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analysis is concerned with motions of émall amplitude and frequency
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CHAPTER I
INTRODUCTION

Since the end of the last World War, a large part af engineering
work, either directly or indirectly, has been associated with the
development of vehicles that are suitable for space travel, Although
there are many problems associated with rockets and space travel, it is
generally agreed that the damaging effects due to vibration is one of
the more serious problems, Vibration inputs, either during launch
conditions or during transonic conditions, can cause structural damage
and, indirectly, can cause damage which is directly connected with the
cavitation of either the fluid or the oxidizer, In this analysis, the
term "cavitation' shall denote the formation of vapor or gas-filled'
voids within a liquid under the influence of local pressure reductions
due to dynamic action. The eroding effects due to the collapsing
cavitation voids will be referred to as '"cavitation damage."

The onset of cavitation can cause damage to the space vehicle in
two wayst The first way is due to cavitation damage while the second
way is due to the effect of a changing mass rate of flow on the rocket
engine, This latter effect is a result of cavitation, Thus it can be
seen that vibration is a problem not only to the structural engineer,
but also to the engineer concerned with the fluid inside the space

vehicle,
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For the engineer to obtain a better underStandiné of this phenome=
na of cavitation, it is necessary to investigate thé physics of the
problem more closely, For example, it is assumed b? most hydraulic
engineers that a fluid will cavitate as soon as it reaches its vapor
pressure; this would imply that a fluid is unable to exist in a
state of tension. Now it is a known fact that liquids do have a
tensile strength, but it is generally believed that this state can
only be reached when the fluid is stressed in a static‘manner. If
it can be shown that a fluid, by some pre=-conceived operation, can
‘exist in a state of tension while under the influence of a
vibratory force, the advantage to the engineer will be great in
that he will not be hindered by the fluid's vapor pressure, but by
a pressure which is lower than the vapor pressure and which can be
controlled by the enginee;. In fact, this pre-flight operation on
ﬁhe fluid could be specified so as to enable the fluid to not only
withstand any vibratory effects, but also to give the engineer a
greater design latitude in that he would be able to specify flow~
rates that could lower the fluid pressure below the vapor pressure;
this greater iatitude could very well manifesﬁ itself in a greater
utilization of all fluids that are aboard the spacecraft or lower -
the gross fluid weight wﬁich is definitely a very imporfant
parameter in space flight.

The purpose of this study is to determine whether liquids can
exist in a state of tension.while subjected to vibratory forces
aud to develop-a general, stfaightforWa:d, analytical method which
Wi;l accurately describe this phenomena in the fluid. The fluids

that are used for this test will be confined in a cylindrical



conitainer and will have values for viscosity which vary from one to
thirty-two centipoise and values‘for surface tension which vary from
forty-eight to seventy-two dynes per cm., This spread in thé values
for viscosity and surface tension is desirable since thney are the
two principle variables which affect. the tensile strength of a fluid,

Although the major part of this work is directed toward the
solutiog of problems where the fluid is cdnfined witihin a cylinder
of small radius and where the cylinder is subject to vibrations of
smalllamplitude and freﬁuency, a set of equations uas been obtained
which are completely general and can be used in cbtaining solutions
for any problem that satisfiles the prescribed uvoundary conditions
and is subject to the governing‘equations.

The equations for the pressure field and the velocity field
inside the cylindrical tube nave been programmed for use on an
IBM i620 digital computer, The method is simple and straightforward
and is given in Appendix B.

GGraphical representations of the pressure field aud tue velo;ity
field are given so that a convenient pictorial representation of
how these variables vehave can be easily seen for any value of the

frequency, viscosity, or azimuthal coordinate,



CHAPTER II
REVIEW OF PREVIOUS INVESTIGATIONS

Before starting thé discussion, a clear distinction between the
terms "liquid tensile strength' and "negative pressure" should be
obtained, In this study the term 'negative pressure" will be used to
denote a pressure within the fluid that is below the vapor pressure,
while '"liquid tensile strength" will be used to denﬁte the maximum
negative pressure tﬂat the fluid can sustain,

The first recorded work on the measurement of liquid tension was
that of F. M, Donny (38)* in 1843, Donny‘found that a column of
sulphuric acid 1,255 meters long wouid hang in a vertical glassbtube
which was sealed at the upper end when the pressure at the lower end
was below atmospheric.

In 1850 Berthelot (7) introduced his method Zor measuring teas:ion
in liquids. A strong capillary tube sealed at one end and drawn to a
fine point at the other end was nearly'filled with water, The smail
residual space that remained in the tube was occupied by water vapor.
The tube was then heated until the air in the tube dissolved. WNext the
tube was cooled until the water column broke. TIne break occurred at a
lower temperature than the temperature at which the water had first

.filled the tube. Berthelot found that the water had increased in volume

*Numbers in parentheses refer to references in the Bibliography.



by one part in 420 and, by assuming that the extensibility and compressi=
bility of water are equal, he was able to calculaté a tension of about
50 atmospheres by measuring the extension of ﬁhe liquid,

Since the method described above due to Berthelot has been usa& by
many investigators in determining the tensile strengths of various |
liquids, iﬁ would be adﬁ#ntageous to discuss Qomé of the assumptions in
his meﬁhod (35, 38, 39, 41). The assumption that the extensibility and
_compressibility of water #re equal does not seem to be too much in error
vsince Temperley (36) measured the tensile stress df‘wa:ef as being
between 30 and 50 atmospheres by a method which did nét agsume thiﬁ
equality. An assumption by Di*on (38) that the pressure in the tube is
neariy zero at the moment when it fills ﬁi:h liquid is seriously in
error, It actually takes high liquid pressures in the tube to force the
final gas bubble to dissolve (36), This point will be discussed in |
detail later, | |

Osbﬁrne Reynolds (38) in }878 used a centrifugal method to stfess
a liquid column, His method consisted of a sealed U-tube containing
air-free liquid, ABC, and vapor, CD,‘being rotated on a lathe about an
axis 0 as showﬁ in Figure 1, If EC is the arc of a circle about point
-0, then du:ing rotation the liquid between E and A will be in a stat.‘of
tension. The minimum tension Qill occur at‘E and it will increase to a
‘maximum at A.ilReynoids calculated a tensile stress of approximately 5
atmospheree‘fdr water and Worthington (41) using the saﬁe method'reported
tensile stresseslof 7.9 atmospheres for ethyl alcohol and 11,8 atmos=
pheres for strong sulphufic acid, Temperley and Chamb@rs (35) point
out that in this method water doea not move #s a rigid body. This_h&s

no effect on the pressure distribution, but iﬁ does imply a considerable



FIGURE 1, Reynolds U=~Tube



amount of stirring. Thus any small bubbles would be brought near the
region of greatest tension in a time that was comparable with the time
of the experiment. This migration of the bubbles would tend to give low
values for the tensile stress,

In 1892 Worthington (41) using the Berthelot method measured the
tension of ethyl alcohol as 17 atmospheres, His method differed from
Berthelot in that he actually measured the tension instead of calcu=
lating it from the temperature difference., Worthington's measuring
apparatus, which he called a tonometer, consisted of an ellipsoidal bulb
containing mercury. Thils bulb enclosed within the glass had a capillary
tube in which Ehe top of the mercury column indicated changes of volume
of the bulbs, The bulb and capillary tube had been calibrated with
positive pressure and the scales extended in the negative direction by
extrapolation,

In 1895 Dixon and Joly (38) using Beéthelot's method obtained a
value of 7.5 atmospheres fof water at room temperature, Their method
differed from Berthelot's original work in that they caleculated the
volume of the cavity formed by contraction of the liquid after failure
" by measuring its geometric dimensions rather‘than by the temperature
difference,

Later Dixon (38) using Berthelot's method estimated tensions up
to 200 atmospheres by assuming values for compressibility and
extensibility at zero pressure. These high estimations as explained
later by Vincent and Simmonds (40) and Temperley (36) were due to the
erroneous assumption that the pressure in the tube was zero when the
last vapor bubble disappeared. Actually the pressure in the tube was

very large thereby leading to this errorx,



Askenasey (38) in 1895 and Hulett (38) in 1903 performed experiments
illustrating the theory of transpiration in plants, Askenasey was able
to obtain a tension corresponding to 13 cm of mercury for a gypsum
solution while Hulett obtained a tension corresponding to 37.7 cm of
mercury for water,

Julius Meyer (35) in 1911 measured tensidns of 34 atmospheres for
water at 24°C. 39 atmospheres for ethyl alcohol at 22°C and 72 atmos-
pheres for ether at 18%, Meyer 's method waé similar in principle to
that used by Worthington, The only difference between the two methods
was in the tension-measuring device, Worthington's device, as explained
previously, ﬁeaaured the tensibn by the volume change of an ellipsoidal
bulb, while Meyer's device consisted of a helical glass tube upon which
~a mirror was mounted, A slight rotation of the end of the glass helix,
which was obsérved by means of the attached mirror, gave a measure of
the internal tension. Meyer's method, like Worthington's, had to be
previously calibraﬁed by means of a positive pressure and then the scale
extrapolated to include negative pressures,

In 1912 Budgett (38) measured the force necessary to rupture a
film of liquid between two flat steel surfaces. He obtained a value of
4 atmospheres for the critical tension of water using the assumption
that the liquid film was continuous over the surface, Upon examination
‘of the surfaces after separation, he found that the effective area of
the water was only about 7% that of the steel. This would indicate that
the critical tension of water is about 60 atmospheres.

The reader has probably already noticed the wide variations in

values obtained for similar fluids by different experimenters. This



variation can be partially explained by considering some of the under-
lying assumptions in each method and by noting that not all of the
experimenters were measuring the same thing. An example of the latter
is the work of Worthington in which the liquid failed by tearing away
from the supporting surface of the glass vessel. Since the liquid
failed in this manner, the properties of the glass aré important and
most certainly would vary from vessel to vessel, This could explain
the variation even in Worthington's results. Some of the assumptions
which could have led to errors in reported values are the following:

(a) Certain physical properties of liquids under tension havé

the same values when measured at zero or positive pressures
(7, 35, 38, 41).

(b) In the Berthelot method the assumption that the pressure in

the tube is"nearly zero when it fills with liquid.

These assumptions, along with the fact that the quantity of un~
dissolved gases present in each liquid was not even considered, would
lead to a wide variation in the results. It must be remembered that
these results were quite amazing in that they did show that fluids
were capable of passing to a state of tension without any breach of
continuity when the contrary was being asserted by many eminent
physicists and hydrodynamicists (41).

The next work of ;mportance was due to Vincent (38) in 1941, He
applied tension to a liquid by enclosing the liquid within a metal
bellows and then applied tension to the bellows. Vinceat obtained a
value of 2.38 atmospheres for ethyl alcohol, 2.94 atmospheres for

mineral oil and 2,21 atmospheres for ether,
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Vincent (39) in 1943 introduced his viscosity tonometer which, as
the name implies, depends on the fluid's viscosity for measuring
tensions., His method consisted of cooling the liquid in a vessel thereby
sucking it backwards through a capillary tube. By comparing the rates
of flow just before and just after the fracture of the fluid Vincent
was able to calculate the critical tension from the ratio of these rates
of flow, This was accomplished by assuming that the pressure within the
bubble was equal to the vapor pressure and by also assuming that the
viscosity is unaffected by tension., This method is suitable only for
fluids with fairly large values of viscosity, Vincent obtained a value
of 7.8 atmospheres for mineral oil using this method. As pointed out
by Temperley and Chambers (35, the tonometer has a gradient of tension
which tends to drive any nuclei towards the region of greatest tension,
and this gradient may be the reason for the low values,

In 1943 Vincent and Simmonds (40) used a modified Berthelot
method in which the pressure in the tube at the moment of sealing was
known, and they were able to obtain a value of 25 atmospheres for
mineral oil, This was the first time that anyone showed that the
pressure within the tube at sealing is not approximately zero but is
very large. In fact Vincent obtained a value of 119 atmospheres for
mineral oil using the Berthelot method. This value is approximately 5
times larger than the one obtained using the modified method. The value
obtained by this modified method is still much larger than the value
obtained from Vincent's tonometer, However it should be remembered that
for both cases it was assumed that tension does not affect the phyaical
properties of liquids. This assumption could be the cause of the

discrepancy,
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In 1944 Harvey (21) found that by precompressing a fluid the
tensile strength could beAincreased.’ He estimated values between 100
and 1000 atmospheres for water but gave no definite values, In a later
paper Harvey (22) gave an explanation for this phenomena; he stated that
the reason fluids fracturé or cavitate is due to the‘presence of nuclei
within the fluid, These nuclei consist of a solid hydrophobic particle
having a re-entrant crack in their surface which is filled with undis=-
solved gas as shown by Figure 2, This gas is the active part of the
nucleus or the weak spot in the liquid. From the figure it is seen
that the surface tension will tend to keep the gas pressure low since
the surface of the liquid is convex toward the gas; therefore, the gas
will not dissolve., Harvey reasoned that if a high enough hydrostatic
pressure would force the liquid up into the crack against the surface
tension force and cause the gas to dissolve, the weak spot would be
eliminated., As noted by Knapp (24), the existence of these nuclei is
still inferential, but Harvey's model does enable one to get a better
feeling for what 1is taking place within the fluid,

Temperley and Chambers (35) in 1945 studied the Berthelot and
Reynolds method, They found that the low values of tension obtained
from the Reynolds method was due to the mixing in the tubes They
obtained a value of 2 atmospheres for water using this method, For the
Berthelot method, the above mentioned authors found that a pressure on
the order of 50 to 100 atmospheres is needed to force the last vapor
bubble into solution., These high pressures were predicted by Vincent and
Simmonds (40,) but this was the first time that anyone actuaily measured

these values, The authors reasoned that these high pressures were
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FIGURE 2. Harvey's Model of Nucleus



13

probably caused by the trapped gases being forced into fissures in the
glass, From Harvey's model, it can be seen that these values are not
unreasoﬁable in that the external pressure not only has to overcome
the force due to the pressure of the gas but also the force due to the
surface tension., Temperley and Chambers obtained a tensile stress of
32 atmospheres for water using the Berthelot method.

Later Temperley (36) in 1946 again reached the conclusion that it
was necessary to develop pressures on the order of 50 to 100 atmos=-
pheres inside the Berthelot tubes in order to force the last gas bubble
into solution. He also concluded that the tensile strength of water in
the presence of glass is of the order of 30 to 50 atmospheres, These
measurements were performed by a method which did not assume that the
extensibility and compressibility of water are equal, Lewis (26) in a
similar type of experiment verified the equality between the exteusi-

- bility and the compressibility of water. Temperley'svvalues for the
tensile strength agree favorably with the values obtained by Meyer (35).
This is to be expected since Lewis had shown that the extensibility and
compressibility are equal,

Scott (33) in 1948 and Lewis (26) in 1961 performed some further
work on the Berthelot method for stressing a liquid. Both investiga-
tors obtained values around 30 atmospheres for water which agree favor-
ably with Temperley's and Meyer's values. Lewis stated that any pre-
compression of the liquid had no detectable effect on the critical ten-
sion, This is true if the fluid is free of all undissolved gases as it
was in Lewis's case, but if the fluid has undissolved gases present,

then any pre-compression will have a marked effect., This relative
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independence between the fluid's teusile strength and the amount of
dissolved gases preéent in the fluid was pointed out by Kuper and
Trevena (25) when they found that dissolved gases reduce the tensile
strength of water By less than 0,5%.

Briggs (9) in 1949 used a centrifugal method in wnich a capillary
tube was rotated in a horizontal plane by means of a high speed three=-
phase induction motor. ile was able to calibrate the maximum tensile
stress of water as 277 atmospheres., This value is greatly in excess of
any values obtained using a metnod similar to Reynolds, but still it is
only about 20% of the theoretical value as calculated from nucleatiom
theory. As pointéd out by Briggs these results should only‘be applied
to boiledhwater (no dissolved gases) in a Pyrex glass capillary tube
with an internal diameter of 0.6 to 0,8 millimeters. Thus the same
predicament is still present in that the results are only ablie to be
duplicated when the fluid is enclosed in a similar container and when
the process used to stress the fluid is similar to the original proce-
dure, For example, the tensile stress of water in the presence of
steel is about one~third the value of water in the presence of glass
when the Berthelot method is used in each case. Of course this is
easily explained since there are many more crevices for undissolved
gases on a steel surface than on glass surface, but the fact remains
that the only way a tensile stress can be quoted whiech has any meaning
is to also quote both the container in which the fluid was enclosed
during the test and tine method used to stress tne fluid,

Later Briggs (10), using the same centrifugal method,calculated the

tensile stress of acetic acid as 288 atmospheres, benzene as 150 atmos-
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pheres, aniline as 300 atmospheres, carbon tetrachloride as 276
atmospheres and chloroform as 317 atmospheres, Briggs made the observa=-
tion that a polarized derivate (aniline) of a fluid (benzene) has a
higher tensile stress, This must be due to the fact that the dipoles
increase the cohesion of the liquid,

Bull (12),using his electrical pressure barx, measured tensile
stresses for water of 17 atmospheres and for glycerol of 63 atmospheres.
These fluids were tested in steel containers and the results for water
agree fairly well with those obtained using the Berthelot method with a
steel container, Later Bull (13) used olive oil and syrup and obtained
values for tension of 29 atmospheres for the former and 130 atmospheres
for the latter, He obtained an empirical relationship between the
critical pressure and the viscosity for viscosities in the range of
0.01 poise to 400 poise:

0.2

Pc-ku .

Bull reasoned that since the surface tensions, compressibilities and
densities of all the fluids used in his work were of the same order of
magnitude, the factor which will influence cavitation is the viscosity.
It must be remembered, though, that Bull's equation is valid only for
fluids with values for surface tension, compressibility and density of
the same order of magnitude as olive oil and syrup, and the fluid
viscosity must be in the range of 0,01 to 400 poise,

There has been very little work on the measurement of the tensile
strength of cryogenic liquids, One paper of note is that of Beams (4)
in which he measured the tensile strengths of liquid Argon, liquid

Helium, liquid Nitrogen and liquid Oxygen., Beams' method is to
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accelerate‘an inverted U tube ;ompletely filled witn fluid and then to
quickly decélerate it to a zero velocity; while the U tube is being
stopped, the liquid will tend to continue its d§wnward motion and will
crea;e’a tensile stress in thé'liquid in the upper part of the U tube,
By this methodrBe#ms was able to obtain values of 12 atmospheres for
Argon, 10 atmospheres for Nitrogen; 15 atmospﬁeres for Oxygen and 0,16
atmospheres for Helium, It should be ﬁentidned that the U tube was
‘made of flamed Pyrex glass, Previous to this work, Misener and
Hefbert (29) used a bellows method and obtained a value of 3,5 atmos-
pheras for liquid Nitrogen and a value less than 0,3 atmospheres for
liquid nelium,

The principle points of this literature review can be summed up by

the following three statements: |
. (1) Fluids, like solids, are able to withstand large tensile
stresses but, unlike solids, no definite values can be set
for them,

(2) For a pure (no solid partieles) fluid, the weak spots
‘that cause fracture or cavitation are the undissolved
gases present in the fluid., Dissolved gases will change
the tensile strengti by less than 0.5%,

(3) For a value of the teusile strength of a fluid to have any
meaning, it must be accompanied by both the method by which
it was.tested and the type of container in which it was tested.

The aBove statements should point to the need for some sort of
standardization of liquid tensile strengths. An important step in this

‘direction would be the development of a container whose interior
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surface was such that the adhesive force between it and the fluid was
greater than the cohesive force within the fluid, This would enable a
fluid to be tested until it fractured from within and not by tearing it
away from tﬁe wall, This cohésive force will be diacussed in the

following chapter.



CHAPTER III
THEORETICAL ANALYSIS OF LIQUID TENSILE STRENGTH

The principle theoretical work on the tensile strength of liquids
has been due to Langmuir (17), Temperley (37), Benson (5), Fisher (15)
and Furth (18), Langmuir using the assumption of a pure, gas-free,
homogeneous liquid obtained a value of 10,000 atmospheres for the
tensile strength of water, This so=called intrinsic pressure has
been shown to be many orders of magnitude higher than any tensile
strength that has been measured (35, 37, 38), This discrepancy can be
more easily accepted by reminding the reader of a similar discrepancy
between the theoretical and the actual tensile strength of a solid,
An example of this is rock crystal (38); the theoretical temsile
strength of this solid is many hundreds of times greater than any value
that has been measured. For solids this discrepancy can be partially
explained by the presence of surface cracks which lead to non=uniform
stressing (23). For fluids these weakening mechanisms are the
undissolved gases and the hydrophobié nuclel that are presént within
any fluid, These weak spots were not taken into account by Langmuir.

Temperley (37) and Benson (5) used the Van der Waals and the
Berthelot equations of state to obtain values for the tensile strength
of liquids, Benson used these equations to calculate values for the
reduced volume, energy of vaporization, coefficient of thermal

expansion and the coefficient of compressibility at the boiling

18
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points of various fluids. He then compared these values with the
observed values and found that the observed values fell between the
values calculated from the Van der Waals equation and the values cal-
culated from the Berthelot equation, He then deduced that the actual
tensile strengtih of a fluid should fall somewhere between the values
obtained from the respective equations of state. Benson (6) later
introduced another equation of state which he claimed was a marked
improvement over the Van der Waals and the Berthélot’equations for the
fluids considered. Temperley and Benéon placed the value for the
theoretical tensile strength of water at room temperature as being
between 1000 atmospiheres and 5000 atmospheres.

Fisuer (15) used nucleation theory and Furth (18) used the Theory
of Holes to obtain values of 1320 atmospheres and 500 atmospheres
respectively for the tensile strength of water at room temperature,

In the remaining paragraphs of this chapter, the methods used by
the above mentioned authors will be reviewed, All the assumptions
used will be discgssed and the final results will be summarized for
comparison purposes. Water at a temperature of 80°F (26°C) will be
used as the working fluid,

Tensile Strength of an Ideal Liquid

Langmuir imagined the liquid to be a prismatic rod with a cross
section A. le then imagined the rod to be divided in half thereby
producing a new free surface 2A and an additional surface energy
2Aw, The surface energy, w, 1s defined as the additional potential
energy per unit surface due to the fact that the particles of the

surface layer lack neighbors on the external side (17)., This sub-
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division of the liquid is then continued until the fluid is separated
into single molecules, The surface energy will be increased by Nqw
where N is the number of molecules and q 1s the area of the surface of
each molecule., Langmuir postulated that each molecule was similar to a
sphere with a surface area of 4 = r2 and a volume equal to 4/3 r3.
The volume of a molecule is also equal to the volume of the liquid per

number of molecules present in the liquid:
}7

431 1 -l . !11 (111-1)

By manipulating Equation (111-1), an equation for the radius of the"

molecule is obtained:

4T

. 1/3 .
r=( 3 ) / . (I11-2)

The value for the radius as calculated from the abovs equation ig

r 2x ].O-'8 cm,

where
n=3,34 x 1021 molecules/cm3
for water.,

The energy which is required to fracture the liquid over an area A
is made up of two parts; the first part is the work, 2A ¢ , which must be
done if the temperature 1s to remain constant, and the second part is
the quantity of heat which must be transferred to the region of fracture
to ensure this constant temperature. Since a fracture will occur if the
gap between corresponding surface layers is increased by an amount on
the order of the molecular raiius, the minimum value of the work of
fracture per unit area, 2 ¢, must be equal to the product of r and

the breaking strength which the l1iquid can bear without fracturing,
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This gives the following expression for the pressure:

29 ‘
- L ITI-3
) = ( )

Eq. (111-3) gives a value of 16;000 atmospheres for the theoretical

tensile strength of water,

Tensile Strengths from the Van der Waals Equation

ey

The Van defAWaals equation is a semi-empirical equatioﬁ which is
derived by éssuming a microscopically random and uniform molecular
distribution funetion for the liquid and cémplete communality of its
free‘volume.

The method used here to obtain values for the ténéile strength is
‘basically tﬁat due to Temperley (37) and Benson (5).

The Van der Waals equation,

(P + &) (V-b) =RT, O (T1I-4)
v

can be put in the reduced form,

- i o 3. I1T-5)
n 3om1 ¢2 . ( 5)

by the subastitution of the appropriate values 6f the constants a,b, and R

into Eq. (111=4) where

E
[ ]
-

D
s
<.'|< nel.-; oruru

=2
]

(I11-6)

0
L)
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The liquid tensile strength is defined as the maximum tension that
a liquid can maintain at constant temperature., It has physical signifi-
cance i1f there is a unique tension above which the liquid will become

mechanically unstable, This is expressed analytically as

3 T
6373) - 0, (1T1-7)

or in terms of the coefficient of extensibility,

The coefficient of extensibility can be expressed in this way since an
infinitesimal increase in tension will produce an infinite increase in
volume,

When the condition of instability, Eq. (111-7), is applied to

Eq. (111-5) the following equation is obtained:

(.g._’.’.) - - Z.‘L.‘L.z + .6.3_ -0 (I11-8)
o e-1° e

When the above expression i1s expanded, the following third order

equation is obtained:

3. 42430 i (ITT=9)
-9 ¢t e 0 R
Simple relations for 6 and Tain in terms of ¢min can be obtained from

Eq. (111-5) and Eq. (111-8):

2
o = [(30=L) (171-10)
4 3
¢
and

min ¢2 ¢3
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When ¢ - 2/3 in Eq. (111"11). i

T in equals zerc, and € equals 27/32,

This point is the maximum temperature above wirich a liquid is incapable
of existing at zero pressure. Temperley called it the maximur tempera-
ture of superheating.

From Eq., (111-9), it is seen that tais equation may have three
positive roots. One of the roots is between zero and }/3. This root
belongs to the physicall& meaningless portion of the Van der Waals
isotherm since n is hlwaye negatiﬁe in this region. The behavior of i
corresponding to this root can easily be seen by examining Eq. (1ii-3).
The largest root of Eq. (111-9) corresponds to a maximum in ﬁhe
isotherm for which 7 is positive, This root is usually associated with
the minimum volume of the supercooled vapor. The third root which is the
one that is of interest corresponds to a minimum in the isotherm and
yields negative values of n for values of 6 below 27/32, For this
range of 8, ¢ lies between 1/3 and 2/3 and can easily be calculated by
synthetic division, Fig. 3 is a plot of the isotherms from Eq. (111-5),

The variation of tensile strength with temperature can be
calculated from Eq., (111-10) and Eq, (111-11l), Since Eq. (111-11)

gives n as a function of ¢, the variation of the tensile strength

nin
with the temperature can be written as
T am

min - pin ]
9 8 90 )

; 8
g " TeT ¢ (111-12)

Eq. (111-12) can also be written in terms of the normal variables,

Pagn | (i) 3& | (T17-13)
- ’
3T g (36T | V.
since
P P

min ¢ min ?
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T =T 0,

and c
fe R
T av
c c

The ratio between the critical pressure and the critical temperature is

obtained from the Van der Waals critical isotherm, The value %& in
c

Eq. (111-13) is equal to 2.7 atm/°C for water. For ¢ = 0,48, which

is a root of Eq. (111-9), Eq. (111-13) is approximately equal to

6 atm/°C, When this value is compared to the results of Briggs (9),

it appears to be good considering the assumptions that were used., This
discrepancy can very probably be attributed to the fact that the

Van der Waals constants, a and b, have been assumed to be temperature-
independent when in reality they are temperature-dependent, Eq. (111-13)
does predict that the tensile strength is temperature-dependent and

that it decreases with increasing temperature, This trend is physically
accurate down to a temperature around 10°C (9)., At this point, the
tensile strength reaches a maximum and astarts to decrease as the tempera-
ture is decreased, Figure 4 which is the results of Briggs' work shows
this phenomena., Fisher (16) explained this strange behavior between

0°C and 10°C in terms of the nucleation of ice under reduced pressure.
He assumed that ice nuclei form readily and grow when the solid phase

is stable and that ice will nucleate the vapor phase., Near 0°C the
limiting tension that water will withstand is that required to raise the
freezing point to the testing temperature, For water a negative
pressure of 300 atmospheres will raise the freezing point 2,7°C, This
is in fairly good agreement with Briggs' work when it is remembered that
nucleation theory predicts values that are 5 times greater than Briggs'

values,
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The relations derived so far, Eq. (11ll=11) for the maximum value. of
tensile strengtih and Eq. (111-~12) fof the change of tensile strength
with temperature, have assumed that the constants a and v are indepen-.
dent of termperature. Since the theoretical tensile strength is sensi-
tive to the value of b, as well as to that of a, it seems advantageous
to consider the following two questions. First, what effect is there on
the theoretical tensile stremngth if the quantities a and b are depen=~
dent on temperature, and secondly, what can be predicted theoretically
about the behavior of a and b as functions of temperature?

The effect of possible changes of b with temperature will be
considered first. Since b is a measure of the excluded volume, it will
decrease as the temperature rises due to the collisions being more
energetic and conversely it will increase as the temperature decreases.
The previous statement will be valid except in the limiting case of
rigid molecules. For this case b will remain constant.

To get a better feeling for how this variation of b affects the
tensile strength, Eq. (111-5) and Eq. (111-11]) should be wri;ten in

terms of their normal variables:

(P + %2- ) (V-b) =RT (I1I~14)
and
8 2ab
P B e w e (II1-15)
nin v2 V3

Now it is clear from the above two equations tnat any increase in b
above the value Vc/3 for a given temperature will give a smaller wvalue
for the teusile strength., As mentioned before,.for_a'decreasing

‘temperature, b will increase so that the theoretical tensile strength
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should be less than the value predicted by Eq, (III-11),

It is obvious from Eq. (III-14) and Eq., (I1I-15) that any increase
in a will increase the value of the tensile strength. The point which
is not so obvious is whether a will increase or decrease with increas-
ing temperature, Temperley (37) considered this problem by assuming
that the mutual potential energy of two molecules can be expressed by
means of an attraction and a repulsion of power-law type. Temperley
did show that the constant a was an increasing function of the tempera-
ture for values of temperature less than 27/32 Tc-loo. This corresponds
to a temperature less than 170°C for water., But Temperley was unable to
say definitely whether for a given temperature a would have an effective
value greater or less than that at its critical temperature, In summing
up, it can be said that it is impossible to make any numerical prediction
about the variation of the constant a with temperature, but it is
possible to predict the variation of b with temperature,

As mentioned before, Bemson (5) calculated values for the reduced
volume, ¢, the coefficient of thermal expansion, o, and the coefficient
of compressibility, 8, so that he could compare the results thus obtain-
ed with the observed values, le reasoned that if the wvalues thus
obtained agreed fairly well with the observed values then any value of
tensile strength obtained from the equation would be fairly close to an
actual theoretical tensile strength.

The equation for the reduced volume is obtained from Eq, (III-5)
where the reduced vapor pressure, m, is neglected since it is much
smaller than either ¢ or 6. For this case the reduced volume is

1/2
9 32 :



The coefficient of thermal expansion,

’
v 3 P
is obtained from Eq. (111=5):
L1 [_86s | -
o = (9-166¢ } . (111-17)

The coefficient of compressibility,

B - - }‘ (u)
1]
‘ Y e P T

is also obtained from Eq. (111=5):

3 - \ -1
- 888 _ 48 71118
8 27F l-5769¢ (T1i-18)

The results for the above three equations, Eq. (1il-1l) and Eq. (111-13)
are given in Table 1 along‘with similar calculations for the Berthelot

and the Benson equations of state.
Tensile Strengths from the Berthelot and Benson Equations

In reduced form the Berthelot equation 1is given by

3
TRl T T2 TIT-19
| 3¢-1 e(‘,2 ( )
and the Benson equation is given by '
T o= 3,626 d . 9099 ) (111-20)

$=0,1567¢ -1/2 ¢5/362/3}

Y

If the same method that was used for the Van der Waals equation is used

for the Berthelot equation, the following equations can be written:

(.g..l'_) - - Zf‘e =+ 62 -0 , (T11-21)
°/ (3¢=1) 66

- -len [39=2 C(TT1-22

"min ~ (372 \3¢-1) g (T11-22)
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and
3"'m:ln - 8 + - 3 .
9 0 ' - . IT11-23
¢ 3¢=-1 62¢2 ( )
¢3 - ..9_5 ¢2 + ..3_2. i - _.1_2 -0 ., (1T1-24)
40 20 46

The root of Eq. (111-24) which corresponds to 6 at T = 80°F for water
is ¢ = 0,415, ForvBenson's equation, the minimum pressure equations

can be written as

| L
3 1 1,5165 1 + 0.0784 ¢ -0
- .624 e o, et -V oan g ’ TTI—ZS)
Q P (N7 Y7 P Vi (
 enegs | Se=0u1se7et/B=H/5 _ 0.9099(0,6687/3+0,05164%/6)2/5.
min (0.6607/340.05166°78)3/5  45/3(4-0,1567¢"¥/)%/5 (111-26)
and
an 1
min 0,6066
3.624 - + - [ ] IIT_27
28 6= 0.1567¢"2/2 " (98)>/3 ( )

The reduced volume, coefficient of thermal expansion and the compressi-
bility coefficient for both the Berthelot and the Benson equations are
obtained in exactly the same manner as for the Van der Waals equation,

For the Berthelot equation

I1I-28
1662 27 ( )
2 .
9-16¢6
and =1
343 48 .2
- 800 . 48 IT1-30
S T A e AR (111-30)

For Benson's equation the relation between ¢ and 6 must be solved by

numerical methods:
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3/2

¢ = 0.1567 _ 5/3 (111-31)
37 1.18 .
¢
- The equations for a and B are
.- (09)%/3 (111~32)
e | 1.365-2,1670°/34%/3
and
2/3 5/3
.8 1,365 - -1 (111-33)
b= 3737y, S273_g573 " 2T

The values for ¢, a, £, maximum tensile strength and change of
tensile strength with temperature as calculated from the Van der Waals,
Berthelot and Benson equations are given in Table 1 along with the actual
values for ¢, a, and 8.

When the calculated and the observed values are compared in Table 1,
the expected wide variation in results is noticed. Thus, the only
information that can be garnered from this analysis is that the
theoretical tensile strength of water at room témperature is‘between

1000 and 5000 atmospheres.
Tensile Strength as Calculated From the¢ Theory of Holes

The general method for obtaining the thermodynamic properties of
a system of particles is to calculate the partition function of the
gystem as a function of the volume and the temperature. This calcula=-
tion can be performed if the law of forcevbetween the particles is
known, Obviously this method can only be applied if the configurations
of the system which contribute to the partition function are such that

it can be handled mathematically,



TABLE 1

VALUES OF REDUCED VOLUME, COEFFICIENT OF THERMAL EXPANSION, COMPRESSIBILITY

COEFFICIENT, TENSILE STRENGTH AND CHANGE OF TENSILE STRENGTH WITH RESPECT TO

TEMPERATURE FOR WATER AT ROOM TEMPERATURE AS CALCULATED FROM THE VAN DER
WAALS, BERTHELOT AND BENSON EQUATIONS OF STATE

% Deviation % Deviation % Deviation
from from from dP

— -]
ds Obs. Value: o x 10 : Obs. Value: 8 x 105: Obs. Value: P(atm): dT (atm/ C)

Van der Waals 0.346 + 2i 10.7 + 365 5.74 + 26 o= 996
Berthelot 0.355 + 11 7.34 + 3]5> 0.655 - 85 -4800
Benson 0.322 + 0.6 6.65 + 190 14,9 +226 =3200
Observed 0.32 2.3 ' 4,57 |

5.8
38
24

2.0

43
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There are two general cases where this method can be applied; the
case of a gas and the case of a crystallized solid, Due to a large
amount of work on the scattering of X-rays by liquids, it is generally
concluded that the structure of a liquid is similar to that of a solid
crystal rather than to that of a gas as was assumed by Van der Waals,

The simplest model, proposed by Furth (18), is suggested by the
fact that a certain number of sites in a crystal lattice are unoccupied
and the atoms can change their positions by jumping from one place to a
neighboring unoccupied place or hole, Furth's theory uses a model
which makes it possible to use a statistical treatment of the liquid
which is analogous to that used in the statistical theory of gases, He
does not use a model which is an exact analogy between a liquid and a
‘crystal because the statistical theory of gases is much easier to handle
than that of the solid state.

In his theory Furth considers the holes as the equivalent of
clusters in a dense gas or vapor, They are formed by the action of the
irragular thermal movement and are destroyed again by the same process,
They interact with each other and perform a kind of Brownian motion.,
The hole sizes obey a certain distribution law in which the frequency of
the larger holes increase as the temperature is increased or as the
pressure is decreased, Evaporation is the complete destruction of the
system by the holes so that it consists of pleces which are not
connected with one another, It is further assumed that the matter oute
side the holes is a continuum with the normal surface tension of the
liquid, and the holes are filled with saturated vapor corre§§onding to

the given:temperature, Using the above assumptions, Furth's equation
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for 1iquid tensile strength can be obtained.,

The energy, Eq, required for the formation of a spherical hole of
. radius r 1s equal to the sum of the work to be done against the surface
teqsion and the work to be done against the pressure, In equation form
this is expressed as

Eq = 4/3 7 r3 CP-PO) +4n r2 o (I11-34)

where P is the external pressure, Po is the pressure of the saturated
vapor and ¢ is the surface tension of the liquid., The probability that
the radius r of a hole formed by statistical fluctuations has a value

between r and r.+ dr is

N J ET\ ’
W(r)dr = Cdr i Exp, | - '1'{1?) dxdydzdP dP dP P,
(111-35)

where x, y and z are the coordinates of the center of the hole, Px’ Py
and Pz are the corresponding moments, Pr is the momenta corresponding
to the variable r and E is the total energy. The constant C is a

normalizing function and is such that

‘r W(r)dr = 1, (111-36)
()

The total energy, ET' is equal to the sum of the energy required to
form the hole and the energy due to the momentum of the hole:

sz + ?yz + Pz2 Pr2
= Eq + oy fo (T11-37)

E

T

In the above equation my is the apparent mass of the hole for a

translation,
3
- IT1I-38
m, 2/; p X ( 38)

and m, is the apparent mass for the expansion of the hole,

2
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m, = bonr r3 . (111-39)

The variable p is the density of the liquid,

Since Eq. (111-37) is independent of the space variable, the
integration with respect to these variables in Ed. (111-35) gives a
factor V which is equal to the volume of the liquid, Eq. (111-35) can

now be written as

- E
T
W(r)dr = Cdr_j: Exp = 7f dP,dP.dPdP, , (II1-40)

where the constant C now contains the factor V,
If Eq. (111-40) is integrated over all momenta, the probability

function takes the form

W(r)dr = Cdr(2nkT)?m /2% M 2exp (- B2,  (r17e41)
, 1 2 kT | *
" where use has been made of the well-known integral
i i
f Exp (-xz) dx= V7 (1T1-42)
F3d- ]

Eq. (111-40) can be put in the more convenient form
W(r)dr = C Exp ( W) f

r » (I71=43)
wﬁere_ail the quantities in Eq. (111741) that do not depend on r are
incorporated into the constant C, |

The integrai

® 3 (P-Po) 2

-4
_Eq) 6. _bmx o 6
j; Exp ( kT) rdr j; Exp -4/3wr T T r dr

: (I1T-44)
can be put in the following form

3(p-P) @ o |
_ﬂ&_g_ j;4/3'nr3Exp (- E-) r6dr +-72-9-— fo 41rr2Exp (- %) b dr

(III-45)
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by an integration by parts. 7f the average volume, v, of a hole,

vV - J4/3ﬂr3W(r)dr , (I1I-46)

)

and the average surface, £, of a hole,

f
£ = ameli(e)dr (111-47)
i

is substituted into Eq. (1l11~45), it can be put in a much simpler form:

(III~48)

- -]

|- B 84 o A(P=E0) 20
jExp(kT 5 dr e v+7k.r £f
0

When Eq. (111-36) is substituted into Eq. (111-48), the following equation

results:
3(P-P°)

1= 7kT

where the constant C is set equal to unity, If it is further assumed-
that the ratio v/f3/2 is approximately equal to the value obtained when
P is equal to Pos the ratio of Eqs (111=46) to Eq. (111=47) raised to
the 3/2 power can be written as

o . Y | (I11-50)
e 3/2 ;327 9,64 °

This ratio has been shown by Furth (18) to be a very good approximation,

When Eq. (111-50) is substituted into Eq, (111-49), the following
equation results:

7KT = 3(P-B_) v + 9,06 o w3, (111-51) -
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If P 1s substituted for P in Eq. (111-34) and if this value for

W(r) is used in Eq. (111-46), the following equation for v, is obtained:

3/2
v_ = 0.68 (-‘-‘3) (111~52)
o o
When Eq. (111-52) is used in Eq., (11l1-51) to eliminate o, the
following equation can be written: |
3(P-P ) 2/3
—e a []1 - (.‘.’-) -%- . (111=53)

7kT o

Furfh (18) plotted Eq. (111-53) witn E%;Q as one coordinate and v as
the other coordinate. It is represented graphically by Figure 5,

For P > Po the holes will increase in size as the external pressure P
is8 reduced at conétant temperature. The part of the curve below thé

v axis does not correspond to an§ real statistical equilibrium since

the integral
Exp (- Eg ® dr
kT
0

will not converge for P-Po < 0, The non-convergence of the above
integral does have physical significance in that it predicts the
probability for the formation of holes of large size is infinite,

This corresponds to the phenomena of boiling. Normally this

phenomena starts with P equal to Po;'since there is no discontinuiﬁy

at v equal :o Vo it is assumed that the states represented by thaﬁ
portion of the curve below the v axis can exist in a kind of metastable

equilibrium, The minimum value of P in this range is given by

(2.11) -0 (I11-54)
T
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39

which by means of Eq. (III-53) becomes

2/3
3E - JEL - L X, = -
v > 1 3 - 0 . - (I11=55)
T 3v o
The value for v which satisfies Eq. (ITI~55) 1is
vk = 5,2 Voo (111-56)

The compressibility, which is the reciprocal of Eq. (III-54)
multiplied by 1/v, of a hole in this state is infinitely great. This
implies that for any state below that corresponding te v = v¥* the
liquid will become completely unstable, Thils state will therefore
correspond to the maximum tensile strength that the liquid can stand.
From Eq, (III-52), Eq. (I1I-53) and Eq. (III-56) the value for the
maximum tensile strengﬁh is obtained:

Px-P_ = -1.3 32 L2 (T11=57)

The above equation gives a value of 3900 atmospheres for water at 25,
An equation similar to Eq. (III-~57) can be obtained without using
the assumption of Eq. (III-50), To do this the shape of the distribu-
tion function when P > P0 and when P>< Po must be considered. The
distributiqn function for the region P »> Po will be similar to the
first curve of Figure 6 (18). For the metastable region, P*<P<P0, the
curve will be altered to one similar to the second curve of Figure 5.
As P approaches P* the values for T oax and Toin COMe closer together
and finally take the shape of the third curve of Figure 6.
The value for r corresponding to the inflection point in the
third curve of Figure 6 is given by

dw

- = ()

dr ’
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and

When the above conditions are applied to Eq., (111-43), the values for

v, v and P at the inflection point are obtained:

2
. [ - -
2/n \°
3/2 .
vk = ,9,/__ (%,‘,1‘_) - 373 v ~ (I1I-59)
2vw

and

PA-P_ = - ééi AM2uny=12 o 1 57 3 2ayl/2 - (111-60)

Eq. (111-60) gives a value of 4730 atmospheres for the tensile strength
of water ﬁt 25°C, When the assumption of Eq. (111-50) is used, a value -
of 3900 atmospheres is obtained. This is a difference of 17% from the
above value, When the assumptions that are implicit in all of the above
calculations are considered, the assumption of Eq. (111-50) cannot be

considered as being too much in error,
Tensile Strength as Calculated From the Theory of Nucleation

The theory of nucleation states that the rate of bubble formation
is proportional to Exp (—-JEEE) where E is the maximum energy for
kT max
the reversible formation of a spherical vapor bubble of radius r., The
proportionality factor can be estimated from the theory of absolute

reaction rates to be

*
A £ \
nkT 0 v
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where n is the number of molecules per gram-mole in the liquid, 4 fo* is

the free energy of activation for the motion cf an individuai molecule

of liquid past its neighbors into or away from the tub:cle surface, k is

Boltzman's constant, h is Planck's constant and T is the twasperature (15,
The energy required for the formation of a spherical vapor bubble

or radius r is

2

E = 4nro + 4/3“r3(P_Po) , {(I71-62)

where the variables are the same as for Eq. (lll=34). 7o f:ind the value
of r corresponding to Emax' the derivative with respect to r of Eq.
(111-61) 1is set equal to Zero and then solved for . Tnils operation

yields

r =S (111-63)
o

and

- 16 = 03

5 (11T-64)
3(P~P)

max

The equation for the rate of formation of wvapor bubbles in a

gram-mole of liquid subjected to a negative pressure, P, can now be

written:
’ \
Af 3
dn _ okl G 16m o a (TI7-65)
at "~ h e | o

3kTZr-P°)j ‘

Eq. (111~65) assumes that the pressure is kept at P even after the {irst
bubbles have begun to grow,

The value of Afo* for the motion of a moiecule into or away from
the bubble surface can be estimated from the free energy of activation
for viscosity, Afvis’ since the two free energies should be approximately

x
equal, Roseveare (15) states that &f . 1is between O and 5000
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cal/mole for most liquids that are fluid at room temperature. Fisher
(15) found that by putting Afo* equal to 0 a value of P is obtained
which is generally less than 5 percent too small for room temperature
liquids,

When the above simplification is utilized, Eq. (111-65) can be

rewritten as

- 3 ‘
-:-:-Itl - Eilkl Exp l'-éﬂa-g-—w-—za N (111-66) »
3kT(P~P°)

Since the first bubble that forms in a liquid will fracture the
liquid, the fracture pressure, or tensile strength, will be the negative
pressure that gives one bubble in t seconds, Then dn/dt is equal to

1/t and Eq, (111-66) yields

1/2
(PP == | 3" ¥iIn pkit » (111-67)
h

Fisher (15) calculated values for the fracture pressure corresponding
to a number of waiting times for water at 27°C, He covered time values
from 10-15 sec, which is less than the time required for sound to travel

one atomic distance, to a time period of 1018

sec, which is longer than
the estimated age of the universe. The ratio of the maximum to the
minimum fracture pressure was only 1,58 while the corresponding time
ratio was 1033. Thus, Fisher concluded that one cannot be seriously
in error by taking the fracture pressure corresponding to one vapor

bubble per gram-mole per second as the theoretical tensile strength of

the liquid. With this assumption, Eq. (111-67) becomes

3 1/2
(P=P)) = = =3= | ¥Tin nkt . (I1I-68)

h
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For water at 25°C Eq. (111-68) gives a value of 1320 atmospheres for the
tensile strength,
Table 2 1s a summary of the theoretical tensile strengths that have

been reviewed in this chapter,
TABLE 11

LIQUID TENSILE STRENGTH OF WATER

Hole Nucleation
Langmuir:Van der WaalsiBerthelot:Benson:Theorys Theory -
P(atm) «10,000 -~1000 -4800 =3200 =4700 «1300

It can be seen from the above table that there is quite a wide
variation in the calculated theoretical tensile strengths for water.
This is not something that is peculiar to water but would be the same
for any fluid considered due to the limitations of the theories
considé:ed. The remaining portion of this chapter will be used to
discuss the various theories and their shoftéomings.

The theory of a homogeneous liquid as given by Langmuir gives
results which ére too high because of the basic assumption that the
liquid has no microscopic impurities or vapor bubbles. Though one
might argue that this condition is not impossible, it would certainly
have to be agreed that it is very improbable.

The Van der Waals, Berthelot and Benson equations of state were
then considered. Aside from the fact that these equations are nbt
supposed to be applicable to associated liquids, such as water, the
constants that are used in them are definitely temperature-dependent

and have an effect on the results,



45

The Theory of Holes was considered next, As pointed out by Furth,
this theory will be in error since Furth used concepts such as surface
tension and hydrodynamic virtual mass which are essentially macroscopic
in connection with cavities of molecular dimensions. This theory |
predicts values for the tensile strength which are only one~half the
value obtained by Langmuir., To obtain an idea of the enormousness of
this figure, it should be remembered that the largest void or hole
that would be possible in water would be on the order of 10"8 cm radius,
This is approximately equivalent to a molecular distance,

The Nucleation Theory has essentially the same discrepancy. as the
Theory of Holes in that a measured value of surface tension is used
for the effective surface tension on the interface between a very small
bubble and the liquid, These measured values of surface tension may be
considerably different from the effective surface tension, but“this
theory does give values which are more reasonable than Furth's values (4).

So it is seen that all of the theories discussed in this cﬁapter have
basic assumptions that cast doubt on the validity of the results,
but at least they have given a better understanding of the actual
structure of the liquid, Thus the only statement that can bé made about
the liquid tensile strength of water is that it shculd fall sohewhere
between 1000 atmospheres and 3000 atmospheres and very probabl§ closer
to the lower value, When this is compared to the highest value
obtained experimentally (which is 300 atmospheres), it is noticed that
the theory and the experimentally observed values are getting closer

together; that is, they are at least within an order of magnitude.
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The maximum radius of a vapor bubble that can exist in a fluid
that is stressed to 300 atmospheres is on the order of 0.5 x 10-'6 cm
and that corresponding to 1000 atmospheres is on the order of 0.1 x
10-6 cm, These two radil are on the order of the minimum radius of a
stable gas bubble that can exist in a liquid according to Frenkel 7).
Any bubble that is smaller than this should be unstable and would be
compressed out of existence if it existed in the body of the liquid,
This might be a solution to the problem of liquid standardization.
That is, if any bubble smaller than the critical radius would be
compressed out of existence due to instability and if any bubbles
larger than this critical radius could be eliminated by a precompression
of the fluid, then a fluid with a tensile strength that is indicative
of the actual strength of the fluid and not on a number of other
factors would be obtained, Though this is simplifying a very

complicated phenomena, it is a step in the right direction and certainly

deserves some consideration,



CHAPTER IV
THEORETICAL ANALYSIS

Much of the theoretical and experimental work on axially-excited
tanks performed to date has been concerned with the sloshing
phenomena for both rigid and elastic.tanks,

A very good theoretical analysis of the liquid response in
annular cylindrical tanks and circular quarter~tanks has been given by
Bauer (3), Bauer derived an equivalent mechanical model consisting
of masses, springs, dampers and a massless disc with a moment of
inertia so chosen that it exergs the same forces and moments and has
the same natural frequencies as the fluid in the container. This
mechanical analo# method has been tried by other authors but Bguer's
analog differs from the others in that he used a velocity proportional
damping force in his system (2, 19, 20, 27, 30). In this way he was
able to obtain results even for frequencies which were close to the
natural frequencies of the fluid, Abramson (2) discusses some of the
liquid dynamic behavior which occurs in tamks, These include normal
sloshing, vortexing, liquid impact, bubble formations, spray formations
and low gravity phenomena, He also discusses some of the equivalent
mechanical models that are used to describe the dynamics of the tank.

A complete review of the literature on liquid dynamic behavior in

moving containers has been written by Cooper (14) and Abramson (1),

47



48

They cover rigid and elastic containers of various geometries that are
excited in the vertical and horizontal directions, A few authors are
mentioned who have considered the liquid motion due to pitch about a
horizontal axis and roll about a vertical axis for rectangular and
cylindrical tanks,

In the papers mentioned above, the governing equation for the
fluid motion was Laplace's equation which is a combination of the
continuity equation and the equation of motion for a non=-viscous
incompressible fluid, Viscous effects were taken into account in the
mechanical analogs by the introduction of damping forces,

The analysis presented in this chapter is unique in that it takes
the basic linear Navier-Stokes equation and the continuity equation
for compressible fluid flow, and by assuming only that the density
is a function of the time t, it develops a set of equations for the
radial velocity, azimuthal velocity and the pressure field anywhere
within the cylinder. These general equations are then applied to a

specific problem at the end of the chapter,
Mathematical Equations and Boundary Conditions

This analysis is concerned with the behavior of a fluid which is
confined within a closed circular cylinder and is subject to a
sinusoidal varying force along its longitudinal axis, Figure 7,
Initially the cylinder has displacement equal to the amplitude of
the input displacement, a, and a zero velocity, The boundary conditions
on the cylinder for all time greater than or equal to zero are that the
pressure at the free surface is zero, the radial velocity at the wall is

zero, and the azimuthal velocity at the wall and at the tube bottom is
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T t
— Imposed Velocity, v = =aw sin ot

FIGURE 7.

Pnysical Model for Eq. (1V-6)
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equal to ~aw sin wt; that is

(a) P=0atzm=0,

(b) v. " 0 at r = R,

(c) v, = -aw sin ut at r = R
and

(d) v, = -aw sin wt at z = h, (IV=1)
The general linear equations of hydrodynamics will be used to describe
the system, ' The nohlinear convective tetms‘have been ignored because
they are negligible when compared with the time derivatives of tﬁe
-dependent variables. The dependent variables v and v, are assumed to
be functions of the radius r, the height z and the time t while the
density, p, is assumed to be only a function of the pressure P which is
a function of r, z and ¢,

The continuity equation for a compressible fluid can be‘written in

the form:
I + 6 oV - _ (Iv=2)
14 ¢ ) 0,

where V is the velocity., Eq. (1V-2) can be put in the more

convenient form

Y R 7 (1V-3)
t Br
where the isothermal compressibility coefficient, BT' is defined as
B =& [22 . o (Tved)
T o) P T
The general Navier-Stokes 'quation for a viscous compressible fluid is

p 3—% - VP + uv2v+-§-V(v c V). (1v=5)



The two partial differential equations, Eq. (1V-3) and Eq. (IV-5),
subject to the bodndary conditions, £q. (1V-1), can most easily be
solved by the superposition/p;inciple. That ié. the partial differen-
 tial equations subject to the boundary conditioms

(a) P=0 at z =0,

(B) v. = Q at r = R,

(¢) v_ =0 atr =R,
and z ' ‘ ,

(d) v, = -ow sin wt at z = h, (1v-6)
-are first solved and the same partial differential equations subject
to the boundary conditions

(a) P=0at z =20

(b) v. = 0 at r = R,

(c) v, = -aw sin wt at r = R,
and .
(d) v, =0 atz= h | (1V=7)
are then solved. The two solutions thus obtained cam be a&ded to~-
gether and this final solution will be a solution of Eq. (IV~3) and
Eq. (IV-5) and will converge to the boundary conditions, Eq. (IV-l1),
at the boundary. This principle of superposition is validionly for

linear boundary value problems and can be used here since Eq., (IV~3)

and Eq, (IV~5) are linear equations,
Cylinder with Oscillating End and Stationary Walls

The physical problem corresponding to Eq. (IV=3) and Eq. (IV-=5)
and satisfying the boundary conditions of Eq. (IV-G) is that of an
oscillating piston in a cylinder, Figure 8. It has been shown that
for a velocity much less than the speed of sound there will be only a

velocity component in the longitudinal direction (8). With this
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assumption, Eq. (1V-~3) and Eq. (1V-5) reduce to
. ) - awv : . .
gP - f— 4 - {IVeb,
t T 2z
and
v, L ap ay v a2y | ‘
onges W o --—+v-—-—£+x _-z-.‘.l./s\)—-:-i:'- R (IV"S)
s t p oz 2 r or 2
or 0z

The above equations can most easily be solved by utilizing che
The transformed eguations corresponding

Laplace Transform technique,

to Eq. (1V-8) and Eq. (1V-9) are -
1 avz (1 0)
—— - S -—-— v-i
SP - P(o) = 5= |
. T
and 7 - Yo\
‘ - Tv av v
Sv m-& X /-.:.-. L2 L4y —E, GivelD)
p oz \ 32 r or sut

where the bars denote the dependent variables in tne Laplace domain,

When Eq. (1V-10) is differentiated with respect tc z, the following

equation is obtained:
- %y
z BTS 2

where it has been assumed that the derivative of P(o) with respect to

2 is equal to zero,
When Eq. (1V=12) is substituted into Eq. (iV-1l), the following

equation for v, resulta: 4
2% W, Vil L
R T i KR e ek A A BN R
or r T o ’ 9z

This equation can be solved by assuming a splution of the forw

'v‘z = R(r) 2(z)
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which is the commonly used Separation of Variables technique. Eq.

(1v-13) ndw takes the form

_L % _ 1.1 4R, 5_,21 42 (-1
R d 2 r R dr v Z 2
r ds
where
2 1
1l - 4/3 + pBTsv .

Since the left-hand side of Eq. (1V=15) is a function of R and the -
right-hand side is only a function of Z, both sides of the equation
must be equal to some constant, say YZ. When the right-hand side of

Eq. (1v=15) is set equal to yz the following equation results:

d%z ﬁ 7 =0 (Iv-16)
2 had 2 ] <
dz 1
A solution of the above equation is
Z = cosh -'f Z . (IV=17)

The hyperbolic sine term has been omitted since the pressure at z = 0

must always equal zero, The left-hand side of Eq. (1V=15) takes the

form
9..2;15.+.1.9.1.‘.+ 2_5) Rao (IV-18)
qe2 T dr Y v *

A solution of the above equation is

2 8
R=J (/\/; -5 ) r . (1V-19)

When Eq. (1V=17) and Eq, (1V-19) are substituted into Eq, (1V-14)

the solution for v, is obtained

- —_—
wen - 2 -S- Y
Ve Z-O Ap 9o (/\/Yn =V )cosh Lz, (1V=20)

1

where A is a constant dependent on the boundary conditions,
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The constants A and y are determined by equating Eq. (1V-20) to
the ttansformed boundary conditions:
v, = 0 atr - R;

2
v, = ==3>gyatl= h (1Iv=-23)

2 4
The homogeneous boundary condition yields the following infinite sum:
© "'"2'_&""" Yn ‘
Z-o A, Jo( ,\/Yn -y R ) cosh T Z =90 (1V-22)

where the Y are the roots of

2

S
J, Y, -5 ¢ =0 , (Iv-23)

The second boundary condition yields the following enquality:

2 - e Y ‘
- E—-g-t—-z- = An JO (/\/Ynz'- % !f) cosh I'g‘ he (IV=24)
$7+w =0

Since the sequence Jo (@R) is orthogonal on the interval (O,R), the
constant An can be determined ‘by multiplying both sides of Eq., (1V=24)
by r Jo (ar). The resulting equation is then integrated between zero
and R, When this method is applied to Eq. (1V-24), the vfollowing

equality results:

. R
A rJ (or) J /\/72--8-1') coshlg-hdr-
n o o \Y 1

n
0
awz T
- =5y IrJo (eax)dr . (IV=25)
S 4w
0
The constant An is
A = -Zawz 1 1 1
n 2 7/ o« (IV=26)

ST ‘ Y
2 8 2 S n
S 1}\/Yn -9 Jan -5 R)cosh T h
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The complete solution for the tramsformed velocity can be written as

f } : 2 Yn
v 5 cosh «— 2
- 2 o J C\/L - -r) 1
vg - - 230’2 7 2‘ 0 n V l . (IV-27)
R(5™4) -OJ -8 J --l; cohI&h
Ta ™% L ASNRRY 1
The vglocity in the time domainr is easily obtained as
: Y
| a ® Jo (A/Ynz' i% "‘) cosh—? ’ Exp(awt) +
v, -8 Z ; ExoGoe)
2. 2,8 ) -3
"Jgn - iv Jl( Yo = i " R} cosh 1 h‘
v Y
- <J4 + t— ) cosh 1 /
+(= aw Exp(~-iwt)
R —— -1 ¥
- — 2 Y (Iv-28)
/\/Ynz-* 9' Jl( + i—R) cosh —;.-‘- h

Since the real part of v, is all that is of interest, Eq. (1V-28) can
be written in the form

®  J (ar) cosh (N, Z)
Ve " © %92. a OJ r(1u R) cosh (Nl h) sin ut +
=0 n 1l n 1

35 (a r) cosh (N2 z)
+(=) -—Z a 3y (a R) cosh (N, h) sin wt (1v-29)

where the . are the roots of J (o R), Nl equals

w
Yn +'iv
1 1l

and N2 equals
y - 1=
N, m =B v :

| 2 1 |
Eq. (1V-29) is still complex with respact to the space coordinates but

in order to reduce the cumbersomeness of this equation, 1t will be

written in this manner until a particular problem is solved,
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The time rate of change of pressure is obtained from Eq. (1V-8) and

Eqe (1V=29):

- Jo(3pT) sinh (N, 2)

ot RBT =0 a Jl(unR) 1 cosn Ny h)
J (a_r) sinh (N, 2)
« Jl(anR) 2 cosh (N2 h)

An equation for the pressure field in the interior of the cylinder is

obtained by integrating Eq, (. V-30):

— 0 J (a 1) sinh (K, Z)
T L =0 a, Jl(anR) 1 cosh (Nl h)
Jo(anr) sinh (N2 Z)
un Jl(anR) 2 cosh (N2 h) o

Cylinder with Stationary End and Oscillating Walls

The problem corresponding to Eq. (1V-3) and Eq. (1V-5) and
satisfying the boundary conditions of Eq. (1V-7) will now be solved.,
Physically, this problem is that of a cylinder with‘stationaty ends
and an oscillating wall, _

The aolﬁtion is most easily obtained by utilizing the principle
that every vector field can be uniquely separated into a part which is
the gradient of a scalar potential and a part which is the curl of a

vector potential (29). Thus, the velocity can be written as

VeV + xy ' (IV=32)

where ¢ is the scalar potential and Y is the vector potential.
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When Eq. (1V~32) is substituted into Eq., (1V-3) the following

equation relating the pressure and the scalar potential is obtained:

E._L 2, , (1V-33)
t BT

i

where V2 is the Laplacian operator, If Eq. (1V-33) 1is transformed from
the time domain to the Laplace domain by means of the Laplace transforma-
tion, it will take the form

SP - P(0) = = %—- v 7 . (IV=34)

T

Eqs (1V-5) will take the following forms under the transformation:

- v v
- 3P - r wd [aVe Vx z
pSv = =35r vV | TV, "2 t*I5 | v YT Ytz o (IV=35)
and -— -
o v 7 v )
- oP 2 'y r T z :
e v, = tuviv 4k =t + 35| » (1V-36)

where the bars over the dependent variables indicate that they are in

the Laplace domain. Eq. (1V=32) can be put in the more convenient forms

- _ 3% Wy
Ve " %r T %z
and
- L3 L WV -
Ve " 9z + or + r * (1V-37)

When Eq, (1V-34) and Eq. (1V-37) are substituted into Eq. (1V-=35) and
Eq., (1V-36), the desired forms for ¢and yare obtained. That is,
25 -k2T .o, (1V=38)

and
=0 , (IV-39)
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where
2 w8
]
c2 + %tv S
2 8
1" = 3 ,
and
2— — —-— 2-—
or r r r YA
The solution for Eq. (1V-38) is
[ -]
¢ = ji-o An lo (Bnr) sin Ya z , (IV=40)
where
2 2
Bn " Yyt k '

where

The constants A and B in Eq. (1V-40) and Eq., (1V-4l) are arbitrary.
The boundary condition of Eq. (lV«7a) has been satisfied due to the

choice of sin Yo Z in equation (1lV=40),

The transformed boundary conditions corresponding to Eq, (1lV=7)

are
(a) vy = 0atr =R,
awz
(b) v, = = at r = R,
z Sz+w2
and

(c) v, = 0 at Z = h, (IV-42)
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where tﬁe bare over the dependent variables have been omitted for
convenience, but it should be reﬁembered that the dependent variables
are still in thé Laplace domain., An equation?fﬁr A in terms of B can
be obtained by solving for the first homogeneous boundary coﬁdition.
That {is, |

 1611 (B R) sin yZ + B*{l1 (t R) sin y2 = 0 ,

from which
| LR (IV=43
A==-B3 1, (8 R) ) =)
The second homogeneous boundary condition yields
2y o B
B x 1o (t ) cos Yh =B 5 II—??F?S- lo(Br) cos Y h =0,
For the sbove relation to hold, Y, must be equal to
S+l o (1V-44)
Ya 2 h
The equations for ¢ and y now have the following forms:
Yo 1l (t R _
bemPy TR L BD el 2. (v
and
VeBl (tr)cosvy, Z . | ©(1V-46)

To determine the constant B, the boundary condition of Eq. (lV-4lb)
must be utilizad along with the fact that the sequence cos Yﬁ‘h is
orthogonal on the interval (0,h). Thus; at the wall of the.cylinder
the followiﬁg relationship is obtained:
1 2
Y, 1 (tR)

k
| =B {3 II-?E_ET_ 1, (8 R)‘- t1, (t R)) I cos (y,2) cos (v 2)dZ =
o
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h
- J
aw
- me— coB ('Y Zy dZ .
Sz+w2 "

An equation for B can be obtained from the above relation:

Bl (BR)
Jz2aw? (p® ! . (IV=47)
2. 2 Z1 . '
s hy |y S TL(R 1 BR -8T1 (TR (8R)

From Eqs, (1V-45), (1V-46) and (1V-47) the solution of Eq. (1V=38) and
Eq. (1V=39), subject to the boundary conditions of Eq. (1V=42), can be
written; that is

2aw? X°  (p®[Yal R

o w - S8 1 (Br) sinvy_2 , IV-48)
242 Lowo 1 Y DENOM ) 0 n (

and

Zaw )n 8 ll (B R) 11 (t r) cos Ta Z . (IV-49)
DENOM

The term DENOM has been introduced for convenience and is equal to
2
DENOM = Yq 1l (t R) lo (BR) =B 1 1o (T R) 11 (B R) .

The transformation from the Laplace domain to the time domain gives

, n [y 1l (v, R)
b= - m»jz (=1) n 1 1 ) lo (61 r) sin (Yn Z) E!Eiﬁlﬂil.+(‘)

hy, DENOM

n=0

1. (t, R)
:E: D" [ o1 %2
aw , DENOM 1, (Bzr) sin (YnZ) Exp (~iwt) ,

=0 M Tn | 1 (1v-50)
and
n=0
‘”ji S__lﬂ By DéN;z R)) 1, (1, B) cos (y2) gggzi;igsl , (IV=5%)
n=0
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where the variables with a subscripted 1 refer to . ™ ‘W and those with
a subscripted 2 refer to S ® ~ jw, It should be noted that the unbarred
dependent variables referred to from now on are in the time domain,

From Eq. (1V=33) an equation for the pressure as a function of r,

z and t can be obtained; that is,

[+ 34

P 1
I—B v ¢

t

which, after substitution and integration, becomes

oo

g, 1, (t, R)
2 Z (G B e T !
P=P(0)®= =p aw 5 Y DENOM 1o (81 r) sin(YnZ) cos (wt) +

n=0
> 8, 1. (1, R)
2 z =" 2 71 ‘2 -
h Yn DENOM o 2 n (1V=52)

n=0

where only the real time domain is used since that is all that is of

interest.,

By means of the superposition principle, the solution of Eq. :1V=3)
and Eq. (lV-5) subject to the boundary conditions of Eq. (1lV-l) can be

written in the following form:

- oo 428 L3V LV -
v, = Eq. (1v=29 + 3z t3r T oo (IV=53)

- 20 2y -
V. 5y T Tz (1V=54)

and

P = Eq. (1V=-31) + Eq, (1V-52), (IV=55)



where ¢ is given by Eq. (IV-50) and ¢ is given by Eq. (IV-51), The
equations are written in the above manner to avoid unnecessary writing
and confusion. It should also be néted that the equations are left im
complex form. Therefore, before they can be applied to a physical
problem the real part of each equation must be extracted and only this
part should be used to describe the problem. The remaining portion of

this chapter will be devoted to just such an operation.
Illustrative Example

A true test of the worth of any mathematical theory is to see how
well it applies to a practical situation. For an illustrative problem,
a cylindrical rigid plexiglas tube of radius R = 1 inch and a length of
36 inches was chosen. The height of the fluid within the cylinder will
be 31 inches for the first case and 23 inches for the second case,

The frequency w will vary between 50 and 400 radians per second and
the oscillation amplitude will be 0,025 inches and 0,05 inches
respectively,

The equation for the pressure field will be considered first,

Under the above conditions, Eq. (IV-31) can be written as

<

n
J (e 1) Y_ sinh =2
P= - %—*-‘- -9--3—-‘-(3---)- -i-‘l 1 = cos wt + P, (IV=56)
T - a 1'% cosh I&l
n= 0

since the first two terms on the right hand side of Eq. (IV-31l) are
equivalent., The procedure used in showing the equivalence of the
above mentioned terms is outlined in Appendix A, From the real part

of Eq. (IV=56) an equation for the pressure field can be obtained:
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2 J (a r) v ' i
P = 2paw ZE Z cos wt + P . ' (Iv'%7)
o Jl(a ) o

Eqs (1V=52) can be written as

(-]
B 1, (1)
22 Dt [P h , -
P = «2paw i Y DENOM 1° (B r) sin Y," cos wt (IV-58)

due to the equivalence of the two terms on the right-hand side of Eq,

(1v=52) , The real part of Eq. (1V=58) is

- 22 (LT [NuM :
P = 2paw h Y DEN 1° (yn r) sin (ynz) cos wt  (IV=59)

n=0

where the term DEN equals

2

DEN = Y, 102 (yn) + %- Yy ) -ZY’\/~ _1 (Y ) 1 (Y )

1 2V

and the term NUM equals

'i'\'i LG =y, 1) (v

NUM = n

At time t = 0, the pressure within the cylinder will be

P° = pgZ+ pawz z , (IV=-60)

When the initial conditicn is substituted into the sum of Eq. (1V=57)

and Eq. (1V=59), the complete pressure equation can be written as

. zz J, (o 1) '
P(r,Z,t) 2paw ) ~= Z (cos wt=1) + pgZ + pawzz +
a J, a)
n=0 nl™n

2 (LT[ - -
2pau ZZ b Y DEN 1o (yn r) sin ynz (cos wt=l) ,(IV=-61)
n=0
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Eq. (1V=61) is the equation for the pressure field within the cylinder
for all * > 0 and it converges to the boundary conditions at the
interior surface of the cylinder. '

The azimuthal velocity of the fluid within the cylinder will be

considered next, Eq., (1V=-29) takes the form

%o (a“ ) ‘ IV=-62
v, = -2aw Z FREACH) sin wt , (IV=-62)
=0 n l'n

where the ratio of the hyperbolic cosine terms has been set equal to

”
unity since ln << 1, The remainder of the terms on the right-hand

side of Eq, (1V=53) can be written as

L 2
"1, (T R)
. (=1)" a1

v, ~2aw Z n Y —ENon 1o (Br) +

n=0 '
(-]

n BTl (B rx) ‘
+ (=) Z H- DéNOM 1, (tn) cos v Z sin w:, (1V=63)

n=0 n

where use has been made of the equalities between terms. containing I

and T, and Bl and 62. The real part of Eq., (1V-63) is

2

- (DT fwum
Ve 2au Z h DEN ]o (Yn ) +
n=0

L
( 2n
Z h-l JOML sin (,\/g: r + %1) +
a=0 Y v

DEN
n

w_
o 3n Exp ( 2y (r-l))
U r + ) - cos 'YnZ sin wt ,1y-64)



66

wvhere

= "1 (vy)1l, (v) (sinl 1)_Q112'Y1)sih11,
2v Ta To ‘Yn/ Y1 Y,/ (sin ly-cos b, %

NUML =

w w 2
NUM2 -/-5; Yo 1o (yn) 11 (yn) (sin 11 + cos 11) -3 11 (Yn)cos 11 ,

3w
LY *t 5

The steps that are necessary to obtain Eq. (1V-64) are given in Appendix

and

A,
The sclution for the azimuthal velocity is obtained by adding Eqs.
(1v=62) and (1V-64):

J (a r) 2 n \
- 0 n » (~1) " [NUM
v, 2¢w E sin wt + 2aw E o —EN) 1o (an) +
n=0 '

~ @ J 1 (an)

a=0
— Exp( %; (r-l))\
-D-N%-g- cos( 32’-\)- r + -g—-ﬂ) - - Icos’ YnZ sin wt , (IV=35)

For the radial velocity, Eq. (1V=-54) can be written in the following

manner:?

‘ n By 1, (« R)
- - (-1) n 1
v, 2aw E h Y. DENOM 1l (B r) sin ynz sin wt +

n=0

nf{8 y_ 1, (B R)
2aw z hLl-L nDEﬁOM 11 (t r) sin ynZ sin wt |,
Tn (1V-66)

n=0
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Since the real part of the above equation is all that is of interest,

tie radial ﬁelocity equation is written as

(1" NUM)
Ve T 28w Z h (DEN S O

n=0

i 3;1_.)_ A/'_— M1+NUM2) sin(JQ: r.,,él’.) o)
n=0

2w DEN 2v 8

Exp(hJ/ (r-lg '
(NU - NUMZ) cos /\/-- r + sin v _Zsinwt .’
DEN 8 r n (IV-67)

The approximations used to obtain Eq. (1V-64) and Eq, (1lV-67) ;re
valid for all values.of T r greater thaﬁ 10 and therefore cannot be uaed‘
to obtain the values for velocity at the center of the tube, To obtain
‘these values, the quantity r=0 must first be substituted into Eq.

(1v=53) and Eq. (1V=54), Under this substitution, the radial velocity

is equal to zero since 11(0) = 0, That is,

v =0 ., (IV-GS)

The aximuthal velocity is

-]

n ' .
v, " 2aw jz (-t) (gg:) cos (YnZ) sin (wt' +/=)

n= O (2 \/F) 1/2
2auw z (glé:l) cos (v 2) sin (wt),
— n
n=0 Expﬁdﬁ-v , (IV-69)

where the procedure of Appendix A is used. When Eq. (1V-69) is added

to Eq. (1V=29), with J° (an r) = 1 for all values of & the equation
for the azimuthal velocity at the tube centerline for all values of 2z
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and t is obtained, This equation is written below for convenience:

x
v, = -2aw ;Z RN sin (wt) +
: =0 n 1" 'n

S e |
25w ;g; K'i) (ggg) cos (Ynz)sin(wt) +

(TV=70)

27
2aw Z %M_l-) (-____ cos (¥ Z)sin(wt) .
Exp ,

Thus Eqs. (1V=61), (1V=65) and (1V-67) are the solutions of Eqs.
(1v-3) and (1V=5) and they satisfy the boundary comditions of Eq. (1V-1),
The numerical results of Eqs. (1lV-61), (lV-65) and (1V-67) as applied to

the above mentioned problem will be given in the following two chapters.



CHAPTER V
EXPERIMENTAL PROGRAM

As mentioned before, the true test of any mathematical theory
is to see how well it applies to a practical situation, With this in
mind, an experimental program was developed which would simulate the
problem outlined in Chapter III,

The results obtained from the experimental program were compared
directly with the results obtained from Eq. (1V-61) of Chapter 1V,
Since there was no way of measuring the pressure field within the fluid
~without disrupting the flow field, it was assumed that if the results
obtained from the experimental measurements at the wall agreed with the
numerical results close to the wall, a sufficient justification of the
theoretical method was obtained,

The general development of the experimental program and its

comparison with the theory are the subject of this chapter,
General Considerations

The general problem outlined at the end of Chapter 1V was
developed for a fluid-filled, rigid, cylindrical tube, The tube would
have to be made from a material that was strong enough to withsténd the

stresses due to the vibration, be able to withstand the effects of a
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hard vacuum, have very little er no affinity for the fluid under
testing and be clear enough so that the fluid inside the tube could be
seen by an observer . A material which would satisfy all of the above
conditions and in addition would be easy to obtain was Plexiglas, the
trade name for cast thermoplastic acrylic resin., A cylindrical Plexi-
glas ﬁube 3 feet in length, 2 inches iﬁ diameter and 0.25 inches thick
was chosen for the experimental model,.

Next, consideration was given to the fluids tha; were to be tested.
It was believed that under similar conditions a fluid with a high value
of viscosity would have a higher value for negative pressure than a
fluid with a lower value for viscosity. A number of fluids with
viscosities ranging from 1 centipoise to 100 centipolse were considered.
This list of fluids, which was taken from the Solvents Manual (28), was
gradually reduced for a number of reasons., Among the more prevaleat
were health dangers due to the thic fumes, low volatility, high fluid
absorption by Plexiglas and low boiling poilnts of the respective fluilds.
It was finally decided that the fluids that could most easily be
handled and still have the desired characteristics were water, ethylene
glycol and diethylene glycol. Two additional fluids were obtained by
using a 704 by weight aqueous ethylene glycol solution and 80% by
weight aqueous diethylene glycol solution., The range of viscosities
were from 1 centipoilgse for water to 32 centipoise for diethylene glycol,

Consideration was also given to the surface tension of the liquid
since the negative pressure of the fluid is related to the surface

tension by
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Now, if it is assumed that the fluid has no vapor bubbles that are
vigible to the naked eye, say 10—4 centimeters in diameter, then the
negative pressure of zll the fluids censidered will be greater than
2 atmospheres, Since this value for surface tension is greater than
any value that will be obtained in the test program, the equations of
Chapter 1V will not have to include this property of surface tension.
HoweVer, if a vapor bubble greater than 10_4 centimeters should exist
in the fluid then the fluid will fractufe at a lower value than 2
atmospheres; this was experienced in the test program where the fluid
fractured approximately two seconds after the test was begun. Although
this was a short interval of time, it was sufficient to obtain the

negative‘pressure of the fluid.
Experimental Apparatus

The basic test set-up is shown in Figure 9 and Figure 10, The
vacuum pump is connected through a filter to a threaded pipe which is
in turn screwed into a Plexiglas cap. This cap fits very snugly om top
of the tube and with the aid of high vacuum grease a pressure equal to
the vapor pressure of the fluid can be maintained within the tube.

The Plexiglas tube is mounted on the oscillating piston which is
connected to the oscillator driver by the connecting rod. It can be
kept in a vertical position by suitable manipulation of the base. Two
oscillator drivers were used. One gave the tube an amplitude of 0,025

inches while the other gave it an amplitude of 0,05 inches. The
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oscillator driver is driven by a hydraulic motor which has a range of
speeds from nearly zero to 3500 rpm, Figure 10, The power supply for
the system is an electrié motor which is coupled directly to a gear
pump« A flow divider valve is used for control of the oscillator speed,
The tube is instrumented as shown in Figure 1ll. The two Kistler
quartz pressure transducers are mounted in the side of the tube with
the lower transducer at the bottom of the tube and the second trans-
ducer 8 inches above., The output from the two transducers is fed
through two charge amplifiers which are designed especially for the
transducers and is then fed to the oscilloscope, The data were then
recorded from the oscilloscope by means of a Polaroid camera., A
mercury manometer graduated to read tenths of an inch was used to
measure the pressure of the gas above the fluid. The oscillating
frequency of the tube was obtained by measuring the rpm of the

hydraulic motor. This can be seen from the Figure.
Test Procedure

Prior to any consideration for the tube or for the fluid, the
control settings on the flow divider valve were set so that frequencies
corresponding to 50, 100, 200, 250, 300 and 350 radians per second
could be realized quickly when the power was turned on, This was done
so that the control could be set to the desired frequency, the power
turned on and the data corresponding to that frequency and amplitude
could be read before the fluid within the tube completely fractured,

This method does have the disadvantage of not being able to obtain the
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exact frequencies that are desired, but it is considered vastly superior
to taking data while the fluid is fractured for obvious reasons,

After the proper settings on the control of the flow divider valve
were obtained, it was necessary to clean the inside of the tube thorough-
ly. The cleansing agent chosen was a 307 dilute solution of nitric
acid. This particular acid was chosen because of its low affinity for
Plexiglas and its excellent cleansing properties,

After the inside of the tube was cleansed with the acid, it was
" thoroughly rinsed with distilled water and allowed to dry while care
was exercised so that no foreign matter was allowed to enter the tube,
The test fluid was then poured into the tube through a very fine wire
screen., The screen was used to ensure that there were no solid particles
of visible size in the fluid,

When the fluid reached a height of 31 inches, the cap was placed
on the top of the tube and the vacuum pump was started, The pump was
allowed to run for approximately two hours so that the inside of the
tube would be rid of all the undissolved air that had risen to the top.
The pump was then turned off and the fluid was allowed to sit overnight
subject to this vacuum which was equal to the vapor pressure of the
fluid. In the morning the pump was again turned on so that any air )
that rose to the top during the night could be eliminated. Of course
one cannot be absolutely sure that all undissolved gases were
eliminated just by a visual observation, but this was deemed adequate
since there was no convenient way to measure just the undissolved gases

in the liquid. The fluid was now ready to be tested.



After the fluid was vibrated and the pressure measurements were
recorded, the vacuum pump was stafted and the fluid was allowed to sit
until there were no visible vapor bubbles present. This usually took
from 15 to 30 minutes.,

When the testing was completed for both amplitudes the cap was
taken off the tube and 8 inches of fluid were drained from the_tube;
this was done because it was desired to run a similar series of tests
as before but at a different height., This series of tests was

performed so that it could be determined if there were any marked

changes in the pressure values obtained at this lower height other than

the ones called for by the equations of Chapter 1lV. The cap was then
placed on the tube and the vacuum pump was started. The pump was left
running for approximately two hours, or until the fluid was rid of all
visible bubbles. This draining process took such a short period of
time that there was no need to allow the tube to sit overnight under a
vacuum as was done in the original case, The same procedure was then

used as was used for a height of 31 inches.,
Results

Due to the n;mber of fluids tested, the different fluid heights
tested, the different émplitudes at which they were tested and the
experimental values for frequency not corresponding exactly with the
theoretical values, it was felt that the most realistic way to present
the results would be a plot of the negative pressure amplitude as a

function of the frequency, The experimental values obtained for a
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fiuid height of 31 inches were ugsed in the plots. Tha values corres~
ponding to a fluild height of 23 inches were similar to the 31 imch
height and it would be too much of a repetition tc include them. Thus,
‘the question of the previoﬁs section 1is answéred; that is, there is no
marked change ih the pressurevvalues obtained at this 16wer fluid
height other than the ones called for by the equations cof Chapter 1V,
Two values of the azimuthal coordinate, z, were used; ;hey were
for z = 23 inches and for z = 31 -inches. These two values for z were
chosen because they correspond to the transducer locations, A value
for the radial coordinate, r, equal to 0995 inches was usgdo This
cholce of r was necessitatéd because of the discontinuity of the
pressure equation at the wall., This discontinuity arose because of
the boundary condition thaﬁ the azimuthal velocity at the wall equals

zero in the first part of the solution. That boundary condition gives

rise to the term

Jo (an R) = 0 ,

which is present in the pressure equation, However, from a physical
standpoint it i1s difficult to envision a significant difference of
pressure at a value of r which is very close to the wall, and the
actual pressure at the wall. With this assumption, the theo;etical and
the experimental values for pressure can be compared,

Figures (12 ~ 16) are the plots of the pressure fields for all the
fluids tested. From the figures, the agfeement between the experimental
and the theoretical results is noticed. It can therefore be stated
that a close céfrelation'exists between the experimental values for

pressure at the wall and the theoretical values for pressure near the



~

wall and there is no reason to assume that this correlation will not
hold in the interior of the fluid, The graphical results, not only for

pressure but also for velocity, will be discussed more fully in the A

‘next chapter,
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CHAPTER VI
GRAPHICAL RESULTS

To present a complete graphical presentation of all the results
in this chapter would be quite impractical. However, as was done in
the previous chapter, the results for one fluid height, h = 31 inches,
and one fluid amplitude, a = 0,05 inches, will be considered and from
these results observations and conclusions will be made which will be
applicable to all fluid heights and amplitudes since the results are
gimilar, '

Since the principle topic of interest is the negative pressure
of the respective fluids, these results will be cc-sidered first. The
pressure equation has a time dependent term (cos wt = 1) which varies
between 0 and -2, This is, when the term (cos wt - 1) is equal to =2,
" or when the coefficient wt is equal to w, 3w, etc,, the maximum value
for negative pressure is obtained, It is this maximum value of
negative pressure which is represented in the following figures and
which will be denoted as the negative pressure amplitude. As for the
pressure variation with time, it can be seen that the pressure will
decrease from a maximum positive pressure when wt is equal tobo, 27,
etc,, to a r aximum negative value whan wt is equal to 7w, 3w, etc, The
curve will be proportional to (cos wt = 1) with the amplitude being
dependent on the values of r, w and z that are used. This can be seen
be inspecting Eq. (IV=61),

The curves of the negative pressure amplitude as a function of the
frequency have been given in the previous chapter, From these curves
an immediate evaluation of the negative pressure amplitude can be
obtained for values of frequency up to 400 radians ner second, Thoﬁgh
only two values for z are given on 'he charts, nege¢tive pressure ampli-

tudes corresponding to different a values can be easily obtained by
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interpolation or extrapolation since the negative pressure amplitudes
are linear with respect to z.

By utalizing the results of Schoenhals and Overcamp (31) the
vcharts for the negative pressure amplitude can be put in a very
convenient form by non-dimensionalizing the negative-pressure ampli-
tude and the azimuthal coordinate. 1In this way, the results for all .
five fluids can be condensed on one chart. |

Following the work of Schoenhals and Overcamp, the chart on
Figure (17) presents the dimensionless negative pressure ampiitude,

P
pamzh

as a function of the dimensionless distance, z/h, for various values of
the input acgeleration amplitude,
G = aw?

Figure (18) is a plot of the negative pressure amplitude as a
function of the viscosity. The values for negative pressure were taken
at a height of 31 inches, and for a frequency of 400 radians per second.
The values corresponding to the other values for w will have the same
general shape but are not included in the figure so that an enlarged
ordinate could be used. From the figure, it can be seen that for
fluids with low viscosities, any change in the fluid viscosity will:
mean a marked difference in the negative pressure amplitude while for
fluids with high viscosities aﬁy change in the fluid viscosity will have
a negligible effect on the negative pressure amplitude.

Though there were no actual measurements of the liquid vejocity

within the tube, it was decided that the derived velociﬁy equations
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would be adequate since the pressure aquation agreed so well with the
experimentally observed values of pressure.

Figure (19) shows how the azimuthal velocity applitude vﬁries with
the aziﬁuthal coordinate, z. From this figure, it {p noticed that the
fluid with the highest value for viscosity, diethyleme glycol, hae the
largest variation in velocity betweer the top and the botfom of the
fluid column while the fluid with the lowest value Ior viecosity, water,
has the least variation in velocity, Thié implies that fluids with low
values of viscosity are better able to follow the motion of the tube,
or, in other words, fluids with low fluid viscoéities will have the
least variation between the velocity of the surface and the velocity of
the‘botton of the tube.

Figure (20) is a plot of the azimuthal velocity amplitude as a
function of the frequency. From this figure, it can be seen that the
azimuthal velocity amplitude is essentially a linear function of the
frequency. w.

Figure (21) is a sketch of the azimufhal veloéity profile as a
function of the radius for different instants of one period. The
magnitudes of the velocities in this figure are with respect to the
motion of the wall., That is, the velocity profile in Figure (21) is as
it would appear to an observer moving'with the same velocity as the
wall,

Although the radial velocity émplithde is at least three orders
of nagnitude.leas than the azimuthal velocity ampiitude, it was
decided to present thoée results since they could become important

under certain conditions. For example, if the radius, R, was increased
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by one order of magnitude and the fiuid height, h, was decreased by ore
order of magnitude, the radial velocity amplitude would ﬁe aﬁproximately‘
one order of magnitude less than the azimuthal vel@city amplitude. It
is clear that under these conditions the radial velocity would be an
important parameter.

Figure (22) is a piot of the radial velocity amplitude as a
function of thé azimuthal coordinate, z. ﬁesides showing the variation
of the velocity amplitude with respect to z, it also ghows the depen-
dence on the fliid viscosity. That is, the fluid with the h;ghest
value of viscosity, diethylene glycol, will have the highest value of
velocity amﬁlitude and the fluid with the lowest value of viscosity,
water, will have the lowest value for the wvelocity amplitude. All
fluids with viscosities Between the above-mentioned fluids will have
valués of radial velocity amplitude between the two curves in Figure
(22). Figure (22) will be accurate up to a valué of z, which is not
affected by the bottom of the tube. The exact position where the
radial velocity is unaffected by the boiltom surface is undetermined._v
The reason for this uncertalnty is due to the linear independence of
the Bessel Functions in the radial And azimuthal velocity equations.
This independence means that the only way for both the radial and the
azimuthal velocity equations tc equal zero in the second part of the
solution in Chapter 1V 1s‘foi thelr respective coefficients to equal
zero. This would mean that the cos (ynh).and the sin (vnh) wouid both
equal zero which is impossible. So the only condition that could be
satisfied at the tube bottom was for the azimuthal velocity\to eqgual
zero. But, this should not be taken to mean that it 1is physically

impossible to satisfy both welocity conditiouns at the vportom of the
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tube. This could probably be realized by a‘consideration of nonlinear
terms in the origina’ differential. This would result in functions
which are.no longer linearly independent; The assumption of the exist-
énce of these functions does not imply thaf they can be found. It is
more likely that only numerical solutions are practical. |

Figure (23) shows how the radial velocity amplitude will vary with
the frequency. Again, it should be noticed that the ﬁore viscous
fluids will have larger values of radial velocity than the less
viscous fluidé.

Figure (24) is a plot of the radial velocity profile of diethylene
glycol as a function of the radius, f, for different instanté of one
petiod; From the figure, it is observed that the radial velocity will
incfease in magnitude up to a value of r which 1is very close to the
wall. It thén decreases very rapidlyico a value of zero at the wall.
For diethylene glycol at w = 400, the maximum value for the radial
velocity occurs at r = 0.97 inch. This maximum radial velocity will
occur at different values of r for different fluids. This fact can be
seen by inspecting-Eq. (Iv-67). From that equation, it is noticed that
‘the second and the third term within the brackets contain an exponential

term

Exp ﬁd/%; (x-1).

which makes the above two terms negligible for all values of r less than
about 0.95 inches for the fluids considered in this study. For values

of r greater than 0.95 inches, the exponential term will approach unity
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thereby making the second and thifd termg of Eq. (IV-67) important. In
fact, when r is equal to the radius of the tube the sum of the second
and third terms of Eq. (IV-67) will Se equal to the first term of that
equation, thereby making the radial velocity zero at the wall. For
values of r between 0.95 inch and 1 inch, the exact position of gheu
maximum rad’al velocity will also be dependent om the frequency, w,‘
and the viscosity, v. That is, the position of the maximum radial
velocity can be moved closer to the wall by either increasing the value
of w oér by decreasing the value of v. Table III gives the appro§imate
poaition of the maximum radial velocity for all the fluids considéred

at a frequency of 400 radians per sacond.

TABLE III

POSITYOW n¥ MAXIMUM RADIAL VELOCITY
A" w = 400 RADIANS PER SECOND

Water . 70% Eth. Gly.  80% Dieth. Gly.  Eth. Gly. Dieth. Gly.
>0.99 0,99 inch 0.98 inch 0.98 inch’  0.97 inch
inch

Dimensionless Analysis

Due to the complexity of the derived equations in Chapter IV, it
was décided to use a dimensionless analysis treatment on the results
obtained to see 1f a simplified relationship could be derived which
would adequately describe the pressure conditions within the tube.

From the derivations of Chapter IV, it cen be stated that the
negative pressure amplitude will be a linear function of the azimuthal
coordinate, 2z, and unknown functions of the input acceleration, awz, the

fluid density, p, the fluid viscosity, u, and the tube radius, R. Under
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this assumption, the negative pressure amplitude equation will have the

following form:
2
P=f (aw s Py M, R) z .

For any form of the unknown function £, the following relationship

must be satisfied:

a 9 b c d
e () = (:F;.a L
z TZ \LA \LZ

For dimensional homogeneity, the exponents of F, L. and T on both sides

of the equation must be the sanme:

F: 1l = b+ ¢ ,
Ly =3 = a=4b - 2¢ +d,

and
T 0w =2a + 2b + c .

When the above simultaneous equations are solved

a=1] +'% ’

b=1+3—°-;- ,
-2

°= 3

d= d ,

and the solution is
P = pawzz f (aw2 1/3, L2 2/3 » R .

u

Since the answer obtained by dimensional analysis will always have an

unknown function that must be determined experimentally, the equation
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can be assumed to be of the following form:

d/3
P awz 3
a——a——- = c """i""‘ R (Vl-l)

paw 2z v

Eq. (V1-1) states that at a height z and for a given input awz, P is the
negative pressure amplitude of the fluid, assuming that the initial
pressure of the fluid is zero. But at a height z, the fluid will have
an initial pressure greater than the ullage pressure by the amount

pgh, This additional pressure is due to the weight of the fluid

_column above the position z. Now, if it is assumed that the ullage

pressure is zero, Eq, (Vl-l) can be rewritten in the following form:

d/3
2 awz 3
P =pan 'z ¢ =" R” - pgh ’ (V1=2)
v
or in dimensionless form
2 d/3
P aw 3 £ 2 »
———— = c — R - -— (V1_3)
2 2 2( h
paw h v aw

Before an attempt is made to correlate Eq. (V1-3) with the experimental
results, it would be wise to consider the effect of the variables w and
u ‘on the negative pressure amplitude. From Figure (18) it appears
that the constants in Eq. (V1=3) should be evaluated for fluids with
viscosities less than 10 cp. and for fluids with viscosities greater
fhah 10 cp. since the slope of the curve changes rather abruptly in

that region,
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Figure (25) is a plot of the dimensionless negative pressure
amplitude, P/pamzhD as a function of the frequency, w, From this
figure it is noticed that the slope of the curve changes rather
abruptly in a region around 150 radians per second., Thus, it seems
logical that the constants c¢ and d/3 should be determined in each of

the four regions listed below:

(a) w <150, u <10 ,
(b) w <150, u >10 ,
" (e) w >150, u <10 ’

and
(d) w >150, u »10 ,

When the results of the present analysis are fitted to Eq. (V1-3)
by the least squares method technique, the following values for d and

Cc are obtalned:

¢ = 0,9014
w<1s0: b a=o.0198
c = 0.8306
W >10 d=0.039% °
: c = 0,9022
wos0: L Y0 a=o.0198 ¢
uo> 10 c = 0.957

d = 0,01398

Figure (26) compares the results obtained from Eq. (V1=3) with the
rasults obtained from the equations of Chapter 1V,
From the figure mentioned above, it is noticed that the dimen-

sional analysis approach yields an equation which gives a good
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#ppruximation f;; thé ﬁégétive ﬁressure amplitude values for the fluids.
under investigation. But before this equation can be applied to other
situations, it should be compared with the results obtained from fluids
with viscosities larger than 35 centipoise and from fluids in containers
with radil both larger snd smaller than one inch.

The plots presented in this chapter give a clear picture of the
dependence of the pressure, azimuthal velocity and radial velocity on
the spatial coordinates, the frequency and the fluid viscosity. Though
the plots are drawn for the specific problem outlined at the end of
Chapter IV, the equations of Chapter IV are general and can be applied
to any problem which satisfies the given initial conditions and the
governing equations,

When an approximate solution is desired, Eq. (VI=3) may give an
adequate answer, But when greater accuracy is desired, the equations

of Chapter IV should be used,



CHAPTER VII
CONCLUSIONS AND RECOMMENDATIGNS

A general, straight-forward, analytical procedure has been
presented which predicts the pressure field and the velocity field
within a fluid-filled vibrating cylindrical tube, The procedures
developed can be applied to problems that are defined by a cylindrical
coordinate system with angular symmetry. Although the solution is
developed for problems with small vibrational amplitude and frequency,
the method used in obtaining this solution 1is straight-forward and can
be applied to problems with large values for amplitude and fre¢quency.

From the charts of the previous chapter, it is noticed that
cavitation is most likely to occur at or near the bottom of the tube
since the negative pressure 1s greatest there, It should also be
noticed that the negative pressure amplitude will decrease for a
decreasing value of viscosity. In fact, for fluids with small values
of viscosity the negative pressure amplitude decreases much more
rapidly as the viscosity is decreased than for fluids with large
values of viscosity., The precise value where this transition occurs
cannot be stated, since it occurs over a range of viscosity values,
but it is felt that 10 centipoise is a representative rumber,

Since cavitation and its subsequent cavitation damage can be
reduced by selecting a fluid with maximum difference between tensile

strength and negative pressure for a given input condition, this
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study demonstrates that this is equivalent to selecting a fluid of high

tensile strength and low viscosity. For example, in the fluids investi-~
gated in this study, water had the highest value of surface tension

and the lowest value of viscosity. Thus, of the five fluids considered,
water would be the least likely to cavitate,

A graphical presentation of the azimuthal and radial velocity
profiles has been given, These charts present a clear picture of the
velocity variations with respect to the azimuthal coordimate, the
radius and the frequency., The only discrepancy occurred in the radial
velocity vs. z- plot where a finite value for the radial velocity
amplitude at the tube bottom is shown. Physically, the radial velocity
amplitu&e should equal zero at the tube bottom. But due to the lack of
linearly independent'functions which would satisfy both the azimuthal
velocity amplitude and the radial velocity amplitude at the tube bottom,
only the azimuthal velocity amplitude was satisfied at that point,

This has already been explained in the previous chapter,

A simplified pressure equation was obtained using the dimensional
analysis technique. This equation agrees withvthe values obtained
using the equations of Chapter IV but it shquld be compared with more
experimental results so that more accurate values of the constant, c,
aed the exponent, d, can be obtaieed.

A computer program has been written which can be used on machines
which will accept the IBM 1620 Fortran notation without Format, 1In
addition to printing the results on the IBM printer, it will also punch
the results on IBM cards so that the plot programs listed in Appendix B

can be used if so desired,
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To conclude this study, a discussion of possible future investi-
gations follows,

A natural extension to the present study would be to include the
effect of angular dependence, That is, noﬁ—circular cylindrical
containers could be used in the testing. This angular dependence
should present no great problem in that the techniques used in thé
present study can be used for this study; Another area th;t'should be
investigated is that of elastic walled cylinders. This problem has
received some attention in that the wali was thought to act like a
series of isolated oscillating hoops. The underlying assumption in
this method is the fact that the motion is purely radial. In a real
situation the wall may move in a radial, azimuthal and angular
direction with the respective motions being dependent on each other,
It would be very interesting to incorporate this movement of the wall
as a boundary condition for the equations of motion to see what effect
this movement has on the pressure and the velocity of the fluid,

A multiple-axis vibration test of a fluid-filled cylindrical tube
would be interesting in that it could be determined if the different
inputs would have the effect of adding to one another, subtracting from
one another, or if they are completely independent of one another.

Another area of future study would be to obtain a solution that
would satisfy the condition of zero velocity’' for both the radial and
the azimuthal velocity at the tube bottom. As haslbeen discussed
previously, this would probably necessitate the use of a numerical

-golution.
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" APPENDIX A

SUPPLEMENT TO CHAPTER 1V

The purpose of this Appendix is to supplement the derivations of
Eq. (1V-56, from Eq. (1V-31), Eq. (1V-59) from Eq. (1V-52), Eq. (1V-64)
from Eq. (1V-63), and Eq. (1V-67) from Eq. (1V=54) with the steps that
are necessary for a smooth transition between the above mentioned

equations,
Derviation of Eq. (1V-56)

The complex part of the first term on the right-hand side of

Eq. (]V‘3l) is

K

sinh T- Z

3
1

(A-1)

vA+iB=-l£

cosh h

where A and B are the real and the imaginary parts of the above

equation, 1 equals

c2
1= =i =
v
and
K= qa 2 + i‘g

The principle root of K is

ill



where

and K is the complex conjugate of K.

The principle root of 1 is

4 2
c L
l=- (.0/\) Exp ("'i 4) .

From Eq. (A-2) and Eq. (A-3) the term i@g can be written in

the following form:

1/4

=
ol

X
1

[
o |
[52]
»%
o
P
[T
»f
+
&4
S’
L ]

The real part of Eq. (A-4) is-

U2 [ e g 2 1/2
KK+ n
R-M = 4
c
and the imaginary part is
2 1/2 2 1/2
sngm— - o
1-”“ /I(K;un + /KKZE .
c

Within the limitations of the defined problem, it can be stated

2 )
v

n
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(A-2)

(a-3)

(A=4)

(A~5)

(A-6)

that

(A~7)

Under the simplifying assumption of Eq. (A-7), Eq. (A=5) and Eq. (A=-6)

take the following form:
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ReO - | (A-8)
and | |
1=2 . (a9
Eq..(Afl)‘can now be written as
- - | otnh 1 & 2 |
| A+ 1B = 3 & . N (A=10)

)
cosh 1 c h
The real part of the qbovo'oquation is

"
sin e Z

--n‘
A c

(A-11)
cos f’ h 2

and since %ﬁ << 1 for all w and ¢, Eq. (A-11) can be rewritten as

2 ‘.
Am -(f-) z . | (A=12)

Eqs (A=12) is used to obtain Eq. (1V=56) from Eq. (1V-31),

To show the oquivaloﬁco betweaen the firast two terms of Eq.
(1V=31) all that is necessary is to show that the real and the
imaginary parts of the saecond term are .§u¢1 to the real and the

imaginary pai:u of Eq. (A-10),

The complex part of the second term on the right-hand side of
Eq. (1V‘31) is

e sinh z
c+p= =B

LXK
- (A=-13)
cosh "-!S h .
1l
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'where C and D are the real and the imaginary parts of Eq. (A-13). The

principle root of YK 1is

VK = :/-K—-E—- Exp (1 )

Njo

where

6 = tan"t - 9‘%
a
n

The principle root of 1 is

2
" -
1e S mxp (1 7,-)v . (A-15)

From Eq, (A=14) and Eq. (A-15), an equation similar to Eq. (A=4)

can be writtent

: 1/2
- ol . o2
R' = ﬂcbl .&.5.{_&_) - .L}s.:._ﬂ_) (A=17)
and the imaginary part is ’
2 1/2 2 1/2
10 - - 8L '“-Z":“') " .zs.ls.%_".‘p_) (A-18)

If the simplifying assumption of Eq. (A-7) is again used, Eq, (A=17)
and Eq. (A-18) can be written in the following form:
R'=Q (A‘lg)

and
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1' - o &

. | - (A=20)

The above twc equations allow Eq.' (A-13) to be written in the

following form: o o .
L » ginh (-1 < zZ) . ‘
C+D=-18 , . (A-21)
- cosh (=1 -:- h)

The above equation can be rewritten as
sinh (1 & 2) -
C+iD w1 -‘:— . , o (A~22)

cosh (i L:-h)

‘which is identical with Eq. (A-10) and the equivalence between the

two terms of Eq. (1V=31) 1is proved.
Derivation of Eq. (1V-59)

The cémplex part of the first term on the right-hand side of
Eqs (1V=52) can be written as

B, 1, (1)

E + 1iF = “S5rnoN

(A-23)

where E and F are the real and the imaginary parts of the above

equation and DENOM is defined in Chapter 1V, The term t, is

1

which can be approximated by

"1 - A/i‘-j- (A=24)

since % is much.larger than ynz for all values of Ty Eq. (A-24)

can be written in the following form:
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" W -
1T /\/Zv 1 2v (4-25)

where only the principle root is considered. The term 81 can be

approximated by

since
2 2
w 2
- << vy
c4¥m2v2 n
and
w3 \
< < Y
c4+w2v2 n

for all values of Yn'

From Eq. (A-25), the modified Bessel Functions can be written in

the following form:

W w
1l ('rl) '.beii’\/v -1 berl /\/ - (A=27)
and
1, (1) = ber /‘/v + 1 bei /\/v . (A-28)

To simplify the arithmetic calculations, the following symbols will be

used for the ber and the bei functions:

a-berl,\/%— ’

beil,\/%:— »
!

¢ = ber /\/% »

bei‘,\/%— ’

. -
.f = 5y oo (a=-29)

o
[}

n
[]

and
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From the notation of Eq., (4-29), Eq¢ (A-21) can be written in the

following form:
b - ia

E + 1iF = Mo 1N ° (A-30)
where
M= an ll (Yn) e fCll (Yn) + fdll(Yn) ’
and
N=a Yy 1o (yn) + fcl1 ‘Vn) + fdl1 (Yn) 0
The real part of the above equation is
= 2tal (4-31)
M™ + N
For large values of %‘, Eq., (A=29) can be written in the following
form:
W —
as= Exp 2y cos ——g + 3 ’
1/2 v 8
fx ~/E)
. _
= wLXP 2V w_ 3n
b . , sin 5y + ) »
‘ - 1/2
o )
_ v
c= b ,
and
d=-a , ' (A=32)

When the above approximations are substituted into Eq. (A=31), the

following equation results:

.. N -
E = DEN ® (A 33)
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The second term on the right-hand side of Eq. (1V=52) can be

written in the following form:

8, 1, '1.)
2 1 2
G+ iH = DENOM (A=34)

If the same procedure as was used before is used on Eq, (A~34), it 1s an
easy task to show that the real part of Eq. (A~34) 1is the same as
Eq. (A=33), Since G is equal to E, the two terms on the right-hand side

of Eq. (1V=-52) can be combined., The resulting equation 1s Eq, (1v=59) .,
Derivation of Eq. (1V=64)

The second term on the right-~hand side of Eq. (1V-63) can be
written as

(£+4£) 1, (v 1 (1 o
M hau YA |

J+ iK =

(A~-35)
where the notation of Eq. (A~29) is used and where T, equals

1"‘/92')" + 1,\/-‘3_-“-— .

\Y

T

The first term in Eq., (1V-63) is similar to Eq. (A-23) and is not
included in this analysis,
Since t r is a large number, greater than 100, for all values of

r used, a good approximation for 1o (t r) can be written:

w
Epr\/-Z-\T r) ( /\/T 3 )
-— sin — T b T
- 1/2 2v 8
(Zm\ﬁ% r)
-1 cos<, /%; T +

lo (tr) =

). , (a-36)

Coftw
=3
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When Eq. (A-36) is substituted into Eq. (A-35), the following equation

for J results:
- [ ML [ .3_1)
J DEN sin( 5y © t 8 +

i o
NU cos( u w) m(’\/ﬂ'r“l))

ki ——— 7 o
vr

{8

. (A"37)

(X
<
@}

DE

Z

The above equation 1is used to obtain Eq. (1V-64)

If the temm

[)V]
"Ny i

is used in the above analysis, an equation similar to Eq. (A=37) will

«%
<

be obtained.
Derivation of Eq. (1V=67)

The first part of Eq, (1V-66) is similar to Eq. (A=23) and the

second part can be written in the following form:

Ly i ('YB) 1}( (tr)
M - iN

(A=-38)

where the notation of Eq. (A=-29) is used. The term T will be used in
this analysis but it should be remembered that the final result will be

the same for Ty

The term for the modified Bessel Function is

Ju_ 3
sin ( 2y T + 3 )

(D)
Exp I r)

e

ll (rl r) =
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- 1 cos (,\/52"\7 r+-3-1) . | - (A-39)

When Eq; (A-39) 1is ubt’ituted into Eq. (A=-38), the vfollowing equation

for L results:

v (meswe o (Lo o) we

v o Exp (/\/%_\; (!‘-1))
NU D;:N M2 cos (/\/%";- (r-l)) K ' (A=-40) |
. : r

The above equation is used to obtain Eq. (1V=67) from Eq. (1V=66).



APPENDIX B

SOLUTION PROGRAM AND PLOT PROGRAMS FOR
PRESSURE, AXIMUTHAL VELOCITY AND

RADIAL VELOCITY EQUATIONS

In this appendix, a complete listing of the program for the
gsolution of the preésure equation, the azimuthal and radial velocity
| equations is given in IBM 1620 Fortran notation wiﬁhout Format along
with programs which present the output data in graphical form by
using the IBM 1627 plotter. The listing is supplemented witﬂ physical
'definitions'of the quantities called for as inputidata'and those

received as output data,

Program for the Solution of the Pressure

and Velocity Equations

Before any reference is made to the program listing, the Fortran

quantities defined below should be read,

(a) BO = Bessel function of zeroth order,

(d) Bl = Bessel function of first order.

‘(c) BMO = modified Bessel function of zeroth order,

(d) BMl1 = modified Bessel function of first order,

(e) BMR = modified Bessel function of zeroth order whose

argument i1s a function of the radius,
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modified Bessel function of first order whose argument
is a function of the radius.,

roots of equation (IV-23),

circular frequency (rad./sec).

azimuthal coordinate (inches).

radial coordinate (inches).,

maximum negative pressure experienced by the fluid (PSI).
maximum radial velocity experienced by the fluid
(inches/second),

maximum azimuthal velocity experienced by the fluid
(inches/second) .

density of the fluid (1b /ft3).

height of the liquid column (inches).

inverse of the fluid viscosity (sec/inches?) .
acceleration due to gravity (inches/sec?) ,

amplitude of the tube (inches).

All of the above quantities are floating point numbers and must

be defined with a decimal point.

three pages.,

The solution program in Fortran notation is given in the following

Plot Programs for the Output Data from the

Pressure and the Velocity Equatilons

The following two definitions are needed before reading the

listings of the plot programs.



" 100

15C

PROGRAM LISTING

DIMENSION 80(30,6),81(150),BMO(II)9BM1(11),BMR(11,6)
1SR(150)

DIMENSION W(B)oZ(ll),R(7),PRES(8 11, 7)9VR(8 11.7)
1VZ(8s1157)

DIMENSION BMR1(11+6)

READ 34 ((BO(NsNR)sN=1+30)sNR=146)

READ 345(B1(N)sN=15150)

READ 4,4, (BMO({M)sM=1,511)

READ 44(BM1(M)sM=1411)

READ 35(SR(N)sN=1+150)

READ 3, ((BMR(MsNR) sM=1511)9sNR=1,+6)"
READ 34((BMR1(MsNR)sM=1911)9NR=196)"
READ 11s(W(K) sK=1+8)

READ 11+(Z(K1)sK1=1s11)

READ 11+(R(K2)sK2=2+7) _
READ 1+sA9sRHOIHsGNUsGsAASABsACsAD4AE »AF
PUNCH 145AA ABsACsADSAEAF

PUNCH 154AsRHOsHsGNU

PRINT 199 AAsABsAC,ADSAEAF

PRINT 20s Ay RHOs H, GNU

R(l) = Oc

Al1=SQRTF(GNU/2.)

DO 80 K=1+8

PRINT 7sW(K)

AP=A*¥RHO*W (K ) #%#2/333849,.,6

DO 90 Kl=1s11

PRINT 8, Z2(K1)

PRINT 12

.PO=0,

PAA=Z (K1)*(-2,)

P2=RHO*¥Z (K1) ®(G+A¥W(K)%%*2) /6676992

DO 1850 N=z=1,150

P = PAA /(SR(N)*B1(N))

PO=PO+P

CONTINUE

XM=0,

P1=0,

DO 180 M=1,11

XM=XM+1,

GN=( (2% (XM~ 1.)+1.’/2.)*3 14159/H :
S=(=1 %% (M+1))%¥COSF(GN*Z (K1) )/ (H*SINF(GN*¥Z(K1)))
T=A1%¥SQRTF(W(K) ) ¥BM1 (M) ~GN*BMO (M)
U=SINF(GN#Z2 (K1) )*¥(=2.)

123

-(GN*BMO(M))**2+GNU*W(K)*BM1(M)**2 Zo*GN*Al*SORTF(W(K))

1#BMO (M) #BM1 (M)
P=(S*T#U) /X
P1=P1+pP '
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PROGRAM LISTING - continued

CONTINUE

PRES(KsK1s1)=AP*¥(PO+P1)+P2 ’

VZ(KsK1s1) = A*W(K)*(PO/Z(K1)$P1)

VR(KsK191) = O

PRINT 99R(1)9P09P1,PRES(K9K191)9P2

NR=0

DO 110 K2=2,7

NR=NR+1

PA=0,

DO 50 N=1,30

P=PAA*BO(NsNR)/(SR(N)*B1(N))

PA=PA+P

CONTINUE

PAl1=0.

BMUD = O,

XM=0,

DO 60 M=1,11

XM=XM+1.

GN=({2eF(XM-1a)+1e}/2e)%*3e14159/H

S={(-1e%#¥(M+1)/{H*®GN)

T=A1#SQRTF (W(K) ) *¥BM]1 (M) -~-GN#*#BMO (M)

UA=BMR (MsNR)¥SINF (GN#Z (K1) )% (~2,)
X=(GN*BMO (M) ) ¥¥2+GNU*W (K ) ¥BM]1 (M) #% 02— (¥GN*A1¥SQRTF(W(K))

1#BMO (M) ¥BM1 (M)

BMUD = GN #* BMR1(M,NR)/BMR(M,4NR)

P=(S*T#UA) /X

PA1=PAl1+P

P1=GN*COSF(GN*¥Z (K1))*P/SINF(GN¥2 (K1))

PA2=PA2+P1

BARF=P#BMUD

BARF1=RARF1+BARF

CONTINUE

VZ(KsK1sK2)=A¥W(K)*¥(PA/Z(K1)+PA2)

VR {K4K1,K? )=A*W(K)*BARF1

PRES(KsK1sK2)=AP* (PA+PA1)}+P2

PRINT 9sR(K2)sPASPA1SPRESIKsK1sK2) P2

CONTINUE

PUNCH 13sPRES(KsK191)sPRES(KsK192)sPRESIKsK1s3)s

]pRquK9K194)9PRF§(K9K195)9PREQ(K9K196)9PRE§(K K1s7)sKsK1

CONTINUE

CONTINUE

PRINT 18

PRINT 19, AA ABsAC,AD AE»AF

PRINT 20y A, RHO, Hs GNU

DO 61 K=1,8
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PROGRAM LISTING - continued

PRINT
no 62
PRINT
PRINT 21
PUNCH 169 VZ{KsK191)sVZI(KsK192)sVZ(KsK193)sVZI(KsK1lss),
IVZ(KeK195) sVZ(KsK196)sVZI(KsK147) 9K K1
PUNCH 179 VR{KsK191)sVR(KsK192)sVR(KsK193)sVR(KsK1s4),
1IVR{KsK195) s VR(KsK196)sVRIKsK197)9KsK1
DO 63 K2=1,7
PRINT 22sR(K2)sVR(KsK19K2)sVZ(KsK1sK2)

2 CONTINUE

 CONTINUE

CONTINUE

FORMAT (5F104096A3)

FORMAT (6(3XsF1040}))

FORMAT (7F10.0)

FORMAT (14H OMEGA EQUALS sF742//)

FORMAT (12H Z EQUALS oFT7e2/77)

FORMAT (15X sF6e393( 9XsE1l448)910XsE14.8)

FORMAT (6F1C40)

FORMAT (15X 9s6HRADINIS 916X s2HPO 921X 9s2HP1 416X s13HMIN,

1 PRESSUREs11Xs13HMAXe PRESSURE//)

7sW(K)
Kl=1,11
8, Z(K1)

1
1

N =0 ®-3H W=

13 FORMAT
14 FORMAT
15 FORMAT
1 GNU
16 FORMAT
17 FORMAT
18 FORMAT
19 FORMAT
20 FORMAT
1F10.3,
21 FORMAT
22 FORMAT
GO TO
END

(TE1Oe&4 04X s1292X912)
{14H QUTPUT FOR +6A3)
{7H sFBeb498H RHO
’F904)
(TE1Qe4stH VZ +s1292Xs12)
(TE1Deg4o4H VR 91292X912)
(51Xe19HIMAXTIMUM VELOCITIES//)
(14H1 OQUTPUT FOR +6A3)
(6H A = sF10e396X9s7H RHO

6X9TH GNU sF10e39//)
(15X sAHRADIUS 916X s6HRADIAL 923X s1HZ2//)
{15X9F6e3912XsE1448913X9E1448)

100

-

sF5e19s8H

A 9FB8e496H H =

=

3F10e396Xe5H H

1
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(a) CHAR = subroutine instructing the pen on the IBM 1627 plotter
to write,

(b) PLOT = subroutine instructing the pen on the IBM 1627 plotter
to move to a specified location,

These programs are included so that an investigator who desires
only a pictorial representation of how the pressure and the velocity
vary with respect to the spatial coordinates can utilize these‘plot
programs and save much time over doing it himself,

In Fortran notation, the six-plot programs are given in the

following twelve pages.,
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PLOT PROGRAM FOR RADIAL VELOCITY VS, r

DIMENSION PRES(6)sR(6)42(6)

READ 115(R({K2)eK2=146)

READ 344 (Z(K1)9K1=146)

READ 54 AAsABACIADIAESAFAG

FORMAT (14Xs7A3)

FORMAT (6F1044)

FORMAT (6F1040 )

FORMAT (6(F6e296X))

DO 40 K1 = 146

1C=101

XMIN=0,

XMAX=1.

XL=500

XD= 42

YMIN= LOGF(.00001)

YMAX= LOGF (1)

YL=10.

YD= LOGF (10.)

CALL PLOT (ICsXMINsXMAXsXLsXDsYMINsYMAXsYL YD)
CALL PLOT (99)

CALL PLOT (90, o4 s LOGF (,0000071))
CALL CHAR (04041,0)

FORMAT (10HR - INCHES)

CALL PLOT (90,4175 LOGF (.000006))
CALL CHAR (B840e1903AAABSACIADSAE JAF yAGsZ(K1))
FORMAT (TA345H 7 =sF642)

DO 26 K=1,8

READ 9, PRES(1)sPRES(2)sPRES(3)sPRES(4)sPRES(5)sPRES(6)
DO 27 K2=146

CALL PLOT (O0sRI(K2)sLOGF (PRES{K2)))
CONTINUE

CALL PLOT (99)

CONTINUE

CALL PLOT (90s—els LOGF (1))

CALL CHAR (0,504150)

FORMAT (5H Te)

CALL PLOT (909—els LOGF {e1))

CALL CHAR (050e¢150)

FORMAT (5H 1) '

CALL PLOT (904-e12s LOGF (.0009))
CALL CHARV(0s0els1)

FORMAT (21HRADIAL VELOCITY - IPS)
CALL PLOT (90s—els LOGF (e01))

CALL CHAR (0s0e1,50)

FORMAT (5K «01)

CALL PLOT (90s—els LOGF (4001))

CALL CHAR (05Cels0)
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4.0

RADIAL VELOCITY VS, r - continued

FORMAT (5H +001)
CALL PLOT (90s~els
CALL CHAR (050els0)
FORMAT (5He0001)

LOGF

CALL PLOT (90s-412+LOGF

CALL CHAR (0404150
FORMAT (6H.00001)
CALL PLOT (90,-401
CALL CHAR (04sCels0)
FORMAT (2HO.)

CALL PLOT (9044175,
CALL CHAR (040e1s0)
FORMAT (2He2)

CALL PLOT (9094375,
CALL CHAR (04+0e1+0)
FORMAT (2He4)

CALL PLOT (9046575,
CALL CHAR (0s00150)
FORMAT (2He6)

CALL PLOT (9044775,
CALL CHAR (040els0)
FORMAT (2He8)

CALL PLOT (9044995
CALL CHAR (04041450)
FORMAT (3H1.0)

DO 70 N = 142

CALL PLOT(T)
CONTINUE

CONTINUE

GO TO 25

END

s LOGF

LOGF

LOGF

LOGF

LOGF

LOGF

(«0C011))

(«000011))

(+0000083))

(«0000083))

(«000C083))

{«CCC0083))

{+0000083))

(40000083))
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PLOT PROGRAM FOR AZIMUTHAL VELOCITY VS, Z

DIMENSION PRES(6), 206)
READ 3449(2(K1)sK1l=146)

READ 54 AAsABsACIADSAESAF S AG
FORMAT (14Xs7A3)

FORMAT (50XsF10e4)

FORMAT (6(F6e296%))

IC=101

XMIN=11.

XMAX=31e

XL=5,0

XD=4,

YMIN=20

YMAX=z=22

YL=10.

YD=2,

CALL PLOT (ICesXMINsXMAXsXLoXDsYMINSYMAX YL sYD)
CALL PLOT (99)

CALL PLOT (S0, 19e 91e3295)
CALL CHAR {CsCels0}

FORMAT (10HZ - INCHES)

CALL PLOT (904144541612)
CALL CHAR (7306190 9sAASABsACADIAE JAF 4AG)
FORMAT (7A3s10H R = 0495)
DO 26 K=1,8

129

READ 99 PRES(1)sPRES(2)sPRES(3)sPRES(4)sPRES(5)sPRES{E

DO 27 Kl=1s6

PRES(K1) = -PRES(K1)

CALL PLOT (0,Z(K1)4PRES(KI1))
CONTINUE

CALL PLOT (99)

CONTINUE

CALL PLOT (90s 943214975)
CALL CHAR (0s041,50)

FORMAT (4H 22.)

CALL PLOT (90 94917e975)
CALL CHAR (0504150}

FORMAT (4H 18.)

CALL PLOT (90, 9439975}
CALL CHAR (05041,50)

FORMAT (4H 10.) :
CALL PLOT (90s 8463 948)
CALL CHARV(04304151)

FORMAT (24HAZIMUTHAL VELOCITY - IPS)
CALL PLOT (90s 94513+4975)
CALL CHAR (050e1,50)

FORMAT (4H 14)

"CALL PLOT (90s 94954975)
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AZIMUTHAL VELOCITY VS, Z - continued

CALL CHAR (0+04150)
FORMAT (4H 6.)

CALL PLOT (90y 9¢31e975)
CALL CHAR (0,0.140)
FORMAT (4H 2,.)

CALL PLOT (90510.8091466)
CALL CHAR (0s0e¢1+0)
FORMAT {3H1l1la)

CALL PLOT (90414e891066)
CALL CHAR (0sCasal40)
FORMAT (3H15.)

CALL PLOT (90+18489+1e66)
CALL CHAR (0+0e150)
FORMAT (3H19.)

CALL PLOT (90+22¢8+1466)
CALL CHAR (Q04Cels0)
FORMAT (3H23,)

CALL PLOT (904264891 666)
CALL CHAR (040e150)
FORMAT (3H27.)

CALL PLOT (9043048+1e66)
CALL CHAR (04041,40)
FORMAT (3H31.)

"CALL PLOT(7)

PAUSE
GO 7O 25

- END
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PLOT PROGRAM FOR AZIMUTHAL VELOCITY VS, r

DIMENSION PRES({6)sR(6)s2(6)
READ 114+(R(K2)9sK2=146)

READ 349 (Z(K1)9sK1l=1s6)

READ 545 AASABIACHIADIAEsAFAG:
FORMAT (14Xs7A3)

FORMAT (6E10Q44)

FORMAT (6F10.0 )

FORMAT (&6F10.0 Y )
FORMAT (6(F6e296X%X))

DO 40 K1 = 146

PRINT 55, Z2(K1)

FORMAT (6XsF642)

I1C=101

XMIN=O.

XMAX=1,

XL=5,0

XD=,1

YMIN=2,

YMAX=22

YL=10,

YD=2.

CALL PLOT (ICsXMINsXMAXsXLoXDsYMINSYMAXsYLsYD)
CALL PLOT (99)

CALL PLOT (90,=e010s1456)
CALL CHAR (040e140)

FORMAT (2HO.)

CALL PLOT (90y ¢35 414395)
CALL CHAR (040e150)

FORMAT (15HRADIUS - INCHES)
CALL PLOT (90s415914125)
CALL CHAR (8+0e1909sAAsABIACIADIAESAF9sAGZ(K1))
FORMAT (7A345H Z =4Fb642)
CALL PLOT (90944754514586)
CALL CHAR (0s0e1+0)

FORMAT (3HO.5)

CALL PLOT (904497551466
CALL CHAR (03s041:0)

FORMAT (3H1.0)

DC 26 K=1+8

131

READ 94 PRES(1)sPRES(2)sPRES(3)sPRES(4)sPRES(5)sPRES(6)

20 27 K2Z2=1+6

PRES(K2) = =PRES(K2)

CALL PLOT (0sR(K2)+sPRES(K2))
CONTINUE

CALL PLOT (99)

CONTINUE

CALL PLOT (909-e1921.975)
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AZIMUTHAL VELOCITY VS, r = continued

CALL CHAR {0404140)
FORMAT (4H 22.) :
CALL PLOT (909~e1917e975)
CALL CHAR (0s04150)
FORMAT (4H 184

CALL PLOT (909=413136975)
CALL CHAR (030e1s0)
FORMAT (4H 14.)

CALL PLOT (90s~el12y 948)
CALL CHARVIO40els1)
FORMAT (24HAZIMUTHAL VELOCITY - IPS)
CALL PLOT (905-e13s9e975)
CALL CHAR (0sDels0)
FORMAT (4H 10,)

CALL PLOT (909=0e1954975)
CALL CHAR (0s0414+0)
FORMAT (4H 6.)

CALL PLOT (909s=e1391e975)
CALL CHAR (0404140}
FORMAT (4H 2.)

CALL PLOTI(T7)

PAUSE

CONTINUE

GO TO 25

END
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PLOT PROGRAM FOR PRESSURE VS, Z

DIMENSION PRES(63 2(6]

READ 344(Z2(K1)sK1=1:6)

READ 55 AAsABSACSAD«2E9AF 9AG

FORMAT (14Xe7A3)

FORMAT (50XsE10e4 )

FORMAT (6(F6e2s6X i

IC=101

XMIN= 11,

XMAX= 31.

XL=5,

XD= 4.

YMIN=—1-5

YMAX=2845

YL=10.

YD=3,

CALL PLOT (ICsXMINsXMAX XL aXDsYMINsYMAX YL sYD)
CALL PLOT (99)

CALL PLOT (90s 9425 25435)

CALL CHAR (CsQ0els0

FORMAT (4H25.5)

CALL PLOT (90s 942, 19435}

CALL CHAR (Cs0al,s0}

FORMAT (4H19.5)

CALL PLOT (90s Baebs 1042)

CALL CHARV {0y GCels 1)

FORMAT (23HNEGATIVE PRESSURE - PSI)

CALL PLOT (90y 942, 13435}

CALL CHAR (040a1s0)

FORMAT (4H13.5)

CALL CHAR (0404140}
FORMAT (4H 751
CALL PLOT (90s Ge2s 1.3
CALL CHAR (040e1,0)
FORMAT (a4H 1e5)
CALL PLOT {(9Cs 942+~ «35)

CALL CHAR (0404140)

FORMAT (4H 0.)

CALL PLOT (90y 9429=1e65)

CALL CHAR (040e1450)

FORMAT {(4H~145)

DO 26 K=1+8

READ 94 PRES(1)sPRES(2)sPRES(3)sPRES(4)+sPRESIS) sPRES(6)
DO 27 K1l=146

CALL PLOT (042(K1),,~PRESI(K1))

CONTINUE

CALL PLOT (939)

e

)
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PRESSURE VS, Z = continued

CONTINUE
CALL PLOT (90,19,
CALL CHAR (0s0els0)

’ —20385)

FORMAT (10HZ - INCHES)

CALL PLOT (90491445,

CALL CHAR (790e1505AA9ABsACHADSAESAFAG)

“2.82)

FORMAT (7A3,8HR = 0.95)

CALL PLOT (3041046
CALL CHAR (04s0e140)
FORMAT (2H11l.)

CALL PLOT (90,414.6
CALL CHAR (04+041+0)
FORMAT (3H15.)

CALL PLOT (90,1846
CALL CHAR (0+04150)
FORMAT (3H19.)

CALL PLOT (90422465
CALL CHAR (04+0e150)
FORMAT (3H23.)

CALL PLOT (90,2646
CALL CHAR (050e140)
FORMAT (2H27.)

CALL PLOT (9Cs3046
CALL CHAR (0+061+0)
FORMAT (3H31l.)

DO 70 N = 1,2

CALL PLOT(T)
CONTINUE

GO TO 25

END

1-1e9596)

’=16996)

~14996)

~-1.996)

-1+996)

‘10996’
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PLOT PROGRAM FOR PRESSURE VS, r

DIMENSION PRES(6)sR(6)+21(6)
READ 119(R(K2)sK2=1+6)

READ 34,4 (Z(K1)sK1=1s6}

READ 59 AASABACIADIAELAFHAG
FORMAT (14Xs7A3)

FORMAT (6E1044)

FORMAT (6F10.0 )

FORMAT (6(F6e296X))

DO 40 K1
1C=101
XMIN= Q.
XMAX=1.
XL=5,
XD=,2
YMIN=-1e5
YMAX=28e5
YL=10.
YD=3,
CALL PLOT
CALL PLOT
CALL PLOT
CALL CHAR

146

(ICoXMINIsXMAX s XL s XD YMINsYMAXsYLoYD)

{99)
(90;“-099"1065)
(Ce0els0)

FORMAT (4H-1.5)

CALL PLOT
CALL CHAR

FORMAT (4H

CALL PLOT
CALL CHAR

(904~e09s~ +35)
(0504190}

Q)
(904-e0Gy 1435)
(090e140)

FORMAT (4H 1e5)

CALL PLOT
CALL CHAR

(95C9—e0Gs 7435)
{0s0e150)

FORMAT (4H 7.5)

CALL PLOT

CALL CHARYV

(909=0125 10.2)
(Cy Ouls 1}

FORMAT (23HNEGATIVE PRESSURE -~ PSI)

CALL PLOT
CALL CHAR

{9049~e¢09y 13435)
(GsTels0)

FORMAT (4H13.5)

CALL PLOT
CALL CHAR

(905=409ys 19435)
(0s0elsO}

FORMAT (4H19.5)

CALL PLOT
CALL CHAR

(905-¢09s 25435)
{0s0e140)

FORMAT (4H2545)
DO 26 K=1,8

READ 95 PRES({1)sPRES(2)sPRES(3),sPRES(4)+sPRES(5),,PRES(6)
DO 27 K2=1+6
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PRESSURE VS, r -~ continued

CALL PLOT (DsR{K2),~PRES{K2))
CONTINUE

CALL PLOT (99)

CONTINUE

CALL PLOT (90 o4 s ~24385)
CALL CHAR (0406140}

FORMAT (10HR - INCHES)

CALL PLOT (9091759 ~2482) _
CALL CHAR (890e13s03AAsABIACIADJAFESAF sAGsZ(K1))
FORMAT {(T7TA3+s5H Z =3F6e2)
CALL PLOT (904~e010s=-14996)
CALL CHAR (04s0e140)

FORMAT (2HO)

CALL PLOT (904301755 =1e996)
CALL CHAR (0+041450)

FORMAT (3H«2 )

CALL PLOT (90343759 =1996)
CALL CHAR (0s041,0)

FORMAT (3He4 )

CALL PLOT (905¢5759 ~1e996)
CALL CHAR (0sQel1,0)

FORMAT {3He6 )

CALL PLOT (90567759 ~16996)
CALL THAR (04Cels0)

FORMAT (3He8 )

CALL PLOT (9094975s ~19596)
CALL CHAR (004190}

FORMAT (3H1l.0)

DO 70 N = 12

CALL PLOTI(7)

CONTINUE

CONTINUE

GO TO 25

FND
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PLOT PROGRAM FOR RADTIAL VELOCITY VS, Z

DIMENSION PRES(6)4R(6)sZ(6)

READ 344,(Z2(K1)4,Klsl1,46)

READ 5,AA

READ 54 AAJABJAC,AD,AELAFLAG

FORMAT (14X 47A3)

FORMAT (6(1064)

FORMAT (6(F64246X))

IC=i01

XMIN= 11,

XMAX= 31

XL=540

XD= 2.

YMIN= LOGF({.00001)

YMAX= LOGF (1le)

YL=10e

YD= LOGF (10)

CALL PILOT (ICosXMINsXMAXsXLosXDysYMIN,YMAX, YL, YD)
CALL PLOT (99)

CALL PLOT (90, 19 » LOGF (40000071))
CALL CHAR (0+0e140)

FORMAT (10HZ - INCHES)

CALL PLOT (90414459 LOGF (4000006))
CALL CHAR (7+0a1303sAAAB,AC AD,AELAF4AG)
FORMAT (7A3,10H R=095)

DO 26 K=1,8

READ 95 PRES(1)sPRES(2)sPRES(3),PRES(4),PRES(5),PRES(6)
DO 27 Kl1=1,6 '
CALL PLOT (0sZ(K1)sLOGF (PRES(K1)))
CONT INUE

CALL PLOT (99)

CONT INUE

CALL PLOT (904+49.0, LOGF (1))

CALL CHAR (04+0e1,0)

FORMAT (SH l1.)

CALL PLOT (904940, LOGF (a1))

CALL CHAR (04+0e1,40)

FORMAT (SH o1l)

CALL PLOT (904846 4 LOGF (40009))
CALL CHARV(0,40e1,41)

FORMAT (21HRADIAL VELOCITY - 1IPRS)
CALL PLOT (9049404 LOGF (401))

CALL CHAR (04+0e1,40)

FORMAT (5H +01)

CALL PLOT (90+940y LOGF (4001))
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32
33
35

70

RADIAL VELOCITY VS, Z -~ continued

CALL CHAR (0s0e1,0)

FORMAT (5H .001) -
CALL PLOT (9099405 LOGF (0001))
CALL CHAR (040e¢140)

FORMAT (S5H.0001)

CALL PLOT (S0+8e6 »LOGF (.00001))
CALL CHAR (0+0e1,0)

FORMAT (6He00001)

CALL PLOT (90,108 +LOGF (0000083))
CALL CHAR (090e140)

FORMAT (2H11) _ ‘
CALL PLOT (904+1445s LOGF (.0000083))
CALL CHAR (0+4041,0)

FORMAT (2H15)

CALL PLOT (90,185, LOGF (0000083))
CALL CHAR (04061,0)

FORMAT (2H19)

CALL PLOT (9042254 LOGF (.0000083))
CALL CHAR (0+90e1,0)

FORMAT (2H23)

CALL PLOT (9042659 LOGF (40000083))
CALL CHAR (040e¢1,0)

FORMAT (2H27)

CALL PLOT (90430e5,y LOGF (0000083))
CALL CHAR (0+¢0e1,0)

FORMAT (2H31)

DO 70 N = 1,2

CALL PLOT(7)

CONTINUE

GO TO 25

END
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