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CHAPTER I 

INTRODUCTION 

Since the end of the last World War. a large part of engineering 

work 1 either directly or indirectly, has been associated with the 

development of vehicles that are suitable for space travel, Although 

there are many problems associated with rockets and space travel, it is 

generally agreed that the damaging effects due to vibration is one of 

the more serious problems, Vibration inputs. either during launch 

conditions or during transonic conditions 1 can cause structural damage 

and, indirectly. can cause damage which is directly connected with the 

cavitation of either the fluid or the oxidizer, In this analysis 1 the 

term "cavitation" shall denote the formation of vapor or gas-filled 

voids within a liquid under the influence of local pressure reductions 

due to dynamic action, The eroding effects due to the collapsing 

cavitation voids will be referred to as "cavitation damage," 

The onset of cavitation can cause damage to the space vehicle in 

two ways: The first way is due to cavitation damage while the second 

way is due to the effect of a changing mass rate of flow on the rocket 

engine, This latter effect is a result of cavitation, Thus it can be 

seen that vibration is a problem not only to the structural engineer, 

but also to the engineer concerned with the fluid inside the space 

vehicle, 

1 
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For the engineer to obtain a better understanding of this phenome-

' 
na of cavitation, it is necessary to investigate the physics of the 

problem more closely. For example, it is assumed by most hydraulic 
. I 

engineers that a fluid will cavitate as soon as it reaches_its vapor 

pressure; this would imply that a fluid is unable to exist in a 

state of tension, Now it is a known fact that liquids do have a 

tensile strength, but it is generally believed that this state can 

only be reached when the fluid is stressed in a static manner. If 

it can be shown that a fluid, by some pre-conceived operation, can 

·exist in a state of tension while under the influence of a 

vibratory force, the advantage to the engineer will be great in 

that he will not be hindered by the fluid's vapor pressure, but by 

a pressure which is lower than the vapor pressure and which can be 

controlled by the engineer. In fact, this .pre-flight operation on 

the fluid could be specified so as to enable the fluid to not only 

withstand any-vibratory effects, but al,so to give the engineer a 

greater design latitude in that he would be able to specify flow-

rates that could lower the fluid pressure below the vapor pressure; 

this greater latitude could very well manifest itself in a greater 

~tilization of all fluids that are aboard the spacecraft or lower 

the gross fl!-lid weight which is definitely a very important 

parameter iu space flight, 

The purpose of this study is to determine wi1ether liquids can 

exist in a state of tension while subjected to vibratory forces 

and to develop,-,a general• straightforward, analytical method which 

will accurately describe this phenomena in the-fluid. The fluids 

that are used for this test will be confined in a cylindrical 
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container and will have values for viscosity which vary from one to 

thirty-two centipoise and values for surface tension which vary from 

forty-eight to seventy-two dynes per cm. This spread in the values 

for viscosity and surface tension is desirable since they are the 

two principle variables which affect. the tensile strength of a fluid. 

Although the major part of this work is directed toward the 

solution of problems where the fluid is confined within a cylin.der 

of small radius and where the cylinder is subject to vibrations of 

small amplitude and frequency, a set of equations aas been obtained 

which are completely general and can be used in obtaining solutions 

for any problem that satisfies the prescribed uoundary conditions 

and is subject to the governing equations. 

The equations for the pressure field and the velocity field 

inside the cylindrical tube i1ave t.>een programmed for use on an 

IBM 1620 digital computer. The method is simple and straightforward 

and is given in Appendix B. 

Graphical representations of the pressur~ field anc.1 the velocity 

field are given so ti,at a convenie.nt pictorial ruprt::sentation of 

how these variables oehave can be easily seen for any value of the 

frequency, viscosity, or azimuthal coordinate. 



CHAPTER II 

REVIEW OF PREVIOUS INVESTIGATIONS 

Before starting the discussion, a clear distinction between the 

terms "liquid tensile strength" and "negative pressure" should be 

obtained. In this study the term "negative pressure" will oe useci to 

denote a pressure within the fluid that is below the vapor pressure, 

while "liquid tensile strength" will be used to denote the maximum 

negative pressure that the fluid can sustain. 

The first recorded work on the measurement of liquid tension was 

that of F. M. Donny (38)* in 1843. Donny found that a column of 

sulphuric acid l.255 meters long would hang in a vertical glass tube 

which was sealed at the upper end when the pressure at the lower end 

was below atmospheric. 

In 1850 Berthelot (7) introduced his method for measuring tension 

in liquids. A strong capillary cuoe sealed at one end and drawn to a 

fine point at the other end was nearly filled with water, The small 

residual space that remained in the tube was occupied by water vapor. 

The tube was then heated until the air in the tube dissolvedo Next the 

tube was cooled until the water column broke. The break occurred at a 

lower temperature than the temperat1.1re at which the water had first 

filled the tube. Berthelot found that the water had increased in volume 

*Numbers in parentheses refer to references in the Bibliography. 

4 
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by one part in 420 and, by assuming that the extensibility and compressi­

bility of water are equal, he was able to calculate a tension of about 

50 atmospheres by measuring the extension of the liquid, 

Since the method described above due to Berthelot has been used by 

many investigators in determining the tensile strengths of various 

liquids• it would be advantageous to discuss some of the assumptions in 

his method (35• 38, 39, 41), The assumption that the extensibility and 

compressibility of water are equal does not seem to be too much in error 

since Temperley (36) measured the tensile stress of water as being 

between 30 and SO atmospheres by a method which did not assume thi1 

equality. An assumption by Dixon (38) that the pressure in the tube is 

nearly zero at the moment when it fills with liquid is seriously in 

error, It actually takes high liquid pressures in the tube to force the 

final gas bubble to dissolve (36). This point will be discussed in 

detail later. 

Osborne Reynolds (38) in J878 used a centrifugal method to stress 

a liquid column, His method consisted of a sealed U-tube containing 

air-free liquid, ABC, and vapor, CD, being rotated on a lathe about an 

axis Oas shown in Figure 1, If EC is the arc of a circle about point 

· o. then during rotat.ion the liquid between E and A will be in a state of 

tension,· The minimum tension will occur at E an.d it will increase to a 

maximum at A, Reynolds calculated a tensile stress of approximately S 

atmospheres for water and Worthington (41) using the same method reported 

tensile stresses of 7,9 atmospheres for ethyl alcohol and 11,8 atmos­

pheres for strong sulphuric acid, Temperley and Chambers (35) point 

out that in this method water does not move as a rigid body. This baa 

no effect on the preHure distribution 0 but it does imply a considerable 
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amount of stirring. 'thus any small bubbles would be brought near the 

region of greatest tension in a time that was comparable with the time 

of the experiment. This migration of the bubbles would tend to give low 

values for the tensile stress. 

In 1892 Worthington (41) using the Berthelot method measured the 

tension of ethyl alcohol as 17 atmospheres. His method differed from 

Berthelot in that he actually measured the tension instead of calcu• 

lating it from the temperature difference, Worthington's measuring 

apparatus. which he called a tonometer, consisted of an ellipsoidal bulb 

containing mercury, This bulb enclosed within the glass had a capillary 
\ 

tube in which the top of the mercury column indicated changes of volume 

of the bulb, The bulb and capillary tube had been calibrated with 

positive pressure and the scales extended in the neaative direction by 

extrapolation. 

In 1895 Dixon and Joly (38) usina Berthelot'• method.obtained a 

value of 7,5 atmospheres for water at room temperature, Their method 

differed from Berthelot's oriainal work in that they calculated the 

volume of the cavit, formed by contraction of the liquid after failure 

by measuring its geometric dimensions rather than by the temperature 

difference, 

Later Dixon (38) using Berthelot's method estimated tensions up 

to 200 atmospheres by assuming values for compressibility and 

extensibility at zero pressure, These high estimations aa explained 

later by Vincent and Simmonds (40) and Temperley (36) were due to the 

erroneous assumption that the pressure in the tube was zero when the 

last vapor bubble disappeared, Actually the pressure in the tube was 

very large thereby leading to this error, 
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Askenasey (38) in 1895 and Hulett (38) in 1903 performed experiments 

illustrating the theory of transpiration in plants, Askenasey was able 

to obtain a tension corresponding to 13 cm of mercury for a gypsum 

solution while Hulett obtained a tension corresponding to 37,7 cm of 

mercury for water. 

Julius Meyer (35) in 1911 measured tensions of 34 atmospheres for 

water at 24°c, 39 atmospheres for ethyl alcohol at 22°c and 72 atmos­

pheres for ether at 18°c. Meyer's method was similar in principle to 

that used by Worthington, The only difference between the two methods 

was in the tension-measuring device, Worthington's device, as explained 

previously, measured the tension by the volume change of an ellipsoidal 

bulb, while Meyer's device consisted of a helical glass tube upon which 

· a mirror was mounted, A slight rotation of the end of the glass helix, 

which was observed by means of the attached mirror, gave a measure of 

the internal tension, Meyeris method, lilc.e Worthington's, had to be 

previously calibrated by means of a positive pressure and then the scale 

extrapolated to include negative pressures,. 

In 1912 Budgett (38) measured the force necessary to rupture a 

film of liquid between two flat steel surfaces, He obtained a value of 

4 atmospheres for the critical tension of water using the assumption 

that the liquid film was continuous over the surface, Upon examination 

of the surfaces after separation. he found that the effective area of 

the water was only about 7% that of the steel. Thia would indicate that 

the critical tension of water is about 60 atmospheres. 

The reader has probably already noticed the wide variations in 

values obtained for similar fluids by different experimenters, This 
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variation can be partially explained by considering some of the under­

lying assumptions in each method and by noting that not all of the 

experimenters were measuring the same thing. An example of the latter 

is the work of Worthington in which the liquid failed by tearing away 

from the supporting surface of the glass vessel. Since the liquid 

failed in this manner, the properties of the glass are important and 

most certainly would vary from vessel to vessel. This could explain 

the variation even in Worthington's results. Some of the assumptions 

which could have led to errors in reported values are the following: 

(a) Certain physical properties of liquids under tension have 

the same values when measured at zero or positive pressures 

(7, 35, 38, 41). 

(b) In the Berthelot method the assumption that the pressure in 

the tube is nearly zero when it fills with liquid. 

These assumptions, along with the fact that the quantity of un­

dissolved gases present in each liquid was not even considered, would 

lead to a wide variation in the results. It must be remembered that 

these results were quite amazing in that they did show that fluids 

were capable of passing to a state of tension without any breach of 

continuity when the contrary was being asserted by many eminent 

physicists and hydrodynamicists (41). 

The next work of illlportance was due to Vincent (38) in 1941. lie 

applied tension to a liquid by enclosing the liquid within a metal 

bellows and then applied tension to the bellows. Vincent obtained a 

value of 2.38 atmospheres for ethyl alcohol 1 2.94 atmospheres for 

mineral oil and 2.21 atmospheres for ether. 
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Vincent (39) in 1943 introduced his viscosity tonometer which• as 

the name implies, depends on the fluid's viscosity for measuring 

tensions. His method consiated of cooling the liquid in a vessel thereby 

sucking it backwards through a capillary tube. By comparing the rate• 

of flow just before and just after the fracture of the fluid Vincent 

was able to calculate the critical tension from the ratio of these rates 

of flow. This was accomplished by assuming that the pre1eure within the 

bubble was equal to the vapor pressure and by also assuming that the 

viscosity is unaffected by tension. This method is suitable only for 

fluids with fairly large values of viscosity. Vincent obtained a value 

of 7.8 atmospheres for mineral oil using this method. Aa pointed out 

by Temperley and Chambers (35, the tonometer has a gradient of tension 

which tends to drive any nuclei towards the region of greatest tension, 

and this gradient may be the reason for the low values. 

In 1943 Vincent and Simmonds (40) used a modified Berthelot 

method in which the pressure in the tube at the moment of sealing waa 

known, and they were able to obtain a value of 25 atmospheres for 

mineral oil. This was the first time that anyone showed that the 

pressure within the tube at sealing is not approximately aero but is 

very large. In fact Vincent obtained a value of 119 atmospheres for 

mineral oil using the Berthelot method, Thia value ia approximately S 

times larger than the one obtained using the modified method, The value 

obtained by this modified method is still much larger than the value 

obtained from Vincent's tonometer. However it should be remembered that 

for both cases it was assumed that tension does not affect the physical 

properties of liquids, Thia assumption could be the cause of the 

discrepancy, 
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In 1944 Harvey (21) found that by precompressing a fluid the 

tensile strength could be increased• · He estimated values between 100 

and 1000 atmospheres for water but gave no definite values. In a later 

paper Harvey (22) gave an explanation for this phenomena; he stated that 

the reason fluids fracture or cavitate is due to the presence of nuclei 

within the fluid, These nuclei consist of a solid hydrophobic particle 

having a re-entrant crack in their surface which is filled with undis­

solved gas as shown by Figure 2, This gas is the active part of the 

nucleus or the weak spot in the liquid. From the figure it is seen 

that the surface tension will tend to keep the gas pressure low since 

the surface of the liquid is convex toward the gas; therefore, the gas 

will not dissolve. Harvey reasoned that if a high enough hydroatat:Lc 

pressure would force the liquid up into the crack against the surface 

tension force and cause the gas to dissolve, the weak spot would be 

eliminated, As noted by Knapp (24)• the existence of these nuclei is 

still inferential, but Harvey's model does enable one to get a better 

feeling for what is taking place within the fluid, 

Tam.parlay and Chambers (35) in 1945 studied the Berthelot and 

Reynolds method, They found that the low values of tension obtained 

from the Raynolds method was due to the mixing in the tube, They 

obtained a value of 2 atmospheres for water using this method, For the 

Berthelot method, the above mentioned authors tound that a preasure on 

the order of SO to 100 atmospheres :La needed to force the .last vapor 

bubble into solution, These high pressures were predicted b7 Vincent and · 

Simmonds (40,) but this was the first time that anyone actually measured 

these values, The authors reasoned that these high preaaurea were 
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SOLID 

Fl GURE 2. Harvey's Model of Nucleus 
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probably caused by the trapped gases being forced into fissures in the 

glass. From Harvey's model, it can be seen that these values are not 

unreasonable in that the external pressure not only has to overcome 

the force due to the pressure of the gas but also the force due to the 

surface tension. Temperley and Chambers obtained a tensile stress of 

32 atmospheres for water using the Berthelot method. 

Later Temperley (36) in 1946 again reached the conclusion that it 

was necessary to develop pressures on the order of 50 to 100 atmos-

pheres inside the Berthelot tubes in order to force the last gas bubble 

into solution. He also concluded that the tensile strength of water in 

the presence of glass is of the order of 30 to 50 atmospheres. These 

measurements were performed by a method which did not assume that the 

extensibility and compressibility of water are equal. Lewis (26) in a 

similar type of experiment verified the equality between the extensi-

bility and the compressibility of water. Temperley's values for the 

tensile strength agree favorably with the values obtained by Meyer (35). 

This is to be expected since Lewis had shown that the extensibility and 

compressibility are equal. 

Scott (33) in 1948 and Lewis (26) in 1961 performed some further 

work on the Berthelot method for stressing a liquid. Both investiga-

tors obtained values around 30 atmospheres for water which agree favor-

ably with Temperley's and Meyer's values. Lewis stated that any pre-
, 

compression of the liquid had no detectable effect on the critical ten-

sion. This is true if the fluid is free of all undissolved gases as it 

was in Lewis's case, but if the fluid has undissolved gases present, 

then any pre-compression will have a marked effect. This relative 
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independence between the fluid's tensile strength and the amount of 

dissolved gases present in the fluid was pointed out by Kuper and 

Trevena. (25) when they found that dissolved gases reduce the tensile 

strength of water by less than 0.5%. 

Briggs (9) in 1949 used a centrifugal method in which a capillary 

tube was rotated in a horizontal plane by means of a high speed three-

phase induction motor. He was able to calibrate the maximum tensile 

stress of water as 277 atmospheres. This value is greatly in excess of 

any values obtained using a method similar to Reynolds, but still it is 

only about 20% of the theoretical value as calculated from nucleation 

theory. As pointed out by Briggs these results should only be applied 

to boiled water (no dissolved gases) in a Pyrex glass capillary tube ,,, 

with an internal diameter of 0.6 to 0.8 millimeters. Thus the same 

predicament is still present in that the results are only able to be 

duplicated when the fluid is enclosed in a similar container and when 

the process used to stress the fluid is similar to the original proce-

dure. For example, the tensile stress of water in the presence of 

steel is about one-third the value of water in the presence of glass 

when the Berthelot·method is used in each case. Of course this is 

easily explained since there are many more crevices for undissolved 

gases on a steel surface than on glass surface, but the fact remains 

that the only way a tensile stress can be quoted which has any meaning 

is to also quote both the container in which the fluid was enclosed 

during the test and tne method used to stress tne fluid. 

Later Briggs (10),using the same centrifugal method,calculated the 

tensile stress of acetic acid as 288 atmospheres, benzene as 150 atmos-
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pheres, aniline as 300 atmospheres, carbon tetrachloride as 276 

atmospheres and chloroform as 317 atmospheres. Briggs made the observa-

tion that a polarized derivate (aniline) of a fluid (benzene) has a 

higher tensile stress. This must be due to the fact that the dipoles 

increase the cohesion of the liquid, 

Bull (12),using his electrical pressure ba;measurecl tensile 

stresses for water of 17 atmospheres and for glycerol of 63 atmospheres. 

These fluids were tested in steel containers and the results for water 

agree fairly well with those obtained using the Berthelot method with a 

steel container, Later Bull (13) used olive oil and syrup and obtained 

values for tension of 29 atmospheres for the former and 130 atmosphere, 

for the latter. He obtained an empirica~ relationship between the 

critical pressure and the viscosity for viscosities in the range of 

0,01 poise to 400 poise: 

P k 0.2 
• 1,,1 • 

C 

Bull reasoned that since the surface tensions, comprea1ibilities and 

densities of all the fluids used in his work were of the same order of 

magnitude, the factor which will influence cavitation is the viscoaity. 

It must be remembered, though, that Bull's equation is valid only for 

fluids with values for surface tension, compressibility and denaity of 

the same order of magnitude as olive oil and syrup, and the fluid 

viscosity must be in the range of 0,01 to 400 poise. 

There has been very little work on the measurement of the tensile 

strength of cryogenic liquids, One paper of note is that of Beams (4) 

in which he measured the tensile strengths of liquid Argon, liquid 

Helium, liquid Nitrogen and liquid Oxygen. Beams' method is to 
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accelerate an inverted U tube completely filled with fluid and. then to 

quickly decele.rate it to a zero velociti; while the U tube is being 

stopped, . the liquid will tend to continue its downward motion and will 

create a tensile stress in the.liquid in the upper part of the U tube. 

By this method· Beams was able to obtain values of 12 atmospheres for 

Argon• 10 atmospheres .for Nitrogen, 15 atmospheres for Oxygen and 0.16 

atmospheres for Helium. It should be mentioned that the U tube was 

.made of flamed ~yrex glass, Previous to this work, Misener and 

Herbert (29) used a bellows method and obtained a value of 3.5 atmos­

pheres for liquid Nitrogen and a value less than 0,3 atmospheres for 

liquid il~lium. 

'l'he principle points of this literature review can be summed up by 

the following three statements: 

( 1) Fluids, 111'.. solids• are able to withstand large. tensile 

stresses but, unlike solids, no defin.ite·values can be set 

for them. 

(2) For a pure (no solid particles) fluid, the weak spots 

.that cause fracture or cavitation are the undissolved 

gases present in the fluid. Dissolved gases will change 

the tensile strength by less than 0.5%. 

(3) Ii·or a value of the tensile strength of a fluid to have any 

meaning, it must be accompanied by both the method by which 

it was tested and the type of container in which it was tested. 

the above statements should point to the need for some sort of 

standardization of liquid tensile strengths. An important step in this 

direction would be the development· of a cont_ainer whose interior 



surface was such that the adhesive force between it and the fluid was 

greater than the cohesive force within the fluid, This would enable a 

fluid to be tested until it fractured from within and not by tearing i~ 

away from the wall. This cohesive force will be discussed in the 

following chapter. 

17 



CHAPTER III 

THEORETICAL ANALYSIS OF LIQUID TENSILE STRENGTH 

The principle theoretical work on the tensile strength of liquids 

has been due to Langmuir (17), Temperley (37), Benson (5) • Fisher (15) 

and Furth (18), Langmuir using the assumption of a pure, gas-free, 

homogeneous liquid obtained a value of 10,000 atmospheres for the 

tensile strength of water. This so-called intrinsic pressure has 

been shown to be many orders of magnitude higher than any tensile 

strength that has been measured (35 1 37, 38), This discrepancy can be 

more easily accepted by reminding the reader of a similar discrepancy 

between the theoretical and the actual tensile strength of a solid, 

An example of this is rock crystal (38); the theoretical tensile 

strength of this solid is many hundreds of times greater than any value 

that has been measured. For solids this discrepancy can be partially 

explained by the presence of surface cracks which lead to non-uniform 

stressing (23). For fluids these weakening mechanisms are the 

undissolved gases and the hydrophobic nuclei that are present within 

any fluid. These weak spots were not taken into account by Langmuir, 

Temperley (37) and Benson (5) used the Van der Waals and the 

Berthelot equations of state to obtain values for the tensile strength 

of liquids. Benson used these equations to calculate values for the 

reduced volume, energy of vaporization, coefficient of thermal 

expansion and the coefficient of compressibility at the boiling 

18 



19 

points of various fluids. He then compared these values with the 

observed values and found that the observed values fell between the 

values calculated from the Vau der Waals equation a11d the values cal­

culated from the Berthelot equation. He then deduced that the actual 

tensile strength of a fluid should fall somewhere between the values 

obtained from the respective equations of state. lienson (6) later 

introduced another equation of state which he claimed was a marked 

improvement over the Van der Waals and the Berthelot'equations for the 

fluids considered. Temperley and Benson placed the value for the 

theoretical tensile strength of water at room temperature as being 

between 1000 atmospheres and 5000 atmospheres. 

Fisi1er (15) used nucleation theory and Furth (18) used the Theory 

of Holes to obtain values of 1320 atmospheres and 500 atmospheres 

respectively for the tensile strength of water at room temperature. 

In the remaini11g paragraphs of this chapter, the methods used by 

the above mentioned authors will be reviewed. All the assumptions 

used will be discussed and the final results will be summarized for 

comparison purposes. Water at a temperature of 80°F (26°C) will be 

used as the working fluid. 

Tensile Strength of an Ideal Liquid 

Langmuir imagined the liquid to be a prismatic rod with a cross 

section A. He then imagined the rod to be divided in half thereby 

producing a new free surface 2A and an additional surface energy 

2Aw. The surface energy, w, is defined as the additional potential 

energy per unit surface due to the fact that the particles of the 

surface layer lack neighbors on the external side (17). This sub-
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division of the liquid is then continued until the fluid is separated 

into single molecules. The surface energy will be increased by Nqw 

where N is the number of molecules and q is the area of the surface of 

each molecule. Langmuir postulated that each molecule was similar to a 

sphere with a surface area of 4 1T r 2 and a volume equal to 4/3 1T r 3 • 

The volume of a molecule is also equal to the volume of the liquid per 

number of molecules present in the liquid: 

4/3 1T r 3 (III-1) 

By manipulating Equation (111-1), an equation for the radius of the · 

molecule is obtained: 

r = ( 3 ·) 1/3 
4 1T n 

(III-2) 

The value for the radius as calculated from the aboi.rr equation is 

-8 r 2 x 10 cm, 

where 

21 3 n • 3.34 x 10 molecules/cm 

for water. 

The energy which is required to fracture the liquid over an area A 

is made up of two parts; the first part is the work, 2A a, which must be 

done if the temperature is to remain constant, and the second part is 

the quantity of heat which must be transferred to the region of fracture 

to ensure this constant temperature. Since a fracture will occur if the 

gap between corresponding surface layers is increased by an amount on 

the order of the molecular ralius, the minimum value of the work of 

fracture per unit ar.ea, 2 a, must be equal to the product of r and 

the breaking strength which the liquid can bear without fracturing. 



This gives the following expression for the pressure: 

2 a 
p -­r 

(Ill ... J) 

Eq, (111-3) gives a value of 10,000 atmospheres for the theoretical 

tensile ·strength of water, 

_Tensile Strengths from the Van der Waals Equation 

The Van der Waals equation is a semi-empirical equation which is 

derived by assuming a microscopically random and uniform molecular 

distribution function for the liquid and complete com1111nality of its 

free volume, 

The method used here to obtain values for the tensile strength is 

_basi~ally that due to Temper~ey (37) and Benson (5). 

The Van der Waals equation. 

(P + .iy) (V • b) • RT, 
V 

can be put in· the r.educed form, 

.J.L 
'If• l+-1 

l.. 
- 2 ' • 

(TII-4) 

(III-5) 

21 

by the •ubatitution of the appropriate valuaa of the con1tanta ••b• a~ I 

into Eq, (111•4) where 
p 

'If·- • Pc 

e T ·- • T 
C 

• V ·- (III-6) Ve 
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The liquid tensile strength is defined as the maximum tension that 

a liquid can maintain at constant temperature. It has physical signifi-

cance if there is a unique tension above which the liquid will become 

mechanically unstable. This is expressed analytically as 

(III-7) 

or in terms of the coefficient of extensibility, 

The coefficient of extensibility can be expressed in this way since an 

infinitesimal increase in tension will produce an infinite increase in 

volume. 

When the condition of instability, Eq. (111-7), is applied to 

Eq. (111-5) the following equation is obtained: 

(III-8) 

When the above expression is expanded, the following third order 

equation is obtained: 

4>3 - _49e 4>2 + l... 4>- .L • o 
29 46 

(ITI-'J) 

Simple relations fore and nmin in terms of <l>min can be obtained from 

Eq. (111-5) and Eq. (111-8): 

and 

a • t f3:;1)2 ) 

n min 
3 2 ---------4>2 <?3 

(ITI-10) 

(IIT-11) 
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When,• 2/3 in Eq. (111-11), r. i equals zero. and e equals 27/32. m n 

This point is the maximum temperature above whkh a liquid is incapable 

of existing at zero pressure. Temperle)' called it the maximum tempera-

ture of superheating. 

From Eq. (111-9), it is seen that tn:i.s equ:&:cion may have three 

positive roots. One of the roots is between zero and l/3, This root 

belongs to the physically meaningless portion of the Van der Waals 

isotherm since w is always negative in this region. The behavio~ of ,r 

corre1:1ponding to this root can easily be seen by exar:::'.;.ing Eq. (lll-5). 

The largest root of Eq, (111-9) corresponds to a maximum in the 

isotherm for which 'ff is positive, This root is usually associated with 

the minimum volume of the supercooled vapor. The third root which is the 

one that is of interest corresponds to a minimum in the isotherm and 

yields negative values of n for values of a below 27/32, For this 

range of e. t lies between l/3 and 2/3 and can easily be calculated by 

synthetic division. Fig, 3 is a plot of the isotherms from Eq. (111-S). 

The variation of tensile strength with temperature can be 

calculated from Eq. (111 .. 10) and Eq. (lll-11). Since Eq. (111-11) 

gives ,r i as a function of~. the variation of the tensile strength m n 

with the temperature can be written as 

on i m n 
a e • 

an . a1a 
a IP 

a . il . a a 
8 

(IIT-12) 

Eq. (111-12) can also be written in terms of the normal variables. 

. min 
( oP · ) ( l ) 

oT V • !;':i' 

•ince 
p • p 'ff 
min c min' 

J.! 
V 

C 

(IIT-13) 
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The ratio between the critical pressure and the critical temperature is 

obtained from the Van der Waals critical isotherm. The value~ in 
C 

Eq. (111•13) ia equal to 2.7 atm/°C for water, For,• 0.48, which 

is a root of Eq, (111-9), Eq, (111-13) is approximately equal to 

6 at~/°C, When th1a value is compared to the results of Briaas (9), 

it appeara to be good considering the assumptions that were ueed, this 

diacr•pancy can very probably be attributed to the fact that the 

Van dar Waals conatants, a and b, have been assumed to be te~perature-

1nd1pel'lod1nt when in reality they are temperature-dependanti Eq. (lll-13) 

do•• predict chat the tensile strength is temperature•dependent and 

that Lt decreases ~1th increasing temperature. thia trend 11 physically 

accurate down to a temperature around l0°C (9) . At this point• the 

tenlile strength reaches a maximum and starts to decteaae Al the tempera-

ture is decreased. Figure 4 which is the results of Briag1' work shows 

this phenomena. Fisher (16) explained this strange behavior between 

o•c and 10°c in terme of the nucleation of icl ufidit teductd pres1ur•. 

Ha aaaumad that ice nuclei form readily and grow when che 1olid phase 

is atabla and that ice will nucleate the vapor phase, Neat o•c the 

limiting tension that water will withstand it that required to raise the 

freezing point to the testing temperature. For water a negative 

pressure of 300 atmospheres will raise the freezing point 2,7°C. Thii 

is in fairly good agreement with Briggs' work when it is remembered that 

nucleation theory predicts values that are 5 times greater than Briggs' 

valu••• 
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The relations derived so far, Eq. (111-11) for the maximum value of 

tensile strength and Eq. (111-12) for the change of tensile strength 

with te!llperature, have assumed that the constants a and bare indepen-. 

dent of termperature. Since the theoretical tensile strength is sensi-

tive to the value of b, as well as to that of a, it seems advantageous 

to consider the following two questions. First, what effect is there on 

the theoretical tensile strength if the quantities a and bare depen-

dent on temperature, and secondly, what can be predicted theoretically 

about the behavior of a and bas functions of temperature? 

The effect of possible changes of b with temperature will be 

considered first. Since bis a measure of the excluded volume, it will 

decrease as the temperature rises due to the collisions being more 

energetic and conversely it will increase as the temperature decreases. 

The previous statement will be valid except in the limiting case of 

rigid molecules. For this case b will remain constant. 

To get a better feeling for how this variation of b affects the 

tensile strength, Eq. (111-5) and Eq. (111-11) should be written in 

terms of their normal variables: 

a 
(P + yZ) (V - b) = RT 

and 

p = 
min 

.!.... 
v2 

~ 
3 

V 

(III-14) 

(III-15) 

Now it is clear from the above two equations that any increase in b 

above the value V /3 for a given temperature will give a smaller value 
C 

for the tensile strength. As mentioned before.·for a decreasing 

·temperature, b will increase so that the theoretical tensile strength 
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should be less than the value predicted by Eq. (III-11). 

It is obvious from Eq. (III-14) and Eq. (III-15) that any increase 

in a will increase the value of the tensile strength. The point which 

is not so obvious is whether a will increase or decrease with increas-

ing temperature. Temperley (37) considered this problem by assuming 

that the mutual potential energy of two molecules can be expressed by 

means of an attraction and a repulsion of power-law type. Temperley 

did show that the constant a was an increasing function of the tempera-

ture for values of temperature less than 27/32 T -100. This corresponds 
C 

0 to a temperature less than 170 C for water. But Temperley was unable to 

say definitely whether for a given temperature a would have an effective 

value greater or less than that at its critical temperature. In summing 

up, it can be said that it is impossible to make any numerical prediction 

about the variation of the constant a with temperature, but it is 

possible to predict the variation of b with temperature. 

As mentioned before, Benson (5) calculated values for the reduced 

volume, ~. the coefficient of thermal expansion, a, and the coefficient 

of compressibility, a, so that he could compare the results thus obtain-

ed with the observed values. He reasoned that if the values thus 

obtained agreed fairly well with the observed values then any value of 

tensile strength obtained from the equation would be fairly close to an 

actual theoretical tensile strength. 

The equation for the reduced volume is obtained from Eq. (III-5) 

where the reduced vapor pressure, w, is neglected since it is much 

smaller than either~ ore. For this case the reduced volume is 

32 1-(1- -) 27 

1/2 
• , (III-16) 



The coefficient of thermal expansion• 

1 (a v' 
a. v n) P • 

is obtained from Eq. (111-5): 

a • !. 
T 

· ( aa2 \ 
. 9-160ct, ) 

The coefficient of compressibility, 

B • - t (; :) T . 
is also obtained from Eq. (111-5): 

~3 
a• 27P 

C 
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(III-17) 

(TI I-18) 

The results for the above three equations. Eq. (111-11) and Eq. (111-13) 

are given in Table 1 along with similar calculations for the Berthelot 

and the Benson equations of stateo 

Tensile Strengths from the Berthelot and Benson Equations 

In reduced form the Berthelot equation is given by 

ae 
11'• ........... -

3ct>-l 

and the Benson equation is given by 

· 1r • 3 • 6 24 ( e -
ct>-0,1567ct, -112 

0.9099 \ 
~5/302/3) 

(lIT-19) 

( II I-20) 

If the same method that was used for the Van der Waals equation is used 

for the Berthelot equation, the following equations can be written: 

(tt) • _ 246 + ..,.L 
e (3+:1> 2 act, 2 

• 0 • (III-21) 

'min • ~~/2 (~==~) • (IIT-22) 
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and 

( ••min) 8 3 •JH+ - (III-23) a e 
cp 02¢2 

3 9 2 +-L I 1 (III-24) cp -- <P-2· 0 
40 2 cp 20 2 40 

The root of Eq. (111-24) which corresponds toe at T • 80°F for water 

is+• 0.415. For Benson's equation, the minimum pressure equations 

can be written as 

(:~ • 3.6240 ( ~;;1~~3 ·, e cp e 
• 0 • (III-25) 

( 
<t-0,1567w-112)-4/ 5 _ 0,9099(0.66t713+o.0516;516>21~ 

,rmin •3. 624 (0 ,6697 /3+o.0516cp5/6) 3/ 5 ,s/3(+-0,15679:,}~) 475 ( III-26) 

and 
a ,r 
a :in• 3,624 (IIT-27) 

The reduced volume, coefficient of thermal expansion and the compress!-

bility coefficient for both the Berthelot and the Benson equations are 

obtained in exactly the same manner as for the Van der Waals equation. 

For the Berthelot equation 

<P•-2... (1·- f1-li02) 
1602 \ 27 

a • !. (!6cpe2 ) 
T 9 ·16¢02 • 

• ( III-28) 

(III-29) 

and 

a • ~~ 1t: ( 1 - * e2•) ~i 
( III-30) 

For Benson's equation the relation between cp and 0 must be solved by 

numerical methods: 



p312 - 0.1567 • 1•1es/3 
'Pl3/6 

The equations for a and Bare 

and 

5 a·-3T 
C 

02/315/3 

B • 3.297P 
C 

.( 1.365 2 1671-1 
2/3 5/3 - • 

' -e 

(III-31) 

(III-32) 

( III-33) 

The values for 'Pt a, S, maximum tensile strength and change of 
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tensile strength with temperature as calculated from the Van der Waals, 

Berthelot and Benson equations are given in Table 1 along with the actual 

values for'• a. and a. 
When the calculated and the observed values are compared in Table 1, 

the expected wide variation in results is noticed. Thus, the only 

information that can be garnered from this analysis is that the 

theoretical tensile strength of water at room temperature is between 

1000 and 5000 atmospheres. 

Tensile Strength as Calculated From th( Theory of Holes 

The general method for obtaining the thermodynamic properties of 

a system of particles is to calculate the partition function of the 

system as a function of the volume and the temperature. This calcula-

tion can be performed if the law of force between the particles is 

known, Obviously this method can only be applied if the configurations 

of the system which contribute to the partition function are such that 

it can be handled mathematically. 



TABLE I 

VALUES OF REDUCED VOLUME, COEFFICIENT OF THERMAL EXPANSION, COMPRESSIBILITY 
COEFFICIENT, TENSILE STRENGTH AND CHANGE .OF TENSILE STRENGTH Wlllf RESPECT TO 
TEMPERATURE FOR WATER AT ROOM TEMPERATURE AS CALCULATED FROM THE VAN DER 

WAALS, BERTHELOT AND BENSON EQUATIONS OF STATE 

% Deviation % Deviation % Devi at ion 
from 4 from . 5 from dP {atm/°C) 

cp: Obs. Value: ax 10 : _Q.bs. Value: S x 10: Obs. Value: P(atm): dT 

Van der Waals . 00346 + ?h 10.7 + 365 5.74 + 26 - 996 5.8 

Berthelot 00355 + 11 7.34 + 315 0.655 - 85 -4800 38 

Benson 0.322 + Oo6 6.65 + 190 14.9 +226 -3200 24 

Observed 0.32 2.3 4.57 2.0 

'"'1 
N 



There are two general cases where this method can be applied; the 

case of a gas and the case of a crystallized solid. Due to a large 

amount of work on the scattering of X-rays by liquids• it is generally 

concluded that the structure of a liquid is similar to that of a solid 

crystal rather than to that of a gas as was assumed by Van der Waals. 
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The simplest model• proposed by Furth (18) 1 is suggested by the 

fact that a certain number of sites in a crystal lattice are unoccupied 

and the atoms can change their positions by jumping from one place to a 

neighboring unoccupied place or hole. Furth's theory uses a model 

which makes it possible to use a statistical treatment of the liquid 

which is analogous to that used in the statistical theory of gases. He 

does not use a model which is an exact analogy between a liquid and a 

· crystal because the statistical theory of gases is much easier to handle 

than that of the solid state. 

In his theory Furth considers the holes as the equivalent of 

clusters in a dense gas or vapor, They are formed by the action of the 

irr~,gular thermal movement and are destroyed again by the same process. 

They interact with each other and perform a kind of Brownian motion. 

The hole sizes obey a certain distribution law in which the frequency of 

the larger holes increase as the temperature is increased or as the 

pressure is decreased, Evaporation is the complete destruction of the 

system by the holes so that it consists of pieces which are not 

connected with one another. It is further assumed that the matter out­

side the holes is a continuum with the normal surface tension of the 

liquid, and the holes are filled with saturated vapor corresponding to 

the given~temperature. Using the above assumptions. Furth's equation 



for liquid tensile strength can .be obtained. 

The energy• Eq• required for the formation of a spherical hole of 

radius r is equal to the sum of the work to be done against the surface 

tension and the work to be done against the pressure. In equation form 

this iR expressed as 

Eq • 4/3 11' r 3 (P-P ) + 4 'II' r 2 a 
0 ' 

(III-34) 

where Pis the external pressure, P is the pressure of the saturated 
0 

vapor and a is the surface tension of the liquid. The probability that 

the radius r of a hole formed by statistical fluctuations has a value 

between rand r + dr is 

W(r)dr • Cdr ~ Expo -
where x 1 y and z are the coordinates of the center of the hole 1 P, P 

X y 

and P are the corresponding moments, P is the momenta corresponding z r 

to the variable rand Eis the total energy. The constant C is a 

normalizing function and is such that 

1 W(r)dr • l. 
0 . 

(III-36) 

The total energy, ET' is equal to the sum of the energy required to 

form the hole and the energy due to the momentum of the hole: 

(III-37) 

In the above equation m1 is the apparent mass of the hole for a 

translation• 

~ • 2/3 p 11' r 3 (III-38) 

and m2 is the apparent mass for the expansion of the hole, 
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3 m2 • 4 p 'ff r • ( III-39) 

The variable pis the density of the liquid, 

Since Eq. (111-37) is independent of the space variable, the 

integration with respect to these variables in Eq. (111-35) gives a 

factor V which is equal to the volume of the liquid. Eq. (111-35) can 

now be written as 

W(r)dr • Cdr ~ Exp 
- GO 

where the constant C now contains the factor v. 

If Eq. (111-40) is integrated over all momenta, the probability 

function takes the form 

W(r)dr • Cdr(2wkT) 2m1312m/l2Exp {- ~), 

·· where use has been made of the well-known integral 

Eq. (111-40) can be put in the more c<mvenient form 

W(r)dr • C Exp (-1) i ~6 dr . • 

(III-41) 

(III-42) 

(ITI-43) 

where all the quantities in Eq. (111~1) that do not depend on rare 

incorporated into the constant C, 

The integral 

GO l Exp Exp ( 
(P-P ) 2 ) -4/3 · 3 ~--2... _ 4wr a 

,rr kT kT 
6 r dr 

can be put in the following form 
(IIT-44) 

!s. 6 2a 2 ( ) . 
- kT r dr + ru L 4,rr Exp ( !9.' r 6 dr - kt} 

(III-45) 
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by an integration by parts. Tf the average volume, v, of a hole, 
• 

v • J4/3wr3W(r)dr 

0 

and the average surface, f, of a hole, 

• 
K 2 

f • .• 4wr W(r)dr 
J ' 
0 

( III-46) 

(III-4 7) 

is substituted into Eq, (111-45), it can be put in a much simpler form.: 

. .._6dr • 3(P-Pg)v + ~ f 
. 7kT 7kT 

(III-48) 

When Eq. (111-36) is substituted into Eq, (111-48), the following equation 

results: 
3(P·Po) 2a 

l • 7kT V + 7kT f 
(III-49) 

where the constant C is set equal to unity. If it is further assumed·· 

that the ratio v/f3/ 2 is approximately equal to the value obtained when 

Pia equal to P0 , the ratio of Eq, (111-46) to Eq, (111-47) raised to 

the 3/2 power can be written as 

V 
. 0 V 1 . ......-.--- . 

f 3/2 f3/2 9,64 
0 

(III-50) 

Thia ratio has been shown by Furth (18) to be a very good approximation. 

When Eq, (111-50) is substituted into Eq, (111-49), the following 

equation results: 

7kT • 3(P-P) v + 9,06 a v2' 3 
0 • (III-51) 



If P i• substituted for P in Eq. (lll-34) and if this value for 
0 
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W(r) is used in Eq. (111-46), the following equation for v is obtained: 
0 

3/2 

When Eq. (111-52) is used in Eq. (111-51) to eliminate a, the 

following equation can be written: 

3(P-P) 
0 

7kT 
• (1 - t) 

P-l' 

. (III-52) 

(III-53) 

Furth (18) plotted Eq. (111-53) with ,.~0 as one coordinate and v as 
"",. 

the other coordinate. It is represented graphically by Figure 5. 

For P > P the holes will increase in size as the external pressure P 
0 

is reduced at constant temperature. The part of the curve below the 

v axis does not correspond to any real statistical equilibrium since 

the integral 
co 

JExp (- I) rn dr 
0 

will not converge for P-P < o. The non-convergence of the above 
0 

integral does have physical significance in that it predicts the 

probability for the formation of holes of large size is infinite. 

This corresponds to the phenomena of boiling. Normally this 

phenomena starts with P equal to P0 ; since there is no discontinuity 

at v equal : o v • it is assumed that the states represented by that 
0 

portion of the curve below the v axis can exist in a kind of metastable 

equilibrium. The minimum value of Pin this range is given by 

(III-54) 
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VOLUME ( V) 

FIGURES. Graphical Representation of Eq, (III-53) 
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which by means of Eq. (III-53) becomes 

( ~) 7kT .. -
3v2 

( 1 - ~ ( t l 2/3) ... 0 (III-55) 
T 

The value for v which satisfies Eq. (III-55) is 

v* m 5.2 V 
0 • 

The compressibility, which is the reciprocal of Eq. (UI-54) 

(III-56) 

multiplied by 1/v, of a hole in this state is infinitely great. This 

implies that for any state below that corresponding to v • v* the 

liquid will become completely unstable. This state will therefore 

correspond to the maximum tensile strength that the liquid can stand. 

From Eq. (III-52), Eq. (III-53) and Eq. (III-56) the value for the 

maximum tensile strength is obtained: 

P*-P 
0 

3/2 
• -1.3 cr (kT)-1/2 (III-5 7) 

The above equation gives a value of 3900 atmospheres for water at 25°c. 

An equation similar to Eq. (III-57) can be obtained without using 

the assumption of Eq. (III-50). To do this the shape of the distribu-

tion function when P > P and when P < P must be considered. The 
0 0 

distribution function for the region P > P will be similar to the 
0 

first curve of Figure 6 (18). For the metastable region, °P'~<P<P , the 
0 

curve will be altered to one similar to the second curve of Figure 5. 

As P approaches P* the values for r and r . come closer together max min 

and finally take the shape of the third curve of Figure 6. 

The value for r corresponding to the inflection point itl the 

third curve of Figure 6 is given by 

El! • 0 
dr • 
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and 

When the above conditions are applied to Eq. (111-43), the values for 

r• v and Pat ,the inflection point are obtained: 

v*•9 (~) 
2h · 

and 

(ll) 1/2 
a • 

3/2 
• 3.73 V 

0 

(III-58) 

(III-59) 

8{,r 
P*-Po • - 9 03/2(kT)-l/2 • -l.S7 0 3/2(kT)-l/2 • (III-60) 

Eq. (111-60) gives a value of 4730 atmospheres for the tensile strength 

of water at 25°C, When the assumption of Eq. (111-50) is used I a value 

of 3900 atmospheres is obtained. This is a difference of 17% from the 

above value. When the assumptions that are implicit in all of the above 

calculations are considered 1 the assumption of Eq. (111-50) cannot be 

considered as being too much in error. 

Tensile Strength as Calculated From the Theory of Nucleation· 

The theory of nucleation states that the rate of bubble formation 

is proportional to· Exp (- E:;x) where Emax is the maximum energy for 

the reversible formation of a spherical vapor bubble of radius r. The 

proportionality factor can be estimated from the theory of absolute 

reaction rates to be 

nkT 
~xp (III-61) 



42. 

w 
where n is the number of molecules per gram-mole in the liquid•~ f is 

0 

the free energy of activation for the motion of an indivldua.l molecule 

of liquid past its neighbors into or away from the b\lbc..le surface, k is 

Boltzman's constant• his Planck's constant and Ti~ the .. ~.:,erature (15). 

The energy required for the formation of a spherical v&por bubble 

or radius r is 

E • 4,rr2o + 4/3,rr3(P-P) (III-62) 
0 

where the variables are the same as for Eq. (111-34). To f:ind ~he value 

of r corresponding to Emax• the derivative with respect tor of Eq. 

(111-61) is set equal to zero and then solved for r. This operation 

yield a 

and 

2 (J r•-P-P 
0 

• 

• 16 'IT a3 

3(P-P ) 2 
0 

(III-63) 

(IIT-64) 

The equation for the rate of formation of vapor bubbles in a 

gram-mole of liquid subjected to a negative pressure, P, can now be 

writ tent 

3 \ + 16,r o i 

lkT(P-P 0 ) ) • 
(I!I-65; 

Eq. (111-65) assumes that the pressure is kept at P eVi:.:i after the first 

bubbles have begun to grow• 
w 

The value of Af0 for the motion of a molecule into or away from 

the bubble surface can be estimated from the free energy of act.ivatfon 

for viscosity. Af i I since the two free energies should be approximately 
V S •• equal• Roseveare (15) states that Afvis is b.::tweci, 0 and 5000 



cal/mole for most liquids that are fluid at room temperature. Fisher 

* (15) found that by putting ~f equal to O a value of Pis obtained 
0 

which is generally less than 5 percent too small for room temperature 

liquids. 

When the above simplification is utilized, Eq. (111-65) can be 

rewritten as 
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- • .===,. p • dn ... 1rT Ex (-1611' o3 ) 
dt h 3kT(P•·Po)2 

(II.I-66) 

Since the first bubble that forms in a liquid will fracture the 

liquid• the fracture pressure• or tensile strength• will be the negative 

pressure that gives one bubble int seconds. Then dn/dt is equal to 

1/t and Eq, (111-66) yields 

(P-Po) • - ( 163,r 1 ) 1/2 
kTln n:Tt 

(III-67) 

Fisher (15) calculated values for the fracture pressure corresponding 

to a number of waiting times for water at 27°C. He covered time values 

from 10-15 sec• which is less than the time required for sound to travel 

18 one atomic distance• to a time period of 10 sec, which is longer than 

the estimated age of the universe. The ratio of the maximum to the 

minimum fracture pressure was only 1.58 while the corresponding time 

ratio was 1033 • Thus, Fisher concluded that one cannot be seriously 

in error by taking the fracture pressure corresponding to one vapor 

bubble per gram-mole per second as the theoretical tensile strength of 

the liquid. With this assumption, Eq. (111-67) becomes 

1/2 

(P-P) • -
0 

1611' -3 • (III-68) 
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For water at 25°C Eq. (111-68) gives a value of 1320 atmospheres for the 

tensile strength. 

Table 2 is a summary of the theoretical tensile strengths that have 

been reviewed in this chapter, 

* 

TABLE II 

LIQUID TENSILE STRENGTH OF WATER 

Hole Nucleation 
Laniffiqir:Van der Waals;Be,rthelot:Benson:Theory;, Theory 

P(atm) -10.000 -1000 -4800 -3200 -4700 -1300 

It can be seen from the above table that there is quite a wide 

variati~n in the calculated theoretical tensile strengths for water. 

This is not something that is peculiar to water but would be the same 

for any fluid considered due to the limitations of the theories 

considered. The. remaining portion of this c:;hapter will be used to 

discuss the various theories and their shortcomings. 

The theory of a homogeneous liquid as given by Langmuir gives 

results which are too high because of the basic assumption that the 

liquid has no microscopic impurities or vapor bubbles. Though one 

might argue that this condition is not impossible, it would certainly 

have to be agreed that it is very improbable, 

The Van der Waals, Berthelot and Benson equations of state were 

then considered, Aside from the fact that these equations are not 

supposed to be applicable to associated liquids. such as water. the 

constants that are used in them are definitely temperature-dependent 

and have an effect on the resultso 
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The Th~ry of Holes was considered next. As pointed out by Furth• 

this theory will be in error since Furth used concepts such as surface 

tension and hydrodynamic virtual mass which are essentially macroscopic 

in connection with cavities of molecular dimensions. This theory 

predicts values for the tensile strength which are only one-half the 

value obta~ned by Langmuir. To obtain an idea of the enormousness of 

this figure• it should be remembered that the largest void or hole 

that would be possible in water would be on the order of 10-8 cm radius. 

This is approximately equivalent to a molecular distance. 

The Nucleation Theory has essentially the same discrepancy.as the 

Theory of Holes in that a measured value of surface tension is used 

for the effective surface tension on the interface between a very small 

bubble and the liquid, These measured values of surface tension may be 

considerably different from the effective surface tension. bu·t this 

theory does give values which are more reasonable than Furth's values (4). 

So it is seen that all of the theories discusse4 in this chapter have 

basic assumptions that cast doubt on the validity of the results, 

but at least they have given a better understanding of the actual 

structure of the liquid, Thus the only statement that can be made about 

the liquid tensile strength of water is that it should fall somewhere 

between 1000 atmospheres and 3000 atmospheres and very probably closer 

to the lower value, When this is compared to the highest value 

obtained experimentally (which is 300 atmospheres), it is noticed that 

the theory and the experimentally observed values are getting closer 

together; that is, they are at least within an order of magnitude. 



The maximum radius of a vapor bubble that can exist in a fluid 

-6 that is stressed to 300 atmospheres is on the order of Oo5 x 10 cm 

and that corresponding to 1000 atmospheres is on the order of Ool x 

10-6 cm. These two radii are on the order of the minimum radius of a 
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stable gas bubble that can exist in a liquid according to Frenkel (17). 

Any bubble that is smaller than this should be unstable and would be 

compressed out of existence if it existed in the body of the liquid. 

This might be a solution to the problem of liquid standardizationo 

That is•·. if any bubble smaller than the critical radius would be 

compressed out of existence due to instability and if any b.ubbles 

larger than this critical radius could be eliminated by a precompression 

of the fluid• then a fluid with a tensile strength that is indicative 

of the actual strength of the fluid and not on a number of other 

factors would be obtained~ Though this is simplifying a very 

complicated phenomena 0 it is a step in the right direction and certainly 

deserves some considerationo 



CHAPTER IV 

tHEORETICAL ANALYSIS 

!uch of the theoretical and experimental work on axially-excited 

tanks performed to date has been concerned with the sloshing 

phenomena for both rigid and elastic.tanks, 

A very good theoretical analysis of the liquid response in 

annular cylindrical tanks and circular quarter-tanks has been given by 

Bauer (3), Bauer derived an equivalent mechanical model consisting 

of masses 9 springs• dampers and a massless disc with a moment of 

inertia so chosen that it exerts the same forces and moments and has 

the same natural frequencies as the fluid in the container. This 

mechanical analo~ method has been tried by other authors but Bauer's 

analog differs from the others in that he used a velocity proportional 

damping force in his system (2. 19• 20, 27, 30). In this way he was 

able to obtain results even for frequencies which were close to the 

natural frequencies of the fluido Abramson (2) discusses some of the 

liquid dynamic behavior which occurs in tanks. These include normal 

sloshing, vortexing, liquid impact 1 bubble formations, spray formations 

and low gravity phenomena. He also discusses some of the equivalent 

mechanical models that are used to describe the dynamics of the tank. 

A complete review of the literature on liquid dynamic behavior in 

moving containers has been written by Cooper (14) and Abramson (1). 
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They cover rigid and elastic containers of various geometries that are 

excited in the vertical and horizontal directions. A few authors are 

mentioned who have considered the liquid motion due to pitch about a 

horizontal axis and roll about a vertical axis for rectangular and 

cylindrical tanks. 

In the papers mentioned above• the governing equation for the 

fluid motion was Laplace's equation which is a combination of the 

continuity equation and the equation of motion for a non-viscous 

incompressible fluid. Viscous effects were taken into account in the 

mechanical analogs by the introduction of damping forces. 

The analysis presented in this chapter is unique in that it takes 

the basic linear Navier•Stokes equation and the continuity equation 

for compressible fluid flow.. and by assuming only that the density 

is a function of the time t, it develops a set of equations for the 

radial velocity 9 azimuthal velocity and the pressure field anywhere 

within the cylinder. These general equations are then applied to a 

specific problem at the end of the chapter, 

Mathematical Equations and Boundary Conditions 

This analysis is concerned with the behavior of a fluid which is 

confined within a closed circular cylinder and is subject to a 

sinusoidal varying force along its longitudinal axis 1 Figure 7. 

Initially the cylinder has displacement equal to the amplitude of 

48 

the input displacement 1 a 1 and a zero velocity. The boundary conditions 

on the cylinder for all time greater than or equal to zero are that the 

pressure at the free surface is zero 1 the radial velocity at the wall is 

zero 1 and the azimuthal velocity at the wall and at the tube bottom is 
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equal to •aw sin wt; that is 

(a) P • 0 at z • o, 

(b) vr • 0 at r • R, 

(c) V z . -~ sin wt at r • R 

(d) V • -aw z sin wt at z • h. (IV-1) 

The general linear equations of hydrodynamics will be used to describe 

the system, · The nonlinear convective terms have been ignored because 

the:, are negligible when compared with the time derivatives of the 

· dependent variables, The dependent variables v and v · are assumed to r · z 

be functions of the radius r, the height z and the time t while the 

density, Pt is assumed to be only a function of the pressure P which is 

a function of r, z and t, 

The continuity equation for a compressible fluid can be written in 

the forac * +~~·v) •O, 

where Vis the velocity. Eq, (lV-2) can be put in the more 

convenient form 

!!. • at 
l 

- - V • V, 
BT 

(IV-2) 

(IV-3) 

where the isothermal compressibility coefficient, BT, is defined as 

BT • t (it) . T • ( I v-4) 

The general Navier-Stokeei ·:quation for a viscous compressible fluid is 

(IV-5) 



.'il 

The two partial differential equations, Eq. {IV-3) and Eq. {IV-5). 

subject to the boundary conditions, Eq. (rv.:.1), can most easily be 

"' solved by the superposition principle. That is 1 the partial differen-, 
tial equations subject to the boundary conditions 

{a) P •_Oat z • O, 

(b) V r 
• 0 at r·• R, 

(c) V • 0 at r • R, 
and z 

(d) V z • -alil sin lilt at z. h, (IV-6) 

are first solved and the same partial differential. equations subject 

to the boundary conditions 

(a) P • 0 at z • 0 

(b) vr •Oat r • R, 

(c) V • -aw sin lilt at r • R1 

and z 

(d) V •oat z • h (IV-7) z 

are then solved. The two solutions thus obtained can be added to-

gether and this final solution will be a solution of :t::q. (IV-3) and 

Eq, (IV-5) and will converge to the boundary conditions, Eq. (IV-1) 1 

at the boundary. This principle of superposition is valid only for 

linear boundary value problems and can be used here since Eq. (IV-3) 

and Eq, (IV-5) are linear equations. 

Cylinder with Oscillating End and Stationary Walls 

The physical problem corresponding to Eq. (IV-3) and Eq. (IV-5) 

and satisfying the boundary conditions of Eq,. (IV-6) is that of an 

oscillating piston in a cylinder, Figure 8. It has been shown that 

for a velocity much less than the speed of sound there will be only a 

velocity component in the longitudinal direction (8). With this 
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aawmption• Eq, (lV-3) and Eq. (lV-5) reduce to 

and 
~2 ~ d.2v 

l «3p g V & \I gV Z 

~ - + v - + - ar z + 4/3'V 2 
Paz ar2 r oz 

(IV-9) 

The above equations can most easily be solved by utilizing the 

Laplace Transform technique, The transformed equations corresponding 

to Eq. (lV-8) and Eq. (lV-9) are 

-SP• P(o) • 1 a; 
and -

- l Sv • - -
ap + 
Tz" 

I ?-
~ V 

\I -..:.+l 
\ ar2 r z p 

, (IV-10) 

( iV-11) - ' 

where the bars denote the dependent variables in ti,e Laplace domain, 

When Eq. (lV-10) is differentiated with respect to z, the following 

equation is obtained: 

a'i --az 
(IV-12) 

where it has been assumed that the derivat:i.vr. .Jf P(o) with respect to 

s ia equal to zero. 

When Eq, (lV-12) is aubstitut.ed into Eq. (lV-11), the following 

equation for vz results: 

a2v -
( 4',3 + 

\ .2-av 
0 "' --!. + 1. z l z s - • 0 - + pS1 S\J0 --v 

ar2 r or clZ 2 V z 
(IV-13) 

Thia equation can be solved by assuming a solution of the 

-vz • R(r) Z(z) (IV-14) 



which is the commonly used Separation of Variables techn~que. Eq. 

(lV-13) now takes the form 

_ !. d 2F _ ! _l ,e! + ! • l 2 ! d 2z 
R dr2 r R dr v Z dt2 

(IV-15) 

where 

• 

Since the left-hand side of Eq. (lV-15) is a function of Rand the 

right-hand side is only a function of z, both sides of the equation 

2 must be equal to some constant, say y. When the right-hand side of 

Eq. (lV-15) is set equal to y2 the following equation results: 

(IV-,16) 

A solution of the above equation is 

Z • cosh f Z (IV-17) 

The hyperbolic sine term has been omitted since the pressure at z • 0 

must always equal zero. The left-hand side of Eq. (lV-15) takes the 

form 

R • 0 • (IV-18) 

A solution of the above equation is 

(IV-19) 

When Eq. (lV-17) and Eq. (lV-19) are substituted into Eq. (lV-14) 

the solution for vz is obtained 

'; s 00 
A J ( /y 2 - ! r 

z ~-o n o "'1'n v ) Yn 
cosh r z t (IV-20) 

where A is a constant dependent on the boundary conditions. 
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The constants A and y are determined by equating Eq, (lV-20) to 

the transformed boundary conditions: 

-v • 0 at r • R; .z: 

2 
- aw 
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vz • - --;-2-k>-·-2- at Z • h (IV-2.~) 

The homogeneous boundary condition yields the following infinite sum: 

{IV•22) 

where they are the roots of 
. n j 

J y 2- .§. d a 0 
o n v (IV-23) 

The second boundary condition yields the following P1uality: 

Since the sequence J (aR) is orthogonal on the interval (O,R), the 
0 

constant A can be determined by tnUltiplying both sides of Eq, (lV-24) n 

by r J 0 (ar). The resulting equation is then integrated between zero 

and R, When this method is applied to Eq. (lV-24), the following 

equality results: 

R 

A11 Jr 
0 

J 0 ( ar) J ( r-/Y 2- ! r) o n v 
Yn 

cosh r h d r • 

r J0 (car) d r 

The constant An is 

A • _-2...,a_w .... 2 __ i _______ 1 _____ 1 __ 

n S2-hl~- ~ 2 S 
y - -n V 

(IV-25) 

• (IV-26) 



The com~lete solution for the transformed velocity can be written ae 

- J Y - -r 
Yn 

cosh 1 Z 
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V • • 
µ 2 S )· 

O n V 

· I 2 s J / t 2 s _\ ' y 
• (IV-27) 

,..JYn - ~ l~n - v 1<J 
. h n cos 1 h 

The velocity in the time domain is easily obtained as 

y. 

v. .. I.Iii ~: J ( ,J 2 - i~ r.) cos~Z 
Exelwtl o n v 

ll 

,Jy 2 .• 
n 

i~ 
V Jlµn 2• 

J I l 2 + 1J!i r) 
+(~) ~- ---

1 ~ a) 
. Yn. 

cosll-i' h 

Yn . 
cosh 1 Z 

1 
+ 

~
• o~n v. 

•. •O I 2 Jl { ~Y-n2_+_i~-) Y n 
· ,.Jy + ·J/1. ... cosh - 1 h 

Exp(-i(l)t) 
-1 

(IV-28) 

" . 
Since the real part of v is all that is of interest, Eq. (lV-28) can z 
be written in the form 

• 
+(-) -~ 

R ~-0 

and N2 equals 

Jo (anr) 

an Jl (anR) 

cosh (N1 Z) 
Cosh (N h) sin wt+ 

1 

cosh (N2 Z) 

cosh (N2 h) 

.. 

sin wt (IV-29) 

Eq. (lV-29) is still complex with respect to the s~ace coordinates but 

in order to reduce the cumbersomeness of this equation, it will be 

written in this manner until a particular problem is solved, 
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The time rate of change of pressure is obtained from Eq 1 (lV-8) and 

Eq. (lV-29): 

( . Jo(anr) sinh (N1 Z) ap 8,11 . 

'T; • lleT ~-0 
Nl + a J1 (a R) cosn ~t-41 h) n n 

Jo(anr) sinh (N2 Z) 

) a J1 (a R) N2 cosh (N2 h) sin wt (IV-30) 
n n 

An equation for the pressure field in the interior of the cylinder ii 

obtained by integrating Eq. (:V-30): 

( to J (a r) sinh (N1 Z) 
a o n 

Nl + p. - ~- a J1 (a R) cosh (N1 h) 'B T n n 

Jo(anr) 
N2 

sinh (N2 Z) ) 
cos wt + p a J1(a R) cosh (N2 h) 0 • (IV-31) 

n n 

Cylinder with Stationary End and Oscillating Walla 

The problem corresponding to Eq. (lV-3) and Eq. (lV-5) and 

satisfying the boundary conditions of Eq. (lV-7) will now be solved, 

Physically, this problem is that of a cylinder with stationary ends 

and an oscillating wall. 

The solution is most easily obtained by utilizing the principle 

that every vector field can be uniquely separated into a part which ia 

the gradient of a scalar potential and a part which is the curl of a 

vector potential (29), Thus, the velocity can be written as 

v • v~ + Vxljl (IV-32J 

where tis the scalar potential and 1jl is the vector potential. 
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When Eq, (lV-3,2) is substituted into Eq. (lV-3) the following 

equation relating the pressure and the scalar potential is obtainedt 

a P --a t 
1 v2 -a; (IV-33) 

2 where V is the Laplacian operator. If Eq, (lV-33) is transformed from 

the time domain to the Laplace domain by means of the Laplace transforma-

tion• it will take the form 

SP - P(o) v2 (IV-3lt) 

Eq. (lV-5) will take the following forms under the transformation: 

a'p 
pSv • - - + ii r ar ( -l V 2- r µ a 

Vv -- +-­r 2 3 ar 
r 

and \ 

ps -;• • -* + " v2 v". + f ( : :r + ;r + :;•/ • 

• (IV-35) 

(IV-36) 

where the bars over the dependent variable.a indicate that they are in 

the Laplace domain. Eq. (lV-32) can be put in the more convenient forms 

and 

(IV-37) 

When Eq, (lV-34) and Eq. (lV-37) are substituted into Eq, (lV-35) and 

Eq, (lV-36), the desired forms for ¢>and 1jlare obtained. That is, 

v2 'i° - k2 'i° • O, (IV-38) 

and 
2 - -

vl ll> - 12 lJ/ • o • (IV-J9) 



where 

k2 • S2 
2 4 • 

C + J \I 5 

12. ! 
" • 

and 

The solution for Eq. (lV-38) is 

where 

The solution for 

where 

r .• ~-
•O 

An lo (Bnr) sin yn Z 

Eq. 

a • n Yn 
2 + k2 

(lV-39) is 

B 11 \T r) cosy Z n . n n 

t • 'v 2 + 12 n ,.J'n 

• (IV-40) 

• (IV-41) 

The constants A and Bin Eq. (lV-40) and Eq, (lV-41) are arbitrary. 

The boundary condition of Eq. (1V-7a) has been satisfied due to the 

choice of sin vn Zin equation (lV-40), 

The transformed boundary conditions corresponding to Eq. (lV-7) 

are 

and 

(a) 

(b) 

vr •Oat r • R, 

a,i 
vz • - 2 2 at r • R, 

s +fAl 

(c) vz •Oat z • h, (IV-42) 
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where the bars over the dependent variables have been omitted for 

convenience 1 but it should be remembered that the dependent variables 

are still in the Laplace domain. An equation for A in terms of B can 

be obtained by solving for the first homogeneous boundary condition, 

That 1,, 

Jet1 (6 R) sin yZ + Byl1 (T R) sin yZ • 0 , 

from which 
11 ( T R) 

A • - B .t l · ca R) 
1 

The second homog•neoua boundary condition yields 
. _l ll (T R) 

BT 10 (tr) cos yh •Ba l (SR) 10 (.Sr) cosy h • 0, 
1 

For the above r.elation to hold, y n must be equal to 

2n + 1 ,r 
Yn • 2 h 

The equations for·+ and~ now have the following forms: 

(IV-43) 

(IV-44) 

(IV-45) 

. (IV-46) 

To determine the constant B, the boundary condition of Eq. (1V-4lb) 

·IIUlt be utilized along with the fact that the sequence cosy his . n. 

orthoaonal on the interval (0 1h), Thus, at the wall of the,cylinder 

the followina relationship is obtained1 

-a. i '(· 2 
s 

h 

J cos 
0 

(y Z) cos (y Z)dZ • n m 



h 

J cos 
0 

An equation for B can be obtained from the above relation: 
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B • 2aci (-1) n ( 8 11 ( 6 R) ) 
- - - ....... --------------· • (IV-47) 

n s2-kll2 h y y 2 11 (tR) 1 (8 R) -B t 10 (t R) 11 (SR) 
n n o 

From Eqs. (lV-45) 1 (lV-46) and (lV-47) the solution of Eq. (lV-38) and 

Eq, (lV-39), subject to the boundary conditions of Eq, (lV-42), can be 

written; that is 

• (IV-48) 

(-l)n ( 8 11 (8 R)) 11 (t r) cos y Z 
h Y DENOM n n , 

• (IV-49) 

The term DENOM has been introduced for convenience and is equal to 

• 

The transformation from the Laplace domain to the time domain gives 
ao 

•· - aw I 
n•O 

( 1) n ( y 11 ( t l R) ) • n · 1 (8 r) 
h yn DENOM o 1 

and 
ao 

.,,. - aw I 
ao 
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where the variables with a subscripted 1 refer to , • 4.W and those with 

a subscripted 2 refer to S • - iw. It should be noted that the unbarred 

dependent variables referred to from now on are in the time domain, 

From Eq. (lV-33) an equation for the pressure as a function of r 1 

z and t can be obtained; ·that is 1 · 

a P 1 2 
-•-- V t at BT 

which• after substitution and integration, becomes 

00 

P-P(o)• -Paw 2 I (-1/ ( Bl 11 (tl R)) 
h Y DENOM 1o (B1 r) sin(YnZ) cos (wt)+ 

n•O n 
00 

( s 2 11 ( t 2 R) ) +(-)paw2 I ~ 1 (S 2 r) sin (y Z)cos(wt) 1 h Yn DENOM 0 n (IV-52) 
n•O 

where only the real time domain is used since that is all that is of 

interest. 

By means of the superposition principle, the solution of Eq. ~lV-3) 

and Eq, (lV-5) subject to the boundary conditions of Eq, (lV-1) can bC 

written in the following form: 

+ 

and 

ll a z • 

P • Eq. (lV-31; + Eq, (lV-52) 1 

(IV-53) 

(IV-54) 

(IV-55) 
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where 4> is given by Eq, (IV-50) and ljJ is given by Eq. (IV-51). The 

equations are written in the above manner to avoid unnecessary writing 

and confusion. It should also be noted that the equations are left in. 

complex form. Therefore. before they can be applied to a physical 

problem the real part of each equation must be extracted and only this 

part should be used to describe the problem. The remaining portion of 

this chapter will be devoted to just such an operation. 

Illustrative Example 

A true test of the worth of any mathematical theory is to see how 

well it applies to a practical situation. For an illustrative problem• 

a cylindrical rigid plexiglas tube of radius R • 1 inch and a length of 

36 inches was chosen. The height of the fluid within the cylinder will 

be 31 inches for the first case and 23 inches for the second case. 

The frequency w will vary between 50 and 400 radians per second and 

the oscillation amplitude will be 0,025 inches and 0,05 inches 

respectively. 

The equation for the pressure field will be considered first. 

Under the above conditions, Eq. (IV-31) can be written as 

J (a r) 
0 J} 

Yn 
yn sinh .i-z 
...-.;.l cos wt+ P 0 y h cosh ..A 

1 

• (IV-56) 

since the first two terms on the right hand side of Eq. (IV-31) are 

equivalent. The procedure used in showing the equivalence of the 

above mentioned terms is outlined in Appendix A. From the real part 

of Eq. (IV-56) an equation for the pressure field can be obtained: 



Eq, (lV-52) can be written as 

• 

Z cos wt + P 
0 

(Il/-57) 
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. 2 ~ 
P • -2paw L ( 

~ t 1 (T) \ 

DENOM 1 10 (B r) sin Yr,' cos wt (IV-58) 

due to the equivalence of the two terms on the right-hand side of Eq. 

(lV-52). The re,1 part of Eq. (lV-58) is 

• 
P • 2paw2 L 

n-0 

where the term DEN equals 

( :: ) 1. (y,. r) sin (y,.Z) COi Olt (IV-59) 

DEN • y 2 1 2 (y ) + ~ l 2 .., ) 2y ,J.;;-1 (y ) 1 (y ) n o n v l ''n - n iv . o n 1 n • 

and the term NUM equals 

NUM J~ 11 (yn) • 'Yn 1o (yn) 

At time t • 01 the pressure within the cylinder will be 

p • 
0 

2 pg Z + paw Z (IV-60) 

When the initial condition is substituted. into the sum of Eq, (lV-57) 

and Eq, (lV-59), the complete pressure equation can be written aa 

• 
P(r.z,t) • 2pa,i I Jo (an r) 

z (cos wt-1) + pgZ + paw2z + 
an J l aJ n•O 

• (~) 2paw2 I ~-lln 1 (yn r) sin ynZ (cos wt-1) • (IV-61) 
h Yn 0 

n-0 
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Eq, (lV-61) is the equation for the pressure field within the cylinder 

for all~.::. O and it converges to the boundary conditions at the 

interior surface of the cylinder. 

The azimuthal velocity of the fluid within the cylinder will be 

considered next. Eq. (lV-29) takes the form 

00 

vz • -2aw L 
n•O 

J (a r) o . n 
a J 1 (a ) n n 

sin wt , (IV-62) 

where the ratio of the hyperbolic cosine terms has been set equal to 
y 

unity since 1n << 1. The remainder of the terms on the right-hand 

side of Eq, (lV-53) can be written as 

OD 

+ (-) 

( 
y. 2 11 (t R)) 
n DENOM 1o (Br)+ 

1 (t r) 
0 

cos y z sin ca,:• ( IV-63) . n 

where use has been made of the equalities between terms.containing -r1 

and -r2 and B1 and s2• The real part of Eq. (lV-63) is 

NUM2 -· DEN cos 

00 

vz .. 2aw L 
n•O 

(-l)n 
h y 

n 

µI.I) J,r) -r+-2v 8 

( -1) n (NUM) l. 
h DEN · o (yn r) + 

(:: sin(~ 

) 
Exp (Jtv (r-1)) 

Ir 

r + !,r) + 

cosy z sin l.llt 
n •(IV-64) 
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where 

and 

The steps that are necessary to obtain Eq. (lV-64) are given in Appendix 

A. 

The solution for the azimuthal velocity is obtained by adding.Eqa. 

(lV-62) and (lV-64): 

• 

NUM2 
DEN COBµ~ r + ¥1) 

t,o 

sin wt.+ 2aw .~ 

n•O 

r 
cosy Z sin wt 

n • (IV-65) 

For the radial velocity. Eq. (lV-54) can be written in the following 

manner: 

vr • -28C&I L 
n•O 

• 
2ab> I 

n•O 

(-l)n ( B yn 11 (t R)) 1 - - (Br) sin y Z sin wt+ 
h y n DENOM . . 1 · · n 
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Since the real part of the above equation is all that is of interest. 

t1e radial velocity equation is written as 

• 

(-l)n 
h 

+(-) 

INUKJ. - NUM2 \ 
~ DEN 1 coa(,JI; r + ~) 

Exp (J~v (r-1~ 
~~~~~~~- sin 

Ir 
y Z sinCA>t • · 
n (IV-67) 

The approximations used to obtain Eq. (lV-64) and Eq. (lV-67) are 

valid for all values of Tr greater than 10 and therefore cannot be used 

to obtain the values for velocity at the center of the tube. To obtain 

these values• the quantity r-0 must first be substituted into Eq. 

ClV-53) and Eq. (lV-54). Under this substitution, the radial velocity 

is equal to zero since 11 (0) • o. That is, 

V • 0 r 
(IV-68) 

The aximuthal velocity is 

00 

I ~ (:!) cos (ynZ) sin (CA>t' +'-) h vz • 2aw 

2aCA> 

n•O 

~ffJf) 
1/2 

00 

I (::1) cos (ynZ) sin (CA>t) , 

n•O Exp,)~ (IV-69) 
~v 

where the procedure of Appendix A is used. When Eq. (lV-69) is added 

to Eq. (lV-29), with J (a r) • 1 for all values of a , the equation o n n 
for the azimuthal velocity at the tube centerline for all values of z 
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and tis obtained. This equation is written below for convenience: 

00 

• -281&1 L 1 sin (wt) + V 
a J1(a) z 

n-0 n n 

00 

2sw I ,-lln 
(::) cos (y nZ) sin(wt) + 

n•O h 

CID ~.J~ ) 1/2 
281&1 L (~ (y Z) sin(wt) • cos 

n-0 DEN 
Ex pk 

n (IV-70) 

Thus Eqs. (lV-61) 1 (lV-65) and. (lV-67) are the solutions of Eqs. 

(lV-3) and (lV-5) and they satisfy the boundary conditions of Eq. (lV-1). 

The numerical results of Eqs. (lV-61) 1 {lV-65) and (lV-67) as applied to 

the above mentioned problem will be given in the following two chapters. 



CHAPTER V 

EXPERIMENTAL PROGRAM 

As mentioned before• the true test of any mathematical.theory 

is to see how well it applies to a practical situation. With this in 

mind, an experimental program was developed which would simulate the 

problem outlined in Chapter III. 

The results obtained from the experimental program were compared 

directly with the results obtained from Eq, (lV-61) of Chapter lV. 

Since there was no way of measuring the pressure field within the fluid 

. without disrupting the flow field, it was assumed that if the results 

obtained from the experimental measurements at the wall agreed with the 

numerical results close to the wall, a sufficient justification of the 

theoretical method was obtained. 

The general development of the experimental program and its 

comparison with the theory are the subject of this chapter, 

General Considerations 

The general problem outlined at the end of Chapter lV was 

developed for a fluid-filled, rigid, cylindrical tube, The tube would 

have to be made from a material that was strong enough to withstand the 

stresses due to the vibration, b.e able to withstand the effects of a 
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hard vacuum. have very little or no affinity for the fluid under 

testing and be clear enough so that the fluid inside the tube could be 

seen by an observer. A material which would satisfy all of the above 

conditions and in addition would be easy to obtain was Plexiglas, the 

trade name for cast thermoplastic acrylic resin. A cylindrical Plexi­

glas tube 3 feet in length, 2 inches in diameter and 0.25 inches thick 

was chosen for the experimental model. 

Next, consideration was given to the fluids that were to be tested. 

It was believed that under similar conditions a fluid with a high value 

of viscosity would have a higher value for negative pressure than a 

fluid with a lower value for viscosity. A number of fluids with 

viscosities ranging from l centipoise to 100 centipoise were considered. 

This list of fluids, which was taken from the Solvents Manual (28), was 

gradually reduced for a number of reasons. Among the more prevalent 

were health dangers due to the toxic fumes, low volatility, high fluid 

absorption by Plexiglas and low boiling points of the respective fluids. 

It was finally decided that the fluids that could most easily be 

handled and still have the desired characteristics were water, ethylene 

glycol and diethylene glycol. Two additional fluids were obtained by 

using a 70% by weight aqueous ethylene glycol solution and 80% by 

weight aqueous diethylene glycol solution. The range of viscosities 

were from 1 centipoise for water to 32 centipoise for diethylene glycol. 

Consideration was also given to the surface tension of the liquid 

since the negative pressure of the fluid is related to the surface 

tension by 



p ... ll 
r 

Now, if it is assumed that the fluid has no vapor bubbles that are 

-4 visible to the naked eye, say 10 centimeters in diameter. then the 

negative pressure of all the fluids considered will be greater than 

2 atmospheres. Since this value for surface tension is greater than 

any value that will be obtained in the test program, the equations of 

Chapter lV will not have to include this property of surface tension. 

-4 However, if a vapor bubble greater than 10 centimeters should exist 

in the fluid then the fluid will fracture at a lower value than 2 

atmospheres; this was experienced in the test program where the fluid 
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fractured approximately two seconds after the test was begun. Although 

this was a short interval of time; it was sufficient to obtain the 

negative pressure of the fluid. 

Experimental Apparatus 

The basic test set-up is shown in Figure 9 and Figure 10. The 

vacuum pump is connected through a filter to a threaded pipe which is 

in turn screwed into a Plexiglas capo This cap fits very snugly on top 

of the tube and with the aid of high vacuum grease a pressure equal to 

the vapor pressure of the fluid can be maintained within the tube. 

The Plexiglas tube is mounted on the oscillating piston which is 

connected to the oscillator driver by the connecting rod. It can be 

kept in a vertical position by suitable manipulation of the base. Two 

oscillator drivers were used. One gave the tube an amplitude of 0.025 

inches while the other gave it an amplitude of o.os inches. The 
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oscillator driver is driven by a hydraulic motor which has a range of 

speeds from nearly zero to 3500 rpm 0 Figure 10. The power supply for 

the system is an electric motor which is coupled directly to a gear 

pump. A flow divider valve is used for control of the oscillator speed. 

The tube is instrumented as shown in Figure 11, The two Kistler 

quartz pressure transducers are mounted in the side of the tube with 

the lower transducer at the bottom of the tube and the second trans­

ducer 8 inches above. The output from the two transducers is fed 

through two charge amplifiers which are designed especially for the 

transducers and is then fed to the oscilloscopeo The data were then 

recorded from the oscilloscope by means of a Polaroid camera. A 

mercury manometer graduated to read tenths of an inch was used to 

measure the pressure of the gas above the fluid. The oscillating 

frequency of the tube was obtained by measuring the rpm of the 

hydraulic motor. This can be seen from the Figure. 

Test Procedure 

Prior to any consideration for the tube or for the fluid, the 

control settings on the flow divider valve·were set so that frequencies 

corresponding to so. 100, 200 1 250• 300 and 350 radians per second 

could be realized quickly when the power was turned on. This was done 

so that the control could be set to the desired frequency• the power 

turned on and the data corresponding to that frequency and amplitude 

could be read before the fluid within the tube completely fractured, 

This method does have the disadvantage of not being able to obtain the 
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exact frequencies that are desired, but it is considered vastly superior 

to taking data while the fluid is fractured for obvious reasons, 

After the proper settings on the control of the flow divider valve 

were obtained, it was necessary to clean the inside of the tube thorough­

ly. The cleansing agent chosen was a 30% dilute solution of nitric 

acid. This particular acid was chosen because of its low affinity for 

Plexiglas and its excellent cleansing properties. 

After the inside of the tube was cleansed with the acid, it was 

thoroughly rinsed with distilled water and allowed to dry while care 

was exercised so that no foreign matter was allowed to enter the tube. 

The test fluid was then poured into the tube through a very fine wire 

screen. The screen was used to ensure that there were no solid particles 

of visible size in the fluido 

When the fluid reached a height of 31 inches, the cap was placed 

on the top of the tube and the vacuum pump was startedo The pump was 

allowed to run for approximately two hours so that the inside of the 

tube would be rid of all the undissolved air that had risen to the top. 

The pump was then turned off and the fluid was allowed to sit overnight 

subject to this vacuum which was equal to the vapor pressure of the 

fluid, In the morning the pump ~as again turned on so that any air· 

that rose to the top during the ~ight could be eliminated. Of course 

one cannot be absolutely sure that all undissolved gases were 

eliminated just by a visual observation, but this was deemed adequate 

since there was no convenient way to measure just the undissolved gases 

in the liquid, The fluid was now ready to be tested. 



After the fluid was vibrated and the pressure measurements were 

recorded, the vacuum pump was started and the fluid was allowed to sit 

until there were no visible vapor bubbles present. This usually took 

from 15 to 30 minutes. 

When the testing was completed for both amplitudes the cap was 

taken off the tube and 8 inches of fluid were drained from the tube; 

this was done because it was desired to run a similar series of tests 

as before but at a different height. This series of tests was 

performed so that it could be determined if there were any marked 

changes in the pressure values obtained at this lower height other than 

the ones called for by the equations of Chapter lV. The cap was then 

placed on the tube and the vacuum pump was started. The pump was left 

running for approximately two hours, or until the fluid was rid of all 

visible bubbles. This draining process took such a short period of 

time that there was no need to allow the tube to sit overnight under a 

vacuum as was done in the original casea The same procedure was then 

used as was used for a height of 31 inches~ 

Results 

Due to the number of fluids tested» the different fluid heights 

tested, the different amplitudes at which they were tested and the 

experimental values for frequency not corresponding exactly with the 

theoretical values, it was felt that the most realistic way to present 

the results would be a plot of the negative pressure amplitude as a 

function of the frequency~ The experimental values obtained for a 
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fluid height of 31 inch'3S were used 11.1. the plots t The. values corres-

ponding to a .fluid height of 23 inches were similar to the 31 inch 

height and it would be too much of a repetition to i.nclud~ them. Thus. 

the question of the previous section is answered; that is, there is no 

marked change in the pressure values obtained at this lower fluid 

height other than the ones called for by the equations of Chapter lV. 

' 
Two values of the azimuthal coordinate, z, were used; they were 

for z · • 23 inches and for z • 31 --inches. These two values for z were 

chosen because they correspond to the transducer locations. A value 

for the radial coordinate, r, equal to 0.95 inches was used. This 

choice of r was necessitated because of the discontinuity of the 

pressure equation at the wall. This discontinuity arose because of 

the boundary condition that the azimuthal velocity at the wall equals 

zero in the first part of the solution. That boundary condition gives 

rise to the term 

which is present in the pressure equation. However, from a physical 

standpoint it is difficult to envision a significant difference of 

pressure at a value of r which is very close to the wall, and the 

actual pressure at the wall. With this assumption, the theoretical and 

the experimental values for pressure can be comparedo 

Figures (12 - 16) are the plots of the pressure fields for all the 

fluids tested. From the figures, the agreement between the experimental 

and the theoretical results is noticed. It can therefore be stated 

that a close correlation exists between the experimental values for 

pressure at the wall and the theoretical values for pressure near the 



wall and there is no reason to assume that this correlation will not 

hold in the interior of the fluid. The graphical results, not only for 

pressure but also for velocity, will be discussed more fully in the 

next chapter, 
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CHAPTER VI 

GRAPHICAL RESULTS 

To present a complete graphical presentation of all the results 

in this chapter would be quite impractical. However, as was done in 

the previous chapter, the results for one fluid height, h • 31 inches, 

and one fluid amplitude, a= 0,05 inches, will be considered and from 

these results observations and conclusions will be made which will be 

applicable to all fluid heights and amplitudes since the results are 

similar. 

Since the principle topic of interest is the negative pressure 

of the respective fluids, these results will be co--,sidered first. The 

pressure equation has a time dependent term (cos wt - 1) which varies 

between O and -2. This is, when the term (cos wt - 1) is equal to -2 1 

or when the coefficient wt is equal to ff 1 3ff 1 etc., the maximum value 

for negative pressure is obtained. It is this maximum value of 

ne.-tive pressure which is represented in the following figures and 

which will be denoted as the negative pressure amplitude. As for the 

pressure variation with time, it can be seen that the pressure will 

decrease from a maximum positive pressure when wt is equal to O, 2;r, 

etc• • to a n: uimum negative value wh~n wt. is equal to ff 1 3ff, etc. The 

curve will be proportional to (cos wt - 1) with the amplitude being 

dependent on the values of r, wand z that are used. This can be seen 

be inspecting Eq. (IV-61). 
The curves of the negative pressure amplitude as a function of the 

frequency have been given in the previous chapter. From these curves 

an inunediate evaluation of the negative pressure amplitude can be 

obtained for values of frequency up tn 400 radians ner second. Though 

only two values for z are given on 1he charts, negitive pressure ampli­

tudes corresponding to different a values can be easily obtained by 
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interpolation or extrapolation since the negative pressure amplitudes 

are linear with respect to z. 

By utalizing the results of Schoenhals and Overcamp (31) the 

charts for the negative pressure amplitude can be put in a very 

convenient form by non-dimensionalizing the negative. pressure ampli- .. 

tude and the azimuthal coordinate. In this way, the results for all_ 

five fluids can be condensed on one chart. 

Following the work of Schoenhals and Overcamp, the chart on 

Figure (17) presents the dimensionless negative pressure amplitude, 

p 

as a function of the dimensionless distance, z/h, for various values of 

the input acceleration amplitude, 

Figure (18) is a plot of the negative pressure amplitude as a 

function of the viscosity. The values for negative pressure were taken 

at a height of 31 inches, and for a frequency of 400 radians per se,cond. 

The values corresponding to the other values for w will have the same 

general shape but are not included in the figure so that an enlarged 

ordinate could be used. From the figure, it can be seen that for 

fluids with low viscosities, any change in the fluid viscosity will 

mean a marked difference in the negative pressure amplitude while for, 

fluids with high viscosities any change in the fluid v:j.scosity will have 

a negligible effect on the negative pressure amplitude. 

Though there were no actual measurements of the liquid velocity 

within the tube, it was decided that the derived velocity equations 
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would be adequate since the pressure equation agreed so well with the 

experimentally observed values of preseure. 

Figure (19) shows how the azimuthal velocity qplitude varies with 

the azimuthal coordinate, z. From this f1gure, it i, noticed that the 

fluid with the highest value for viscosity, diethyle11e glycol, has the 

larae•t variation in velocity between the top and the bottom of the 

fluid column while the fluid with the lowest value f~r vircoaity, water, 

has the least variation in velocity, This implies that fluids with low 

value• of viacoeity are better able to foll.ow t;he motion of the tu'be 1 

or, in other words, fluids with low fluid viscosities will have the 

leaet variation between the velocity of the surface and the velocity of 

the bottom of the tube. 

Figure (20) is a plot of the azimuthal velocity amplitude ae a 

function of the frequency. From this figure', it can be seen that the 

azimuthal velocity amplitude is essentially a linear function of tbe 

frequency. 111. 

Figure (21) is a sketch of the azillluthal velocity profile as a 

function of the radius for different instants of one period. The 

magnitude• of the velocities in this figure are with respect to the 

motion of the wall. That is, the velocity profile in Figure (21) is as 

it would appear to an observer moving with the same velocity as the 

wall. 

Althouah the radial velocity amplitude is at least three orders 

of masnitude less than the azillluthal velocity amplitude. it was 

decided to present those results since they could become important 

under certain conditions. For example, if the radius, R, was increased 
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by one order of magnitude and th,~ t'lui.d height, h, was decreased by ore 

order of magnitude, the radial veloietty amplitu,fo would be approximately 

one order of magnitude less than the azimuthal velocity amplitude. It 

is clear that under these conditions the radial velocity would be an 

important parameter. 

Figure (22) is a plot of the radial velocity amplitude as a 

function of the azimuthal coordinate, z. Besides showing the variation 

of the velocity amplitude with respect to z, it also shows the depen­

dence on the fluid viscosity. That is, the fluid with the hi-ghest 

value of viscosity, diethylene glycQl, will have the highest value of 

velocity amplitude and the fluid with the lowest value of viscosity, 

water, will have the lowest value for the velocity amplitude. All 

fluids with viscosi.ties between the abovrt -mentioned fluids will have 

values of radial velocity amplitude between the two curves in Figure 

(22). Figure (22) will be accurate'up to a value of z, which is not 

affected by the bottom of the tube. The exact position where the 

radial velocity is unaffected by tbe bot tom surf ace i.s undetermined. 

The reason for this uncertainty :i.s due to the linear independence of 

the Bessel Functions in the rad:i.al and azimuthal velocity equations. 

This independence means that the only way for both the radial and the 

azimuthal velocity equations to equal zero in the second part of the 

solution in Chapter IV is fo't the:l.r respective coefficients to equal 

zero. '!'his would mean that the cos: (ynh) and the sin (ynh) would both 

equal zero which is impossible. So the only condition that could be 

satisfied at the tube bottom was for the azimuthal veloc.ity to equal 

zero. But, this i:lhould not be taken to mean that it is physically 

impossible to sathfy both '7elodty conciitil'.HUt at tha bottom of the 
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tube. This could probably be realized by a consideration of nonlinear 

terms in the origina.". differential. This would result in functions 

which are no longer linearly independent. The assumption of the. exist­

ence of these functions does not imply t~at they can be found. It is 

more likely that only numerical solutions are practical. 

Figure (23) shows how the radial velocity amplitude will vary with 

the frequency. Again, it should be noticed that the more viscous 

fluids will have larger values of radial velocity than the less 

viscous fluids. 

Figure (24) is a plot of the radial velocity profile of diethylene 

glycol as a function of the radius, r, for different instants of one 

period. From the figure, it is observed that the radial velocity wil.1 

increase in magnitude up to a value of·r which is very close to the 

wall. ·1t then decreases very rapidly to a value of zero at the wall. 

For diethylene glycol at~• 400, the maxil!lum value for the radial 

velocity occurs at r • .0.97 inch. This maximum radial velocity will 

occur at different values of r for different fluids. This fact can be 

seen by inspecting Eq. (IV-67). From that equation, it is noticed that 

the second and the third term within the brackets contain an exponential 

term 

which makes the.above two terms negligible for all values of r less than 

about 0.95 inches for the fluids considered in this study. For values 

of r greater than 0.95 inches, the exponential term will approach unity 
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thereby making the second and thi.rd terms of Eq. (IV-67) important. In 

fact, when r is equal to the radius of the tube the sum o.f the second 

and third terms of Eq. (IV-67) will be equal to the first term of that 

equation, thereby making the radial velocity zero at the wall. For 

values of r between 0.95 inch and 1 inch, the exact position of t;he. 

maximum rad~al velocity will also be dependent on the frequency,~, 

and the viscosity, v •. That is, the position of the maximum radial 

velocity can be moved closer to the wall by either increasing the value 

of w or by decreasing the value of v. Table III gives the appro~imate 

position of the maximum radial velocity for all the fluids considered 

at a frequency of 400 radians per second. 

TABLE III 

POSITTnw OF MAXIMUM RADIAL VELOCITY 
A' w • 400 RADIANS PER SECOND 

Water ,,..;; 70% Eth. Gly._...§._0% Dieth. GlL_ __ Et~_glI• 

>U.99 
inch 

0.99 inch 0.98 inch 0.98 inch' 

Dimensionless Analysis 

_Dieth. G!x. 

0.97 inch 

Due to the complexity of the derived equations in Chapter IV, it 

was decided to use a dimensionless analysis treatment on the results 

obtained to see if a simplified relationship could be derived which 

would adequately describe the pressure conditions within the tube. 

rrom the derivations of Chapter IV, it can be stated that the 

negative pressure amplitude will be a linear function of the azimuthal 

coordinate, z, and unknown functions of the input acceleration, 8bJ2 , the 

fluid density, p, the fluid viscosity,µ, and the tube radius. R. Under 
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this assumption. tbe negative pressure amplitude equation will have the 

following form: 

For any form of the unknown function f, the following relationship 

must be satisfied: 

For dimensional homogeneity, the exponents· of 1'•, L and T on both sides 

of the equation must be the same: 

Fr 1 ... b + C 
' 

L: -3 .,. a - 4b - 2c + d, 
and 

T: 0 • -2a + 2b + c 

When the above simultaneous equations are solved 

and the solution is 

a ., 1 + .2. 
3 • 

b • 1 +~ 3 • 

-2d -3 • C ... 

d - d • 

P • pa,.2z f ( (a•.2)1/3, ! 2/3 • R) 

Since the answer obtained by dimensional analysis will always have an 

unknown function that must be determined experimentally, the equation 
! 
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can be assumed to be of the following form: 

d/3 
p _ _,._ = C 

?. 
paw 

(.£l 
. .} (Vl-1) 

z 

2 Eq. (Vl-1) states that at a height z and for a given input aw• Pis the 

negative pressure amplitude of the fluid, assuming that the initial 

pressure of the fluid is zero. But at a height z, the fluid will have 

an initial pressure greater than the ullage pressure by the amount 

pgh. This additional pressure is due to the weight of the fluid 

column above the position z. Now, if it is assumed that the ullage 

pressure is zero, Eq. (Vl-1) can be rewritten in the following form: 

P 2 ( aw
2 

R.3. ·) = paw Z C 7 
d/3 

- pgh ' 
(Vl-2) 

or in dimensionless form 

p 
= 

d/3 

- ...&...} .!. 
aw2 h 

(Vl-3) 

Before an attempt is made to correlate Eqo (Vl-3) with the ,xperimental 

results, it would be wise to consider the effect of the variables wand 

µ on the negative pressure amplitude. From Figure (18) it appears 

that the constants in Eqo (Vl-3) should be evaluated for fluids with 

viscosities less than 10 cp$ and for fluids with viscosities greater 

than 10 cp. since the slope of the curve changes rather abruptly in 

that region. 



Figure (25) is a plot of the dimensionless negative pressure 

2 amplitude, P/paw h, as a function of the frequency, Wo From this 

figure it is noticed that the slope of the curve changes rather 

abruptly in a region around 150 radians per second. Thus, it seems 

logical that the constants c and d/3 should be determined in each of 

the four regions listed below: 

and 

(a) w <150, µ <10 

(b) w <150, µ >10 

(c) w >150, µ <LO 

(d) w >150, µ >10 

• 
• 
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When the results of the present analysis are fitted to Eq. (Vl-3) 

by the least squares method technique, the following values for d and 

care obtained: 

\.I < 10 
w < 150: 

\.I > 10 

µ < 10 
w >150: 

µ > 10 

C • 0,9014 
d • 0.0198 

C 1111 0.8306 
d • 0,0396 

C • 009022 
d • 0,0198 

C • 0,957 
d • 0,01398 

• 

• 

• 

Figure (26) compares the results obtained from Eq. (Vl-3) with the 

rasults obtained from the equations of Chapter lV. 

From the figure mentioned above, it is noticed that the dimen-

sional analysis approach yields an equation which gives a good 
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apprc:.-.JJnation for the :1egative pressure amplitude values for the fluids,: 

under investigation. But before this equation can be applied to other,· 

situations. it should be compared with the results obtained from fluids 

wf.th viscosities larger than 35 centipoise and from fluids in.containers 

with radii both larger and smaller than one inch, 

The plots presented in this chapter give a clear picture of the 

dependen~e of the pressure. azimuthal velocity and radial velocity on 

the spatial coordinates. the frequency and the fluid viscosity, Though 

the plots are drawn for the spec:l.;f ic problem outlined at the end of 

Chapter rv. the equations of Chapter IV are general and can be applied 

to any problem which satisfies the given initial conditions and the 

governing equations, 

When an approximate solution is desired, Eq, (VI-3) may sive an 

adequate answer, But when sreater accuracy is desired, the equations 

of Chapter IV should be used, 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

A general, straight-forward, analytical procedure has been 

presented which predicts the pressure field and the velocity field 

within a fluid-filled vibrating cylindrical tub.e. The procedures 

developed can be applied to problems that are defined by a cylindrical 

coordinate system with angular symmetry. Although the solution is 

developed for problems with small vibrational amplitude and frequency, 

the method used in obtaining this solution is straight-forward and can 

be applied to problems with large values for amplitude and fr•quency. 

From the charts of the previous chapter, it is noticed that 

cavitation is most likely to occur at or near the bottom of the tube 

since the negative pressure is greatest there. It should also be 

noticed that the nega·tive pressure amplitude will decrease for a 

decreasing value of viscosity. In fact, for fluids with small values 

of viscosity the negative pressure amplitude decreases much more 

rapidly as the viscosity is decreased than for fluids with large 

values of viscosity. The precise value where this transition occurs 

cannot be stated, since it occurs over a range of viscosity values, 

but it is felt that 10 centipoise is a representative rumber. 

Since cavitation and its subsequent cavitation damage can be 

reduced by selecting a fluid with maximum difference between tensile 

scx~ngth and negative pressure for a given input condition, this 
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study demonstrates that this is equivalent to selecting a fluid of high 

tensile strength and low viscosity. For example, in the fluids investi­

gated in this study, water had the highest value of surface tension 

and the lowest value of viscosity. Thus, of the five fluids considered, 

water would be the least likely to cavitate. 

A graphical presentation of the azimuthal and radial velocity 

profiles has been given, These charts present a clear picture of the 

velocity variations with respect to the azimuthal coordiaate, the 

radius and the frequency, The only discrepancy occurred in the radial 

velocity vs. z plot where a finite value for the radial velocity 

·1 

amplitude at the tube bottom is shown. Physically, the radial velocity 

amplitude should equal zero at the tube bottom. But due to the lack of 

linearly independent functions which would satisfy both the azimuthal 

velocity amplitude and the radial velocity amplitude at the.tube bottom, 

only the azimuthal velocity amplitude was satisfied at that point. 

This has already been explained in the previous chapter. 

A simplified pressure equation was obtained using the dimensional 

analysis technique, This equation agrees with the values obtained 

using the equations of Chapter IV but it should be compared with more 

experimental results so that more accurate values of the constant, c, 

and the exponent, d, can be obtained, 

A computer program has been written which can be used on machines 

which will accept the IBM 1620. Fortran notation without Format. In 

addition to printing the results on the IBM printer, it will also punch 

the results on IBM cards so that the plot programs listed in Appendix B 

can be used if so desired. 



To conclude this study 1 a discussion of possi~le future investi­

gations follows. 
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A natural extension to the present study would be to include the 

effect of angular dependence. That is 1 non-circular cylindrical 

containers could be used in the testing. This angular dependence 

should present no great problem in that the techniques used in the 

present study can be used for this study. Another area that should be 

investigated is that of elastic walled C!linders, This problem has 

received some attention in that the wall was thought to act like a 

series of isolated oscillating hoops. The underlying assumption in 

this method is the fact that the motion is purely radial, In a real 

situation the wall may move in a radial, azimuthal and angular 

direction with the respective motions being dependent on each other, 

It would be very interesting to incorporate this movement of the wall 

as a boundary condition for the equations of motion to see what effect 

this movement has on the pressure and the velocity of the fluid. 

A multiple-axis vibration .test of a fluid-filled cylindrical tube 

would be interesting in that it could be determined if the different 

inputs would have the effect of adding to one another 1 subtracting from 

one another 1 or if they are completely independent of one another. 

Another area of future study would be to obtain a solution that 

would satisfy the condition of zero velocity ·.for both the radial and 

the azimuthal velocity at the tube bottom, As has been discussed 

previously 1 this would probably necessitate the use of a numerical 

-1:1olution. 
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APPENDIX A 

SUPPLEMENT TO CHAPTER lV 

The purpose of this Appendix is to supplement the derivations of 

Eq. (1v .. s6:. from Eq. (lV-31), Eq. (lV-59) from Eq. (lV-52), Eq. (lV-64) 

from Eq. (lV-63) 9 and Eq, (lV-67) from Eq. (lV-54) with the steps that 

are necessary for a smooth transition between the above mentioned 

equations. 

Derviation of Eq. (lV-56) 

The complex part of the first term on the right .. hand side of 

Eq. (JV •31) is 

sinh :£. z 
A+ iB •4 1 

Ii ' 
cosh - h 1 

where A and Bare the real and the imaginary parts of the above 

equation, 1 equals 

1 • 

and 

The principle root of fK is 

c2 
-i­

lAIV 
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' 

(A-1). 



where 

-

-4"1 
KK 

-1 ea tan 

and K is the complex conjugate of K, 

The principle root of 1 is 

Exp (1 t) 
' 

• 

J; 
l • -w/'V 

1T Exp (-1 4) 

From Eq, (A-2) and Eq, (A-3) the term 

the following form: 

,_ ( :~) 1/4 

The real part of Eq, (A-4) is· 

1/2 

and the imaginary part is 

v'K y- can be written in 

Exp c! + .!.>) 2 4 

( 
- a. 2 ) 1/2 

IK K: n 
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(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

Within the limitations of the defined problem, it can be stated that 

a.2« ! 
n \J 

(A-7) 

Under the simplifying assumption of Eq, (A-7), Eq, (A-5) and Eq. (A-6) 

take the following form: 
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R • 0 (A-8) 

and 

1 ' Cl) ·-' C • · (A-9) 

Eq, (A•l) can now be written aa 

' I.II 
•:l.nh i - z 

C 

A+ ii• i L 
C 

coah 1 ~. h 

Th• real part of the abovaeq~tion ii 

' ··-· c. 

aiD ~ Z 

co• IIL h 
C 

• (A-10) 

(A•ll) 

aad a:l.11c• ~ . cc 1 for all 1o11 and c, Eq, (A•ll). can be rewritten aa 

A• ·(f) 2 
z • 

lq, (A•12) ia uaed to obtain Bq, (lV-56) from Bq, (1V•31)~ 

To 1how the equ:l.val1nc1 betw1en th• first two terms of Bq, 

(1V•31) all that ii nece1aary ia to ahow that th• rial and the 

i•1i11ary part, of th• 1eco11d term are equal to the real and the 

i•ainary part, of Bq, (A-10), 

Th• coaplex part .of the 1econd ter• on the right-hand aide of 

lq, (1V•31). :I.I 

C + iD • Cl. 
1 

ainh 1· Z 

coah IT h 
1 

• 

(A•l2) 

(A-13) 
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where C and Dare the real and the imaginary parts of Eq. (A-13). The 

principle root of l"'K is 

./Y • 

where 

41-::: 
,.J K lC 

-1 e • tan -

The principle root of 1 is 

Exp (1 t) 

• 

From Eq. (A•l4) and Eq. (A•lS), an equation •imilar to Eq. (A-4) 

can be writtens 

1/4 

q.. (~) 
The real part of the above equation 1• 

and 

R.'. w 
C 

kp ( l (t - t)). 

1/2 

and Eq, (A-18) can be written in the following forma 

R' • 0 

and 

(A•lS) 

(A•l6) 

(A-17) 

(A-18) 

(A-19) 



l' • - ~ 
C • 

The abo.ve tw, equations. allow Eq, (A-13) to be written in the 

followina form: · 
sinh 

. CAI 
·(-i -

C 

C + 1.D • -i !. 
C 

c;osh CAI 
(-i -

C 

The above equation can be rewritten aa 

C+iD•iA 
C 

sinh (i ~ Z) 

cosh (i !6!. h) 
C 

Z) 

• 
h) 

• 
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(A-20) 

(A~21) 

(A-22) 

·which is identical with Eq, (A-10) and the equivalence between the 

two terms of Eq, (lV-31) is proved, 

Derivation of Eq, (lV-59) 

The complex part of the first term on the right-hand side of 

Eq, (lV-52) can be written as 

(A-23) 

where E and Fare the real and the imaginary parts of the above 

equation ancl DENOM ia defined in Chapter lV, The term t 1 is 

I 2 Cl) 

t1 •,.Jyn +iv' 

which can be approximated by 

2 . since e ia much laraet than yn _for all values of yn , Eq, (A-24) 

can be written in the following form: 



where only the principle root, is considered. The term s1 can be 

approximated by 

since 

and 

for all values of y. 
n 
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(A-25) 

(A-26) 

From Eq. (A-25), the modified Bessel Functions can be written in 

the following form: 

11 (t1) '"' beii ,J t - i ber1 ,J t (A-27) 

and 

+ i bei$ (A-28) 

To simplify the arithmetic calculations. the following symbols will be 

used for the ber and the bei functions: 

a • ber1 ,Jt • 

b = bei1 ,)"if" • 
1 

c = ber ,J~' 
\J t 

d = bei ~!! 
\) 

and 

f -,J~ (A-29) 
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From the notation of Eq, (A-29), Eqe (A-21) can be written in the 

following form: 

where 

and 

E + iF = b.- ia 
M "'. iN 

N = a y 1 (y) + fcl1 fYJ) + fdl1 (y0 ) n o n ,n 

The real part of the above equation is 

(A-30) 

(A-31) 

For large values of Eq, (A-29) can be written in the following 

form: 

+ l'!!:.) 8 • 

l'!!:. ) 8 • 

C • b 

and 

d = - a (A-32) 

When the above approximations are substituted into Eq. (A-31), the 

following equation results: 

(A-33) 
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The second term on the right-hand side of Eq. (lV-52) can be 

written in the following form: 

G + 1H • (A-34) 

If the same procedure as was used before is used on Eq. (A-34), it is an 

easy task to show that the real part of Eq, (A-34) is the same as 

Eq, (A-33), Since G is equal to E, the two terms on the right-band side 

of Eq. (lV-52) can be combined. The resulting equation is Eq. (lV-59). 

Derivation of Eq, (lV-64) 

.The second term on the right-hand side of Eq. (lV-63) can be 

written as 

J + iK • • (A-35) 
M - .u 

where the notation of Eq. (A-29) is used and where t 1 equals 

,J-IU · W 
t .,Ji; + i -1 2v 2v 

The first term in Eq. (lV-63) is similar to Eq. (A-23) and is not 

included in this analysis. 

Since tr is a large number, greater than 100 1 for all values of 

r used, a good approximation for 10 (tr) can be written: 

( a1n{,J~ r +~) 

- i cos~ r (A-36) 
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When Eq. (A-36) is substituted into Eq, (A-35), the following equation 

for J results: 

J ·(~ sin(-JF. r +¥-) + 

NUM2 
DEN 

cos(£.,,, + ~)) E!P(~~·r::2) 
2v 8 r;-

The above equation is used to obtain Eq. (lV-64) • 

If the term 

T • Ii:: -1 ~ 2 "1Tv "12·v 

(A-37) 

is used in the above analysis, an equation similar to Eq. (A-37) will 

be obtained, 

Derivation of Eq, (lV-67) 

The first part of Eq. (lV-66) is similar to Eq, (A-23) and the 

second part can be written in the following form: 

where the notation of Eq, (A-29) is used, The term t 1 will be used in 

this analysis but it should be remembered that the final result will be 

the same for t 2 , 

The term for the modified Bessel Function is 
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- i cos (Ji; r + ; ) ) . (A-39) 

When Eq, (A-39) is substituted into Eq, (A-38), the following equation 

for L results: 

L • Wi... ,-~t 2w 

NUMl - NUM2 
DEN 

) Exp(~~ (r-1)) 

cos (,J!v (r-1)) 
Ir 

The above equation is used to obtain Eq, (lV-67) from Eq, (lV-66), 

(A-40) 



APPENDIX B 

SOLUTION PROGRAM AND. PLOT PROGRAMS FOR 

PRESSURE• AXIMUTHAL VELOCITY AND 

RADIAL VELOCITY EQUATIONS 

In this appendix.·a complete· listing of the program for the 

solution of the pressure equation. the azimuthal and radial velocity 

equations is given in IBM 1620 Fortran notation without Format along 

with programs which present the output data in graphical form by 

using the IBM·l627 plotter. The listing is supplemented with physical 

· definitions of the quantities called for as input data and those 

received as output data, 

Program for the Solution of the Pressure 

and Velocity Equations 

Before any reference is made to the program listing. the Fortran 

quantities defined below sho\.O.d be read, 

(a) BO • Bessel function of zeroth order. 

(b) B1. • Bessel function of first order. 

Cc) BMO • modified Bessel function of zeroth order. 

(d) BM1 • modified Bessel function of first order, 

(e) BMR • modified Bessel function of zeroth order whose 

argument is a function of the radius. 
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(f) BMR.l = modified Bessel function of first order whose argument 

is a function of the radius. 

(g) SR = roots of equation (IV-23). 

(h) W = circular frequency (rad./sec). 

(i) Z = azimuthal coordinate (inches). 

(j) R = radial coordinate (inches), 

(k) PRES = maximum negative pressure experienced by the fluid (PSI), 

(1) VR = maximum radial velocity experienced by the fluid 

(n) RHO 

(o) H 

(p) GNU 

(q) G 

(r) A 

(inches/second). 

= ma1imum ~zimuthal velocity experienced by the fluid 

(inches/second), 

= density of the fluid (lbm/ft3). 

= height of the liquid column (inches). 

= inverse of the fluid viscosity (sec/inches2). 

= acceleration due to gravity (inches/sec2). 

= amplitude of the tube (inches), 

All of the above quantities are floating point numbers and must 

be defined with a decimal point. 

The solution program in Fortran notation is given i~ the following 

three pages. 

Plot Programs for the Output Data from the 

Pressure and the Velocity Equations 

The following two definitions are needed before reading the 

listings of the plot programs. 



PROGR.Ml LISTING 

DIMENSfON B0(30,6J,Bl(l501,BMO(lll,BM1Cll),BMR(ll,6) 
1SR(150) 

DIMENSION WC8),Z(ll),R(7),PRES(8,ll,7),VRC8,ll,7) 
1VZC8,11,7) 

DIMENSION BMRl(ll,61 
READ 3,((90(N,NR),N=l,301,NR=l,6) 
READ.3,(Bl(Nl~N=l,150) 
READ 4,CBMO(M),M=l,11) 
READ 4,CBMl(Ml,M=l,111 
READ 3,CSR(Nl,N=l,1501 
READ 3,((BMR(M,NRl,M=l,11),NR=l,6) 
READ 3;C(BMR1(M,NR),M=l,lll,NR=l,61 
READ 11,(W(Kl,K=l,8) 
READ 11,(Z(Kl),Kl=l,ll) 
READ 11,CR(K2),K2=2,7) 

100 READ 1,A,RHO,H,GNU,G,AA,AB,AC,AD,AE,AF 
PUNCH 14,AA,AB;AC,AD,AE,AF 
PUNCH 15,A,RHO,H,GNU 
PRINT 19~ AA,AB,AC,AD,AE,AF 
PRINT 20, A, RHO, H, GNU 
R(l) =O• 
Al=SQRTF<GNU/2.) 
DO 80 K=l,8 
PRINT 7,W(K) 
AP=A*RHO*W(K)**2/333849e6 
DO 90 Kl=l,11 
PRINT 8, Z!Kll 
PRINT 12 
PO=O. 
PAA=Z(Kll*(-2.1 
P2=RHO*Z{Kll*(G+A*W(K)**21/667699e2 
DO 150 N=l,150 
P = PAA /(SRCNl*Bl(N)I 
PO=P.O+P 

15(· CONTINUE 
XM:O. 
Pl:O, 
DO 160 M=l,11 
XM=XM+J. 
GN=((2,*(XM-1.l+lel/2.)*3•14159JH 
S=<~l•**(M+lll*COSF(GN*ZCKl))/(H*SINFIGN*ZCKlill 
T=Al*SORTF(WCKll*BMl(M)-GN*BMO(M) 
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U=SINF(GN*Z(Klll*(-2•1 
X=JGN*BMOCM))**2+GNU*W(K)*BMl(M)**2-2•~GN*Al*SORTFfW(K)J 

l*BMO(Ml*BMl(MI 
P= C S*.T*U I IX 
Pl=Pl+P 



PROGRAM LISTING - continued 

160 CONTINUE 
PRES(K,Kl,l)=AP*(PO+Pl)+P2 
VZ(K,Kl,1) = A*W(KJ*(PO/Z(Kl)tPl) 
VR ( K, K 1, 1 J = 0 • 
PRINT 9,R(l),PO,Pl,PRESCK,Kl,lJ,P2 
NR=O 
DO 110 K2=2,7 
NR=NR+l 
PA=O. 
DO 50 N=l,30 
P=PAA*BO(N,NR)/(SR(N)*Bl(N)) 
PA=PA+P 

50 CONTINUE 
PAl=O. 
BMUD = O. 
XM=O. 
DO 60 M=l,11 
XM=XM+l. 
GN=CC2e*CXM-l.l+lel/2.)*3•14159/H 
S=(-1.**CM+l)}/(H*GN) 

124 

T=Al*SORTFCW(Kll*BMl(M)-GN*BMOCM) 
UA=BMR(M,NRl*SINFCGN*ZCKll)*(-2.) 
X=CGN*AMOCM)l**2+GNU*WCK)*BM1(M)**2-2•*GN*Al*SORTF(W(K)) 

l*eMO(M)*BMlCMl 
BMUD = GN * BMRl(M,NRl/BMR(M,NR) 
P=CS*T*UA)/X 
PAl=PAl+P 
Pl=GN*COSF(GN*Z<KllJ*P/SINF(GN*Z(Kl)) 
PA2=PA2+Pl 
BARF=P*BMUD 
BARFl=BARFl+BARF 

60 CONTINUE 
VZ(K,Kl,K2l=A*W(K)*CPA/Z(KlltPA2J 
VRCK,Kl,K2 )=A*WCKl*BARFl 
PRESCK,Kl,K2l=AP*(PA+PA1)+P2 
PRINT 9,R(K2),PA,PA1,PRES(K,Kl,K2l,P2 

110 CONT I NUE 
.PUNCH 13,PRES(K,Kl,ll,PRES<K,Kl,2l,PRESCK,Kl,3l, 
1PRESrK,K1,41,PRES(K,K1,s1,PRES(K,K1,6),PRES(K,K1,1),K,K1 

90 CONTINUE 
80 CONTINUE 

PRINT 18 
PRINT 19, AA,AB,AC,AD,AE,AF 
PRINT 20, A, RHO, H, GNU 
DO 61 K=l,8 



PRINT 7,WCK) 
DO 62 Kl=l,11 
PRINT 8, Z(Kl) 
PRINT 21 

PROGRAM LISTING - continued 

PUNCH 16, VZCK,Kl,l),VZ(K,Kl,2),VZ(K,Kl,3),VZ(K,Kl,4), 
lVZ(K,KI,5),VZ{K,Kl,6),VZ(K,Kl,7),K,Kl 

PUNCH 17, VRCK,Kl,I),VRCK,Kl,2),VRCK,Kl,3),VR(K,Kl,4), 
lVR{K,Kl,5),VR(K,Kl,6),VR(K,K1,7),K,Kl 

DO 63 K?.=1,7 
PRINT 22,RCK2),VRCK,Kl,K2),VZ(K,Kl,K2l 

6'.:\ CONT I NlJE 
62 CONTINUE 
61 CONTINUE 

1 FORMAT (5Fl0.0,6A3) 
3 FORMAT (6C3X,Fl0.0)l 
4 FORMAT {7FlO.O) 
7 FORMAT (14H OMEGA EQUALS ,F7e2//) 
8 FORMAT (12H Z EQUALS ,F7e2//) 
9 FORMAT (15X,F6.3,3( 9X,E14.8),10X,E14.8) 

ll FORMAT C6F10.0l 
12 FORMAT (15X,6HRADIUS,16X,2HP0,21X,2HP1,16X,13HMIN. 

1 PRESSURE,11X,13HMAX. PRESSURE//) 
13 FORMAT (7E10.4,4x,12,2x,I2) 
14 FORMAT (14H OUTPUT FOR ,6A3) 
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15 FORMAT (7H A= ,F6.4,8H RHO= ,F8.4,6H H = ,F5el,8H 
1 GNU = ,F9•4) 

16 FORMAT C7El0e4,4H VZ ,I2,2X,I2) 
17 FORMAT (7El0.4,4H VR ,I2,2X,I2) 
18 FORMAT (51X,19HlMAXTMUM VELOCITIES//) 
19 FORMAT (14Hl OUTPUT FOR ,6A3l 
20 FORMAT (6H A= ,F10.3,6X,7H RHO= ,F10.3,6X,5H H = , 

1Fl0.3,6X,7H GNU= ,Fl0.3,//) 
21 FORMAT (15X,nHRADIUS,16X,6HRADIAL,23X,lHZ//) 
22 FORMAT (15X,F6•3•12X,El4•8,13X,El4•8l 

GO TO 100 
END 
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(a) CHAR • subroutine instructing the pen on the IBM 1627 plotter 

to write. 

(b) PLOT • subroutine instructing the pen on the IBM 1627 plotter 

to move to a specified location .• 

These programs are included so that an investigator who desires 

only a pictorial representation of how the pressure and the velocity 

vary with respect to the spatial coordinates can utilize these plot 

programs and save much time over doing it himself. 

In Fortran notation. the six-plot programs are given in the 

following twelve pages. 



PLOT PROGRAM FOR RADIAL VELOCITY VS. r 

DI MENS I ON PRES ( 6 ) , R C 6 l , Z ( 6 ) 
READ ll,(RCK2J,K2=1,6J 
READ 34,CZ(Kll,Kl=l,6) 

25 READ 5, AA,AB,AC,AD,AE,AF,AG 
~ FORMAT (14X,7A3l 
9 FORMAT (6El0.4) 

11 FORMAT (6FlO.O J 
34 FORMAT (6CF6.2,6Xll 

DO 40 K 1 = 1, 6 . 
IC= 101 
XMIN=O. 
XMAX=l• 
XL=5.0 
XD= • 2 
YMIN= LOGF(.00001) 
YMAX= LOGF (1.) 
YL=lO. 
YD= LOGF (10.) 
CALL PLOT CIC,XMIN,XMAX,XL,XD,YMIN,YMAX,YL,YD) 
CALL PLOT (99) 
CALL PLOT (90, .4 , LOGF (.0000071)) 
CALL CHAR co,0.1,0) 

17 FORMAT (lOHR - INCHES) 
CALL PLOT (90,.175, LOGF C.000006)) 
CALL CHAR (8,0.1,0,AA,AB,AC,AD,AE,AF,AG,Z(KllJ 

16 FORMAT (7A3,5H Z =,F6.2l 
DO 26 K=l,8 
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READ 9, PRESC1l,PRES(2),PRES(3),PRES(4),PRESC5l ,PRES(6) 
DO 27 K2=1,6 
CALL PLOT (0,R(K2l ,LOGF CPRES(K2))) 

27 CONTINUE 
CALL PLOT (99) 

26 CONTINUE 
CALL PLOT (90,-el, LOGF (l.)l 
CALL CHAR (0,0.1,01 

?) FORMAT (5H J.l 
CALL PLOT C 90 ,-el, LOGF ( • l J l 
CALL CHAR C0,0.1,0) 

4? FORMAT (5H .lJ 
CALL PLOT (90,-.12, LOGF (.0009)) 
CALL CHARVC0,0.1,11 

41 FORMAT (21HRADIAL VELOCITY - !PSI 
CALL PLOT (90,-el, LOGF (.QI)) 

CALL CHAR (0,0.1,0) 
41 FORMAT (5H .01) 

CALL PLOT (90,-.1, LOGF (.001)) 
CALL CHAR (0,0.1,0) 
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RADIAL VELOCITY VS. r - continued 

44 FORMAT (5H .001) 
CALL PLOT (90,-.1, LOGF (.OOOll) 
CALL CHAR (0,0.1,0) 

45 FORMAT ( s·H.0001 l 
CALL PLOT (90,-.12,LOGF (eOOOOl)) 
CALL CHAR co,0.1,0,· 

4(, FORMAT (6He00001) 
CALL PLOT (90,-.01 ,LOGF I• 0000083 l ·, 
CALL CHAR CO,C.1,0l 

18 FORMAT (2HO.) 
CALL PLOT (90,.175, LOGF , .0000003,, 
CALL CHAR co,0.1,0, 

31 FORMAT (2He2) 
CALL PLOT (90,-375, LOGF ( • 0000083) l 
CALL CHAR ( O , 0 • 1 , 0 l 

19 FORMAT (2He4) 
CALL PLOT (90,.575, LOGF 1.ooooos3i, 
CALL CHAR (0,0.1,0) 

32 FORMAT (2He6) 
CALL PLOT (90,.775, LOGF 1 .oooooa3, i 
CALL CHAR (0,0.1,0) 

33 FORMAT (2He8) 
CALL PLOT (90,.995, LOGF (. 0000083 l ) 
CALL CHAR C O , 0 • 1 , 0 l 

3"i FORMAT (3Hl.O) 
DO 70 N = 1,2 
CALL PLOTC7) 

70 CONT I l'HJE 
40 CONTINUE 

GO TO 25 
FND 



PLOT PROGRAM FOR AZIMUTHAL VELOCITY VS, Z 

DIMENSION PRES(6), 2(6) 
READ 34,(ZCKl),Kl=l,6) 

25 READ 5, AA,AB,AC,AD,AE,AF,AG 
5 FORMAT (14X,7A3) 
o FOR~AT (50X,E!Oe4) 

34 FORMAT C6CF6.2,6Xl) 
1(=101 
XMIN=ll• 
XMAX=3le 
XL=5.0 
XD=4. 
YMIN=2• 
YMAX=22.• 
YL=lO. 
YD=2. 
CALL PLOT CIC,XMIN,XMAX,XL,XD,YMIN,YMAX,YL,YD) 
CALL PLOT (99) 
C~LL PLOT 190, 19. ,1.395) 
CALL CHAR 10,C.1,0l 

17 FORMAT (lOHZ - INCHES) 
CALL PLOT (90,14.5,1•121 
CALL CHAR (7,0.1,0,AA,AB,AC,AD,AE,AF,AGl 

16 FORMAT (7A3,10H R = 0.95) 
DO 26 K=l,8 
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READ 9, PRES<1),PRES(2),PRES(3),PRES(4),PRES(5),PRES(6) 
DO 27 Kl=l,6 
PRES(Kl) = -PRES(Kl) 
CALL PLOT (0,ZCKll,PRES(Kl)) 

27 CONTINUE 
CALL PLOT (99) 

2~ CONTINUE 
CALL PLOT (90, 9.,21.975) 
CALL CHAR C0,0.1,0) 

21 FORMAT (4H 22.) 
CALL PLOT (90, 9~,17.975) 
CALL CHAR C0,0.1,0) 

22 FORMAT (4H 18.) 
CALL PLOT (90, 9.,9.975) 
CALL CHAR (0,0.1,0) 

30 FORMAT (4H 10.l 
CALL PLOT (90, 8.6, 9.8~ 
CALL CHARV(0,0.1,1) 

41 FORMAT {24HAZIMUTHAL VELOCITY - IPS) 
CALL PLOT (90, 9.,13.975) 
CALL CHAR C0,0.1,0) 

23 FORMAT (4H 14.) 
·CALL PLOT (90, 9.,5.975J 



AZIMUTHAL VELOCITY VS. Z - continued 

CALL CHAR (0,0.1,0) 
24 FORMAT (4H 6.) 

CALL PLOT (90, 9.,1.975) 
CALL CHAR <0,0.1,0) 

2f. FORMAT (4H 2.) 
CALL PLOT (90,10.80,1.66) 
CALL CHAR (0,0.1,0) 

18 FORMAT (3Hlle) 
CALL PLOT (90,14.8,1.66) 
CALL CHAR <0,0.1,0) 

31 FORMAT (3Hl5e) 
CALL PLOT (90,18.8,1•66) 
CALL CHAR (O,O.l,Ol 

19 FORMAT (3Hl9.) 
CALL PLOT (90,22e8,le66) 
CALL CHAR co,c.1,01 

32 FORMAT (3H23.l 
CALL PLOT (90,26.8,1.66) 
CALL CHAR (0,0.1,0) 

33 FORMAt C3H27.) 
CALL PLOT (90,30.8,le66l 
CALL CHAR <0,0.1,0) 

35 FORMAT C3H3lel 
CALL PLOT(7) 
PAUSE 
GO TO 25 
END 

130 



PLOT PROGRAM FOR AZIMUTHAL VELOCITY VS, r 

DIMENSION PRES(6) ,R(6l ,Z(6) 
READ ll,(R(K2),K2=1,6) 
READ 34,(Z(Kll,Kl=l,6) 

.25 READ 5, AA,AB,AC,AD,AE,AF,AG 
5 FORMAT (14X,7A3) 
9 FORMAT !6El0.4) 

11 FORMAT (6Fl0.0 
11 FORMAT (6Fl0.0 ) · l 
34 FORMAT (6(F6.2,6X)) 

DO 40 Kl= 1,6 
PRINT 55, Z(Kl) 

55 FORMAT (6X,F6.2l 
IC=lOl 
XMIN=O• 
XMAX=l• 
XL=s.o 
XD=.l 
YMIN=2• 
Y~AX=22• 
YL =10 • 
YD=2. 
CALL PLOT fIC,XMIN,XMAX,XL,XD,YMIN,YMAX~YL,YD) 
CALL PLOT (99) 
CALL PLOT (90,-.010,1.661 
CALL CHAR (O,O.l,Ol 

18 FORMAT (2HO.) 
CALL PLOT (90, .35 ,l.395) 
CALL CHAR (0,0.1,0l 

1? FORMAT flSHRADIUS - INCHES) 
CALL PLOT· (90,.15,lel25) 
CALL CHAR (8,0.1,0,AA,AB,AC,AD,AE,AF,AG,Z<Klll 

16 FORMAT (7A3,SH Z =,F6.21 
CALL PLOT (90,.475,1.66) 
CALL CHAR (0,0.1,0l 

31 FORMAT (3H0.5) 
CALL PLOT (90,.975,1.661 
CALL CHAR (0,0.1,0) 

1~' FORMAT (3Hle0) 
DO 26 K=l,8 
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READ 9, PRES(ll,PRESC2),PRESC3l,PRES(41,PRESC5),PRES(6l 
)0 27 K2=1,6 
?RESCK2) = -PRES{K2) 
CALL PLOT (0,R(K2),PRES(K2)) 

27 CONTINUE 
CALL PLOT (991 

26 CONTINUE 
CALL PLOT (90,-.1,2le975l 



AZIMUTHAL VELOCITY VS. r - continued 

CALL CHAR co,0.1,01 
2] FORMAT C4H 22.l 

CALL PLOT. C90,-.J,17e975) 
CALL CHAR co,0.1,01 

22 FORMAT C4H 18.) 
CALL PLOT (90,-.1,13.975) 
CALL CHAR (0,0.1,0) 

23 FORMAT C4H 14.) 
CALL PLOT (90,-.12, 9.8) 
CALL CHARVfO,O.l,ll 

41 FORMAT (24HAZIMUTHAL VELOCITY - JPS) 
CALL PLOT (90,-.1,9.975) 
CALL CHAR (O,O.l,OJ 

30 FORMAT C4H IO.) 
CALL PLOT (90,-.1,5.975) 
CALL CHAR (O,O.l,Ol 

24 FORMAT (4H 6.) 
CALL PLOT (90,-.1,1.975) 
CALL CHAR co,0.1,01 

2A FORMAT C4H 2.1 
CALL PL0T(7) 
PAUSE 

40 CONTINUE 
GO TO 25 
END 
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PLOT PROGRAM FOR PRESSURE VS. Z 

DIMENSION PRES(6l, Z(6) 
READ 34,(Z(Kll,i<'.l=l,6) 

25 RFAD 5, AA,AB,AC~AD,AE,AF,AG 
5 FOR~AT (14X,7A31 
9 FORMAT (50X,EI0.4J 

34 FORMAT (6(F6.2,6X)) 
IC=lOl 
XMIN= 11& 
XMAX= 31. 
XL=5. 
XD= 4. 
YMIN=-1•5 
YMAX=28e5 
YL=IO. 
YD=3. 
CALL PLOT IIC,XMIN,XMAX,XL,XD,YMIN,YMAX,YL,YD) 
CALL PLOT /99) 
CALL PLOT (90, 9.2, 25.35) 
CALL CHAR IC,0.1,0J 

29 FOR~AT (4H25.5) 
CALL PLOT (90, 9.2, 19.35) 
CALL CHAR ro,0.1,01 

28 FORMAT (4Hl9.5J 
CALL PLOT (90, 8.6, 10.21 
CALL CHARV (O, 0.1, 1) 

75 FORMAT (23HNEGATIVE PRESSURE - PSI) 
CALL PLOT (90, 9.2, 13.35) 
CALL CHAR (0,0.1,0) 

2L FORMAT (4Hl3.5) 
C~LL PLOT 190, 9.2, 7.35) 
CALL CHAR (O,O.l,Ol 

30 FORMAT (4H 7.51 
CALL PLOT (90, 9.2, 1.35) 
CALL CHAR (0,0.1,0) 

?1 l='ORMAT (4H le5l 
CALL PLOT 190, 9.2,- .35) 
CALL CHAR (0,0.1,0) 

22 FORMAT (4H O.) 
CALL PLOT 190, 9.2,-1.65) 
CALL CHAR (0,0.1,0) 

23 FORMAT (4H-l.5) 
DO 26 K=l,8 
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READ 9, PRES(ll ,PRES(2) ,PRES(3) ,PRES(4) ,PRES(5) ,PRES(6l 
DO 27 Kl=l,6 
CALL PLOT (0,Z(Kl),-PRES1Kl)) 

27 CONTINUE 
CALL PLOT (99) 



PRESSURE VS. Z - continued 

26 CONTINUE 
CALL PLOT (90,19. , -2.385) 
CALL CHAR (0,0.1,0) 

17 FORMAT (lOHZ - INCHES) 
CALL PLOT (90,14.5, -2.a2> 
CALL CHAR (7,0.1,0,AA,AB,AC,AD,AE,AF,AG) 

16 FORMAT (7A3,8HR = 0.95) 
CALL PLOT (90,10.6 ,-1.996) 
CALL CHAR (0,0.1,0) 

18 FORMAT (3Hlle) 
CALL PLOT (90,14.6 ,-1.996) 
CALL CHAR C0,0.1,0) 

31 FORMAT (3Hl5.) 
CALL PLOT (90,18.6, -1.996) 
CALL CHAR (0,0.1,0) 

5r FORMAT (3Hl9.) 
CALL PLOT (90,22.6, -I.996) 
CALL CHAR (0,0.1,0) 

5? FORMAT (3H23.) 
CALL PLOT (90,26.6, -1.996) 
CALL CHAR (O,O.l,Ol 

54 FORMAT (3H27.J 
CALL PLOT (90,30.6, -1.996) 
CALL CHAR (0,0.1,0) 

55 FORMAT (3H31.) 
DO 70 N = 1,2 
CALL PLOTC7l 

70 CONTINUE 
GO TO 25 
END 
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PLOT PROGRAM FOR PRESSURE VS, r 

DIMENSION PRES(6) ,RC6l ,Z!6l 
READ ll,(R(K2),K2=1,6) 
READ 34,IZCKll,Kl=l,61 

25 READ 5, AA,AB,AC,AD,AE,AF,AG 
~ FORMAT C14X,7A3) 
9 FORMAT (6EI0.4) 

IJ FORMAT (6Fl0.0 ) 
3t FORMAT (6(F6.2,6X)) 

DO 40 Kl= 1,6 
IC=IOl 
XMIN= O. 
XMAX=l• 
XL=5. 
XD=.2 
YMIN=-1•5 
YMAX=28•5 
YL=IO. 
YD=3. 
CALL PLOT (IC,XMIN,XMAX,XL,XD,YMIN,YMAX,YL,YD) 
CALL PLOT (99) 
CALL PLOT (90,-.09,-1.65) 
CALL CHAR (O,O.l,Ol 

21 FORMAT (4H-I.5) 
CALL PLOT {90,-.09,- .35) 
CALL CHAR (O,O.l,Ol 

22 FORMAT (4H O.) 
CALL PLOT (90,-.09, 1.35) 
CALL CHAR (0,0.1,0) 

21 FORMAT (4H le5l 
CALL PLOT (90,-.09, 7.351 
CALL CHAR (0,0.1,0) 

30 FORMAT (4H 7.5) 
CALL PLOT (90,-.12, 10.2) 
CALL CHARV (0, 0.1, 11 

75 FORMAT (23HNEGATIVE PRESSURE - PSI) 
CALL PLOT !90,-.09, 13.35) 
CALL CHAR (0,0.1,0l 

24 FORMAT (4Hl3.5l 
CALL PLOT (90,-.09, 19.35) 
CALL CHAR (O,O.l,Ol 

28 FORMAT (4Hl9.5) 
CALL PLOT (90,-.09, 25.35) 
CALL CHAR C0,0.1,0) 

29 FORMAT C4H25.5l 
DO 26 K=l,8 
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READ 9, PRES(Il,PRES(2),PRES(3),PRES(4),PRES(5),PRESC6l 
DO 27 K2=1,6 



PRESSURE vs. r - continued 

CALL PLOT C0,RCK2),-PRESCK2)) 
27 CONTINUE 

CALL PLOT (99) 
26 CONTINUE 

CALL PLOT (90, •4 , -2.385) 
CALL CHAR (0,0.1,0) 

17 FORMAT (lOHR - INCHES) 
CALL PLOT (90,.175, -2.82) 
CALL CHAR rs,0.1,0,AA,AB,AC,AD,AE,AF,AG,ZCKl)) 

16 FORMAT (7A3,5H l =,F6e2l 
CALL PLOT (90,-.010,-1.996) 
CALL CHAR ro,0.1,0, 

18 FORMAT C2HO.) 
CALL PLOT (90,.175, -1.996) 
CALL CHAR co,0.1,0, 

31 FORMAT C3He2 ) 
CALL PLOT (90,.375, -I.996) 
CALL CHAR ro,0.1,0, 

50 FORMAT (3He4 ) 
CALL PLOT (90,.575, -1.996) 
CALL CHAR (0,0.1,0) 

5? FORMAT {3H.6 l 
CALL PLOT (90,.775, -1.996) 
CALL CHAR co,0.1,01 

54 FORMAT 13He8 ) 
CALL PLOT (90,.975, -1.996) 
CALL CHAR (0,0.l,Ol 

55 FORMAT (3Hl.O) 
DO 70 N = 1,2 
CALL PLOT(7) 

70 CONTINUE 
40 CONTINUE 

GO TO 25 
!:ND 
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PLOT PROGRAM FOR RADIAL VELOCITY VS. Z 

DIMENSION PRES(6),R(6),Z(6) 
READ 34,(Z(Kl),Kl,1,6) 

25 READ 5,AA 
25 READ 5, AA,AB,AC,AD,AE,AF,AG 

5 FORMAT (14X,7A3) 
9 FORMAT (6(10e4) 

34 FORMAT (6(F6e2,6X)) 
IC=lOl 
XMIN= lle 
XMAX= 31. 
X L=5 .o 
XD= 2. 
YMIN= LOGF( .00001) 
YMAX= LOGF ( 1 e) 
Y L=l O • 
YD= LOGF ( 10.) 
CALL PLOT (IC,XMIN,XMAX,XL,XD,YMIN,YMAX,YL,YD) 
CA LL PLOT ( 99) 
CALL PLOT (90, 19. , LOGF ( .0000071)) 
CALL CHAR (0,0.1,0) 

17 FORMAT (lOHZ - INCHES) 
CALL PLOT (90,14.5, LOGF (.000006)) 
CALL CHAR (7,0.1,0,AA,AB,AC,AD,AE,AF,AG) 

16 FORMAT (7A3,10H R=0.95) 
DO 26 K=l,8 
READ 9, PRES(l),PRES(2),PRES(3),PRES(4),PRES(5),PRES(6) 
DO 27 Kl=l,6 
CALL PLOT (O,Z(Kl),LOGF (PRES(Kl))) 

27 CONTINUE 
CALL PLOT (99} 

26 CONTINUE 
CALL PLOT (90,9.0, LOGF ( 1.)) 
CALL CHAR (0,0.1,0) 

21 FORMAT (5H l • ) 
CALL PLOT (90,9.0, LOGF (. 1)) 
CALL CHAR co,0.1,0) 

42 FORMAT (5H el) 
CALL PLOT (90,8.6, LOGF (e0009)) 
CALL CHARV(O,Oel,1) 

41 FORMAT C21HRADIAL VELOCITY - IPS) 
CALL PLOT (90,9.0, LOGF CeOl)) 
CALL CHAR (O,Oel,O) 

43 FORMAT (5H eOl) 
CALL PLOT (90,9.0, LOGF C.001)) 
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RADIAL VELOCITY VS. Z - continued 

CALL CHAR co,0.1,0> 
44 FORMAT (5H .001) 

CALL PLOT (90,9.0, LOGF (.0001)) 
CA LL CHAR co,0.1,0> 

45 FORMAT (5He0001) 
CALL PLOT (90,8.6 ,LOGF c.00001>> 
CALL CHAR co,0.1,0> 

46 FORMAT (6He00001) 
CALL PLOT (90,10.8 ,LOGF c.oooooe3>> 
CALL CHAR co,0.1,0> 

18 FORMAT (2H11) 
CALL PLOT (90,14.5, LOGF c.oooooa3>> 
CALL CHAR co,0.1,0> 

31 FORMAT (2H15) 
CALL PLOT (90,18.5, LOGF ( • 0000083)) 
CA LL CHAR (0,0.1,0) 

19 FORMAT (2H19) 
CALL PLOT (90,22.5, LOGF c.oooooa3>> 
CALL CHAR co,0.1,0> 

32 FORMAT (2H23) 
CALL PLOT (90,26.5, LOGF ( .0000083)) 
CALL CHAR (0,0.1,0) 

33 FORMAT (2H27) 
CALL PLOT (90,30.5, LOGF c.0000083>> 
CALL CHAR co,0.1,0> 

35 FORMAT (2H31) 
DO 70 N = 1,2 
CALLPLOT(7) 

70 CONTINUE 
GO TO 25 
END 
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