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CHAPTER I 

 

 

1. INTRODUCTION TO ENERGY ABSORPTIVE APPLICATIONS 

 

Energy absorptive applications pertain to the use of physical structures and related 

modifications to inhibit the transmission of directed kinetic energy during impact. The 

prime objective in all energy absorptive applications is to ensure the safety and integrity 

of high priority systems by protecting them from damage inflicted through directed 

kinetic energy. Energy absorptive applications have been an integral part of many 

modern industrial sectors like the packaging industry, transport, defense, construction and 

power generation [1-4]. The nature of these applications varies with the entity having 

higher safety priority (a finished product for packaging industry and a human user in the 

case of transport and defense). Variations are also based on the means used for energy 

dissipation. As defined by Alghamdi [5], “an energy absorber is a system that can totally 

or partially convert the directed kinetic energy in any other form. Energy converted is 

either reversible, like pressure energy in compressible fluids and elastic strain energy in 

solids, or irreversible, like plastic deformation energy”. The majority of current energy 

absorptive systems utilize both reversible and irreversible modes of energy conversion to 

maximize dissipation.  Weight sensitive applications like those in the packaging industry 

and defense involve constraints that necessitate the absorbers to be less bulky,
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rigid, offering better stability with strength and ease of handling per unit mass. In such 

cases, an irreversible mode of conversion is utilized more predominantly as it positively 

ensures that damages sustained through intense impact loads are minimal. As a result, 

absorbers use elastic strain and plastic deformation energy as absorption modes with 

plastic deformation energy being the majority of the total energy absorbed.  

 

Figure 1 Schematic showing the elastic and plastic energy regions on a Stress – Strain diagram. 

As described by Johnson et al. [6], the prime factors that govern the energy conversion 

through plastic deformation are: 

• Deformation and displacement patterns 

• Properties of materials involved and their transmission rates 

• Load description and application patterns 

 The design and material selection for absorber systems have evolved over time with 

continual modifications specifically aimed at further improving their efficiency with each 

prime factor in consideration. Deformation and displacement patterns are influenced by 

the design geometry and structural constitution of each component that form the absorber 

unit. Evolution of load distribution at micro and macro levels is influenced by the 



 3 

structural geometry as well as by the nature of materials involved. Material properties 

play the most vital role in governing the energy absorption capacities since they are 

directly relative. Material properties have been observed to change with the load 

description and the application rates. These variations significantly affect the end nature 

of the absorber. It is thus vital to find ways to quantify and compare each of these aspects 

while designing any energy absorber that suits a particular application. In-depth 

understanding of the requirements followed by detailed analysis and mechanical tests are 

essential to evaluate its performance. 

The current research work presented here aims to explore the methodology of designing a 

personal ballistic impact absorber unit. Background literature and research that prompted 

the design selection of this Hybrid-Composite-Armor plate insert, its material 

constituents and methods of evaluating its performance are discussed in the upcoming 

sections. The study illustrates the use of experimental testing and FEA analysis in 

conjunction as a design procedure for evaluation of dynamic impact behavior of 

structures.  Ballistic resistance evaluation of this Dyneema – Metallic Glass honeycomb 

lattice sandwich plate concept according to NIJ standards and FEA analysis using 

ABAQUS 6.8.2 is the final aim. 

1.1. Design and Material Developments in Energy Absorptive Applications 

Each application demands specific design and material selection which best suits the 

needs. It also demands a design selection that enables energy dissipation at a 

predetermined rate and controlled manner. As described by Lu et al. [7], the most 

fundamental principles that act as guidelines for designing any energy absorber can be 

briefly outlined as: 



 4 

• The energy conversion by the structure should be irreversible by plastic 

deformation and other dissipation processes, rather than storing it elastically. 

• The peak reaction force should be kept below a threshold and an ideally constant 

reaction force should be maintained throughout the deformation process. 

• The displacement by deformation or the stroke in the structure should be 

sufficiently long to absorb the large amount of input energy. 

• The deformation mode and energy absorption capacity of the designed structure 

should be stable and repeatable to ensure reliability during service. 

• The structure should be as light as possible with high specific energy absorption 

capacity. 

• Manufacturing, installation and maintenance should be easy and cost effective.  

An ideal absorber design adheres to these principles but specific needs as mentioned 

earlier may necessitate some level of compromise in any of the principles. Success of the 

design is ultimately judged when it is put in the field of use. Over the years, different 

designs have been experimentally tested and implemented. The overview by Alghamdi 

[5] lists out the collapsible structures that have caught research attention. The prominent 

being drums [8], tubes [9-11], frusta [12], struts [13], and honeycombs [14]. Materials 

used to make these collapsible structures include metals like steels and aluminum alloys, 

paper and similar recyclable materials and polymers. Significant work has also been done 

to verify the effectiveness of these structures when filled with materials like foams, wood 

fillings and sand [15-17]. Collapsible structures have maximum stroke. When filled with 

above mentioned materials, variations in the reactive force can be minimized but with a 

detrimental increase in weight. The strength-to-weight ratio is also found to show 
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improvements due to controlled collapse. Fiber reinforced composites and Fabric based 

composite laminate systems have also been used in absorptive applications [18-20]. 

Advantages of fiber reinforced composites are multifold with regards to fracture 

toughness, stiffness and specific strength. These structures also improve the design 

flexibility (control over mechanical properties by governing fiber orientation), durability 

and ease of handling with a moderate compromise on manufacturing cost. Fabric based 

composite laminates systems have added improvements over unidirectional counterparts 

in terms of contourability over 3D structures, inter laminar strength and better damage 

tolerance [21]. As described by Karger-Kocsis et al. [22], the fracture toughness of 

knitted composites is better because a more homogeneous distribution of reinforcing fiber 

bundles can be attained. As illustrated by Khondker et al. [18], knitted fabric composites 

have enhanced inter-laminar fracture toughness due to strong intermingling and fiber 

bridging between adjacent layers when compared to regular  textile composites [23-24]. 

In ballistic applications, fabric composite systems fare better than fiber composite 

systems as described by Grujicic et al. [25].  

Monolithic solids like metals and their alloys are the simplest designs for providing 

impact resistance. Their first use dates even before the initiation of Industrial age. With 

development in manufacturing technology, steels and their processed variants have been 

regularly used in energy absorptive applications [26-27]. Other metals like aluminum 

alloys have also been used for energy absorption as mentioned earlier. More resistant 

materials to compressive stresses like ceramics have seen increased use as monolithic 

structures. They have been increasingly used in ballistic armor applications due to their 

relatively high compressive hardness with low bulk density as compared to the standard 



 6 

materials used earlier like steels, titanium, aluminum alloys [28]. However their use is 

limited to only this specific application due to their brittle behavior. Amorphous metal 

alloys have seen significant improvement in terms of manufacturing technology and 

processing since their first induction in the 1970s. Research has enabled significant 

reduction in the required cooling rates by exploiting element combinations and quantities 

to achieve the “confusion effect” phenomenon [29].  Inherent high strength and elastic 

modulus makes them better than crystalline metals and the comparative low brittleness 

makes them a viable option to ceramics with reference to energy absorptive applications. 

Achievable low density through cellular structures makes Amorphous metals an excellent 

material choice for energy absorption applications. Compressive mechanical properties of 

amorphous metal cellular solids have been reported [30-32]. Recent publication by Yang 

et al. [33] has shown the comparison of strengths exhibited by various bulk metallic 

glasses as a function of their glass transition temperatures. 

 

Figure 2 Strengths of amorphous bulk metallic glasses plotted with their glass transition temperatures, Yang et 

al. [33]. 

 Dynamic compressive properties for Pd based amorphous metal foam have been reported 

which suggest better energy absorptive capacity than Aluminum foam counter parts of 
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the same relative density [34]. Results presented indicate that amorphous materials can 

prove an excellent choice for energy absorptive applications in the near future. 

1.2. Ballistics Impact Inhibition: Armor Design & Materials 

The post WW2 period opened several avenues for exploring new methods of ballistic 

impact inhibition. Safety of the human user in the combat zone gained more impetus. 

With the development of new weapon systems, it was imperative that obsolete armor 

technology had to be renovated to improve personnel and vehicle protection as a counter 

measure. The very first armor systems saw the use of monolithic hardened steel plates in 

flak jackets [35] and tank armor [36] which performed with a inconsistent success rate. 

The advancement in processing techniques led to the invention of Dual Hardness Armor 

(DHA) with thicker and better quality plates. Further innovations that followed include 

Rolled Homogenous Armor (RHA), Cast Homogenous Armor (CHA), High Hardness 

steel Armor (HHA) and hardened Aluminum alloy armor (MIL - DTL series). To 

enhance the performance, study of penetration mechanisms gained attention. The science 

of terminal ballistics was developed to gauge the characteristics and effects of projectile 

impact like fragmentation and adiabatic heating. With the environment conducive for 

further development, newer technologies like ceramic and reactive armor systems, 

ballistic testing standards and methods, analytical and computational simulation codes, 

fabric based armor, transparent armor etc emerged. Introduction of composite armor 

technology meant lightweight structures that performed even better than their heavier 

predecessors. Some significant developments in the armor structures have been listed in 

Figure 3. 
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Figure 3 Armor development timeline as illustrated by Hazell [37]. 

As described by Hazell [37], basic armor designs can be classified as  passive or reactive. 

Reactive armors employ the use of kinetic force to counter the ballistic threat. On the 

other hand, passive armors utilize the material properties of the constituents to dissipate 

the impact kinetic energy. Passive armors are most suitable for personnel applications 

like ballistic vests due to the close proximity. These can be further categorized as 

disruptors or absorbers. This classification is based on the material property that is 

specifically utilized to deal with the projectile kinetic energy. Disruptors function as the 

first impact layers of armor systems that erode the projectile in to fragments and thus 

disperse the energy away from the user. In order to successfully erode the projectile, 

disruptors are made from materials that have high strength and high hardness compared 

to the threat (e.g. ceramics, high strength steels). In contrast, absorbers work by absorbing 

the kinetic energy through plastic deformation modes. These systems also serve as spall 

liners to prevent unwanted projectile fragments from penetrating and inflicting damage 
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post impact (for example: steels, fiber reinforced composites, fabric laminate systems). 

Most current commercially used armor systems are multilayered composite structures to 

combine the advantages of both passive systems. Extensive failure in disruptors due to 

brittle cracking can be reduced when combined with fabric absorber systems, giving a 

multi-hit capability to the unit. Also fabric based armor systems by themselves are not 

efficient in defeating armor piercing threats and need disruptors to delocalize the 

concentrated forces. The ultimate classification of multilayer armor systems is based on 

the threat specifications they are designed to defeat. The most prevalent standards are the 

US National Institute of Justice (NIJ) and the European standards (DIN, CEN, and 

STANAG). 

As mentioned earlier, the material properties that make ceramics and high strength steels 

an excellent choice as disruptors are their high stiffness and hardness. Ceramics have the 

highest stiffness after diamond and hence have the ability to reasonably defeat armor 

piercing threats. Properties of some ceramics are listed in Table 1. Successful use of 

ceramics in body armor have  been reported [38-39]. However achieving these favorable 

properties implies extremely rigid structures that restrict mobility. Conformation to 

highly curved surfaces is also a difficult task to achieve with the processes currently used 

for manufacturing ceramics. Hybrid metal-ceramic and metal-ceramic-composite armor 

has also been used [40]. These armor designs have ceramic layer backed by metals and 

composites. The most conceivable option to introduce flexibility in armor designs was 

the use of ballistic fabrics.    
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Table 1 Material properties of some ceramic materials, Hazell [37]. 

 Alumina 

(high purity) 

 

Silicon 

Carbide 

Titanium 

di-boride 

Boron 

carbide 

Bulk density 

(kg/m
3 
) 

 

3810 – 3920 3090 – 3220 4450 – 4520 2500 - 2520 

Young’s 

Modulus (GPa) 

 

350 – 390 380 – 430 520 – 550 420 - 460 

Poisson’s 

Ratio 

 

0.22 – 0.26 0.14 – 0.18 0.05 – 0.15 0.14 – 0.19 

Hardness 

(HV) 

 

1500 - 1900 1800 – 2800 2100 – 2600 2800 - 3400 

Fracture 

Toughness 

(MPa.m
1/2 

) 

3 – 5 3 – 5 5 – 7 2 – 3 

 

 

The first fabrics introduced in armor applications were Nylon based which were used in 

Flak vests designed to protect against shrapnel [35]. The invention of Kevlar in 1969, by 

DuPont, lead to the first patented use of fabrics in body armor as a protection against 

bullet threats (K - 15 vests) [41].  Since then several other fabrics have been introduced 

for commercial use in armors similar to Kevlar in woven and non woven form. Namely: 

Aramids like Twaron, Gold Flex and Zylon, Ultra High Molecular Weight Poly 

Ethylenes like Spectra and Dyneema. Other similar fibers as listed by Machalaba et al. 

[42] are Terlon, SVM, Armos and Technora. The high fiber tenacity exhibited by these 

materials was used to improve in-plane properties of woven and non woven composite 

laminates or fabric bundles.  
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Table 2 Comparison of material properties for ballistic fibers, Machalaba et al. [42]. 

 

  Table 3 Comparison of material properties of ballistic fibers, Cunniff et al. [43]. 

 

Fabric based body armors function well against deformable threats by distributing the 

kinetic energy through the high strength fibers with dissipation modes including fiber 

shear or fracture, fiber tensile failure or straining and associated delamination or pullout 

[44]. Other factors that affect their ballistic performance have also been discussed in the 

overview presented by Cheeseman et al. [45]. To provide isotropic properties when 

laminated, 0/45° and 0/90° crossply arrangements are used. As stated, the performance of 

ballistic fabrics against non deformable material projectiles (armor piercing) is limited 

since the concentration of force over a very small area causes penetration. 
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Table 4 Comparison of material properties of ballistic fibers, Grujicic et al. [46]. 

 

Comparison of some fabric material properties available in literature are as given in 

Table 2, Table 3 and Table 4. Attempts to retain the flexibility and strength of these 

fabric systems along with high deformation capability of disruptors have seen a lot of 

motivation. Inter-laminar strength of fabric laminates have been improved by using 3D 

weave patterns instead of conventional 2D weaves reflecting in better ballistic 

performance [47]. Impregnation of woven Kevlar fabrics with colloidal shear thickening 

fluid have also been used as a method of improving strength of ballistic fabrics without 

affecting their flexibility [48]. 

1.3. Development of New Test Methods and Material Modeling 

The phenomenon of impact is a dynamic interaction process wherein the media in contact 

undergo severe changes in terms of deformations in shape, material property evolution 

and similar physiological changes in a relatively short time duration. As expressed by 

Ramesh [49], impact has three major consequences namely: stress or shock wave 

propagation, structural dynamics and vibration issues and as stated before large inelastic 

deformations at typically high rates. With reference to the extent of energy absorption, 

dependency on these inelastic deformations (characterized by strains) is the highest, 

followed by wave propagation characteristics. Vibration issues do not directly affect the 

total energy absorbed. The evaluation of inelastic properties at different strain rates and 

wave propagation behavior is an experimental priority for closely estimating the energy 
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absorption efficiency of structures. Literature discussed earlier in this chapter emphasizes 

why understanding material properties and dissipation behavior at different rates is of 

high significance since they vary considerably as the loading rate is increased.  

Experimental methods developed for this purpose of property and behavior evaluation, as 

Ramesh [49] states, are colloquially defined as impact experiments. Impact experiments 

are classified based on their objectives. The classifications are: 

− High-strain-rate experiments: Designed to measure the high-strain-rate material 

properties of a material and to identify rate dependent variations from low-strain-

rate or quasi-static values. 

− Dynamic failure experiments: Designed to understand the process of dynamic 

failure process within a material or structure. 

− Direct impact experiments: Designed to understand or discover broad impact 

phenomena (e.g. vehicle crash experiments, ballistic testing) 

− Wave propagation experiments: Designed to understand the characteristics of 

wave propagation within a material or structure. 

Amongst the high-strain-rate experiments, the primary techniques used to evaluate rate 

dependent properties in materials are as listed in Figure 4 [49-50]. Quasi-static domain 

(10
-6

-10
0 

s
-1

) material properties can be studied with servohydraulic machines that can 

operate in both compression and tension setups according to ASTM standards. The 

intermediate strain rate domain (10
0
-10

2
 s

-1
) is a relatively difficult zone to study and 

requires unconventional or specialized machines like drop-weight towers for material 

property evaluation. ASTM standards are also available for these setups. 
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Figure 4 Experimental techniques used for rate dependent material property evaluation [49]. 

The high strain rate domain (>10
2
 s

-1
) is the zone where most impact related problems 

can be classified. The most ideal equipment for material property evaluation in this 

domain is the Kolsky Bar / Split Hopkinson Pressure Bar (SHPB) setup and their 

modifications. For very high strain rates (> 10
4
 s

-1
), plate impact experimental setups are 

used.  

A traditional Kolsky bar / SHPB relies on using two long bars (input / incident bar and 

output / transmission bar) to act as impact pulse transducers between which the test 

sample is sandwiched. A third long bar (striker bar) is used to generate the pulse by high 

speed impact. The specimen size that can be tested in these setups varies with the 

dimensions of the bars used as well as the pulse lengths. Outputs are recorded using strain 

gauges which can generate a stress-strain response by calibration. A schematic 

representing a Kolsky bar setup is as shown in Figure 5. 
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Figure 5 Schematic of a compression Kolsky bar setup mounted on an optical bench. 

A variety of materials significant to energy absorptive applications have been tested using 

Kolsky bar setups. Strain rate dependence in Kevlar fiber bundles have been 

experimentally evaluated by Wang et al. [51-52]. Similar methods have been used to 

evaluate dynamic properties of Aramids [53] and polyethylene reinforced composites 

[54], UHMWPE fibers [55] and Spectra fabric laminates [56]. Modified Kolsky bar 

setups have been used to test ceramics like silicon carbide and aluminum nitride [57-60]. 

Dynamic properties of cellular solids and similar collapsible structures have also been 

tested by Kolsky bars. Dynamic properties of aluminum based foams have been reported 

[61-65]. The results represented in this literature vary with some aluminum foams 

showing strain rate sensitivity while others do not. Properties of honeycombs have been 

investigated at high strain rates by Baker et al. [66] and Wu et al. [67]. The extent of the 

use of Kolsky bars have seen a steady increase over the years and for numerous other 

materials form the wide engineering spectrum. This has been clearly reflected through the 

overview presented by Field et al. [50]. 

Direct impact experiments are primarily designed to understand the macro level 

modifications that occur during impact. A small scale experimental setup to carry out 

direct impact tests is the Taylor impact setup. The experiment involves impacting a 

material-of-interest rod on to a rigid target plate at high velocities. By the use of high 

speed photography, deformations and structural modifications are observed. The Final 

deformation state provides additional information on damage distribution and 
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identification of weaker zones in the tested structure. Modifications in direct impact 

setups include rod on rod collinear impact experiments and rigid rod on target 

experiments similar to ballistics. The nature of direct impact ballistic testing differs from 

the traditional assumptions of direct impact experiments since both the impacting and the 

impacted object are susceptible to damage. Identification of failure modes in both these 

objects form a matter of interest unlike traditional direct impact experiments primarily 

focusing on one object the other being considered rigid.   

Direct impact experiments have been carried out on different materials and structures. 

Ballistic limits of cellular honeycombs have been evaluated by impacting with rigid rods 

[68-71]. Analytical models that can numerically predict the failure phenomena in these 

structures have been presented, and continually modified over time [72-74]. Monolithic 

metal alloy plates have also been tested for ballistic limits by impacting with accelerated 

projectiles. Effects of projectile shapes, mass, hardness and composition on the ballistic 

limit of varying thickness metal plates have been investigated [75-78]. Results have 

shown significant variations with projectile shapes. This led to development of Numerical 

investigation of ballistic performance of these plates for comparison with experimental 

results [79-84]. Ballistic fabrics and related composites have also been subjected to direct 

impact tests to evaluate their ballistic limits [85]. Their performance has also been 

verified analytically and numerically through FEA [86].  

To assess performance of these materials for armor applications, actual ballistic tests with 

rifle rounds have also been conducted. Results from these tests have been verified 

analytically [87-88] and numerically by using FEA [20, 46, 89-99]. Overall, through the 

published literature and papers it is quite evident that research groups are more inclined 
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in investigating these materials numerically in conjunction with conducting impact tests. 

FEA and numerical methods have proved to be advantageous since variations in 

structures and test conditions are easy to incorporate and fast. A similar approach with 

actual testing becomes a time consuming process. It is also not cost effective as actual 

experimental testing involves consecutive material usage.  

Accuracy of results from FEA is variable since there are no standards to the procedure to 

be followed which still necessitates verification with an experimental test. However, FEA 

simulations have provided valuable understanding of the intrinsic behavior of materials in 

process of modeling their failure. Evolution in simulation codes and material failure 

models has improved the efficiency of FEA. Development in simulation codes has been a 

steady process and has resulted in different software options to carry out the numerical 

investigations (LS DYNA, AUTODYN, ABAQUS 6 series). With development of new 

materials, material models have progressed accordingly.  

In the past, simple material models have been used to model the material properties of 

objects undergoing impact in analytical methods. Energy conservation equations and 

dimensional analysis were the primary modes. Shear and tensile limits were considered 

as damage criteria. However, material in its entire sense was not covered as strain rate 

dependence and adiabatic effects were largely excluded. To incorporate strain rate effects 

and adiabatic heating, a material model by Johnson and Cook was proposed in 1983 

[100]. The model was an extension of the Von Mises criteria where in the flow stress was 

defined by:  

       (1) 
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where A,B,C, n and m are material constants, T 
*m

 = (T − T0)/(Tm − T0) is the homologous 

temperature, where T0 is the room temperature and Tm is the melting temperature, p˙
*
 = 

p˙/p˙0 is a dimensionless strain-rate, and p˙0 is a user-defined reference strain-rate. 

Camacho et al. [79] then modified the strain-rate sensitivity term in the above equation to 

avoid unwanted effects if p˙ * < 1. The modified version of the Johnson–Cook model can 

be written as: 

       (2) 

In 1985, a fracture model was proposed by Johnson and Cook which estimated the failure 

strain for materials under different stress states, strain rate and temperature. The model 

equation was a five parameter based expression given by: 

     (3) 

where, the stress triaxiality ratio is defined as σ* = σH /σeq, where σH is the hydrostatic 

stress, and D1 to D5 are material constants. Combination of these two equations can 

predict the onset and evolution of plasticity in materials and has been used in various 

research works focused on impact of projectiles on hard metal plates [79-81, 96]. 

Methods to evaluate these material parameters were described by Johnson-Cook in their 

publications and have been continually used till date.  
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Figure 6 Sample Failure Stress vs Stress triaxiality cures used for evaluating Johnson - Cook damage 

parameters [84].  

In case of other materials like fiber reinforced composites or fabric based composites, 

plasticity and damage have been modeled by using anisotropy plasticity potential 

function by Hill [101] and damage initiation criteria by Hashin [102]. Other models have 

been outlined with the latest material model for composites by Grujicic [25].  Recent 

damage based models include one involving extended version of material tensile failure 

and shear behavior by Hooputra [103]. According to this model, damage initiation in 

metals can be predicted by estimating the strains for ductile failure and shear failure. For 

ductile damage, the expression for strain is given by: 

   (4) 

where, η is the stress triaxiality ratio similar to the Johnson-Cook model, and d0, d1, and c 

are material parameters. Similarly for shear damage, the dependent parameter is shear 

stress ratio (θ) instead of stress triaxiality. Shear stress ratio can be found by:  
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     (5) 

where, Φ = τmax / σeq , τmax is the maximum shear stress and ks is another material 

parameter. Technically, the Johnson-Cook model can be considered as a special case of 

this model.  The Mie-Gruneisen equation of state model that defines the pressure volume 

relationship depending on whether the material is compressed or expanded has also been 

used in conjunction with the Johnson-Cook model [104]. The Cockcroft-Latham fracture 

model has also been recently used for projectile impact on high strength steels by Borvik 

[96]. 

For any new design concept, the most reasonable option to evaluate its performance 

would be a conjunction of mechanical testing and software based FEA analysis. By 

selection of appropriate material models, the design performance in different interaction 

scenarios can be effectively verified. Modifications can be predicted if the observed 

results are not at par with the set constraints.  
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CHAPTER II 

 

 

2. ARMOR PLATE DEVELOPMENT, MATERIAL SELECTION AND 

DESIGN SPECIFICATIONS 

 

It is evident from the literature in Chapter 1 that designing a particular energy absorber 

requires thorough understanding of: (a) the application requirements and constraints, (b) 

field of use or work environment, (c) developments in structures and materials for these 

applications - their function modes, properties, pros and cons (d) necessary test 

procedures to evaluate pre and post design performance. This helps the designer to make 

selections that provide maximum efficiency and refine the choices made by continual 

testing.  The methodology involved is thus a closed looped process.  

The current study aims at illustrating the designing and testing methodology of a Hybrid-

Composite-Armor plate insert prototype that provides protection against a 7.62 mm ball 

(.308 WIN) projectile threat as per the level III specifications by NIJ (details in section 

2.1). The study is a performance evaluation of a multilayered armor design concept 

(using a collapsible structure sandwiched between high strength fabric laminates). In the 

future, this insert combined with a front impact ceramic layer will provide protection 

comparable to the Enhanced Small Arms Protective Insert (ESAPI) worn by ground 

troops.  When placed in the Outer Tactical Vest (OTV) pocket of the Multiple Threat 

Body Armor (MTBA), the insert will provide ballistic protection from specific 5.56 mm 
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and 7.62 mm ball and AP rounds (similar to the currently used Interceptor). It will also 

have options for multiple sizes as per the standards. The procedure that was followed to 

make the multilayered armor insert concept is a step wise execution in accordance to the 

basic principles suggested by Lu et al. [7], Hazell et al. [37]  and Ashby et al. [105]. The 

key steps that briefly describe the procedure used are as below:  

1. Review: Background study on armor inserts, specifications - NIJ level III standards.  

2. Role identification: Evaluation of functions, objectives, component property limits. 

Functions: -    Absorber Armor Insert to suffice for NIJ level III standard, 

- Multilayered to combine advantages of different components, 

- Fabric laminate and collapsible structure for energy dissipation. 

Objective: -     Maximize energy absorbed per unit volume, 

- Minimize weight. 

   Property limits: - Repeatability of deformation modes of each component, 

- Irreversible energy conversion mode, 

- Constant reaction force and maximum allowable stroke, 

- Ease of manufacturing and handling, durable construction. 

3. Set parameters: Evaluation of Constraints, free variables and material indices.  

Constraints: -   Must have Aerial density lower than 3.8 lb/ sq.ft, 

- Must have Back Fire Signature (BFS) less than 44 mm, 

- Must have V50 of close to reference velocity or better. 

Free variable: - Thickness of the insert. 

Material Indices: - Minimum mass, Energy absorbed per unit volume (KJ/m
3
) 

4. Build up: Material procurement, manufacture and assembly.  
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5. Testing and evaluation: Mechanical testing and FEA. 

In this chapter, selection of design and materials are discussed based on the application 

requirements. Details of the above mentioned points and the actual design are in 

upcoming sections. The procedure followed for testing the design concept is illustrated in 

Chapter 3. FEA analysis procedure (in ABAQUS 6.8.2), to support the experimental 

testing, is presented in Chapter 5. With the intention of familiarizing with the ballistic test 

procedure and FEA with first hand experience, heat treated 4130 steel plates were used as 

test samples. Details of the tested 4130 steel plates are also presented in these chapters. 

2.1. Threat Specifications and NIJ Standards - 0101.06 

The standard 0101.06 was developed for ballistic resistance of body armors (against 

gunfire only) by National Institute of Justice (NIJ). It is a part of The Standards and 

Testing Program as a basic and applied research effort to set minimum performance 

standards for specific devices, commercially available equipment nationally and 

internationally, that form a part of the body armor system. It also specifies the methods 

that are to be used to test their performance. Body armor models that meet the minimum 

performance requirements are selected for inclusion on the NIJ Compliant Products List. 

The tests and methods prescribed by the standard are also used by other agencies for 

equipment selection according to their own requirements.  

The standard classifies ballistic performance according the caliber and type of projectile 

threat that can be defeated. Table 6 illustrates different threat specifications for testing 

armor. For level III armor type, the test round is a 7.62 mm NATO FMJ, 9.6 g weight. A 

similar round currently used is the .308 WIN 7.62 mm, 9.8 g weight. The test reference 

velocity of the round is 838 m/s. As per the standard specifications, for a level III armor, 
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a minimum 4 panels have to be tested for measuring the Back Fire Signature (BFS). BFS 

is defined as the greatest extent of indentation in the backing material caused by a non 

perforating impact on the armor. It is the perpendicular distance between two planes, both 

of which are parallel to the front surface of the backing material. Maximum allowable 

BFS for level III panels is 44 mm.  

 

Figure 7 Measurement of BFS as stated by NIJ 0101.06. 

Backing material is a substance that can closely resemble the mechanical resistance of a 

human body. The standard prescribes the use of Plastilina clay, a type of commercially 

available non-hardening oil based modeling clay generally used for ballistic testing, as a 

backing material. Similar materials that have seen experimental attention as backing 

materials for testing are as listed in Table 5. The most standard material used apart from 

ballistic clay is Gelatin. Being translucent, it is mostly preferred for tests where post-

impact projectile investigation is a priority.  Other NIJ specifications for multi-shot 
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testing of armor panels are: 51 mm (2 inches) shot-to-plate edge and shot-to-shot 

distance, test bullet velocity should be within 9.1m/s (30 ft/s) of reference (847 m/s), 

angle of incidence (angle between bullet line of flight and perpendicular axis to armor 

plate surface plane) is no greater than 5 degrees. Specifications on the test method and set 

up details are presented in Section 3.4 of Chapter 3.  

Table 5 Comparison of commercially available backing materials [106-108]. 

 

 

 

 

 

Backer 

type 
Materials Elastic/plastic 

Specific 

gravity 

Relative 

hardness vs. 

Gelatin 

Application 

Roma 

Plastilina 

Clay #1 

Oil/Clay 

mixture 
Plastic >2 

Moderately 

hard 

Back face signature 

measurement. Used 

for most standard 

testing 

10% 

gelatin 

Animal 

protein gel 
Visco-elastic 

~1 (90% 

water) 
Baseline 

Good simulant for 

human tissue, hard to 

use, expensive. 

Required for FBI test 

methods 

HOSDB-

NIJ Foam 

Neoprene 

foam, EVA 

foam, sheet 

rubber 

Elastic ~1 

Slightly 

harder than 

gelatin 

Moderate agreement 

with tissue, easy to 

use, low in cost. 

Used in stab testing 

Silicone 

gel 

Long chain 

silicone 

polymer 

Visco-elastic ~1.2 
Similar to 

gelatin 

Biomedical testing 

for blunt force 

testing, very good 

tissue match 

Pig or 

Sheep 

animal 

testing 

Live tissue Various ~1 
Real tissue is 

variable 

Very complex, 

requires ethical 

review for approval 
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Table 6 Threat Specifications and requirements, NIJ Standard 0101.06. 

Armor 

Type 

Test 

Round 

Test 

Bullet 

Bullet 

Mass 

Conditioned 

Armor Test 

Velocity 

Normal 

Hits per 

Panel 

Maximum 

BFS 

Depth 

1 9 mm 

FMJ RN 

8.0 g 

124 gr 

373 m/s 

1225 ft/s 

4 44 mm 

1.73 in 

II A 

2 .40 S&W 

FMJ 

11.7 g 

180 gr 

352 m/s 

1155 ft/s 

4 44 mm 

1.73 in 

1 9 mm 

FMJ RN 

8.0 g 

124 gr 

398 m/s 

1305 ft/s 

4 44 mm 

1.73 in 

II 

2 .357 Mag. 

JSP 

10.2 g 

158 gr 

436 m/s 

1430 f/s 

4 44 mm 

1.73 in 

1 .357 SIG 

FMJ FN 

8.1 g 

125 gr 

448 m/s 

1470 ft/s 

4 44 mm 

1.73 in 

III A 

2 .44 Mag. 

SJHP 

15.6 g 

240 gr 

436 m/s 

1430 ft/s 

4 44 mm 

1.73 in 

III 1 7.62 mm 

NATO FMJ 

9.6 g 

147 gr 

847 m/s 

2780 ft/s 

6 44 mm 

1.73 in 

IV 1 .30 Cal. 

M2 AP 

10.8 g 

166 gr 

878 m/s 

2880 ft/s 

1 - 6 44 mm 

1.73 in 

 

 

2.2. Ultra High Molecular Weight Poly Ethylene (UHMWPE) 

After the evaluation of the Set parameters, the next step in the design procedure is the 

selection of materials. The focus of the design concept was to incorporate ballistic fabric 

laminate system to perform as a frontal absorber unit of the armor panel. Based on the 

literature review presented in Chapter 1, possible material choices were evaluated. As per 

the constraints mentioned, a fabric system having highest tenacity and in-plane stiffness, 

maximum energy absorption capacity per unit mass was needed.  
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Figure 8 Comparison of material properties of fabric systems ideal for Ballistic applications, Grujicic et al. [25]. 

As stated by Grujicic et al. [25], the ballistic performance of these fabric systems is 

quantified with respect to their ability to: (a) absorb the projectile’s kinetic energy 

locally; and (b) spread out the absorbed energy fast before local conditions for the failure 

are met. Numerically, energy absorption capacity per unit mass (Esp) is directly 

proportional to failure stress (σfail) and strain (εfail) and inversely proportional to density 

(ρ).  

     (6) 

Also, the ability to spread out the absorbed energy is directly proportional to the speed of 

sound in the material and in turn to the material stiffness (E) and inversely to its density 

(ρ). 



 28 

    (7) 

As shown in Figure 8, the best choice of materials potentially viable for the current 

application would be PBO and UHMWPE. This can also be supported by the material 

property values presented earlier in Table 2, Table 3 and Table 4. Although PBO is a 

seemingly good material choice, research has shown drawbacks due to environmental 

degradation [109]. This favored the selection of UHMWPE fabric laminates. 

Commercially available brands of UHMWPE are Spectra (Honeywell Co.) and Dyneema 

(DSM Co.). Dyneema (SK66, HB1, and HB2) has been ballistic-tested with a proven 

performance [92-93, 99]. Energy absorptive capacity of Dyneema has been shown 

superior to Spectra Shield by Morye et al. at different temperature conditions [110]. 

Dyneema was chosen over Spectra for the current application. The latest available option 

for Dyneema as stated by DSM was HB 50. Two different sizes were procured (6 inch x 

6 inch / 152 mm x 152 mm, 1 ft x 1 ft / 304 mm x 304 mm).  

2.3. Amorphous Metals and Metallic Glass (MG)  “Teardrop” Honeycomb  

The second tier energy absorber unit for the current Hybrid-Composite-Armor plate 

insert prototype was selected as a collapsible cellular structure. Advantages and extensive 

use of collapsible structures as energy absorbing units has been discussed earlier in 

Section 1.1 of Chapter 1. With reference to the current application, the advantages are 

threefold. Firstly, due to high strength to weight ratio of these structures, considerable 

addition in strength along the thickness direction of the armor plate can be achieved with 

minimum addition in aerial density. Secondly, the collapsible structure would enable 

irreversible energy dissipation through plastic deformation. Thirdly, being of cellular 
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morphology, it enables to efficiently control the energy absorbed through a tailored 

plateau by governing porosity. Added advantage of tailored plateau stress is a control 

over reactive force and stroke. Inherent high strength, high elastic modulus, and 

achievable low density through porosity prompted the selection of amorphous materials 

as a base material for the cellular structure. Section 1.1 of Chapter 1 describes the 

benefits of these materials over traditional metal alloys. To further elucidate this point, 

consider Figure 9 which shows a plot of energy absorbed per unit volume vs. plateau 

stress for traditional metal foams by Ashby et al. The majority of commercially available 

metal foams lie in the region within 10 MJ/m
3
 and 30 MPa limits. 

 

Figure 9  Comparison of energy absorbed per unit volume for commercially available metal foams, Ashby et al. 

[105]. 

As stated by Luo et al. [34] in the recent study of Pd based amorphous metal foam, the 

energy absorption capacity of 14.1 MJ/m
3
 was achieved with a plateau of 35 MPa. 

Similar observation can be made from the stress strain curves of other amorphous metal 
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foams presented by Brothers et al. [111] proving the advantages of amorphous metals. 

The composition of the base amorphous metal alloy used for making the teardrop 

honeycomb lattice is MB2826 (Fe45Ni45Mo7B3). The precursor for the cellular structure 

was obtained as fully processed slip-cast ribbons from MetGlass Inc. The cells in the 

honeycomb were made from these 28 µm thick ribbons (8 mm wide) through a bottom-up 

manufacturing approach. 

 

Figure 10 Schematic of step wise process to manufacture Teardrop honeycomb lattice. 

Since this was the earliest attempt to incorporate an amorphous metal precursor in the 

manufacturing process, a thermal activated adhesive system had to be used for binding 

consecutive cell walls. The cell shape of a teardrop was achieved by periodic elastic 

bending and overlap-joints of the ribbon. Consecutive bonded cells result in a lattice row 

and consecutive lattice rows then bonded together using an industrial adhesive based 

bonding system 3M-DP110 formed the final honeycomb plate. Selection of this adhesive 

system was done through experimental testing of other bonding agents. Schematic of the 

manufacturing process is as shown in Figure 10. 
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The final structure has an average cell size of 3 mm with its height in out-plane direction 

equal to the ribbon width, 8mm. The surface area of one integrated teardrop honeycomb 

panel was 152 mm x 152 mm (6 inch x 6 inch). 

2.4. Design Geometry 

The current objective with the passive Hybrid-Composite-Armor design concept was 

multi hit protection against a 7.62 mm ball (.308 WIN) projectile threat as per the level 

III specifications by NIJ 0101.06. The key steps followed in making the insert have been 

stated at the start of the chapter. The ballistic insert design geometry was essentially 

inspired to combine advantages of collapsible energy absorbers and ballistic fabric 

armors that were discussed. The plate construction was envisioned as a Fabric laminate - 

honeycomb sandwich.  Dyneema HB50 laminate was selected to intercept the projectile 

first (front absorber unit) and deform it, distributing the energy over a significantly large 

region to avoid local failures by force concentration. The function of sandwiched MG 

teardrop lattice was to act as an energy diffuser after partial penetration of Dyneema front 

layer, thereby reducing the back face deformation of the panel and resulting blunt trauma. 

As a final layer of protection against fragmentation, a thin laminate of Dyneema was to 

form the backing spall liner.  
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Figure 11 Sectional view of Composite armor plate construction. 

 

The design hypothesis was: the front Dyneema layer in itself should have adequate areal 

density to significantly reduce the projectile kinetic energy with the remainder energy 

taken care of by the Teardrop lattice. This would help to limit the spread of fabric 

delamination damage over an area as compared to Dyneema by itself thus allowing an 

improved multi-hit capability. Since the thickness and other dimensions of MG lattice 

were fixed parameters at the initial design stage, it was decided to select the required 

aerial density Dyneema laminate panels based on previous research. 

 

Figure 12 Schematic of cross sectional construction of Baseline plate (left) and Composite plate (right). 
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From ballistic test results presented by Jacobs et al. [92] on Dyneema HB2, a 16 kg/m
2
 

aerial density panel was able to stop a 830 m/s 7.62 NATO Ball round. In terms of 

thickness, a 12 mm thick Dyneema HB2 panel was capable of stopping the 830 m/s 

projectile. It indicated that superior quality Dyneema HB50 (12 mm thick) can also be 

estimated to stop it. It was decided to incorporate a factor of safety and the final front 

panel thickness was chosen to be 14 mm. In case of the backing spall liner layer, 3 mm 

thick laminate panel was selected. As mentioned, two sizes (6 inch x 6 inch / 152 mm x 

152mm, 1 ft x 1 ft / 304 mm x 304 mm) were procured for both 14 mm and 3 mm thick 

laminates. 

To bind the individual layers together 3M–DP110 adhesive system was used. Once cured 

the assembly was wrapped in Kevlar 49 outer liner. The Kevlar wrapping was not 

functionally involved in the energy dissipation process and served an aesthetic and 

transport convenience purpose. To compare the efficiency of energy dissipation by the 

Hybrid-Composite-Armor insert, a baseline plate with plain Dyneema 14 mm and 3 mm 

laminates was made for ballistic testing. The schematics of both these plates are as shown 

in Figure 12. 

 
Figure 13 Perspective side view of the Composite plate with Kevlar wrap. 
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The functional areal densities of the two design plates are as mentioned in Table 7. It is to 

be noted that for the bigger plate (1 ft x 1 ft / 304 mm x 304 mm), 4 individual Teardrop 

honeycomb lattice layers had to be bonded with 3M – DP110 to form the final stage.  

 
Table 7 Areal densities achieved post the manufacturing process. 

Type of plate Areal density  

(kg/m
2
) 

Areal density 

(lbs/ ft
2
) 

Baseline plate 15.22 +/- 0.2 3.09 +/- 0.04 

Composite plate 17.37 +/- 0.16 3.53 +/- 0.03 

 

2.5. Heat Treated 4130 Steel  

Since there was no pre existing setup ready for the ballistic test of the armor panels, a 

new test fixture and test assembly was indigenously made (details in Section 3.4).  It was 

necessary to ensure that the test method and the components involved for the same 

performed according the set standards by NIJ 0101.06. To test the efficiency of each of 

these components and their method of use, heat treated 4130 steel plates were used as 

dummy panels. Testing these plates was to provide an insight into how to calibrate the 

velocity measurement devices (Chronograph and High-speed camera) as well as to 

understand the effects of variations in test conditions on the observed results. The plates 

were 6 inch x 6 inch in size and were obtained in the cold rolled state from an 

engineering material supplier (18 in number). These plates were then subjected to a heat 

treatment. The objective of the heat treatment was to heat the plates above Austinizing 

temperature for a significant time and rapid quench to obtain the hardest Martensitic 

microstructure. Due to variations incurred during the heat treatment process, the end 

hardness values ranged from 5 HRC to 37 HRC. This had an indirect advantage since it 
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allowed gauging what magnitude hardness of steel was required for achieving minimum 

ballistic limits set by NIJ standard. Also areal density of that plate would serve as a 

comparison to illustrate the advantages of the Hybrid-Composite-Armor insert. Results 

from testing these plates would also serve a primary purpose of verifying the accuracy of 

FEA analysis carried out in ABAQUS 6.8.2. The material models considered for 

simulations were used for simulating the impact of projectiles on other steel targets by 

other research groups. Testing the 4130 steel plates provided key information on how to 

adapt the material codes and contact model parameters to map the deformation behavior 

of projectile materials as well other target materials that show anisotropy. 
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CHAPTER III 

 

 

3. MECHANICAL TEST METHODS 

 

The methods described in this section are the standard procedures recommended to test 

energy absorptive structures and their individual components. As described in Section 1.3 

of Chapter 1, the nature of these tests varies with the end objective to be achieved. Three 

different tests are described: (a) Direct impact Ballistic tests of armor plates according to 

the pre stated NIJ standards with post impact NDT testing, (b) Quasi-static testing of the 

MG Teardrop honeycomb to evaluate its anisotropic properties and of a cylindrical 

section from bullet projectile to evaluate its bulk properties, (c) Dynamic testing to set up 

a standard method that can be followed to test MG Teardrop honeycomb for strain rate 

dependence. Results obtained from these tests are to serve as inputs for the FEA 

simulation material models in ABAQUS 6.8.2. The process of converting the observed 

stress strain response into material parameters is described in Chapter 4. 

 

3.1. Ballistic Testing 

The primary performance evaluation experiment undertaken to gauge the Hybrid-

Composite-Armor plates was ballistic testing. As stated before, the test configuration and 

method was according to the standards specified for a level III armor insert in NIJ 

0101.06. The tests were conducted over a span of 11 months, gradually, as the earlier
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prototypes of the design concept were regularly improved with gain in experience. The 

tests were conducted at the courtesy of DSM testing range (North Carolina), US Shooting 

Academy (Tulsa, OK), Tulsa Fire Arms (Tulsa, OK), Stillwater Shooting range 

(Stillwater OK). In all, three different types of plates were tested. Namely: Heat treated 

4130 steel plates, small baseline and composite plates (6 inch x 6 inch), big baseline and 

composite plates (1 ft x 1 ft). The projectile selected for testing the plates was a .308 

WIN 7.62 mm FMJ round (9.8 g weight), equivalent of the 7.62 mm NATO FMJ (9.6 g 

weight) that NIJ suggests. Few tests were also conducted by a heavier version .308 WIN 

7.62 mm FMJ Wolf round (Russian made). Being the first attempt to conduct ballistic 

testing, the entire set up was indigenously developed. Two separate fixtures were used in 

the first few tests. The later tests were conducted using a Plastilina ballistic clay backing.   

The ballistic test arrangement was according to the details stated by NIJ for a valid test. 

Schematic of the arrangement followed in all of the ballistic tests that were carried out is 

as shown in Figure 14. The gun barrel to target distance was 15 m (49.2 ft). Velocity 

measurement was done using a standard CED M2 chronograph placed at a centre-to-

target distance of 2.5 m (8.2 ft). For cross referencing the velocities and monitoring 

deformation, a high speed camera setup was placed at an angle to the target face at an 

approximate distance of 3 m. In situations of low visibility, high intensity lamps were 

used. 
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Figure 14 Schematic of test equipment arrangement used for ballistic testing as per NIJ 0101.06. 

The backing layer clay box was fabricated as per the specifications mentioned in the NIJ 

standard 0101.06 with a wooden frame of 2 ft x 2 ft holding tightly packed ballistic 

Plastilina clay. The clay had to be thermally softened using ovens to give it adequate 

plasticity in order to achieve good dimensional tolerance. Mounting of the plates on this 

clay box backing layer was done using Velcro straps. The setup was adequately rigid to 

maintain uniformity and repeatability in tests. The images of the setup are as shown in 

Figure 15. 

 

Figure 15 Mounting of plates on clay backing using Velcro straps. 

 



 39 

Figure 16 shows the final assembly with the chronograph positions. The setup was again 

as per the NIJ standards (no specifications for camera placement). For testing small 

baseline and composite armor plates, a wooden rigid framework was used. The setup was 

modified to a steel framework for testing the heat treated 4130 steel plates essentially 

pinning the plate edges firmly (Figure 16).  

 

Figure 16 Perspectives of Rigid steel frame setup to test 4130 plates with front and back chronograph. 

BFS measurements were done on plates with partial penetration. For small plates, BFS 

measurements were based on the dimensions of the actual back bulge. For big plates, 

BFS readings were taken from the clay backing layer as mentioned in Section 2.1 of 

Chapter 2. No BFS readings were taken on 4130 steel plate targets.  

V50 is another ballistic parameter that defines the plate performance. It is the velocity at 

which the armor panel can stop 50% of the bullets.  From the later conducted ballistic 

tests at the DSM facility in North Carolina, where as per NIJ standards 4 similar 

composite plates were shot, velocity measurements for complete and partial penetration 

were plotted against probability of penetration (complete penetration: 0, partial 

penetration: 1). The V50 was calculated by plotting the corresponding velocity values 

with the probability of penetration in a Sigmoidal or Logistic function plot. The Armor 
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panels tested had the same configuration and thus the V50 calculated was based on the 

generic behavior. The curve equation can be defined by: 

kx
ce

y
−

+

=

1

1
    (8) 

The time and location of all the ballistic tests that were conducted is presented in Table 8. 

Table 8 Summary of ballistic tests conducted. 

Date of 

testing 

Testing venue Types of plates Total 

Number of 

plates 

Ballistic test set-up 

10/06/2008 US Shooting Academy 

Tulsa Oklahoma 

Baseline and 

Composite 

Armor 

3 No Ballistic Clay used 

09/26/2008 US Shooting Academy 

Tulsa Oklahoma 

Composite 

Armor 

1 No Ballistic Clay used 

04/03/2009 US Shooting Academy 

Tulsa Oklahoma 

4130 Steel 

Plates 

22 Rigid Steel Frame 

06/19/2009 Tulsa Fire Arms 

Tulsa Oklahoma 

Baseline and 

Composite 

Armor 

2 Ballistic clay used as 

backing layer 

07/17/2009 US Shooting Academy 

Tulsa Oklahoma 

Baseline Plate 

insert 

1 Ballistic clay used as 

backing layer 

08/25/2009 DSM Testing Range 

North Carolina 

Baseline and 

Composite 

Armor 

5 Ballistic clay used as 

backing layer 

 

Post ballistic testing, the shot plates were observed for deformation distribution and 

prediction of failure modes using a CT scan. Other motive for conducting the NDT was 

to categorize plate performance according to the extent on bulging resulting due to partial 

penetration. Numerical values obtained could then be used to gauge the accuracy of 

results obtained from FEA analysis in ABAQUS 6.8.2. Efficiency of the selected material 

models for simulations could also be checked from the extent of damaged zone from 
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NDT and from simulations. CT scans were carried out at Servant Medical Imaging in 

Stillwater, OK.  

3.2. Quasi-static Behavior Evaluation 

The objective of carrying quasi-static tests on servo hydraulic machines was to evaluate 

the elastic and plastic material properties of three materials, namely: MG Teardrop 

lattice, heat treated 4130 steel and lead core from the projectile used for testing. 

Evaluation of these properties would not only provide first hand information on the 

failure characteristics of each material but also serve a main objective of numerical input 

values for the desired material models in ABAQUS simulations.  

Since the MG teardrop lattice is anisotropic in nature, separate tests to evaluate in-plane 

and out-plane properties had to be conducted.  For out-of-plane compression tests, ASTM 

C365/C365M-05 (“Standard test method for Flatwise Compressive properties of 

Sandwich Cores”) was followed. The tests were carried out on an UTS INSTRON series 

5582 at a strain rate of 2 x 10
-3

 /s. The strain was measured from the cross head 

displacement of the machine and resultant data was corrected for the machine 

compliance. Sample sizes were in accordance to the standards by ASTM. Similarly, for 

the in-plane directions, ASTM   C364/364M-07 – “Standard test method for edgewise 

compressive strength of Sandwich constructions” was used. Sample sizes were again as 

per the ASTM specifications. Tests were conducted at the same strain rate. The results 

were corrected for compliance. Elastic modulus, Poisson’s ratio, Yield stress and fracture 

stress - strains were evaluated from the stress - strain curves.  

Quasi-static properties of heat treated 4130 steel were to be evaluated in accordance to 

the methodology and theory specified by Johnson and Cook [100].  The procedure of the 
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tests involves tensile testing of non-notched and notched specimen of the desired material 

at an arbitrary set strain rate which is constant for all tests. By testing the non-notched 

specimen, values of strain hardening constants B and n can be evaluated from the stress - 

strain curve. The value of failure strain from this test would correlate to a stress triaxiality 

ratio of 0.333. The notched samples were machined to incorporate circular radial notches 

of varying diameters. The sample dimensions were in proportion to those specified by 

Borvik et al. [81]. An artificial notch produces an initial triaxiality different from that in 

the smooth specimen where triaxiality initiates only after necking. Correlation of notch 

radius and resulting maximum stress triaxiality ratio σ*max is given by Bridgman’s 

relation: 

        (9) 

where, a is the radius of specimen in the neck region and R is the notch radius. Three 

notch radii were considered for test, namely 2, 0.8 and 0.4 mm. The sample geometries 

are as illustrated in Figure 17. From the results obtained in the form of stress strain 

curves, failure strains are to be correlated with the corresponding triaxiality ratio. The 

resulting stress triaxiality vs. failure strain plot is used to evaluate the D1, D2, D3 and D4 

parameters of the Johnson-Cook dynamic failure equation. Since adiabatic effects are 

neglected for the current study, D5 is assumed to be zero. 

 To evaluate material properties of the impacting projectile, compression test was 

conducted on a cylindrical sample cut from an actual round using a diamond saw. The 

sample dimensions were 13.8 mm length and 7.62 mm diameter. The compression test 

was carried out at a strain rate of 5 x 10
-3

 /s. The results from the test were compliance 
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corrected and the elastic modulus and the Johnson-Cook strain hardening coefficients 

were calculated from the stress - strain response. 

 

Figure 17 Tensile specimen geometries for evaluation of Johnson-Cook parameters. 

3.3. Dynamic Behavior Evaluation  

The objective of dynamic tests was to test the strain rate effects in low impedance 

materials like amorphous cellular structures and to establish a process for testing the 

same. Unlike traditional quasi-static tests, dynamic tests carried out using Kolsky bar / 

SHPB are very material specific. Hence no standards are available that can be followed to 

carry out tests. It is thus imperative that a test method had to be verified so it could be 

applied to similar nature materials and set individual standards for all components 
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involved in the test. A dynamic compression test was carried out for this purpose was on 

82% porosity amorphous metal foam. The composition of the skeletal amorphous alloy 

used to make the foam samples was Pd43Ni10Cu27P20. It is envisioned that the test 

standards set by this experiment can also be applied to test the 82% porosity Teardrop 

honeycomb lattice to evaluate its dynamic properties. The literature review behind 

selection of individual components listed here for the test are presented in detail by Luo 

et al [34]. Test samples were cylindrical with diameter of 17.3 mm and height of 8 mm. 

The schematic diagram of the SHPB apparatus used is shown in Figure 18.  
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Figure 18 Split Hopkinson Pressure Bar setup used to test amorphous metal cellular structures. 

A hollow transmission bar was used to obtain a better signal-to-noise ratio for the low 

impedance material with a reduced cross sectional area. The incident, transmission bars 

and striker bar were made from 304L steel and had lengths 7514 mm, 4049 mm, and 

1219 mm for, respectively. The common outer diameter was 19 mm and inner diameter 

for the transmission bar was 14.1 mm.  A pneumatic valve was used to control the 

compressed air to launch the striker bar. Confinement was performed using a copper tube 
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to contain otherwise coated material in order to simulate the effect of an infinite plate.  

The inner diameter of the confining copper tube was 19.9 mm. The 1.45 mm gap between 

the inside of copper tube and foam was filled by epoxy bonded alumina powder 

composite (mixture elastic modulus was 2 GPa approximating to the observed foam 

modulus from the quasi-static tests). A strain gage was mounted on the center surface 

along the hoop direction to measure the confinement pressure for strain history as platen 

displacements could not be measured by direct vision high speed camera method. 

However, since the Teardrop honeycomb sample can be made bigger, this test setting can 

be modified and measurements can be taken with a Cordin 550-62 high speed camera (62 

color frames, 4 million frames per second maximum, 10-bit resolution CCD with 

1000×1000 pixel frame) with a rubber speckle pattern on the sample side.  

At the end of the transmission bar, in contact with the specimen, a hard tool steel end cap 

was press-fit into the hollow tubing to support the specimen. Two copper pulse shapers 

stacked together were used to facilitate dynamic stress equilibrium and a constant strain 

rate over a sustained period. Similar pulse shaping method can be incorporated for the 

Teardrop honeycomb however their dimensions would have to be re-evaluated. Two 

WK-13-125BZ-10C strain gages (2.08 gage factor) were mounted on opposite faces at 

the same longitudinal location of the two bars.  A Nicolet Sigma-30 digital oscilloscope 

(12-bit resolution and 10Ms/s sampling rate) was used to acquire the strain signals on 

incident and transmission bars through a Wheatstone bridge and a Vishay 2310A signal 

conditioning amplifier.  

The compressive stress, σs, in the specimen sandwiched between the incident and 

transmission bars was calculated from the transmission bar signal using: 
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where, As and At are the cross sectional area of the specimen and transmission bar, 

respectively; E0 is the Young’s modulus for the bars and εt is the strain of the 

transmission bar. The strain rate was deduced from both the incident signal and the 

reflected signal on the incident bar: 

                                    















+−








−= )(1)(1)( 0 t

A

A
t

A

A

L

c
t r

t

i
i

t

i

s

s εεε&                              (11) 

Where, c0 is the bar wave speed; Ls is the length of the specimen; the subscripts i and r 

represent incident and reflected, respectively.  Integration of strain rate with respect to 

time gives the strain history. With the known stress and strain history, dynamic stress-

strain curves were obtained. The most important step in the experiment was to check if 

the dynamic stress equilibrium was achieved. Also care was taken to verify no dispersion 

effects took place and frictional losses were minimal. Similar steps are extremely 

important for testing Teardrop honeycomb lattice. 
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CHAPTER IV 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The motivation for conducting the mechanical test experiments have been discussed in 

the previous chapter. In this chapter, based on the observed results from these tests, 

inferences are drawn and numerical parameters are evaluated. Comparisons between 

these parameters are presented and discussed in detail. Based on the information 

obtained, possible future steps are described. 

 

4.1.  Observed Results from Ballistic Tests 

Details of all the ballistic tests and locations are mentioned in Table 8. The initial tests 

were carried out on small plates (152 mm x 152 mm / 6 inch x 6 inch) of both baseline 

and composite armor configurations (conducted on 6/10/08 and 9/26/08). The plates were 

tested using a rigid wooden frame work for support with no clay backing. Both testes 

resulted in complete penetration in all the plates. These earlier tests were conducted to 

validate the proof of the proposed concept and were not conducted under 

comprehensively equipped testing conditions. It is estimated that the smaller size of the 

plates and non complaint backing resulted in edge effects and caused complete 

penetration. However, these tests yielded useful information on test conditions like 

temperature, humidity, perfectly scale projectile velocity, and calibration of measurement
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equipments. The next test was carried out using a ballistic clay backing layer as per 

standards (conducted on 6/19/09). The plate size was big (304 mm x 304 mm / 1 ft x 1 

ft). The plates showed complete penetration for both configurations. Velocities recorded 

from chronograph indicated a faster round (similar to .308 WIN 7.62 mm Wolf). This 

indicated that several factors severely affected the accuracy of the conducted tests and 

control on conditions was very imperative.  

The tests carried out on 7/19/09 resulted in a successful test with a baseline big plate 

configuration successfully defeating the projectile. This test was conducted with clay 

backing and customized rounds with measured charge quantities to accurately travel at 

selected velocities. The recorded velocity was 2560 ft/s / 805 m/s by the chronograph. 

The averaged out BFS reading from the clay was 32.5 mm. NDT analysis was conducted 

on this plate (details in section 4.2). Similar tests were carried out on 5 other plates (1 

baseline, 4 composite) of big size at DSM range in North Carolina. The observed results 

for successfully defeated shots are as shown in Table 9 and Table 10.  

 

Table 9 Observed results from ballistic test of Baseline plate at DSM range. 

Baseline plate 

Shot number 

Recorded Velocity  

(ft/s) 

Observed BFS 

(mm) 

1 2598 48.5 

2 2637 42.4 

3 2663 45.3 

4 2586 35 

Average 2621 42.8 
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Table 10 Observed results from ballistic test of Composite plate at DSM range. 

Composite plate 

Shot number 

Recorded Velocity  

(ft/s) 

Observed BFS  

(mm) 

1 2703 36.5 

2 2716 28.0 

3 2600 36.3 

4 2733 34.5 

5 2741 35.0 

6 2775 34.8 

7 2602 33.6 

8 2594 33.3 

9 2648 33.2 

10 2615 31.0 

Average 2672 33.6 

 

As stated earlier, the big plates were made by adhesively bonding four 152 mm x 152 

mm quadrants, which results in a seam running transversely from one edge centre to 

another. All of the shots listed in Table 10 were on the central or close to central zone of 

the honeycomb lattice quadrants and hence successfully defeated. It was seen that all 

shots that were near the seam zone were not stopped and resulted in complete 

penetration. Clear difference in the non seam shots and seam shots is seen in the NDT 

analysis presented in section 4.2. The 16.8 kg/m
2 

average areal density baseline plates 

resulted in an average BFS of 42.8 mm for 2621 ft/s average velocity. In comparison, for 

a higher average velocity of 2672 ft/s, the composite plates exhibited a reduced average 

BFS of 33.6 mm. The difference is as shown in Table 11. 
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Table 11 Difference in average ballistic performance between baseline and composite plates. 

Type of Plate Areal density 

(Kg/m
2
) 

Average Velocity 

(ft/s) 

Average BFS 

(mm) 

Baseline plate 16.80 2621 42.8 

Composite plate 18.98 2672 33.6 

Difference 2.1 51 9.2 

 

It is evident that for a 13 % increase in areal density by incorporation of Teardrop 

honeycomb layer between Dyneema HB 50 laminates, a 24% reduction in BFS can be 

achieved. This clearly projects the advantages of the current design concept where in a 

collapsible structure combined with a high strength ballistic fabric laminate can improve 

the ballistic performance. As per the NIJ standards stated in Table 6, a total of 4 Hybrid-

Composite-Armor design plates were subjected to ballistic testing for a level III setup and 

resulted in an average BFS of 33.6 mm ( < required 44 mm). To estimate the reference 

velocity, a V50 calculation was done with the details from all seam and non seam shots. 

The information was graphically represented using a Sigmoidal function discussed 

earlier. The resulting plot is as shown in Figure 19. From the plot for a 50 % probability 

of penetration, the corresponding velocity is 832 m/s. This V50 velocity is fairly close to 

the desired 838 m/s for a .308 WIN 7.62 mm, 9.6 g projectile.  

The Hybrid-Composite-Armor insert can thus be stated to have passed the requirements 

for the level III armor plate standards. Combination of this insert with a SiC ceramic front 

impact face is a viable choice for future tests. 
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Figure 19 Calculation of V50 velocity for the composite armor plate. 

From the tests carried out on heat treated 4130 steel plates, a low success rate was 

observed. Out of the 18 tested plates, only 4 were capable of defeating the projectile. 

From the information presented in Table 12, it is clear that majority of the plates lying in 

the surface hardness range of 20 HRC - 30 HRC were not successful in stopping the 

bullet. Amongst the 4 plates that stopped the bullet, the average impact velocity was 2645 

ft/s with average surface hardness of 32 HRC. The heat treatment used to for these plates 

involved heating the plate to 900 °C for an average 1 hour and then rapid quenching in an 

ice - water mixture at roughly 5 ° C. Similar procedure would be applied for heat treating 

the notched and the non-notched 4130 tensile samples to evaluate Johnson-Cook 

parameters. These parameters would be then used to simulate an FEA model of projectile 

impacting steel plate at 2645 ft/s and test results would be used to compare the FEA 

response of simulations.  
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Table 12 Observed ballistic results for heat treated 4130 steel plates. 

Plate 

Group 

Surface 

Hardness 

(HRC) 

Impact 

Velocity 

(ft/s) 

Residual 

Velocity 

(ft/s) 

Plate 

Group 

Surface 

Hardness 

(HRC) 

Impact 

Velocity 

(ft/s) 

Residual 

Velocity 

(ft/s) 

A 30 2668 1707 J 31 2668 - 

B 22 2611 1604 K 21 2599 1519 

C 19 2618 1506 L 37 2684 - 

D 25 2631 1604 M 35 2600 - 

E 24 2666 1723 N 5 2670 1305 

F 25 2631 1604 O 18 2612 1686 

G 20 2587 1669 P 36 2645 1367 

H 25 2653 1637 Q 22 2598 1536 

I 31 2655 1469 R 23 2626 - 

 

4.2. Post Impact NDT and Damage Evaluation  

The baseline plate shot on 7/19/09 and other plates shot on 8/25/2009 were taken to 

Servant Medical Imaging for conducting CT scans. The scanning was done to determine 

the extent of damage and failure modes observed in Dyneema HB50 from the baseline 

plate. Composite plates were scanned to evaluate the intrinsic damage sustained by the 

Teardrop honeycomb for weak zone identification. Bulge heights from shots with partial 

penetration were calculated to compare the plate performance. Following sequence of 

cross-sectional CT images in Figure 20 illustrate the scan results through the thickness of 

the baseline plate. The sequence initiates with the outermost slice on the top continuing 

progressively downwards as we move towards the point of impact on the plate. 
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Figure 20 Cross - sectional slices showing progressive damage traversing along the length towards the point of 

impact from the outermost edge (top to bottom). 

 

The slices clearly indicate the pattern of delamination whose magnitude increases as we 

move towards the impact zone. Transverse layer separation is primarily seen 

approximately at the centre of the 14 mm Dyneema plate and also at the interface zone of 

the 14mm and the 3 mm Dyneema layers. General observation and the CT scan imaging 

suggests the fracture and damage modes that are generally observed for fabric 

composites, (i) brittle shear at contact surface due to force localization (ii) sequential 

delamination in the successive layers, (iii) combined fiber elongation / pullout and fiber 

tensile failure. In the cross-plied laminates, fibers in the top plies are typically found to 

shear along the edges of the projectile. Similar observations have also been stated by 
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Grujicic et al [25]. Lowermost fabric layers located in the back layers of the laminates 

give a slight indication of generator strip failure mode. Image slice 4 from the top roughly 

indicates that the bullet was trapped within the 14 mm Dyneema layer itself. This proves 

that the hypothesis considered while selecting the thickness of front Dyneema HB 50 

laminate was correct. The 3 mm backing Dyneema layer had no actual contact with the 

projectile and hence the damage in that layer is purely of the tensile and accompanied 

delamination type. 

 

Figure 21 Extent of damage observed in the baseline plate with images on the lower right and left showing the 

position of this slice in the plate. 

Another motive was to evaluate the actual spread or extent of bullet fragmentation within 

the plate to give an approximately estimate of damage distribution. Figure 21 illustrates 
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the maximum spread of the damaged region. The scan is at a cross ply approximately 7 

mm from the plate base. The spread of the bright spots indicates the zone within the plate 

where bullet fragmentation is evident. The fragmentation was in an approximate circular 

region of radius 65.4 mm (approximate area: 134.7 cm
2
).  

From the observation of the back face bulge dimensions it was observed that it matched 

very closely with the recorded BFS of 32.5 mm. The 3D volumetric reconstruction of the 

plate is shown in Figure 22.  

 

Figure 22 3D volumetric reconstruction of the baseline plate from CT scan slices. 

In order to have a comparison with results from ABAQUS simulations in the future, the 

volume was cropped to a symmetric quadrant (Figure 23). The extent and nature of 

damage observed in the cropped quadrant will help to analyze the accuracy of the 

material parameters and input variables in the future ABAQUS simulations and also help 

to predict the necessary modifications. Test methods used to obtain these parameters can 

thus also be verified. 
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Figure 23 Cropped quadrants to be used for comparison with simulation results in the future. 

CT scanning of composite armor plates was also done similar to the baseline plates. 

Figure 24 shows the reconstructed 3D volume of a composite plate that was shot 9 times. 

The plate was capable of defeating 4 shots all of which were deduced to be in the non 

seam region. The 5 shots close to the seam of the Teardrop honeycomb resulted in 

complete penetration. 

 

Figure 24 Volumetric Image constructed from a Computer Tomography showing 9 bullet shots. 
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To estimate the area influenced directly by bullet fragmentation, a transverse pan was 

done along the reconstructed images. Using an area map tool, sizes of the damaged zones 

were estimated. Figure 25 illustrates a transverse slice along a composite plate that was 

shot 4 times at the centre of each honeycomb quadrant. It was seen that the average size 

of the damage zone was less than 134.7 cm
2 

which was measured in the baseline plate. 

This also proves the design hypothesis of delamination damage reduction in fabric 

laminate plate by shared energy dissipation with the Teardrop lattice. 

 

Figure 25 Extent of damage observed in a composite plate by bullet fragmentation. 

The maximum BFS was observed in the composite plate that was shot the 9
th

 time. In 

order to estimate the maximum damage the composite plate could handle a cross section 

slice along the centre of the shot was chosen for measurement.  
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Figure 26 CT image slice of maximum shot composite plate showing the damage pattern of shot 9. 

The excessive damage taken by the plate is clearly seen through Figure 26. Even after 

eight shots the plate was able to defeat the next round which adds to the positive 

attributes of the design concept in terms of reliability. The strike face to backing layer 

distance as measured from the CT image was 8.1 cm which was highest recorded in all 

the shot plates. 

4.3. Quasi-static Test Results 

The quasi-static compression tests were conducted for in-plane and out-plane directions 

for the MG Teardrop honeycomb. The objective of these tests was to evaluate the elastic 

and plastic properties of this honeycomb structure and experimentally measure it energy 

absorption capacity through plastic deformation. The results obtained as stress - strain 

curves were compliance corrected. The observed results are shown in Figure 27. 

Evaluation of these properties was to provide first hand information for the main 

objective of numerical input values for the desired material models in ABAQUS 

simulations.  
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MG teardrop lattice showed significant anisotropy in its compressive behavior. The in-

plane and out-plane properties of the honeycomb are listed in Table 13. 

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Strain (mm/mm)

S
tr

e
s
s
 (

M
P

a
)

Out-plane (X3)

In-plane (X1)

In-plane (X2)

 

Figure 27 Quasi - static stress strain curves for the MG Teardrop Honeycomb. 

It was seen that the modulus for the out-plane direction was about ten times of that in 

both the in-plane directions. The magnitude of collapse stress, as expected was highest in 

the out-plane direction. Owing to the construction of the honeycomb the collapse stress 

magnitude varied even for the in-plane directions. Data on the elastic modulus and stress 

- strain values obtained from the out-plane direction were used as input values for 

simulations in ABAQUS.  

Table 13 Anisotropic compressive material properties exhibited by MG Teardrop Honeycomb. 

 Young’s 

Modulus 

(GPa) 

Collapse 

Stress 

(MPa) 

Out-of-

plane(X3) 

0.05 4.6 

In- plane(X1) 0.005 0.06 

In-plane(X2) 0.004 0.1 
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The energy absorbed per unit volume for the Teardrop Honeycomb as calculated from the 

out-plane (X3) stress strain curve was 6.66 J/mm
3
.  

The desired quasi-static tensile tests on the notched and un-notched 4130 samples were 

not conducted as the heat treatment process details had variations. Since the tensile test 

samples had a smaller cross section, it was expected that the end hardness post the heat 

treatment would be higher than what was seen in the plates. It is necessary to calibrate the 

heat treatment duration and temperature so that the end hardness values of the plate and 

the samples matched thus ensuring accuracy of the results. This process is prone to errors 

and requires detailed investigation. In future, this study would be carried forward and the 

Johnson-Cook parameters would be evaluated. 
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Figure 28 Compressive Stress - Strain response for the cylindrical sample from 7.62 mm bullet. 

To evaluate material properties of the impacting projectile, compression test was 

conducted on a cylindrical sample cut from an actual .308 WIN 7.62 mm FMJ round. The 

cylindrical sample dimensions were 13.8 mm length and 7.62 mm diameter. The 
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compression test was carried out at a strain rate of 5 x 10
-3

 /s. The results from the test 

were compliance corrected. The observed stress - strain plot is as shown in Figure 28.  

The observed elastic modulus was 4.916 GPa and a yield stress of 95.4 MPa. The elastic 

and plastic properties were used to simulate a homogenous material that was assigned to 

the projectile in Generation 2 FEA models in ABAQUS (Appendix A). 

4.4. Dynamic Test Results 

The objective of the dynamic test was to establish a standard procedure for testing low 

impedance amorphous metal high porosity cellular structures. Accordingly a Kolsky bar / 

SHPB compression test setup was designed to test 82% porosity Pd43Ni10Cu27P20 foam.  

For validation of SHPB experiment, it was necessary to verify the dynamic stress 

equilibrium on the specimen using the 1-wave, 2-wave method. Figure 29 demonstrates 

the dynamic stress equilibrium check, as well as strain rate history.  
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Figure 29 Dynamic equilibrium check conducted to validate the SHPB experiment. 

The front stress was very close to the back stress during loading, indicating that the 

dynamic equilibrium condition was established and the specimen was uniformly 
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deformed. The basically flat phase in strain rate history indicates that a constant strain 

rate was achieved. The slight variation (2.5%) in the flat stage of the strain rate history 

during the loading indicates that the specimen was deformed at nearly a constant strain 

rate. 

 

Figure 30 Dynamic Stress - strain curve for the amorphous metal foam. 

The dynamic stress strain curve of BMG foam under confinement is shown in Figure 30. 

The curve show typical characteristics of brittle material. The stress-strain curve shows a 

steady plateau stress of average 35 MPa with yield stress of 39 MPa. The strain rate for 

the stress plateau was 1074 s
-1

. The energy absorbed by the foam sample as calculated 

from the stress-strain response was 14.1 MJ/m
3
, indicating the effectiveness of 

amorphous metal cellular structures. The mechanical properties of BMG foam were 

found to show slight sensitivity to the strain rate after comparison with other strain rate 

tests conducted on the same foam [34]. It was evident that a similar process could yield 

results for the honeycomb sample. Similar strain rate sensitivity can be observed and 

stress - strain response can be evaluated. This result would prove valuable in the future as 

the derived properties can then be used as inputs for FEA simulations. 
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CHAPTER V 

 

 

5. FINITE ELEMENT MODELING IN ABAQUS 6.8.2 

 

The aim of conducting dynamic FEA simulations was to closely model and compare the 

behavior of the plates that were tested using the direct impact ballistic experiments with 

NIJ level III standards. The simulations were to be designed to provide an alternate 

means to validate the ballistic test results and recommend structural modifications if 

necessary. The primary aim was to verify if the current Hybrid-Composite-Armor plate 

dimensions and construction were capable of withstanding the projectile impact with 

minimal possible BFS. Visual results obtained from simulations could also be used to 

compare the damage distribution pattern and evolution of temporal back face bulge 

observed through the CT scans. The numerical results would help to determine and 

compare the V50 and ballistic limit of each experimentally tested plate. These 

comparisons can then confirm the effectiveness of the material models currently available 

and used in the numerical analysis. Like other dynamic tests, FEA simulations are 

situation specific implying that there are not set procedures that can be followed to ensure 

positive results. The current effort will help to set a guideline for future impact simulation 

testing in ABAQUS 6.8.2 and suggest a brief outline of a plausible method to test 

isotropic and anisotropic materials. 
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Impact problems have been modeled with these basic objectives of numerically deriving 

ballistic limits of structures and also to visualize and compare their damage distribution 

patterns [25, 46, 83, 89, 96]. Referring to these listed publications as guidelines, the 

dynamic explicit simulations in ABAQUS 6.8.2 were designed for the current study.  

Similar to software codes used by above referred research groups, the explicit code in 

ABAQUS works by direct computation of the dependent variables in terms of known 

quantities or provided inputs. An explicit dynamic analysis was also selected for the 

reason that it was computationally efficient and consistent for large models with 

relatively short dynamic response times, comparatively larger deformations and large 

number of small time increments (the exact circumstances pertaining to the current 

application). This analysis system was also quite flexible and allowed for fixed or 

automatic time incrementation depending upon the requirement.  

To formulate the contact between the impacting projectile and the armor plates two 

algorithms were used: General Contact algorithm and Contact Pair algorithm. Both these 

algorithms were used by modeling contact through element based surfaces that allowed 

for material degradation. The classic erosion model in ABAQUS was used to simulate the 

material damage response by individual element deletion as the damage parameter D 

reached unity. The software also allowed selection of post-damage-initiation material 

response and also how failure evolved. Details on these selections are presented in the 

upcoming sections. 

All simulation models were built up following a basic sequence of steps. The 

chronological order is as below: 



 65 

• Part Generation. 

• Material property assignment and Section generation. 

• Section allotment and Section Control selection. 

• Element selections, Part mesh generation and creating Mesh parts. 

• Surface creation, Assembly generation, set creation. 

• Constraint assignment (Surface Tie, Dynamic Contact, explicit) 

• Step formulation with predefined fields and boundary conditions. 

• Selection of field output. 

• Job generation. 

• Inputs file modification for erosion model. 

• Job run 

Modifications in this general sequence were liable based on immediate requirements. 

Contact models generated were 2D and 3D for impact formulation between different 

materials like Steel, Copper, Lead, Dyneema and MG Teardrop lattice. Development in 

Material model selection for each material with assigned properties and parameters is 

listed in section 5.2. Being the first attempt to indigenously develop Simulation models, 

sequential adaptations were done in the earlier prototypes by incorporating newer factors 

learnt through experience. Earlier models failed due to issues of excessive distortions, 

convergence problems, node penetrations, warping of elements during the dynamic 

contact. Section controls, mass scaling, material modeling options were explored to solve 

the problem leading to the current status of modeling. Details of this development are 

listed in Appendix A with illustration of obtained results. In the upcoming sections, 

details of the current modeling method are described. Application of this method for 
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impact modeling is listed in Section 5.4 with derived results and discussion in Section 

5.5. 

5.1. Model Geometry, Meshing,  and Boundary Conditions 

The basic procedure of modeling any simulation initiates by creation of individual parts 

that are involved in the analysis. Usually the sizes of these parts are exact match of the 

real time objects or their scaled /cropped portions as per the requirement. In this study, 

from the first model creation to the current version, the geometric specifications selected 

for modeling each component of the tested plates (Dyneema HB 50 laminates, MG 

Teardrop honeycomb lattice and Steel plates) were to exactly match their actual square 

surface area and thickness. The geometry of the impacting projectiles was also modeled 

to exactly match the volumetric attributes (for example .308 WIN 7.62 mm FMJ round). 

3D dynamic FEA procedure is computationally extensive due to the large number of 

elements and node points involved. For faster execution of the analysis procedure and 

solution computation time reduction, only a quadrant of the actual volume was 

considered for all FEA owing to the axisymmetric nature of the problem (Refer Figure 31 

and Figure 32).  

 

Figure 31 3D representation of the projectile - plate impact problem showing axisymmetry about out-plane axis. 
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Similar consideration has been made by other research groups investigating projectile-

plate impact problems [25, 46]. As it was needed to further reduce the computation time 

in later models, circular outer surface geometries were selected instead of the initial 

square (Figure 32). As the total time duration of the dynamic impact is in the order of 2 - 

4 x 10
-4

 seconds, the change to circular geometry does not affect the solution by wave 

propagation issues. Part meshes were then created using hexagonal or hexagonal 

dominated elements (C3D4) and then structured and sweep mesh construction was done 

as per requirement. Section controls were assigned to these elements in all the later 

models to control excessive distortion. Mesh was generated in discrete zones or parts 

(denser in contact region, coarser at the far edge to improve result quality without 

severely increasing computation time). The element sizes varied across the length of the 

plate model. Meshed parts were created to enable mesh surface generation required for 

Tie function to be used to join the discrete mesh zones.  

Once the individual meshed parts were created and assigned material section, they were 

put together in the assembly module. Necessary boundary conditions had to be evaluated 

and assigned to accurately model the actual tests. As only a quadrant of the entire volume 

was considered for analysis, the inside edge surfaces of the model were subjected to 

symmetry conditions along the X and Y axes. For the outer edge surfaces, their motion 

being completely restricted due to the test setup, Pinned boundary condition was chosen. 

Details are represented in Figure 32. Initial velocity assignment to the projectile was done 

by regulating the predefined field values. 
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Figure 32 Schematic of the considered quadrant volume for analysis (left) and the applied boundary conditions 

(right). 

5.2. Material Modeling 

Material model selection and assigned properties govern the nature of the final output 

that can be seen through simulation analyses. Accurate input of values is thus of high 

importance as errors in assigned properties reflect in incorrect visual and numerical 

response seen from the simulations. The models that have been used for impact 

simulations are listed in Section 1.3 of Chapter 1. Property assignment for any material 

can be segregated into 4 basic inputs: (a) Elastic property inputs (b) Plastic property 

inputs (c) Damage initiation input (d) Damage evolution inputs. 

 

Figure 33 Material Property Inputs for simulations shown on a sample Stress - Strain curve [112]. 
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ABAQUS allows for individual models and their combinations to be simultaneously used 

for any of the listed inputs. The elastic and plastic inputs can be directly derived from 

stress strain curves for the selected materials. The software allows for inclusion of 

anisotropy for elastic properties by using the stiffness matrix as input. Similarly, Hill’s 

criterion is available to include anisotropic yield behavior for materials. As seen from 

Figure 33, for any ideal material the stiffness steadily increases till it reaches a maximum 

point beyond which there is a steady degradation in the values. This point maximum is 

considered as the material damage initiation stage (when damage parameter considered 

for erosion, D =0).  The progress from maximum stiffness stage to no stiffness is defined 

as damage evolution (D = 0 to D = 1).  

The different materials considered in the simulations required individual material models.  

For first generation models, isotropic material properties were considered for all materials 

(Dyneema, MG Teardrop lattice and Lead). Tabulated property inputs from stress strain 

curves were used for plastic properties of Lead and MG lattice. Damage was simulated 

using simple shear and tensile failure. Substitution of these properties resulted in 

inaccurate results. For second generation models these properties were re-evaluated. High 

strain rate properties for Spectra cross ply laminates published by Koh et al [56] were 

used. The out-plane properties for MG lattice were used similar to the earlier case. The 

newly evaluated properties from compression of Lead core from actual bullet round were 

used. Damage models selected earlier were kept the same. The analyses failed to 

complete all iterations and resulted in no convergence. 

The third generation simulations were carried out to simulate experiments similar to those 

conducted by Hazell [89] and Borvik [81, 83]. The materials used in these simulations 
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were steels, copper and lead. These models used more defined progressive damage 

models (by Hooputra [103] and Johnson-Cook [100]). For simulating experiments by 

Borvik (steel cylindrical rod impacting steel plate), the impacting projectile was made of 

Arne Tool Steel. The properties were directly used from those evaluated in the published 

literature (Table 14). An elastic-perfectly plastic model was used for this material as it 

had no inherent damage. 

Table 14 Material properties for Arne Tool Steel [83]. 

 

The plates considered in the experiment were made from high strength Weldox E steel. 

The properties for this material were also used from those published in the literature. 

Johnson-Cook plasticity model and dynamic failure model were used to model plastic 

and damage initiation response. Damage evolution was based on the failure strain listed 

in the literature. The properties used are as listed in Table 15. 

Table 15 Material properties for Weldox E Steel [83]. 

  

For the experiments involving copper and steel bullets impacting steel plates, properties 

from the ABAQUS user’s manual [112] were used for steel as well as copper. The steel 

properties were taken from the example problem for steel rod impacting steel block. 

Extended Shear and Ductile damage by Hooputra was used to model this steel while the 

copper was modeled using Johnson-Cook model. Strain based damage evolution criteria 
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were used for both these materials. Material properties for Johnson-Cook plasticity model 

were evaluated for the simulations with lead core. The stress-strain curve used for 

property evaluation was an extrapolation of data from Atlas of stress-strain curves [113].  

The properties were found to be similar to those used are similar to those reported by 

Borvik et. al [96] 

Table 16 Material properties evaluated for Lead. 

 

5.3. Contact Formulation and Element Section Controls  

Out of the two algorithms available in ABAQUS to model dynamic contact (General 

Contact Algorithm and Contact Pair Algorithm), the General Contact Algorithm is used 

in all 3D models due to its simple definition and comparatively less restrictions. Since 

this option was not available in 2D simulations, Contact pair algorithm had to be used 

instead. The General Contact method is advantageous over its counterpart since its 

efficiency is better in enforcing contact conditions with three dimensional surfaces which 

is the requirement of the current simulation. Results presented in the later section clearly 

show the difference between the two methods proving General Contact as a better option. 

The General Contact algorithm requires specification of the contact domain during its 

definition to specify the regions of the model that can potentially come into contact with 

each other. A convenient method of specifying the contact domain is using automatically 

defined element-based all-inclusive surfaces derived from element sets. For the current 
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study an element set “erode” was generated to define the contact domain for derivation of 

all-inclusive element based surface (Refer Figure 34).  The all-inclusive surface then 

defines the self-contact mode of interaction.  Surfaces used in the General Contact 

algorithm are allowed to span multiple unattached bodies, so self-contact in this 

algorithm is not limited to contact of a single body with itself. Hence, self-contact of an 

all-inclusive surface generated from the set “erode” that spans two bodies (projectile and 

the plate) implies contact between the bodies as well as contact of each body with itself. 

 

Figure 34 Element set “erode” created to model contact and erosion behavior. 

This all-inclusive element-based surface defined from set “erode” also functions to model 

surface erosion for analyses (element surface based algorithm as described earlier). Post 

the interior surface definition from the earlier steps, the surface topology evolves to 

match the exterior of elements that have not failed as the steps progress and the two 

solids erode. The General Contact algorithm modifies the list of contact faces and contact 

edges that are active in the contact domain based on the failure status of the underlying 

elements. It considers a face only if its underlying element has not failed and it is not 
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coincident with a face from an adjacent element that has not failed; thus, exterior faces 

are initially active, and interior faces are initially inactive. Once an element fails, its faces 

are removed from the “erode” contact domain, and any interior faces that have been 

exposed are activated. A contact edge is removed when all the elements that contain the 

edge have failed. New contact edges are not created as elements erode. Based on this 

algorithm, the active contact domain evolves during the analysis as elements fail.  

Topology of an eroding contact surface is demonstrated in Figure 35. 

 

Figure 35 Surface topology evolution resulting from element erosion [112]. 

The contact nodes from failed elements remain in the contact domain as free floating 

point masses and contribute significant momentum transfer. The contact algorithm also 

generates contact forces to resist node-into-face, node-into-analytical rigid surface, and 

edge-into-edge contact penetrations. This helps to maintain the solid nature of objects 

during progressive iterations by preventing unreal intersections between two different 

materials. The primary mechanism for enforcing contact is node-to-face contact.  

Section controls in ABAQUS can be used for multiple options and are specified when 

element types are assigned to particular mesh regions. Use of section controls is generally 

done for hourglass control formulation and scale factor control for all general purpose 
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elements. The primary objective for manually selecting section controls was to improve 

computational efficiency, enable element deletion and most importantly control excessive 

distortion due to the extremely dynamic contact condition. The section control options 

used in the later models of this study are: (a) Maximum stiffness degradation control, (b) 

Hourglass control, (c) Distortion control, (d) Kinematic split control, and (e) Variable 

mass scaling. 

 The maximum stiffness degradation option was used to choose the behavior upon 

complete failure of an element. Once the material stiffness was fully degraded, by use of 

progressive damage material models, this option enabled the removal of failed elements 

from the mesh.  

The current simulations considered only the linearly varying part of the incremental 

displacement field in the element for the calculation of the increment of physical strain. 

The remaining part of the displacement field is the hourglass field and may lead to severe 

mesh distortion, with no stresses resisting the deformation. “Hourglass control” attempts 

to minimize these problems and hence was chosen for later models. Several methods are 

available in ABAQUS for suppressing the hourglass modes. The integral viscoelastic 

approach generates more resistance to hourglass forces early in the analysis step where 

sudden dynamic loading is more probable. It is the most computationally intensive 

hourglass control method. The Kelvin-type viscoelastic approach has pure stiffness and 

pure viscous hourglass control as limiting cases. When the combination is used, the 

stiffness term acts to maintain a nominal resistance to hourglassing throughout the 

simulation and the viscous term generates additional resistance to hourglassing under 
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dynamic loading conditions. Hence the “Combined Hourglass control” option was chosen 

for all models which combined the positive attributes of both earlier methods. 

 “Distortion control” was used to prevent solid C3D4 elements from inverting or 

distorting excessively for these cases under large compressive and shear deformations. 

The constraint method prevents each node on an element from punching inward toward 

the center of the element past a point where the element would become non-convex. 

Constraints are enforced by using a penalty approach, and the associated distortion length 

ratio can be controlled. This control reduces the chances of analyses failing prematurely 

when the mesh is coarse relative to strain gradients and the amount of compression. This 

option was specifically developed for analyses of energy absorbing, volumetrically 

compacting materials and can be used with any material model.  

A noticeable reduction in computational cost can be obtained by using the “Kinematic 

split” orthogonal formulation which is based on the centroidal strain operator. This strain 

operator requires three times fewer floating point operations than the uniform strain 

operator and works well on refined mesh. It also performs well for large rigid body 

motions and hence was chosen to make the current analyses more efficient.  

During an impact analysis, elements near the impact zone typically experience large 

amounts of deformation. The reduced characteristic lengths of these elements result in a 

smaller global time increment. Scaling the mass of these elements as required throughout 

the simulation can significantly decrease the computation time. “Variable mass scaling” 

was thus used to scale the mass of elements periodically during a step. To use this type of 
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mass scaling, a desired minimum stable time increment was defined. Mass scaling factors 

were calculated automatically and applied, as required, throughout the step.  

5.4. Evolution of Simulation Models  

 The first generation of FEA models was developed to understand the basics of the model 

development sequence in ABAQUS.  Their execution helped to identify necessary 

modules and algorithms that could be used to improve the observed result qualitatively 

(visual stress and damage variation response) and quantitatively (numerical outputs: 

change in velocity). These models also helped to find methods of trouble shooting errors 

incurred and software options for better efficiency leading to second generation models. 

These second generation models helped to identify drawbacks in meshing, material 

modeling and established the need for better material inputs and progressive damage 

models. Details of the third generation models are discussed in this section. These models 

were developed after incorporating all modifications learned through the model 

development process (details of development and evolution of models in Appendix A) 

that helped in successful execution. 

The following objectives were set for these models to improve understanding of the FEA 

and modeling: 

• Validate the effectiveness of the current third generation models through the 

simulation run of a referred literature experiment by result comparison with 

those from other software. 

• Verify if a 2D model was more effective than a 3D model by comparing end 

results with published experimental values.  
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• Prove that the current modeling procedure was capable of predicting ballistic 

limits for any particular impact scenario. 

• Check the influence of size of the impacted plate made in the observed results. 

• Confirm if modeling the projectile with separate materials (e.g. core with lead 

and casing with copper) provided results closer to experimental ones from 

ballistic testing of 4130 steel plates. 

Achieving these set objectives would provide useful information that can be incorporated 

into future models and help in establishing a standardized procedure which was a primary 

aim to initiate simulation work. This procedure can be modified for future dynamic 

impact simulations. A step wise execution plan was decided to carry out simulation 

experiments that could answer the questions posed above.  

To establish the effectiveness of current third generation model, problem description for 

impact on high strength Weldox steel plates by Borvik et al. [83] was used. 2D and 3D 

models were created to match the dimensions of the tested plates (12 mm thickness, 500 

mm diameter). The impacting object in this simulation was an Arne tool steel cylinder 

(20 mm diameter, 80 mm length). Material properties for both these steels have been 

listed in section 5.2. Velocities for impact were chosen to match those in the literature. 

The minimum element size considered for the 3D model was 0.5. For the 2D model, two 

element sizes were considered: 0.2 and 0.3 to verify mesh sensitivity. Parts for the 3D 

model were discretely meshed with varying mesh size. Mesh size for the 2D model was 

kept constant. Boundary conditions, contact formulation and section controls derived 

from the second generation model were used (details in earlier sections).  Variable mass 

scaling was used to regulate incrementation. The element-by-element incrementation 
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option was used. The simulation run time for 2D analysis was 50 minutes and for 3D 

analysis was 11 hours in ABAQUS 6.8.2. Results from these models are discussed in the 

next section.  

 

Figure 36 2D and 3D models created to verify performance of current modeling procedure. 

To prove that the current modeling procedure was capable of predicting ballistic limits 

for different scenarios, a steel bullet impacting a steel plate simulation was run. The 

model was an extension of the earlier considered generation 2 models 4 and 5 (Refer 

Appendix A). The plate and the projectile were modeled using steel properties from the 

ABAQUS users manual [112]. Two plate sizes were considered to see if the size change 

affected the results. The big plate was considered as 152 mm diameter and 6 mm thick 

(similar to the heat treated 4130 plates that were shot). The smaller plate was considered 

as 110 mm diameter and 6 mm thick. The bullet geometry was considered same as that of 

a .308 WIN 7.62 mm FMJ round. Three different velocities were considered for 

comparing the plate size effect (800 m/s, 838 m/s and 850 m/s). The velocities for the big 

plate simulations were further reduced till the ballistic limit was achieved. Other 

simulations controls were kept similar to the earlier 3D model. 
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To get closer to the actual ballistic test carried out on steel plates, copper material 

properties were considered for the impacting bullet. Properties for this material (as 

mentioned in Section 5.2) were taken from the ABAQUS User’s manual [112]. The 

dimensions of the plate were kept similar to the 152 mm diameter big plate. All the 

simulation conditions were kept same as earlier runs for ease of conformation.  Results 

from these simulations are presented in the next section.  

For achieving the last objective, lead was incorporated in the projectile as per the actual 

bullet geometry. The Johnson-Cook model parameters were used for lead (details in 

Section 5.2). Initial velocities were considered similar to the earlier model with copper 

and steel bullets. All simulation conditions were again kept similar to earlier models. 

 

Figure 37 Model geometry considered for simulating an actual 7.62 mm Ball bullet impact on a steel plate.  

5.5. Simulation Results and Discussion 

The run time for the 3D simulation model to replicate the experiment of a tool steel 

cylinder impact on a Weldox plate was 11 hours. At the end of the simulation a node 

point at the centre of the cylinder was chosen to obtain velocity outputs for the negative Z 

direction. These outputs stated the change in velocity of the node with time. Assuming 
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the volume centre of the cylinder to be the node average of the entire cylinder solid, its 

velocity change with time was plotted to represent the whole solid. Three different initial 

velocities were considered to replicate the experimental conditions. The change-in-

velocity plots thus obtained are shown in Figure 38. 
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Figure 38 Comparison of change in projectile velocities with time for the 3D model.  

As per the experimental results for the 12 mm plate, a ballistic limit of 185 m/s was seen. 

Using the current modeling procedure in ABAQUS, a ballistic limit of 250 m/s was 

observed. With the current mesh size of 0.5 used for this simulation, the ballistic limit 

prediction was higher by 35.1 %. Predictions by LS-DYNA for the ballistic limit were 

220 m/s (coarse mesh, size 0.4) and 193 m/s (fine mesh, size 0.2). The coarse mesh result 

from DYNA was 18.9 % higher from the experimental value while the fine mesh result 

was 4 % higher. However, the current results are comparable to those seen for LS-DYNA 

0.5 size coarse mesh. The current modeling procedure for 3D model can be thus expected 

to match the results from LS-DYNA with a similar refined mesh, validating its 

effectiveness. 
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Figure 39 Observed results from Borvik et al. [83] and comparison with those from the current 3D model 

The same simulation scenario was run with a 2D mesh to evaluate if the faster model 

could give similar results as the 3D model. Change-in-velocity plots for the same 

reference central node were plotted (Refer Figure 40).  
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Figure 40 Comparison of change in velocities with time for 2D model (0.2) element size. 

It was seen that the modeling procedure for the 2D model gave results that were 

inconsistent with the experimental values. Even after refining the mesh size from initially 

used 0.3 to 0.2 (matching that of the DYNA fine mesh model), the solution was not in 

agreement with the experimental observations.  

The change-in-velocity plots for a 300 m/s initial velocity for 0.2 and 0.3 mesh size 2D 

simulations plotted with the result from a 0.5 mesh size 3D simulation is shown in Figure 

41. The residual velocity comparison indicated that a coarser 3D mesh was a more 

accurate option for simulating dynamic contact behavior (198 m/s residual velocity 

observed experimentally, also shown in Figure 41). This can be attributed to the contact 

algorithms and modeling schemes available for 2D models. The General Contact 

algorithm traditionally used for all earlier simulations could not be used for the 2D model 

as it was restricted to only 3D geometries. The erosion model in 2D was thus proving to 

be a less accurate choice in the ABAQUS software for the current study. 
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Figure 41 Change in velocity plots for comparison between 2D and 3D models. 

To further check the solution stability of both 2D and 3D models, results from an 838 m/s 

initial velocity were compared. Figure 42 shows that solution convergence was better in 

the 3D model with General Contact algorithm as the observed amplitude of solution 

oscillations was lower than the 2D model. 
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Figure 42 Change in velocity plots for 838 m/s initial velocity. 



 84 

Next analyses were focused on using actual bullet geometries for projectiles instead of 

cylinders to get closer to the actual ballistic testing. The projectile was modeled with steel 

and copper material properties. The properties considered for the steel plate were similar 

to that of the projectile in the first simulation. As mentioned, two plate sizes were used to 

verify if any size effects were observed. The results obtained as change in velocity plots 

for both plate sizes are as shown in Figure 43. The readings were taken from a central 

representative node similar to the earlier case.  
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Figure 43 Change in velocity comparison for 55mm and 76 mm steel plates. 

A slight change is observed in the velocity trends however the results are within 5% 

velocity difference of each other at any give time. A 21 mm change in plate length did 

not significantly affect the solution. This again can be attributed to the relatively short 

time interval within which the dynamic impact occurs. The reflection of stress wave 

fronts from the edges of both plates is almost identical and hence solutions for both cases 

do not vary significantly from one another.  
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Simulations for a copper bullet impacting a 76 mm plate were run and the change in 

velocity with time was plotted from the same reference node. The observed results are as 

shown in Figure 44. It can be seen that as expected, the exit velocity for a copper 

projectile drops significantly as compared to that for a steel projectile. Copper being a 

softer material, the steel plate resistance against impact is better. Initial velocities for this 

model were continually reduced from 850 m/s until a zero residual velocity was 

observed. 
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Figure 44 Change in velocity plot for Copper bullet impacting steel plate. 

This minimum initial velocity that does not result in a complete penetration can be 

considered to set the ballistic limit for this impact scenario. Similar results for a steel 

bullet impacting steel plate were obtained. Figure 45 shows the comparison of the 

observed ballistic limits for both cases.   
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Figure 45 Ballistic limit estimate for Steel bullet and Copper bullet impact simulation. 

A hypothesis can thus be made that an actual bullet with a lead core and copper jacket of 

same geometry as considered for these simulations will have a ballistic limit between 

these two curves. The hypothesis is based upon the fact that the lead core, being of least 

hardness will definitely result in a higher ballistic limit as compared to steel. When 

compared to a full copper bullet, being heavier, the actual projectile will have a higher 

momentum of penetration owing to the higher density of the lead core. However, the role 

of degree of hardness vs. density is undetermined, so verification by actual results is 

needed to predict the real case. 

To model the actual ballistic test, the impact of a copper jacketed lead core bullet on steel 

plate was modeled with exactly similar conditions as earlier described models. Upon 

running the simulation, the software was unable to compute beyond a second iteration as 

the material deformations and the contact overclosures exceeded the calculation capacity. 

The primary reasons stated by the software suggested that the ratio of deformation speed 

to wave speed exceeds 1.0 in at least one element of the bullet lead core. The probable 
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reason for this would be the lower elastic modulus of lead with a higher density as 

compared to that of steel. Mesh dependency might also lead to this error. As a way to 

rectify this error, refined mesh sizes were implemented for both the plate and the 

projectile. However the software was still unable to proceed beyond the first iteration. 

Problems were faced in the first and second generation models as well due to 

inaccuracies resulting from use of lead properties.  

Upon researching possible ways to solve the problem, it was observed that lead had not 

been considered for modeling bullets [104]. Earlier simulations had focused on using 

steel cores to simulate armor piercing non-deformable rounds. As stated by Borvik et al. 

[96], the composition for the lead core significantly varied for bullets. By using PMI 

measurements, the composition of the bullet core was found to be 87% Lead and 13% 

Antimony. This contradicts the composition considered in the present study (98% Lead 

and 2% Antimony). Antimony addition makes the core stronger. For the composition 

considered by Borvik, the alloy strength was 36 MPa with a 24 MPa yield stress. These 

properties for the current consideration were 45 MPa and 23 MPa. The overview 

presented in the referred literature describes the variations in the material constants and 

most properties being rough estimates. This numerical investigation carried out in LS 

DYNA was unable to effectively model the impact simulation due to severe mesh 

distortion similar to that observed in the current study. Attempts were made to use 

Lagrangian - Eulerian integration codes in GRALE software to model fluidity of the lead 

core. It was found that even this method did not give a good description of the perforation 

process as global target deformation was too large. 
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For the current study, options like adaptive meshing, mesh refinement and section control 

modification did not significantly alter the output. Problems of modeling lead have also 

been encountered by Schwer [114]. Research in solving the lead core deformation 

problem has been limited. As stated by Borvik [96], as an alternative, soft lead core has 

been replaced by a soft steel core by the majority of research groups. Steel cores being 

easier to simulate by standardized FEA tools, these materials are bound to replace lead in 

all future work in this area of ballistic simulations. It is imperative that similar 

considerations be made for the current study as well to solve the excessive deformation 

problem. 
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CHAPTER VI 

6. CONCLUSIONS 

 

 

A composite ballistic insert for a level III NIJ 0101.06 ballistic vest standard was 

designed and tested. Literature review was conducted to understand the phenomenon of 

energy absorption and basic functioning of energy absorbers. For creation of a successful 

design, the available literature of ballistic armors was studied and the latest trends in 

composite armors were identified. The objectives to be achieved by the ballistic insert 

were studied by thorough understanding of the standard 0101.06 and accordingly a novel 

Hybrid-Composite-Armor (HCA) design concept was envisioned and manufactured. This 

multilayered passive armor prototype consisted of a sandwich structure (Metallic Glass 

(MG) Teardrop celled honeycomb layer between Dyneema HB50 laminates).   

Methods to test the structure and its components were discussed and detailed experiments 

were conducted.  Through quasi-static compressive testing, anisotropic properties of MG 

Teardrop honeycomb were evaluated. The structure exhibited Young’s modulus of 50 

MPa in the out-plane direction and an average of 4.5 MPa in the in-plane directions. The 

observed collapse stress was 4.6 MPa for the out-plane direction and an average of 0.08 

MPa for in-plane directions. The energy absorbed per unit volume was 6.66 J/mm
3
.  

A standard SHPB test method that could be used for dynamic property evaluation of this 

low impedance Teardrop celled honeycomb structure was identified and it’s functioning
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 was verified by compression experiment on a Pd based amorphous metal foam. 

Standards were set for the setup construction, to check its equilibrium and methodology 

of generating output. Observed results from this compression experiment suggested 

higher energy absorption capacity of amorphous metal cellular structures with noticeable 

strain rate sensitivity. 

Performance of the HCA insert was verified through ballistic tests. Comparison of 

observed results with those from similar tested Baseline plates show improvement in 

ballistic performance by incorporation of collapsible MG Teardrop celled honeycomb 

layer. Reduction in BFS by 24% was observed for a 13% increase in areal density due to 

inclusion of this layer. BFS of 33.6 mm and a V50 of 832 m/s validated successful 

compliance of the HCA to the NIJ level III standards, thus proving the design hypothesis 

to be effective. Post impact evaluation and NDT carried out on the tested inserts revealed 

reduction in damage zones for the HCA in comparison to the Baseline (134 cm
2
 for 

Baseline and 122 cm
2
 or lower for HCA), validating improved multi hit capability. Test 

method used in all these tests was standardized for repeatability and accuracy by 

experiments on heat treated 4130 steel plates.  

An FEA modeling procedure for dynamic impact in ABAQUS 6.8.2 was investigated and 

methodology of conducting simulations was perfected.  The experiment setup conditions 

from steel plate testing served as a guideline for this FEA modeling procedure. Results 

obtained from 2D and 3D models were compared with experimental values published by 

Borvik et al. [83]. The accuracy of a coarse mesh 3D model with General Contact 

algorithm was found to be better and more stable than even a fine mesh 2D model. This 

3D model was also capable of predicting dynamic impact FEA results comparable to 
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those from LS-DYNA validating the efficiency of the current modeling procedure. 

Minimal size effect influence was observed in these 3D models. Simulations with actual 

bullet geometries were conducted using copper and steel material properties for 

impacting projectiles. The model was efficient in predicting variations in projectile 

velocities post impact as a function to time. These results also verified that the modeling 

procedure developed was very flexible and capable of predicting ballistic limits for 

different impact scenarios as per requirement. Although simulations with copper jacketed 

lead core projectile were not a success, observations made during the process exactly 

corroborated the deficiencies in Lead modeling reported by Borvik et al. [96] and Schwer 

et al. [114]. 

The current study was thus successful in demonstrating a design methodology wherein 

mechanical testing and software based FEA analysis could be used in conjunction to 

evaluate performance of any energy absorber design concept. 
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CHAPTER VII 

7. FUTURE WORK 

 

 

• Dynamic and shear properties for Dyneema HB50 need to be evaluated. 

• Johnson-Cook parameters for heat treated 4130 steel need to be evaluated. 

• Possible use of Hill and Hashin model for individual crossply creation can be 

done and bonding with cohesive elements can be explored for simulation of 

delamination. 

•  Possible use of other base amorphous alloys to improve honeycomb strength can 

be made. 

• Testing of absorber HCA unit when combined with front ceramic layer using 

armor piercing rounds and comparison with ESAPI insert needs to be done. 

• Methods to evaluate properties for extended shear and ductile failure model by 

Hooputra model need to be explored. 

• Possible uses of MG Teardrop honeycomb can be considered for Aerospace 

applications.  
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APPENDIX A 

ARMOR PLATE DYNAMIC IMPACT SIMULATION TIMELINE 

 

The aim of conducting dynamic simulations in ABAQUS 6.8.2 was to closely model and 

compare the behavior of the Hybrid-Composite-Armor insert according to a NIJ standard 

level III ballistic test (7.62 mm Copper jacketed Lead projectile).  Different models with 

varying mesh properties, material properties and section controls were simulated. The 

timeline elaborates on the variations brought about in the simulation parameters till 

considerable result stability was observed. This process led to the development of 

Generation 1, Generation 2 and the most efficient Generation 3 models. 

 

Generation 1 Models: 

These models were the first attempts at generating FEA simulations and understanding 

the modeling procedure. The procedure of generating meshed parts, creating material 

models and selecting boundary conditions was familiarized. Being the first stage in this 

work, a conservative approach was used regarding inclusion of software options. 

Homogenous isotropic material models were used for all materials involved. Data 

available through literature review, then conducted experiments and their extrapolations 

were used. Simplest tensile and shear failure model was used to simulate material damage 

and erosion. General contact algorithm was used to model dynamic contact through 

element set “erode”. 
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Model 1: (Analysis time duration: 1 hour 17 minutes) 

The model geometry is as shown in Fig 1. The multilayer composite model had (152 mm 

x 152 mm x 25.4 mm (6” x 6” x 1”) dimensions and comprised of a 8mm Metallic Glass 

Teardrop honeycomb layer sandwiched between Dyneema HB50 layers (14 mm front 

impact layer  and  3 mm backing layer). The model was a divided quadrant for simulation 

simplicity and faster analysis. The lead bullet (assigned with a velocity of 838 m/s) was 

also considered to be in 1/4
th

 volume.  

 

Figure1 Model geometry (Each layer of the composite plate is marked with the datum planes). 

Boundary conditions were chosen to model symmetry about X and Y axes with outer 

edges with pinned condition. The time period was chosen to be 0.0002, proportional to 

the bullet velocity. Global automatic time step estimation was selected. It was seen from 

the analysis run that the simulation was not capable of completing all required iterations. 

The initial and final images of the simulation are shown in Figure 2. The results were not 

in accordance to those seen in the actual test. However the front damage zone and 

penetration was similar to the shear failure seen in actual test (approximate zone size 1” x 

1” / 25.4 mm x 25.4 mm). 
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Figure 2 Initial and final images from simulation of Model 1. 

The possible reasons for the discrepancies were evaluated.  The details are as stated 

below: 

• The material properties considered for the simulation did not correspond to the 

actual ones. The simulation being dynamic, it was essential to input the high 

strain rate properties of each of the materials used.  

• The precision of the analysis needed to be improved indicating the mesh size had 

to be further refined. However, a highly refined mesh takes longer time for 

computation and analysis. Optimum mesh size had to be predicted with more 

tries.  

• The precision could also be improved by reducing the analysis time step factor or 

varying the time period.  

 

Model 2:  (Analysis Time duration: 7 ½ days approximately) 

Based on the results from Model 1, the material properties were scrutinized. Dynamic 

properties were not available for selected materials. The units used for the simulation 
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were found to be different from the standards (SI mm scale recommended to be used 

instead of SI m). Corrections were made accordingly. The basic numbers for the 

properties were kept the same. The mesh size was refined to an element size of 0.5 from 

initial 1.2. Multiple tries were made to adjust this parameter as well as the meshing 

geometry was modified. The time period was varied from 0.0025 to 1 keeping the time 

step factor constant. The time step factor was then changed to 0.01 from the initial 1 to 

give more iteration. This significantly increased the analysis time. The basic quadrant 

geometry was kept the same as that of Model 1. The results obtained are as shown below: 

 

Figure 3 Initial and Final Image from simulation of Model 2. 

The results obtained from this model were very close to those seen from the actual test. It 

was seen from the final simulation images that the front and back face damage key 

features were relatively close to actual results. Since the model considered Dyneema 

layers to be homogenous, delamination was not seen in within the layers. The model 

however failed to display individual material sections in the viewport. This loss of 

information was a hindrance to predict material loss and which material layer thickness 

had to be modified and by what magnitude. The model completed all desired iterations. 
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Developing a new model to incorporate this visual data in the viewport was necessary 

which led to the creation of Model 3. This would help to identify the material resulting in 

excessive deformations seen earlier. It would be then possible to make modifications 

accordingly to ensure better solution convergence. 

 

Model 3: (Analysis time duration: 9 days approx.) 

The previous model was modified to include improved mesh parts that retained the 

material sections view in the assembly view port. Mesh size was modified to a size 0.4. 

The failure criteria for the simple shear and tensile failure were modified with an 

objective of curtailing excessive projectile deformation seen in Model 2. For trial purpose 

the size of the element set “erode” was increased to see if affected the end solution.  

 

Figure 4 Initial and Final image from Materials section view from the simulation of Model 3. 

Model 3 showed a significant change in the back face deformation as compared to Model 

2 due to change in material parameters. The model had to be further optimized to reduce 

the analysis time. It was seen that modifying the time scale factor to 0.1 from 0.01 did not 
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make a significant difference in the end solution. Also the time period change was not 

effective and only penalized the total simulation run time. A complete fine meshing of all 

parts did not serve the desired purpose of improvement is solution. Most important 

observation was material property variations were seen to significantly change the output 

in all the models. It was clear that simple assignments of elastic and plastic material 

properties were not enough to govern the behavior of the impacting solids. Being a 

dynamic impact scenario strain rate dependence had to be incorporated. The simple shear 

and tensile failure damage model used in these analyses was not capable of closely 

modeling the progressive damage seen in materials. This intensified the need for better 

material property approximations and other progressive damage models. 

 

Generation 2 Models: 

Generation 1 models established a platform from which further improvements could be 

made to the modeling procedure. It was evident that the entire part need not be of the 

same mesh size throughout. Generation 2 models thus involved discrete mesh parts that 

could be combined together using Tie function to form an entire plate. These models also 

incorporated sets of axial nodes along Z axis that were used to measure the projectile 

velocity change with time in that direction. The reduction in number of nodes for output 

generation significantly reduced the computation time. Velocity variations in X and Y 

directions were minimal and hence neglected. For further reduction in computation time 

duration, instead of a square quadrant, model geometries were modified with a circular 

outer edge. 
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Model 4: (Analysis time duration: 5 hours approximately) 

 Literature review on progressive damage models for dynamic impact simulations in 

ABAQUS User’s Documentation [111] led to the finding of extended shear and ductile 

failure model by Hooputra [102] for steel. The example problem of steel cylindrical rod 

impacting a steel block was presented. Model 4 was made by using the input file for this 

example problem as-is to verify the efficiency of this progressive damage model. The 

results obtained from the simulation are as shown in Figure 5. It was clearly seen that this 

progressive damage model was very efficient in exactly reproducing the extent of damage 

and the failure patterns seen in the dynamic impact scenario. The model was also capable 

of simulating material fragmentation and particle separation phenomenon. 

 

Figure 5 Simulation result images from simulation run of Steel rod impact on steel block example input file 

[111]. 
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The next objective post successful simulation run of the example problem was to verify if 

the stated material properties for steel from Model 4 could be applied to vertical steel rod 

impact on steel plate problem. Model 5 was developed to achieve this objective. 

Model 5: (Analysis time duration: 5 hours approximately) 

Model 5 was developed to simulate dynamic impact of a cylindrical steel rod (diameter 

7.62 mm) on a steel plate (110 mm diameter, 6 mm thickness). The impacting rod was 

assigned a velocity of 838 m/s. The regular Dynamic Contact algorithm was used to 

model the impact between the projectile and the plate. Other conditions like boundary 

conditions were kept similar to those from Generation 1 models. Figure 6 shows the 

results obtained from the simulation run of this model.  

 

Figure 6 Simulation results from Model 5 showing the typical plug-out behavior seen in steel plate impact 

experiments. 

The results were in good conformation with the physiological changes seen during a 

dynamic impact of a cylindrical projectile on a metal plate reported by Borvik et al. [83]. 

The effectiveness of the current progressive damage model was evident. The propagation 

of shear waves through the plate structure was axisymmetrical illustrating that the current 
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boundary conditions were precise. The steel material properties considered in this model 

were effective in high strain rate dynamic impact scenarios. To verify if the success from 

this model could be extended further to a Lead cylinder impacting steel plate, Model 6 

was developed. 

 

Model 6: (Analysis time duration: 45 minutes approximately) 

Lead properties from the earlier Generation 1 models demonstrated a predominant brittle 

cracking in early stages with unrealistic deformations. To evaluate more accurate 

properties, compression test was done on an actual bullet cylindrical cut-section sample 

(section 3.2, chapter 3) and the results were used to model the cylindrical projectile. The 

dimensions and other properties were exactly identical to Model 5. For an 838 m/s initial 

velocity, the simulation runs ceased prematurely at the first iteration owing to excessive 

deformation resulting in the Lead cylinder. Methods to correct these errors were sought 

and method of using section controls was identified from ABAQUS User’s 

Documentation [111].   

The initial velocity of the projectile was reduced to 300 m/s to check if it assisted in 

successful completion of all iterations. Only first 5 iterations were successful after which 

the software quit owing to excessive deformation in lead. The velocity was further 

reduced to 100 m/s to check the maximum velocity the software can handle for a 

complete simulation run. All other parameters were kept identical to the initial runs. The 

results are as shown in Figure 7. Variable mass scaling was explored to counter the 

problems faced due to excessive deformation seen in Lead. This method was carried 

forward in simulations run in Generation 3 models as well. 
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Figure 7 Simulation results from Lead cylinder impact on steel at 100 m/s. 

Using online support resources provided by ABAQUS, possible solutions for the problem 

were sought.  

• Manual over ride of wave cut off ratio. (Ratio of  deformation wave speed to the 

transmitted stress wave speed) 

• Variation in the bulk viscosity parameters. 

• Reduction in the time step and using manual input instead of using the one 

calculated by the automatic algorithm. 

 

Other suggestions involved reduction in the impact velocity or considering a stiffer 

material instead of lead but these approaches were not a consistent choice since 

verification of simulation results was not possible by comparison with experimental ones. 

Each suggested method was incorporated in the simulation model one at a time. Manual 

over ride of cut off ratio was done in steps. The default value selected by ABAQUS for 

this ratio is 1. Manually ratios 2, 3, and 4 were considered in input. However no 

significant variation in the results was observed. Next the bulk viscosity parameters were 

varied from the default values of 0.06 and 0.14 to 0.08 and 0.16 to increase the viscous 
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resistance to the deformation wave. This method too was not successful in giving any 

significant variations in the observed results.  Stepwise reduction in time step from initial 

2 x 10 
-8

 to 2 x 10 
-9

 was considered. No significant change was observed even after 

manual input of the time step during simulation.  

 

The Generation 1 and 2 models helped to set standards on different options that 

ABAQUS 6.8.2 offered for use in Dynamic impact problems. Since method of evaluating 

material parameters for the extended shear and tensile failure model by Hooputra were 

not available a simpler progressive damage model proposed by Johnson-Cook was 

investigated. Considered to be a special case of the former extended shear and tensile 

failure model, effectiveness of this model had already been verified by comparison with 

experimental results (Refer section 1.3 of chapter 1).  Generation 3 models were 

developed by incorporating all the positive attributes from each of the modules used in 

the dynamic impact simulations. Johnson-Cook model was used to model copper and 

lead in Generation 3 model runs. Steel properties from Model 4 and 5 were also used. 

As progressive damage models for Dyneema HB50 and MG Teardrop structure were not 

available, these materials were not used in any further models. 
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APPENDIX B 

 

SAMPLE KEYWORDS FROM SIMULATION INPUT FILE 

 

*Heading 

** Job name: Copper3 Model name: Model-2 

** Generated by: Abaqus/CAE Version 6.8-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** Constraint: Constraint-1 

*Tie, name=Constraint-1, adjust=yes 

ST2-mesh-1-1.Slave, ST1-mesh-1-1.Master 

*Surface, type=element, name=surf1 

, 

erode, interior 

*End Assembly 

**  

** ELEMENT CONTROLS 

**  

*Section Controls, name=EC-1, DISTORTION CONTROL=YES, ELEMENT 

DELETION=YES, kinematic split=ORTHOGONAL, hourglass=COMBINED 

1., 1., 1. 

**  

** MATERIALS 

**  

*Material, name=Copper 

*Damage Initiation, criterion=JOHNSON COOK 

 0.54,  4.89, -3.03, 0.014,  1.12, 1058.,   25.,    1. 

*Damage Evolution, type=DISPLACEMENT 

 0.2, 

*Density 

 8.96e-09, 

*Elastic 

124000., 0.34 

*Plastic, hardening=JOHNSON COOK 

90., 292., 0.31, 1.09,1058.,  25. 

*Rate Dependent, type=JOHNSON COOK 

 0.025,1. 

*Material, name=Lead 

*Density 

 1.135e-08, 

*Elastic 

16000., 0.44 

*Plastic, hardening=JOHNSON COOK 

23.,  11.59, 0.2604,     0.,   328.,    25. 

*Rate Dependent, type=JOHNSON COOK 

 0.025,1.
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*Material, name=Steel 

*Damage Initiation, criterion=DUCTILE 

  2.31,   -3.33,   0.001 

  2.31,  -0.333,   0.001 

  2.18,  -0.267,   0.001 

  2.06,    -0.2,   0.001 

  1.95,  -0.133,   0.001 

  1.85, -0.0667,   0.001 

  1.76,      0.,   0.001 

  1.67,  0.0667,   0.001 

  1.59,   0.133,   0.001 

  1.52,     0.2,   0.001 

  1.46,   0.267,   0.001 

   1.4,   0.333,   0.001 

  1.35,     0.4,   0.001 

   1.3,   0.467,   0.001 

  1.26,   0.533,   0.001 

  1.23,     0.6,   0.001 

   1.2,   0.667,   0.001 

  1.15,    0.73,   0.001 

  1.06,   0.851,   0.001 

 0.945,    1.02,   0.001 

 0.816,    1.24,   0.001 

 0.685,    1.51,   0.001 

 0.202,    3.33,   0.001 

*Damage Evolution, type=DISPLACEMENT 

 0.2, 

*Damage Initiation, criterion=SHEAR, ks=0.03 

  0.86,  -10., 0.001 

  0.86,   1.7, 0.001 

 0.859,  1.72, 0.001 

  0.86,  1.73, 0.001 

 0.865,  1.75, 0.001 

 0.874,  1.77, 0.001 

 0.886,  1.78, 0.001 

 0.901,   1.8, 0.001 

 0.921,  1.81, 0.001 

 0.944,  1.83, 0.001 

  0.97,  1.85, 0.001 

    1.,  1.86, 0.001 

  1.04,  1.88, 0.001 

  1.08,  1.89, 0.001 

  1.12,  1.91, 0.001 

  1.17,  1.92, 0.001 

  1.22,  1.94, 0.001 

  1.28,  1.96, 0.001 

  1.34,  1.97, 0.001 

  1.41,  1.99, 0.001 

  1.48,    2., 0.001 

  1.56,  2.02, 0.001 

  1.56,   10., 0.001 

*Damage Evolution, type=DISPLACEMENT 

 0.2, 

*Density 

 7.8e-09, 

*Elastic 

210000., 0.3 
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*Plastic, rate=0. 

776.,0. 

809., 0.01 

829., 0.02 

842., 0.03 

866., 0.06 

883., 0.1 

895., 0.15 

910., 0.25 

922., 0.4 

953.,2. 

*Plastic, rate=0.001 

791.,0. 

824., 0.01 

846., 0.02 

863., 0.03 

899., 0.06 

931., 0.1 

958., 0.15 

995., 0.25 

1030., 0.4 

1170.,2. 

*Plastic, rate=0.01 

799.,0. 

831., 0.01 

855., 0.02 

874., 0.03 

916., 0.06 

955., 0.1 

989., 0.15 

1040., 0.25 

1090., 0.4 

1280.,2. 

*Plastic, rate=0.1 

805.,0. 

838., 0.01 

863., 0.02 

884., 0.03 

933., 0.06 

978., 0.1 

1020., 0.15 

1080., 0.25 

1140., 0.4 

1390.,2. 

*Plastic, rate=1. 

808.,0. 

842., 0.01 

869., 0.02 

893., 0.03 

946., 0.06 

998., 0.1 

1050., 0.15 

1120., 0.25 

1190., 0.4 

1490.,2. 

*Plastic, rate=10. 

810.,0. 
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846., 0.01 

876., 0.02 

901., 0.03 

960., 0.06 

1020., 0.1 

1070., 0.15 

1150., 0.25 

1240., 0.4 

1600.,2. 

*Plastic, rate=100. 

812.,0. 

850., 0.01 

882., 0.02 

909., 0.03 

974., 0.06 

1040., 0.1 

1100., 0.15 

1190., 0.25 

1280., 0.4 

1700.,2. 

*Plastic, rate=1000. 

815.,0. 

855., 0.01 

888., 0.02 

917., 0.03 

987., 0.06 

1060., 0.1 

1130., 0.15 

1230., 0.25 

1330., 0.4 

1810.,2. 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 

*Friction 

0., 

*Surface Behavior, pressure-overclosure=HARD 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

_PickedSet11, YSYMM 

** Name: BC-2 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

_PickedSet12, XSYMM 

** Name: BC-3 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

_PickedSet13, PINNED 

**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Velocity 

*Initial Conditions, type=VELOCITY 

_PickedSet14, 1, 0. 

_PickedSet14, 2, 0. 
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_PickedSet14, 3, -800000. 

**  

** INTERACTIONS 

**  

** Interaction: Int-1 

*Contact, op=NEW 

*Contact Inclusions, ALL EXTERIOR 

*Contact property assignment 

 ,  , IntProp-1 

*Contact, op=NEW 

*Contact Inclusions 

surf1, 

*Contact controls assignment, nodal erosion=no 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1 

*Dynamic, Explicit, element by element 

, 0.0002 

*Bulk Viscosity 

0.06, 1.2 

** Mass Scaling: Semi-Automatic 

**               Whole Model 

*Variable Mass Scaling, dt=2e-09, type=below min, frequency=1 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, number interval=1, time marks=NO 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Output, history 

*Node Output, nset=Casing-mesh-1-1.casing 

V3,  

**  

** HISTORY OUTPUT: H-Output-3 

**  

*Node Output, nset=Core-mesh-1-1.core 

V3,  

**  

** HISTORY OUTPUT: H-Output-1 

*DIAGNOSTICS, CUTOFF RATIO=6.0 

**  

*Output, history, variable=PRESELECT 

*End Step 
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A Hybrid-Composite-Armor insert for a level III NIJ 0101.06 ballistic vest standard was 

designed and successfully tested. A novel sandwich design concept of incorporating 

collapsible Metallic Glass Teardrop celled honeycomb structure between Dyneema HB50 

laminates was used for this insert. Manufactured prototypes were ballistic tested and 

NDT using CT scanning. Results from these tests showed significant improvement in 

ballistic performance as compared to Dyneema HB50 baseline. The test method used was 

standardized for repeatability and accuracy by experimenting on heat treated 4130 steel 

plates. Methods for evaluating quasi-static and dynamic properties of the Teardrop celled 

honeycomb were envisioned and standards were set. An FEA modeling procedure for 

dynamic impact in ABAQUS 6.8.2 was investigated and methodology of conducting 

simulations was refined.  The experiment setup conditions from steel plate testing served 

as a guideline for this FEA modeling procedure. The current study was thus successful in 

demonstrating a design methodology wherein mechanical testing and software based 

FEA analysis could be used in conjunction to evaluate performance of armor design 

concepts. 


