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PREFACE

In the past few years there has been an increase in the application
of statistical methods to system analysis, Statistical functions,: sush
as the correlation functions, can be used to obtain certain facts about
a system which would otherwise remain unknown. One of the applications
of the statistical functions is the anslysis of systems which are sub-
Ject to random or noise inputs. By sampling certain variables and
numerically calculating the required statistical functions, a good deal
of information can be obtained about the system and the variables
connected with it. Numerical calculation and especially numerical in-
tegration is, however, a very tedious, time consuming process. The
purpose of this paper is to present a set of digital computer programs
which will perform the tedious numerical calculations.involved in the
calculation of four such functions.

Indebtedness is acknowledged to Professor Paul A, McCollum for his
guidance and advice in the preparation of the computer programs; to the
Oklahoma State University Engineering department for the use of their
computer and supplies and; to Mrs. John Youngblood who corrected the

gramatical errors and typed the paper.
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CHAPIER I
SYSTEMS AND CONTROL SYSTEMS

An electrical system cen be definsd as an interconnection of ele-
menbts apd devices which act together to establish a desired relation-
ghip between an luput veriable (or variasbles) and an output variable
(or varisbles). The integrator civoult, shown in Figure one, can be des-
eribed as a system, It 15 composed of elements (a resistor and a capaci-
tor) and a device (an operational amplifier), the interconnection of which
establishes a relatimnﬁhip (Imtegration) between an input variasble (x) an

output varizble (y). |

C

[

1|

X R Y=fo dX
Y,
OPERATIONAL
AMPLIFIER
Flgure 1

Iantegrator Clrcult as & System
The device of any system can be viewed ag & system within itself

(Figure 2) and, any system can be considered ag a device or an element in
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& larger system (Figure 3). Whether s cireuit is to be considered as a
system, a device, or an element will depend on the circuit variables, the
rélationships. to be astablished and, the method Hf establishement thosed
by the designer. .

DC TO AC HiGH GAIN AC TQ DC
CONVERTER AMPLIFIER CONVERTER
Figure 2

The Operations) Amplifier as & System

y

X AMPLIFIER INTEGRATOR SUMMER [—=

Flgure 3
A System Utilizing an Integrator Clreult

Control Systems

A system which 18 designed to control one varisble (or variables) with

ﬁﬁother variable (or varlables) is defined as a control system. There are



two types of control systems; open-loop control systems and closed-loop
control systems.

In an open-loop control system the output variable has no effect on
the input variable. An-open-loop control system can be represented syme
bolically by a functional block diagramas shown in Figure k4.

REFERENCE DYNAMIC
COMMAND BEFEBE]NQE DESIRED
INPUT | SELECTOR INPUT UNIT OUTPUT
Figure 4

Functional Block Diagram
of an Open«Loop Control System.

If the output of a control system does have an effect on the input
of the system, it is referred to as an closed-loop control system.
Figure 5 is a functional block diagram representation of a closed loop

control system.

REFERENCE ACTUATING CONTROLED
IABL E
REFERENCE ; DYNAMIC
SELECTOR r " UNIT =
COMMAN D FEIE%%‘*_C FEEDBACK
INPUT L——— ELEMENT
Figure 5

Functional Block Diagram
of a Glosed-Loop Control Bystem



It is evident from Figures 4 and 5 that the fundamental difference
between the open-loop and closed-loop control systems is the feedback
loop. The variables, devices and elements which are shown in Figures
4 and 5 are defined by the AIEE Subcommittee on Terminology and Nomen-
clature of the Feedback Control Systems Committee as follows:®

The "command" is the input which is established by some means
external to and independent of the control system.

The "reference input" is derived from the command and is the actual
signal input to the system.

The "controlled variable" is the quantity that is directly measured
and controlled., It is the output of the controlled system.

The "primary feedback" is a signal which is a function of the con-
trolled variable and which is compared with the reference input to obtain
the actuating signal.

The "actuating signal" is obtained from a comparison measuring de-
vice and is the reference input minus the primary feedback.

The "reference input elements" produce a signal proportional to the
command.

The "control elements" produce the manipulated variable from the
actuating signal.

The "controlled system” is the device that is to be controlled.

The "feedback elements" produce the primary feedback from the con-

lJohn J. D'Azzo. and Constantine Houpis, Feedback Control Systems
Apalysis and Synthesis (New York, 1960), pp. 505-507




trolled variable,
Sampled-date Control Systems

A aampledndata control system is one in which the control signal
‘(the command, reference input, actuating signal or, mﬁipﬁlated variable)
15 supplied intermittently and at a constant rate. In a sampled-data
conkrel system the data signal is a sequence of pulses, the magnitudes of
vwhich ére determined.by the sighal from:whizh the samples é.re;i"‘d.erii‘téd;‘ )
(Figure 6).2
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Figure 6

Sampler Input and Output Waveforms
Figure 7 illustrates & basic sampled-dsta feedback control system

in vwhich the actuating slgnal is the sampled signal.

)2Jul;l,us T, Tou, Digital & Sampled-Data Control. Systems.(New York,
1959), p.5 '




SAMPLER
D

G(s) C.(8)

Figure 7
A Sampled-Data Feedback Control System

Digital Control Systems

A digital control system is basically a special type of sampled-
data control system. The digital control system can be defined as a
control system in which the control signal, in one or more sections, is
expressed in a numerilcal code for the digital data processing and deci-
sion meking equipment of the control system.> Figure 8 shows a typical
digital feedback control system. A digital control system can be re-
duced to a sampled-data control system 1f the numerically coded data
signal in the digital system is decoded into amplitude modulated
signals (sampled-data) and the operation of the digital computer is
represented by the transfer function of an equivalent pulsed data net-

work.

3Tbid., p. 6
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CHAPTER II
STATISTICAL ANALYSIS

The Fourier series (Equation 1) and the complex Fourier integrals
have, for some time, been the primary tools of analysis for the engineer.
Statisticians on the other hand have been making use of the properities
of correlation functions. The two concepts of analysis were not associ-

ated by the two schools until the Fourier transform, which establishes

x(t) = :% +Z 8, + coB(2Mfyt) + by * sin(2)ent) (1)

a relation between the real time and the frequency domains, was applied
(Byuation 2)%.
co
X(w) = [ x(t)e™I%a (2)
-0

Convolution

One of the useful tools of analysis i1s the convolution theorem.

A function, f(x), is known as the convolution of two other functions,

lJul:I.ul Bendat, Principles and Applications of Random Noise Theory
(New York, 1958).




£1(x) end fa(x), when

o) = [ £ tglarlay (3)

The most important property of the convolution theorem is observed
vwhen the Fourier transform is ealculated as shown in Equations 4, 5, 6,

T and 8.
£,(£) <= £, (&) 2,(t) <= () ()

Flw) = IOZ‘J“* F(t)at | (5)

~Q0

= S nontenr @
=-‘q“£°°fl(.r)eﬁjw * Fe(w)d (7)

Results of the calculation show that convoiution in the time do-
malin transforms to milbiplication in the frequency domain.
It can alse be shown that muliiplication in the time domain trans-

forms to convolution in the frequency domain (frequency convolution).

2(05)(8) <5 [ () Flow) o )

As an example of the use of the convolution integral, consider a sime

ple system as shown in Figure 9. It is apparent that, in the frgguency
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domain, the indirectly controlled variable is equal to the product of the
command variable (or reference input) and the control element. The con-

volution integral finds its application in the calculation of ¢(t). Since

B& ) e Ce

Figure 9
Open-Loop Control System
¢(s) = R(s) G(s) (10)
C(s) is the product of R(s) and G(s), by the convolution theorem, c(t)

is the convolution of r(t) and g(t).
Autocorrelation

The autocorrelation function, as defined by Bquation 11, shows &

statistical relation between the mean square value of the function and
1

f= =]
T) = lim _ x(t) x(t+ 1) at
0 (r) = dtm g [ x(s) slesm) (11)
the value of the function T units away. More precisely, it shows the

dependence of the future function value on the present function value.

For example, assume that the autocorrelation measurement of f(t) results
in the curve shown in Figure 10. A%t point a on the curve T is equal to

zero and the autocorrelation function is the mean square value of £(t).
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This Indicates that the function, zero units away, is one hundred percent
dependent upon the value of origimal function. At point b the funetion
T units in the future is less than one hundred percent dependent on the
original function. At point ¢ the function is independent of the funcw

tion at T equal to zero.

oM la
ﬂfﬁ
b
|
i
|
{
|
|
-
i S T
0 Ty
Figure 10

An Autocorrelation Curve
In the actual aubtocorrelation integral, the interval zero to T is
suppose to be infinitely large seo'that the autocorrelation function will
be independent of T. In practice however, the value of T is simply taken
large enough so that further increases in its value do not effect the out-

COMES o

Crosscorrelstion

The erosscorrelation integral is very similar to the autocorrela-

2E. L. Peterson, Statistical Analysis and Optimization of System
(New York, 1961), p. 40, ‘
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tion integral. As shown by'Eqpatibn 12, which defines the crosscorrela-
tion function, the integral involves two functions of time rather than
one,

<1>12<T) %gxm ern) @ G2)

The ercsscorrelation integral can be used to determine the unit
impulse response of & linear system. This is obtained, as shown in
Figure 11, by a crosscorrelation measurement of the reference input and

controlled variables.

R(s) G© , Ce
Lc ROSSCORRE]_IMPULSE
LATION RESPONSE

Figure 11
. An Applicatlion of
the Crosscorrelation Integral

Power Density Spectrum

Egpecially useful when considering systems with noise or random in-
puts is the fregusncy composition of the input, and the effects of the
various freguency components. Provided that the input in question can be
represented as an ergodic ensemble, the Fourier transform of the time

correlation function will result in a function of frequency which de-
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seribes the distribution of the function with respect to freguency.
Equations 13 and 14 show the relation between the power density spectrum

and the aubtocorrelation funcetion.

6() = [ 9 (1) ar (13)
0(7) = 57 fcplgw)ew aw (14)

Since the autocorrelation function is a real and even function, the
power density spectrum can be written as a cosine transform (as in equa-

tion 15). This relation between the autocorrelation funetion and the
%“’) = ¢ () cos (ur) ar (15)

power density spectrum is known as the "Wieper Theorem for Autocorrela-
tiOﬂ".s

The power density spectrum of a function shows how much power is
contributed by components of the function at s given frequency. Assuming
that Figure 12 z‘ebresents a power density spectrum of some £(t), we ean

ealeulate the power contributed by components of f(t) of all frequencies

from zero to b;:a as

0y 1 (16)

?’Y. W. Lee, Statistical Theory of Communication (New York, 1963)

P. 560
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d(w

l
l
!
!

o v Wa

Figure 12
A Poster Den#ity
Spectrum of & Function of Time
Since the power density spectrum is actually a spectrum, the value of
® (w) at omegs equal to zero does not indicate a definite d.c. component

{(as shown in E@ﬁation 7).

2
R =zf @H(e) w = & | (17)

The cross-power density spectrum bears the same relatlion to the
erosscorrelation measurement of fl(t) and fa(t) as the power density

spectrum does to the autocorrelation of £{t) (as shown in Equation 18).

Ql(aw) = 2;00@12 (1) ecos (ur) ar (18)



CHAPTER III
COMPUTER SOLUTION

The ealeulation of the econvolution and correlation integrals can be
accomplished analytically when the time funection (functions) in question
can be expressed as continuous, integrable functions of time.

When the functions under investigation are arbitrary time funetions
(a fuaction which is randomly distributed in time) the calculation of the
statistical inﬁegrals ig best done by numerical methods. Since the numer-
iéal method of analysis is & step-by-step process, which may require a
Pormidable amount of manipulation, & digital computer is almost egsential
in the solution of all but the simplest.of problems.

The following programs are designed for use on the IBM 1620 digital
computer. They are designed to caleculate the statistical function of
any time function which has been sampled a known number of times at a
constant, kuown rate. All the programs are limited te two hundred values
of the input function and to values of T from nine hundred ninety nine

to one thousandth (999-.001).
Autocorrelation

The program described in this section is designed to compute the

autocorrelation funetion of a sampled function of time, as defined by

15
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Figure 12 and Equation 1lb.

oy T/2
Ofr) =2« 5[ =) x(t + m)as (11b)
(1)
\/\\ /N /\M//\/\
| MY h\\k,/r/4
. t
0 T

Figure 13
A Random Function of Time

The value of T, a number which corresponds to the number of samples
in T units of time and the values of the sampled function of time are
the reguired inputs for the progrvam. The value of the autocorrelstion |
funztion.and T are the output variables. T is considered to be an out-
' put variable rather than an input variable because, due to the use of &
finite amount of sampled data, there are only & limited number of values

of T for which a corresponding value of Y(t + 1) exists.

Program Problem
) | Sampled Variable .
A T
c T
O Number of Samples
K t
Table 1

Relation between Program
and Problem varisbleg«-Autocorrelation
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Figure 14 is a flow chart for the program in Figure 15. Operation
number 10 reeds the value of T or A and NO, the number of samples of Y(t).
The format for the READ statement, operation number 15, reserves the first
10 positions on a caxrd for the value of the varieble A and positions 11
through 13 for the variable NO, A is written in floating point notation
and NO is written in fixed point notation.

Operation number 20 dimensions the subseripted problem variables,
The statement limits NO to two hundred maximum which, in turn, limits
the number of aubocorrelation and T values to one hundred and one each.

The titles for the output data are punched by operations 25 and 30.

. A numerical value for T is computed by operations 31 and 32. This
value is equél to the value of T divided by the number of inerements into
which T is divided by the NO samples (see Figure 1k).

Operations 35, 40, and 45 read the vaiues of the NO samples into
memo¥y as Y(1) through Y(NO)

To eompute the integrand of the aﬁtocorrelation integral, Equation
6, the value of the function T units in the future must be known . This
means that less than NO values of T can be considered because, t plus T
cannot be greater then T. Operation 46 redefines NO as NO divided by
twe., There will therefore be one plus NO divided by two valid values
of T.

A set of values which are analogous to the values of T is estabw’
lished for the purpose of subseripting, by operations %9, 50, and 51.

Operation number 55 . establishes a set of values which are analogous to
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55
DO 90
NAX = I,NOX
51
NX =NAX-1
. 55 7;5 L
PUNCH 50 65 \ EVEN=
AUTOCORRE- ' ‘ EVEN+ X(L)
LATION-TAU K=L1.NO .
N ’ 76
7 DO 77
3l 60
R 65 77
F=aA-D X(K) = Y ()Y () ODD =
! ' ® 0D D+ X(M)
9] .
— ! \ 78
bosco NR = NO -1 - [aC=(A):
- (E73)(X(1) +
[=1,NO 71 4eEVEN + 20
’ 0DD +X(NO))
NS = NO- 2
READ
72 B=NX
Y(I) N
0DD = o5
[ C = B-F
NO=NO2 5
EVEN= &
a9
NOX = NO+1
Figure 1k

Flow Chart for Autocorrelation Program
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1 CARMI HUMES AUTOCORRELATION FROGRAM
10 READ 15,4,NO

15 FORMAT (Fl0.2,I3)

20 DIMENSION ¥(200),X(100)

25 PUNCH 30

30 FORMAT (30H  AUTOCORRELATION TAU)
31 D = NO.l1

32 F =4A/D

35 DO 40 I = 1,N0

40 READ 45,‘2(13

45 FORMAT (F7.3)

46 WO = No/2

49 NOX = NO+1

50 DO 90 NAX = 1,NOX

51 NX = NAX-1

55 DO 65 K = 1,N0
60 J = K+HK

65 (k) = ¥{K)*¥(J)
70 HR = NO-1

71 NS = NO-2

72 ODD = 0

73 EVEN = O

74 DO 75 L = 2,NR,2

75 EVEN = EVEN+X(L)

76 DO 77 M = 3,N8,2

77 ODD = ODD4X{M)

78 AC = (2./A)*(F/3.)*(X(1)+4.*EVEN+2, *ODD+X(N0) )
80 B3B=M .
85 C = B¥F

90 FUNCH 95,AC,C

95 FORMAT (E17.8,4H E14.5)
100 STOP

105 END

Figure 15
Fortran Program for
the Autocorrelation Function

the NO values of time (t). The subsoript value which is analogous to the

quantity (t + 7) is calculated by operation number 60 and the integrand

of the autocorrelation integral is calculated by operabion number 65.

tegral,Equation 6, by & numerical method known as Simpson's one-third rule.7

Operaticns TO through 78, inclusive, perform the autocorrelation in-

*

1963), p.l2. .

; , _
“Damiel D. McCracken, A Guide to Fortran Programming (New York,
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The actual numerical value of T used in the previously calculated
autocorrelation integral is calculated by operations 80 and 85.

The results of the calculations are punched in a format wﬁich is
compatable with the headlings punched in operations 25 and 30 by opera-
tlons 90 and 95. |

After punching the results of the program based on one value of T,
the computer will return to operation number 50 to obtain a new value of
T and recalculate the value of the aubocorrelation function. This repe-
titious process will continue until all valid values of T have been pro-
cessed. After the last value of autocorrelstion has been caleuwlated the
program will proceed to operation number lQO vwhich is & stop command.

| For optimum resulbs, the input variable NO should be a number which

satisfies Equation 19a, This optimization restriction 18 a result of
NO=2¢+«G(G= odd ) (19a)

~operations L6, 70, 71, Th and T6.

Crosscorrelation

The program described in this section is designe& to compute the
crosscorrelation funetion of a palr of sampled funetions of time as de-
fined by Bquation 13 (»epeated below).

cc = (2/T) Imﬁ%l(t)Yg(t+T)dt (13)

It is obvious that with a f;; minor changes, the previously deserib-
ed autocorrelation program can be used to perform the crosscorrelation
integral., There are two major changes which must be made, The second

function of time must be read into memory and, the integrand must be
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changed to the product of two different functlons of time as opposed to
a single function of time.

The flow chart in Figure 16 is & flow chart for the crosscorrela-
tion program showa in Figure 17. Operations 10, 15, 25, 31, 32, 35, ko,
45, 46, Lo, 50, 51, 55, 60, 70, through 78, 80, 85, and 95 are exactly
the same as the corresponding operatlons in the autocorrelation program.

The dimension statement, operation number 20, has an additional
variable, Z{t), corresponding to the second function of time involved
in the c¢rosseorrelation integral.

Operations 21, 22, and 23 read iﬁto memory the NO values of Z(t)
just as operations 35, 40, and 45 read the NO values of ¥(t).

The titles for the crosscorrelation cutput data, rather than the
gubogorrelation data, are pumched by operation number 26.

The integrand of the c¢rosscorrelation integral is calculated by
operation number 65, The integrand is the product of Y(tx) and a de-
layed Z(t,) rather than ¥(t,) and a delayed Y( t,) as in the auto-
correlation program,

Operation 90 punches the outpub data resulting from the cross-
correlation measurement.,

As in the autocorrelation program, once a value for the integral
has been obtained and punched, the computer returns to operation number
50 to obtain a new value of T for additional caleculations. The process
will continuve until all possible values of T have been considered.

The optimization restriction which was placed on the variable NO in

the gubocorrelation program still applies in the crosscorrelation case.
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READ
A, NO

2L

DO 22

N = L,NO

22

" READ
Z (N)

25

PUNCH
CROSSCORR-
ELATION-—
Tau_

3L

D=NO-1L

32

F=AD

35

DO 4@

I =1,NO

a9

READ
Y(I)

46
NO = NO2
{

49 [

22

NOX = NO+lL

50 |
DO 92

NAX= L,NO

J = K+NX

77 /
ODD=
O0DD+ X(M)

X(K) = Y(K)'zm

4%

NR=NO-1

71

NS=NO-2

78
AC =(2,/A)-
(F72)(X(1) +
4-EVEN + 2
0DD + X(NO))

30

B=NX

85

72

o)

73 )

124

PUNCH

Figure 16

AC,C

Laﬂai’)

Flow Chert for Crosscorrelation Program
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1 CARMI HUMES CROSSCORRELATION
10 READ 15,A,N0
15 FORMAT (FlO 2,I3)
20 DIMENSION Y(lOO) ,X{ 100 ,2{200)
21 DO 22 N = 1,NO
22 READ 23,2(1’5:5
23 FORMAT (¥7.3)
25 PUNCH 26
26 FORMAT (32H  CROSSCORRELATION TAU )
31 D = NO-1
32 F = A/D
35 DO 4O I = 1,NO
40 READ 11-5,1'(15
45 FORMAT (F7.3)
hé NO = NO/2
hg NOX = NO+1 .
50 DO 90 NAX = 1,NCX
51 NX = NAX-1
55 DO 65 K = 1,N0
60 J = K+IX
65 X(K) = Y(K)*Z(J)
70 NR = NO~1
71 N8 = NO-2
72 ODD = 0
73 EVEN = O
T4t DO 75 L = 2,NR,2
75 EVEN = EVEN’+X(L)
76 DO TT M = 3,NS,2
77 ODD = ODD+X(M)
T8 AC = (2./A)*(F/3.)%(X(1)+k4. *EVEN-!-Q.*ODDH{(NO))
80 B = MX
85 C = B*F
90 PUNCH 95,AC,C
95 FORMAT (E17,8 Ly E1k.5)
100 CONTINUE
101 STOP
105 END

Figure 17

Fortran Program for
the Crosscorrelation Function

Convelubion

23

Like the erosseorrelation integral, the convolution integral (Equa-

tion,3b) can be calculated by the autacorrelaﬁion program with a few
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minor alteratlions.
Rx) = [ £, (7) £ (xr)ay (30)
TH

The flow chart in Figurs 18 iz & flow chart for the comvolution pro-
gram shown in Figure 19. There gre three primary differences between the
convolution and eresscorrelation programs. First, the punch statements,
operations 25 and 90, are changed to produce the convolution data. Sec-
ond, operation 60 is changed to caleulste t minus T rather than t plus
T. Third, operations 47, 48, 49, 50, 55, 70, Tl, T4, 76, and 78 are
changed to provide a past history, rather than a known future for the
delayed time function. The change in the integrand in the convolution
integral, which is the direct resson for the change in operation 60, is
the Indirect reason for the changé in the third group of operations.

For optimum results, the value of NO in the convolution program

should satisfy the value of NO in Eguatioan 19b.

NO = 2 « G (G even) {(19b)
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READ
AyNO

21
DO 22
N=1,NO

2e

/ READ
Z (N)

o

PUNCH
CONVOLU-

TION--TIME

D= NO-1

39
DO 4¢&

40

48 [

25

NOX =NO-1

49 \

NOZ=2*NO+|

58 ¥
DO 9¢

NX=NONO

58
DO 65

=1,NO

62 \

75 \

EVEN =
EVEN + X(L)

J=NX~-K

76 y
DO 77

M=37NS,,2

T y
ODD =

0ODD + X(M)

8 [

65

X(K)= Y(K) Z(J)

/' READ
Y(I)

46

NO =NOQ 2

L

il f
NR=NO-L
7.1
NS =NO-2
Te
ODD= ¢
73
EVEN= DO
Figure 18

Flow Chaxt for Copvolution Program

AC=

(E73) (X(L)+

4EVEN++ 2

0DD+ X(NO)

80




10 READ 15,A,N0 :

15 FORMAT (F10.2,13)

20 DIMENSION Y{200),%{100),%(200)
21 D0 22 N = 1,N0

22 READ gs,z(ms

23 FORMAT (F7.3)

25 PUNCH 26

26 FORMAT {30H CONVOLUTION
31 D = NO-1
32F =A/D
3040 I=1
4O READ hs,Y(If
45 FORMAT (F7.3)

L6 NO = No/2

48 NOX = NO-1

49 NOZ = (2%NO)+1

50 DO 90 NX = NO,NOZ
55 DO 65 K = 1,NOX
60 J = MX-K

€5 X(K) = Y(K)*2(J)
70 KR = NOX-1

71 NS = NOX-2

T2 ODD = O

73 EVEN = 0

T+ PO 75 L = 2,MR,2
75 EVEN = EVEN4X(L)
76 DO TT M = 3,N8,2
77 ODD = ODD+X(M)

NO

TIME)

78 AC = (F/3.)%(X(1)+4 *EVEN+2,¥ODD+X(NOX ) )

80 B = NXNO

85 C = B*F

90 PUNCH 95,AC,C

95 FORMAT (F17.8,4d E1k.5)
100 CONTINUE

101 STOP

105 END

Figure 19

Fortran Program for Convelution Funectilon

26
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Power Denslty Spectrum

The power density spectrum is essentially the Fourler transform of
the autocorrelation functlon as defined by Equation 15. The input data
for the power densiby spectrum program consists of the output dats from
the autocorrelation program (value of autocorrelation and corresponding
value of T), & ounber corresponiing to the number of autocorrelation
values, a palr of numbers corresponding to the meximum omega and the ine

cremental omega. Power density and omega are the output varisbles,

dlw) =2 j' (b (t) cos (wr) dr (15)

Cross-power densllby speatran can.also be calculated with the power
density spectrum program by readlng the crossecorrelation messurements

rather than the subocorrelation measurements as inpub data.

Program Probliem
Ny Tumber of aubocorrelation values
NT Omega {(varisble)
BPD Power density
WHMAX Maximam value of omega
DELW Ingrimental value of omega
Table 2

Relation bebween Program and
Problem varisbles--Power Dansity Speetrum

The rumber of aubocsrreletlon values to be used, the maximum velue
of omega to be considered and, tha incremental velue of omege are read
into memory by operation numbsr 10. Operation 15 is a format for the

read statement, The format agsiges poslblous 1, 2, and 3 for the value
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(' READ
NF, WMAX
> DELW

28

25

PUNCH
POWER

DENSITY--
OMEGA

/  READ
A C(D,CM

a5
_WMAX
NWB = St L

S5
DO 90

NAd=quW
51
ANJ=NAJ-1

52
A =ANJ-DELW

I

55
DO 65

IN= L, NF

60
X= A*C(IN)

65
U(IN)=CO03%
(x)*AC(IN)

66

F=C(2)

79

NR=NF-1

71

NS=NF-2

72
(oDD= 9 )

73
EVEN=L

Figure 20

75

[EVEN=
EVEN+X(L)

76
DO 77

M =3,NS,2

177

ODD =
0D D+ X(M)

78

BPD= 2-
(e73)y(u)+
4+EVEN + 2°
ODD +X(NF)

SQ

PUNCH
BP D4 NJ

Flow Chart for Fourier Trazsform Program
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of NF, positions L& through 13 for the meximum value of omege and, posi~
tions 14 through 23 for the incremental value of omega.

Operation number 20 1s a dimension statement which limlits the problem
varlables to colnelde with the limits of the crosscorrelatlion and auto-
eorrelation programs.

The titles for the output data are punched by operations 25 and 30.

Operations 35, 40 and 45 read into memory the NF cards which con-
tain the results of the aubocorrelation program.

‘A value anzlogous to the variable omege is establlshed and varied
by operations h8, 50, and 51. Operation 55 establishes a variable to be
used as & subseript when consldering functiens of t or T.

Operations 60, and 65 establish the integrand of the Fourler trans-
form integral.

The value of time between samples of autocorrelastion is caleulated
by operation number 66.

Operations TO through T8 perform the integration by a numerical
process known as Simpson's one-third rule,

The results of the program are punched by operations 80 and-85.

Onee the Fourier transform has been calculated for one value of
omega, the process will return to operation number 50 and increase the
value of omega by an amount equal to DELW, This repetitlious precess will
continue untll omega eguel to WMAX has been wbillzed.

For optimum results, the input variable NF should be odd. This

optimum condition is dictated by operations TO, T1l, T4, and T6.



10 READ 15,NF,WMAX,DELW

15 FORMAT (I3,F10 2,F10 5)

20 DIMENSION U(200),A0(100),C(100)

25 PUNCH 30

30 FORMAT (30H  POWER DENSITY OMEGA )
35 DO 40 I=1,NF

Lo READ k45 AC(I) c(I)
45 FORMAT (E17.8,0X Eik.5)

L8 NWB = (WMAX/DELW)+1

50 DO 90 NAJ = 1,NWB

51 ANJ = NAJ-1

52 A = ANJ*DELW

55 DO 65 IN=1,NF

60 X = A*C(IN

65 U(IN)=COS(X )*AC(IN)

66 F = ¢c(2) .

T0 NR=NF-1

7L NS=NF-2

72 ODD=0

73 EVEN=0

74 DO 75 1=2,NR,2

75 EVEN=EVEN+U(L)

76 DO TT M=3,NS,2

T7 ODD=ODD+U(M)

78 BPD=2.%(F/3.)*(U(1)+k *EVEN+2 *ODD-I-U(NF))
80 PUNCH 85, BFD,A

85 FORMAT (E17. 8 4y E1h.5)

90 CONTINUE o

91 STOP

95 END

Figure 21
Fortran Program for the Fourier Transform
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CHAPIER IV
RESULT OF SAMPLE PROBLEMS

The use of the programs described in the previous chapter is illuse
trated by using them to calculate the correlations, convolutions, snd
power spectrums of a few simple functions. The results of the computa-
tlons, with respectito aecuraéy, are discussed and the means of reducing

error are polnted out.
Autocorrelation

The autocorrelation of & step funetion is perhaps the easiest auto-
correlation measurement to make analytically. Assume & step function as

defined by Equation 21.9.:L

o) = (5 956" (20)

Applying the definition, the autocorrelation of a step funetion is

cpﬂ(f) = % ff(t)f(t-vr) at - | (21)
= ;. fo(t) at (22)
- (23)

lY. W. Lee, Statistical Theory of Communication (New York, 1963),
Pe 91. : '

31
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The autocorrelation progrem, as outlined 1ﬁ the previous chapler,
wes used to caleulate the autocorrelation of a step function of magni-
tude ki The calculations were made from 3 different sets of input cohw
ditions to show the effect of verylng the input veriebles, The first
calculation was made from twenby two samples taken over a ningteen
second span, the second from sixty btwo samples taken over & nineteen
second tlms span and, the third from sixty two samples taken over a
thirty elight second time span.

The results-of the three sels of conditions are shown in Figures
22, 23, and 2k, Comparison of Figures 22 and 23 indicates that an in-
crease in the number of readings lmproves results. This would be & log-
lcal agsumption sinece the function is numerically rather than analytia
cally}iniegrated.

The effect of inecreasing the time span over which the reédings are
teken is shown by Figures 23 and 2k, As indicated in Chapter II, in=
creasing the value of T will reduce the net effesct of the interval and
thus improve the results of the problem.

The fact that the funetion is ngmerically rether than analytically
integrated acecounts for the majerity of the error incurred in the prob-
lem. The error can be minimized by baking & large number of readings
over & long period of time. In all three cages the results were with-
in five percent of the desired results. Case number three, Figure 2k,

indicates results within one and two tenths percent of the desired.



AUTOCORRELATION TAU

«15238094E4+02 .00000E-99
.15238094E+02  90k4,T6190E-03
.15238094E402  180.95238E-02
»15238004E4+02 271, 42857TE-02
.1523809LE+02  361.90476E-02
.15238004E+02  452,38095E-02
.15238004E+02  542,85714E-02
.15238094E4+02  633.33333E-02
«1523800LE+02  723.80952E-02
215238004E4+02  814,285T71E-02
+15238004E4+02  90L.T6190E-02
.15238004E+02  995.23809E-02

Figure 22

Results of Autocorrelation

AUTOCORRELATION TAU
15737TO2E+02 «00000E-99
JA5T3TT02E+02  311.47540E-03
«1573TT02E+02 622.95080E-03
«1573TT02E+02 934 . 42620E-03
L15T37T02E+02  124,59016E-02
J15T737T02E+02  155.73T70E-02"
«15737702E4+02 186.88524E-02
15T3T702E+02  218.03278E-02
« 15737 T02E+02 249,18032E-02
J15T73T702E+02  280.32786E-02
J15T37702E4+02  311.4754oE-02
JASTITTOSEH02  342,62294E-02
JAST3TTO2EH02  373.T77048E-02
< 15T737T02E+02 Lok ,91802E-02
«1573TT02E+02 436,06556E-02
«1573TT702E+02 L67.21310E-02
J1573TT02E402  1498.36064E-02
« 1573 7TT02E+02 529,50818E-02
< 15737 T02E+02 560.655T2E-02
«15T3TT02EHO2 591.80326E-02
+1573TT02E+02 622,95080E-02
<15T37TOZE+02  654,09834E-02
« 1573 TT02E+02 6E5,24588E-02
J15T37T02E+02  T16.39342E-02
«15T3TTO2EH02 T47.54)96E-02
< 15T3TTO2EH+02 T78.68850E-02
JASTITTO2EH+02  809.83604E-02
J5737702E+02  840,98358E-02
JAS5TITTOZEH02  872.13112E-02
JASTITTOZER02 903, 27866E-02
JS5T3TTO2E+02 934, 42620E-02
J15T3TTOZE+02  965.5T73T4E-02
Figure 23

Measurement of £{t) = hU_l(t) with NO=22and T = 19

Results of Autocorreslation Measurement
of £(t) =4U_; with NO = 62 and T = 19
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Results of Autocorrelation Measurement

AUTOCORREZATION

TAU
15737704402 «O0000E-99
< 15T3TTOU+02 622.95081E~03
<15737T04+02 124 ,59016E-02
15737 704+02 186 .88524E-02
<15737704+02 2h9,18032E-02
+1573770U+02 311.47541E-02
« 15737704402 373. TTOLOE-02
157377008 . 436,0655TE-02
+15737 704402 498, 36065E~02
« 15T37T04+02 560,55573E-02
15737 TOM02 622.,95081E-02
+ 15737704402 685.24589E-02
«15737TOM+02 74T . 5409 TE-02
+15737704+02 809.83605E-02
<15737704+02 872.13113E-02
< 15737704402 934 . 42622E-02
<157377044+02 996, T2130E-02
<15T37TOM+02 105.90164E-01
+ 15737704402 112,13115E-01
215737704402 118,36C65E-01
«15T37704+02 124,59016E-01
15737704402 130.81967E-01
< 15737704402 137.04918E-01
<1573 7704402 143, 27869E~01
+ 1573770402 149.50819E-01
« 15737704402 155.,73770E-OL
«15T37TO4+02 161..96721E-0L
+15T37704+02 168.196T2E-0L
© «1573TT04+02 174 42623E-01
«15737704+02 180.65573E-01
< 15737 T0k+02 186,88524E-01
< 15T37TOM+02 193.11475E-01
Figure 24

of £(t) = WU _5(%) with NO = 62 and T = 38

16+
CASE 3
I CASE 2 )
CASE 1

15

=

0 10

Figure 25

Graphical compariscn of results of Three
Autocorrelation Measurements and expected Results

20"

rT

34



35

Power Density Spectrum

Analytically the power density spectrum of a unit step is an impulse
at @méga equal zero with a magnitude equal to the magnitude of the auto-
correlation of.the step fungtibn.z |

The power density spectrum program as outlined in the previous
chapter was used to calculate the power density spectrum of a step func-
tion of magnitude four. The input data for the power demsity spectrum
was the output data from the aubocorrelation pfogram shown in Figure ok,
Figures 26 and 27 illustrate the results of the power densgity spectrum
calculation. |

The des;red result is an impulse at omega equals zero but,\sinoe
the resulis of the autocorrelation measurement contained some error and
the power densify measurement itself contains error in its numerical
method, the results are someﬁhat less than ideal. The results of the
analytical derivation in Equation 24, 25 and 26 show the results ex-
pected when the érrorsédue to the T varisble and the error due to the
autocorrelation program are removed. Thus the Fourier transform pro-
gram is in error by only &bout .8 percemt, which is, once again, the

result of the numerical method of inbegration

2y, W. Lee, Statistical Theory of Communieation (New York, 1963),
e :




POWER DENSITY

OMEGA
- 58822882E+03 - 00000E~99
.58481065E+03 100 .00000E~0k
« STHE2TBIEH03 200, 00000E-0lk
+55789269E+03 300.00C00E-Ok4
.53495394E+03  400.00000E-0k
« 50628T03E+03 500+ 00000E 0O
72482988403 600.00000E-0k
134233648403 700, 00000E~0k4
«39231532E403 800.00000E-0k
«3HTEETTSEH03 900.00000E=0k
«30087631E+03 100.00000E~03
«253148T9E+03 110.00000E~03
«205294T38+03 120.00000E-03
+15820346E+03 130.00000E-03
«11272368E+03 140.00000E-03
«69644400E+03 150 « 00000E=03
+296T5563E+03 160.00000E-03
-+ 65633 T4H4E+03 170.00000E~03
e 38559000E+03 180.00000E~03
«65916240E+03 190.00000E-03
-+ 88356224E4+03 200, 00000E-03
«+10572864E403 210.00000E-03
~+11800T1LTE+O3 220, 00000E~03
-+ 12528714E+03 230.00000E-~03
- 127 TTO20E+03 240, 00000E<03
- 12580002E+03 = 250,00000E<03
-0 119T6069E+03 260,00000E-03
~+ 11015257E+03 £70.00000E-D3
~e9T531T1L6E+02 280.00000E-~03
«.B2501882E4+02  290.00000E-03
- 65696 T16E+02 300.,00000E-03
= BTTE1A59EH02 310,00000E~03
=0 20336216E402 220.00000E-~03
~o110367T3E+02  330.00000E~03
=.65593236E+01  340.00000E-03
e 226280T1EH+02  350.00000E-D3
Figure 26

Results of the Power Density

Measurement of the Oubput Data Shown in Figure 25
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iieaels

125

Pigure 27
Comparisen of the Ideal, the Corrected and the
Actual resulbs of the Power Density Measurement
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O(e) = [ 15.737 ¢ cos{ur) ar (2k)
18,6
Blw) = 2£ 15,737 cos(ur) ar (25)
@(UJ) - 31.1{_71" sdn (1506 w) (26)
: w
Crogsecrralation

The erosscorrelation measurement of two step functions is a very
simple analytical calculation yet it will provide a very accurate check
of the crosscorrelation program,

From the definition of the crosscorrelation integrasl, the cross-
correlation of two step fumchions is & step function whose magnitude is

equal to the produet of the magnitudes of the two time functions.

¢ {7) =%f £ (B)gp(e+ ) at (27)
O(r) = 3 UNOR BU_ (t+ ) at (28)
¢(r) = (aB) + U_(%) (29)

The crosscorr@iati@n between o step function of magnitude four and
one of magnitude two was performed by the program described in Chapter
III., The results of the.pr@gram-are ghown in Figure 28, A compesrison
‘between the calculated results and the analytic résult is Bhowniin Tigure

29. Results of the comparisen indlecste that the crossecorrelation program



is just as accurate as the autoeorrelation program.

In both cases the

mjority of the error incurred is the direed result of the numerical

methed of integration.

Since the error is constant with T, the result

39

obtained can be interpreted for their statistical implications, in both

the autocorrelation and crogseorrelatlion capes, as if there were zero

errol.

CROSSCCRRELATION

« 786885 19E+0L
- T868B519E4+01
+T8688519E+01
. TE68B51GEH0L
786885 19E+01
786885198401
. T8688519B+01
+T8688519E+01
. 78688519F+0L
7868851 5EAIL
< T8688519FH0L
~TOAB8EIIEHIL
. 78688519E+01
-+ TO68851 0401
" 78688519E+01
- T8688519E+01.
. 78688511 B+01
- T868851984+01
. 7868851 5E+0L
+ 7868851 9EHIL
. 7868E5198+01.
+T8688519E+0L
- TOABE51SEAOL
»TOHEBEIOEHMOL.
7868851 9E4+0L
- 786885 1L0EH0L
» 78688519401
- T86885198+0L
7868851 0B+0L
- T8688519E+01
- 786885 10E4+0L
. 78688519E4+0L

TAU

+00000E~99
622.95081E-03
124%.59016E-02
186.88524E-02
2h5,18032E-02
311.475418.02
373. TTO49E-02
436.0655TE=02
498.36065E-02
652.,95081E-02
685, 24589E-02
77 . 5L09TE-02

809,83605E-02

87£.13113E-02
934, 42622802
996.72130E-02
105.90164E-01
112.13115E-01
118.36065E-01
124 ,59016E~-01
130.8196TE-DL
137.04918E-01
143, 27869E-01
149,50819E~01
158,727 T70E-0OL
161.96721E~01
168.196T72R-01.
174 . 42623E-01
180.65573E-0L
186,.88524E-01
193, L1475E-01

Figure 28
Results of & Crosseorrelation
Measurement of Y7 (%) and 2U_7(t)



801 ANALYTICAL
NUMERICAL
75¢ » |
-_—
T
Figure 29

~ Comparison between the Analytical
and Numeriecal Results of a Crosscorrelation Meagurement

Convolution

As 1llustrated in Chapter II, Figure 9 and Equation 5, one of the
primary applications of the comvolution integral and theorem 1s in the
de‘tei'mina'tion of the time function output of a asystem. By applying the
convolution theorem, the output of an open loop control system with a.
transfer function of 1/s a.nd\:a transformed input 1/s would be a ramp

function.

|
Re= =

o
Co=—=g2_

1
G(S.) - s cM=T

Figure 30
Open«leoop Control System with an
Input of 1/s and a Transfer Function of 1/s
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The convolubtion program weg used to caleulate the convolution of
two causal functions, one of magnitude four and ;£e other of magnitude
two. The results of the pr@Blém, ghown in Figure 31 and 32, indieate
that the error caused by the program is approxzimately one and fifteen
one hundreds times time percemt. Figure 32 gives a graphical compari-

gon of the expected results snd the actual resulte.

. CONVOLITTON TIME

OC000000E-29 «00000E-99
8B875TOUE-00 322.03389E.03
L2973 78528401 Elily, OB TTBE-C3
«60112993F+01L 066,1016TE-03
<OUUEZOTURAHOL 128,81356E-02
.111638L428+02 161.01695E-02
J1U5088TOR+02  193.22033E-02
. 16316364E+02 225, 42372802
+ 1975141 2E+02 257 .62711E-02
«21468926E4+02 289, 83050E-02
«24903954E+H02 322,03389E-02
« 26621 468E+02 354,23 728E-02
«30056496E+02 386, 4406TE-02
«317TUOL0E+O2 418,64406E-02
«35209030E4+02 450,84745E-02
.36926553E+02  L483.0508LE-02
- 40361581E+02 515 ,25420E.02
« 42079095E+02 547 45761802
55141 23E4+02 579 .66100E-02
JTEZIEATEROR 611.06439E-02
o S0608665EH02 6l 0ATTEE-02
«5238L1T9E+02 676 27 LLTE02
»55819208E402 T08. 4TL56E-02
JSTSRETREEH02  THO.67T95E-02
«BOPTLTS0E+02 772.88134E-02
«BREE906UEL02 805,08 73R-02
« BELEU20RA0R 837.28811E-02
67841 806E+02 869, 49150E-02
~T1276834E+D2 901 /9489E-02
»TEL35591E+02 933.89828E-02
< T2L35591E+02 966, 1016TE=02
721355918402 998, 30506E-02

Figure 31

Results of the Convolution
Messurement of £y(t) = Wily(t) and £y = 20, (%)



fMm

8

10

Figure 32
Comparison of Progrem and .. .
Expected Results of Convolution Measurement
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