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PREFACE 

This thesis Is a discussion and evaluation of both 

extendible hashing and B+ tree. The study Includes a 

design and lmplementatlon under the UNIX system. 

Comparisons and analysis are made using empirical results. 
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CHAPTER 

INTRODUCTION 

Hashing Is a well known technique for organizing 

direct access files. It provides fast direct access to 

data records stored either In main memory or an external 

devices such as disks. 

Conventional hashing used as a f I le access technique 

has the advantages of being simple and fast. To access a 

record In a hash fl le. we first apply the hash function to 

the key which results In an address to the leaf page. 

where the record should be. The access time Is constant If 

there Is no overflow. Hashing Is better In this aspect 

than sequentlal access and tree access. 

However. If a file grows by very large factors. or if 

the record distribution over the aval lable storage Is not 

uniform. the number of overflow records may be large and 

therefore retrieval of records may be significantly 

slowed down. On the other hand. If the fl le shrinks, 
/ 

..#,..····""' 

storage space Is underutl llzed. Such situations require 

the fl 1e·s rehashing. which Is costly. especlal ly In a 

multiuser envlronment[1]. 

Therefore. some novel hashing techniques have been 

1 
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invented for files that grow and shrink dynamically. They 

Include dynamic hashing[14], extendible hashing[l], 

virtual hashlng[15], and bounded Index exponential 

hashlng[4]. With these techniques there are no overflow 

records. They also al low for the extensibl I ity of the hash 

table and stl r1 guarantee efficiency of retrieval and 

update operations. Assume that the al located secondary 

storage space Is divided Into buckets having a capacity of 

b records. When a record Is to be Inserted Into a ful I 

bucket, the latter Is spl It Into two buckets among which 

the records are distributed. The •hash• function, which 

locates a given record provided with a unique key, Is 

dynamically mod If led and the al located storage space is 

dynamically adjusted to the number of records actually 

stored In the fl le.[12] 

Dynamic hashing and extendible hashing employ an 

Index to the data file. By using the hash function, a 

bucket associated with the given unique record's key can 

be found. Once the bucket's address has been found, 

retrieval Is fast: only one access to secondary storage is 

required, sl,nce there are no overflow records. If the fl le 
_, . ,,. -------- _._. ........ -• -~ ----- .. -- _...,.,, .. _., "'-'"-""" ' -' -- -' ''" _,,,,.,_, .. ,_ .-............... -- ·-. ' ,,_, ....... -... ·~----------~ ... ,_ 

grows steadily, this Index, Initially aval lable In core 

memory, wl I I eventually be partly stored In secondary 

storage. This wl I I slow down searching and updating. 

An extendible hashing Index Is Implemented by means 



3 

of a buddy system partition. The Index has 2**d entries 

(where. d Is the depth of the directory). each of which 

points to the bucket In which the records are stored. 

Some of the entries may point to the same bucket. The d 

most significant bits of H(K). where H Is a hash function 

and K Is key, provide an address In the Index. When a 

bucket overflows because of Insertions. the corresponding 

block In the address space Is halved and a new bucket Is 

added. When a bucket gets underfl I led because of 

deletlons. the corresponding block Is merged with Its 

buddy. When the data volume grows. the partition's depth 

d eventually Increases. When this happens. then the Index 

doubles In slze[l]. 

Bounded Index exponential hashing. a new form of 

extendible hashing. combines elements of extendible 

hashing with elements of spiral storage. Uni ike extendible 

hashing. In bounded Index exponentlal hashing the index 

size does not Increase. Rather. It Is the data node that 

doubles In size so as to accommodate the overflow. Instead 

of the node splitting Into two nodes. Thus. multlpage 

data nodes arise as the fl le grows In size. Each time a 

page within the data node overflows. the data node doubles 

again. The doubl Ing. Just as the spl lttlng did, divides 

entries between pages on the basis of the value of the 

next digit of the key[4]. 
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In contrast to the extendible hashing Index, the 

dynamic hashing Index, Implemented by means of a tree 

structure, grows and shrinks more smoothly, but the Index 

node size Is larger than that of extendible hashing Index 

entry. Each leaf of the tree contains a pointer to a 

bucket. When a bucket overflows. the corresponding index 

leaf becomes an Internal node to which two new leaves are 

appended, the left leaf pointing toward the original 

bucket, the right leaf pointing toward a new bucket. When 

two brother buckets get underfl I led, they are merged into 

one bucket and the corresponding Index leaves are deleted, 

their father now pointing toward the resulting bucket[14]. 

The virtual hashing schemes proposed are slml lar to 

extendible hashing but do not employ any Index. Retrieval 

of record then may reQulre only one access to secondary 

storage. The price to be paid for this Is a very low 

storage utlllzatlon, compared to the storage utl I lzatlon 

provided by dynamic hashing and extendible hashing, which 

Is In both cases approximately eQual to In 2 = 0.69. 

In order to prevent virtual hashing storage 

utl I lzatlon degradation, It Is suggested that spl lttlng of 

a bucket be deferred. However, the lower bound on storage 

utl I lzatlon Is stl I I low, and deletion of a record Is a 

rather compl lcated operation when the fl le shrlnks[12]. 

By using extendible hashing, there are no more than 
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two page faults necessary to locate a key and Its 

associated Information even for fl les that are very large. 

Therefore. extendible hashing can be used In a large 

database systems[l]. 

AB+ tree Is a variant of the B-tree data structure. 

B+ trees were designed to provide a way which Is suited 

to both a random and sequential processing environment. A 

B+ tree consists of a set of records arranged In key order 

In a sequence set, coupled with a B-tree Index set that 

provides rapid access to the block containing any 

particular key/record combination. In a B+ tree al I the 

key and record Information Is contained In the sequence 

set[18]. 

The sequence set can be processed in a truly I I near. 

sequential way, providing eff iclent access to records In 

order by key. 

The only difference between a simple prefix B+ tree 

and a plain B+ tree Is that the latter structure does not 

Involve the use of pref lxes as separators. whl le the 

simple prefix B+ tree bul Ids an Index set of shortest 

separators formed from key prefixes. 

The simple pref Ix B+ tree bul Ids separators In the 

Index set that are smaller than the keys In sequence set. 

More separators can flt Into a block. To obtain this 

compression and consequent Increase In branching factor. 



we must use an Index set block structure that supports 

variable length flelds[18]. 

The goal of this thesis Is to Implement extendible 

hashing and a B+ tree on a UNIX system and compare 

performance by examining empirical results. Analysis wi I I 

Include storage utl I lzatlon. random access cost. 

sequential access cost. and Insertion cost. 

Chapter I I and chapter II I present descriptions of 

extendible hashing and B+ tree respectively. Chapter IV 

shows the Implementation and logic design for different 

routines. Chapter V I I lustrates empirical results and 

discussion. A summary and conclusions are Included In 

chapter VI. 

6 



CHAPTER I I 

EXTENDIBLE HASHING 

An extend Ible hash f I le Is a dynamic data structure 

that Is an alternative to B-trees for use as a database 

Index. In extendible hashing the user Is guaranteed that 

no more than two page faults are necessary to locate a key 

and Its associated Information even for files that are 

very large. 

Literature Review 

Michel Schol 1[12] claims that the expected average 

storage utl I lzatlon for extend Ible hashing Is 69.31 %. The 

formula to calculate the expected storage utl I lzatlon for 

sufflclently large number of Inputs Is given as fol lows: 

b 
1 

storage utl I lzatlon = b + 1 

b i 

i=b/2 + 1 
where b Is block size. 

For sufflclently large number of Inputs, we have the 

fol lowing expected storage utl I lzatlon of block sizes 2, 

4, a. 16, 32, and 64. For large block size. the I lmlt 

7 
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approaches In 2 = 69.31 %. 

Block size Expected storage u t i I i za t i on 

2 75.0 % 

4 72.9 % 

8 71.4 % 

16 70.4 % 

32 69.9 % 

64 69.8 % 

Tamnlnen[7] claims that asymptotlcal ly extendible 

hashing storage utll lzatlon Is poorer than that of I lnear 

hashing of Lltwln[15]. The poor performance of extendible 

hashing Is due to an excessive dependence of directory 

s I ze on the ex I stence of any random c I ust.~_r: P.QiJ'.1_1;.~. The 
·-·-·'""'~--···•"''"'"'~' 

dependence Is lessened If 'abnormal• clusters only cause 

the overflow of a page Instead of doubl Ing the directory. 

Tamnlnen[6] studies the behavior of extendible 

hashing without an assumption of randomness. I.e. he 

represents some rough estimates of storage requirements 

and processing costs in case of non random pseudokeys. 

The I I near hash Ing of LI tw In and __ 1-:-..i!l.!:_50n Is extend i b I e 
·--~-~· .. ---·-·--· -··----· . --- ·- .....•.• __..~,-~~----·--~---- ···-"-· 

, In the same sense as extend lb_Le .. ha.$h i ng. It does riot 
~--, .. _ ..... --···' 

require a directory but must therefore routinely handle 

overflow. The method provides a good tradeoff between 



expected storage utl I lzatlon and access time and is 

efficient. 

9 

Performance aspects of extendible hashing have been 

thoroughly analyzed both by analytical models and by 

slmulatlon[l,8]. These studies are based on the assumption 

of a perfect randomization method. The hash function h 

associates a random pseudokey K' with each key K. Then. 

whatever the distribution of keys, we can expect the 

pseudokeys to be distributed nearly uniformly: about half 

the pseudokeys have first bit O; about a quarter start 

with 01. etc. 

Fagln[l] and other analyze extendible hashing by 

analytical models and by simulation, and compare the 

performance of extendible hashing with B-trees for access 

time, Insert time. and storage utl I lzatlon. 

Mendelson(9) derives performance measures for 

extendible hashing, and considers their lmpl !cation on the 

physlcal database design. A complete characterization of 

the probabl I lty distribution of the directory size and 

depth Is derived, and Its lmpl !cations on the design of 

the directory are studied. The expected Input/output costs 

of various operations are derived, and the effects of 

varying physical design parameters on the expected average 

operating cost and on the expected volume are studied. 

El I ls(3) studied extendlble hashing and presents 



extendible hashing for concurrent operations and 

distributed data. 

10 

Lomet{4) claims that the bounded Index exponential 

hashing has the Important advantages over the most of the 

other extendible hashing variants of both {I) providing 

random access to any record of a fl le In close to one disk 

access and {I I) having performance which does not vary 

with the fl le size. It Is straightforward to Implement and 

demands only a fixed and specifiable amount of main 

storage to achieve this performance. Its underlying 

physical disk storage Is read I ly managed and record 

overflow Is handled so as to Insure that unsuccessful 

searches never take more than two accesses. 

Radix Search Trees 

Radix search trees are also known as digital search 

trees. or tries. which examine a key one digit or letter 

at a time, have long been known to provide potentially 

faster access than tree search schemes that are based on 

comparisons of entire keys. It Is clear that radix search 

trees are naturally extendible. By tracing the path. data 

can be fetched. However. there are two major 

disadvantages of radix search trees: {I) they waste space 

by having to have redundant Information. and {II) they are 
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not balanced. The reason for this Is that a radix search 

tree usually contains space for many keys not in the tree. 

Most of the time, the wasted memory space occurs at the 

nodes near the bottom of the tree. Therefore, in 

practice, radix search trees tend to be used only for 

smal I fl les. Extendible hashing exploits the speed of 

radix search trees without paying the penalty in memory 

space[1]. 

Classical hash tables are not extendible. Their sizes 

are Intimately tied to the hash function used, and often 

must be determined before one knows how many records are 

to be placed In them. A high estimate of the number of 

records results In wasted space; a low estimate results in 

costly rehashing, that Is, choice of_a.~ table size, a 
,...,- .. ~~~ .... ,..._, _,_..,,.,.~--... --·-----"·"·-----·,,.---·-,..__.,. -----------··~·----

, .. , ··-"•" '~~~,-......... .,....... ... -.~·----~~~---- .. , .. --
new hash funct I on~-- and _re.1 .. 0..(;ilt.lon·of···a-Ll .. _records. 

_._.,...,.,.~-- , . ~~~·---•'·-"·-"'"'•'·-··~•••- ·., '"'-°'"' -•~··"'-• 

Extendible hashing accompl lshes two goals[1]: 

1. It makes the hash tables extendible, so that they 

can adapt to dynamic files, and 

2. It fl I Is radix search trees uniformly, so that 

they remain balanced and can Improve storage 

utl I lzatlon. 

In figure 1 a simple radix search tree over the 

alphabet (0,1) Is presented. 

Records are stored In the leaf nodes of the tree 

according to the leading bits of their keys. When a leaf 



overflows, It Is simply replaced by an Internal node to 

which two leaves are attached. 

0 

LOO L01 

1110 L111 

Figure 1: Radix search tree 

Speed of access to a radix search tree can be 

Increased If Instead of comparing one digit of a key at a 

time, the top levels of the tree are flattened Into an 

array of several pointers. The example In figure 2 Is a 

modified version of figure 1. 

If we can afford to waste some more storage for 

redundant Information to Improve access time, then the 

12 



00 01 10 11 

.,.._ 

, 
'If 

0 1 
·~ ~11 

LOO L01 L10 

L11q I L111 

Figure 2: Radix search tree with the two top levels 
are compressed to one. 

OJJ_-r-__ 1 o.._o......_.,.._1_...0_1 __,_1_1_.o_"P-_1 _11.__,. 

LOO L01 L10 

Figure 3: Degenerate radix search tree. 
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directory may be extended to a higher depth. This Is shown 

In f lgure 3. 

To search for a record In the file, we first select 

one of the pointers in the array according to the first 

three bits of the key. The pointers wl I I lead us to a leaf 

page containing a record. Thus the access cost is 

constant. 

Extending Hash Tables 

In classical hashing, each entry of the directory 

(hash table) points to a leaf page of f lxed size. This 

traditional method has a disadvantage of not al lowing 

fl les to grow. When a leaf page overflows, we must use 

another leaf page to store the overflow records. Al lowing 

overflow slows the search time. One way to el lminate 

overflow leaf pages Is to rehash the records Into more 

leaf pages. However, It wl I I take O(n) time (where n Is 

the number of records) to accompl lsh this task. 

Extend Ible hashing uses the wel I-known •buddy system" 

for storage management. In figure 4, the hash function 

maps the key space s on to a large address space A. A 

partition P spl Its A Into m blocks; each block has one 

leaf al located for Its use and the directory shows the 
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correspondence between blocks and leaves[l]. 

Assuming that P Is defined by m+1 boundaries 

a(O),a(l), ....• a(m) Cm= 2**d), leaf LI contains al I keys 

Hash :Function 

s h 
) 

Key Space 

a( 

a(1)~ 

a( 2),. 

-

a(m-1 

a(m)~ 

A 

Address Space 

• 

--~ 

-, 

K: a(i)(=h(K)"(a(i+1) 

Figure 4: Hashing Into a large address space. 

K with a(l-1) <= h(K) < a(I). This scheme Is flexible 

because If a leaf overflows, we can change the partition, 
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perhaps by as I lttle as shifting one boundary a(i), and 

relocating only those keys that are affected by this 

shift. Therefore buddy system partitions have the 

advantage that when a leaf overflows. the corresponding 

block In the address space is halved, a new leaf is added, 

and only the keys In the halved block are affected. 

Halving any block of a buddy system partition leads to 

another such partition. When a block becomes underfi I led 

because of deletions. and when Its buddy has enough room, 

the two blocks can be merged easl ly Into one block. 

Let the depth d of a buddy system partition be the 

least Integer such that each member of the buddy system 

partition Is the union of some of 2**d equal sized 

Intervals obtained by continued halvlngs. Thus. d is 

mlnlmal such that for each block [a(l),a(l+1)] of the 

partition. (a(l)-a(l-1)) >= 2**(n -d). A directory with 

2**d entries. some of which may point to the same page, 

al lows one to take the d most significant bits of hash 

address h(K) as the index In the address space A = 

{0, ..... ,2**d - 1) of the directory. When the depth of a 

partition Increases, the directory doubles In a size. 

Figure 4, gives an example on how to hash into a 

large address space by using the buddy system. 



A Specif lc Extendible Hashing Scheme 

One extendible hashing scheme Is described in this 

section. Its most Important characteristic Is Its speed. 

Even for very large fl les. there are never more than two 

page faults necessary to locate a key together with its 

associated Information. 

17 

Let h be a random hash function. If K Is a key, then K' 

h(K) Is the pseudokey associated with K under the hash 

function h. Usually a pseudokey can be a fixed length such 

as 32 bits. The hash function h can be randomly selected 

from a universal class of hash function, as def lned by 

Carter and Wegman. Then, whatever the distribution of 

keys, we can expect the pseudokeys to be distributed 

nearly uniformly: about half the pseudokeys have first bit 

O; about a quarter start with 01, etc[1]. 

The data structure consists of two parts 

buckets and the directory. 

a set of 

The buckets( leaves) reside on secondary storage and 

contain keys and associated Information. 

DI rectory 

The number of bits of the pseudokey actually used to 

Index Into the directory Is cal led the depth d of the 
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directory and changes as the fl le grows or shrinks. The 

depth of the directory Is an Integer •header• associated 

with the directory. The array of pointers Is of size 2**d. 

The directory contains an array of pointers to leaf pages. 

Figure 5 shows an example of a hash fl le with directory 

header = 2. Three pages of memory are al located In this 

case. 

2 1 

00 
h( +:-) =Oxx •• x ~Fag~\ 11 

01 ~ I 

h(*)=10x •• x - r I -10 

2 

h(*)=11x •• x Page 
11 

])irectory x represents 1 or 0 Leaf Pages 

Figure 5: An example of extendlble hashing with header = 2 

In general. the pointers are laid out as fol lows. 

First. there Is a pointer to a leaf that stores al I keys K 
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for which the pseudokeys K' = h(K) starts with d 

consecutive zero bits. This Is fol lowed by a pointer for 

al I keys whose pseudokeys have their first d bits equal to 

01, and then a pointer to al I keys whose pseudokeys begin 

with 10, etc .• lexlcographlcal ly. Thus altogether there 

are 2**d pointers and the final pointer Is for al I keys 

whose pseudokey begins with d consecutive ones. 

To store a record with key equal to KO, h(KO) Is 

calculated first, and its first d bits extracted. Thus d 

bits are used as an index to the pointer array(directory). 

The pointer In the corresponding element of the directory 

wl I I point to a page where KO should be. 

Leaf page (Bucket) 

Each leaf page has a local depth d' for the leaf 

page. The local depth d' may be less than or equal to the 

global(dlrectory) depth d. The local depth d' Indicates 

that the pseudokeys of the records it contains agree only 
-

In that number of bits. If d' < d, that means multiple 

directory entries wll I point to the same bucket. 2**(d -

d') entries wl II point to that bucket. For example, the 

- local depth of page 1 In figure 5, Is 1. This means there 

are two pointers (which must be buddies) pointing to the 

page. When a page splits Into two, the local depths of the 
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two spl It pages are Increased by one. 

As In f Igure 5, when the leaf page 1 overf I I Is then 

It •spl Its• Into two leaf pages, each with local depth 

two. Al I keys whose pseudokeys begin with 00 appear on the 

first of these pages, and all keys whose pseudokeys begins 

01 appear on the other. The result Is shown in figure 6. 

The header of the directory Is the maximum of the local 

depths of al I the leaf pages. 

00 

01 

10 

2 

~:-<~:::? 
,_ ~ Leaf Pages -, I ---, 

~I 

Directory 

Page 1 : 
h( *) =00x •• x 

Page 2: 
h(*)=01x •• x 

Page 3: 
h(*)=10x •• x 

Page 4: 
h(-x-)=11x •• x 

Figure 6: !~odification of figure 5, after splitting 
of page 1. 

What happens If a leaf page overfll Is and the local 

depth of the leaf page eQuals the depth (header) of the 

directory? The directory has to double Its size so that 
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the header(d) can be Increased by one. For example if page 

the example In figure 5 overflows, the directory (of 

000 

001 

010 

011 

100 

101 

110 

111 

L------
2 

Page 1 : 
h(*)=OOx •• x 

Page 2: 
h(-x-)=01x •• x 

-----1 F I Page 3: -4--1~~~~~--------;_(::_°':_~~~~~ h(*)=100x.x 
! 

II ';------i 1T--------..J~r:t3-"---I Page 4: 
t-~~~~~I h(*)=101x.x 

\ 
~--.... ¥ • ..._ 

- ·---~~-~-1-
2 ____ , Page 5: 

h(*)=11x •• x ------
Directory Leaf Pages 

Figure 7: f(odification of figure 6, after doubling 
directory. 

pointers) must Increase Its size. Each pointer spl Its Into 

two pointers pointing to the same page with the exception 



of the overflow page. The overflow page spl Its Into two 

pages according to the (d+l)st bit of the pseudokey. The 

global header Is Increased by one. 
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Figure 7, shows the result of spl lttlng of page 3. 

The process of doubl Ing the directory size is not 

expensive because no leaf pages need to be touched (except 

for the leaf page that caused the spl It and its new 

slbl Ing). This Is essentially a one pass algorithm that 

proceeds by working from the bottom of the old directory 

up to the top of the old directory. 

By using extendible hashing, there Is at most one 

page fault In locating the appropriate directory page. 

Because the structure of the directory Is an array, the 

location of each pointer can be determined by an easy 

address computation. Further. there Is at most one page 

fault In obtaining the appropriate leaf page. So no more 

than two page faults are necessary to locate a key and its 

associated Information. In cases where the directory Is 

smal 1. It can be kept In main memory. 

The speed to Implement a telatlonal database 

management system by using extendible hashing Is 

reasonable. If there are too many records that the 

directory has to be stored In secondary storage, then 

since the directory Is stored continuously, It can be 

streamed Into main memory In large blocks. If there are a 
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few ml I I Ion keys, when the directory doubles, and if the 

secondary storage device has a data transfer rate of 

around a ml I I Ion bytes per second (roughly comparable to 

that of IBM 3330 disk), then It Is straightforward to 

estimate that the time Involved In doubl Ing the directory 

would be less than a second If there were 400 records per 

leaf page. Even In the extreme case of bll I Ion keys, the 

time Involved In doubling the directory would be less than 

a mlnute[l]. 

The Internal structure of the leaves Is independent 

of the relationship between the pages. If deletions form 

such a large proportion of the operations of an 

appl !cation then space wl I I be saved by coalescing pages. 

This can be accompl I shed by keeping In the directory the 

number of entries on each page as wel I as the pointer to 

the page. Then at each deletion, the total number of 

entries In the page deleted from together with an 

appropriate slbl Ing page can be checked without any extra 

accesses. However, this addltlonal complexity wl I I 

probably not be Just If led for those appl !cations where we 

can expect new growth to rapidly replace any deletlons.[1] 

The scheme shows that extendible hashing provides a 

dynamic fl le structure that has a fast (constant) access 

time and eff lclent Implementation. 
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Sequent I a I I ty 

Hashing usually cannot support sequential processing 

of a fl le according to the natural order on the keys. 

Sequential processing requires sorting, an O(nlogn) 

operation which makes fast random access useless. 

Sequential lty means two things. In a weak sense it 

means that the entire set of keys (and corresponding data) 

can be processed efflclently one at a time. where each 

page of keys Is referenced onty once. Sequential lty In the 

usual stronger sense means that the order of sequential 

processing coincides with the natural order defined on the 

space of keys. It Is possible to store the set of keys

within each leaf In a natural order, so that sequential 

processing In natural order can be obtained for the cost 

of I Inking al I leaves. as opposed to sorting the entire 

f I I e. 



CHAPTER Ill 

B+ TREES 

A new approach to external searching by means of 

multlway branching was proposed In 1970 by Bayer and 

McCrelght[22]. They cal led this new kind of data structure 

a B-tree. 

B+ trees are probably the most widely used variant of 

the orlglnal B-tree. VSAM. IBM's general purpose B-tree 

based organization and access method. Is a wel I known 

example of using a B+ tree approach. 

Motivation of B+ trees 

The conventional B-tree Is good for Indexing dynamic 

random access fl les. but It has an apparent weakness in 

the case that required sequential processing. To extract 

al I the keys In order a slmple preorder traversal can be 

used. but a significant amount of primary memory may be 

required to stack all the nodes along a path from the root 

to the leaf to avoid reading these nodes twice. 

Additionally. processing a •f Ind next• operation may 
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require tracing a path through several nodes before 

reaching the desired key[21]. 

B+ trees were designed to remove these weakness and 

provide a way that Is suited to both a random and 

sequential processing environment. 

Characteristics of B+ trees 

The characteristics of B+ trees are summarized by the 

fol I owl ng: 

1. Al I keys of B+ trees reside In leaves (bottom 

level). 

2. Only the keys In the bottom level are associated 

with data records. 

3. Each leaf node of B+ trees has a I Ink field which 

points to the next leaf node to the right, except 

the rightmost leaf. 

4. The Index set has the structure of a B-tree. 

AB+ trees consists of two Independent parts: (I) an 

Index set and (I I) a sequence set. The structure of a B+ 

trees Is Illustrated In figure 8. 

The Index set consists of separators that provide 

Information about the boundaries between the blocks In the 

sequence set of a B+ tree. The Index set can be used to 

locate the block In the sequence set that contains the 



record corresponding to a certain key. 

Random 
Access 

Sequential 
Access 

Sequence Set 

... ~ ... ~ 

Index: 
a B-tree 

Figure 8: A structure of B+ trees. 

The sequence set Is the base level of an Indexed 
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sequential f I le structure. It contains al I the records In 

the fl le In a natural order. 

A search In a B+ trees starts at the root but It Is 

confirmed only when a matching key Is found at the leaf 

level. Sequential processing begins at the leftmost leaf 

and Is aided by fol lowing the horizontal I Inks across the 

leaves. The key values In a certain range can be 

Identified by locating the lower llmlt of the range In the 

bottom level and processing sequentially until the key 
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value exceeds the higher I lmlt of the range. 

Bayer and Unterauer[21] propose a ref lned structure. 

the simple prefix B+ trees, which stores shortest 

separators or prefixes of the keys rather than copies of 

the actual keys, In the Index part of a B+ trees. The 

major advantage of a slmple prefix B+ trees Is that it 

decreases access time as wel I as saves space. According 

to Bayer and Unterauer's[21] experimental results. for 

trees having between 400 and 800 pages. simple prefix B+ 

trees require 20-25 percent fewer disk accesses than a B+ 

trees. 



CHAPTER IV 

ANALYSIS AND COMPARISONS 

Extendible hashing and B+ tree has been implemented 

under UNIX In the C programming language. 

In order to analyze and compare the performance of 

extendible hashing with that of a B+ tree implementation. 

the fol lowing four performance factors were measured: 

1. Random access cost ( In terms of page faults); 

2. Sequential access cost (In terms of number of 

pages); 

3. Insertion cost ( In terms of page faults); 

4. Space utl I lzatlon. 

These measures are examined as functions of the 

fol lowing three database and system parameters: 

a. Database size (In terms of number of records); 

b. Page size (In terms of number of records); 

c. Buffer size (number of pages resident In primary 

storage at a time). 

a. Database size: The database sizes range from 1000 to 

30000 records with an Interval of 1000. Thirty thousand 

random alphabets keys were chosen as record Identifier 
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or keys. 

b. Page size: The page size Is the maximum number of 

records that can reside In a single page; i.e., page 

capacity. The page sizes range from 10 to 70 records 

with an Interval of 10. 
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c. Buffer size: This parameter Is used to count the 

number of page faults. Buffer sizes range from 10 to 70 

pages with an Interval of 10. 

Extendible Hashing 

The structure used to Implement extendible hashing is 

shown In figure 5 (chapter II). 

There are two main structures used: 

1. Directory 

2. Pages 

1. Directory: Each entry In the directory has the address 

of the particular page. Some entries In the directory 

might have the same value. If d Is the depth of the 

directory then the total number of entries In the 

directory Is 2**d. 

2. Page: A binary tree Is used as the Internal structure 

of the page to store the keys In order and to get 

sequential access In natural order. The page has fixed 
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capacity (or page size) In terms of number of records. 

Each page Is I Inked to the next page, except the last 

page. 

lnltlal ly, starting with a directory depth(d) of 1, 

there are two entries In the directory (2**1 = 2) and two 

pages. Thirty thousand keys were generated using the 

system function random(). Al I keys were formed using 

capital letters from A to z. Each character In a key was 

converted to a 5-blt binary number ranging from OOOOO(A) 

to 11001(Z). These binary strings were concatenated to 

form the pseudokey. For example the key AY would be 

converted to 0000011000. 

To caJculate the address In the directory for the 

key, the leftmost d bits were used from the pseudokey. d 

was the current directory depth. 

For example, If d Is 7 then the leftmost 7 bits are 

used, and the address Is 0000011. So entry 3 in the 

directory would have the page address for key AY. Since 

this result directly gives the address of the page In the 

directory, there Is no need to store any keys In the 

directory or Index. 

LOGIC DESIGN 

Search: The basic design of the search routine for 
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extendible hashing Is 

1. Read the key, K. 

2. Determine the entry In the directory using the 

above method. 

3. Fol low the pointer to a page P. 

4. Search the binary tree In page P for key K. 

5. If the key K Is found then return successful else 

return unsuccessful. 

Insertion: The Insertion routine for extendible 

hashing Is: 

1. Apply al I five steps of search, using key K. 

2. If the search Is successful then return. 

3. If by Inserting key Kon page P, we would exceed 

our page capaclty(page size). then go to step 7. 

4. Otherwise. Insert the key K In a binary tree In 

page P. 

5. Increment the counter of number of records In page 

P. 

6. If key K has been successfully Inserted then 

return else print Error and exit. 

7. At this point, we know .there Is not sufficient 

space on page P. Obtain new page Pl. 

8. Obtain a temporary area Q to store al I records 

appeared on page P, along with the new record. 



9. Set the local depth of each P and P1 to d'+1, 

where d' Is the old local depth of P. 

10. After storing al I records from page P erase al I 

records from page P. 

11. If the new local depth of P Is b.lgger than tile 

current directory depth d then do the fol lowing: 

a. Increase the depth d of the directory by one. 

b. Double the size of directory, and update the 

pointers In obv1ous manner. 

c. Set the count for number of records on page P 

and P1 to zero. 

12. Insert all records one at a time from temporary 

area Q. 

B+ TREES 

The structure used to Implement B+ tree Is shown In 

figure 8 {chapter II I). 

There are two mall'} parts of a B+ tree structure: 

1. Index set 

2. SeQuence set 

1. Index set: The Index set consists of separators that 

provide Information about the boundaries between the 

blocks In the seQuence set of a B+ tree. 
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2.SeQuence set: The seQuence set Is the base level of a B+ 
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tree. It contains al I of the records In the file. The 

SeQuence set Is made up of different pages that are I Inked 

to the next page except the rightmost page. 

Logic design 

Search: The basic design of the search routine for B+ 

tree Is: 

1. Read the key K. 

2. Start from the root of Index set and fol low the 

pointer, In the index set untl I the leaf page P is 

found according to fol lowing rule: 

Relation of search key and separator Decision 

Key < Separator Go left 

Key = Separator 

Key > Separator 

Go right 

Go right 

3. As the Internal structure of page is binary tree. 

search the binary tree of page P for the key K. 

4. If the key, K Is found then return •successful" 

else return •unsuccessful•. 

Insertion: The basic design of the insertion routine 

for B+ tree Is: 

1. Apply al I four steps of above search routine. 

2. If the search was successful then return. 

3. If by Inserting key Kon page P, we would exceed 
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our capaclty(page size), then go to step 7. 

4. Otherwise Insert the key In a binary tree in page 

P. 

5. Increment the counter of number of records on page 

P. 

6. If key K has been successfully Inserted, then 

return, else print error and exit. 

7. At this point, we know there Is not sufficient 

space on page P, obtain a new page Pl. 

8. Obtain a temporary area Q to store al I records 

that appeared on page P, along with the new 

record. 

9. Promote the root key R of binary tree In page P to 

the parent Index page Pl. By Inserting the key R 

to the Index page Pl of page P, If count of number 

of keys on page Pl wll I exceed the capacity of 

page Pl then go to step 11. 

10. Insert the key R to the Index page Pl at the 

appropriate position and go to step 13. 

11. Copy the Index page Pl to the temporary area QI 

with the promoted Index key Rat the appropriate 

position. Obtain a new Index page I. If PJ Is the 

root page then go to step 12. Promote the mlddle 

key R from the temporary area QI to the parent 

Index page NI of page Pl. Copy the first half of 



QI to Pl and erase the rest of the Information 

from Pl. Copy the second half without the middle 

key to the page and update the pointers in the 
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obvious manner. If the page NI wi I I overflow then 

NI becomes Pl and repeat the step 11, else go to 

step 13. 

12. Obtain a new Index page RI. Copy the middle key of 

QI to the first position In RI. RI Is the new root 

page. Copy the first half of QI to the page Pl and 

the other half of QI, without the middle key to 

the page I. 

13. Update the pointers In obvious manner and Insert 

al I records one at a time from temporary area Q. 

Page faults 

There Is a buffer In primary memory that can hold b 

pages. Whenever we require a page not In the buffer, there 

wl I I be a page fault. A least recently used (LRU) page 

management algorithm Is used. For extendible hashing 

directory page faults and for B+ tree Index page faults 

are also considered. 

The number of entries (n) In the directory of 

extendible hashing can reside on a single page given as 

fol lows: 



n = page_slze/slze of pointer. 

Only the size of the pointer Is considered because 

directory contains only pointers. 

Analysis 

In this section some analytical results concerning 

the number of leaf pages and number of page faults for 

accessing a record wl I I be derived. 
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Let us postulate a paged memory. with p equal to the 

maximum number of records that can reside In a single page 

and pb equal to the page size In bytes. There Is a buffer 

In a pr lmary memory that can ho Id b pages. and. wl1enever a 

required page Is not In the buffer, there wl I I be a page 

fault. The total number of records wl II be n. The 

parameters n. p. and b are common to both extendible 

hashing and B+ tree. 

Let UT(n) be the average occupancy In entries divided 

by p. UT(n) wl I I of course be different for extend Ible 

hashing and the B+ tree. It Is assumed that each page has 

exactly UT(n)*p entries. 

Extendible Hashing 

Let Ip be the number of leaf pages: 
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Ip = rn/(UT(n)*p)1 

Number of directory entries (nd) = 2**d 

where d Is directory depth. 

If dp Is the number of directory pages. 

dp =- rend * s I ze of po Inter) /pb 1 . 

Now we can compute the probabl lltles dpf (page fault 

referencing directory page) and lpf (page fault 

referencing leaf page): 

1-b/dp) .. 
~ X:Yy:\. 

. 1 vY 
,pv\ , 

,fr'{' 
(·)ii .· 0 

b dpf • maxco. 

and 

lpf - maxco. 1-(max ( 1 , b-dp)) I~:_,) ~"I' 

Finally. we have our approximation for expected 

random access cost In terms of page faults for extendible 

hashing : 

random access cost • dpf + lpf. 

B+ tree 



Let db Is the depth of the B+ tree Index set: 

db = 1 + log!\ ,cn+1)/2. 
1't't\/~1 

where, m Is the order of B-tree In index set. 

So, m ,.. p + 1; 

If Ip Is the number of leaf pages, 

Ip • rn/(UT(n)*p)1. 

The number of keys In the Index (nl) = Ip - 1. 
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Let IUT(nl) be the average occupancy of Index page in 

terms of number of keys divided by p. 

If nip Is the number of Index pages, 

n I p • r n I I ( I UT ( n I ) * P ) l . 

Now we can compute the probabl I I ties lpf (page faults 

referencing Index page) and lpf (page fault referencing 

I eaf page): 

lpf = mln(db, max(O,db-b/nlp)) 

and 
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lpf = max(O. 1-(max(1,b-nlp))/I). 

Finally. the approximation for expected random access 

cost In terms of page faults for B+ tree: 

Random access cost = lpf + lpf. 



CHAPTER V 

RESULTS AND DISCUSSION 

The experlmental results of both extendible hashing 

and B+ trees are presented In this chapter. Figures and 

tables Indicating emplrlcal results are I lsted In the 

Appendix. 

Storage Utl I lzatlon 

The average storage utl I lzatlon of both extend Ible 

hashing and B+ trees approaches 68~ regardless of the page 

size. Figure 10 and 15 as wel I as table I I and VI I show 

the emplrlcal results of storage utl I lzatlon for both 

extendible hashing and the B+ trees. 

As the page size Increases the variations In storage 

utlllzatlon both for extendlble hashing and for the B+ 

trees Increase. Extendible hashing has higher variations 

In storage utl llzatlon than that of the B+ trees. 

As the database size Increases. the variations In 

storage utl llzatlon for both extendible hashing and B+ 

trees decreases. 

Cycl lcal variations are observed In storage 
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utl I lzatlon performance. The reason Is that as pages 

become ful I. storage utl I lzatlon Increases. After some 

time pages become completely full and are spl It almost 

simultaneously and storage utl I lzatlon decreases. After a 

whl le the page becomes ful I and storage utl I lzatlon 

Increases. 

As I lttle as 57% and as much as 76%, storage 

utl I lzatlon for extendible hashing Is achieved, and for B+ 

trees the low Is 63% and high Is 70%. 

Overal 1. the storage utl I lzatlon for B+ trees ls more 

consistent than that of extendible hashing. 

Random Access Cost 

Random access cost was measured In terms of page 

faults. After Inserting a certain number of records, 1000 

records were accessed and the number of page to access 

those records was measured. Figure 11, 16, and 19 as wel I 

as table I I I, VI I I, and XI show the emplrlcal results. 

It Is observed that the random access cost for 

extendible hashing Is always less than that of the B+ 

trees access methods. The reason behind this Is that In 

extendible hashing the key dlrectly gives the directory 

entry and that entry contains the address of the page In 

which the record should be. Since In a B+ trees access 



methods the Index set has to be traversed untl I the leaf 

page Is found. there are more page faults required to 

search the Index. 
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It ls obvious that the higher the page size. the 

lower the number of pages In the database. There are more 

chances of getting the page from the buffer. which Is in 

resident memory. so there are fewer page faults. 

In addition. It Is observed that the higher the page 

size. the lower the random access cost. As the page size 

increases. the relative decrease In random access cost 

also decreases. This Is found In both extendible hashing 

and B+ trees access methods. 

A step function Is observed In random access cost 

with an Increase In database size for both extendible 

hashing and B+ trees. For extendible hashing. whenever the 

directory size doubles In a size. a step ls observed; and 

for B+ trees whenever the root page spl Its {I.e. the 

height of Index set Increases). a step Is observed. 

It Is obvious that the higher the buffer size, the 

more pages can reside In a resident memory. Hence there 

are more chances of getting a page from the buffer. 

resulting In fewer number of page faults. With an increase 

In buffer size the corresponding decreasing number of page 

faults Is greater for extendible hashing than that of a B+ 

trees. The reason behind this Is that more directory pages 
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of extendible hashing can reside In resident memory, so 

fewer page faults are needed for searching the directory. 

Insertion Cost 

Insertion cost was measured In terms of page faults. 
--------~ 

O.ll f' ') 
After Inserting a certain number of records, 1000 qp.<"'"'e.- lLM')_;/ 

~>'c-- 0 
addltlonal records were Inserted and page faults were 

measured during those Insertions. The empirical results 

are shown In figure 12, 17, and 20 as wel I as table IV, 

IX. and XI I . 

The fol lowlng observations were made for Insertion 

cost: 

1. The Insertion cost for extendible hashing Is 

always less than that of B+ trees access methods. 

2. For both methods, as the page size Increases. the 

Insertion cost decreases; and as the page size 

Increases. the corresponding decrease In Insertion 

cost also decreases. 

3. A step function Is observed for Insertion cost 

with Increases In database size for both 

extendible hashing and B+ trees access methods. 

4. The number of decreasing page faults with Increase 

In buffer size Is higher for extendible hashing 

than that of B+ trees access methods. 



The reasons for the preceding observations are the 

same as those explained for random access cost. 

Sequential access cost 
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Sequential access cost Is measured In terms of the· 

number of pages In the database. Figure 9 and 14 as wel I 

as table I and VI show the emplrlcal results of sequential 

access cost for both extendible hashing and the B+ trees 

access methods. 

It Is obvious that as the page size Increases, the 

total number of pages In a database decreases. It ls 

observed that for the B+ trees method the decrease in the 

number of pages with an Increase In page size Is more 

consistent than that of extendible hashing. It Is also 

observed that with an Increase In the database size the 

Increase In the number of pages for B+ trees Is more 

nearly I lnear than that of extendible hashing. 

The reason behind the above observations ls the more 

consistent storage utl I lzatlon of B+ trees than that of 

extendible hashing. 
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Directory slze{depth) 

The knowledge of the distribution of the directory 

size or depth Is Important for the design of an extendible 

hashing fl le system. Since this size changes by factors of 

two. Its fluctuations may be quite significant. The 

directory size Is largely dependent on the exlstance of 

clusters. An Implementation of extendible hashing that 

accomodate some overflow would lessen the frequency of 

doubl Ing the directory. 

The emplrlcal results are shown In figure 13 and 17 

as wel I as table V and X. It Is observed that the 

corresponding decrease In the directory size with an 

Increase In page size also decreases. It Is also observed 

that the Increase In directory size with the increase In 

database size Is a step function. 



CHAPTER VI 

StJAtARY AND CONCLUSION 

Given that an Index resides on discs or drums. 

searching It must be done by accessing secondary storage. 

The time required to access secondary storage Is the main 

component of the total time required to retrieve 

Information from databases[20]. Minimizing the number of 

accesses to secondary storage Is highly desirable. 

Extendible hashing and B+ trees access methods are 

two Index sequential access methods that do not require 

complete fl le reorganization. They can be very useful for 

applications that require random access and sequential 

access In natural order. 

Conclusions 

The average storage utl I lzatlon of both extendible 

hashing and B+ trees Is about 68%. A B+ tree has more 

consistent storage utl llzatlon than that of extendible 

hashing. The performance of extendible hashing can be 

degraded by the existence of a cluster. 

The random access cost of extendible hashing Is 
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always less than that of B+ trees. This can be sti I I 

further Improved If there Is not an excessive dependance 

of the directory size on the existence of a cluster. There 

are never more than two page faults necessary to locate a 

key and Its associated Information for extendible hashing. 

The sequential access cost of B+ trees methods is 

more consistent than that of extendible hashing. This is 

due to the fact that extendible hashing results In more 

variations in storage uti I lzatlon than B+ tree methods. 

The Insertion cost of extendible hashing is always 

less than that of B+ trees methods. This Is due to a 

maximum of one page fault to search an Index for a key in 

extendlble hashing. 

If the directory size Is smal I and can be kept In 

primary memory. then there Is a maximum of one page fault 

to access a record In extendlble hashing. If an order 

preserving hash function Is used that can break up 

clusters. then there wl I I be quite an Improvement In 

performance for extendible hashing. 

Suggested Future Work 

The result In the thesis are obtained Just for search 

and Insertion. It would be an Interesting topic If 

deletions were Implemented. This topic Is left to future 



49 

study. 

In this study, a simple Implementation of a B+ tree 

Is compared to extendible hashing with sequential access. 

The results are based on comparisons of these two methods. 

Refinements of the Implementation of either or both 

methods could produce different results, and could be 

subject of further study. 
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TABLE I 

COMPARISONS OF SEQUENTIAL ACCESS COST 
WITH NLMBER OF PAGES 

Number of 
Records 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 
21000 
22000 
23000 
24000 
25000 
26000 
27000 
28000 
29000 
30000 

Sequential Access Cost 
(In terms of Number of Pages) 

Extendible Hashing B+ tree 

51 51 
100 98 
163 147 
198 195 
253 244 
307 296 
337 351 
366 395 
422 441 
489 484 
550 533 
602 595 
636 648 
678 705 
702 748 
728 792 
786 836 
831 886 
888 928 
960 987 

1033 1037 
1108 1083 
1190 1120 
1262 1172 
1319 1221 
1360 1278 
1393 1333 
1432 1387 
1465 1433 
1512 1478 
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TABLE I I 

COMPARISONS OF Nl.NBER OF RECORDS WITH 
PERCENTAGE STORAGE UTILIZATION 

Number of 
Records 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 
21000 
22000 
23000 
24000 
25000 
26000 
27000 
28000 
29000 
30000 

Pecentage Storage Utl I lzatlon 

Extendible Hashing 

65.35 
66.66 
61 .34 
67.34 
65.87 
65. 14 
69.23 
72.85 
71.09 
68.16 
66.66 
66.44 
68. 13 
68.82 
71.22 
73.26 
72.09 
72.20 
71. 32 
69.44 
67.76 
66 .18 
64.42 
63.39 
63 .17 
63.72 
64.60 
65 .17 
65.98 
66.08 

B+ tree 

65.35 
67.86 
67.22 
68.52 
68.00 
67.03 
66.57 
67.91 
68.55 
68.78 
68.64 
66.63 
66.60 
66.23 
67.03 
67.67 
68.17 
68 .12 
68.54 
67.58 
67.57 
67.55 
68.19 
67.77 
67.90 
67.60 
67.45 
67.27 
67.53 
67.74 
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TABLE I I I 

COMPARISONS OF NLtJIBER OF RECORDS 
WITH RANDOM ACCESS COST 

Number of 
Records 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 
21000 
22000 
23000 
24000 
25000 
26000 
27000 
28000 
29000 
30000 

Random access cost 
(In terms of page faults) 

Extendible Hashing B+ tree 

832 911 
901 1101 
944 1397 

1107 1407 
1133 1554 
1141 1663 
1142 1658 
1147 1670 
1137 1674 
1142 1747 
1377 1753 
1379 1848 
1409 1885 
1644 1887 
1634 1869 
1663 1898 
1664 1887 
1643 1903 
1657 1907 
1646 1899 
1661 1932 
1660 1925 
1651 1948 
1662 2048 
1630 2043 
1647 2051 
1639 2051 
1633 2172 
1652 2159 
1613 2093 
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TABLE IV 

COMPARISONS OF NLNBER OF RECORDS 
WITH INSERTION COST 

Number of 
Records 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 
21000 
22000 
23000 
24000 
25000 
26000 
27000 
28000 
29000 
30000 

Insertion Cost 
(In terms of page faults) 

Extendible Hashing 

985 
1092 
1163 
1340 
1337 
1261 
1259 
1357 
1398 
1365 
1549 
1541 
1665 
1700 
1731 
1805 
1766 
1815 
1862 
1856 
1844 
1865 
1845 
1807 
1760 
1744 
1740 
1728 
1731 
1745 

B+ tree 

1104 
1357 
1500 
1547 
1691 
1736 
1729 
1735 
1755 
1821 
1858 
1983 
1996 
1952 
1975 
1977 
1999 
1987 
2014 
2031 
2021 
2021 
2153 
2139 
2169 
2166 
2287 
2260 
2174 
2189 

57 



TABLE V 

COMPARISONS OF Nl.NBER OF RECORDS 
WITH DIRECTORY SIZE 

Number of 
Records 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 
21000 
22000 
23000 
24000 
25000 
26000 
27000 
28000 
29000 
30000 

DI rectory SI ze 
(for Extendible Hashing) 

128 
256 
256 

1024 
1024 
1024 
1024 
1024 
1024 
1024 
2048 
2048 
2048 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
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TABLE VI 

COMPARISONS OF SEQUENTIAL ACCESS COST 
WITH NLMBER OF PAGES 

SeQuentlal Access Cost 
(In terms of Number of Pages) 

Page Size Extendible Hashing B+ tree 

10 
20 
30 
40 
50 
60 
70 

2251 
1147 
702 
585 
409 
342 
332 

TABLE VI I 

COMPARISONS OF PAGE SIZE WITH 
PERCENTAGE STORAGE 

UTILIZATION 

2227 
1105 
748 
552 
447 
366 
310 

Percentage Storage Utl llzatlon 

Page Size 

10 
20 
30 
40 
50 
60 
70 

Extendlble Hashing 

66.63 
65.38 
71 .22 
64.10 
73.34 
73.09 
64.54 

B+ tree 

67.57 
67.87 
66.84 
67.93 
67. 11 
68.30 
68.68 
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TABLE VI 11 

COMPARISONS OF PAGE SIZE WITH 
RANDOM ACCESS COST 

Random Access Cost 
(In terms of Page Faults) 

Page Size Extendible Hashing B+ tree 

10 
20 
30 
40 
50 
60 
70 

1953 
1735 
1634 
1303 
1140 
1021 

987 

TABLE IX 

COMPARISONS OF PAGE SIZE WITH 
INSERTION COST 

Insertion Cost 

3179 
2151 
1869 
1660 
1634 
1418 
1375 

(In terms of Page Faults) 

Page Size 

10 
20 
30 
40 
50 
60 
70 

Extendible Hashing 

2115 
1914 
1731 
1412 
1221 
1178 
1011 

B+ tree 

3477 
2332 
1975 
1735 
1672 
1478 
1455 
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TABLE X 

COMPARISONS OF PAGE SIZE WITH 
DIRECTORY SIZE 

Directory size 
Page Size (for Extendible Hashing) 

10 
20 
30 
40 
50 
60 
70 

16384 
4096 
4096 
2048 
2048 
2048 
1024 

TABLE XI 

COMPARISONS OF BUFFER SIZE WITH 
RANDOM ACCESS COST 

Random Access Cost 
(In terms of Page Faults) 

Buffer Size Extendible Hashing B+ tree 

10 
20 
30 
40 
50 
60 
70 

1782 
1634 
1500 
1391 
1306 
1229 
1173 

2173 
1869 
1791 
1705 
1661 
1604 
1551 
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TABLE XI I 

COMPARISONS OF BUFFER SIZE WITH 
INSERTION COST 

Insertion Cost 
(in terms of Page Faults) 

Page Size Extendible Hashing B+ tree 

10 
20 
30 
40 
50 
60 
70 

1857 
1731 
1632 
1549 
1488 
1459 
1424 

2244 
1975 
1878 
1802 
1750 
1693 
1632 
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