution of the weighted sum LP 

1. If λ ≥ 0 then 𝑥̂ is weakly efficient. 

2. If λ > 0 then 𝑥̂ is efficient. [32] 
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Based on Theorem 2, the problem is solved when the optimal value of λ is identified. 

If λ ≥ 0,  then the optimal solution of the LP is weakly efficient and if λ > 0 then the solution 

is efficient. This algorithm starts with the feasibility evaluation of the LP problem, and the 

augmented form of the problem is solved to find the optimal basis and optimal basis 

feasible solution to the problem. The augmented form of the problem is given as: 

 

 Min w,b,ζ { 𝜆 ∑  |𝑙
𝑖=1 𝑤i|+(1-λ) ∑  𝑙

𝑖=1 ζi
 } 

Subject to: yi [∑  𝑙
𝑖=1 ∑  𝑙

𝑗=1 𝑤i. k(xi, xj) + b] - Zi = 1 - ζi   

ζi  ≥ 0, wi≥ 0 

𝜆 ≥ 0 

 

2.25 

where Zi is the added ith slack variable. The problem is implemented and solved 

using the simplex algorithm in Gurobi optimization tool in Python. 

Proposition 1: The LP is feasible, i.e. X ≠ ∅, if and only if the auxiliary LP has an 

optimal solution (𝑥̂, 𝑧̂) with 𝑧̂ = 0. 

If 𝑥̂ in an optimal solution of the auxiliary LP, is not a BFS of the original LP, it 

can always be easily converted into one [32]. 

 

Based on Proposition 1, if the added slack variables are equal to zero and the 

problem has an optimal solution, then the problem would be feasible. 

Theorem 3: 1. A basic feasible solution (xB, 0) of a linear programming problem 

is an extreme point of the feasible set X. However, several feasible bases may define the 

same basic feasible solution and therefore the same extreme point (in case of degeneracy). 
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2. If X  ≠ ∅ and the LP is bounded, the set of all optimal solutions of the LP is 

either X itself or a face of X. 

3. For each extreme point 𝑥̂  of X there exists a cost vector c ∈ Rn such that 𝑥̂ is 

an optimal solution of min{cT x : x ∈ X} [32]. 

 

Based on Theorem 3, the basic feasible solution of LP in the augmented format is 

an extreme point belonging to the feasible set and a cost vector c 𝜖ℝ𝑛  exists for each 

extreme point of the feasibility set so the objective function can be written as:  

 Min {(c1)T ∑  𝑙
𝑖=1 αi , (c

2)T∑  𝑙
𝑖=1 ζi } 2.26 

 

Subject to the constraints and finding efficient solutions to this problem would yield 

the solution to the two-objective LP. The parametric simplex algorithm is implemented in 

3 phases.  

Phase 1: As it is discussed in the previous section, phase one is solving the 

augmented LP problem and finding the optimal basis and the optimal basic feasible 

solution. The problem is infeasible if the set of optimal basic feasible solution is empty. 

Therefore, the algorithm stops.  

Phase 2: In the next step we will solve the following LP for λ = 1 starting from the 

basis obtained from phase one. When implementing the problem in Python, there are 

various optimization tools to be selected, since this approach is based on parametric 

simplex for two-objective optimization, the simplex algorithm must be selected.  

The output of this phase is the optimal basis. The optimal values of the decision 

variables are updated as well. 
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Phase 3: At this stage, the set of non-basic variables is denoted by N, and the 

reduced cost vector for each objective is also calculated. The new value for λ is calculated 

using the following equation: 

 
  λ = max 

−𝑐𝑖̅
2 

𝑐𝑖̅
1−𝑐𝑖̅

2 
  

 for i ϵ I, where I = { i ϵ N, 𝑐𝑖̅
2 < 0 , 𝑐𝑖̅

1 > 0 }  

2.27 

 

Using equation 2.27 the value of λ and the decision variables is updated after each 

simplex iteration until I = ∅ and the algorithm ends while providing a finite number of λs 

to be tested as an optimal parameter for the LP. Using this method, we can significantly 

reduce the computational complexity and obtain more accurate results for tuning the 

parameters in comparison with methods such as grid search. This method is implemented 

using Gurobi in Python, and the algorithm is presented as follows: 

1. Set the model parameter equal to 1 to use Simplex as the optimization solver.  

model.params.method = 1 

2. Set the objective function equal to zero. 

model.setObjective (0.0) 

3. Solve the auxiliary LP and obtain the basis and basic feasible solution.  

Basis = model.VBasis 

4. If Zi = 0, the problem is feasible; otherwise the LP is unbounded.  

5. Set λ = 1 

6. Solve the auxiliary LP, starting from the basis found in step 3. 

PStart = Basis 
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7. Obtain a new basis and the reduced cost of the components of the objective 

functions. 

For j = number of components of the objective function: 

Reduced cost of vector W: 𝑐𝑖̅
1 = W[j].RC 

Reduced cost of vector S: 𝑐𝑖̅
2 = S[j].RC 

8.   Calculate λ as: λ = max 
−𝑐𝑖̅

2 

𝑐𝑖̅
1−𝑐𝑖̅

2 
 for i ϵ I, where I = { i ϵ N, 𝑐𝑖̅

2 < 0 , 𝑐𝑖̅
1 > 0 } 

9. While I≠∅ , update λ and repeat steps 7 - 9. 

10. The output is a finite number of λ values to be used as a regularization parameter.  

2.8 Evaluation metrics 

Assessment is the next important step after classification. Some of the most popular 

evaluation metrics are accuracy and error rate.  

Before defining the metrics, four key terms need to be defined. For a binary 

classification problem, if {P, N} is the predicted labels for the data points in the test set, 

and the majority class is donated by N, and the minority class is denoted by P, we can use 

Confusion Matrix as presented in Table 2-2 as a visual presentation of classifiers’ 

performance: 

 

Table 2-2: Confusion matrix 

 

Based on this notation, accuracy and error rate are defined as: 

Predicted values

A
ct

u
a

l 
v

a
lu

es

True Positive (TP)  False Negative (FN) 

False Positive (FP)  True Negative (TN) 
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Accuracy =
TP+TN

TP+TN+FP+FN
  

Error rate = 1 - accuracy 

Although these metrics are used in almost all machine learning problems, they are 

not appropriate for imbalanced data because their results are biased towards the majority 

class. These evaluation metrics often fail to present the poor performance of the classifier 

on the minority class, which in most cases is more important for us. So, for binary 

classification problems of imbalanced data, other metrics are defined and used. 

1. Precision = 
TP

TP+FP
 

2. Recall = 
TP

TP+FN
 

3. F-measure = 
(1+ β)2.  Recall.  Precision

β2.  Recall+Precision
 , where β  is the relative importance of 

precision versus recall, and it is usually set equal to one.  

4. Geometric mean/ G-mean = √
TP

TP+FN
 .

TN

TN+FP
 

 In imbalanced learning, precision measures the proportion of instances that were 

labeled correctly among those with the positive label in the test data. In other words, it 

measures how exact the model is, concerning the minority class. While, recall measures 

the portion of positive instances in the test data that were labeled correctly, and it measures 

the completeness of the model. Precision and recall have an inverse relationship. Precision 

is dependent on the distribution in the data, but the recall is more robust. Precision and 

recall, when used together can provide valid insight into the performance of the classifier 

with regards to the minority class. That is why F-measure is a valuable evaluation metric 

in imbalanced learning, which can assess the trade-off between precision and recall. 
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Finally, G-mean is the metric that is used explicitly for imbalanced learning and 

tries to maximize the accuracy of the model over each class by considering both classes for 

evaluation. In the evaluation section of this work, all the metrics mentioned above are used 

to compare the models and select the best one.    

To visualize and summarize the performance of the classifier, we have used 

Receiver Operating Characteristic curve also known as ROC curve [40]. ROC curve is a 

popular tool, which presents the trade-off between true positive rate (TPRate) and false 

positive rate (FPRate) defined as: 

 

 TPRate = 
TP

TP+FN
   

FPRate = 
TN

TN+FP
   

2.28 

 

The area under the ROC curve denoted as AUC is defined as:  

  AUC = 
TPRate+ TNRate

2
   2.29 

 

AUC represents the probability of correctly classifying positive instances while 

minimizing the number of false positives. It provides a great measure to compare different 

models as it is independent of the classification model. Figure 2-6 shows all the key points 

in the ROC curve and AUC. If used appropriately, they can be a valuable tool in model 

assessment for imbalanced learning. 
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Figure 2-6: Receiver Operating Characteristic and Area Under the Curve 

Finally, K-fold cross validation is used to evaluate the classifiers over the data set. For most 

steps of this work, 20 percent of the data is randomly selected for testing and the remaining 

data set is used for training. For evaluation, 5-fold cross validation is proposed as a standard 

evaluation technique. In 5-fold cross validation, the data set is divided into five subsets, 

and in each iteration, one subset is used for testing and the remaining is used for training.  
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Figure 2-7: K-fold Cross Validation 

The final results are the average of the results found at each round. 
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3 Experiment and results 

3.1 Data preprocessing  

3.1.1 Missing value imputation 

The data used in this work is collected by the Bureau of meteorology’s system in 

Australia. Bureau of Meteorology’s system is responsible for collecting the data regarding 

weather phenomena in Australia. Bureau weather stations collect data from real-time 

observations including temperature, rainfall, wind speed and direction, sunshine, etc. The 

most common ones are the stations that measure rainfall. The historical data is collected 

from the early 1830s, at stations in Adelaide West Terrace, Parramatta, Port Arthur, and 

Colombo Creek. The number of stations has grown significantly since then, and currently, 

there are more than seven thousand active stations in Australia. Bureau weather stations 

are Meteorology offices in Australia that record various weather-related observations. 

Most Bureau weather stations observe and record a type of weather event based on the 

specific equipment available in the station. The observations are recorded in different time 

intervals such as daily, or hourly, and it varies based on the location of the station and the 

weather phenomena observed. The Bureau stations have a unique name, and ID number 

and all the observations are gathered and stored in the Bureau’s climate database, also 

known as the Australian Data Archive for Meteorology. 

The historical data includes various numerical and categorical features, which are 

defined in Table 3-1. (http://www.bom.gov.au/climate/data-services/data-requests.shtml): 

 

Table 3-1: Numerical and categorical features of the data set 

http://www.bom.gov.au/climate/data-services/data-requests.shtml
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The data used in this work is collected from multiple stations in Australia. Due to 

limitations of CPU and Memory, the 25 stations are divided into 5 sample groups. Each 

group is treated as one data set and is used for analysis. Table 3-2 shows the number and 

percentage of observations in each class for the chosen stations.  

 

 

Table 3-2: Observation locations and sampled data sets 
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The groups are selected with a slightly different ratio of class imbalance. Table 3-3 

and Figure 3-1 presents an overview of the percentage of observations in each class.  

Table 3-3: Sampled data sets 
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Figure 3-1: Distribution of data in the minority and majority class in the selected locations 

 

Before proceeding with the analysis, it is essential to check the data for missing 

values and outliers. We need to know which features have missing values and what 

percentage of the data is missing. The data initially had 142193 observations and 24 

attributes. For simplification, most of the attributes are written in abbreviations. The 

complete list of attributes is with the respective missing value percentage is provided in 

Table 3-4.  

Table 3-4: Features of the data set and the percentage of missing values 
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As it is shown, the features “Evaporation,” “Sunshine,” “Cloud9am” and 

“Cloud3pm” have more than 30% missing values. In this step, the columns with categorical 

values such as “WindDir9am” and “WindDir3pm” are also removed. The “RISK_MM” 

column is removed because it includes measurements of rainfall in the day that we are 

trying to predict, and it leaks information to the classifier. Information leakage is 

misleading, and it can result in false high accuracy. Figure 3-2 compares the missing values 

in the data set before and after dropping the features. 



52 

 

Figure 3-2: Missing values in the data set before and after dropping the features with 30% 

or higher missing values 

The missing values in the remaining features are filled with the mean of the 

observed instances in each feature. The number of features in the data set is reduced to 14, 

which includes redundant and noisy data so feature selection methods are used to reduce 

the sample size and find the optimal number of features.  

3.1.2 Feature selection 

As it is discussed in chapter 2, several feature selection methods have been used, 

and the results are represented as follows.  

1. Feature selection with correlation 

Based on the correlation heat map shown in Figure 2-2, three pairs of features with 

the highest correlation coefficient are selected and as is shown in Figure 3-3, the Pearson 

correlation coefficients for Pressure3pm and Pressure9am, MaxTemp and Temp3pm and 

MinTemp and Temp9am is 0.96, 0.97 and 0.9 respectively which indicates a high 

correlation between the features and one of the features in each set must be dropped. 
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Figure 3-3: Joint plot of highly correlated features 

To improve the performance of the classifier based on feature selection using 

correlation coefficient, the features 'Humidity9am', 'Pressure9am', 'WindSpeed9am' are 

dropped. The model is trained using RF classifier, and the results are shown in Table 3-5 

and Figure 3-4. 

Table 3-5: Results – RF classification 

 

 

Figure 3-4: Confusion matrix – RF classification 

2. Recursive Feature Elimination 

 

 

Metrics RF classification

Accuracy 0.84

Precision 0.71

Recall 0.46

F-Measure 0.56

G-Mean 0.66
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As it is discussed in chapter 2, RFE can be implemented with different classification 

algorithms. The results obtained from RFE with Random Forest and Support Vector 

Machine as core classifier are presented in Table 3-6 and Figure 3-5 for comparison. 

Table 3-6: Results – RFE-RF vs. RFE-SVM classification 

 

 

Figure 3-5: Confusion matrix – RFE-RF vs. RFE-SVM classification 

Based on the results from the confusion matrices in Table 3-6 and Figure 3-5 the 

two classifiers have relatively close performance based on the measurement metrics used 

for evaluation. However, RFE with Random forest at its core is considerably faster. 

Therefore, it is selected for training in the remaining feature selection and feature extraction 

methods.  

3. Recursive Feature Elimination with Cross-Validation 

Recursive feature elimination with 5-fold cross validation using Random Forest is 

used, to find the optimal number of features for classification, and the results are presented 

in Figure 3-6. 
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Figure 3-6: RFE-RF with 5-fold cross-validation 

4. Tree-based feature selection (Random Forest Feature importance) 

Random forest feature importance is a practical tool for most data sets. However, 

it performs poorly if the dataset includes different types of data or the data varies in their 

scale, so we have applied the algorithm on scaled data which includes only numeric values.  
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Figure 3-7: Feature importance plot  

As it is shown in Figure 3-7, “RainToday” has the lowest importance so it can be discarded. 

Based on previous analysis, Rainfall has the highest number of outliers, and it is not vital 

for classification. Thus, they are both dropped from the data set. For comparison, the data 

is trained before and after dropping the two features, and the results are presented in Table 

3-7. The feature first set includes all the features and the second feature set includes all the 

features except “RainToday” and “Rainfall.”  
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Table 3-7: Results – Comparison of RF classification of the feature set 1 and 2 

 

Based on the results presented in Table 3-7, the accuracy of the classifier does not 

drastically change after the two features were dropped. However, the new subset decreases 

the computational time so, training/testing feature set two is more efficient, and it is 

selected for further analysis. 

 

3.1.3 Feature Extraction 

From the machine learning aspect, the number of principal components is 

determined based on different variables such as storage, the capacity of the system, training 

time, performance of the machine learning algorithm, etc. A sensible way of choosing the 

best number of principal components is plotting the variance against principal components, 

as it is shown in Figure 3-8, which shows the minimum number of principal components 

required to retain %99 variance. And the correlation coefficient map is an indication of low 

correlation among the new features. 
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Figure 3-8: Optimal number of principal components and the correlation matrix 

To assess the performance of the classifier the constructed data set is trained and 

tested. The results are provided in Table 3-8 and Figure 3-9. 

Table 3-8: Results - RF classification on the new feature set after PCA  

 

 

Figure 3-9: Confusion matrix - RF classification on the new feature set after PCA 

 

Metrics Results

Accuracy 0.83

Precision 0.71

Recall 0.45

F-Measure 0.55

G-Mean 0.65
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3.2 Model selection 

As it is discussed in chapter 2, no single classifier performs flawlessly for all data 

sets, so choosing the right classifier can affect the accuracy of results. To this end, ten 

algorithms that are suitable for classifying large data sets are used to train and test the data, 

and the results are presented in Table 3-9. 

Table 3-9: Model comparison 

 

For comparison among the models, the overall performance of the classifier 

determines if it is the accurate classifier for the data. As is shown in  Table 3-9 and Figure 

3-10, Support Vector Machine with RBF kernel has the highest accuracy, so SVM is the 

most suitable algorithm for classifying this data set.  
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Figure 3-10: Model comparison 

 

3.3 Classification and parameter tuning 

After preprocessing the data and selecting the Support Vector Machine as a 

classifier, we have trained the data using the proposed linear SVM. The model is tuned 

based on the parameter found using the parametric modeling algorithm proposed in chapter 

2. According to the results obtained from the proposed algorithm, the optimal value of λ = 

0.9999, so the objective function of the optimization problem is updated to:  

 Min w,b,ζ { 0.9999 ∑  𝑙
𝑖=1 |wi| + 0.0001 ∑  𝑛

𝑖=1 ζi
 }  

Since the value of λ is obtained from the first iteration of the algorithm, we have trained 

the first sample data using other values of λ, and the results of the optimization model are 

presented in Table 3-10. 
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Table 3-10: Parametric modeling values 

 

Based on the results presented in Table 3-10, λ = 0.9999 has the lowest value of the 

objective function, which is the optimal value of λ. We have also compared the results from 

the result obtained from a grid search on the set of C = { 0.00001, 0.0001, 0.001, 0.01, 0.1, 

1, 10, 100, 1000, 10000} and the best value of C = 10 was found which used to train and 

test the data. The results are shown in Table 3-12.  

Table 3-11: Results – Standard Kernelized SVM 

 

Table 3-12: Results - Kernelized SVM with modified objective function classification 
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Based on the results presented in Table 3-12, the proposed kernel SVM with 

adjustments to the objective function of the training algorithm performs well on classifying 

the minority class. However, the results obtained from running the algorithm on the data 

reveals that SVM with RBF and second-degree polynomial kernel tend to overfit the data, 

which doesn’t affect the performance of the classifier on the minority class, but the majority 

class is misclassified. As is shown in the confusion matrices and ROC curves in Figure 

3-11and Figure 3-12, this problem presents itself in the G-mean that is equal to zero and 

the ROC curve where the area under the curve is equal to zero.  
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Figure 3-11: Confusion matrices of modified SVM classification 

 

 

Figure 3-12: ROC curves 

To avoid this issue, the use of a linear kernel is proposed and implemented, and the 

results obtained from training and testing the data proves that the proposed SVM with 

linear kernel provides enough generalization to perform equally well on both classes. The 

AUC score derived from the ROC curve presented in Figure 3-12 also shows the 
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improvement in classifying the test data in both classes in comparison with standard 

Support Vector Machine classifier, with a quadratic objective function.  

As it is mentioned before, the meaningful range of AUC score is between 0.5 and 

1 and the closer we get to 1, the better the classifier is. This score is important because it 

also determines the probability of ranking an unknown instance positive which in the case 

of our work, is the probability of having rain. So, the probability of predicting a randomly 

selected instance as positive is 0.7 which is a reasonable result for an imbalanced learning 

problem.   

To evaluate the results 5-fold cross validation is also used. Due to time limitations, 

we have applied 5-fold cross-validation on the first group of data, and the results are 

presented in Table 3-13, which shows a lower average G-mean score. The lower score is 

due to the fact that rainy observations occur at different time intervals. Randomly selecting 

the train/test data sets can provide less correlation between the observations and overall 

higher scores comparing to cross-validation in which the data is divided into five sections, 

and at each iteration, one is selected as testing data, and the remaining is the training data.   

Table 3-13: Cross-Validation 
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To improve the results of cross-validation we have randomized the data before 5-

fold cross-validation and as it is shown in    the scores are closer to what we have with 

randomly splitting the data.  

Table 3-14: Cross-Validation with randomness 

 

As for other metrics, having the relatively close performance of the classifier for 

both classes is an indication that the minority class is not ignored, and without loss of 

generalization, this approach could be used for imbalanced data sets. 
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4 Conclusion and future work 

Two main contributions towards improving the classification of imbalanced  data 

are: 

1. Introducing an algorithmic approach for finding the optimal regularization 

parameter in Classification algorithms such as Support Vector Machines. This approach is 

based on parametric simplex optimization that searches the solution path and provides a 

finite number of values that could be used as a possible regularization parameter. The most 

important advantage of this method is that it is built upon a solid mathematical background. 

It is also considerably faster than grid search.  

2. Developing a linear Support Vector Machine with L1-norm objective function 

based on principles of multi-criteria optimization that can effectively predict the minority 

class as well as the majority class. This modified SVM can decrease the computational 

complexity associated with solving a quadratic optimization problem, and it can be solved 

using the existing software suitable for convex LP problems.      

There are also other things that we can consider to further improve the results. For 

example, training the data with smaller number of features before PCA could result in less 

overfitting. It is also a good idea to study the rotation of Principal Components [41], which 

could result in better interpretation of PCs and data reduction.  

In Evaluation, due to the application of LP SVM in weather data. comparison of 

the results with evaluation metrics used in meteorology could also provide a better 

understanding of the results. 
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As for future work, despite the advances made in data analytics, there are still 

various opportunities for research projects to be carried out to provide insight into the 

machine learning algorithms. Large scale problems are becoming more popular, and we 

will continue to face the challenges associated with them. 

For the parametric simplex method introduced for parametric modeling, we 

propose implementing this method for identifying the hyperparameters in different 

algorithms other than SVM, as it can reduce the computational complexity and effectively 

improve the parameter tuning in statistical learning.   

As for imbalanced learning, we tend to combine the proposed method with 

weighted SVM and explore how the algorithmic approach can work in combination with 

data-related methods to improve classification performance.  
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