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CHAPTER I

INTRODUCTION

Bioinformatics is a sCIence that combines biology, statistical methods and

computer science together)9. It is generated because of the development of advanced

experimental technology in molecular biology area over the last decade, especially

because of the Human Genome Project (HGP)I2. With the development, great quantity of

data about genomic or protein sequence has been generated. New databases are needed to

store this infonnation and new methods are needed to analyze this infonnation. Therefore

the basic purpose of bioinformatics is developing computer databases and algorithms to

store and to analyze biological data, and the ultimate goal of it is predicting the

organization, structure and function of macromolecules such as DNA and proteins by

analyzing their molecular sequences42
. Because DNA is the molecule that carries genetic

infonnation and proteins are the essential components of all organs and chemical

activities, the study of these molecules is essential for understanding human diseases and

identifying of new molecular targets for drug discovery.

Sequence alignment (or comparison) is a very important and successful method to

analyze molecular sequences and thus is one of the important areas in bioinfonnatics. [t is

the process of searching similarity in two or more DNA or protein sequences. [t is often

used to search a DNA or protein sequence database with a well-studied sequence

provided by users. Sequence alignment is very helpful in the study of molecular

evolution, protein structure and function prediction, peR primer design, gene expression

and so on2
. Some uses of sequence comparison methods are shown in Figure 1.



At present, many programs have been implemented to align sequences4
•
14

,16.19.21.38.

Different results will be obtained by using different programs due to their different

algorithms and strategies. Understanding how these methods were implemented is

important for appropriate and efficient use of sequence alignment software. In addition,

analyzing programs in use will be helpful for development of new methods. Based on

pairwise sequence alignment, multiple sequence alignment is more useful and more

powerful to find the homologous, conserved or functional regions in macromolecules39
.

The objective of this study is to analyze pairwise and multiple sequence alignment

algorithms in use, especially focusing on three multiple sequence alignment

methods38.21.24. A linear space pairwise sequence alignment program, which is a base

stone for multiple sequence alignment is implemented.

In the following chapters, Chapter 2 introduces basic definition of sequence

alignment. Chapter 3 analyzes some optimal pairwise sequence alignment algorithms.

Chapter 4 analyzes multiple sequence alignment. In the last chapter, a summary and

conclusion is presented.
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CHAPTER II

BACKGROUND OF SEQUENCE ALIGNMENT

2.1 Definition of Sequences and Sequence Alignment

"A sequence is an ordered string of elements which are symbols or letters of an

alphabet and is represented by simple concatenation of these elements..26
, fn

bioinforrnatics, sequences are always nucleic acid or protein sequences.

For computational purposes, a DNA molecule can be defined as a word over the

four-letter alphabet of nucleotides: {A, C, G, T} where A, C, G, T are the abbreviations

of four nucleotides.

In RNA, T is replaced by U, so an RNA molecule can be defined as a word over

four-letter alphabet of ribonucleotides: {A, C, G, U} where U takes the place ofT.

Al! proteins are built from 20 amino acids. Therefore, a protein molecule can be

defined as a word over 20 amino acids

{A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}

Because it is not always the case that all positions in a sequence are known

precisely, the symbol '-' is included in the sequence alphabet.

"An alignment of the sequences S I , ... , Skis another set of sequences S I, , ... ,

S/k , such that each sequence S~· is obtained from S i by inserting the blank character '-' in

positions where some of the other sequences have a nonblank character" 2, S i ,j means

the character at i-th sequence atj-th position.

Therefore if the sequences are written as

4



S, SI,I SI,2 SI.1511.
S2 S2.1 S2,2 S2.IS21.

SN = SN.I SN,2 SN.I NI.

Then the multiple alignment will be written as

S't = S/1,1 Sl,2 S 'I.IAI.
S2 S/2,1 S2,2 S'2.IAI,

SN = SN,I SN,2 S'N,IAI.

Some of the Sij are gaps, if ignored, the rows become the original sequences. An

alignment of N sequences is a rectangular of N rows and IAI columns (A represents an

alignment, IAI represents the length of an alignment), each column contains at least one

character different from "_".

In sequence alignment, (a, a) denotes a match or identity; (a,-) denotes deletion

of a in the second sequence or insertion of a in the first sequence; (a, b) denotes

substitution of a by b where a :#: b.

2.2 Key Issues in Sequence Alignment

The key issues in multiple sequence alignment are 7:

1) What sorts of alignment should be considered;

2) How to choose an appropriate scoring system;

3) The algorithm used to find optimal (or good) scoring alignment;

4) The stati.stical methods used to evaluate the significance of an alignment.

5



Base on the number of sequences, sequence alignment can be divided into

pairv.rise and multiple sequence alignment. Base on the scoring strategy, sequence

alignment can be divided into global and local alignment.

2.2.1 Global and Local Alignment

There are two types of sequence alignments: global alignment and local

alignment (Figure 2). In global alignment, an attempt is made to align the entire

sequences, as many characters as possible. Global alignment is appropriated for

sequences that are known to share similarity over their whole length39
. In local alignment,

stretches of sequence with the highest density of matches (which are usually the most

biologically significant) are given the highest priority, thus generating one or more

islands of matches in the aligned sequences. Local alignment is appropriate when the

sequences have isolated regions of similarity 3').

Figure 2. Comparison of global alignment and local alignment

6



2.2.2 Scoring Model

If two sequences of length 1000 are aligned randomly, there are about 10600

alignments39
. However, because insertion or deletion of nucleotides or amino acids is

more difficult than substitution, and because some substitutions are more costly than

others, a scoring model is used to evaluate sequence alignmene9
.·. The scoring model

includes the mutation scores for DNA or protein and the gap penalty scores for insertions

or deletions (indels or gaps),

1. Mutation Matrix:

Mutation matrix is a matrix of mutation scores, which is the value of changing

one DNA nucleotide or protein amino acid to another one. Algorithms to compare protein

or DNA sequences rely on some mutation scoring.

DNA scoring matrices are rather simple, usually counting a match as one and

mismatch as zero.

Amino acid scoring schemes are complex. They have to score each of the 210

possible pairs of amino acids (190 pairs of different amino acids + 20 pairs of identical

amino acids). Most scoring schemes represent the 210 pairs of scores as 20x20 mutation

matrix5
. In the matrix, the amino acid pairs of identical amino acids have highest scores,

the pairs with biologically similarity have higher score, and the pairs with lowest

similarity have lowest score.

A mutation scoring scheme should take into account some important features of

multiple alignment. For example, scores should be position-specific. This is because

different residues in a functional sequence are under different selective pressures, some

7



positions are more conserved than others. Mutations in a region of high conservation

should ideally be penalized more than in a variable region.

Dayhoff PAM 250 matrix5 is one of the most used matrices (Figure 3). In the

PAM 250 matrix, positive values represent evolutionarily conservative replacements; the

amino acids were grouped basing on the physicochemical properties of the amino acids.

Figure 3. the PAM250 mutation matrix5

(from David G., et a11988)

A cost function is used to represent the sconng scheme. cost (a, b): cost of

substituting a b in the second sequence for an a in the first sequence; cost (-, b ): cost for

columns where the first sequence has a gap and the second has a b; cost (a, - ):cost for

columns where the first sequence has an a and the second has a gap.

8



2. Gap Penalty

The gap penalty is usually a large negative value given to each gap introduced

into an alignment, because introducing gap increases the uncertainty of an alignment. If

gaps are introduced without a penalty or with low penalty, then eventually a high

alignment score is achievable even in unrelated or random sequences. However, it is very

difficult to test this subsequence for significance.

The gap penalty is position-dependent. Gaps are more likely to be found in parts

of the sequence corresponding to loops in the three-dimensional structure. Gaps are

unlikely to be found in the structural core of a protein because insertion of extra amino

acids in the core may destroy the whole structure 9.

The gap penalty is also length-dependent39
. When gaps do occur, they are often

longer than one residue.

3. Evaluation of Sequence Alignment

Two ways to evaluate sequence alignment are the similarity measure and the

distance measure.

In similarity measure, defines the scoring function as s(a, b), a higher value

indicates greater similarity. The optimal alignment of two sequences Si and Sj is the

alignment with maximum overall cost:

Cost (Sj'S) =max Is (S'i,k' S'p )
]SkSIAI

Where IAI represents the length of an alignment.

9



In distance measure, the scoring function is defined as d(a.b). The smaller the

similarity, the larger the distance score. Thus an optimal alignment is the alignment with

minimum cost:

Cost (Sj>S) = min I d (S·i.k ,S'j,A )
lSkSIAI

4. Sum-or-pairs Scoring Model

The sum-of-pairs cose is used to evaluate alignment, abbreviated to SP-cost. It

evaluates the costs/weights of alignment column by column.

Using the SP-cost and the cost function c(a,b), the total cost of the alignment for

sequences (Si, Sj) is:

Cost(S;,S) = IC(S';,k' S'j,le)
lSkSIAI

For example, if the cost function is defined as:

c(a, a) = 0, c(a, b) = 1 for a*b, c(a, -) = c(-, b) = 1

{
AGCACAC - A}

then the cost of the alignment is:
A-CACACTA

c(A,A) + c(G,-) + c(C,C) +... + c(A,A) = 2

In a multiple alignment, the score of each column is computed by summing all the

costs of all possible pairs of symbols by summing unit costs of the pairs (1,2), (1,3), .,.,

(2,3), (2,4), .... Therefore, the cost of an overall alignment of (St ... "Sn) is:

Cost(SI ,...SJ = I I C(S'i,k' S'i,le)
ISkSjAj (i,j),IS;<jSn

10



CHAPTER III

PAIRWISE SEQUENCE ALIGNMENT ALGORITHMS

Pairwise sequence aligrunent is the process of aligning two sequences. It is the

base of multiple sequence alignment.

Dynamic programming approach is usually used to find an optimal alignment

between two sequences. Needleman and WunschJ9 first applied dynamic programming

on protein sequence comparison during the late 1960s. Since then a group of similar

dynamic programming algorithms have been introduced that can calculate the optimal

alignment with its score in the order of mn steps where m, n are the lengths of aligned

sequencesJ
. Use of any of the algorithm guarantees a mathematically optimal alignment,

given the substitution matrix and gap penalties.

Let the two sequences of lengths m and n be x = x I Xz XJ ... Xmand Y = Yl yz Y3· .. Yn

Let '-' be the symbol for a single gap. At each aligned position, there are three possible

events:

I) a substitution (Xi, Yi) or a match (Xi, Yi) depending on whether Xi =Yi.

2) a deletion (Xi, -).

3) an insertion (-,yJ

As described earlier, the similarity measure defines the score function for each

event as s(a,b), and the distance measure defines the score as d(a,b). Dynamic algorithms

apply to either case.

11



3.1 Global Distance Alignment

Global distance alignment algorithm (from Waterman 1995i9

input: a, b, d (a, b)

output: Dij, O:s; i:S; n, 0 :S;} :s; m
step 1: for i +-- I to n
step 2: for} f- 1 to m

step 3:

D is a dynamic programming matrix. The value D (i,}) is the score of the best

alignment between the initial subsequence XL; of X and the initial subsequence Yl..j of y.

That is:

D (i,}) = Cost (Xl ... Xi and YI·· . Y)

Step 3 is applied recursively to fill the matrix of D{iJ) values as in the following

figure:

DC-I,)-d DC-I,)
• d (x;. Yi)

""
+ gap penalty

DC,)-l) ~ \1J+ gap penal ty ..... DC .)
--

1,./

Figure 4. Dynamic alignment matrix calculation

If one of the prefixes is empty, i.e. either i = 0 or} = 0 or both, different schemes

can be used to define the value. One possible scheme is define: D (i, 0) = i x d (x;, -) and

D (O,}) =} x d (-,y),).

12



Let the sequence x = Xl X2 X3.·· Xm andy =Yl Y2 Y3 ... Yn. Then the value in the final

cell of the matrix D(n. m) is the best score for the alignment of x and y. The final

alignment is obtained by tracing back from the final value according to the choices that

lead to it.

For example, using cost function (X) for alignment with D(i, 0) = i, D(O, j) = j,

where (X) is the equation of number of cost defined on page 10, then using the dynamic

programming the alignment for the two sequence: AGCACACA and ACACACTA is:

- A C A C A C T A
- 0....... 1 2 3 4 5 6 7 8
A 1 ~ I 2 3 4 5 6 7
G 2 1 11 2 3 4 5 6 7
C 3 2 ~ 2 3 3 4 5 6
A 4 3 2 ~ 2 2 3 4 5
C 5 4 3 2 ~ 2 2 3 4
A 6 5 4 3 2 ~ 2 3 3
C 7 6 5 4 3 2 f'- 2 3
A 8 7 6 5 4 3 2 2 ~

Figure 5. Dynamic alignment matrix for sequences

ACACACTA and AGCACACA

The path in this diagram represents the optimal alignment. In which a diagonal

line means substitution or match; a vertical line means a deletion in the first sequence (or

an insertion in the second sequence); a horizontal line means an insertion in the first

sequence (or a deletion in the second one). Thus, the result alignment is:

A-CACACTA

AGCACAC-A

13



3.2 Global Similarity Alignment

The algorithm used in global similarity alignment is very similar to that used in

global distance alignment, except that step 3 is changed to:

{

SCi -1, j -1) + sex;> Yi)}
S(i,j) = max S(~,j-~)+S(Xi'-)

S(l-I,}) +s(-'Yj)

where S (i,j) = Cost (XI ... Xi andy! ... Yj)

In similarity measure, a match is rewarded by a positive score, that is, s(a. b) > 0

if a and b are similar. s(a, b) < 0 if a, b are not similar. s(a, -) < 0 and s(-,a) < 0 in

particular (referred to as the gap penalty).

3.3 Local Similarity Alignment

There are cases where sequences share a similar regIon but are otherwise

completely different. For example, suppose sand t be two proteins, which carry some

functional related subunits. However, most part of sand t do not contribute to this

function and may be very different. To handle this case, local multiple alignment

algorithms have been developed. It is usually the most sensitive way to detect the

similarity between two very highly diverged sequences that may have a shared

evolutionary origin along their entire length42
.

For protein sequences, the most commonly used local alignment algorithm

allowing gaps is described by Smith and Waterman in the early I980s33
. This algorithm is

closely related to the algorithm for global similarity alignment except two differences.

14



1) An extra possibility is added to the equation, allowing S(iJ) to take the value 0

if all other options have value less than O. Thus all S(iJ) now must have a value ~ O.

o
SCi -I,} -1) + s(xi'Y)

SU,}) =max ..
S(z,j-l)+s(x;,-)

SCi -I,j) + s(-,Y)

2) The score for the best local alignment is simply the largest value of S(iJ) which

can be anywhere in the matrix. The corresponding alignment is obtained by tracing back

from the cell of largest value.

The time and space of the algorithms introduced above are O(mn), where nand m

are the lengths of the sequences. The reason is that there are (n+l)x(m+l) numbers to

store and each number costs a constant number of calculations to compute.

3.4 Gotoh Algorithm

The gap model considered in the early examples is just the simplest model, in

which the gap penalty score is a simple multiplication of the length of gap. That is, if Wk

be the gap weight for a gap of k bases, and WI be the single gap penalty, then Wk = K

This type of scoring model is not good for biological sequences, since deletion or

insertion of several adjacent characters in the biological sequence may be the result of

one mutation event in sequence evolution3
!). Since multiple deletions or insertions are not

the sum of single deletion or insertion (indel), they should not weighted by summing

single indel weights. Instead, Wk ~ K x WI.

15



If multiplication of indels (insertion and deletion) in global distance alignment is

allowed, the recursive step should be changed to:

D(i,j) =min

D(i -I,j -I) + d(xjly})

min[D(i,j - k) + W*]
ISkS}

rnin[D(i - k,j) + Wk }
Isks;

Watennan40 first introduced an algorithm using this equation. The time and space

of this algorithm is 0 (mn (n+m» = 0 (n 3
) if m=n, where m and n are the lengths of the

two sequences under comparison, rather then 0 (n2
) for the linear gap cost version.

Gotoh l3 introduced an algorithm which solves this problem in 0 (fl2) time if the

gap penalty function is of this form: Wk = a + ~(k-I). According to this, WI = a and Wk+ 1

= ~ + Wk. Let?;,) =min[DU,j-k)+wkl andQi,} =min[D(i-k,j)+Wtl·
ISkS} ISkS}

Pij and Qij can be calculated in a single step according to the following recursion

relations:

?;.} =min [D(i,j - k) + Wk I
ISkS}

= min{DU, j -I) + WI' min [D(i, j - k) + Wk I}
2SkS}

=min{D(i,j-l) + w1 ' min [DU,j-I-k)+Wk+II}·
ISkS}-1

=min{D(i,j -1) + W l ' min [DU,j -l-k) + Wk + PI}
ISkS}-1

= min{DU,j -I) + WI' min [DU,j -1- k) + Wk]+ p}
ISkS}-!

= min{DU,j -I) + a,p;',}_1 + p}

Qi.} = min {DU - 1, j) + a, Qi-I.} + p}

16



3.5 Myers and Miller Algorithm with Linear Gap Penalty

3.5.1 Linear Space Alignment

Paitwise sequence alignment algorithms based on dynamic programmmg

generally have computational time and space of O(mn) where m and n are the lengths of

the sequences being compared. Quadratic space is required because of the need of tracing

the alignment through the matrix. If only the cost of an optimal alignment is needed, the

space requirement is linear space. Quadratic memory usage may limit the use of the

dynamic programming if the lengths of the two sequences are too long.

To reduce the space requirement, Myers and Miller27 first introduced a linear

space alignment algorithm into computation biology in 1988, hence this algorithm is

called Myers-Miller algorithm in sequence analysis field. This algorithm uses a divide

and-conquer technique by computing a "mid-point" of an optimal alignment recursively

using the fotward and reverse cost-only dynamic programming algorithms. An optimal

alignment can be obtained by recursively detennining the optimal conversions on both

sides of its mid-point.

Let sequences x = xI Xl X3··· Xm andY =YI Y2 Y3· .. Yn.

Let u = Lm / 2j.

Myers-Miller algorithm first finds the optimal mid-point (u,}) where} is the row

where the optimal alignment crosses the u column of the matrix. This mid-point (u, j) is

found by combining the results of forward and reverse dynamic programming that passes

at row u. Then the dynamic programming problem is split into parts, one part is from (0,

0) to (u,}) and another part is from to (u,}) to (m, n). The optimal alignment for the whole

matrix will be the concatenation of the optimal alignments from these two parts.

17



The forward algorithm computes the cost of the prefixes of the two sequences:

Cost (XI, X2, ... , Xi, yl,,Y2, ... , y) )

Reverse algorithm is very similar to forward algorithm, with a little modification.

It computes the cost of the postfixes of the two sequences:

Cost (Xm, Xm-I, ... , Xi+l, yn, y,,-I, ... , y)+1 )

Both forward and backward algorithms are standard dynamic programming

algorithms. Since each of them returns the cost of an alignment only, the space it required

is linear space.

3.5.2 Linear Gap Penalty Function

In sequence evolution, when gap occurs, it is often of length more than one

symbol. If treating an indel (insertion or deletion) of k consecutive symbols as an atomic

operation, its cost Wk should be less than WI xk.

Linear gap penalty function W/c =a+J3xk is usually used in sequence alignment

algorithms39
. Here a is opening gap penalty (gop) and J3 is extension gap penalty (gep).

Opening gap penalty is a penalty for the initiation of a gap in sequence. Larger

opening gap penalty will make it difficult to insert a gap and will decrease the length of

the gap. Extension gap penalty is applied for increasing an already exiting gap by one

symbol. Increasing the extension gap penalty will decrease the length of the gaps.

Gotoh's algorithm introduced before shows how to deals with multiple insertions

or deletions in quadratic time if the gap penalty function is a linear function. With that

idea, when implementing Myers-Miller algorithm, the matrix S(iJ) is calculated as:

18



{

SCi -1,) -1) + d(xj1 Yi )}

Sci,)~ =max P(i,))

Q(i,)

. " {SU-l,)+W\ }
pel,}) = max

P(i -1,) + gep

" " {SU,) -1) + WI }'Q(z J) = max
, Q(" . 1)I,J - +gep

Only linear space and quadratic time are needed to compute the matrix.

3.5.3 Implementation of Myers-Miller Algorithm with Linear Gap Penalty

Assume the two sequences being compared:

A = al, a2, . 0" am, B = bl, b2, o. o,!>n.

Define C(i,) be the forward cost: Cost (aI, a2, ... , ai, bl, b2, ... , bj)

Define CR(i,)) be the backward cost: COSt(am, am-l, ... , ai+l, !>n, !>n-I, .. 0' bj+1 )

Myers and Mille~7 showed that any conversion of A to B must either:

Type 1: Convert al . ... ,ap to bl . ....bj and ax+l .....alll to bj+l ..... hn for p = x = m/2 and

some).

Type 2: Convert al . ....ap to bl, .... bj , delete x-p symbols, and convert ax+I, ....am to

bj+I, .... bn for p < ml2, x> ml2 and some).

Let (P,). x) be a mid-point of type 1 or type 2. The cost of the mid-point is:

. {C(P,)+CR(X,)
Cost(p,j,x) =

C(p,) + g(x - p) + C R (x,)

if p = x (type 1)

if p < x (type 2)

To handle these two types ofcost, two linear arrays are used in forward or reverse

algorithm, one for type 1, one for type 2. Therefore in our implementation of Myers-

Miller algorithm, four arrays are used:

19



CC: of length n, is the current column of a dynamic matrix in forward pass.

CD: of length n, is the current column ending with deletion in forward pass.

RC: of length n, is the current column of a dynamic matrix in reverse pass.

RD: of length n, is the current column ending with deletion in reverse pass.

To trace the alignment, an array ALIGN of length n+m, is used to store current

operation such as insertion, deletion or institution.

The outline of the implementation is:

Algorithm forward pass:
Input: Astart, midA, Bstart, Blen, 18
Output: CC, CD

Algorithm reverse pass:
Input: Astart, Alen, Bstart, BIen, midA, tE
Output: RC, RD

Algorithm trace alignment:
Input: ALIGN
Output: Alignment

If ALIGN[i] = 0 substitution
If k = ALIGN[i] > 0 insertion of k symbols in sequence B
If k = - ALIGN[i] >0 deletion of k symbols in sequence B

Algorithm Pair Align
Input: Astart, Alen, Bstart, BIen, 18, tE
Output: ALIGN and the alignment score
1. if Bien s 0 and Alen ~ 0

delete (AIen)
if Alen s 0

delete (Bien)
if Alen = 1

ifmidB =0
delete(l); insert (BI en);

ifmidB> I
insert (midB-l); replace 0; insert (Blen-midB);

2. midA ~ Alen/2
forwardyass (Astart, midA, Bstart, Bien, t8)
reverseyass (Astart, Alen, Bstart, Bien, midA, tE)
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3. find_optimal_midpoint
M~max O~j~ CC[j]+RC[j]
N~max O~j~n CD[j]+RD[j]+gop
IfN > M, type = 2
Else type = 1
MidB is the j that leads to the maximal cost

4. iftype = 1
Pair_Align (Astart, midA, Bstart, midB, tB, gop)
Pair_Align (Astart+midA, Alen-midA, Bstart+midB,

Blen-midB, gop, tB)

If type = 2
Pair_Align (Astart, midA-l, Bstart, midB, tE, 0.0)
delete (2);
Pair_Align (Astart+midA+1, Alen-midA-l, Bstart+midB,

Blen-midB, 0.0, tE)

3.5.4 Result

Because the space used by this algoritlun includes the four arrays CC, CD, RC,

RD, each of them of length n, and the array ALIGN of length n+m which is used to

tracethe alignment. Assuming n is equal to m, the total memory space used is O(n).

This algorithm is a recursive algorithm. The first pass of Pair_Align is done in

time proportional to: 2(m x n) =mn . After that, the problem divides into problems of size
2

ml2, j, and m/2, n-j. Each of the problems takes time proportional to:

m. m . 1
2(-xJ)+2(-(n- J) =-mn

4 4 2

Thus, the total running time of this algorithm is proportional to:

O(Lmn2- k
) = O(2mn) =O(mn)

k:i!.O

This is the same as the standard dynamic programming using quadratic space (Figure 5

and 6).
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Time complexity of dynamic pairwise alignment
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Figure 6. Time comparison of two algorithms

One algorithm is the Myers-Miller algorithm, which is linear space
dynamic programming algorithm. The other algorithm is a standard dynamic
programming algorithm using quadratic time.

User time here is the real time obtained under Solaris 7 system by using
the TIME command.
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CHAPTER IV

MULTIPLE SEQUENCE ALIGNMENT ALGORITHMS

Multiple sequence alignment is a process of aligning more than two sequences

simultaneously, showing how the sequences are related to each other. In multiple

alignment, amino acids or nucleotides diverging from common ancestor are aligned

together in columns. Results of multiple sequence alignments are helpful in detecting

distantly related proteins, in understanding protein function, and in predicting protein

secondary structure.

Till 1987, biologists constructed high quality multiple sequence alignments by

hand, using knowledge of protein evolution. It was very time-consuming and extensive

knowledge in proteins was required. Nowadays, several programs are used to make

1 · 1 l' . 11 16192J~R D' . hmu tIp e sequence a Ignment automatlca y . , '-. ynamlc prograrnmmg approac ,

progressive method and statistical approach are commonly used in multiple sequence

alignments.

4.1 Overview of Multiple Sequence Alignment Methods

4.1.1 Multidimensional Dynamic Programming

When using the multidimensional dynamic programming approachJ·lb.28, n

sequences are compared simultaneously by using an n-dimensional dynamic

programming matrix. An example of aligning three sequences using this approach is

given in Figure 7.
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Figure 7. A three-dimensional multiple alignment matrix for 3 protein sequences2
.

(from Carrillo, H. et al 1988)

This approach can generate an optimal alignment but the running time and space

are expensive. Suppose that there are N sequences and each sequence is of length L. Then

the space required is LN. From each of the LN nodes, to find an optimal path, 2N-l

positions need to be considered. For example, if N = 3, then 7 positions need be visited

from the current position (Figure 8). Then the total running time of the method is 0 (2Nx

current
visit

Figure 8. To calculate each node, 2N_I positions need to be visited

MSA is a method that uses multi.dimensional dynamic programming approach to

align sequences. In MSA, Carillo and Lipman algorithm24 is implemented to reduce the

volume of the multidimensional dynamic programming array.
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4.1.2 Tree or Hierarchical Method

Although employing Carillo-Lipman algorithm will reduce the time and space

greatly, optimal alignment may not be obtained for more than eight sequences with

medium size and similarity due to the long time and large memory space required 16
•

Therefore heuristic alignment algorithms are used to deal with large problems.

Progressive multiple alignment algorith.m9
,22.38 is one of the heuristic alignment

algorithms. It builds an alignment progressively by a series of pairwise alignments. First,

each pair of sequences is aligned and the distance between them is calculated. Then,

based on the distances a guide tree is calculated. At the end, all of the sequences are

progressively aligned based on the guide tree. The overview of this process is showed in

Figure 9.

Although progressive alignment algorithms give heuristic results, the results are

reasonable in many cases. And this kind of algorithm is simple, fast and efficient. That's

why progressive approach is the most used one when handling large problems7
.

Feng-Doolittle algorithm was one of the first progressive multiple alignment

algorithms9
. CLUSTL W38 is one of the most powerful multiple sequence alignment

packages known which performs multiple sequence alignments based on Fcng and

Doolittle's algorithm.
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steps in Multiple Alignment

(A) Pairwise Alignment

S1
S:1------
~----
S4-------

6 pairwise com parisons

then cluster analysis

'------ S3

similarity

(B) Multiple alignment following the tree from A

::-1/
Gaps to optimiz,e alignment

New gap to optimize
alignment of(s...s )with (s 5 I

S2 f_l

I •

S4-----

S1------
S3--------

align most sim ilar pair

align nellt most sim liar pair

align alignments - preserve glps

Figure 9. The stages in generating a multiple sequence alignment
using progressive approach42

(from Sternberg, M.J.E. 1996)
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4.1.3 Statistical Approach

If proteins share a common ancestor, they inherit many similarities from their

ancestor. It is possible to create a statistical model of a protein family with these

similarities7. This model is called a Markov model and can be viewed as a finite Markov

chain with a starting state (BEGIN) and a stopping state (END).

"A Markov chain can be defined as a sequence ofrandom variables. Each variable

can be generated from a finite number of variables preceding it, possibly with some

random variable added,,7. Markov chain can be viewed graphically as a collection of

"states", with arrows between the states. Each arrow has an associated non-negative

integer weight (transition probability), which is the probability for the system to go from

the current state to a particular new state.

DNA and protein sequences can be viewed as Markov chains of k states, each

state corresponds to a particular residue. k = 4 for DNA (Figure 10) or k = 20 for protein.

Figure 10. Markov chain of DNA7

(from Durbin, R., et at 1998)

"A hidden Markov model is a statistical model which describes a senes of

observations by a "hidden" stochastic process, a Markov process"30. A linear hidden

Markov model (HMM) for sequence alignment is a HMM which only models the
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primary structure of a protein family, that is, the amino acid sequence of the protein.

Hidden Markov models have been used widely in automatic speech recognition and now

in molecular biology, especially in database searching and multiple sequence alignment7.

HMM is used successfully in multiple sequence alignment because it can capture

the statistical details of the multiple alignment, such as position-dependent character

distributions and positionllength-dependent gap penalties and so on. It therefore can

capture the structure intuition of a protein family. Thus HMM has the advantage of

characterizing an entire family of sequences. After establishing a HMM, a sequence can

align to this model. It this sequence belongs to this model, it will be given a high

probability by the model. SAM21
,23 is one of the well-known software tools that perform

multiple sequence alignment based on hidden Markov models.
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4.2 Clustal W Analysis

4.2.1 Introduction

Clustal W-~8 is derived from the series of program Clusters '8 , "w" here stands for

"weighting"-give different weights to sequences and parameters at different positions in

alignment.

Clustal W is based on the Feng-Doolittle method9 (Figure 11), however makes

many improvements. Feng-Doolittle method is a heuristic multiple sequence alignment

method using progressive alignment approach which has two major problems l
<>, Clustal

W method resolves the two problems well.

One problem in Feng-Doolittle method is that any mistakes (misaligned regions)

made early in the alignment process cannot be corrected later. This is because of the

"greedy" nature of the alignment strategy. Since the alignment process is guided by a

guide tree, improving the correctness of guide tree may result in a good alignment. In

Feng-Doolittle's algorithm, UPGMA method34 is used to create a guide tree. In Clustal

W, neighbor-joining alignment algorithm is used to build a tree to guide the progressive

alignment. It gives better results.

Another problem is the choice of alignment parameters. In Feng-Doolittle

method, one weight matrix and two gap penalties (one for opening a new gap and one for

extending an existing gap) are used. This choice will give good results only if sequences

are all closely related. If sequences are very divergent, different weight matrices should

be given at different alignment stages according to the divergence of the sequences to be

aligned7
. Furthermore, in protein alignments, gaps do not occur randomly, position-
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Stage 1

Stage 2

Stage 3

Input sequences

Calculate all pairwise
similarity scores

Cluster Analysis using UPGMA

Take 2 most similar (remaining)
sequences or clusters

Output a consensus and the
sequences with gaps inserted

YES NO

Output final
alignment

Figure 11. Flow chart of Feng-Doolittle Algorithm 18

(modified from Higgins D.G., et a11988)
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specific gap opening and extension penalties should be provided. Clustal W improves this

problem by providing different matrices and position-dependent gap penalties.

Clustal W also gives different weights to different sequences. This is because

Clustal W uses the sum-of-pair (SP) scoring scheme to score alignment and there is a

problem with sum-of-pair scores7
. Using SP scores, the relative difference in score

between the correct alignment and the incorrect alignment decreases with the number of

sequences in the alignment. But in real world the relative difference ought to increase

with the sequence number. This shows that evolutionary events are over-counted. This

problem increases as the number of sequence increases. To resolve this problem,

sequences are weighted. Groups of closely related sequences receive lowered weights

because they contain much duplicated information. Highly divergent sequences receive

high weights. Sequence weights are calculated directly from the guide tree.

The basic multiple alignment process consists of three major stages:

1. To construct a distance matrix of all pairs by pairwise dynamic programming

alignment, giving the evolutionary distance between each pair.

2. To construct a guide tree from the distance matrix by a neighbor-joining

clustering algorithm by Saitou and Nei 32.

3. To align sequences progressively according to the branch order in the guide

tree, using sequence-sequence, sequence-profile, and profile-profile

alignment.

An example is shown in Figure 12.
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1 2 3 4 5 6
Pairwise alignment: 2 .17
Calculate distance 3 .59 .60

4 .59 .59 .13
5 .77 .77 .75 .75
6 .81 .82 .73 .74 .80
7 .87 .86 .86 .88 .93 .90

"
Umooted 2 6
Neighbor-Joining tree

3

4

.081
.226 L 0.221

4 l,: 0.225
Rooted NJ tree (guide tree) .061 .055
And sequence weights .219 I: 0.194

.01 .065 1.: 0.203
.398

2: 0.411
.389 Q: 0.398

Z: 0.442

Progressive alignment:
Align following the
Guide tree

PKVKAHGKKVLGAPSDGLAHLD-----NLKGTFATLSELHCDKL
PKVKAHGKKVLHSFGEGVHHLE-----NLKGTFAALSELHCDKL
AQVKGHGKKVADALTNAVAHVD-----DMPNALSALSDLHAHKL
AQVKAHGKKVGDALTLAVGHLD-----DLPGALSNLSDLHAHKL
EDLKKHGVTVLTALGAILKKKG-----HHEAELKPLAQSHATKH
ADVRWHAERIINAVNDAVASMDDT--KMSMKLRDLSGKHAKSFG
PELOAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Figure 12. The basic progressive alignment procedure,
illustrated using 7 sequences38

.

(modified from Thompson, J.D., et a11994)
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4.2.2 Algorithm Analysis

1. Pairwise Alignments

The purpose of making pairvvise alignments is to build guide tree, which is used

to guide the multiple alignment. Because this stage is time-consuming, a heuristic linear

time pairvvise alignment algorithm was used in previous Clustal W package. Now the full

dynamic programming approach is used for the pairvvise alignments in Clustal W,

because the guide tree is very important to the correctness of alignment.

If there are N sequences, there will be N(N-I )/2 pairs of alignments. Suppose each

sequence is approximately of the same length L, then each pairwise alignment takes time

a (L2
). The total time used by stage 1 is:

The distance score between each pair of sequences is calculated by the total

number of identical residues divided by the total number of residues compared (gap

positions are excluded) in the best alignment. Because only the score of the alignment is

required, linear space O(L) is used to make pairwise alignment.

2. The Guide Tree

The guide tree IS used to guide the final multiple alignment process. It is

calculated from the distance matrix at stage 1. In Clustal W, Saitou and Nei's neighbor-

joining method32 is used to construct such tree. The guide tree is also used to derive a

weight for each sequence.

Algorithm: Neighbour-Joining

(modified from Saitou, N., 1987 32and Durbin, R., et a/19987)
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Initialization:
Define T to be the set of leaf nodes, one for each given sequence,
and the set S = T;

Iteration:
1. find closest i, j in S, that is: D(i, j) = min { D(k, f): k, J E S }
2. Define a new node c and new set S

cluster {i,j} = c
S~ S - {i,j}
S~Suc

3. Add the new node c to T, joining c to i andj with edges of lengths

(

Ld(i,k) Ld(J,k)]
d(c i) = d(i j) + keS - keS x.!.

, , IS1-2 lSI -2 2

and d(c,j)=d(i,j)-d(c,i)

4. Calculate d(c, k), k E S

d(c,k) = .!.(d(i,k) + d(J,k) -dU,j»)
2

Termination:
If lSI = 2, stop

In this algorithm, D is a matrix of size O(ISI2
) and each element D(iJ) is defined

as:

Id(m,n) Ld(i,k) + Id(J,k) ...
D(i ") = m<n _ keS keS + d(l,j)

,j 1S 1-2 2 x (I S I -2) 2

Ld(m,n) and Ld(i,k) can be calculated in the same time. The total calculation
m<11 i.keS

is O(ISI\ There are O(ISI2
) values in the matrix D, so the total time to calculate the whole

The iteration stage repeats O(N) times where N is the number of sequences.

Therefore the time to cerate the guide tree is O(N\
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This neighbor-joining method produces an unrooted tree with branch lengths

proportional to the estimated distance along each branch. The tree may be changed to a

rooted tree by placing the root at the position where the branch lengths on either side of

the root are equal. The weight of each sequence can be calculated as the distance from the

root to the leaf. If several sequences share a common branch, they share the weight

derived from the shared branch.

3. Progressive AJignment

After finished calculating the guide tree, sequences are aligned progressively,

following the branching order of the guide tree. These alignments are a series of pairwise

alignments between sequence-sequence, sequence-profile or profile-profile.

Profiles are blocks of pre-aligned sequences. Profile alignment is used to align

two existing alignments or to add a series of new sequences to an existing alignment. The

profile alignments are an extension of the standard sequence-sequence alignments. Each

of the two input alignments is treated as single sequence and the scoring method is

changed correspondingly.

C and Cj are defined as two profiles and the number of sequ.ences in them are Iii

and VI. Define h1 be a column in C; and hz be a column in Cj . Then the score at position hi

and h2 is:

,Iii ,Iii ( (h) b (h ))
W(e(h ) e .(h » = LJm=ILJn=1 W am I' /I 2

I I' J 2 Ii Iii I

After an alignment is completed, gap symbols in this alignment are replaced with

a neutral X character. This let the gaps in early stages remain through to later stages. This
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rule is called "once a gap, always a gap", This idea is that the early compared sequences

are closely related sequence. Gaps from the result of the early comparison should not be

moved because of later alignment with more distantly related sequences.

At each step in the final progressive alignment stage, Myers and Miller27

algorithm is used. This is a memory efficient dynamic programming algorithm. It uses

linear space to align two sequences so it can make very large alignments in very little

memory.

If there are N sequences ready to be compared, there will have O(N) pairwise

alignments, including sequence-sequence, sequence-profile or profile-profile alignments.

Suppose two profiles oflength L are aligned and the number of sequences in them are Iii

and VI separately, then the time to compute the alignment of the two profiles is O(L21i1JiI).

According to the scoring scheme introduced in page 35 for profile alignment, each

individual sequence or a sequence in a profile will be compared with another different

sequence once and only once. Since there are N(N-l )/2 pairwise comparisons and each

comparison takes time proportional to O(L\ the total time of the progressive alignment

. o(N(N-l) £2) O(N2L2)stage IS x = .
2
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4.3 SAM (Sequence Alignment and Modeling System)

4.3.1 Introduction

SAM is a collection of software tools21
• 23 for creating, refining and using a type of

statistic model called a linear hidden Markov model (HMM) to analyze biological

sequences, including sequence alignment and sensitive database searching. This type of

HMM is called linear HMM because it only models primary structure (sequence)

infonnation of biological sequences.

Linear HMMs are highly effective methods in modeling a family of sequences or

a common subsequence within a set of sequences. Given a set of related sequences, the

system can automatically train a linear HMM representing the family. The trained HMM

can then be used for multiple alignment or database searching.

The primary algorithms and methods used by SAM and other HMM systems were

first described by Krogh el aZ 2
!. 23. A basic flow chart for using SAM is shown in Figure

13. The process of making multiple sequence alignment by HMM trained from unaligned

sequence contains three stages:

1) Initialization: Choose an initial model and initialize parameters.

2) Training: Align each test sequence to the model and estimate the model using the

Baum-Welch algorithm.

3) Multiple alignment: After the final HMM is established, all sequences are aligned to

the final model using the Viterbi algorithm and build a multiple alignment by tracing

back to the model.

The linear HMM architecture and algorithms used in each stage are analyzed in

the following paragraph.
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Family .embers

Protein sequence database

Figure 13. SAM program outline43

(modified from UCSC computational biology group)
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4.3.2 Linear HMM Architecture

A linear HMM for a family of protein sequences can be viewed as a model that

generates amino acid sequences by a random process21
. One type of such model is

illustrated in Figure 14.

The linear HMM In Figure 14 contains a set of positions and each position

typically has three states: match state (square), insert state (diamond) and delete state

(circle). The positions roughly correspond to positions in a protein or columns in a

multiple sequence alignment.

Figure 14. Linear HMM 23

(from Krogh, A., et a/1994)

Match state corresponds to matching a single character to a column of the

multiple alignment. Insert state corresponds to insert character in alignment. Each of the

match states and insert states can emit a character (observation) x from the 20 amino acid

alphabet according to an emission probability. At a match state mk, the emission

probability is denoted as: P (x IInk); At an insert state ik, this is denoted as: P (x I ik).
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Delete state dk corresponds to a gap in an alignment. It implies that the character

at position k is deleted. Therefore it does not produce any character but skip state k to

another state.

In linear HMM, a "BEGIN" and a "END" state are added, denoted by mo and

mM~1 where M is the number of positions. In the model in Figure 14, M = 4.

From each state, there are three possible transitions to other state:

The transition is represented by transition probabi lity T (r 1 q), which denotes the

probability of going from state q to state r. Transitions into match or delete states always

move forward in the model, whereas transitions into insert states do not move forward.

There is a loop on insert state which implies multiple insertions.

A sequence is supposed to be generated by a "random walk" through the model.

This random walk starts at state "BEGIN", follows a transition to state m" d, or io

randomly according to the transition probability T (md rno), T (dJi mo) or T (iol rno).

Suppose m/ is chosen as the current state, m, will emit a character x according to the

emission probability P (xlmj). This transition/emission process will continue until

reaching the "END" state. At the end of the process, two sequences are generated. One

sequence is the observed amino acid sequence x, ... Xl. , and another sequence is the state

sequence qo q / ... qM+/ where qo is the BEGIN state and qM+' is the END state. The state

sequence defines a path that generates the amino acid sequence. It is a Markov chain but

can not be observed directly.
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Given a model, the probability that the path qo qJ ... qL+I is taken and the sequence

XI ... XL is produced by the path is:

By taking the negative logarithm of equation (1) to avoid underflow, equation (1)

can be turned into the equation:

-logProb(x, ...x, ,q, ...q, Imodel) ~ [t. -logT(q, Iq;_,) - LogP(x; Iq,)] -logT(q I.• ' Iq,)

(2)

Many paths can generate the sequence X, ... XL When aligning a sequence to a

model, the path with the highest probability is chosen. This path can be found by a

dynamic programming algorithm, called Viterbi algorithm.

Given a model, the full probability that the sequence X, ... XL is generated is

calculated as the sum over all possible paths that could produce this sequence:

Prob(x1"'XL Imodel) = LProb(x1",XI.,ql···ql.lmodel)
ql· ..qt.

(3)

In practice, equation (3) is used 10 the negative logarithm form to avoid

underflow. The negative logarithm score of equation (3) is called the Negative Log-

Likelihood score of a sequence.

(4)

The forward algorithm, which is similar to the Viterbi algorithm, is used to

calculate the full probability.

Given a set of training sequences s(1) , ... , s(j), ... , sen), where s(j) = Xl ... XL, the

probability these sequences are generates by the model is evaluated as:
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Prob(S(1),S(2) ...S(n) Imodel) = flProb(S{j) Imodel)
j=I. ....n

(5)

Therefore, SAM can be divided into three stages. Firstly, a model is initialized.

Then the model is trained or estimated in order to maximize the score from equation (5).

A maximum likelihood method called Baum-Welch method is used to estimate a model.

Finally, sequences are aligned to the model to output the multiple alignment sequence

alignment results. The algorithms in each stage are analyzed in the following paragraphs.

4.3.3 Model Initialization

A hidden Markov model can be viewed as a model of five tuples: a finite set of

possible states; a finite set of possible observations; a set of transition probabilities; a set

ofobservation probabilities and a set of initial state distributions.

For a given HMM, the possible states and observations are fixed. The transition

probabilities, observation probabilities and initial state distribution are the parameters that

should be provided by users. After the parameters are given, they will be estimated to

build the final HMM.

There are two ways to set the transition and emission probabilities to build a

model:

• Train or estimate a model automatically from unaligned sequences. The model

learns the parameters automatically from these unaligned sequences by a training

algorithm. SAM uses the Baum-Welch algorithm to estimate parameters.

• Build a model from pre-aligned sequences. Sequences are pre-aligned In pnor

according to the information from the three-dimensional structure of proteins. The
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transition or emission probability at each position is calculated. A model built in

this way will model protein family better.

In contrast to transition and emission probabilities, a default linear HMM

architecture (the number of states, how they are connected by state transitions) must be

designed in priori by hand. Given the default architecture, the only way the architecture

of the model can be varied is in the length, which is usually represented by the number of

match states in HMM. A commonly used rule to set this number is to set it to be the

average length of the training sequences.

4.3.4 Model Estimation: the Baum-Welch Algorithm

The most common used estimation method to estimate a model is the Baum-

Welch or forward-backward algorithm3o. It is a maximum likelihood method and the

outline is the following (from Waterman, M.S., 1995/'>:

1. Choose an initial model. If no prior information is available, make all
transitions equally likely.

2. Align each sequence to the model. Use dynamic programming to find
the maximum likelihood path for each sequence.

2' Collect the count statistics.
n(y) = # paths through state y
n(y'ly) = # paths that have y-:,y'
m(aly) = #times letter a was produced at state y

3. Reestimate the parameters of the model
P(y'ly) = n(y'ly) / n(y)
P(aly) = m(aIY) / n(y)

4. Repeat steps 2 to 3 until parameter estimates converge

The probability that the transition y -:, y' is used at position m can be calculated

by the forward and backward algorithms. The total number of transitions y-:,y' is
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1

obtained by summing over all positions and over all sequences. The value m(aIY) is

calculated similarly.

1. Forward Algorithm

Given a sequence XI ...XL, the probability of the subsequence XI ... Xi generated and

the character Xi emitted by state k is:

fk (i) = Prob (Xl ... Xi, 1ti =k Imodel )

This value can be calculated recursively by the forward algorithm. The recursion
function is:

fk (i) = P(x; IkfI /, (i - l)T(k 1/)
(

The probability of the sequence Xl ... XL is generated using the following fonnula:

Prob(x""xL Imodel) = Ifk(L)P(k 10)
k

As mentioned previously, there are three possible transitions from one state to

Therefore the forward algorithm for a HMM can the be implemented as:

Forward algorithm (from Rabiner, L.R. 1989)30

Initialization: fMoCO) = 1
Recursion:
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2. Backward Algorithm

Given a sequence XI ...XL, with the character Xi IS emitted by state k, the

probability ofthe subsequence Xi+l ...XL is generated is:

bk (i) = Prob (Xi+1 ... XL Imodel, 1!j = k).

bk (i) is calculated by the backward algorithm. The recursion function is:

bk (i) =L P(Xi+1 II)T(k Il)b/i + 1)
I

Backward algorithm (from Rabiner, L.R. 1989)J()

Initialization (i = L):
bMm+1 (L + 1) =]

bMm(L)=T(Mm+IIMm )

blm(L)=T(Mm+1I/m )

bDm (L) =T(M m+1 ID m )

Recursion(i = L-I, ... , 1):

lbMk+'Ci+ I)T(M k +, IMk)P(Xi+,'Mk+')l

bMkCi)= +blkCi+I)TUk IMk)P(xi+,IIk)

+ bDk+1(i)T(D k. II M k)

lbMhi Ci + I)P(M k+1 Ilk )T(xi + 1 1Mk+1)1
blk (i) = + bIkCi + l)PUk Ilk )T(x j +1 Ilk)

+ bDk+1(i)P(D k+ll I k )
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· r bMh ,(i + l)T(M••, ID. )P(X,., IMh')J
bDk(/)= +blk(l+l)T(lk IDk)P(x j +1 Ilk)

+ bDhl (i)T(D hi 1Dk )

3. 8aum-Welch Algorithm:

Baum-Welch algorithm is used to estimate parameter values of a HMM, including

the emission probabilities and transition probabilities.

Given a sequence x = XI ...XL, the probability that the transition k~l is used at

position i in sequence X is:

P b( k II d I
Prob(x,Jrj =k,Jrj+, =II model)

ro Jrj = ,Jri+' = x, mo e) =----'-....:...------'-'-'---------'----
Prob(x Imodel)

It (i) x T(ll k) x P(x j +J Il)xbr(i + 1)
=

Prob(x Imodel)

The expected number of times that the transition k~1 is used is calculated over all

position in sequence x = XI ...XL:

Ilk (i) x T(ll k) x P(Xi+1 II) x bj(i + 1)
n(k ~ I) =--',_.----------

Prob(x Imodel)
(6)

Given a model, the probability that the sequence XI ... Xl. is generated and the

character Xi is emitted by state k is:

Prob(x, ...xL' Jr j =k I model)

= Prob(x, ...X; ,Jr j = k Imodel) x Prob(x j +1 ...x L IJr j = k, model)

=fk(i)xbk(i)

Then the number of emissions of a character a from state k is:

I Prob(x, ...x" Jr j = k Imodel)
mea Ik) = -:.x,_=o = _X.:-'=_"----

Prob(x Imodel) Prob(x Imodel)
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With the expected number of transitions and emiSSions, the new transition

probability and emission probability is given by:

P(ll k) = n(k -+ I) and
L,.n(k -+ i')

P(a Ik) = m(a Ik)
La,m(a'l k)

(8)

According to the architecture of HMM, the expected emission and transition

count from sequence x are calculated using equations (6) and (7) as:

m(aIMl)=_l- IIM (i)b M (i)
P(x) ilXi~o 4 !

mea IfA:) =_1_ If, 4 (i)b l • (i)
P(x) ;IX ~o, ,

neXt -+ Mk+,) =_1_" fx (i)T(M;", IXk)P(X;+1 IMk+Jb M (i +1)
P(x) L;- • 4.'

n(Xk -+ f k ) =_1_" fx (i)T(I K IXl )P(x;) Ilk )b, (i + 1)
P(x) L;- 4 +!

n(Xk -+ Dk+I) =_1_" Ix (i)T(Di +! IXk)bo (i)
P(x) L;- ! 4+1

Then the Baum-Welch algorithm used to estimate paths of HMM is:

Baum-Welch algorithm(from Rabiner, L.R. 1989)30:

Initialization: Pick arbitrary model parameters
Recursive Step:

For each sequencej = 1...n:

Caiculatefk(i) for sequencej using the forward algorithm

Calculate bk(i) for sequencej using the backward algorithm
Accumulate the expected emission and transition counts

Calculate the new model parameter using equation (8)
Calculate the new log likelihood of the model

Termination:
Stop if the change in log likelohood is less than some predefined
threshold or the maximum number of iterations is exceeded.
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4.3.5 Multiple Alignment: the Viterbi Algorithm

After a model is established, the Viterbi algorithm is used to find the most

probable path through a model for a sequence. A dynamic programming technique is

used to find the best alignment and its probability without going through all the possible

alignments. When making multiple sequence alignment, each sequence is aligned to the

model. The Viterbi algorithm calculates the alignment for each of the sequences.

Characters aligned to the same match state are aligned in column. For sequences that do

not have a match to a certain match state, a gap character is added.

Viterbi algorithm is similar to the forward algorithm, but the recursion function is

changed to: vk (i) = P(x j Ik) max h (i -l)T(k 1/) .
I

4.3.6 Time and Space Complexity of SAM

The forward, backward and the Viterbi algorithms all use dynamic programming

techniques. Suppose the length of the model is M, then the number of states in the model

is about 3M. Let L be the length of a sequence, then it requires O(ML) steps to calculate

the whole dynamic programming matrix. At each step, constant number of transitions or

emissions is considered. Therefore, the running time is O(ML), and the space required by

these algorithms are also O(ML).

When aligning N sequences, the total time is proportional to the sum of all the

states over all re-estimation cycles., multiplied by the total length of all the training

sequences. In the Baum-Welch algorithm in page 47, the computational time is O(NML)

per iteration. This recursive step will repeats many times until a threshold or the

maximum number of iterations is exceeded.
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4.4 MSA (Multiple Sequence Alignment)

4.4.1 Introduction

MSA is a global multiple sequence alignment program originally written and

distributed in 1989 24 and later modified by Gupta, Kececioglu and Schaffer l6
. It is one of

the programs attempt to find an optimal global aligrunents of multiple DNA or protein

sequences by implementing a variant of a multi-dimensional dynamic programming

technique - Carrillo-Lipman method24
. It reduces the amount of space required by giving

an upper bound of the space. Then, a variant of Dijkstra's shortest paths algorithm(j is

implemented to find an optimal alignment by searching the dynamic programming graph.

Even though MSA reduces memory space required for multiple alignments, it is

still uses much more memory than the progressive pairwise technique. Generally

speaking, MSA will produce better alignments than most multiple sequence alignments,

but in practice this is not always the case24
. The drawback with using MSA is that it

requires an enonnous amount of computer time and memory to align more than a few

distantly related sequences. The size of the problems solved by MSA is directly related to

the sequence lengths, the number of sequences, and the amount of sequence diversity.

In the following paragraphs, the algorithm of Carrillo-Lipman method used in

stage one and the variant ofDijkstra's shortest paths algorithm in stage two are analyzed.
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4.4.2 Setting the Bound and Regions - stage I in MSA

t. Basic Idea

Two sequences alignment can be viewed as a path within a two-dimensional array

(Figure 15).

T

C

C

T

TCACTA
T C C T

T C ACT A

Figure 15. Graphic view of pairwise sequence alignment

For the case of three sequences, the optimal alignment can be viewed as a path

pass through a three-dimensional array (Figure 16).

s
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Figure 16. Graphic view of an alignment of three sequences I I

(from Fuellen, George 1997)
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If there is a good global alignment between two related sequences, the memory

ceUs that contain this alignment would be near the center diagonal of the two dimensional

array (Figure 15). Likewise, if there is a good global alignment among three related

sequences, it is expected to make use of the memory cells near the center cube of the

three-dimensional array (Figure 16). This implies that an optimal alignment path is

supposed to be contained in a "polyhedron" close to the main diagonal 24. When making

multiple sequence alignment, only these memory cells in this "polyhedron" need to be

considered. Therefore, in order to get a minimum edge from the current point from one of

the 2N_1 edges, where N is the number of sequences, only these edges coming from

"polyhedron" need be considered. If an edge is coming outside, this edge is ignored. This

strategy will reduce the computations significantly.

The polyhedron is obtained by the observation that each multiple alignment

implies N(N-l)12 pairwise alignments of the N sequences. If N-sequence alignment is

treated as a path in the N-dimensional space, the imposed pairwise alignment Ai'; of

sequences Si, Sj can be viewed as a projected path on the plane defined by the two

sequences Si and Sj (Figure 17).

Given an optimal alignment A, the projection Aij can be obtained by copying rows

i and) of A except the columns with the gap character '-' in both rows. For example, the

alignment projected by L1 (Figure 17) is: SNA - , aligned gaps at the position 1 are
--AS

ignored. The cost of A ij will always larger or equal to the cost of an optimal alignment of

S1



L2

VSN-S

Figure 17. All 3 pairwise projections of the alignment - SNA 

---AS

(from Fuellen, George 1997)

However, if N(N-l )/2 pairwise alignments of N sequences are given arbitrarily,

they may not determine a multiple alignment. The N(N-1)/2 pairwise alignment must

satisfy a Carrillo-Lipman bound. This bound (cost) limits the points through which the

optimal pairwise alignment path may pass on each of the two-dimensional plane. It is

possible to get the bound for each of the projections of an optimal multiple alignment.

Each projection defines a subset of the original N-dimensional array. The intersection of

these subsets contains all the paths that may lead to optimal alignments and must be

considered by a dynamic programming algorithm to find the final optimal alignment.

2. Calculation of the Carrillo-Lipman Bound

Given a set of sequences s], S2, ... ,5\, and a cost function c, define

A = any alignment
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c(A) = cost ofA

AO = the optimal alignment

c(AO) = d (s], S2, ... , Sk,) = cost of AO

Ali = a heuristic alignment

c(A" ) = cost of heuristic alignment

A1ij = the projection ofA on the plane detennined by the sequences Sj and Sj'

C(AO!ij) = the cost of the (i,j)-projection of the optimal alignment

c(A\j) = the cost of the (i,j)- projection of the heuristic alignment

d (Sj , Sj ) = cost of the pairwise optimal alignment

MSA assumes that an upper bound value, denoted by U, is known. MSA then

searches only these alignments whose costs are less than or equal to U. This upper bound

cost must greater than or equal to the cost of an optimal alignment, which is the sum of

all pairwise alignments:

i<.j

=c(A
O

Ip,q) + Lc(A
O Ii,;>

i<)
(i,j)"(p,q)

~ c(A
O

Ip,I) + Id(si'S;)
i<)

(i,})"'(p,q)

=c(A
o

Ip,q) +"Ld(si's) - des p' Sq)
i<}

The Carrillo-Lipman bound on the pairwise alignment of sequences sp and Sq can

be got by rearranging this equation:

U- Id(Si,S;>+d(sp,sq)~c(AoI p.q)
i<j
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To get an optimal alignment, the Carrillo-Lipman bound for each projection is

calculated. Only these paths obey the bound in all their projections are considered. ~j is

define to be the set of all paths whose projections on the plane defined by Sj and 5j have

smaller costs than or equal to this bound. Define Rjj be the set of points included in Xjj .

The intersection of these points R =n. .R;. is the region containing the optimal
I<J ,J

multiple alignment paths. Points outside this region are ignored.

3. Calculation of the Upper Bound (U)

Define L =Ld(s;,s)
;<j

The upper bound value U in equation (9) can be calculate by U = L + J.

L is a lower bound value and can be produced by computing all the pairwise

alignments of a set of sequences. Because the optimal multiple alignment AO is unknown,

the ovalue can not be calculated directly. There are three ways to obtain this value:

I). 8 is specified users.

2). 8is specified the computation. A heuristic multiple sequ.ence alignment from

pairwise alignments at first. Find the projections of this optimal path and calculate

the cost of each of the projection. This value is greater than or equal to the

optimal pairwise alignment and the difference between them is denoted by E//.

E·· = c(A h
l
· . ) - d (s· s)IJ IJ I, J .

o=~e..L..J I.J

;<j
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The Eij value implies the distance from the optimal pairwise alignment path and

paths need be considered. The larger the value is, the more computations are

required. Therefore in MSA, a variable maxepsilon is defined and set by default to

50. The 8is then computed as

8 ='min(maxepsilon, e .).
~ '.j

i<j

Since larger & value may be cut, the full size polyhedron may not have been

explored and the optimal alignment may not be found.

3). 8 is specified users and computation. Users may supply a file with values for

Since all the three options may produce an upper bound U that's too small, MSA

cannot guarantee to produce an optimal alignment.

4. Calculation of the Region RiJ•

The upper bound value U = L + 8.

L is the lower bound and is computed as the sum over all pairwise alignments.

That is, L =I d (Si' S j) . Suppose there are N sequences and the value of 0 is given a
i<;

priori, then the time required computing Uis O(,N 1 Si "S, I).
~'<j

The set RiJ contains a set ofpoints on the plane defined by the sequences 5, and 5;

. When point in this set is used by some paths, the best score of the path should be less

than or equal to the Carrillo-Lipman bound U-L+d(Si. 5;).
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Suppose the length of SI is m and the length of Sj is n. If Riia, b) is a point in the

set Rij , then the cost of it, represents by Cia, b) is:

Ci)a,b) = d(Si,1 ...S;,a ,Sj.I",Sj,b) +d(Sj.m,,,Si,a ,Sj.n,,,Sj.b)

~ d(Si,l,,,Si,m' Sj,I,,,Sj,n) +U - L

In MSA, the value V-L is set equal to f:ij. This cannot guarantee an optimal

alignment any more. That's why in practice, MSA rarely finds a guaranteed optimal

alignment I 6.

All of these points can be obtained by summing up the forward and reverse scores

of a path through these points. The computation required to calculate all the RijS is

The outline of stage I ofMSA is as the following:

Stage 1 of MSA (sequence SJ, ... , SK; integer 8) (from Gupta, et aj 1995)/6:

for J +-1 to K-1 do
for J +- 1+1 to K do

let Sj = a\ (]2 .. , an & SJ = bl b2 ... bltl

for 1+-1 to n do
for j +- I to m do

Cf,I,J[J,j] = d(al'" ai, b l bj land
C r, I, J [I,j] = d (al+1 ... all' bj + 1 bill)

od
ad
for I +- 1 to n do

F I. dJ] +- {j II C f, 1,.1 [I,j] +C r,I,.1 [1,j] ~ C f, I, J [n, m]+clj}
od
L +- L + Cf, 1,.1 [ n, m]

ad
od
U=L+o
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4.4.3 Searching the Optimal Alignment - Stage II in MSA:

In stage 2 ofMSA, the optimal aligrunent is found in the region R =n..R..
'<J ',J

MSA is a global distance aligrunent method, it attempts to minimize the cost of

the alignment. In stage 2, MSA implements a complex variation of Dijkstra's (. single-

source, single-destination, shortest-path algorithm to find a shortest path or an optimal

alignment.

To a given set of N sequences S/, ... , SN of length k/, ... , kN, the set of all possible

multiple alignments is called a path graph 16. This graph consists of a set of vertices and a

set of edges. The vertex set and the edge set are:

V { <.. . > I 0 < . <k }1/, 11..... 1N _ 11 - I

E { p-NJ I q - P E { 0, 1 }N - { 0 }N }

A multiple sequence alignment can be viewed as a path through the N-

dimensional space from the original vertex < O. .... 0> to the end vertex < k/, .... kN >

j
D--Q-LF]

that consists of consecutive edges. For example, the alignment DNWQ- - - can be
.---QGL-

visualized as a path:

< 0, 0, 0 > ~ < 1, 1,0 > ~ < 1,2, 0 > ~ < I, 3, 0 >
~ < 2, 4, 1 > ~ < 2, 4, 2 >~ < 3, 4, 3 > ~ < 4, 4, 3 >

With this idea, MSA implements a variant of Dijkstra's shortest paths algorithm

to search the basic dynamic programming graph. The fundamental data structures it uses

are: Priority queue, which is a queue of edges ranked by distance; Trie, which stores

vertices that already exist. The outline of stage 2 is as the following:
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Stage 2 ofMSA (sequence S1, ... , SIS.; integer 8)(from Gupta, et a11995) 16:

trie T; priority queue Q; vertex 5, t, v, w;
point p, q; edge list E; edge e, f

s ~ VERTEX (s.P = (0, O , 0) )
t ~ VERTEX ( t.P = (N I , N2, Nk) )

T ~ TRIE (); INSTALL (s, s.P, 1); INSTALL (t, t.P, 1)
e ~EDGE(NULL,s,O)

E ~ EDGELIST (); INCLUDE (e, E);
Q~ PRIORITY (); INSERT (e, e.D, Q);

While NOT EMPTY ( Q) do
e ~ EXTRACT (Q); v ~ e.head;
q ~ v.P; p ~ e./ail.P
if v = / then

Output TRACEBACE (/); return
fi
if e.D + Li<j (scale(S., Sj) x C r,i.) [q.i, qj]) ~ Uthen

for all r ~ POINT (r" r2, ... , rK) S.t r - q E {G, I}K - {G}K and
for all i <j, rj E FiJ [YjJ ) do

w ~ LOOKUP (r, 1)
if w = NULL then

w~ VERTEX (r); INSTALL (w, w.P. 1)
fi
f ~ FIND (q, r, E)
if f = NULL then

f ~ EDGE (v, w, (0); INCLUDE if, E); INSERT if,fD, Q)
fi
if e.D + COST if, e) <fD then

fD ~ fD + COST if, e); DECREASE if,fD, Q);
fi

od
fi

od

output "There does not exist a multiple sequence alignment with cost at

most U"

end
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CHAPTER V

SUMMARY AND CONCLUSIONS

Sequence alignment is a useful tool in computational biology. Due to the huge

number of sequences and limitation of computer hardware resource, it is necessary for the

sequence alignment to achieve high throughput with small memory space by efficient

algorithms. In order to improve sequence alignment and better use of sequence alignment

programs, it is useful to analyze the algorithms in the programs available.

We first introduce the concepts of sequence alignment in computational biology.

Then the pairwise sequence alignment algorithms are analyzed. Because of the

importance of pairwise alignment, we implement a dynamic pairwise alignment program.

We test the time and space complexity of several algorithms in our program. Using

standard dynamic programming, the time complexity is O(N\ however, the space

complexity is O(N2
). Using Myers-Miller algorithm, the space required is linear to the

sequence length, and the time is O(N\ Here N is the sequence length.

Pairwise alignment is the base for the multiple sequence alignment. The multiple

sequence alignment is much more complicated and useful than pairwise alignment.

Currently, three multiple sequence alignment software packages are used mostly. They

are Clustal W, SAM and MSA. We analyze the algorithms in each program package,

calculate the time and space complexity of each algorithm.

ClustaI W uses progressive multiple alignment. The alignment process is divided

into three stages: construction of a distance matrix of all pairs, construction of a guide

tree and progressive sequence alignment. The time and space complexity at each stage
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are O(N2L\ O(N3
) and O(N2L 2

) respectively, where L is the length of the sequence

(suppose all sequences are of the same lengths) and N is the number of sequences.

SAM uses statistical approach. The alignment process is divided into two stages:

establishment of a model and alignment of the sequences to the model. The space

complexity is O(ML). Model building is iteration until convergence and the time

complexity of each iteration is O(NML), where M is the length of a model, L is the length

of sequence and N is the number of sequences. The time complexity of sequence

alignment stage is o(NML).

MSA uses multidimensional dynamic programmIng. Nonnally, the space and

time complexity are O(LN
) and O(LNx2N) respectively. Carrillo-Lipman algorithm and

Dijkstra's shortest paths algorithm are used to reduce the space and computation time.

Using these two algorithms, MSA makes multiple sequence alignment in two stages,

Setting the cost bound and region and searching the optimal alignment. The model

reduces space and time required dramatically. Further study is needed to get time and

space complexity of this model.
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GLOSSARY

Amino acid: Any of a class of 20 molecules that are combined to fonn proteins in living

things.

Bioinformatics: The discipline of obtaining information about genomIc or protein

sequence data. This may involve similarity searches of databases, comparing your

unidentified sequence to the sequences in a database, or making predictions about the

sequence based on current knowledge of similar sequences. Databases are frequently

made publically available through the Internet, or locally at yOUT institution.

Consensus Sequence: A derived nucleotide sequence that represents a family of similar

sequences. Each base in the consensus sequence corresponds to the base most frequently

occuring at that position, in the real sequences.

Dayhoff PAM (percent accepted mutation) family of matrices: scores ammo acid

pairs on the basis of the expected frequency of substitution of one amino acid for the

other during protein evolution. Low PAM is used for closely related sequences, high

PAM for distant sequences.

DNA sequence: The relative order of base pairs.

Genetic code: The sequence of nucleotides, coded in triplets (codons) along the mRNA,

that determines the sequence of amino acids in protein synthesis.

Genome: Is all the DNA in an organism.

HGP: Is a 13-year project sponsored by the Department of Energy (DOE) and National

Institutes of health (NIH). Its goals are to identi fy the 80,000-100,000 genes (about 3
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billion nucleotide base) in human DNA and to develop tools for data analysis by the year

2003.

Homologous protein: proteins which share a common evolutionary history and have

similar overall structure and function.

lodel: Insertion and Deletion.

Multiple Sequence comparison: Refers to the search for similarity in three or more

sequences.

Mutatioo: Any heritable change in DNA sequence.

Nucleic acid: A large molecule composed of nucleotide subunits.

Nucleotide: A subunit of DNA or RNA consisting of a nitrogenous base (adenine,

guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a

phosphate molecule, and a sugar molecule.

Protein: A large molecule composed of one or more chains of amino acids in a specific

order; the order is determined by the base sequence of nucleotides in the gene coding for

the protein. Proteins are required for the structure, function, and regulation of the bodys

cells, tissues, and organs, and each protein has unique functions.

Residue: amino acids in proteins.
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