
COMPUTER APPLICATION TO THE STATISTICAL 

ANALYSIS OF CONTROL SYSTEMS 

By 

CARMI DUREL BUMES 
ti 

Bachelor of Science 

Oklahoma State University 

Stillwater, Oklahoma 

Submitted to the facul.ty of the Graduate School. of' 
the Oklahoma State tJniverEiity 

in partial fulfillment of the requirements 
for the degree of 
MASTER OF SCIENCE 

May, 1965 



-rh.e<;,.;s 
I q ~'5 
H q ;t, 2,e.. 

(!,,a (f, 



COMPUTER APPLICATION TO THE STATISTICAL 

ANALYSIS OF CONTROL SYSTEMS 

Thesis Approved: 

.--.(;) ! ?:112 b {J ., i i 

MAY 281965 



PREFACE 

In the past few years there has been an increase in the application 

of statistical methods to system analysis. st.attat!ca.l . function~, :,13uqh 

as the correlation ~unctions, can be used to obtain certain facts about 

a system which would otherwise remain unknown. One of the applications 

of the statistical functions is the analysis of systems which are sub­

ject to random or noise inputs. By sampling certain variables and 

numerically calculating the required statistical functions, a good deal 

of information can be obtained about the system and the variables 

connected With it. Numerical calculation and especially numerical in­

tegration is, however, a very t~dious, time consuming process. The 

purpose of this paper is to present a set of digital computer programs 

which wil;J. perform the tedious numerical calculations . involved in the 

calculation of four such functions. 

Indebtedness is acknowledged to Professor Paul A. McCollum for his 

guidance and advice in the preparation of the computer programs; to the 

Okl$home. State University Engineering department for the use of their 

computer and supplies and; to Mrs. John Youngblood who corrected the 

gramatical errors and typed the paper. 
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SYSTEMS AND CONTROL SYSTEMS 

An eleotriaa.l system ~all be de;f'i:ned a.s a.n interconnection of ele-

ments and devices 'Which act together to establish a desired relation­

ship between a.n input variable (or variables) and a.n output variable 

(or variables). The integrator cir~Uit, shown in Figure one, can be des­

cribed as a system. It is composed of elements (a resistor and a aapaai­

tor) and a device (aa operat:i.orial amplifier)., the interoonneotion of' which 

establishes a relationship (Integration) between an input variable (x) an 

output variable (y)o 

c 

X R 
----Nvv 

AMPLIFIER 

Figure l 
Integrator Circu.:t.t as a Sy-stem 

The device of atcy" system can be viewed as a. system within itself 

(ligure 2) and, a~ system can be considered as a device or am element in 
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a larger system (Figure 3) • Whether a circuit is to be considered as a 

system, a device, or an element will depend on the circuit variables, the 

r.61:ail:lonshi:ps .. tQ: i pe .. eetabli.shedi'a.M, .. the .:methe<l atr · este.bilis1tem.eit ::ell.osed 

h1'. the<.des1gner .•. 

DC TO AC HIGH GAIN AC Tr(r DC 

CONVERTER AMPLIFIER CONVERTER 
-

figure 2 
The Operatior.ial Amplifier as a System 

x AMPLIFIER INTEGRATOR 
y 

- SUMMER --
I ,...._.;.. 

f:Lgure 3 
A Sy1tem Utiliz1ue; au Integrator Cireuit 

Control Systems 

A s;ystem which is designed to control ou variable (or variables) w.tth 

aaother variable (o:r variables) :Ls defined e.s a cout:rol system. 'fhere are 



two types of control systems; open-loop control syst~ms and closed-loop 

control systems. 

In an open-loop control system the output variable bas no effect on 

the input variable. An ·openuloop control system can be represented sym-

bolieal~ by a functional block diagram -as shown in Figure 4 • 

. . - · ·-··-------. 
COM HAND 

REFERENCE 

INPUT SELECTOR 

DYNAMIC 

UNIT 
DESIRED 
OUTPUT 

Figure 4 
lunctional Block· Diagram. 

of an Op~op ~Dtrol. ay,st~ 

If the output of a control system does have an effect on the input 

of the system, it is referred to as an closed-loop control system. 

figure 5 is a functional block diagram representation of a closed loop 

control -sy~em. , 

REFERENCE 

SELECTOR 

COMM ANO 
INPUT 

REFERENCE 

\ 
+ 

FEEOBAC 
SIGNAL 

ACTUATING CONTROL ED 

~~ \ I DYNAMIC I / 
UN IT 

FEEDBACK 

·---- ELEMENT 

figure 5 
lunctional Block ~gram 

of a 0losed..Loop Oontrol System . . 
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It is evident from Figures 4 and 5 that the fundamental dif'ferenoe 

between the open-loop and elosed-loop control systems· is the feedback 

loop. The variables, devices and elements which are shown in Figures 

4 and 5 are defined by the AIEE Subcormnittee on Terminology and Nomen­

clature of the Feedback Control Systems Cormnittee as follows: 1 

The 11 command" is the input which is established by some means 

external to and independent of the control system. 

The '' reference input" . is derived from the command and is the actual 

signal input to the system. 

The "controlled variable" is the quantity that is directly measured 

and controlled. It is the output of the controlled system. 

The "primary feedback" is a signal which is a function of the con-

trolled variable and which is compared With the referenee input to obtain 

the actuating signal. 

The "actuating signal" is obtained from a comparison measuring de-

vice and is the reference input minus the primary f-eedbaek. 

The "reference input elements'' produce a signal proportional to the 

COJ'.llil8lld. 

The 11 control elementsn produce the manipulated variable from the 

actuating signal. 

The "controlled system0 is the device that is to be controlled. 

The 11 feedback elements" produce the primary feedback from the con• 

1John J. D'Azzo; and Constantine Houpis, Feedback Control Systems 
Apab'sis- and Synthesis (New York, 196()), PP• 505-507 
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trolled variable. 

Sampled-oat& Coatrol Systems . 

A sampled-data contrel system is one in which the control signal 

(the command, reference input, actuating ·signal or, mnipulated variable) 

is supplied intermittently and at a·constant rate. In a sampled-data. 

control system the data signal is a sequence of pulses, the magnitudes of 

which are d.ete:rm:Ul,ed,:.:.by tb.o .sigtial trom·:mrl.oh the .. samples a:re:t.d.eriyelcl:. :.:,1 

(figure 6).2 

INPUT OUTPUT 
5 5 

- --------------

I 

I 
I 

2 
I I 
I I -------------1 · --l - - ~ - - - -- - - -- - - -

I I I I I 
I I I I 
: I I I 

2 3 4 0 2 4 

Figure 6 
Sampler Input aad Output Waveforms 

figure 7 illustrates a basic sampled-data f'eedback control system 

ia which the actuating signal is the sampled signal. 

2~uUus T. Tou, Diptal & ~led-Data ControLSyst~ms.(Hew Yor~ 
1959) ., p.5 



R (s) 

SAMPLER 
,----1 
I I 

e I ~ I 
L ____ J 

Figure 7 

G(s) 

A Sampled-Data feedback Control System 

Digital Control Systems 

((SJ 

A digital control system is basically a special type of sampled-

data control system. The digital control system can be· defined as a 

control system in 'Which the control signal, in one or more sections, -·.ts 

expressed in a nwner:tcal code for the digital data processing and deci­

sion making equipment of the control system.3 Figure 8 shows a typical 

digital feedback control system. A digital control system can be re-

duoed to a sampled-data control system if the numerically coded data 

signal in the digital system is decoded into amplitude modulated 

signals (sampled-data) and the operation ot the digital computer is 

represented by the transfer function of an equivalent pulsed data net• 

work. 

3Ibid., p. 6 

6 
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DIGITAL DIG ITAL TO CONTROL. 
- ANALOG - COMPUTER SYSTEM 

CONVERTER 

' ~ .. ,, 
I 

ANALOG TO 
. if 

' DIGITAL ( 

CONVERTER 
, 

Figure 8 
A Digital Feedback Control srstem 



CHAPI'ER II 

STATISTICAL ANALYSIS 

The ·lourier series (Equation 1) and the complex Fourier integrals 

have, for some time, bee~ the primary tools of analysis for the engineer. 

Statisticians on the other band have been making u.ae of the properities 

ot correlation functions. The two concepts of analysis were not associ-

ated by the two schools until the ?ourier transform, 'Which establishes 

a relation between the real time and the trequenc;y domains, was applied 

(!quation 2)1. 
co 

X(w) • J x(t)e·j~dt (2) 
-co 

Convolution 

One of the useful tools of analysis is the convolution theorem. 

A function, f(x), is known as the convolution of two other tunctiona, 

1Julius Bendat, Principles and.Applications ot Random Noise Theory 
(New York, 1958). 

8 
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. CD 

f(x) = J t 1(y)f'2(x-y)~ 
-co 

(3) 

The most important property of the convolution theorem is observed 

when the Fourier transform is ealow.ated as shown in Equations 4, 5, 6, 

7 and 8. 

(4) 

co 
f(w) = J e-Jwt f(t)dt (5) 

-a:, 

C)O 

= ,J fl(T)e•Jwr * F2(W)d (7) 
-co . 

Results of the calculation show that convolution in the time de-

main transforms to multiplication in the frequency domain. 

It aan also be shown that multiplication in the time domain trans­

forms to convolution in tb.e f'requen.ey domain ( trequenoy convolution) • 

(9) 

As an example of the use of the convolution integral, consider a sim­

ple system as sb.owa in Figure 9. It is apparent t:bat, in the treq,uency 
' 
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domain, the indirectly controlled variable is equal to the product Qf the 

command variable ( or reference input) and the control element. The con-

volution integral finds its application in the ealeule.tion of c(t). Since 

_R~M~-~1~ ~G-(s_)___,t--~C_(_s)~> 

Figure 9 
Open-Loop Control System 

C(s) = R(s) G(s) (10) 

C(s) is the product of R(s) and G(s), by the convolution theorem, e(t) 

is the convolution of r(t) and g(t). 

Autocorrelation 

The autocorrelation f'Unction, as defined by kuation 111 shows a 

statistical relation between the mean square value of the function and 
l co 

<I> (T) = lim _ J x{t) x(t-: + T) dt (11) 
11 , T 

0 

the value of the function T units away. More precisely, it shows the 

dependence of the future function value on the present function value. 

For example, assume that the autocorrelation measurement of f(t) results 

in the curve shown in Figure 10. At point ~ on the curve T is equal to 

zero and the autocorrelation function is the mean square value of t(t). · 
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This indicates that the function, zero units away, is one hundred percent 

depen.dEint upon the value of original function. At point .2. the f'unetion 

T0 units in the f'uture is less than one hundred percent dependent on the 

original function.. At point !. the tun.ct ion is independent of the :f'uneli.r:'. 

tion at T equal to zero. 

0 

Figure 10 
An Autocorrelation Curve 

In the actual a.utoeorrelation integral., the interval zero to Tis 

suppose to be infinitely large so·::tbat the autocorrelation function Will 

be independent of T. In pra.etiee however., the va.l.ue of Tis simply taken 

large enough so t:b,at further increases in its value do not effect the out-

2 come. 

Crosseorrelation 

The erosscorrel.e.tion integral is very similar to the autoeorrel.e.-

~. L. Peterson., Statistica.lAnaljrsis and (.)ptimization of S~tem 
(New York, 1.961)., P• 45. · · 
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tion integral. As shown by :lquation 12, which defines the erosscorrela.­

tion :tunetion, the integral involves two functions of time rather than 

one. 
00 

~12(-r) = i J x(t) y(t· + T) dt 
. 0 

(12) 

· ..... '/!if 

The erosseorrelation integral ea.n be ueed to determine the unit 

impulse response of a linear system. This is obtained, as shown in 

Figure 111 by a creeseorrelation measurement of the reference input and 

controlled variables. 

R (S) G (s) 

-
Figure 11 

An Application of 

C (s) 

CROSSCORRE 
LATION 

the Crosseorrela.tion Integral 

Power Density Spectrum 

IMPUL SE 
NSE RES PO 

Especially usetul. when considering systems wi~h noise or random in­

puts is the f'requ~ncy composition of' the in.put, and the effects o:f the 

various frequency components. Provided that the input in q,uestion can be 

represented as an ergodic ensemble, the Fourier transform of the time 

c?rrela.tion function will result in a function of frequency whiob de-
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scribes the distribution ot the f'unction with respect to frequency. 

Equations 13 and 14 show the relation betwen the power density spectrum 

and the autocorrelation :function. 

a:> 

~ {w)· = J <I> (T)e-jwr d'I' 
1 · 11 -oo 

(13) 

l 00 

<I> ('I') = 2 'fl J (Q ( w) ej"'° d.w 
11 -oo 11 

(14) 

Since the autocorrelation :function is a real and even tunetion, the 

power density spectrum .can be written as a cosine transform (as in equa­

tion 15). This relation between the autocorrelation function and the 

~ (w) = J ¢ (T) COS (Cd') dT 
1r 11 

(15) 

power density spectrum is known as the "Wiener Theorem tor Autocorrela• 

tion". 3 

The power density spectrum of a .function shows how much power is 

contributed by components of the function at a given frequency. Assuming 

that figure l2 represents a power density spectrum ot some f( t), we can 

calculate the power ··-GJl'tributed by components of t( t) ot all treq,ueneies 

from zero to co · as · 
a 

~ Cw) &.o 
11 (16) 

~. w. Lee, Statistical Theory of eomm.unica.tion (New York., 1963) 
P• 56. . . . . . 



~(w) 

Figure 12 
.A:Ponr··Denllt:r ·.-~ . 

Spectrum of a Function of' Time 

Since the power density spectrum is actually a spectrum, the ve.lue of 

14 

~ (w) at omega equal to zero does not ind:teate a definite d.c. component 

(as shown in E,quation 17). 

0 

~ (w} = J~ (0) dw = ~ 
11 0 H 

(17) 

The crossepover density spectrum bears the same relation to the 

crosscor.relation measurement of f'1(t) and :f'it) as the power density 

spectrum does to the autocorrelation of' :f'(t) (as shown in Eilua.tion 18). 

co 
~ (w) = 2 J ~ 12 ('T) cos (c.c,-) d:r 

12 91 

(18) 



CHAPTER III 

COMPUTER SOLUTION 

The calculation of the convolution and correlation integrals can be 

aeeomplished aml.ytioally when the time function (functions) in question 

can be expressed as continuous, integrable tunctions of' time. 

When the functions under investigation are arbitrary time functions 

{a :f'unotion which is randomly distributed in time) the calculation of the 
, 

iertatistica.l integrals is bett clone by numerieal methods. Since the numer-

ioa.l method of a.:calysis is a step-by-step process, which may req_uire a 

formidable amount of manipulation, a digital e~mputer is almost essential 

in the solution of all but the simplest of problems. 

The folloWing programs are designed for use on the IBM 1620 digital 

computer. They are designed to calculate the statistical tu.notion of 

any time function which has been sampled a knoWil number of times at a 

constant, kllQW rate. All the programs a.re limited tp two hundred values 

of the input ;ffu.nction. and to values of 1' :t'rom nine hundred ninety nine 

to one thousandth (999-.001). 

Autocorrelation 

The program described in this secti~n is designed to compute the 

autocorrelation function of a sampled function of time, as defined by 

15 
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Figure 13 and Equation llb. 
. 1 T/2 

$ ( T) = 2 • T J x( t) x( t + T) dt 
ti O 

(llb) 

f(t) 

0 T 

Figure 13 
A Random. Function of Tiine 

The value of T, a ~umber which corresponds to the number of samples 

in T units of time and the values of the sampled function of time a.re 

the required inputs for the program. The value of the autocorrelation 

:rm.ttoa aad Ta.re the output variables. ,. is considered.to be an out­

put variable rather than an input variable because, due to the use of a 

f'inite a.mount of sampled data, there are only a. limited number of values 

of T for Which a corresponding value of Y(t + T) exists. 

Program 

Y(t) 
A 
c 
NO 
K 

Problem 

Sampled Variable 
T ,. 
Number of Sample$ 
t 

Tsple 1 
Relation between Program 

and Problem va.ria.bles-...A.utoeorrelation 
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Figure 14 is a flow ob.art for the program in. Figure 15. Operation 

nwnber 10 reads the value of Tor A and NO, the number of. samples o:f' Y(t). 

The format :f'or the READ statement, operation number 151 reserves the first 

10 positions on a. ea.rd for the value of the variable A and positions ll 

through 13 for the variable mo. A is written in noatin.g point notation 

and NO is written in :f'iXed point nota~ion. 

Operation number 20 dimensions the subscripted problem variables. 

The statement limits NO to two hundred maximum which, in turn, limits 

the number of autocorrelation and T values to one hundred and one ea.ch. 

The titles for the output data. are punched by operations 25 and 30 • 

. A numeri~al value for T is computed by operations 31 and 32. This 

value is equal to the value of T divided by the number of increments into 

which Tis divided by the NO samples ($ee Figure 14). 

Operations 35, 40, and 45 read the values of the NO samples into 

memory as Y{l) through Y{NO) 

To compute the integrand of the autocorrelation integral, Equation 

6, the value of the function T units in the future mu$t be known. This 

means that less than NO values ~f T can be considered because, t plus T 

cannot be greater than T. Operation 46 redefines NO as mo divided by 

two. Tbere will therefore be one plus NO divided by two valid values 

o:f' T • 

A set ot values which are analogous to the values of T is estab~··. 

lished for the purpose of subscripting, by operations 49, 50, and 51. 

Operation n:wnber 55 .. establishes a set of values which are analogous to 



1'1 

[
-·READ 

A"JNO 

25 

PUNCH ~ 
AU TOCORRE-
LA Tl O N-.:Y-AU ,,.....------· 

31 

32 

40 

49 

D=N0-1 

F =A/D 

READ 

Y(I) 

NO= N0/2 

NOX=NO+l 

50' 
DO 90 

51 

NX=NAX-1 

DO 65 

60 
---''----, 

J = K + NX 

65 

X(K) =Y(K)•Y(J) 

70 

NR=N0-1 

71 

NS=N0-2 

72 

ODD= Q-

73 

EVEN=0-

Figure 14 

74 
,-----'----.. 

DO 7 5 

75 

EV EN= 
EVEN+ X(L) 

ODD= 
0 0 0 t X(M) 

78 
AC =- (2/A)• 
(V3)·(X(l) + 
4~E VEN t- 2• 
ODD -t X (N 0)) 

8 g., 

8 =NX 

85 

C =- B·F 

90' 
PUNCH 

100 

Flow Chart for Autocorrelation Program 
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C l CARMI :m,JMES AUTOCORRELATION PROGRAM 
10 RF.AD 151A1 NO 
15 FORMAT (110.21I3) 
20 DIMENSION Y(200) 1X(l00) 
25 PU:NCH 30 
30 lO~T ( 30H AUTOCORBELATION TAU) 
31 D = NO-l 
32 l = A/D 
35 00 4o I = l NO 
4o READ 45,Y(I~ 
45 FORMAT (1'7.3) 
46 NO= N0/2 
49 NOX = NOH 
50 DO 9~ NAX = 1,NOX 
51 NX = NAX-1 
55 DO 65 K = l 1 NO 
6o J = K+NX 
65 X(K) = Y(K)*Y(J) 
70 NR = N0-1 
71 l\TS = N0-2 
72 000 = 0 
73 EVEN= 0 
74 DO 75 L = 21NR,2 
75 EVEN :.:: EVEN+X(L) 
76 DO 77 M = 3 NS,2 
77 ODD = ODD+X{M) 
78 AC = (2./A)*(F/3.)*(X(l)+4-.*EVEN+2.*0DD+X(NO)) 
80:B=NX 
85 C = B*F 
90 PUNCH 95 ,AO I C 
95 FORMAT (El7.8,4H EJ.4.5) 

100 BI'OP 
105 END 

Figure 15 
Fortran Program for 

the Auto~orrela.tion Function 
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the NO values of time ( t). The subscript value which is analogom, to the 

q,u.a.n:\ity {t + -r) is ca.lcuJ.ated by operation number 6o and the integrand 

of the autocorrelation integral is calculated by operation number 65. 

Operations 70 through 78, inclusive, perform the autocorrelation in­

tegral,Ec;!.uation 6, by a numerical method known as Simpson's one-third rul,e.7 

~el D. McCracken., A Guide to Fortran: Pr6§3?:llll![i.ng (New York, 
1963), p.42. . · · · · · 



The actual numerical value of T used in the previously calculated 

autocorrelation integral is oa.lculated by operations 80 and 85. 

The results of the calculations are punched in a format which is 

comps.table With the headings punched in operations 25 and 30 by opera­

tions 90 and 95. 

After punching the results of the program based on one value of T1 

20 

the computer Will return to operation number 50 to obtain a new value of 

T and recalculate the value of the autocorrelation function. This repe-

titious process will continue until all valid va.+ues of T have been pro-

ceased. After the last value of autocorrelation has been oaloula.ted the 

program Will proceed to·opera.tion number 100 which is a stop command. 

:For optimum results, the input variable NO should be a number which 

satisfies Equation 19&. This optimization restriction i~ a result of 

NO = 2 • G ( G = odd ) (19a) 

operations 46, 70, 71, 74 and 76. 

Crossoorrelation 

The program described in this section is designed to compute the 

erosseorrelation function of'&. pair of' sampled functions of' time a.s de-

fined by Equation 13 (repeated below). 
T/2 

CC= (2/T) J Y1(t)Y2{t+T)dt 
0 

(13) 

It is obvious that 'With a. few minor changes, the previously des-crib-

ed autocorrelation program can be used to perform the erosscorrele.tion 

integral. There are two major changes whieh must be nade. The second 

:f."tmction of time must be read into memory and, the integrand must be 
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changed to the ·product of two different functions of time as opposed to 

a single :function of time. 

The flow ells.rt in Figure 16 is a. flow cha.rt for the erosscorrela­

tion program shown in Figure 17. Operations 10, 15, 25, 31, 32,:.3;, 4o, 

45, 46, 49, 50, 51, 55, 60, 70, through 78, 80, 85, and 95 are exactly 

the ea.me as the cor:i:·esponding operst:f.ons in the autocorrelation program. 

The dimension statement, operation number 20, bas an additiotl&l 

variab~ Z(t), corresponding to the second :fumction of time involved 

in the erosseorrelation integral. 

Operations 21, 22, and 23 read into memory the NO values of Z(t) 

just as operations 35, 4o,·and 45.ree.d the NO values of Y(t). 

The titles for the crosscorrela.tion output data, rather than the 

autoeorrela.t:ton data, a.:r,-e pmched by operation number 26. 

The integrand of the crossaorrelation integral is calculated by 

operation number 65. The integrand is the product of Y(tx) and a de­

layed Z(tx) rather than Y(tx) a.nd a delayed Y(tx) as in the auto­

correlation p?ogra.m. ; 

Operation 90 punches the output data resulting from the oross­

eorrela.tion measurement. 

As in the a.utoeorrelation program, once a. value for the integral 

he.s been obtained and punched., the computer returns to operation number 

50 to obtain a D.ew value of' T for additional calculations. The process 

will continue until a.ll possible values of,. have been considered. 

The optimization restriction which was placed on the variable NO in 

the autocorrelation program still applies in the erosscorrelation ease. 



1.0' 
READ 

A,,NO 

21,__ __ """\ 

22 

25 

DO 22 

READ 

Z (N) 

PUNCH 
CROSSCORR­
ELATION-­
TAU 

31 

D=N0-1 

32 

F = A/D 

35 ,-------.. 

40' 

46 

DO 40' 

READ 

Y(l) 

NO= N0/2 

NOX = NO-+l 

51 

NX=NAX-1 

DO 65 

60 

J =- K+NX 

X(K) = Y(K)•Z(J) 

NR=N0---1 

71 

NS=N0-2 

72 

OOD=Q,-

73 

EVEN= 0" 

Figure 16 

DO 75 

75 

EV EN= 
EVEN-+ X(L) 

77 
ODD= 
ODD+ X(M) 

78 
AC =(2/A)• 
(F/3)-(X(l)-+ 
4·EVEN t- 2· 
ODD+ X(N O)) 

80-

8 =NX 

85 

C = B·F 

PU NCH 

Flow Cha.rt for Crosscorrela.tion Program 
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C l CARMI BUMES CROSSCORBELATION 
lO HFAD 15,A,NO 
15 FORMAT (Fl0.21!3) 
20 DIMENSION Y(l00) 1X{10Q) 1Z(200) 
el :00 22 N = lfNO 
22 RF.AD 23 Z(NJ 
23 FORMAT (17.3) 
25 PUNCH 26 
26 fORMAT (32H CROSSCORREIATION TAU) 
31 D = N0-1 
32 F? A/D 
35 DO 40 I= lrNO 
4o BEAD 45 Y(IJ 
45 ll'ORMAT (17.3) 
46 NO= N0/2 
49 NOX: = No+l _ 
50 DO 90 NAX = l,NOX 
51 mt= NAX .. 1 
55 DO 65 K = 1,mo 
6o J = K+mt 
65 X(K) = Y(K)*Z(J) 
70 NR = N0-1 
71 NS= N0-2 
720DD=O 
73 EVEN= 0 
74 DO 75 L = 2,NR,2 
75 EVEN= EV'EN+X(L) 
76 DQ 77 M = 3,ms,2 
77 ODD = ODD+X{M) 
78 AC= (2./A)*(i/3.)*(X(1)+4.*EVEN+2.*0DD+X(NO)) 
8b-:B=NX 
85 c = B*f 
90 PIJNCH 95 ,AC ,c 
95 fORMAT (E17,8,!i.H El4.5) . 

100 CONTnruE 
101 SI'OP 
105 END 

Figure 17 
Fortran Program for 

the Crosscorrel.ation Function 

Conv~lution 

23 

Like the crossoorrelation integral, the convolution integral (Eciua• 

tion _3b) ea.n be calculated by the autocorrelation program With a few 
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minor alterations. 

T 
F(x) = J r1 (y) r2(x-y)d¥ 

T/2 
(3b) 

The flow crJB.rt in Figure 18 is a. flow chart for the convolution pro-

gram show in Figure 19 .. There are three prim.ary differences between the 

convolution and crosscorrelation programs. First, the punch statements, 

operations 25 and 90, are changed to produce the convolution data. Sec .. 

ond, operation 60 is changed to calculate t minus 'T rather than t plus 

T. Third, operations 47, 48, 49, 50, 55, 70, 71, 74, 76, and 78 are 

changed to provide a past history, rather than a known future for the 

delayed time :f'unation. The change in the integrand in the convol-ution 

integral, which is the direct reason for the change in operation 60, is 

the indirect reason tor the change in the third group of operations. 

For optimum results, the value of NO in the convolution program 

should satisfy the value of NO in Eq,uation 19b. 

NO = 2 • G, ( G even) (19b) 
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10 
READ 

A?NO DO 7 5 

21 49 
L= 2'>N R'>2 

DO 22 NOZ=2•NO+l 75 
N-- l'>NO EV EN= 

5.0 
X(L) EV EN+ 

DO 90' 
22 

READ 76 

Z (N) DO 77 

55 

PUNCH DO 65 

CONVOLU- K: 1 '>NO 
77 

TI ON--T IME ODD= 

ODD+X(M) 
6.0' -~ 31 

J=-NX - K 
D= NO-l AC= 

(F/3) (X(l) + 
' 

65 4EVEN+2 32 

F = A/0 
X(K)= Y(K) Z(J) O D D -+ X ( N O )) 

7 
35 B=NX-NO 

DO 4 0' NR=NO - L 

71 
85 

C =- 13•F 
NS =N0-2 

40 9.0' 
READ 72 PUNCH 

y(() 000 = 0' 

7 3 

NO= NO/z EVEN= .0' 

Figure 18 
F.low Chart f o.. Co-o.volution Prog:r.&m 



10 READ 15 ,A ,NO - --
15 F.ORMAT {Fl0.2,!3) 
20 DIMENSION Y(20o),x(100),z(200) 
21 DO 22-N = ltNO 
22 READ 23,Z(NJ 
23 FOBMAT {17.3) 
25 PUNCH 26 
26 :e'ORMAT ( 30B CONVOLtlTION 'l'D.lE) 
31 D = NO·l 
32 F = A/D 
35 DO 4o I= l(NO 
4o READ 45 Y(IJ 
45 FORMAT (n.3) 
46 NO= N0/2 
48 NOX = NO•l 
49 NOZ = (2*N0)+1 
50 00 90 NX = NO,NOZ 
55 DO 65 K = 11 NOX 
6o J = IIX-K 
65 X(K) = Y(K)*Z(J) 
70 NR = NOX-1 
71 NS= NOX-2 
720DD=O 
73 EVEN= 0 
74 DO 75 L = 2,NR,2 
75 EVEN= Effli-1-K(L) 
76 DO TIM= 3,NS,2 
77 ODD= ()Dl)+X{M) 
78AC = (F/3.}*(X(1)+4.*EVEN+2.*0DDof-X(NOX)) 
8o B = IIX-NO . . 
85 e = B*F 
90 PUNCH 95,Ac,c 
95 FORMAT (Fl7.8,4H El4.5) 

100 CONTDWE 
101 BrOP 
105 Etm 

Figure 19 
Fortran Pr9gra.m ror Convolution Function 
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Power Density Spectrum 

The power de:o.si ty spectrum is essentially the Fourier transform of' 

the a.utocor-rela:'~ion :f'"w:1ction as defined by Equation 15. The input data 

for the power density spectrum program consists of the output data from 

the autocorrelation program ( value of autocorrelation and corresponding 

value of T) 1 a nu.mber oorrespond.ing to the number of autocorrelation 

values, a pair of numbers corresponding to the maximum omega and the in-

cremen-tal omega.. Power density and omega a.re the output variables. 

T/2 
~ (w) = 2 J <\) (T) cos (wr) dT (15) 

0 

Cross .. power d.ensit.y speertrum cl!!l,tLalso be calculated With the power 

density spectrum prog:.~m by T(':!a.di~.g the crosscorrela.tion measurements 

rather than the e.uto,eorrelation measurements as input data.. 

NF 
NJ 

BPD 
WMAX 
DELW 

Pro bl-em 

Number of autocorrelation values 
Omega (variable) 
Power density 
Me.xim.um value of' omega. 
In~rimental value of omega 

Te,ble 2 
Relation between P:!:>ogra.m and. 

Problem ini;\Tiables--Power Density Spectrum 

of omega to be considered and; the inc~emental v~lue of omega. are read 

into memo:i.""';f by operation nu .. rnber l.O. Operation 15 is a. f'orma.t for the 



1.0 
READ 

NF?WMAX? 
DELW 

25 
PUNCH 

POWER 
DENSITY-­
OMEGA 

35,__ __ """" 

4 

READ 

A C (I) 'l C(I) 

· WMAX 
NWB = DELW'.J-1 

5 0' ,-------
DO 9g-

51 

ANJ=NAJ-1 

52 

A =ANJ·DELW 

55 
0 0 65 

60' 

X= A•C(IN) 

65 
U(J.N) = CO 
(X) • AC(IN) 

66 

F = C(2) 

70 

NR=NF-1 

7.l 

NS=NF-2 

72 

ODD= 0' 

73 

EVEN=.0' 

i'igu:i:•e 20 

74 
DO 75 

75 
. EVEN-= 
EVEN+X(L) 

76 

77 
ODD= 

ODD+ X(M) 

78 
BP D = 2· 

(F/3}(U(1)+ 
4•EV EN+ 2• 
ODO +X(N F) 

9Rf 
PUNCH 

Flow Chart for ~\~·m·ie:,r• T1«ansf'orm Progr.J;m 
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of Ni', positions 4 tbrough 13 for the maximum value of omega and, posi­

tions 14 through 23 for the incremental value of omega. 

29 

Operation number 80 is a dimension statement wbioh limits the pro"t,lem 

variables to coi:aeide With the limits of the orossoorrelation and auto­

correlation programs. 

The titles for the output as.ta are punched by operations 25 and 30. 

Operations 35, 4o and 45 read into memory the Nf cards which con.­

ta:t.u the results of the auteeorrelation program. 

A value analogous to the variable omega is established and varied 

by operations 48, 501 and 51. Operation 55 establishes a variable to be 

used as a subscript when considering funotions oft or T. 

Operations 6o, &pd 65 establish the integrand of the !'ourier trans­

form integral. 

The value of time 'between samples of autocorrelation is calculated 

by operation number 66. 

Operations 70 through 78 pertoni the integration by a numerical 

process know as Simpson's one-third rule. 

The results of the program are punched by opera.ti0ns 80 and-85. 

Once the four:ter transform has been calculated for one value of 

omega, the process Will return to operation number 50 and increase the 

value of omega by an amount equal to DELW. This repetitious process will 

continue until omega equal to WMAX has been utilized. 

!'or optimum resul.ts, the input variable NF shoul.d be odd. This 

optimum condition is dictated by operatieP-S 70., 71, 74, and 76. 



10 RF.AD 151:NF,WMA.X,DELW 
15 FORMAT lI31l.l0.2,ll0.5) 
20 DIMENSION tr(200),AO(l00) 1C(l00) 
25 PUNCH 30 
30 FORMAT ( 30H POWER DENSITY OMEGA) 
35 DO 4o I=l1N.F 
4o JtlAD 45 Ae(I) Q(I) 
45 FORMAT {E17.8,G E14.;) 
48 Mm = (WMAX/DELW)+l 
50 DO 90 NAJ = 11:Nlm 
51 ANJ = NAJ-1 
52 A = ANJ*DELW 
55 DO 65 Il=lrNF 
6o X = A*C(lllJ 
65 u(m)=COS(X)*AC(IN) 
66 F = C(2)" -
70 l'm=Nf-1 
71 NS=IQ'-2 
72 ODD=O 
73 EVEN=O 
74 DO 75 L=21 l'ffl1 2 
75 EVEN=EVEN-HJ(L) 
76 DO 77 M=31ms.,2 
77 ODD=ODD+:UlM) 
78 BPD=2.*(i'/3.)*(U(l)+4.*EVEN+2.*0DD+V(IQ')) 
80 PUNCH 851 BPD,A -
85 FORMAT (E17.8,41I El.4.5) 
90 OOmTmuE . 
91 STOP 
95 mm 

Figure 21 
i'ortr&n Program for the Fourier Transform 
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RESULT Of SAMPLE PROBI..EMS 

The use of the programs des!llr:1.bed in the.previous chapter :Ls illus;.. 

tre.ted by- using them to calculate the correlations, convolut:Lons,~:~ 

power spectrwns of a few simple f'unctions. The results of the computa-

tions, with respect·::'bo a.ecurac7, are discussed and the means of reducing 

e2,TOr are pointed out. 

Autocorrelation 

The autocorrelation of a step :f'lmct:1on is perhaps the easiest auto­

correlation measurement to make analytically. Assume a step tunction as 

defined by Equation 19.1 

:e(t) = (: 
o~:t < 
t: <(JD 

AppJ.;yiD.g the definition, the autocu:,rrelation of a step function is 

~ ('r) = ; s! f(t ):e{ t+'r) dt 
11 :.I.' 0 . 

l T 
= -Jt2(t) dt 

To 

(20). 

{21) 

(22) 

(23) 

1t-. W. Lee, Statistical Theo& of Communication (New York, 1963), 
P• 91. 
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The autocorrelation program, e.s outlined in the previous chapter, 

was .used to calculate the autocorrelation of' a step function of-magni­

tde 11:. The ee.loulations were made f'rom 3 different s,ets of input oon­

d:1. tions to show the efteat of varying the input variables. The first .. 
calculation was made· from twenty two samples taken over a nineteen 

seoend. span, the second f'rom sixty two samples taken over a nineteen 

seeoad ii.- span and, the third f'rom siXty two samples taken ever a 

thirty eight second time span. 

The results-of the three sets of conditions are shown in Figures 

22., 23, and 24. Comparison of' figures 22 and.·23 indicates that an in­

crease in tb.e number of readings improves results. This would be a log ... 

ical assumption since the function is· aumerically rather than analytii;.: .: . 

eally,integrated. 

The etf'eet of increasing the time span over which,the readings are 

taken :ts shown 'by Figures 23 and 24. As indicated in Chapter II, in­

creasing the value of T Will reduce the net ef'fect of the interval and 

thus improve the results of the pnblem.· 

The.tact that the f'Wlction.is numerically rathertban amlytically 

integrated accounts tor the majority of the error incurred in the prob­

lem. 'lb.e error ·can be- minimized by taking a large number of readings 

over a long period of time. In all three cases the results were With­

in five percent of the desired results. Ce,.s,-number three, figure 24., 

indicates results Within one and two tenths percent of the desired. 



AUTOCORRELATION 
.15238094FM)2 
.15238094E+02 
.15238094E+02 
.15238094E+02 
.15238094E+02 
.15238094E+02 
.15238094E+02 
.15238094E+02 
.15238094E+02 
~15238094E+02 
~15238094E+02 
.15~38094E+02 

TAU 
.OOOOOE-99 

904.76190E-03 
1so.95238E-02 
271.42857E-02 
361.90476E-02 
452. 3809SK-Q2 
542.85714E-02 
633.33333E-02 
723.80952E-02 
814.28571E-02 
904.76190E-02 
995.23809E-02 

figure 22 
Results of Autocorrelation 

Measurement of f(t) = 4u_1(t) with NO= 22 and T = 19 

AUTOOORRELATION TAU 
.15737702E+02 • OOOOOE-99 
.15737702E+02 311.4754oE-03 
.15737702E+02 622.95080E-03 
.15737702E+02 934.42620E-03 
.15737702E+02 124.59016E-02 
.15737702E+02 155.73770E ... 02'": 
.15737702E-t02 186.88524E-02 
.15737702E+02 2l8.03278E-02 
.15737702E+02 249.18032E-02 
.15737702E+02 280.32786E-02 
.15737702E+02 311.4754oE-02 
.15737702E+02 342.62294E-02 
.15737702E+02 373.77048E-02 
.15737702E+02 4o4.91802E-02 
.15737702E+02 436.06556E-02 
.15737702E+02 467.21310E~02 
.15737702E+02 498.36o64E-02 
.15737702E+02 529.50818E-02 
.15737702E+02 56o.65572E...02 
.15737702E+02 591.80326E-02 
.15737702E+o2 622.9508¢E-02 
.15737702E+02 954.09834E-02 
.15737702E+02 685.24588E-02 
.15737702E+02 716.39342E-02 
.15737702E+02 747.54)96E-02 
.15737702E+02 778.68850E-02 
.15737702E+02 809.836o4E-02 
.15737702E+02 84o. 98358E-02 
.15737702E+02 872.13112E-02 
.15737702E+02 903.27866E-02 
.15737702E+02 934.42620E-02 
.15737702E+02 965.57374E-02 

Figure 23 
Results of Autocorrelation Measurement 
of f'(t) =4U_1 with NO= 62 and T = l.9 
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:z 

0 

AtJTOCOBREIATION 
.15737704+o2 
.15737704-K>2 
.15737704+o2 
.15737704+<)2 
.15737701H-02 
.15737701H-02 
.l573TI04+o2 
.15737701H-02· . 
• 15737704-K>2 
ol.573TI04+02 
.15737704+o2 
.15737704+o2 
.15737704+o2 
.15737701H-02 
.15737704+o2 
.15737704+()2 
.15737704+02 
.157377o4+o2 
.15737704+<>2 
.15737704-4<>2 
.15737704.+02 
.15737704+<)2 
.15737701H-02 
.15737704+o2 
.15737704+o2 
.157377o4+o2 
.15737704+02 
.157377o!J+o2 
.15737104+o2 
.15737701H{)2 
.157377011-H)2 
.l573TI04+02 

TAU 
.OOOOOE-99 

622.9508J.E-03 
124.59016E-02 
186.88524E-02 
249.18032E..02 
311.4754J.E-02 
373.770491.02 
436.06;m-02 
498.36065E-02 
560.655731.02 
622.9508J.E-02 
685.24589E-02 
747.54o97E-02 
e09.83605m.02 
872.1Sll3E-02 
934.42622!:-02 
996.72130E-02 
105.90164E-Ol 
ll2.13115E-Ol 
ll8.36065E-Ol 
124.59016E-Ol 
130.819671-01 
137.04918E-01 
143.27869E-Ol 
149.50819E..Ol 
1;5.73770E-Ol 
161.9672J.E-Ol 
168.19672E.Ol 
174.42623E-Ol 
180.65573E..Ol 
186.88524E-Ol 
193.ll475E-Ol 

Figure 24 
Re·sults of Autocorrelation Measurement 
of f(t) = 4U_1(t)-w:tth NO= 62 and T = 38 

CASE 3 
CASE 2 

. CASE l 

10 20 

figure 25 
Graphical eomparisen ot results of Three 

Au.toeo;rrelat:ton Me&surements and expected Results 
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Power Density Spectrum 

A:oalytieally the power density spectrum of a unit step is an impulse 

at omega equal zere with a magnitude equal to the magnitude of the auto .. 

correlation of the step function. 2· 

The power density spectrum program as outlined in the previous 

chapter was used to calculate the power density spectrum of a step tune-

tion of -magnitude four. The input data for the power density sp~etrum 

was the output data f'rom the autocorrelation program shown in Figure 24-. 

Figures 26 and 27 illustrate the results of the power density spectrum. 

calculation. 

" The des~red result.is an impulse at omega. equals zero but, sinoe 

the results of' the autocorrelation measurement con~ined some error and 

the power density measurement itself contains error in its numerical 

meth0d, the results are somewhat less than ideal. The results of the · 

analytical d.erivation in F.quatio:n 24, 25 and 26 show the results ex­

pected when the mrrorssdue to the T variable and the error due to the 

autocorrelation program are removed. Thus the Fourier transform pro-

gram is in error by- only about .8 percent, which is, once a~in, the 

result of' the numerica.l method of integration 



POWER·DENSITY 
.5se2a882E+03 
.58481065FA-03 
.57462781E+03 
.55789269E+03 
.53495394E+o3 
.50628703E+03 
.47248298E+03 
.43423381J.E+o3 
.39231532E+o3 
.34756T75E+03 
.3008763J.E+03 
.25314879m+o3 
.20529473E+03 
~l58~0346E+03 
.ll272368E+03 
.69644400E+o3 
• .29675563E+03 

-.656337!J.4E+03 
•• 38559909:m+o3 
.... 6591~24oE+o3 
-· 88356224E+03 
.... 1057,2864E+03 
--.11800717E+03 
-~12528714E+o3 
-.127T:7920E+03 
... 1a;sooo2E+63 
... 11976069E+03 
-.11015257F,+03 
-·97531716E+o2 
.... a2;01ss2m+0a 
-.65696716E+o2 
.... 47761659E+02 
-.2933621.6!'.+02 
-.11036773:m+o2 
.... 65593236E+o1 
.... 2292S07JB+02 

OMmaA. 
.oooOOE-99 

lOO.OOOOOE-04 
200.00000E..04 
300 •. OOOOOE-04 
4oo.OOOOOE..04 
500.00000:m.;;04 
600.ooooom .. 04 
700.oooooE-04 
800. O,OOOOE ... 04 
900.00000E-04 
100.00000E-03 
UO.OOOOOE-03 
120.00000E..03 
130.oooooE...03 
14o.OOOOOE...03 
150 .oooooE ... 03 
160.00000E-03 
170.00000E-03 
180.00000E...03 
19().00000E..03 
200.00000E..03 
21.0.00000E-03 
~.OOOOOE-03 
230.00000E-03 
240.00000E...03 
250.00000E...03 . 
260.00000E...03 
2"(0.00000E-03 
28o.OOOOOE-03 
290.DOOOOE-03 
300.oooooE-03 
310.ooooOE-03 
320.oooooE:..03 
330.00000E..03 

. 34o.OOOOOE..03 
3;0.oooooE..03 

figure 26 
Results of the Pewer Density 

Measurement of the Ot1j;put Data Shown in figure 25 
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Figw.•e 2'"f 
Comparison of the Ideal, the Corrected and the 

Actual results of' the Po-irer Density Measurement 

37 

........ 

. . 



~( w) = I 15 • 737 • cos("") dT 

18.6 
~(w) = 2 i .15.737 oos(c.,.J) dT 
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(24) 

(25) 

~(w) = 31.474 •t• <18•6 w) (26) . w 

Crosscorrelation 

The erosscorrelation measurement of' two step :f'unctions is a very 

simple analytical calculation yet it will provide a very accurate check 

of the erosseorrelation program. 

From the definition of' the erosscorrelation integral, the cross-

correlation of' two step :f'uu.ctions is a step function whose magnitude is 

equal to the product of the magnitudes of ~e two time functions. 

1 T 
(I) ( '1') = - J f'l ( t)f'2( t+ ) dt 

To .. 
(27) 

T . 
$ ( T) = ~ J AU -l ( t) • BU -l ( t+ ) dt 

0 

(28) 

(29) 

The crosseorrela.tion between a step funiction of nagnitude four and 

one of magnitude two was pe:f'ormed by the -program described in Chapter 

III. The results of' the program are shown in Figure 28. A comparison 

between the caleul.a.ted results and the a.:oaJ.ytie result :ts Jshow.:t.:!n(,~tgure 

29. Rea:alts of' the comparis~n indiee,te that the crosscorrelation program 



is just as accurate as the autocorrelation program. In both cases the 

majority of the error incurred is the direct result of the numerical 

meth0d of integration. Since the e:rror is constant with T., the result 

39 

obtained can be interpreted for their statistical implications., in both 

the autocorrelation and il!il'O!ilill@Oi.::".rele.t:10:0. oases, as if there were zero 

error. 

OROSSCORRECATION 
.78688519E+OL 
.78688519E+Ol 
.78688519E+01 
.78688519:m+ol 
.78688519:m+Ol 
.78688519E+Ol 
.78688519:m+ol 
.78688519F.+01 
.78688519E+Ol 
.78688519:m+ol 
.78688;19E+01 
.78688519E+Ol 
.78688519:m+ol 
• 78688519:E+Ol 
.78688519E+01 
.78688519E+Ol 
.7868851:1.E+Ol 
.78688519E+01 
.78688519E+01 
•. 78688:519E¥Jl 
.'t(8688519E+Ol 
.78688519E+01 
.78688519:m+ol. 
... {8688519:ru+ol 
.78688519:m+ol 
.786885191*01 
:.78688519E+ol 
.78688519:E+-01 
:.78688519m+o1 
.78688519m+o1 
• 78688519E+{'Jl 
.78688519:E+Ol 

'l!A.P' 
.oooooE-99 

622.95081E-03 
124.59016E-02 
186.88524E-02 
249.180321-02 
3ll.47541E-02 
373.T7049E-02 
436.06557E-02 
498.36o65E-02 
560.65573E-02 
622.95081E-02 
685.~4589E..02 
747.54097E-02 
809.83605E-02 . 
872.13113E..02 
934.42622:E ... 02 
996.72130E-02 
105.90164E...Ol 
ll2.13ll5E-Ol 
ll8.36o65E .. Ol 
124.59016E..Ol 
130.81967E-Ol 
137.04918E-Ol 
143.27869E-Ol 
149.50819E-Ol 
155o73770E-Ol 
161.96721E-Ol 
168.19672E ... 01 
174.42623E-01 
180.65573E-Ol 
186.88524E-01 
193.11475E-Ol 

Figure 28 
Resul.ts of' a Crossaorrelation 

Measurement of ~_1(t) and 2u_1(t) 



8.0 ANALYTICAL 

NUMERICAL 
7.5 

figure 29 
Comparison between the Amlytical 

$ind Numerical Resu.J..ts of a Crosseorrelat:ton. Meastll"ement 

Convolution. 

As illustrated :tn Chapter II., Figure 9 and F,qua.tion. 5, one of the 

primar:, applications of the convolution integral and theorem :Ls in.the 
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· determination of the time function output of a system. By- applying the 

convolution theorem., the output of an open loop control sy-stem with:,&: .. 
. , . 

transfer fmotion of 1/s a.ad a trautormed:Lnput 1/s would. be a ramp 

function. 

I 
RlS) = c:;- - G(s> = i-

Figure 30 

I . 
((S) = 52 
C(T) = T 

Open-loop Control Sy-stem With an 
Input of l/s and a Transfer function of 1/s 



The convolution program ws used to ca.lcmJ.ate the convolution of 
~ .. ,, .. '" 

t'W causal functions, one of magnitude four and the other of :magnitude 

two. The results of' the problem, show in Figure 31 and 32, indicate 

that the error caused by the program is approximately one and fifteen 

one hundreds times time pe:r12eat. Figure 32 gives a graphical eompar:t ... 

son ot the expected results ei,nd. the a(;ltual reP.-;ul ta. 

• COWOLUTT.ON 
.OOOOOOOOE-99 
.85875704E .. oo 
.42937852E+o1 
.6o112993E+01 
.94463274E+ol 
.1u63842W....+o2 
~14598$70E+02 
.16316384E+02 
.19751413+02 
.21468926E+o2 
.24903954E+02 
.26621468E+o2 
.30056496E+o2 
.31774010F.+02 
.35209039E+02 
.36926553E+02 
.4036158J.E+02 
.42079095E+02 
.45514123]:+02 
.47231637E-K>2 
.50666665E-+G2 
.52384179E+02 
.55819208E+02 
.57536722E+02 
.6o971750E-l-02 
.62689264E+o2 
• 6612429~.E-+0:2 
.67841806E+02 
.71276834Ft+-02 
.7213559J.E+02 
.7213;591E+o2 
.72135591.E+02 

TIME 
.ooOOOE-99 

3~.03389E ... o~ 
644.06778E-03 
966.10167E-03 
U:?8. 81356E-02 
l6l .. Ol695E ... Q2 
193o22033E-02 
225.42372m .. 02 
257.62711.E-02 
289.83050E...02 
322.03389E-02 
354.23728E-02 
386 .44o67E·-02 
4l8.64406E-02 
450. 84745E·02 
483.05084E..02 
515. ~6422E-02 
547.4;761E·02 
579.66100E-02 
611.86439E .. 02 
644.06778E-02 
676.27117E .. 02 
708.47456E..02 
74o.6't795E..02 
772.88134E-02 
805.08473E-02 
83·7 .28811E-02 
869.49150E-02 
901.69489E-02 
933.89828E-02 
966.10167E ... 02 
998.30506E .. 02 

Figure 31 
Results of the CoEVolution 

Mee.El'W'."ement of :1\ ( t) = ~ L1( t) anct _f 2 == $11 ( t) 
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f(r) 

8 

0 lO 

Figure 32 
Comparison of Proe;ram and . :. · 

Expected Results ot Convolution Measurement 
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