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CHAPTER I
INTRODUCTION

For the analysis of data in practice, a linear ﬁodel with homo-
scedastic error is usually assumed. However, it may be known that
homogeneity of errors is not a realistic assumption and it may be
suspected that the variance of the dependent variable varies with
the mean or with the independent variables. This point can be illus-
trated by a few examples. In the study of the results of family
budget inquiries, Prais and FHouthakker (2) found that the residuals
have variance increasing with household income. Ezekiel and Fox (1)
found that the variance of auto stopping distance is proportionate to
the square of the speed. In this thesis, we assume that the variance
in the general linear regression model is a linear function of unknown
- parameters.

Two models will be referred to throughout this thesis.
Model I

Let y = X3 + € denote a linear regression model where

y is an nx1 vector of observable random variables,

X is an nxp matrix of known constants with rank (X) = p,
8 is a px1 vector of unknown constants,

€ is an nx1 vector of unobservable random variables such

that V(e) = V = diagonal {Oi : i=1, 2, ..., n}l,



k
where (1) o5 = X r, d., is positive

(2) ri‘s are unknown constants
1441 1
(3) dy 5 # di,j for i#i' and d;;'s are known

positive constants
(4) k satisfies the conditions in Appendix A
of this article, which are required for the

Bi's to be estimable.
Model II

The same as Model I except V(e) = al + bD where

a-=r

1
b= r2
D = diag{di, i=1, 2, ..., n and 0<d <d,<...<d }.

n

We consider the problems of estimating the regression coefficient
vector g and the variance components T i=1, 2, ..., k in Model TI.

In Chapter II, we propose an estimator of the regression coef-
ficient vector of Model I. The proposed estimator is obtained based on
a maximum rank transformation which results in equal variances.
Properties of the transformation matrix and the proposed estimator are
presented. Finally, . the estimator is proved to be consistent, unbiased,
.and has a smaller variance than the ordinarj least squares estimator
when the relative size of the 1érgest variance to the smallest variance
in the regression model is large.

In Chapter III, we combine the 'orthonormal basis of the error



space" (OBES) technique proposed by Putter (3) and the transformation
technique proposed in Chapter II to estimate the variance components

in Model II. We develop estimators for the variance components in
Model IT and our proposed éstimators are compared with minimum norm
quadratic unbiased estimators (MINQUE). There always exist such
proposed unbiased estimators in case the MINQUE do not exist. Further-
more, the proposed method provides a simple calculation procedure
where MINQUE may require a generalized inverse procedure..

Chapter II and IIT will be presented in a form acceptable to
JASA. Chapter IV is a general summary of the two studies. Additional
algebraic results related to the material in Chapfer IT, a computer
program source list for obtaining the proposed transformation, and a

sample 6utput,are presented in Appendix B and Appendix C.
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CHAPTER II

ESTIMATION OF REGRESSION COEFFICIENTS IN A
LINEAR REGRESSION MODEL WHEN THE
VARIANCE IS A LINEAR FUNCTION

OF UNKNOWN PARAMETERS
Abstract

Wé.proposed a transformation technique and an estimator for the
vector of regression coefficients in a linear regression model when
the variance is a linear function of unknown parameters. A
maximum rank transformation matrix, which eliminates the variance
heterogeneity, is constructed. The proposed estimator is
BLUE based on the transformed model. Furthermore, the proposed
estimator has a smaller variance than the estimator based on ordinary
least squares when the relative size of the largest variance to the

smallest variance in the regression model is large.

Introduction
Model I

Let y = X8 + € denote a linear regression model where
y is an nx1 vector of observable random variables,
X is an nxp matrix of known constants with rank (X) = p,

Bis a px1 vector of unknown constants,



€ is an nx1 vector of unobservable random variables such

~that V(e) = V = diagonal {oi : i=1, 2, ..., nl},
5 k
where (1) 07 = I r, d.. is positive
s DN B B
j=
(2) ri's are unknown constants
. " N '
(3) dij i di'j for i#i' and dij s are known
positive constants
(4) k satisfies the conditions in Appendix A of

this article, which are required for the

Bi's to be estimable.
Model IT

The same as Model I except V(e) = aI + bD where

a=r1
b= r2
D =

diagonal{di, i=1, 2, ..., n and 0<4 <d2<...<dn}.

1

We consider the problem of estimating B the vector of regression
coefficients.

In general, if the errors in the linear regression model are
mutually uncorrelated but have differing variances, the ordinary
least sqﬂares estimates (OLSE) are ﬁnbiased and consistent (as proved)
in (2)). However, an error will arise if we use the conventional
formula for calculating the standard errors of the OLSE (4). As a
consequence, tests of hypotheses‘are affected if we use the biased
estimates of the variance-covariance matrix of the OLSE. It is known

that the OLSE of the regression coefficients are not BLUE, except when

Zyskind's (13) conditions are satisfied, in the case of unequal



variances (1). However, Monte Carlo evidence for some simple special
cases indicated that OLSE may not be a bad procedure (2,3).

Rao (7) developed the method of MINQUE to estimate the variance
and covariance components in a linear model. Rao (8) also suggested
estimating the regression coefficients using generalized least
squares estimates in which the unknown variance and covariance
components are replaced by their MINQUE's. The properties of such
estimators remain to be investigated.

Hartley and Jéyatillake (1) estimated the regression coefficients
and variance components by maximum likelihood under the assumption of
a lower bound fof the variance components. The asymptotic distribu-
tions of these maximum likelihood estimates (MLE) of the regression
coefficients are normal. It ié known that such estimators may not
perform optimally for small sample sizes.

Rutemiller and.Bower (9) permitted the variance of the dependent
variable to be a function of the independent variables in the linear
regression model. Under the normality assumption, MLE and their vari-
ance covariance matrix are approximated by the "Method of Scoring"
(6) based on large samples. The properties of asymptotic normality
are used to construct confidence intervals and to make other statis-
tical inferénces.

Takeshi Amemlya (10) considered a reéression model where the
variance of the dependent variable is proportional to the square of
its expectation. He estimated the regression coefficients using
generalized least squareé estimates (GLSE) in which the unknown
variance components, which are functioﬁs of the regression

i

coefficients, are replaced by OLSE of the regression coefficients.



It was proved that this weighted least squares estimator is
asymptotically normal.

Due to the analytical complexities of solving non-linear
equations and of inverting a random matrix, the small sample distri-
butions of thé maximum likelihood estimators and the generalized
least squares estimators are seldom obtainable. The difficulty of
inverting a matrix containing random variables arises in cases such

as the following:

A

= (aI + bD)'1 in Bgls‘ = (x'v'1x)’1x'v‘1y, then V'1

If v

A A

cannot be rewritten as f(a,b)U, where f is a real valued function
of & and b and U is a matrix in terms of I and D only. Therefore,
the asymptotic approach has become a common practice in inference
using these estimators. Although the small sample distribution
of the ordinary least squares estimator is easily obtained, this
estimator will be inefficient if the relative size of the largest
variance to the smallest variance in the regression model is large
(12).

In ﬁhis article we are interested in finding a small sample
‘estimator for § which is free from the inefficiency resulting from
the use of OLSE. For the specified Model II, we constructed an mxn
matrix T such that TVT' = 021m where 02 is an unknown constant
and m Kn) is a positive integer to‘be justified in section 3 of this
article. Let z=Ty, W=TX, and U=Te, it is clear that the ordinary
least squares estimator of § based on this new model, z=WB + U, 'is

BLUE.

In section 3, we are going to construct the transformation



_matrix and propose an estimator for . In section 4, we will

provide the conditions for the transformation to preserve the rank of
X in the specified Model I when p=2. 1In section 5, we compare the
variance of the proposed estimator with the variance of the ordinary
Jleast squares estimator when p=2. Finally, in section 6, we summarize

the results and state the unsolved problems.

Construction of the Transformation Matrices

and a Proposed Estimator for f3

Given two points on the real line, any point between them can be
represented in terms of the two end points. Based on this statement,

we can prove the following three lemmas and a theorem.

Lemma 1: Let yi’\J(O,Oi), i=1, 2, ..., n, be n uncorrelated
random variables. Let oi = ogf(xi), where f is a strictly monotone
real valued function of xi, and 02 is a real valued constant. Then

for every X34 X <Ky 5 there exists a A e (0,1) such that V(X yii}1—kyk)
= V(y,)-
(yJ)

Proof. ILet A = f(xk) - f(xj) then 0 < A < 1 and
£(x) 7

H
~~
Y
S|
|

LONEIDE N

_ f(xk) - f(x.) s f(x,) - f(x.)
T E(x) - f(x;) oElx) f(xi) - f(x;)

W(y,) + (1I0V(z,)

o F(xk)

ogf(xj)

V(yj). QED



10

Lemma 2: Let D = diagonal {di, i=1, 2, ..., n} such that

,

0 < d1 < d2 cee < dn. Let n be an odd positive integer such that

n = 2m+1. Let

[, =1,
A = o "
(m+1) x (n) / Ai 7/1—Xi
>‘m+1 —/1_km+1

L J
where
N = Ao ~ Iy
2774, -4
X = dnti ~ Ypa
o A 7 Gpean
- Rt
mH  dy i, - d

Then (1) AA' =T
m

(2) ADA' is a diagonal matrix for any arbitrary diagonal matrix D.

(3) ADA' for the specified D matrix.

- dm+1Im+1

1 1A = 1
(4) A'ADA'A dm+1A A.

(5) (A'A)(A'A) = A'AA')A = A'A.

(6) Rank (A) = mH1.



(7) Trace (A'A) = m#1

n p)
nt+l)- 3 (a+bdi) .

(8) Norm (A'A - V) = m+1-2(a+bdm
i=1

41

. Proof. (1)

A : E

Am+1 =

_ . 'T
. mt1
e V >\i
¥ Ag
1 —
- ;1_>\2 e
-/1-X,
'-L -
AT
1
A2+(1—>\2)
= A Y
i+(1 i)
A +1+(1-)\m+1)




(2) & (3)

ADA' =

Jf?;dm;i+2

E xm+1d1

2
-/1=-A,
i
B 1_>\m-|'~‘l
-
' ]
dm+1
-/1-2.d

F. o —
/[X__ . - J Am+1
1 .
- 1_A2 .
-/1-A, "
1 .,
/1

DA

12



m+1

= 4 ,.1

Apd t(1=25)d 1o

A.d
im

mH w1

A

ot (12

m+1d1

)d

+(1_}\m+‘l n

(4) Follows from (3), (5) follows from (1) and (7) follows from the

idempotence of

(8) Norm (A'A - V)

A'A in (5).

Trace (V2)

n
m+1-2(a+bdm+1)(m+1) - 'z (a+bdi

Trace (A'A - V)2 = Trace (A'A - V)(A'A - V)
Trace (A'AA'A - VA'A - A'AV + V2)

Trace (A'A) - Trace (VA'A) - Trace (A'AV) +

mt1 - Trace (AVA') - Trace (AVA') + Trace (V2)

).

i=1

'

Note: For the case n = 2m, let d = (dm + dm+1)/2 and

13
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A=
J[TE: 7/1'Ai
I e
where Ai = dme _ Z , i=1, 2, ..., m.

ot~ meit
Then similar results and proof of Lemma 2 exist.

Lemma 3: If there is an'mxn matrix T of rank m such that T(aI+bD)T'
= c¢I, where T does not depend on a, b, or ¢, then the maximum value of

m is n/2 if n is even and (n+1)/2 if n is odd.

Proof: T(aI+bD)T' = aTT' + bLIDT' =cl .

Because T does not depend on a, b, or ¢, we have TT' c1I and TDT!'

I. Let e, = kc1, then TT' = c¢,I and TDT' = ke,I = kTT'.

Co o) 1 1

Hence T(D-kI)T' = O.

Casev1: If rank (D - kI) = n, .then by using the Frobenius inequality
(5) rank ((D-kI)T') - rank (T(D-kT)T') = rank (D-kI) - rank (T(D-kI)
or m = ﬁ—m or m = n/2.

Case 2: If rank (D-kI) = n-1, then one may shrink the dimension of T
and (D-kI) from mxn and nxn to mx(n-1) and (n=1)x(n-1). Let T*, and

D* be the shrunk matrices such that rank (T*) = m or (m-1) and
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and rank (D*) = n-1, we have T¥D*T¥*' = 0. Again using the Frobenius
inequality, we have m < (n-1)-m or (m-1) < (n-1)-(m-1). Hence, we

have m < (n-1)/2 or m < (nt+1)/2. To combine the results from case 1

A

and case 2, we have the maximum rank of T is n/2 if n is even and

(nt1)/2 if n is odd.

Theorem: Assume the stated Model I, where k satisfies the specifi-
cation of Apbendix A. Then there exists a matrix A such that

z = Ay ~ (AX, 02I), where o2 is a real valued constant to be deter-
mined, and émt = (X'A'AX)_1X'A'Ay is BLUE based on the transformed

model.

Proof. Step 1: To show it is true for k = 1, or Oi = r.]di1 for
i=1, 2, ..., n.

Case 1: (1) n = 2(m1) + 1

(2) o< dyq<dyy <<,

(1) _
¢

Def i
efine z yﬁ1+1
(1) _
2 T Azyﬁ1 ¥ (1'A2)ym1+2
(1) _
230 = A 4 T U0 sy

1 1



(1) + (1=)
Zp 41 = ¥y T 0 )Ty
1 1 1
where
dp 4o = 9 +1
N 1
2 d‘m1+2 dm
T
A, = ] 1
+ dm +i - dm +1-i+1
1 1
dn - dm‘l+‘l
o4+ 4 -4d

16
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Let B
"'1
1
/ AQ -]1—A2
RO - .
/A, -/ 1=\
i i
*n +1 ARy
__ p—
Then
D G o S NP G O DI ¢}
(m1+1)x1 (m1+1)xn nx1
where . é@
D(1) =r.d I by Lemma 1 and Lemma 2
1 m1+1 m1+1 )
case 2: (1) n=2(m,) e

(2) O<d11<d21< eee <d

nl’
Using the same approach as in case 1 and the transformation matrix
defined in the note of Lemma 2, we would have a similar result as

in case 1.

Step 2: To show it is true for k = 2



Case 1: (1) n=2my +1

(2) my+1 = 2(mp) + 1

(3) 0<dqq<dyy<---<dpy
obtaining z(1) = A(1)
' (m1+1)x1

y as step 1, we have now

z(1) ~ (A(1) X B, D(1) + D(a)) by Lemma 1 and Lemma 2

(M- .4

where D = :c-,l m, +1 m, +1 and
I rods 1
5(2) _ (1)
Tods 5
dQ,m1 +1
>\2d2,m1
L

by Lemma

2.

2°2,n

+(1-A2)d

2,1y +2

mq 1

(a1

2,1+(1->\

N

1



Denote D2 = Diag {df)}, i=1, 2,
(2) _42) 4@
(%) 0<d,™ <d, d_7q-
Define
42 42
i 2+2 2+1
RN ) BN )
nb+2 m2
4(2) 4@
m9+1 m2+1

ETN ) )
m +i m_+1-i+1

2 2
4(2) 4@
+1 m+1
A +1 (2) (22)
"2 m1+1 m
2) _ (1)
420,
42 o0 + 5 10,

A2 N z(1) + [1h, 3¢ <1)

2) (1) S —
512+1 Im +1 + A +1

T

.oy m1+1,

L1
m1-!-1

and assume

19
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Now let

J A -1 -A,
2)

( | .
A = —
(m+1) (m_+1) J M -/1 =X

Mo+ “/ 1- }\m2+1

—

By Lemma 1 and Lemma 2, we have

@ @ L L@ @,

= s Xg,
(m2+1 )x1 (m2+1 )x(m1+1 ) (m1+1 )x1

1@ = D 4 42)(@) (),

(1) _ . g

where D217 = rydy 49Ty 4q0 &0 2B @)y, = 1 42)

2 myH Im2+1 )
Case 2: m g+ = 2(m2)
Using the note of Lemma 2, a similar result as in case 1 can be obtained. '

Step 3: Assume k> 2 and

G6) 2 g0 1) % (D)y g g s eab) 1 g

is true.

Step 4: To show it is true for k + 1

z(k) = A(k)z(k"1) as in step 3, we have



a3 1
r. +( mA
j m +1 mk“ ik

™ X

k
25 r(mald)y g,
=1 =

By Lemma 2, we can denote

D = Diag {d,} = (7maA
R j:k 321
(@) 0 <dy<dy<.ensdyy
Define
X = dm+2 _ dm+1
2 dm+2 N dm
A d +i m+1
i= EE— d
m+i T “mHl-i+1
dmk+1 - dm+1
)\ =
UL
Define
Z(k+1) _ (k) ‘
1 m+1 \

o 7 ol i o)

1 (j))D(k+1)( ﬁ A(j))l

3=

1

21

(J) (k+ 1)( - A(J) r]
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k+1) _ ()
Z§ ) ‘jTi zﬁ) T 2

1 k
90 < o+

Now let
_ 1 -4
/ xz - 1->\2
A(141) [x - J1-xy
@ - 1_>\m2+1

and we have

L) G () g (o)) - () g
3=1
V(Z(k+1)) : A(k+1) D (A(k+1)),.
By Lemma 2, we have

5=1 i m +1 m+1 x+1 m+1 m+1

Denote
+
k1 (5)

(3) -
2.y rJdm 1 * Toaqdpyqs end A LA
j=1 J J
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then we have

JkH)~(AXB,02%ﬁR-
(m+1)x1

Case 2: m + 1 = 2m.

Using the note of Lemma 2, a similar result as in case 1 can be
obtained. Finallyy ;nﬂ;: (X'A'AX)_1X'A'AY is BLUE under the trans-
formed model by applying the Gauss-Markov Theorem. QED

The relationship among n, m;, and k is specified in Appendix A
of this thesis. The formula in Appendix A can be illustrated by the
following example. Let n =7, then m, = (7+1)/2 = 4, m, = 4/2 = 2.

Hence, for the simple linear regression case, k < 3.

Conditions for the Transformation to
Preserve the Rank of X in Model I

When p = 2

Let A be the defined (m+1)xn transformation matrix. Then
rank (AX) = 2 when p = 2 in Model I if at least one of the following

equalities does not hold:

E,
o= oEEE 0 192 3 ..., i,
1074
where By = Xy 1%y 1y = Xy paq¥o ) 204
F, = ( - X1,m+2riX2,m+1)'

i X1,m+1x2,m+2-i

In practice, it would be easier to calculate the determinant of AX
for any positive integer p and it is not necessary to check the

conditions provided above.
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Comparisons of the Proposed Estimators

With OLSE as a Function of dn

in Model II

Since both the proposed estimators and the OLSE of the
regression coefficients are unbiased and consistent, it is interesting
to compare the elements, the trace, and the determinant of the
variance covariance matrix for the estimators of the two different
procedures.

A

In the specifiéd Model II, B = (X'X)-1X'y and

ols

~

ot = (X'A'AX)_1X'A'Ay,are the estimators for the two procedures,

where A is the transformation matrix defined in section 3 of
this article. The corresponding variance-covariance matrices

are

VB ,,) = @0 X EE D™ ana VL) = @AAD T (at0d ).

Let X' = {1 et ] in the stated Model II. For the

LX1 X2 o« o . Xn

ordinary least squares case, it can be shown (Appendix B) that

n-1
_ {x +bd)[(ZX2)-X(ZX]
V1) = lx'x]2 1—1(a~ §=1 =13 :
+ (atbd ) L ( : x?) - X ( Izlxj)f T (5.1)

=t 3=1
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1 I o)
cov(B B ) = {Z(a+bd )(ZX—nX)(X zx - I X9)
1ols’ "2o0ls IX'X|2 1=1 j=1 3 13___1 J j=1 1
n n n
+ (a+bd ) ( T X,-nX )(X T X.- I x2) ~ (5.2)
j:‘] J j:‘] J j=1 J
B. ) 1 {n51( )T L 72
v = a+bd, X, - nX,
20ls IX'XIQ 1=1 i 5=1 J i
+ (a+bd )[ z xj n]2} «5.3)
V6 ) =~ (T (atbd, )X21}
V(B = z atbd, x ]
ols |x X i=1 i=1 1=1
1 n-1 2 n=1
+ > {( Z (at+bd, )X2 +0 % (a+bd, )X -2X T (atbd, )X, 7}
|x'X]| i=1 i=1 i Bi=1
(5.4
(a+bdn) (5.4)

Let X! ={1 I } in Model II. For the proposed transfor-

X1 L] L] . Xn

mation procedure, it can be shown (Appendix B)

2
z (xf-xp+c)-2z/dgﬂ-d1 XX+ C(d_,,-d,)

V(B ) = (a+bd ) »
1mt m+1 2
Dz® - 2F dm+1-d1 z + F(dm+1-d1)

<5.5)

where z = dn—dm +1



1mt’

(m+1)-2!)>\2(1—>\2)+ eeo /l):m(1—)\m)] where n = 2mt+1..

}\(XX

2) vee + Am+1(x1-xn) - A2(1-x2) (anXm+2) -

—jlm+1(1-km+1) (X1+Xn) + (X, +. .. +Xn)

m+1

= 2[R () XX, + (xf|th1 oo+ xi)

(A-1)x$ + 2X

1Tn

A

B

2
= (B+X1-Xn) + z /dy_,]—d.] (X1+Xn)-B(dm+1-d1)

2
1Xn - (4+1 )Xf1 - 2B(X1—Xn) +A4C- B

24X, X + 2C - 2BX, - 2BXn

1

-2Ezjd ~d, +F (d 1-d4)

2mt) -

2
Dz~ - 2F /dm+1—d1 7 +F (dm+1-d1)

2
2~ A-2z/d, =4y +AQ-d)

26

X§+2) oot Am+1(X$ - Xi) - 31A2(1'A2) XX~
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2
~ z= + (d_,,-d,)
V(B )| = (atbad ) —BL I 15.8)

m+1
z°p - 22/dm+1—d1E+F (dm+1—d1)

It is only a matter of algebra to prove (Appendix B) that
the diagonal elements and the determinant of v(éols) are linear
functions of dn with positive slopes and intercepts. The off
diagonal element of v(éols) is a linear function of dn with negative
slope and either a positive or a negative intercept. On the other
hand, the elements and trace of V(émt) are smooth (continuous first
derivative) and bounded (both from above and below) functions of d,
with two or fewer critical values. The determinant of V(émt) is a
smooth and bounded function of dn with one critical value. Hence,
analytical solutions of the intersection values of dn can be obtained
by simultaneous solution of the cqrresponding two equations (Appendix
B). For any value of dn which is greater than the largest value of
the intersection values of dn, the proposed estimator would do better
than the OLSE in terms of the variance of the estimator.

In the case that n=3 forModel II, the discussion in the previous

paragraph can be demonstrated by the following five figures.
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mt
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Figure 1. The Intersection of V(B1ols) and V(B1mt) as
Functions of dn

ols
v(8,) /////A upper bound
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lower bound
0 .
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Functions of dn
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Figure 4. The Intersection of trace [V(Bols)] and trace [V(Bmt)]

as Functions of dn
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Summary and Open Problems

We have developed a transformation technique and an estimator
of the regression coefficients P, when the errors in the linear model
are heterogeneous of a particular form. The propdsed transformation
matrix results in homogeneous variances and has the maximum possible
rank. The proposed estimator is unbiased and consistent. When
the relative size of the largest variance to the smallest variance
in the stated regression model is large, the variances of the
proposed estimators of intercept and slopé will be smaller than the
corresponding variances of the OLSE. The‘determinant of the variance
covariance matrix of the proposed estimator is also smaller than the
corfesponding determinant of the OLSE.

The transformation matrix is not unique. There are m! pairing
methods, m = n/2 if n is even and m = (n-1)/2 if n is odd. In
addition, the two elements in a row of the matrix can have the same

sign or different signs. For example, let n=5 and V = al + bD,

where
—
B d,
d2 !
D = d3 such that O<d1<d2<d3<du<d5.
5%5 d
in
a4
R 5 ]

Then there are m = (5-1)/2 = 2 pairing methods. The transformation

matrix based on pairing method 1 1is
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— -/
0 0 1 0 0
4, -d d.-d
A= ot EE353 0 t 53252 0
- 42 42
3x5 a-d d.-d
51 5 1
L —

_ _
0 0 1 0 0
8y a.-d
Ay = s du-d 0 0 = /4 -d1 0
4 4
4 [305 + [75
0 d-d 0 0 a-a
572 5 2

Selection of the optimum pairing méthod needs further investigation.
The transformation was devised to equalize the variances by
taking a weighted average of paired di's to obtain a predetermined
common variance. For each given value of the independent variable
in Model II, there is a corresponding value of the dependent variable
which is the result of pooling two independent observations using the
corresponding weights of the transformation. The transformation
results in homoscedastic variances but the number of degrees of free-
dom is decreased and the range of values of the dependent variable
is decreased.
If k > 2 or there are more than two vafiance components in
Model I, then the theorem in section 3 guarantees the existence of the

homogenizing transformation matrix A. In practice, the process
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described in this section should be repeated k-1 times to equalize

the variances in Model I. For example, if k=3 and V = al + bD1 + cD2

in Model I, then the following sequence should be followed:

First stage: Find A, such that A1(aI+bD )I

1 =
, +cD2)A1 (atbd

1 mt1’ "mt1

! LI ¥ + P
+ cA1D2A1 where A1D2A1 is an (o+1)x(m+1) diagonal

matrix (by Lemma 2).

Second stage: Assume (m+1) is an odd number, find A2 such that

)T + cA DA V)AL =

Ay ((atbd )T 44 PR Ay

1

((a+bdm+1) + ce)I( where e is the middle element

nt2)/2

on the diagonal of A1D2A1'.

Hence, A = A2A1 is the transformation matrix needed to obtain
homoscedasticity.

Finally, in the case where V‘= al + bU for any known p.s.d.
matrix U, it is common knowledge that there exists an nxn orthogonal
matrix P such that PVP' = aI_+ bD, where D = PUP' is an nxn diagonal
matrix. Consequently, the pfoposed transformation technique can
apply to a general linear regression model with

V=gag,I+ a2U + .. .+1+3a0T

1 1 k k-1’
where k satisfies the upper limits provided by the formulas of
Appendix A, and V satisfies the assumptions of the theorem after the

orthogonal transformation.
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CHAPTER III

ESTIMATION OF VARIANCE COMPONENTS IN A
LINEAR REGRESSION MODEL WHEN THE
‘VARIANCE IS A LINEAR FUNCTION -

OF UNKNOWN PARAMETERS

Abstract

The problem considered in this Chapter involves a linear model
in which the variance of the observable random variable is a linear
function of unknown variance components. The objective is to estimate
the variance components. This is accomplished by combining the
"orthonormal basis of error space" technique and a proposed maximum
rank orthogonal linear transformation technique to estimate the
variance components in a linear regression model when the variance is
a linear function of unknown parameters. There always exists a
proposed unbiased estimator whereas the estimator based on MINQUE may
not exist. Furthermore, the proposed method provides a simple calcula-
tion procedure where MINQUE may require a generalized inverse

procedure.

35
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Introduction
Model I

Let y = X B + € denote a linear regression model where
¥y is an nx1 vector of observable random variables,
X is an nxp matrix of known constants with rank (X) = p,
B is a px1 vector of unknown constants,
€ is an nx1 vector of unobservable jointly normal random
variables such that V(e) = V = diagonal {Oi: i=1, 2,..., n},
5 k
where (1) oy = ji1rjdij is positive
(2) ri's are unknown constants

. sy .
(3) dij # di'j for i # i' and dij s are known

positive constants
(4) x satisfies the conditions in Appendix A
of this article, which is required for the

Bi's to be estimable.

Model IT

The same as Model I except V(e) = al + bD where

a=r

1
b= T, '
D = diagonal {di’ i=1, 2, ..., n and 0<d,;<d;< ... <dn}.

Some of the general methods for estimating variance components

in a general linear model are "orthonormal basis of error space" (OBES),
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minimum norm quadratic unbiased estimation (MINQUE), and maximum
likelihood estimation (MLE).

Putter (4) proposed methods of constructing OBES and applied his
results to estimating variance components. For the case of an
unreplicated two-way 1ayout, |

Vi = @ + 8, + b + ejk(j=1, 2, «eu, J; k=1, 2, ..., K),

he showed that when the relative differences among oj's, =1, 2, «vy, J

are large estimators obtained from OBES would have smaller variances
compared with the estimators proposed by Grubbs (2) and Ehrenberg (1).
Rao (5) introduced MINQUE for variance components in a general

linear model. Unfortunately, the MINQUE estimators for 0? = V(ei)

in y = X B + e , although unbiased may be negative. Furthermore,
nx1 nxp px1 nx1

for some structures of the X matrix, not 2ll Oi's are estimable.
Hartley and Jayatillake (3) estimated the variance components

by MLE under the assumption of a lower bound for the variance

components. The estimators are consistent and asympototically

efficient. However, it is known that such estimators may not perform

optimally for small sample sizes.

. A Proposed Method of Variance

Components Estimation

In this Chapter, we are going to combine OBES with the trans-
formation technique developed in the preﬁious Chapter in order to
estimate the variance components in Model I.

For simplicity, we assume the specified Model II. Either applying



the Gram-Schmidt orthonormalization procedure to (I—X(X'X)—1X') or
based on methods proposed by Putter (4), we can find an (n-p)xn
matrix H in the orthogonal column space of X such that HX = ¢ and

HH' = I(n—p)’ premultiplying both sides of the linear model by H

leads to
Hy = HXB + He = He,
where
E(Hy) = E(He) = ¢

H(aI + bD)H'

1

V(Hy)

al + bHDH'.
Since HDH' is p.d., there exists an orthogonal (n-p)x(n-p)
matrix P such that P(HDH')P' = D¥, where D* = diag {Ai, i=1,...,n~p}.

Premultiplying both sides of Hy = He by P results in

PHy = PHe
where
E(PHy) = ¢
V(PHy) = P(al + bHDH')P!

al + bD*,
Define Z = PHy; then E(Z) = ¢ and the elements in Z, say
Z 5 i=1, 2, ...; n-p, are mutually independent since 7 is normal and

V(z) = a + bD*. Tet s, = 5 = Z'.Z, i=1, 2, ..., n-p and

S = (895 Sps e sn_pjg where Ai is a (n-p)x(n-p) diagonal matrix

with the ith diagonal element oneband'all other elements zero.
Hence,

(1) s;» 171, 2, ..., D-p are mutually independent sinze zg

i=1, 2, ..., n-p are mutually independent.



' 2 .
(2) E(si) = E(zi) = V(zi) =a + b, i=1, 2, ..., n-p.

(3) V(s;) = V(z5) = V(z'A,2)

2 trace‘(Ai(aI + bD*))2

2(a+bh, )%, i=1, 2, ..., n-p.

In order to estimate a and b, based on the previous results,

we define the following linear regression model:

p— — — -— - — —

81 1 o y
85 1 by u,
. = a|l | +b/° | + | |.
s
B n--p_~ _1 _n—p | | n-p |
1Y U
1 b el
Letting W = : ’ and u = )
1 An—p un--p
i i I

then the previous model can be rewritten as

where E(u)

I}
3



L0

2(a+bh, )2

2(a+bA2)2

V(u) =

)2

2(at+bA
n-p

This is the ‘case that the variance of the dependent variable is
proportional to the square of its expectatioh. As shown in the
previous Chapter, the ordinary least squares estimators of a and b
will be inefficient compared with the proposed maximum rank transfor-
mation estimators if the relative size of the largest variance to the

smallest variance in the regression model is large.

Let Y, = 2a2, Y, = hab, and Y3 = 2b2, then
— : —
Y, + YA, Y %
1 21 31
‘Y + YA, + Y A2
1 272 32
v(u) = , : .
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Without loss of generality, assume (n-p) and (n-p+1)/2 are odd; then
using the theorem proved in the previous Chapter, there exist matrices

A, ((n-p+1)/2) x (n-p), and A,, ((((n-p+1)/2)+1)/2) x ((n-p+1)/2),

such that A = A2A1 and

a
AS = AW + AU
b

— - 2
where E(AU) = ¢ apd V(AU) = (Y1+Y2An_ +1+Y3An—u+3)In— 3"
2 N

Based on Model II, the BLUE of [a b]' is

= (W'A'AW)_1(W'A'AS).

o'y M

The variance-covariance matrix of is

o> o

) = (WA (g + v ).

n-pt1 T V3%p-p#3
2 N

=
o> P>

Discussion

Based on the theorem developed in the previous Chapter, the
proposed method on variance components estimation may generalize to
Model I. Since there always exists an (n-p)xn matrix H in the
orthogonal column space of X, the existence of the proposed estimators
is ensured in case the minimum norm quadratic unbiased estimators
do not exist. Furthermore, the proposed method provides a simple
calculation procedure where MINQUE may require a generalized invefse

procedure.
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Both the estimators based on MINQUE and the proposed method are
unbiased. However, the proposed estimators may have larger variances
in comparison with the estimators, if they exist, obtained by MINQUE.

Although an attempt to obtain an "optimum" (uniformly most
powerful) test on the variance components has been made, no concrete

‘results have been obtained. Since the generalized likelihood ratio
is the ratio of probability density functions of linear combinations
of noncentral Chi-squares, the closed form of the distribution of the
test statistics is not obtainable. Intuitively, an approximate F-
test based on the sum of squafes due to full model and restricted

. ‘ a
model in the model AS = AW + AU may be used yet the properties

b

of this approximate test are unknown.
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CHAPTER IV
SUMMARY
Model I

Let y= X B + € denote a linear regression model where
y is an nx1 vector of observable random variables,
X is an nxp matrix of known constants with rank (X) = p,
B is a px1 vector of unknown constants,

€ is an nx1 vector of unobservable random variables such

that V(e) = V = diagonal {oi : i=1, 2, ..., n},

k
z

i

2 . sis
where (1) o T dij is positive

J=1
(2) ri's are unknown constants

. 4 sy .
(3) dij # di'j for 1 # i' and dij s are known

positive constants
(4) k satisfies the conditions in Appendix A
of this article, which is required for the

Bi's to be estimable.

Model IT

The same as Model I except V(e) = al + bD where
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a=r,
b = T,
D = diagonal {di, i=1, 2, ..., n and 0<d <d,< ...§dn}.

We developed methods of estimation both for the regression
coefficients and variance components in a linear regression model
when the variance is a linear function of unknown parameters. In
order to obtain homoscedasticity in a linear regression model when
the variance is a linear function of unknown parameters, a maximum
rank transformation was developed. After the transformation, BLUE
estimators of the regression coefficients are obtained based on the
transformed model.

For Model II, we proved that a full rank transformation which
homogenizes the variances does nof exist and the maximum rank of the
transformation matrix is m = n/2 when n is even and m = (n+1)/2
when n is odd. So far, only one of the m! possible pairing methods
for Model II has been studied in detail. Criteria such as determinant
(generalized variance), norm, traée, or individual elements of the ‘
variance-covariance matrix of the estimates may be selected for the
purpose of comparing any two possible pairing ﬁethods.

The proposed procedure led to regression coefficients estimators
that are unbiased and consistent. In Model II, it was shown that the
variances of the proposed estimators are smaller than the estimators
based on OLSE when the relative size of the largest variance to the
smallest variance in the regression model is large.

Variance components estimation was tried but with little success.

We combined the OBES technique and the proposed transformation
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technique to obtain unbiased estimators of the variance components in
Model II. The proposed method provides a simple calculation procedure
where MINQUE may require a generalized inverse procedure. Furthermore,
there always exists a proposed estimator whereas the MINQUE may

not exist.

In general, most of the_effort in this study was directed at
finding small sample unbiased estimators of the regression coefficients
and variance components in a linear regression model when the variance
is a linear function of unknown parameters. We presented a method of
estimation based on a maximum rank orthogonal linear transformation
when the full rank orthogonal linear transformation does not exist.

We proposed a method for constructing such a transformation matrix.
Based on this transformation matrix, we derived the proposed estimators.
We hope problems of selecting an optimum (mihimum variance) transfor-
mation matrix among all possible transformation matrices, searching

for a small sample best unbiased estimator for the regression coef-
ficient vector, comparing the power of the tests of the regression
coefficients based on the proposed procedure, ordinary least square
estimation, or maximum likelihood estimation will stimulate further
investigation to the problem of heteroscedasticity in a general

linear regression model.



APPENDIX A

CONDITIONS OF k IN MODEL I (Rk IS A

FUNCTION OF n AND k)

k7
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Ri’ i=1,2, ..., k are the number of observations which remain
after the ith transformation. For the p regression coefficients to be
estimable, Rk should be greater than or equal to p, where k is the

number of variance components in Model I.
R.=n

R

0t Mbd(R0,2) n + Mod(n, 2)

R = 2 p
2
Py
n ‘Ji 1 2 3
3 2
L 2
5 3 2
6 3 2
7 L 2
8 4 2
9 5 3 2
10 5 3 2
11 6 3 2
12 6 3 2
13 7 L 2




APPENDIX B

COMPARISON OF V(Bol s) AND V(Bmt)

IN MODEL IT
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This appendix concerns the algebraic derivation and comparisons

of V(Bols) and V(Bmt)’ as a function of d , when

11 . . .1
X' =

X1 X2 o~ . . Xn

and V = aI + bD where D = diagonal {di: i=1, 2, ..., n}.

Denote { _
(A \ | v(B1ols) V(B’l2ols)
V(B = | ~ N
ols |
E_V(Bmols), ¥(Ba16)
and _ _
(A | V(B1mt) V(B12mt) l
V(B = N ~
mt
VBpry) V(B ,)

We are going to find the values of dn for which equality holds between

V(B1ols) and V(B1mt); between V(B12°18) and V(B12mt); between V(BQOls)

and V(B2mt); and between IV(Bolé)l and |V(Bmt)

T v(Bols)
sy -1 1
V@ ) = (X0 IXvx(xx)
ols N o —r -
n n n n n n
IX -2%| I (athd,) 3 (atbd)X|| ZE -IX
_ 1 i=1 * 1= =1 Y 1=+ i=1
fX'XI2 n n n n
I x L I X
P N R A N I




A. |V(B

Thus, IV(Bols

where

51

) -

ols

= __l__ {r z (atbd, )] [ Z(a+bd )x2]

|x i=1 i=1

V(Bols)

n 2
- [ % (at+bd,)X.1}
i=1 =t

1 ol 5
{r r (a+bd )1 [ Z (a+bdi)Xi

]
1x'x|°  1=1 i=1

n-1 n-1
+ [ X (a+bd )X :]d + [ L (a+bd )X2:]d
i=1 i=1

5 n-1 2 n-1
+ dX2-[fZ(wmd)X] +2 [ I (atbd,)X,] d X
n 121 121 i’*i” "n'n

+ a2x3)

nn

i ( n1 2
5 atbd, 1L Z (a+bd )X ]
| X' x| i=1 i=1

n1 o
- [ I (a+bd,)X,] )} + 5 1 T (a+bd )X2]
i=1 1 ]X'xl i=1

n-1i
+0 2 (a+bdi)‘X§] oz (a+bd X)X Ya
i=1 i=1

)| is a linear function of d

(a) the intercept, the first term of |V(B . )|, is
ols
positive since |X'X|2>>O and V. _, is p.d. which

. 3 ' .
implies |X n_1Vn_1Xn_1|>O, and
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(b) the slope, the coefficient of d , is positive since

|x'x|2 >0 and
n-1 n-1 n-1
{[ £ (atbd,) Jx2 S+ X (a+bd.)X% - 2[ © (a+bd.)X 1}
i=1 S £ R £ o
n-1 5
"= I (atbd,)(X - X.)° > 0.
i=1 1 n 1
V(B 1 )]
ols
. ’/,/‘ /,.
///////////
0 a
n
dn = dn-1

Fi 6. 5 i
igure Det [V(Bols)] as a Function of d_



B. V(g1ols):
v( 1 ¢ = +bd)[(ZX2—X(ZX]
B‘ols E ._1(a - ) i=1 )
2
+(a+bd)[(ZX2)-X ZX)]}
=11 =1
V(‘g1ol.‘3)
ols
0
i =4

Figure 7. V(B1ols) as a Function of dn
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V(Bino1g)
N 1 n—1( n )
V(B )= ——{ I (a+bd,)( I X. - nX
120ls IX'X|2 3=1 3Tt 1
n n n
(X, 2% - 3 xi) + (atbd )( T X, - nX )
i=1 i=1 i=1
n n 2
(xn X xi - I xi)}
i=1 i=1
V(810015
dn = dn—1
0 d
n
Tols

Figure 8. V(B12ols) as a Function of d_
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~

V(B ):

20ls
V(B = { Z (atbd,) [( Z X.) - nX.]
n 2
+ (a+bdn) [(15_1)(1) - n.Xn] }
V(82018)
ols
//

0 — d

a =4d n

n n-1

vFlgure 9. V(BQOIS) as a Function of dn
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. v@ ) = (X'AvAx)‘1(a+bdm+1) and assume n = 2m + 1. By definition

of matrix A, we have

\ ,
k1 7 A (1 Apgq)
Ag —/K221—K2)
1 ;
A'A = |
—/X221—A25 1 - Xg
|
!
'K/Am+1(1bkm+1y 1= A
— . —l
Ao = oy
where %2 =
d -d
m+2 m
Ay = A
mHl
dn - d1 '
T1 x
11 . . .1 . W,
X'A'AX = A'A X '
% & . . . Xn .2




5T

D D

11 12
XA'AX = Where
Dyy Dy
Dyy = (m+1)-2(./>\m+1(1-xm+1) + .. +/A221-A25 )

o
I

g (T=Apgg) (B4K ) + (X + oot + X))

Dyy = Dys

oo Az(xi - Xi+2) et Ay ("‘12 - x3[21)-2*/>\2(1_>\25 XX e

“2/Ap 4 (1A ) XX+ (}{f1+1 + ...+ xfl).

=)
]

Letting
A= (mH1) - 2[/A211-A25 + ... + /Amh_xmj ]

B=2y(X =X o) + e+ A (X, - xn_j) =) (X + X 42)- ...

n

-/xm(1->\m5 (X, +X )+ I X

i=m+1 T

and

= Ae(xﬁ_ xi+2)v+ R xm(xg - xﬁ_1) SRV NN & S
2ff TT-1) XX . + ) =i+1 2,

then



feaax| =2/x Y

A.

m+1 m+1)

V(B )

| 1. lv(é\m‘b) l-_-| (X'A'AX)-1 (8.+bd 1) | = (a.-i-bdm.’_‘l )2

(&KX +C - B (X1 +X_)1 + [AC - B

IX'A'AXI'1
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-4
= (a+bd_, )2{ n m+1 [(A- 1)x2+2xx - (A+1)X2

28(x, X )1 - Y9 ~%p) (dp41-3)

d
n

1

Letting D = (4 - 1)x§ + XX - (4H1 )xf1 - 2B(X,X ) + AC- B

F = 24X, X + 2C - 2BX
1™n 1

F=AC-F°,

then
~ _ 2 .
]v(smt)| = (a+bdm+1) (dn—d1) {(dn+d

-1
E + (dm+1- d, )F}

Letting Z = dn - dm+1‘ > 0, then -

2

z= + (dg+1 - d1)

-4

28X - 28K 1 + (AC- )31

- 2BX , and
n

1Tn

[24X.X + 2C

2

zf(d

V(B )| =T

2
DZ° - 2E]dm+1-d1 7 + F(dm+1—d1)

m+1

] (atbd

m+1

dpr1d4

)2

)
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The nature of this function is determined by evaluation at

- m s . .
dn = dn-1 ’ dn + 4o gnd at dn, the critical point of this
funection.

> _ 2
a. IV(Bmt)Idn=dn_1 = {(a+bd_,,)"(d _,-d,)}

D 4=dpyq ) =28/ (A =0y (A _g=dp 147 (e 4-d,) T}
b. lv(Bm‘b) Id > 40 _LH
n

2 __|v(r - 2
c. 37 IV(Bmt)l =([0z"-2E /4 ,-d, z+F(d_,,-d,)] [22d_ ]

| o P
- [Z2+(dm+1-d1)] (enz-25/a_ a1 &2, }/((0Z

2
-2E/d_, -4, 7 +F(dm+1-d1)] }

2 2 :
2_dm+1 /dm+1—d1 [-EZ° + (F—D)/dm+1—d1 Z+E(dm+1-d1)]

p) 2
[DZ° - 2F dm+1-d1 7 + F(dm+1-d1)]

8 N
Let —57— l V(Bmt)l = 0, we have

B2 ¥ (F-D )[@ -3, Z+E(d_,,-d,) = 0.

Since Z 2 0,

= U [y I+ (@) )

is the only solution, and
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m 2
dr=d .+ (zZ™)“=.

m

mt)l
/&
/'/
E <O
|
0 i dn
d =4 . m
n n-1 dn
Figure 10. Det [V(B ,)J as a Function of dn
B. v(smt)
Sy e O () - 2T XX
1. V(B 4) = mtl "17n w1 b T g )
|X1A'AX| o
(a#bd_,.) d -4
= +1/ +1
Tera [ gD L) -
' n

J dy- +1 J/nH4

1 1Tn
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> .
A (xf_ﬁ +C) - 27 /%141 XX + C(d,-d,)
5

DZ" - 2B[d -4, Z+ F (dm+1‘d1)

( a+bdm 1 )

2. The nature of this function is determined by evaluation

at d =d_ ., d ~4~ and at dm, the critical points of this
n n-1’ "n n

function.
a. [v(81mt)]d -4 = (a+bdm+1) .
n n-1
{ (dn-1 ~dp ) (X1 -Xn+c) _2,/ (dn-1 ~dp ) (dm+1 -4, ) X

+0(dpyq=40)1/ 10 -ay 4 )28 -8 )(d - d )47 (&0}

~ 2 X2
(X-- + C)
b. [V(B-] t)] o= 1 n
‘ " dn++ D (a+bdm+1 )
AV (Bipt) .
c. 57 is a continuousAfu.nction of dn since
]
aax? >0, ana TCme) _ .
‘ 9%

2(atbd ) D238 - 2 +0) - ngm XX
- 28 B (- X ) + 2Ezl(dm+1‘d1 XX,
+ PE(d,q-d,) (5 - X5+ 0) - Fap4-d ) [ag=ay
X X3 2(atbd, ) w3 - 2+ 0) - engfm

L 2 ) 2
x1xn + DZC(dm+1-d1) - EZ /c1m+1--d1 (x1 - Xn + C)

- : 3/2
+ 2EZ(dm+1-d1 )X1Xn-EC(dm+1-d1) } =0~
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2
20D =d, XX, -E_d, (6 - X +0)]

5
+ 7 [F(dm+1-d1)(X$ - X +0) - 00(d_, ~d,)]

+IBC(dp,970y) fapyq=dq - Ol 4-d ) [&) 4-d) XX J= 0
- Since this is a quadratic function of Z, and hence dn’

there are four possible cases for the dependence of

. V(B1mt) upon dn' These are illustrated in Figure 11.

V(B1m'b)
Case 1
0 d
n
o Case 2
0
— - d
4, =41 n

Figure 11. V(B1mt) as a Function of d_
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(a+bdm+1)

V(B1m1:,)
Case 3
0 d
N n
T
Case 4
0 dn
d =4
n n-1
Figure 11. Continued
C. V(Bamt) :
2 _A =2/ (1-x )
1. V(Bth) = ,/Ag+1 ""mH1

| XA A%|

= AU dy) + (44-40)] - 2/, -6,44) (6447
D (dn-dm+1)-2@«dm+1_d1)(dn_dm%;) + F(dm+1—d1)

(a+bdm+1)

2
- ZTA-22[ -4, +4(d ,q-4,)

2 44: ‘ (a+bdm+1)
DZ° - 2EZ /um+1-d1 + F(dm+1_—d1)
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2. The nature of this function is determined by evaluation at

d=d ;, 4+ and at dz, the critical points of this function.

& EV(Bzmt) a=d .~
n-1
A(dn—1—d§f1) tAld,q-d _gj( +1)(d +1”% )(a+bd y
_ +1
D(dn-1_dm+1) _2E((dn- 4 (d d ) +F(d p
~ _ 4
b. EV(Bth)]dn->+°° = 5= (atbd )
av(é )
c- ,__52223_ is continuous function of dn since
IX'A'a%] > 0, and °V(Popt) =0 -
0Z '
[DZ - 2EZ /d +1-d1 + F(dm -d )] [24Z-2 d ]
2 .
- [Z74 - 2Z/dm+1—d1 +A.(dm —d )][2DZ—2E ]

->

o2/
VA d 41794 [-EA+ D] + ZAA(dm+1-d1) [F - D]

d +1-d1) dm+1-d (FE4-F)=0

1

Since this is a quadratic function of Z, and hence
dn, there are four possible cases for the dependence
of V(Bth) upon d . These are illustrated in

Figure 12.



Case 2

|

\\\\\\\\fiii/i////////////’/’——~\\\\\

T~ \\ . /
/\ \\\d/
Case 4 o

0
d_=d,
n n-1

Figure 12. V(Bth) as a Function of dn
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A

D. V(B12mt):
1 v(é Yo [B + xm+1(x X jxm+1 -\ 1) (x1+xnn(a+bd
: 12mt |PA%M 1)
= (a+bdm+1){—B[(dn-dm+1)+(dm+1-d1)]‘(dn-dm+1)(x1_xn)
f/(d -d +1)(d -d, ) (x +X )}/{(d -, Y|Xrarax]}
2 | ‘
_ -72(B + x1 - Xn)+Z{dg+1-d1 (x1+xn) - B(dg}1-d1) (et )
2 . m+1
DZ° - 2F dm+1—d1 Z + F(dm+1-d1)

2. The nature of this function is determined by evaluation at

d =d_ ., d o3 and at d- 0’ the crltlcal points of this function.

n-1
a. [V(B 1. _ _
12mt d—gk1-(amqw1ﬂ4%4-%ﬁﬂ(mxr§9
+/(d _ -d ) (X+x )-B(a ,4-4,)}/
/{D(dn—1_dm—1)-QE/(dm+1-d1)(dn-1_dm—1) (dpyq4-dy))
_ -B+X -X

b. [V(B12mt) g o = Dn 1 (a+bdm+1)
V(B o)

c. ————52-——— is a continuous function of dn since

av(B )

|x'A'AX| > 0, and —2BE. -

oZ
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2 - -
(02" - 2B(d ,,-d, Z + F(d_,,=d,)]I-27(B+X,-X + /dm+1—d1 (X,+X )]

2 : =
-[-Z (B+X1—Xn)+Z(dm+1-d1(X1+Xn)-B(dm+1—d1)][20Z—2E/dm+1—d1]-O

>

2 -
Z [2E/dm+1-d1 (B+X1-Xn) ) /dm+1-d1 (x1+xn)]

+ Z[-2F(dm+1-d1)(B+X1—Xn) + 2DB(dm+1—d )]

1

+ (e dm+1_d1

ntq=dq)/ [F(X;+X ) - 2 BE1=0

Since this is a quadratid function of Z, and hence dn, there

are four possible cases for the dependence of V(B ) upon

12mt
dn. These are illustrated in Figure 13.

A

V(84opt)

Case 1

Case 2

0 d
dn=dn-1

as a Function of dn

Figure 13. V(B12mt)



V(B o)

Case 3

Case 4

dn=dn-1

Figure 13. Continued

ITI. A. We next find d such that V(B ) = V(B, ,). The solution
n 1ols 1mt
#*
will be denoted. as dn.

B, )=—l— % & 322
V( = £ (atbd,)( I X, - X, I X,
1ols IX'XIZ i= 1 g=q 3 1,293

d. )

V6 gmt) = (a+bdm+1){(dn'dm+1)(X?'Xi+0)'2/(dn'dm+1)(dm+1' 1

68

XX, +c(d) -4}/ D(d -4 ,)-25/Tq ~d ~T(d ~=d.)

m

+F(d ,,-4,)}



V(B, . ) =V(B4) Vea,bdal +bDisp.d. >

“1ols
1 o | B2
A1 ——Qtz(zx-xizx)]
xx[? a=1 5= 3 Ly
e, m+1)(x2 x2+c)-2jd ot Py X%, + Cld,1=a))
D(dnhdm+1) 2Ed d 1/dm+1 d + F(d w1 1)
1 n -
A2 ——
50Id4(5X -%
|xx] 1(j J 1_13”
=d+1 1)(112--1c2+c) 2 A A8y XK -d,)
m
D(d d+1) 2E(d ~d_ 1/m+1-d +F(d 1)
e} n n
> By (ix -x zx)J_—1——2-52d(zx-x f 1)
Xx|? 1= g=1 ] 13 lxx|? 1= L=l g
n-1 5
z d(zx - X zx)
= Ty= ) iyl
x - _ifwmH
> d - n
n

I - 3 %)2
1 X, -X 3
=13 By

if 4> d" then V(B . ) > V(B )
* dn - dn_thén V( 1ols’ — B1mt

B. We next find dn such that V(BQOIS) = VEBth). The solution

*
will be denoted as dn.

A B —1—— 2
V(BQOIS) = IX'X{2 121(a+bd )( 2 xj nXi)



(dy-diyq)4-2fd =y 1 [Ayq-dg A0y

-d1)

V(éth) = (atbd )

D(d 1) =28 (A d g B4

, V(BQOIS) = V(Bth) Va &b al+bDis p.d. >

1 n ( n )
L (X, -nX
%2 =1 g=m 3 1

2

B.1

(dn-dm+1)A-2Jd m+1jd 4144 * A(d 1)
D(dn—dm+1) 2F [ -a +1jd PR + F(d 1)

1 Zd(ZX

B.2 Y
xx|2 11 ]

- nX, )2
1

(a-d )4 - 2fa d+1/ 13 +A(d 1~44)

= d

d1 +( dm+‘l

-d,)

m+1

D(dn-dm+1)—2Ejn -d, + F(d -d1)

m+1 / m+1

d n n
-‘-‘%z(zxj nx,)? = —1— Zd(ZX
|X'X|€ 1=1 j=1 |x'x|€ i=1 1 =1 d
n-1 n 5
L d (I X;-nX,)
. i=t gm0
> @ - = iZnt+1

n 2
(ZX,-nX)
j=1J n

>

A

V(62018) 2V

*
> if 4 2 d_ then ® 2mt)~

2
- nX,)

70
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C. We next find dn such that [V(B12ols) | = |V( B12mt) |. The

*
solution will be denoted as dn.

1 n n n n X2
—s I (a+bdi)(.2 xj—nxi)(xi h xj— 3 j)

(B, ) =
12018 xix|2 1= 3=1 =1 9 =1

v( r’3\12mt) = (atbd 1= (dn—dm+1 V(B =X )Y @,-a4q) (dm+1.“d1 \)

(Xy#%) - B(d  -d)}/{n(d - ,.)

“QE/ (@ =d 1) (A q=dy) + F(d,4-d )}

n n

6.1 5 I(IX -mK)(X IX - zx?)
|X'X|T i=1 j=1 i=1 i=1
- -'(dn-'>d m+1)(B+X1_Xn)+jdn—d}g+1 \/dm+1-d1 (X1+Xn)_B(d;n+1-d1)
D (dn_dm+1 )-QE/ d=dq dppq=dq * F(dm+1 -d1)
1 n n n n x2
c.2 Zd, (X, -nX,)(x, IX,- IX)
Xx|? 1=t y=d TR T T

= (-d ) -(d -a (B -X )4/ (a -6 )(d o a))

(X432, )-B(dy 1=4,)3/1D(d, -4, )-28 /Cin-dmﬂ AL NE

+ F(dm+1—d1)}



d

>

|x1x|
1
= |xx)®

>

o+l

i=1 1 g=1

n ( n )¢ n
I (XX, -nX)(X
1=1 3= 3 AT

n n | n
£d, (XX, -nX)(X

n-1 (n Y n
r 4, (X, -nX)(X
=1 1oy d R s

_ w1
gx - gXQ)

( n
X
=13 5=

j=13 ") (5

S o >
>4 2 d; then [V(By, ) 2 [V(B,, I

* 2V = [v(R v
D. Pind d for [V(B 1 )| = [V(B )| Ta,b

> al + bD to be p.d.

. IV(Bolis

) =

xvx| 1 n ' n
|X'X|2 = IX'X|2 { iZ [a+bdi])(E

E [a+bd i]X§)
= i=1

- (

n : 2
151 [atbd,] %)%

o
a2 [ (n-1) IX2- IXX,]

i=1 1 gy 1

X d,X.X

t L + (n-1) x
+ abl I pX + (n-1) Z4.X, -
e TR A a

k 1

Ldx -

I d,d.XX.]
11
7k

2 n
24, X, X.J+ b " [Z
1k igg + I

-i#jji‘]

72
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= a2G + abH + b2I
A . (d. "d )
Vi6g)| = (atbly,) ==,
D(dn’dm+1)'QEJKdn'dm+1)(dm+1“d{7+F(dm+1'dﬁ
V(B 15| = [V(B )| for all a,b # 0> al +bD is p.d.

D.3 d,, G = I

‘Solve D.1 for d° substitute into D.2 and D.3 if:
1. The equality of D-2 and D.3 hold then

¥* A A
i . .
a d >|v(g, 0| 2 |V(B )| ¥ ab >aT+bD is p.d.

2. Otherwise, there does not exist a d; >

v . )| > [v(8,,)| for all a and b 3 aI+bD is p.d.

ols



APPENDIX C

LISTING OF PL/1 COMPUTER

PROGRAM AND OUTPUT

4



The following computer program is designed to eliminate the

>

unequal variances in Model I specified in this thesis. The transformed

data will be punched on cards (program statement #231 and #243) which

may be used as input to any ordinary least squares computer program.

In order to find the estimates of the regression coefficients in a

single run, the transformed data would be written on a temporary file

named TSAI (program statement #232 and #244) which can be used as input

to the next job step for an ordinary least squares computer program.

Either option can be eliminated by withd:awing the corresponding cards.

A sample JCL of using SAS in job step 2 is shown below:

\

// JOB
//STEP1 EXEC PL1LFCLG

//PL1L.SYSIN DD *
(P11 source program)
/*
//GO.PUNCH DD SYSOUT=B, DCB=BLKSIZE=80
//GO.TSAI DD DSN=&TA ,UNIT=SYSDA,
// SPACE=(CYL,(4,1)),DISP=(NEW,PASS),
// DCB=(RECFM?FB,BLKSIZE=80,LRECL=80)
//GO.SYSIN DD *
(input data cards)
/*
//STEP2 EXEC SAS3
//GO.TB DD DSN=*.STEP1.G0.TSAT,DISP=(OLD,DELETE)
// DCB=(RECFM=FB, BLKSIZE=80)

DATA; .
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INPUT DDNAME=TB Y 1-8 X1 9-16 X2 17-2k;

/¥
// |
The input stream to the PI1 pfogram should be ordered as
follows:
Numﬁer of observations(n)
Number of regression coefficients(p)
Number of fariance components(c)
Dependeﬁt variable observations: y(1), y(2),'.;., y(n)
Independent variable observations(row major)
X(1,1), «.., X(1,p)
X(2,1), «evs X(2,p)
X(n,1), ..., X(n,p) |
where X(1,i), ..., X(n,i)‘are the n observations of the
ith independent variable.
Variance-Covariance matrix(row major)
D(1,1), «.., D(1,c)
D(2,1), ..., D(2,¢)
D(n,1), ..., D(n,c)
where D(1,i), ..., D(n,i) are the n diagonal elements of the
ith variance component.
The numerical values in the specified order can be punched in a
stream on any number of cards with at least one blank between any two

values.



A sample output of the PL1 program and SAS are attached at the

end of the PL1 source program list.
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UNOUNDERFLOW) ¢

(NOUNDERFLOW) &
MT: PROC OPTIONS(MAINI;
/% CHECK DETERMINANT OF NEW XX BEFORE RUN REGRESSION */
OCL (LYUNDoXUNGNPILOINSNC)oTIN)) BIN FLOAT(S53)) CTL:
DEL (LYY (MM) XX (MMyNP) \NUDEMMyNC) s LAMB(NsNCJ) BIN FLOAT(53)) CTL3
DCL AUMM,N) 3IN FLOATIS53) CTL;
DCL (NyMyM1,MM,NP,NC,15,M000} BIN FLOAT(53);
OCL S BEN FLOAT(53)3
DCL ((T1(9),72(10)) BIN FLOAT) INLT(O):
15=03 -
ND=03
IN: GET LISTUNJNP,NC);
ALLOCATE YoXoDsToLAMB;
GET LIST(Y,X¢D)i CALL OUT:
LUP: INDEX=13
PUT PAGE:
PUT SKIP(S) EDIT(*STAGE =*,15) (COLUMN(5),A(T),F(5));
PUT SKIP(5) EDIT('NUMBER UF OBSERVATIONS =',N) (COLUMNI5),A124),F(10))3
CALL SORTD: . i ’ .
PUT SKIP(S5) EDIT('X MATRIX:') (COLUMNIS),A(9));
PUT 'SKIP(2) LISTUX);
PUT SKIP(5) EDIT('D MATRIX:') (COLUMN(S).A(9));
PUT SKIP(2) LIST(D};
1F INDEX=0 THEN GO TO L0OP;
CALL TRANSF;
PUT SKIP(5) EDIT("LAMBAD MATRIX:') (COLUMN(5),A(l4));
PUT SKIP(2) LISTILAMB);
PUT SKIP(5) EUIT(*A MATRIX:*) (COLUMN(5),AL9));
PUT SKIP(2) LIST(A);
CALL NUDATA;
N=MM;  FREE AsVeXeDeT; ALLOCATE YoXsDoT3
LU I=1 TQ MM; Y(I)= YY(I); END; FREE YY; -
00 I=1 TO MM; DO J=1 TO NP; X(IsJd)= XX(1,J); END; END; FREE XX;-
DU I=1 TU MM; DO J=1 TO NC: D(I.J) = NUD(I,J}; END; END; FREE NUD;
IF ISCKNC THEN GOTU LOP3
PUT SKIP(L0) EDIT('THE NEW DATA ON THE FOLLOWING PAGE(S)') (COLUMN
(10),A(37))3
ND=13
CALL 0UT;
SORTU: PROC:
NLl=N-1; IS=1S+1;
TC N1

00 K=11 TO N; .
IF D(1,1S) > D(Ke1S) THEN D03
OUM = DI, IS): DII4IS)= DIK,IS): DIK.IS) = DUM;
DO J1=1 TO NP3
DUM = XUI,JL); X(L,J1) = X{KeJd1Di X(KyJL) = DUM;
END;
QUM = Y(EDs  YOI)=Y({K); Y(KR)=DUM;
ENODS
END:
ENU: .
IF DU1sIS) = DUN,IS) THEN INDEX=0;
RETURN
END SORTD3
TRANSF = PROC:

170

(NOUNDERFLUW) :

MOCD = MODIN.2)3:
IF MOOD=1 THEN DO3 |
ML=(N#L)/2; Ma3Ml-1; MM=M1; ALLOCATE A;

DO I=1 TO ML: 00 J=1 TO N; A(I,J)=0; END; END;

DO I=2 TO M13
Mi= Mel3
MJ=M-142;

LAMB(I,1S) = ( D(MI,IS) - DIML,IS)I/( O(MI.1S) = DIMJ,ES)I;

END3

DO [=1 TO ML; DO J=1 TO Ni All,J) =0 ; END; END:

AllyML) = 1;

DO 1=2 TO-Ml; Il = I-1; MIlL = ML - Il; MI2=
A{I,MI1)= SQRT( LAMB(L,IS) )i
A(1,MI2)= —SQRT( 1 - LAMB(L,IS));

END: .

END;

IF MOCD=0 THEN DO;
M = N/2; MM=M; ALLOCATE A;
ML= M+#l:. DO I1=1 TO M; DO J=1 TO N; All«J)=05
DM= ( DIMIS)+ DML, 150)/23
00 [=1 TO M; MI =Me[; M2 =M-l+1;

ML+IL3

END; END;

LAMB(I,1S) = { D(MI,IS) — DM)/(D(MIcES) - D(M2,15));

END;
DO 1=1 TO M; M3= Mel-I; Ma= M+I;
AlLTeM3) SQRT(LAMB(I,ES));
AL M4) =—SQRT(l — LAMBLE,IS))3
END3
RETURN3
END FRANSF3
NUDATAz PROC; .

ALLOCATE YY,XX¢NUD; ML=MM+ 13
AY: DO 1=1 TO MM;’
$=0;

080 K=1 TO Ni
S = S ¢ ALIKI*V(K)S
END:
YY(r) = S§;
END;
PUT SKIP(S5) EDIT(®AY*) (COLUMNIS)AL2));
PUT SKIP(2) LISTIYY);
AX: DO J=1 TO NP3
DO I=1 TO MM;
$=03

H
DO K=1 TO N3
S=S% A(I,KI*X{KyJ)3
END;
XX{1edd=S35
END;
END:
PUT SKIP(S) EDIT(*AX*) (COULUMNI(S),AL2)}3
PUT SKIPL2);
DO I=1 TO MM;
PUT SKIP LISTUXX(I,1)sXX(192)03
END:
ADA: 1D=1S+¢l: [F IU<=NC THEN DG;
1f MOCD =1, THEN DO;
00 K=1D TO NC; D00 Kl= 2 TU MM; MK=M -K1+2;

MKK= MeKL3

gL



(NOUNDERFLOW) : (NGUNDERFLOW) ¢

174 NUDIKLoK) = LAMBIKL, IS)*#D(MK,K) + (1 — LAMB(KL,1S))*D(MKK.K); 242 END;
175 END: NUD(L,K) = D(MMyK): END; ) 243 PUT FILE(PUNCH) EDETIT2) (1OF(8,3));
178 END; 244 PUT FILE(TSAL) EDIT(T2) (LOF(8,3));
179 IF MOOD=0 THEN DO; . 245 K1=K1¢13
181 U0 K=1D TO NCi DO KL=1"TO MM; MK= M¢1-K1; MKK=M+K1; 246 END;
185 NUDIKLoK) = LAMBUKL,IS)*O(MK,K) ¢ (1 — LAMB{KL,I5))*D{MKK,K); 241 K=K-10;
‘186 END; END; 248 IF K>0 THEN GO TO-LOP;
188 END 250 END:
189 PUT SKIP(5) EDIT(*ADA*) (COLUMN(5),A(3)); 251 END;
190 PUT SKIP(2)3 252 RETURN:
191 DO I=1 TO MM; 00 J=ID TO NC; 253 END OUT;
193 PUT SKIP LISTINUDLI,J)); 254 END MT;
194 END: END; :
196 END; -
197 : RETURN;
198 ENU NUDATA;
199 OUT: PROC;
200 PUT PAGE; . .
201 PUT SKIP EDIT(*NUMBER OF OBSERVAT IONS=*,N) (COLUMN(S5),A(23),F(10));
202 PUT SKIP EDIT(*NUMBER OF REG. COEFFS. =*,NP)(COLUMN(5) ,A(24),F(9));
203 PUT SKIP EDIT('NUMBER OF VAR-COMPONENTS NC)(COLUMNIS) (A(26) F(T));
204 PUT SKIP(5) EDIT(*DEPENDENT ‘VARIABLE:®)(COLUMN(S),A(19));
205 .. PUT SKIP(2) EDITUY) (10F(12,31); -
206 DO J=1 TO NP; . .
207 PUT SKIP(5) EDIT(*INDEPENDENT VARIABLE®;J) (COLUMN(S),A(20),F(5)1;
208 00 1=1 TO N;
209 O =XUT,005
210 END:
211 PUT SKIP(2) EDITIT) (L0F(1243)); . :
212 END; .
213 IF ND=0 THEN DO;
215 D0 4=1 TO NCi: - :
216 PUT SKIP(5) EDIT(*OILAGONAL ELEMENTS OF THE VAR-COV MATRIX: COMPONEN
T'4J)  (COLUMNIS) 4ALS0),F(5));
211 DO I=1 TO N;
218 T(= D(I,4);
219 END:
220 PUT SKIP(2) EDIT(T) (10F(12,3));
221 END;
222 END;
223 IF ND=1 THEN 00;
225 DO 1=1 TO N;
226 K=NP;
221 M=MIN(NP,9) 3
228 DO J=1 TO M3
229 TL) = XU1.4);
230 END; .
231 PUT FILE(PUNCH) EDIT(Y(I),TL) (LOF(8+3));
232 PUT FILE(TSAI) EOIT(Y(IJ,T1) (LOF(8,3));
233 K1=0;
234 K=K-93
235 LOP: [F K>0' THEN DO;
237 M=MIN(K,9) 3
238 L=10+K1*10;
239 DU J=L TOQ M;
240 ML = L - (L-1);
241 T2(M1) = X(L4d)5
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INPUT BEFORE THE TRANSFORMATION

NUMBER UF OcSERVATIUNS=

13
NUMBER UF REG. CUEFFS. = 2
3

NUMBER OF VAR-CUMPONENTS =

UEPENDENT VARIABLE:

1.000 2.000
11.000 12.000

INDEPENDENT VARIABLE

1.000 1.000
1.000 1.900

INCEPENDENT VARIABLE

0 . 2.000
0

1.00
L1.00 12.000

UTAGCNAL ELEMeNTS JF

L.000 1.000
1.000 1.J300

UTAGUNAL ELEMENTS OF

1.000 24000
11.000 12.009

ULAGUNAL ELEMENIS CF

1.300 4.000
121.000 L44.300

3.000
13.000

N 1. 000
1.000

3.000
13.000

THE VaAk-CuVv

1.000
1.000

THE VAR-LUV

3.000
13.000

THE VAR-COV

9. 000
169.000

4.000 S5e
1.000 l.
4.000 5.

MATRIR: COMPUNENT

1.000 1.

MATKIX: CCMPUNENT

4.000 Se

MATRIX: CUMPONENT

16.000 25.

000

000

000

000

000

3

000

6.000

1.000

6.000

1.900

6.000

36.000

7.000

1.000

7.000

1.000

7.000

49.000

8.000"

1.000

8. 000

1.000

0.000

64.009

9.000

1.000

9.000

1.000

9.000

81.00Cu

10.000

1.000

10.000

l.000

10.000

100.000

0b



OUTPUT AFTER THE TRANSFORMATION

NUMBER UF OBSERVATIUNS=
NUMBER CF REG. COEFFS. =
NUMBER OF VAK-COMPUNENIS =

wN S

UEPENDENT VARIABLE:

—4.243 l.s9l 2.928 10.309

INDEPENDENT VARIABLE L

G.000 0.000 0.000 0.866

INDEPENDENT VARTABLEL 2

—4.243 l.491 2.928 10.3095
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ST A

ANALYSIS OF VARIANCE TABLE o

SCURCE DF
REGRESSICN - 2
ERROR . 1
CORRECTED TUTAL 3
SOURCE LF

X1 1

X2 L
SOURCE . 8 VALUES
INTERCEPT 0400090000
x1 0.009000000
X2 1.00C0000u

TISTULCAL ANALYSI

S

SYSTEM

REGRESSICN CUEFFICIENTS ,» AND STATISTICS UF FIT FOR DEPENDENT VARIABLE Y

SUM OF SQUARES MEAN SQUARE F VALUE
107.5294948175 53.764749317 :999999.99999
0.00000000 0. 00000000

107.52949875

SEWUENTIAL SS F VALUE
78.74051008 999999.99999
28.78898867 999999.99999

T FOR HO:B8=0

J.00000
0.000C00
999799499999

PROB > F

0.0006
0.0006

PRUB > (T

1.0000
1.0000
0.0001

PROB > F

0.0001

PARTIAL SS

0.00000000
28.78898867

STLU ERR ©

0.00000002
0.00000011
0.00000001

R-SQUARE

1.00000000

STD DtV

0.00000004

F VALUE

0.00000
999999.99999

STD 3 VALUES

U.0
0.9000000060
1.0C000000

N CoVe

0.00000 %

Y MEAN

262025

PROB > F

1.0000
0.00V06

cg
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