
ANALYSIS AND COMPARISON OF

EXTENDIBLE HASHING AND

B+ TREES ACCESS

METHODS

By

HARSHAD D. PATEL ,,
Bachelor of Science

Bombay University

Bombay. I nd I a

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfl I lment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1987

llv."Si-;
ICJ~7

. -P;;lis-4-

(op,~

ANALYSIS AND COMPARISON OF

EXTENDIBLE HASHING AND

B+ TREES ACCESS

METHODS

Thesis approved:

,_/hes ls .Adviser

?;.~1!£____ :__;(
/!IWffW#? 11 })~

Dean of the Graduate College

I I

1291.0~JO

PREFACE

This thesis Is a discussion and evaluation of both

extendible hashing and B+ tree. The study Includes a

design and lmplementatlon under the UNIX system.

Comparisons and analysis are made using empirical results.

I would I Ike to express my sincere appreciation and

gratitude to my major advisor Dr. Michael J. Folk, for his

guidance, motivation, encouragement, and Invaluable

assistance. I am also thankful to Dr. G. E. Hedrick and

Dr. K. M. George for serving on my graduate conwnlttee.

extend a very special and sincere thanks to Dr. G.

E. Hedrick for his unfal I Ing confidence and support.

I am grateful to Mr. and Mrs. U. M. Patel and Mr. and

Mr. and Mrs. H. M. Patel for their moral encouragement,

direction, and financial support.

Flnal ly, my wife, Maya, my parents, Mr. and Mrs. D.

K. Patel and my faml ly members deserve my deepest

appreciations for their love, understanding. and

sacrlf Ices through out my studies.

I I I

Chapter

I .

I I .

I I I .

TABLE OF CONTENTS

INTRODUCTION

EXTENDIBLE HASHING .

Literature Review
Radix Search Trees

-----Extend Ing Hash Tab I es . . .
A Specific Extendlble Hashing Scheme

Directory
Leaf Pages

SeQuent I a I I ty

B+ TREES

Motivation of B+ tree ...
Characteristics of B+ trees .

IV. ANALYSIS AND COMPARISONS .

v.

Extendlble Hashing
Logic Design .

B+ Trees
Logic Design .

Page Faults
Analysis

RESULTS AND DISCUSSION .
Storage Utl I lzatlon
Random Access Cost . . .

Page

1

7

7
10
14
17
17
19
24

25

25
26

29

30
31
33
34
36
37

41
41
42

Insertion Cost . • 44
SeQuentlal Access Cost 45
Directory Size 46

V I . SLM.1ARY AND CONCLUS IONS

Conclusions
Suggested Future Work .

SELECTED BIBLIOGRAPHY

APPENDIX - EMPIRICAL RESULTS

Iv

47

47
48

50

53

LIST OF TABLES

Table Page

I. Comparisons of Number of Records with
Number of Pages 54

I I. Comparisons of Number of Records with
Storage Ut I I I zat I on 55

I I I. Comparisons of Number of Records with
Random Access Cost 56

IV. Comparisons of Number of Records with
Insertion Cost 57

v. Comparisons of Number of records with
Directory Size 58

VI. Comparisons of Page Size WI th Number of
Pages . 59

VI I. Comparisons of Page Size with Storage
Ut I I I za t I on 59

VI I I. Comparisons of Page Size WI th Random
Access Cost 60

IX. Comparisons of Page Size with Insertion
Cost 60

x. Comparisons of Page Size with Directory
Size 61

XI. Comparisons of Buffer Size with Random
Access Cost 61

XI I. Comparisons of Buffer Size with Insertion
Cost 62

v

LIST OF FIGURES

Figure Page

1. Radix Search Tree 12

2. Radix Search Tree with Two Top Levels are
Compressed to One 13

3. Degenerate Radix Search Tree . 13

4. Hashing Into a large Address Space . 15

5. An Example of Extendible Hashing .. 18

6. Modification of Figure 5, After Splitting
Page 1 • • • • • • • • . • • . • • • . • . 20

7. Modification of Figure 6, After Doubling the
directory 21

8. A Structure of a B+ tree . 27

9. Number of Pages vs Number of Records .. 63

10. Storage Utl I lzatlon vs Number of Records 64

11. Random Access Cost vs Number of Records 65

12. Insertion Cost vs Number of Records 66

13. Directory Size vs Number of Records 67

14. Number of Pages vs Page Size 68

15. Storage Utl llzatlon vs Page Size 69

16. Random Access Cost vs Page Size 70

17. Insertion Cost vs Page Size 71

18. Directory Size vs Page Size 72

19. Random Access Cost vs Buffer Size 73

20. Insertion Cost vs Buffer Size 74

vi

CHAPTER

INTRODUCTION

Hashing Is a well known technique for organizing

direct access files. It provides fast direct access to

data records stored either In main memory or an external

devices such as disks.

Conventional hashing used as a f I le access technique

has the advantages of being simple and fast. To access a

record In a hash fl le. we first apply the hash function to

the key which results In an address to the leaf page.

where the record should be. The access time Is constant If

there Is no overflow. Hashing Is better In this aspect

than sequentlal access and tree access.

However. If a file grows by very large factors. or if

the record distribution over the aval lable storage Is not

uniform. the number of overflow records may be large and

therefore retrieval of records may be significantly

slowed down. On the other hand. If the fl le shrinks,
/

..#,..····""'

storage space Is underutl llzed. Such situations require

the fl 1e·s rehashing. which Is costly. especlal ly In a

multiuser envlronment[1].

Therefore. some novel hashing techniques have been

1

2

invented for files that grow and shrink dynamically. They

Include dynamic hashing[14], extendible hashing[l],

virtual hashlng[15], and bounded Index exponential

hashlng[4]. With these techniques there are no overflow

records. They also al low for the extensibl I ity of the hash

table and stl r1 guarantee efficiency of retrieval and

update operations. Assume that the al located secondary

storage space Is divided Into buckets having a capacity of

b records. When a record Is to be Inserted Into a ful I

bucket, the latter Is spl It Into two buckets among which

the records are distributed. The •hash• function, which

locates a given record provided with a unique key, Is

dynamically mod If led and the al located storage space is

dynamically adjusted to the number of records actually

stored In the fl le.[12]

Dynamic hashing and extendible hashing employ an

Index to the data file. By using the hash function, a

bucket associated with the given unique record's key can

be found. Once the bucket's address has been found,

retrieval Is fast: only one access to secondary storage is

required, sl,nce there are no overflow records. If the fl le
_, . ,,. -------- _._. -• -~ ----- .. -- _...,.,, .. _., "'-'"-""" ' -' -- -' ''" _,,,,.,_, .. ,_ .-............... -- ·-. ' ,,_, -... ·~----------~ ... ,_

grows steadily, this Index, Initially aval lable In core

memory, wl I I eventually be partly stored In secondary

storage. This wl I I slow down searching and updating.

An extendible hashing Index Is Implemented by means

3

of a buddy system partition. The Index has 2**d entries

(where. d Is the depth of the directory). each of which

points to the bucket In which the records are stored.

Some of the entries may point to the same bucket. The d

most significant bits of H(K). where H Is a hash function

and K Is key, provide an address In the Index. When a

bucket overflows because of Insertions. the corresponding

block In the address space Is halved and a new bucket Is

added. When a bucket gets underfl I led because of

deletlons. the corresponding block Is merged with Its

buddy. When the data volume grows. the partition's depth

d eventually Increases. When this happens. then the Index

doubles In slze[l].

Bounded Index exponential hashing. a new form of

extendible hashing. combines elements of extendible

hashing with elements of spiral storage. Uni ike extendible

hashing. In bounded Index exponentlal hashing the index

size does not Increase. Rather. It Is the data node that

doubles In size so as to accommodate the overflow. Instead

of the node splitting Into two nodes. Thus. multlpage

data nodes arise as the fl le grows In size. Each time a

page within the data node overflows. the data node doubles

again. The doubl Ing. Just as the spl lttlng did, divides

entries between pages on the basis of the value of the

next digit of the key[4].

4

In contrast to the extendible hashing Index, the

dynamic hashing Index, Implemented by means of a tree

structure, grows and shrinks more smoothly, but the Index

node size Is larger than that of extendible hashing Index

entry. Each leaf of the tree contains a pointer to a

bucket. When a bucket overflows. the corresponding index

leaf becomes an Internal node to which two new leaves are

appended, the left leaf pointing toward the original

bucket, the right leaf pointing toward a new bucket. When

two brother buckets get underfl I led, they are merged into

one bucket and the corresponding Index leaves are deleted,

their father now pointing toward the resulting bucket[14].

The virtual hashing schemes proposed are slml lar to

extendible hashing but do not employ any Index. Retrieval

of record then may reQulre only one access to secondary

storage. The price to be paid for this Is a very low

storage utlllzatlon, compared to the storage utl I lzatlon

provided by dynamic hashing and extendible hashing, which

Is In both cases approximately eQual to In 2 = 0.69.

In order to prevent virtual hashing storage

utl I lzatlon degradation, It Is suggested that spl lttlng of

a bucket be deferred. However, the lower bound on storage

utl I lzatlon Is stl I I low, and deletion of a record Is a

rather compl lcated operation when the fl le shrlnks[12].

By using extendible hashing, there are no more than

5

two page faults necessary to locate a key and Its

associated Information even for fl les that are very large.

Therefore. extendible hashing can be used In a large

database systems[l].

AB+ tree Is a variant of the B-tree data structure.

B+ trees were designed to provide a way which Is suited

to both a random and sequential processing environment. A

B+ tree consists of a set of records arranged In key order

In a sequence set, coupled with a B-tree Index set that

provides rapid access to the block containing any

particular key/record combination. In a B+ tree al I the

key and record Information Is contained In the sequence

set[18].

The sequence set can be processed in a truly I I near.

sequential way, providing eff iclent access to records In

order by key.

The only difference between a simple prefix B+ tree

and a plain B+ tree Is that the latter structure does not

Involve the use of pref lxes as separators. whl le the

simple prefix B+ tree bul Ids an Index set of shortest

separators formed from key prefixes.

The simple pref Ix B+ tree bul Ids separators In the

Index set that are smaller than the keys In sequence set.

More separators can flt Into a block. To obtain this

compression and consequent Increase In branching factor.

we must use an Index set block structure that supports

variable length flelds[18].

The goal of this thesis Is to Implement extendible

hashing and a B+ tree on a UNIX system and compare

performance by examining empirical results. Analysis wi I I

Include storage utl I lzatlon. random access cost.

sequential access cost. and Insertion cost.

Chapter I I and chapter II I present descriptions of

extendible hashing and B+ tree respectively. Chapter IV

shows the Implementation and logic design for different

routines. Chapter V I I lustrates empirical results and

discussion. A summary and conclusions are Included In

chapter VI.

6

CHAPTER I I

EXTENDIBLE HASHING

An extend Ible hash f I le Is a dynamic data structure

that Is an alternative to B-trees for use as a database

Index. In extendible hashing the user Is guaranteed that

no more than two page faults are necessary to locate a key

and Its associated Information even for files that are

very large.

Literature Review

Michel Schol 1[12] claims that the expected average

storage utl I lzatlon for extend Ible hashing Is 69.31 %. The

formula to calculate the expected storage utl I lzatlon for

sufflclently large number of Inputs Is given as fol lows:

b
1

storage utl I lzatlon = b + 1

b i

i=b/2 + 1
where b Is block size.

For sufflclently large number of Inputs, we have the

fol lowing expected storage utl I lzatlon of block sizes 2,

4, a. 16, 32, and 64. For large block size. the I lmlt

7

8

approaches In 2 = 69.31 %.

Block size Expected storage u t i I i za t i on

2 75.0 %

4 72.9 %

8 71.4 %

16 70.4 %

32 69.9 %

64 69.8 %

Tamnlnen[7] claims that asymptotlcal ly extendible

hashing storage utll lzatlon Is poorer than that of I lnear

hashing of Lltwln[15]. The poor performance of extendible

hashing Is due to an excessive dependence of directory

s I ze on the ex I stence of any random c I ust.~_r: P.QiJ'.1_1;.~. The
·-·-·'""'~--···•"''"'"'~'

dependence Is lessened If 'abnormal• clusters only cause

the overflow of a page Instead of doubl Ing the directory.

Tamnlnen[6] studies the behavior of extendible

hashing without an assumption of randomness. I.e. he

represents some rough estimates of storage requirements

and processing costs in case of non random pseudokeys.

The I I near hash Ing of LI tw In and __ 1-:-..i!l.!:_50n Is extend i b I e
·--~-~· .. ---·-·--· -··----· . --- ·-•.• __..~,-~~----·--~---- ···-"-·

, In the same sense as extend lb_Le .. ha.$h i ng. It does riot
~--, .. _ --···'

require a directory but must therefore routinely handle

overflow. The method provides a good tradeoff between

expected storage utl I lzatlon and access time and is

efficient.

9

Performance aspects of extendible hashing have been

thoroughly analyzed both by analytical models and by

slmulatlon[l,8]. These studies are based on the assumption

of a perfect randomization method. The hash function h

associates a random pseudokey K' with each key K. Then.

whatever the distribution of keys, we can expect the

pseudokeys to be distributed nearly uniformly: about half

the pseudokeys have first bit O; about a quarter start

with 01. etc.

Fagln[l] and other analyze extendible hashing by

analytical models and by simulation, and compare the

performance of extendible hashing with B-trees for access

time, Insert time. and storage utl I lzatlon.

Mendelson(9) derives performance measures for

extendible hashing, and considers their lmpl !cation on the

physlcal database design. A complete characterization of

the probabl I lty distribution of the directory size and

depth Is derived, and Its lmpl !cations on the design of

the directory are studied. The expected Input/output costs

of various operations are derived, and the effects of

varying physical design parameters on the expected average

operating cost and on the expected volume are studied.

El I ls(3) studied extendlble hashing and presents

extendible hashing for concurrent operations and

distributed data.

10

Lomet{4) claims that the bounded Index exponential

hashing has the Important advantages over the most of the

other extendible hashing variants of both {I) providing

random access to any record of a fl le In close to one disk

access and {I I) having performance which does not vary

with the fl le size. It Is straightforward to Implement and

demands only a fixed and specifiable amount of main

storage to achieve this performance. Its underlying

physical disk storage Is read I ly managed and record

overflow Is handled so as to Insure that unsuccessful

searches never take more than two accesses.

Radix Search Trees

Radix search trees are also known as digital search

trees. or tries. which examine a key one digit or letter

at a time, have long been known to provide potentially

faster access than tree search schemes that are based on

comparisons of entire keys. It Is clear that radix search

trees are naturally extendible. By tracing the path. data

can be fetched. However. there are two major

disadvantages of radix search trees: {I) they waste space

by having to have redundant Information. and {II) they are

11

not balanced. The reason for this Is that a radix search

tree usually contains space for many keys not in the tree.

Most of the time, the wasted memory space occurs at the

nodes near the bottom of the tree. Therefore, in

practice, radix search trees tend to be used only for

smal I fl les. Extendible hashing exploits the speed of

radix search trees without paying the penalty in memory

space[1].

Classical hash tables are not extendible. Their sizes

are Intimately tied to the hash function used, and often

must be determined before one knows how many records are

to be placed In them. A high estimate of the number of

records results In wasted space; a low estimate results in

costly rehashing, that Is, choice of_a.~ table size, a
,...,- .. ~~~ ,..._, _,_..,,.,.~--... --·-----"·"·-----·,,.---·-,..__.,. -----------··~·----

, .. , ··-"•" '~~~,-......... .,....... ... -.~·----~~~---- .. , .. --
new hash funct I on~-- and _re.1 .. 0..(;ilt.lon·of···a-Ll .. _records.

..,...,.,.~-- , . ~~~·---•'·-"·-"'"'•'·-··~•••- ·., '"'-°'"' -•~··"'-•

Extendible hashing accompl lshes two goals[1]:

1. It makes the hash tables extendible, so that they

can adapt to dynamic files, and

2. It fl I Is radix search trees uniformly, so that

they remain balanced and can Improve storage

utl I lzatlon.

In figure 1 a simple radix search tree over the

alphabet (0,1) Is presented.

Records are stored In the leaf nodes of the tree

according to the leading bits of their keys. When a leaf

overflows, It Is simply replaced by an Internal node to

which two leaves are attached.

0

LOO L01

1110 L111

Figure 1: Radix search tree

Speed of access to a radix search tree can be

Increased If Instead of comparing one digit of a key at a

time, the top levels of the tree are flattened Into an

array of several pointers. The example In figure 2 Is a

modified version of figure 1.

If we can afford to waste some more storage for

redundant Information to Improve access time, then the

12

00 01 10 11

.,.._

,
'If

0 1
·~ ~11

LOO L01 L10

L11q I L111

Figure 2: Radix search tree with the two top levels
are compressed to one.

OJJ_-r-__ 1 o.._o......_.,.._1_...0_1 __,_1_1_.o_"P-_1 _11.__,.

LOO L01 L10

Figure 3: Degenerate radix search tree.

13

14

directory may be extended to a higher depth. This Is shown

In f lgure 3.

To search for a record In the file, we first select

one of the pointers in the array according to the first

three bits of the key. The pointers wl I I lead us to a leaf

page containing a record. Thus the access cost is

constant.

Extending Hash Tables

In classical hashing, each entry of the directory

(hash table) points to a leaf page of f lxed size. This

traditional method has a disadvantage of not al lowing

fl les to grow. When a leaf page overflows, we must use

another leaf page to store the overflow records. Al lowing

overflow slows the search time. One way to el lminate

overflow leaf pages Is to rehash the records Into more

leaf pages. However, It wl I I take O(n) time (where n Is

the number of records) to accompl lsh this task.

Extend Ible hashing uses the wel I-known •buddy system"

for storage management. In figure 4, the hash function

maps the key space s on to a large address space A. A

partition P spl Its A Into m blocks; each block has one

leaf al located for Its use and the directory shows the

15

correspondence between blocks and leaves[l].

Assuming that P Is defined by m+1 boundaries

a(O),a(l),• a(m) Cm= 2**d), leaf LI contains al I keys

Hash :Function

s h
)

Key Space

a(

a(1)~

a(2),.

-

a(m-1

a(m)~

A

Address Space

•

--~

-,

K: a(i)(=h(K)"(a(i+1)

Figure 4: Hashing Into a large address space.

K with a(l-1) <= h(K) < a(I). This scheme Is flexible

because If a leaf overflows, we can change the partition,

16

perhaps by as I lttle as shifting one boundary a(i), and

relocating only those keys that are affected by this

shift. Therefore buddy system partitions have the

advantage that when a leaf overflows. the corresponding

block In the address space is halved, a new leaf is added,

and only the keys In the halved block are affected.

Halving any block of a buddy system partition leads to

another such partition. When a block becomes underfi I led

because of deletions. and when Its buddy has enough room,

the two blocks can be merged easl ly Into one block.

Let the depth d of a buddy system partition be the

least Integer such that each member of the buddy system

partition Is the union of some of 2**d equal sized

Intervals obtained by continued halvlngs. Thus. d is

mlnlmal such that for each block [a(l),a(l+1)] of the

partition. (a(l)-a(l-1)) >= 2**(n -d). A directory with

2**d entries. some of which may point to the same page,

al lows one to take the d most significant bits of hash

address h(K) as the index In the address space A =

{0, ,2**d - 1) of the directory. When the depth of a

partition Increases, the directory doubles In a size.

Figure 4, gives an example on how to hash into a

large address space by using the buddy system.

A Specif lc Extendible Hashing Scheme

One extendible hashing scheme Is described in this

section. Its most Important characteristic Is Its speed.

Even for very large fl les. there are never more than two

page faults necessary to locate a key together with its

associated Information.

17

Let h be a random hash function. If K Is a key, then K'

h(K) Is the pseudokey associated with K under the hash

function h. Usually a pseudokey can be a fixed length such

as 32 bits. The hash function h can be randomly selected

from a universal class of hash function, as def lned by

Carter and Wegman. Then, whatever the distribution of

keys, we can expect the pseudokeys to be distributed

nearly uniformly: about half the pseudokeys have first bit

O; about a quarter start with 01, etc[1].

The data structure consists of two parts

buckets and the directory.

a set of

The buckets(leaves) reside on secondary storage and

contain keys and associated Information.

DI rectory

The number of bits of the pseudokey actually used to

Index Into the directory Is cal led the depth d of the

18

directory and changes as the fl le grows or shrinks. The

depth of the directory Is an Integer •header• associated

with the directory. The array of pointers Is of size 2**d.

The directory contains an array of pointers to leaf pages.

Figure 5 shows an example of a hash fl le with directory

header = 2. Three pages of memory are al located In this

case.

2 1

00
h(+:-) =Oxx •• x ~Fag~\ 11

01 ~ I

h(*)=10x •• x - r I -10

2

h(*)=11x •• x Page
11

])irectory x represents 1 or 0 Leaf Pages

Figure 5: An example of extendlble hashing with header = 2

In general. the pointers are laid out as fol lows.

First. there Is a pointer to a leaf that stores al I keys K

19

for which the pseudokeys K' = h(K) starts with d

consecutive zero bits. This Is fol lowed by a pointer for

al I keys whose pseudokeys have their first d bits equal to

01, and then a pointer to al I keys whose pseudokeys begin

with 10, etc .• lexlcographlcal ly. Thus altogether there

are 2**d pointers and the final pointer Is for al I keys

whose pseudokey begins with d consecutive ones.

To store a record with key equal to KO, h(KO) Is

calculated first, and its first d bits extracted. Thus d

bits are used as an index to the pointer array(directory).

The pointer In the corresponding element of the directory

wl I I point to a page where KO should be.

Leaf page (Bucket)

Each leaf page has a local depth d' for the leaf

page. The local depth d' may be less than or equal to the

global(dlrectory) depth d. The local depth d' Indicates

that the pseudokeys of the records it contains agree only
-

In that number of bits. If d' < d, that means multiple

directory entries wll I point to the same bucket. 2**(d -

d') entries wl II point to that bucket. For example, the

- local depth of page 1 In figure 5, Is 1. This means there

are two pointers (which must be buddies) pointing to the

page. When a page splits Into two, the local depths of the

20

two spl It pages are Increased by one.

As In f Igure 5, when the leaf page 1 overf I I Is then

It •spl Its• Into two leaf pages, each with local depth

two. Al I keys whose pseudokeys begin with 00 appear on the

first of these pages, and all keys whose pseudokeys begins

01 appear on the other. The result Is shown in figure 6.

The header of the directory Is the maximum of the local

depths of al I the leaf pages.

00

01

10

2

~:-<~:::?
,_ ~ Leaf Pages -, I ---,

~I

Directory

Page 1 :
h(*) =00x •• x

Page 2:
h(*)=01x •• x

Page 3:
h(*)=10x •• x

Page 4:
h(-x-)=11x •• x

Figure 6: !~odification of figure 5, after splitting
of page 1.

What happens If a leaf page overfll Is and the local

depth of the leaf page eQuals the depth (header) of the

directory? The directory has to double Its size so that

21

the header(d) can be Increased by one. For example if page

the example In figure 5 overflows, the directory (of

000

001

010

011

100

101

110

111

L------
2

Page 1 :
h(*)=OOx •• x

Page 2:
h(-x-)=01x •• x

-----1 F I Page 3: -4--1~~~~~--------;_(::_°':_~~~~~ h(*)=100x.x
!

II ';------i 1T--------..J~r:t3-"---I Page 4:
t-~~~~~I h(*)=101x.x

\
~--.... ¥ • ..._

- ·---~~-~-1-
2 ____ , Page 5:

h(*)=11x •• x ------
Directory Leaf Pages

Figure 7: f(odification of figure 6, after doubling
directory.

pointers) must Increase Its size. Each pointer spl Its Into

two pointers pointing to the same page with the exception

of the overflow page. The overflow page spl Its Into two

pages according to the (d+l)st bit of the pseudokey. The

global header Is Increased by one.

22

Figure 7, shows the result of spl lttlng of page 3.

The process of doubl Ing the directory size is not

expensive because no leaf pages need to be touched (except

for the leaf page that caused the spl It and its new

slbl Ing). This Is essentially a one pass algorithm that

proceeds by working from the bottom of the old directory

up to the top of the old directory.

By using extendible hashing, there Is at most one

page fault In locating the appropriate directory page.

Because the structure of the directory Is an array, the

location of each pointer can be determined by an easy

address computation. Further. there Is at most one page

fault In obtaining the appropriate leaf page. So no more

than two page faults are necessary to locate a key and its

associated Information. In cases where the directory Is

smal 1. It can be kept In main memory.

The speed to Implement a telatlonal database

management system by using extendible hashing Is

reasonable. If there are too many records that the

directory has to be stored In secondary storage, then

since the directory Is stored continuously, It can be

streamed Into main memory In large blocks. If there are a

23

few ml I I Ion keys, when the directory doubles, and if the

secondary storage device has a data transfer rate of

around a ml I I Ion bytes per second (roughly comparable to

that of IBM 3330 disk), then It Is straightforward to

estimate that the time Involved In doubl Ing the directory

would be less than a second If there were 400 records per

leaf page. Even In the extreme case of bll I Ion keys, the

time Involved In doubling the directory would be less than

a mlnute[l].

The Internal structure of the leaves Is independent

of the relationship between the pages. If deletions form

such a large proportion of the operations of an

appl !cation then space wl I I be saved by coalescing pages.

This can be accompl I shed by keeping In the directory the

number of entries on each page as wel I as the pointer to

the page. Then at each deletion, the total number of

entries In the page deleted from together with an

appropriate slbl Ing page can be checked without any extra

accesses. However, this addltlonal complexity wl I I

probably not be Just If led for those appl !cations where we

can expect new growth to rapidly replace any deletlons.[1]

The scheme shows that extendible hashing provides a

dynamic fl le structure that has a fast (constant) access

time and eff lclent Implementation.

24

Sequent I a I I ty

Hashing usually cannot support sequential processing

of a fl le according to the natural order on the keys.

Sequential processing requires sorting, an O(nlogn)

operation which makes fast random access useless.

Sequential lty means two things. In a weak sense it

means that the entire set of keys (and corresponding data)

can be processed efflclently one at a time. where each

page of keys Is referenced onty once. Sequential lty In the

usual stronger sense means that the order of sequential

processing coincides with the natural order defined on the

space of keys. It Is possible to store the set of keys

within each leaf In a natural order, so that sequential

processing In natural order can be obtained for the cost

of I Inking al I leaves. as opposed to sorting the entire

f I I e.

CHAPTER Ill

B+ TREES

A new approach to external searching by means of

multlway branching was proposed In 1970 by Bayer and

McCrelght[22]. They cal led this new kind of data structure

a B-tree.

B+ trees are probably the most widely used variant of

the orlglnal B-tree. VSAM. IBM's general purpose B-tree

based organization and access method. Is a wel I known

example of using a B+ tree approach.

Motivation of B+ trees

The conventional B-tree Is good for Indexing dynamic

random access fl les. but It has an apparent weakness in

the case that required sequential processing. To extract

al I the keys In order a slmple preorder traversal can be

used. but a significant amount of primary memory may be

required to stack all the nodes along a path from the root

to the leaf to avoid reading these nodes twice.

Additionally. processing a •f Ind next• operation may

25

26

require tracing a path through several nodes before

reaching the desired key[21].

B+ trees were designed to remove these weakness and

provide a way that Is suited to both a random and

sequential processing environment.

Characteristics of B+ trees

The characteristics of B+ trees are summarized by the

fol I owl ng:

1. Al I keys of B+ trees reside In leaves (bottom

level).

2. Only the keys In the bottom level are associated

with data records.

3. Each leaf node of B+ trees has a I Ink field which

points to the next leaf node to the right, except

the rightmost leaf.

4. The Index set has the structure of a B-tree.

AB+ trees consists of two Independent parts: (I) an

Index set and (I I) a sequence set. The structure of a B+

trees Is Illustrated In figure 8.

The Index set consists of separators that provide

Information about the boundaries between the blocks In the

sequence set of a B+ tree. The Index set can be used to

locate the block In the sequence set that contains the

record corresponding to a certain key.

Random
Access

Sequential
Access

Sequence Set

... ~ ... ~

Index:
a B-tree

Figure 8: A structure of B+ trees.

The sequence set Is the base level of an Indexed

27

sequential f I le structure. It contains al I the records In

the fl le In a natural order.

A search In a B+ trees starts at the root but It Is

confirmed only when a matching key Is found at the leaf

level. Sequential processing begins at the leftmost leaf

and Is aided by fol lowing the horizontal I Inks across the

leaves. The key values In a certain range can be

Identified by locating the lower llmlt of the range In the

bottom level and processing sequentially until the key

28

value exceeds the higher I lmlt of the range.

Bayer and Unterauer[21] propose a ref lned structure.

the simple prefix B+ trees, which stores shortest

separators or prefixes of the keys rather than copies of

the actual keys, In the Index part of a B+ trees. The

major advantage of a slmple prefix B+ trees Is that it

decreases access time as wel I as saves space. According

to Bayer and Unterauer's[21] experimental results. for

trees having between 400 and 800 pages. simple prefix B+

trees require 20-25 percent fewer disk accesses than a B+

trees.

CHAPTER IV

ANALYSIS AND COMPARISONS

Extendible hashing and B+ tree has been implemented

under UNIX In the C programming language.

In order to analyze and compare the performance of

extendible hashing with that of a B+ tree implementation.

the fol lowing four performance factors were measured:

1. Random access cost (In terms of page faults);

2. Sequential access cost (In terms of number of

pages);

3. Insertion cost (In terms of page faults);

4. Space utl I lzatlon.

These measures are examined as functions of the

fol lowing three database and system parameters:

a. Database size (In terms of number of records);

b. Page size (In terms of number of records);

c. Buffer size (number of pages resident In primary

storage at a time).

a. Database size: The database sizes range from 1000 to

30000 records with an Interval of 1000. Thirty thousand

random alphabets keys were chosen as record Identifier

29

or keys.

b. Page size: The page size Is the maximum number of

records that can reside In a single page; i.e., page

capacity. The page sizes range from 10 to 70 records

with an Interval of 10.

30

c. Buffer size: This parameter Is used to count the

number of page faults. Buffer sizes range from 10 to 70

pages with an Interval of 10.

Extendible Hashing

The structure used to Implement extendible hashing is

shown In figure 5 (chapter II).

There are two main structures used:

1. Directory

2. Pages

1. Directory: Each entry In the directory has the address

of the particular page. Some entries In the directory

might have the same value. If d Is the depth of the

directory then the total number of entries In the

directory Is 2**d.

2. Page: A binary tree Is used as the Internal structure

of the page to store the keys In order and to get

sequential access In natural order. The page has fixed

31

capacity (or page size) In terms of number of records.

Each page Is I Inked to the next page, except the last

page.

lnltlal ly, starting with a directory depth(d) of 1,

there are two entries In the directory (2**1 = 2) and two

pages. Thirty thousand keys were generated using the

system function random(). Al I keys were formed using

capital letters from A to z. Each character In a key was

converted to a 5-blt binary number ranging from OOOOO(A)

to 11001(Z). These binary strings were concatenated to

form the pseudokey. For example the key AY would be

converted to 0000011000.

To caJculate the address In the directory for the

key, the leftmost d bits were used from the pseudokey. d

was the current directory depth.

For example, If d Is 7 then the leftmost 7 bits are

used, and the address Is 0000011. So entry 3 in the

directory would have the page address for key AY. Since

this result directly gives the address of the page In the

directory, there Is no need to store any keys In the

directory or Index.

LOGIC DESIGN

Search: The basic design of the search routine for

32

extendible hashing Is

1. Read the key, K.

2. Determine the entry In the directory using the

above method.

3. Fol low the pointer to a page P.

4. Search the binary tree In page P for key K.

5. If the key K Is found then return successful else

return unsuccessful.

Insertion: The Insertion routine for extendible

hashing Is:

1. Apply al I five steps of search, using key K.

2. If the search Is successful then return.

3. If by Inserting key Kon page P, we would exceed

our page capaclty(page size). then go to step 7.

4. Otherwise. Insert the key K In a binary tree In

page P.

5. Increment the counter of number of records In page

P.

6. If key K has been successfully Inserted then

return else print Error and exit.

7. At this point, we know .there Is not sufficient

space on page P. Obtain new page Pl.

8. Obtain a temporary area Q to store al I records

appeared on page P, along with the new record.

9. Set the local depth of each P and P1 to d'+1,

where d' Is the old local depth of P.

10. After storing al I records from page P erase al I

records from page P.

11. If the new local depth of P Is b.lgger than tile

current directory depth d then do the fol lowing:

a. Increase the depth d of the directory by one.

b. Double the size of directory, and update the

pointers In obv1ous manner.

c. Set the count for number of records on page P

and P1 to zero.

12. Insert all records one at a time from temporary

area Q.

B+ TREES

The structure used to Implement B+ tree Is shown In

figure 8 {chapter II I).

There are two mall'} parts of a B+ tree structure:

1. Index set

2. SeQuence set

1. Index set: The Index set consists of separators that

provide Information about the boundaries between the

blocks In the seQuence set of a B+ tree.

33

2.SeQuence set: The seQuence set Is the base level of a B+

34

tree. It contains al I of the records In the file. The

SeQuence set Is made up of different pages that are I Inked

to the next page except the rightmost page.

Logic design

Search: The basic design of the search routine for B+

tree Is:

1. Read the key K.

2. Start from the root of Index set and fol low the

pointer, In the index set untl I the leaf page P is

found according to fol lowing rule:

Relation of search key and separator Decision

Key < Separator Go left

Key = Separator

Key > Separator

Go right

Go right

3. As the Internal structure of page is binary tree.

search the binary tree of page P for the key K.

4. If the key, K Is found then return •successful"

else return •unsuccessful•.

Insertion: The basic design of the insertion routine

for B+ tree Is:

1. Apply al I four steps of above search routine.

2. If the search was successful then return.

3. If by Inserting key Kon page P, we would exceed

35

our capaclty(page size), then go to step 7.

4. Otherwise Insert the key In a binary tree in page

P.

5. Increment the counter of number of records on page

P.

6. If key K has been successfully Inserted, then

return, else print error and exit.

7. At this point, we know there Is not sufficient

space on page P, obtain a new page Pl.

8. Obtain a temporary area Q to store al I records

that appeared on page P, along with the new

record.

9. Promote the root key R of binary tree In page P to

the parent Index page Pl. By Inserting the key R

to the Index page Pl of page P, If count of number

of keys on page Pl wll I exceed the capacity of

page Pl then go to step 11.

10. Insert the key R to the Index page Pl at the

appropriate position and go to step 13.

11. Copy the Index page Pl to the temporary area QI

with the promoted Index key Rat the appropriate

position. Obtain a new Index page I. If PJ Is the

root page then go to step 12. Promote the mlddle

key R from the temporary area QI to the parent

Index page NI of page Pl. Copy the first half of

QI to Pl and erase the rest of the Information

from Pl. Copy the second half without the middle

key to the page and update the pointers in the

36

obvious manner. If the page NI wi I I overflow then

NI becomes Pl and repeat the step 11, else go to

step 13.

12. Obtain a new Index page RI. Copy the middle key of

QI to the first position In RI. RI Is the new root

page. Copy the first half of QI to the page Pl and

the other half of QI, without the middle key to

the page I.

13. Update the pointers In obvious manner and Insert

al I records one at a time from temporary area Q.

Page faults

There Is a buffer In primary memory that can hold b

pages. Whenever we require a page not In the buffer, there

wl I I be a page fault. A least recently used (LRU) page

management algorithm Is used. For extendible hashing

directory page faults and for B+ tree Index page faults

are also considered.

The number of entries (n) In the directory of

extendible hashing can reside on a single page given as

fol lows:

n = page_slze/slze of pointer.

Only the size of the pointer Is considered because

directory contains only pointers.

Analysis

In this section some analytical results concerning

the number of leaf pages and number of page faults for

accessing a record wl I I be derived.

37

Let us postulate a paged memory. with p equal to the

maximum number of records that can reside In a single page

and pb equal to the page size In bytes. There Is a buffer

In a pr lmary memory that can ho Id b pages. and. wl1enever a

required page Is not In the buffer, there wl I I be a page

fault. The total number of records wl II be n. The

parameters n. p. and b are common to both extendible

hashing and B+ tree.

Let UT(n) be the average occupancy In entries divided

by p. UT(n) wl I I of course be different for extend Ible

hashing and the B+ tree. It Is assumed that each page has

exactly UT(n)*p entries.

Extendible Hashing

Let Ip be the number of leaf pages:

38

Ip = rn/(UT(n)*p)1

Number of directory entries (nd) = 2**d

where d Is directory depth.

If dp Is the number of directory pages.

dp =- rend * s I ze of po Inter) /pb 1 .

Now we can compute the probabl lltles dpf (page fault

referencing directory page) and lpf (page fault

referencing leaf page):

1-b/dp) ..
~ X:Yy:\.

. 1 vY
,pv\ ,

,fr'{'
(·)ii .· 0

b dpf • maxco.

and

lpf - maxco. 1-(max (1 , b-dp)) I~:_,) ~"I'

Finally. we have our approximation for expected

random access cost In terms of page faults for extendible

hashing :

random access cost • dpf + lpf.

B+ tree

Let db Is the depth of the B+ tree Index set:

db = 1 + log!\ ,cn+1)/2.
1't't\/~1

where, m Is the order of B-tree In index set.

So, m ,.. p + 1;

If Ip Is the number of leaf pages,

Ip • rn/(UT(n)*p)1.

The number of keys In the Index (nl) = Ip - 1.

39

Let IUT(nl) be the average occupancy of Index page in

terms of number of keys divided by p.

If nip Is the number of Index pages,

n I p • r n I I (I UT (n I) * P) l .

Now we can compute the probabl I I ties lpf (page faults

referencing Index page) and lpf (page fault referencing

I eaf page):

lpf = mln(db, max(O,db-b/nlp))

and

40

lpf = max(O. 1-(max(1,b-nlp))/I).

Finally. the approximation for expected random access

cost In terms of page faults for B+ tree:

Random access cost = lpf + lpf.

CHAPTER V

RESULTS AND DISCUSSION

The experlmental results of both extendible hashing

and B+ trees are presented In this chapter. Figures and

tables Indicating emplrlcal results are I lsted In the

Appendix.

Storage Utl I lzatlon

The average storage utl I lzatlon of both extend Ible

hashing and B+ trees approaches 68~ regardless of the page

size. Figure 10 and 15 as wel I as table I I and VI I show

the emplrlcal results of storage utl I lzatlon for both

extendible hashing and the B+ trees.

As the page size Increases the variations In storage

utlllzatlon both for extendlble hashing and for the B+

trees Increase. Extendible hashing has higher variations

In storage utl llzatlon than that of the B+ trees.

As the database size Increases. the variations In

storage utl llzatlon for both extendible hashing and B+

trees decreases.

Cycl lcal variations are observed In storage

41

42

utl I lzatlon performance. The reason Is that as pages

become ful I. storage utl I lzatlon Increases. After some

time pages become completely full and are spl It almost

simultaneously and storage utl I lzatlon decreases. After a

whl le the page becomes ful I and storage utl I lzatlon

Increases.

As I lttle as 57% and as much as 76%, storage

utl I lzatlon for extendible hashing Is achieved, and for B+

trees the low Is 63% and high Is 70%.

Overal 1. the storage utl I lzatlon for B+ trees ls more

consistent than that of extendible hashing.

Random Access Cost

Random access cost was measured In terms of page

faults. After Inserting a certain number of records, 1000

records were accessed and the number of page to access

those records was measured. Figure 11, 16, and 19 as wel I

as table I I I, VI I I, and XI show the emplrlcal results.

It Is observed that the random access cost for

extendible hashing Is always less than that of the B+

trees access methods. The reason behind this Is that In

extendible hashing the key dlrectly gives the directory

entry and that entry contains the address of the page In

which the record should be. Since In a B+ trees access

methods the Index set has to be traversed untl I the leaf

page Is found. there are more page faults required to

search the Index.

43

It ls obvious that the higher the page size. the

lower the number of pages In the database. There are more

chances of getting the page from the buffer. which Is in

resident memory. so there are fewer page faults.

In addition. It Is observed that the higher the page

size. the lower the random access cost. As the page size

increases. the relative decrease In random access cost

also decreases. This Is found In both extendible hashing

and B+ trees access methods.

A step function Is observed In random access cost

with an Increase In database size for both extendible

hashing and B+ trees. For extendible hashing. whenever the

directory size doubles In a size. a step ls observed; and

for B+ trees whenever the root page spl Its {I.e. the

height of Index set Increases). a step Is observed.

It Is obvious that the higher the buffer size, the

more pages can reside In a resident memory. Hence there

are more chances of getting a page from the buffer.

resulting In fewer number of page faults. With an increase

In buffer size the corresponding decreasing number of page

faults Is greater for extendible hashing than that of a B+

trees. The reason behind this Is that more directory pages

44

of extendible hashing can reside In resident memory, so

fewer page faults are needed for searching the directory.

Insertion Cost

Insertion cost was measured In terms of page faults.
--------~

O.ll f' ')
After Inserting a certain number of records, 1000 qp.<"'"'e.- lLM')_;/

~>'c-- 0
addltlonal records were Inserted and page faults were

measured during those Insertions. The empirical results

are shown In figure 12, 17, and 20 as wel I as table IV,

IX. and XI I .

The fol lowlng observations were made for Insertion

cost:

1. The Insertion cost for extendible hashing Is

always less than that of B+ trees access methods.

2. For both methods, as the page size Increases. the

Insertion cost decreases; and as the page size

Increases. the corresponding decrease In Insertion

cost also decreases.

3. A step function Is observed for Insertion cost

with Increases In database size for both

extendible hashing and B+ trees access methods.

4. The number of decreasing page faults with Increase

In buffer size Is higher for extendible hashing

than that of B+ trees access methods.

The reasons for the preceding observations are the

same as those explained for random access cost.

Sequential access cost

45

Sequential access cost Is measured In terms of the·

number of pages In the database. Figure 9 and 14 as wel I

as table I and VI show the emplrlcal results of sequential

access cost for both extendible hashing and the B+ trees

access methods.

It Is obvious that as the page size Increases, the

total number of pages In a database decreases. It ls

observed that for the B+ trees method the decrease in the

number of pages with an Increase In page size Is more

consistent than that of extendible hashing. It Is also

observed that with an Increase In the database size the

Increase In the number of pages for B+ trees Is more

nearly I lnear than that of extendible hashing.

The reason behind the above observations ls the more

consistent storage utl I lzatlon of B+ trees than that of

extendible hashing.

46

Directory slze{depth)

The knowledge of the distribution of the directory

size or depth Is Important for the design of an extendible

hashing fl le system. Since this size changes by factors of

two. Its fluctuations may be quite significant. The

directory size Is largely dependent on the exlstance of

clusters. An Implementation of extendible hashing that

accomodate some overflow would lessen the frequency of

doubl Ing the directory.

The emplrlcal results are shown In figure 13 and 17

as wel I as table V and X. It Is observed that the

corresponding decrease In the directory size with an

Increase In page size also decreases. It Is also observed

that the Increase In directory size with the increase In

database size Is a step function.

CHAPTER VI

StJAtARY AND CONCLUSION

Given that an Index resides on discs or drums.

searching It must be done by accessing secondary storage.

The time required to access secondary storage Is the main

component of the total time required to retrieve

Information from databases[20]. Minimizing the number of

accesses to secondary storage Is highly desirable.

Extendible hashing and B+ trees access methods are

two Index sequential access methods that do not require

complete fl le reorganization. They can be very useful for

applications that require random access and sequential

access In natural order.

Conclusions

The average storage utl I lzatlon of both extendible

hashing and B+ trees Is about 68%. A B+ tree has more

consistent storage utl llzatlon than that of extendible

hashing. The performance of extendible hashing can be

degraded by the existence of a cluster.

The random access cost of extendible hashing Is

47

48

always less than that of B+ trees. This can be sti I I

further Improved If there Is not an excessive dependance

of the directory size on the existence of a cluster. There

are never more than two page faults necessary to locate a

key and Its associated Information for extendible hashing.

The sequential access cost of B+ trees methods is

more consistent than that of extendible hashing. This is

due to the fact that extendible hashing results In more

variations in storage uti I lzatlon than B+ tree methods.

The Insertion cost of extendible hashing is always

less than that of B+ trees methods. This Is due to a

maximum of one page fault to search an Index for a key in

extendlble hashing.

If the directory size Is smal I and can be kept In

primary memory. then there Is a maximum of one page fault

to access a record In extendlble hashing. If an order

preserving hash function Is used that can break up

clusters. then there wl I I be quite an Improvement In

performance for extendible hashing.

Suggested Future Work

The result In the thesis are obtained Just for search

and Insertion. It would be an Interesting topic If

deletions were Implemented. This topic Is left to future

49

study.

In this study, a simple Implementation of a B+ tree

Is compared to extendible hashing with sequential access.

The results are based on comparisons of these two methods.

Refinements of the Implementation of either or both

methods could produce different results, and could be

subject of further study.

SELECTED BIBLIOGRAPHY

[1] Fagin. R .• Nlevergelt. N .• Pippenger. N .• and Strong
H. •Extendible Hashing - A fast access method
for dynamic fl les.• ACM Transactions on Database
Systems. 4. 3(Sept 1979). 315-344.

[2] Bechtold, u .• and Kuspert. K. •on the use of
extendible hashing.• Information Processing
Letters. 19(1984). 21-26.

[3] El I Is. c. •Extendible Hashing for concurrent
operations and distributed data.• Proceddings of
the Second ACM SIGACT- SIGMOD Symposium on
principle of database systems 21 - 23 March
1983, Atlanta. Georgia. 106-116.

[4] Lomet. D. •sounded Index exponential hashing." ACM
Transactions .2.!!_ Database Systems. 8, 1(March
1983). 136-165.

[5] Tamnlnen. M. •The Extendible eel I method for closest
point problems.• BIT, 22(1982), 27-44.

[6] Tamnlnen. M. •order preserving extendible hashing and
bucket tries.• BIT, 21(1981), 419-435.

[7] Tamnlnen. M. •Extendible hashing with overflow.n
Information Processing Letters. 15, 2(1982),
227-232.

[8] Yao. A. •A note on extendible hashing.• Information
Processing Letters, 11, 2(1980), 84-86.

[9] Mendelson. H. •Analysis of extendible hashing.• IEEE
transactions .2.!!_ software engineering, SE 8,
6(Nov 1982), 611-619.

[10] Stephen, H. •Multidimensional extendible hashing for
partial match Queries.• International Journal Of
Computer And Information Sciences, 14. 2(1985),
73-83.

50

[11] Chang, c. •The study of an ordered minimal perfect
hashing scheme.• Communication of the ACM, 27,
4(1984), 384-387.

51

51 [12] Schol I, M. •Newfl le organization based on dynamic
hashing.• ACM Transactions On Database Systems,
6, 1{March 1981), 194-211.

[13] Knuth, D. The Art Of Computer Progranming, vol 3 :
Sorting and Searching. Reading, MA : Addison -
Wesley, 1973.

[14] Larson, P. •Dynamic hashing.• BIT, 18(1978), 184-201.

[15] Litwin, W. •virtual hashing : A dynamically changing
hashing.• Proc. Very Large Databases Conf.,
Berl In, 1978, 517-523.

[16] Coffman, E. and Eve, J. •F1 le structures using
hashing functions.• Communication of the ACM,
13, 7{July 1970), 427-436.

[17] Nakamura, T. and Mlzoguchl, T. •An analysis of
storage utl I lzatlon factor In block split data
structuring scheme.• International Conference On
Very Large Databases 4 th • 1978, West Berl in,
Germany, Sept 13-15, 1978.

[18] Folk, M. and Zoel I lck, B. Fl le Structures : A
Conceptual toolkit. Reading, MA : Addison -
Wesley, 1987.

[19] Bel I, D. and Deen, S. •Hash Trees Versus B-Trees. 0

The Computer Journal, 27, 3(1984), 218-224.

[20] Larson, P. •Linear Hashing with Overflow-Hand I Ing by
Linear Probing.• ACM Trans. on Database Systems,
10, 1{March 1985), 75-89.

[21] Grlmson, J. and Stacey, G. •A Performance study of
Some Directory Structures for Large Files.•
Information Storage and Retrieval, 10(1974),
357-364.

[22] Bayer. R. and Unterauer, K. •prefix B-trees.• ACM
Trans. on Database Systems, 2, 1{March 1977),
11-16.

[23] Bayer. R. and Mccreight, E. •organization and
Malntalnance of Large Order Indexes." Acta
lnformatlca, 1(1972), 173-189.

52

APPENDIX

EMPIRICAL RESULTS

53

TABLE I

COMPARISONS OF SEQUENTIAL ACCESS COST
WITH NLMBER OF PAGES

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000

Sequential Access Cost
(In terms of Number of Pages)

Extendible Hashing B+ tree

51 51
100 98
163 147
198 195
253 244
307 296
337 351
366 395
422 441
489 484
550 533
602 595
636 648
678 705
702 748
728 792
786 836
831 886
888 928
960 987

1033 1037
1108 1083
1190 1120
1262 1172
1319 1221
1360 1278
1393 1333
1432 1387
1465 1433
1512 1478

54

TABLE I I

COMPARISONS OF Nl.NBER OF RECORDS WITH
PERCENTAGE STORAGE UTILIZATION

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000

Pecentage Storage Utl I lzatlon

Extendible Hashing

65.35
66.66
61 .34
67.34
65.87
65. 14
69.23
72.85
71.09
68.16
66.66
66.44
68. 13
68.82
71.22
73.26
72.09
72.20
71. 32
69.44
67.76
66 .18
64.42
63.39
63 .17
63.72
64.60
65 .17
65.98
66.08

B+ tree

65.35
67.86
67.22
68.52
68.00
67.03
66.57
67.91
68.55
68.78
68.64
66.63
66.60
66.23
67.03
67.67
68.17
68 .12
68.54
67.58
67.57
67.55
68.19
67.77
67.90
67.60
67.45
67.27
67.53
67.74

55

TABLE I I I

COMPARISONS OF NLtJIBER OF RECORDS
WITH RANDOM ACCESS COST

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000

Random access cost
(In terms of page faults)

Extendible Hashing B+ tree

832 911
901 1101
944 1397

1107 1407
1133 1554
1141 1663
1142 1658
1147 1670
1137 1674
1142 1747
1377 1753
1379 1848
1409 1885
1644 1887
1634 1869
1663 1898
1664 1887
1643 1903
1657 1907
1646 1899
1661 1932
1660 1925
1651 1948
1662 2048
1630 2043
1647 2051
1639 2051
1633 2172
1652 2159
1613 2093

56

TABLE IV

COMPARISONS OF NLNBER OF RECORDS
WITH INSERTION COST

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000

Insertion Cost
(In terms of page faults)

Extendible Hashing

985
1092
1163
1340
1337
1261
1259
1357
1398
1365
1549
1541
1665
1700
1731
1805
1766
1815
1862
1856
1844
1865
1845
1807
1760
1744
1740
1728
1731
1745

B+ tree

1104
1357
1500
1547
1691
1736
1729
1735
1755
1821
1858
1983
1996
1952
1975
1977
1999
1987
2014
2031
2021
2021
2153
2139
2169
2166
2287
2260
2174
2189

57

TABLE V

COMPARISONS OF Nl.NBER OF RECORDS
WITH DIRECTORY SIZE

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000

DI rectory SI ze
(for Extendible Hashing)

128
256
256

1024
1024
1024
1024
1024
1024
1024
2048
2048
2048
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

58

TABLE VI

COMPARISONS OF SEQUENTIAL ACCESS COST
WITH NLMBER OF PAGES

SeQuentlal Access Cost
(In terms of Number of Pages)

Page Size Extendible Hashing B+ tree

10
20
30
40
50
60
70

2251
1147
702
585
409
342
332

TABLE VI I

COMPARISONS OF PAGE SIZE WITH
PERCENTAGE STORAGE

UTILIZATION

2227
1105
748
552
447
366
310

Percentage Storage Utl llzatlon

Page Size

10
20
30
40
50
60
70

Extendlble Hashing

66.63
65.38
71 .22
64.10
73.34
73.09
64.54

B+ tree

67.57
67.87
66.84
67.93
67. 11
68.30
68.68

59

TABLE VI 11

COMPARISONS OF PAGE SIZE WITH
RANDOM ACCESS COST

Random Access Cost
(In terms of Page Faults)

Page Size Extendible Hashing B+ tree

10
20
30
40
50
60
70

1953
1735
1634
1303
1140
1021

987

TABLE IX

COMPARISONS OF PAGE SIZE WITH
INSERTION COST

Insertion Cost

3179
2151
1869
1660
1634
1418
1375

(In terms of Page Faults)

Page Size

10
20
30
40
50
60
70

Extendible Hashing

2115
1914
1731
1412
1221
1178
1011

B+ tree

3477
2332
1975
1735
1672
1478
1455

60

TABLE X

COMPARISONS OF PAGE SIZE WITH
DIRECTORY SIZE

Directory size
Page Size (for Extendible Hashing)

10
20
30
40
50
60
70

16384
4096
4096
2048
2048
2048
1024

TABLE XI

COMPARISONS OF BUFFER SIZE WITH
RANDOM ACCESS COST

Random Access Cost
(In terms of Page Faults)

Buffer Size Extendible Hashing B+ tree

10
20
30
40
50
60
70

1782
1634
1500
1391
1306
1229
1173

2173
1869
1791
1705
1661
1604
1551

61

TABLE XI I

COMPARISONS OF BUFFER SIZE WITH
INSERTION COST

Insertion Cost
(in terms of Page Faults)

Page Size Extendible Hashing B+ tree

10
20
30
40
50
60
70

1857
1731
1632
1549
1488
1459
1424

2244
1975
1878
1802
1750
1693
1632

62

s 1600
E 1600
a 1400 u
E 1300
N 1200
T 1100 I
A 1000
L 9'i'0

A 800
c 700
c 600
E 500 s
s 400

300
c 200 0
s 100
T 0

0

PAGE SIZE •30 BUFFER SIZE = 20

10000 20000

NUMBER OF RECORDS

LEGEND • • • BPLUS e-&-Et EXHASH

FIGURE 9• SEQUENTIAL ACCESS COST <IN TERMS OF
NUMBER OF PAGES) VS NUMBER OF RECORDS

30000

~ 741
73

s
T 72 I

~ 71 ~,
A 70

~ 69

u 68~ T 67
I 66
L
I 65_.
z
A 64
T 63
I
0 62
N 61

0

PASE SIZE • 30

R
~ I ',
I \ ,' '9--El
I \ I ',

f ~ ~ ~
I \ I \
I \ I \

I \ I \
r/J \ I ~

~,v· '·~.!/'~~.__._..... ,, '.n \
I \ I \

J I I I \,. I ""-f(ti R--EJ
I I I Ml I \ r

\ I ', I \ ,

~ : ti \s
' ' ' 13 I I ~ ,
I I "' ,

\ ! 'a .. 1!''"
I I
I I
I I
11

Ii

10000 20000

NUMBER OF RECORDS

LEGEND 11e-.-. BPLUS e-e-a EXHASH.

FIGURE 10: PERCENTAGE STORAGE UTILIZATION VS
NUMBER OF RECORDS

30000

2200i
R 2100 i
A 2000-t

PAGE SIZE = 30 BUFFER SIZE • 20

~ 19004

0 1800 i
H 1700
A 1600

~-a--B--S.-e--e---a--s--s--a--a-..... _.a-13--e-.S-' ~ ~
I

I c
c
E
s
s

1500 ,'
I

t 400 ~--a-.m

1s00] I
1200 /

c fil"-e--E>--et--S--e--ei
0 1100 ~ /

900 ,Er .. .m ~ 1000 ~ /

a'
800 ~,--.-,-..,-r,-...-.--.--.--.--.--.---.---.--r--r-----.--.--.--.--r--.-......--.--.--.---.---.---.-~.,...-.-, -r iii 1 Till

0 10000 20000

NUMBER OF RECORDS

LEGEND lfl Ill • BPLUS e--e-a EXHASH

FIGURE 11: RANDOM ACCESS COST <IN TERMS OF PAGE
FAULTS) VS NUMBER OF RECORDS

30000

2300
2200
2100

I 2000
N
s 1900
E 1800 R
T 1700
I 1600 0
N 1500

c 1400
0 1300
s

1200 T
1100
1000
900

0

PAGE SIZE = 30 BUFFER SIZE = 20

10000 20000

NUMBER OF RECORDS

LEGEND • • * BPLUS e-a--a EXHASH

FIGURE 12= INSERTION COST <IN TERMS OF PASE FAULTS)
VS NUMBER OF RECORDS

30000

5000

D 4000
J:
R
E
¥ 3000

0
R
y

2000
s
J:
z
E 1000

0

PASE SIZE ID 30

!
I

I
I

I I I I I I I

10000

, I ,--,.--,

20000

NUMBER OF RECORDS

LEGEND 11t • _.. EXHASH

FIGURE 13: DIRECTORY SIZE VS NUMBER OF RECORDS

I I

30000

10 20

NUMBER OF RECORDS • 15000

30 40

PAGE SIZE

50

LEGEND • • • BPLUS t:t-&-a EXHASH

60

FIGURE 14: SEQUENTIAL ACCESS COST <IN TERMS OF
NUMBER OF PAGES) VS PAGE SIZE

70

CJ\
CD

74~ x
s 73

T 72J 0
R

71 A
G
E 70

u 69
T
I 68
L
I 67 z ..
A ' 66 ' T ..

',,
I

65
.. ..

0 ..
N

64

10

NUMBER OF RECORDS • 15000

I ' I ' I \

91
...

I ht
I \

I \
I \

I
I
I

,, .. 'Iii, I
I
I , ' ,

I \
I , \

I \ I
I ' I

I \ I
I \ I

I \ I
I ' I

I ' I
I \ I

I \ I
I \ I

I \ ,
I \ ,

I '
I I

I I
I I

I I
I I

I I
I I

I I

1' I
I

I
,l I

\ I __ .,., .. , ... ,
'1!'

I

20 30 40 50 60

PAGE SIZE

LEGEND Ill Ill 11t BPLUS e-&-a EXHASH

FIGURE 15: PERCENTAGE STORAGE UTILIZATION VS
PAGE SIZE

\
\
\
\
\

' \
' \ \

\
\
\

' ' \
' \ \
' ' ' \ \
' ' ' ' \

\

' ' \
bl

I I I ' I I I I I

70

NUMBER OF RECORDS • 15000 BUFFER SIZE = 20

R
A
N

4000

D 3000
0
M

A

E 13-------------13 .. _
s --

g 2000 t--.... ________ _
...............

s ----s--
, ------------a-c 1000 -------------e>--------------e

0
s
T

10 20 30 40

PASE SIZE

50

LEGEND • • • BPLUS e-a--Et EXHASH.

60

FIGURE 16: RANDOM ACCESS COST <IN TERMS OF PAGE
FAULTS) VS PAGE SIZE

70

~~-~-~-- ----

NUMBER OF RECORDS • 15000 BUFFER SIZE = 20

I
N
s

4000

~ 30001
:r I

~ ~
c 2000 r--.......... ______ -s-

0 ---------s -&-.....
T

...... ,9 __
--------a--------------a -----.. __ _

1000 -~

10

I I I I I I I I I I I I I I I I I

20 30 40

PASE SIZE

50

LEGEND • * * BPLUS e-&-e EXHASH

60

FIGURE 17: INSERTION COST <IN TERMS OF PAGE FAULTS)
VS PASE SIZE

70

2300

D ~iii 1
:r 18001
R 1700 :j
E 16001
c 1500-I

6 1400~,
R 1300
y 1200

t 100
s 1000
I 900
z 800
E 700

600
500
400

DATABASE SIZE • 15000

\
\

300_._...._..--.-.~..--.-.---..-r-......_. r-1 I I I I I I I I I i I I I i I I I I I I I I I I I I I I I i I I I I I I I I I i

10 20 30

LEGEND

40

PAGE SIZE

iii Iii ilt EXHASH

50

FIGURE 18: DIRECTORY SIZE VS PAGE SIZE

60 70

2200

R 2100

~ 2000~

~ :::}-····-•...

NUMBER OF RECORDS • 16000

E

PASE SIZE - se

c 1600~ "Ii

~ t 600 'B

c t 4001 -s-_____ _

~ 1 300 i -............ & __ _

T : ~:: l ·······s·----..... .,
.......... , , ,

10 20

LESEND

30 "40

BUFFER SIZE

60

111 111 • BPLUS &-&-a EXHASH ..

60

FJ:SURE 19: RANDOM ACCESS COST CIN TERMS OF PAGE
FAULTS) VS BUFFER SIZE

70

I
N
s
E
R

2300

22001

21001

2000

± 1900

~ 1800

g 17001

~ 1600

1500

....

10

.. _
....

NUMBER OF RECORDS • 15000 PASE SIZE a 30

.... -a.. _ -...........
..... & _~ __ ... _ ..

------a--------------s-
-------------EJ

20 30 40

BUFFER SIZE

50

LEGEND .,..._.__. BPLUS e-&-e EXHASH

60

FIGURE 20: INSERTION COST <IN TERMS OF PAGE FAULTS)
VS BUFFER SIZE

70

VITA

Harshad D. Patel

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS AND COMPARISON OF EXTENDIBLE HASHING
AND B+ TREES ACCESS METHODS

MaJor Field: Computing and Information Science

Biographical:

Personal Data: Born In lndla. Apr I I 4. 1961. the
son of Devabhal and Shantaben Patel. Married
to Maya Patel on December 15. 1983.

Education: Graduated from K.V.S. High school.
Kharel, lndla. In May 1976; received Bachelor
of Science degree In Chemistry from Sardar
Patel University. V.V.Nagar. India. in July
1981; received Bachelor of Science Technology
degree In chemical engineering from Bombay
University. Bombay. In July 1984; Completed
requirements for Master of Science degree at
Oklahoma State University In December. 1987.

