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CHAPTER I
INTRODUCTION

Success or failure? Accept or reject? Yes or no? These are but
three of the innumerable dichotomous decisions made daily in every
field of endeavor. While the greatest percentage of these decisions
are made almost instanteously by humans (and, for the most part, almost
as quickly forgotten), an increasing number of the more repetitive of
them are being quantified and the results made the basis for policy
determination, at times being incorporated directly into equipment.

This investigation is concerned with such decisions. More partic-
ularly, it examines methods for most economically determining the dis-
tribution of the random variable which governs the outcome of the pro-
blem. Knowledge of this distribution is considered to be available
from two sources: first, frop the extant experience pertaining to it,
a priori knowledge, and secondly, from Sampleé drawn from the process
itself. The a priori knowledge is assumed to include not only estimates
of the initial state of the governing variable but also predictions of
its future behavior. It must be possible to categorize the samples
taken into a dichotomy which parallels the decision space, i.e.:
acceptable or unacceptable. To this knowledge must be added a third
essential, a model of the problem which includes the gain or loss asso-
ciated with each of the decisions.

The problem which germinated the investigations of this paper was

that of an adaptive communication system involving a binary symmetric



channel (1). The decision involved was the choice of one of two decod-
ing schemes. The probability of correct transmission was the random
variable concerned and the loss functions were determined by the channel
entropy. While not treated specifically herein, this problem is embed-
ded in the class of problems considered and the developments of this
study can, with simple modification, be used in its solution.

From the above, it is evident that the decision problems investi-
gated are subject to the following restrictions:

a) The process must be amenable to meaningful sampling.

b) The decision space and the samples must be dichotomous.

c) The loss functions must be determinable.

d) A priori knowledge of the governing state of nature, including

possible change, must be available.

Within this framework, we will consider first the problem of deter-
mining a single optimum sample size when only a priori information is
available and the state of nature remains the same throughout the period
of consideration. This problem has been frequently considered for spe-
cial cases. Here the method is generalized allowing adaptation to many
problems and providing a foundation for the subsequent developments.

The second major development considers an adaptive decision maker.
That is, there is continuous feedback during the sampling process to the
decision maker who, after evaluating each sample, can direct the taking
of another sample prior to the final accept or reject decision. A
dynamic programming approach is used and again, the state of nature is
time invariant. The use of dynamic programming in adaptive systems has
been suggested previously (2), (3) and the sequential sampling problem

has been widely studied since Wald's initial work in the area (4).



The natural meld of dynamic programming with statistical decision theory
in the sampling problem has also been suggested (5), (6). While neither
sequential sampling nor the use of dynamic programming in adaptive sys-
tems is unique, nothing has been found in the literature regarding the
use of dynamic programming for sequential sampling decisions of the type
considered in this paper.

The last portion of this study involves consideration of the state
of nature as a stochastic process. The effect of time on the random
variable involved is described by a difference equation model and the
resulting distributions of the random variable studied. Finally, these
results are used in the decision theory formulation to determine practi-
cal optimum sampling plans.

Throughout this paper an example problem from the operations re-
search area is included to illustrate the use of the techniques devel-
oped. The problem, while relatively simple to facilitate the following
of the techniques, is general enough to be directly adaptable to a large
class of extant physical situations and, with minor modification, to
many other situations both in operations research and other areas.

Where appropriate, FORTRAN programs for a digital computer have
been written and used. These programs and certain results from them,
appear as appendices.

It is assumed that the reader is familiar with the basic concepts
of statistical decision theory such as those discussed in Weiss (7).
While not a prerequisite, an understanding of the rudiments of dynamic

programming is helpful (8).



CHAPTER II
TIME INVARIANT; SINGLE SAMPLE SIZE DETERMINATION

The problem of determining the optimum sample size in the time-in-
variant, non-sequential case 1s merely oné of application of statistical
decision theory techniques.

For solution, three essentials must be known:

(1) Set of possible decisions

(2) Loss function

(3) Description of nature
In the binary non-sequential sampling problem, only two decisions are -
possible. These may be called yes‘- no, go - no go, accept or reject,
lor 0, etc, but in every casé, the two decisionsvconstitute the entire
decision space and are mutually exclusive.

The loss functions involved are compietely determined by and nor-
mally unique to the particular problem under consideration. They may
or may not be determined by the problem solver and, in many cases, in-
volve subjective judgements on the part of the individuals tasked with
making such a determination. For our purposes, the example chosen for
illustration will attempt to avoid controversy in the assigmment of the

loss functions.
Distributions of the Random Variables

In this investigation, it is considered'that nature is completely



described by some distribtuion of a random variable, P, the probability
of one sample being '"acceptable"., This distribtuion is determined by

considering the method of sampling. Each sample is discrete, statisti-
cally independent, and can be placed in one of two definite categories,
say ''favorable'" or "unfavorable'". Letting the random variable A repre-
sent the number of favorable results, the distribution of A becomes the

familiar Binomial:

P (A = a|psx) = fA|ng(a|p=X) = (:) s N (2:31)
where x is the total sample size. Note that this considers P a known
quantity between zero and one and represents the distribution of A
given P. Since we are attempting to determine P having sampled x items
and finding a favorable ones (the sampling experience being denoted §),
we make use of Bayes Rule:

fAlP;x(alp;x) fP(p)
fA(a) .

fPlg(pla;x) =

Since
-]

£, IfA]P;x(ale;x) fp(e)de

-0

this a posteriori density becomes
fAlP;x(a|p;x) fP(p)

SfAIP;X(ale;x) £,(6)de

(plasx) = (2:2)

fP|5

The problem now becomes one of selecting an appropriate a priori distri-
bution, fP(p).
Since the number of favorable samples is distributed binomially,

a reasonable candidate is the Beta distribution. It fulfills the



criteria of being a continuous distribution as well as having many simi-
larities with the discrete Binomial.

Letting

: ' I'(A+2) ] A=y
fp16(P¥) = FHEDTG-wD) P P el

with 0 s P <1, ¢ > -1, A’ >y -1, and & indicating the best extant
prior knowledge about P, equation 2.2 becomes

i a+y xtA-a-y
i e P "{I-p)
fFIE(pIa'x’w’A) = . (2.4)

03tV (1-g)¥tA-2~Vyy

0

The denominator of 2.4 is recognized as a complete Beta function yielding

I'(a+1)T(B+1)
I'(a+B+2)

1
o 8. o
j;e (1-8)"de = B(a+l,B+l) = (2.8)
0

If o and B are non-negative integers, say a and b,-the integral becomes

1
t ol b alb!
‘I‘ 87(1-6)". de S 5SS (2.8)
o]

if 0! is defined as one. From 2.4 and 2.5,

" I (x+\+2) aty, . _\x+i-a-y

for 0 < p <1, ¥ > =1, A > Y- 1, a and x non-negative integers. (These
restrictions on the values of the parameters pertain throughout this
paper and will no longer be explicitly stated except where necessary
for clarity.)

The density of equation 2.7 is again recognized as showing a Beta

distribution for P which is further, and perhaps the strongest, argument

for choosing the Beta as the a priori.



When the parameters of the a priori distribution, A and ¥, are both

zero, it reduces to the equally - likely or rectangular distribution

. _ )1, ospsl
fPIB(P’O’O) T {:é elsewhere. (2.8)

For this initial development, the rectangular form for the a priori dis-
tribution will be assumed. Chapter IV will relax this restriction by
allowing A and ¢ to take values-other than zero.

Since a and x are non-negative integers, equation 2.6 pertains and-

equation 2.7 becomes

_(xt1)!  _a .. x-a
fPIE(PIaW:O,O) = TTeyT P (P . (2.9)

-Risk Determination

Having determined the probability distributions ‘involved in the
sampling problem, we are now prepared to formulate the risk functions.
which we will be considering.

The following notation will be adopted for use throughout this

paper:
.2 = lot size
x = sample size
y = nr. remaining after sampling
a. = nr, of acceptable samples
b = nr..of unacceptable samples
p = probability eof good
q = (1l-p), probability of bad
D, = decision A (accept, etc)
D, = decision B (reject, etc)



Since sampling occurs prior to the decision the risk incurred during the
sampling or testing process is normally the same regardless of the even-

tual decision. If we know L_, the loss during sampling, we can deter-

T’
mine the sampling risk, RT' by calculating the expected value of the
loss. Since RT must involve the number of samples taken, it is a func-

tion of X as well as P. Thus
RT (x,p) = E [LT]. (2.10)

We are now prepared to calculate the risks incurred after sampling. Two
different risks must be calculated here; one under decision A (accept,
go, 1, yes, etc) or B (reject, no-go, zero, no, etc). Again, the
losses, LDA and LDB, are determined by the problem and the associated

risks are the expected values of these losses.

R. =E |L #nd R OnE - L (2.11)
R T By

These risks are functions of the variable y and the random variable P.
Since, in general, y is a function of x (and possibly p), these risks
can be expressed as functions of p and x.

Having determined Rna and Rpys we can determine what sampling re-
sults will be used to choose the best decision by setting up inequali-

ties. For decision A,

G PDA] 2 [RDB]

and, for B,



Since the only random variable involved in these risks is P (a, b, x,
and y are, after testing, known integers, not random variables), and
we have, from equation 2.8, the distribution of p given a favorables
from x samples, these inequalities can be solved for the values of a in
terms of x which will form the decision boundary. These will be of the
form
a s g(x), (2.12)
the direction of the inequality indicating the decision. For this de-
velopment, with no loss in generality, a > g(x) will be used to choose
decision A, accept, and a < g(x) will choose B, reject, noting that when
a = g(x), Rp, = Rpg.
We can now write the expected value of the summation of these

losses as follows:

R (x,p|8) = RTP (osasx) + RD P [g(x)<azx] + RD P [ozgazg(x)] (2.13)

A B

where & indicates the a priori estimate on P. Since, from equation 2.1,

A is discrete and binomially distributed,

P [g(x)<asx] = 1 - P [ogasgg(x)]

and

W
P [osasg(x)] = E : pa(l-p)x-a

a=o

where w is the "greatest integer function"’ of g(x). Equation 2.13

becomes

lApostol, T. M., Mathematical Analysis (Reading, Mass., 1957),
p: 201: "The value of the 'greatest-integer function' of x is the
greatest integer which is less than or equal to x, denoted by [x]."
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W
R (x,p|€) = Ry + Rp, + GDB - RDDZ(:)pa(l-p)x-a, (2.14)
a=o

The expected value of this expression must now be considered. Since

P is the only random variable involved, this expected value is

E [E(x,p]&il = R(x|6) = S’ﬁ(x,e]s) £p15(016) a6
o . w
3 b B A SR - C‘) eau—e)""] de.
_ﬂ% 5 * (o~ ™) ;:o . _

Since ea(l-ﬁ)x-a is continuous in the closed interval zero to one

(2.15)

when x and a are non-negative integers with asx, the integration and

summation in equation 2.15 can be interchanged? yielding

g 1
R (x|€) = f( + )da + fé -R )ea(l-e)"'a de. (2.16)
J (o, ;2;(‘:) J (o, ™,

Performing the indicated integrations and summation results in an
expression for the total risk as a function of x and w. Since w is a
function of x, the range of x in terms of w can be found by solution of

the following inequality:
w < g(xo) < wtl, (2.17)

Selection of a value, xX,, within this range will give, upon substitution,
an R(xg|€).
The value of ®, which minimizes R(x_ |6) can usually be found by

simple techniques of differential calculus. Recalling that the optimum

21bid., p. 221.
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value of x, X __, must be a non-negative integer, allowable values of x

opt
near x, should be substituted in equation 2.16 E?{E in the expression
for ﬁtxo|8ﬂ until that which produces a minimum for R(x|&) is found.
This then is the optimum sample size in the time~invariant non-sequential
case if sampling is done. This minimum expected risk with sampling must
be compared with the appropriate risk when no sampling is accomplished.
If the latter risk is less than the minimum sampling risk, no samples
should be taken.
In summary, the procedure is as follows:

a) Determine the appropriate losses, LT’ LDA and LDB’

b) Calculate associated conditional risks, R = E [L|P].

c) Determine the decision rule.

d) Find the total risk, R(x,P|&) = ] E[R].

a

e) Find the expected value of total risk;

R Galo) = 2 Roeplo) = [ Rexuplo) 0000 e
1 . (2.18)
a

0
£f) Find the integer value of x which minimizes R(x|é&).
An Alternate Approach

Howard (5) has developed a general model for solution of problems
of this nature which could also be used in determining R(x|&). His
model is based upon two equivalent trees, the '"decision tree', and
"nature's tree'". For this problem, these trees take the forms shown in

Figures 1 and 2.
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E[R! qupS]

TEST RESULT ACTION OUTCOME

Figure 1. Decision Tree

E[R l #a‘DDE]

OUTCOME TEST RESULT ACTION

Figure 2. Nature's Tree

The script E symbol, &, again denotes previous experience which, in
this case, is the a priori distribution of P, fp. The "test" is the
selection of the x items to be sampled, the "result" is the number of
acceptable items, a, of the x, the "action" is the decision, A or B,
selected as a result of the sampling, and the "outcome" is determined by
the random variable P.

Howard shows that the expected risk, given only the a priori of p,

can be expressed as

E [R|€] = S SSSE [(R|x,a,D,P,&] fx’A’D,Pls(x,a,D,pM)

x a D P
(2.19)

% Sfxla(“) S £alxe S flx,A,¢ S fp1x,4,0,6 F [R|x,2,D,p,¢]
X A D P
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where EE; is a general summation operator over the set or variable on
which it operates comparable to a Reimann Stieltjes integral.
His procedure involves the assigning of probabilities to PIG and to

A|Px&, in this case £

equally likely and f binomial as shown in

Ple
" equation 2.1. He then finds f

A|xPe

PIxA& by use of Bayes Theorem as shown in
equations 2.2 thru 2.8. By selecting with probability one ' the best -
test - optimum x, and the best action, decision A or B, dictated by the

test results, he simplifies the decision tree to that shown in Figure 3.

E[R l Xo?r a Doprps]}

fax® feix,a,0,8

Figure 3. Modified Decision .Tree

Arguing that fP|xAD8 = fPIxAG when the outcome, P, is governed by

nature rather than an opponent, he reduces'equation 2.19 to
A :

Comparison of equation 2.20 with equation 2.18 shows.the same result

if Ry is substituted for E [R]xopt?a,D +2Ps6] siqce

op

’ 1
S falx,6 S fplx,a,8 ° SZfA]xPG fpix,e P
A P L

An Operations Research Example

An example illustrating the procedures developed in this chapter
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and also tovbe used in subsequent chapters has been chosen from the
operations research field.

The problem is as follows: An item is to be manufactured or pro-
cured in lots of size z. The total cost of one item, including material;
labor, overhead, etc., is C. The item is to be sold or released for use
for a gain equal to (1l+a)C, where a fepresents the markup or other gain
factor. A penalty of y times the total gain is forfeited for each defec-
tive item which remains after sampling. The items can be destructively
tested prior to deciding whether or not to release the remainder of the
lot at a testing cost of BC per item tested. The number t6 be tested is
X, y is the number remaining after testing, (z-x), and F is the number
of defectives of the y. The random variable P is the probability of a
"good itém, q is (1-p), a is the number of good samples, and b is the
number of bad samples. The a priori distribution of P is equally likely
between zero and one. Decision A is the decision to accept the lot, i.e.
market y of the items; decision B is to peject the lot. Salvage value
is considered negligible.

Since the loss incurred during testing is independent of whether
the untested items are accepted or rejected - decision A or B - it will

be designated as L The losses after testing are dependent on the

T

decision made and will be designated as LD and LD- for the accept and

A B
reject decisions respectively.

From the statement of the problem, these losses are as follows:

LT = x(1+g)C

LD = y[C-(1+a)C] + Fy(l+a)C = -oyC + Fy(l+a)C
A

LDB = yC-
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The expected values of the losses, the conditional (upon p) risks, are

RT = E [Lp] = E [x(1+8)C] = x(1+B)C (2.21)

Rp, = E [%Dé] = E [C(Fy(1l+a) —ajﬂ ='.—qayc + Cy(l+a)(1l-p)y
(2.22)
= Cy [y(1+a)-a-y(1+a)p]

R, =E |L = E [Cy]l = Cy . (2.23)
Ds [DB]

Since these risks are functions of the randem variable P, the expected

value of the risks, RD , when no testing is done (x=0, y=z) and the a

priori of P is equally likely,can be easily calculated.

Rilxzo = 5RT fPl&(e) de = fx(l+B)C ds = 0.

| A | p ' (1+0)
RDA‘ . =jCyEY(}+a)-a-yj(l+a)] de = Cz [1-2—-"‘—- - a]- (2.24)
Ry '.—. jCyde = . Cz. (2.25)

le:o S
Thus, when no testing is done, the best decision depends on the value of
gamma. The lot should be accepted if

RD < RD .

Alx=o Blx=0

Substituion from equations 2.24 and 2.25 gives

y(1+a)

2 e <1

or

Yy < 2. (2.26)
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Similarly, with no testing, the lot would be rejected if gamma is greater
than two, and either decision would yield the same expected risk, Cz,
when gamma is two.

To determine wﬁich decision is best when we have performed some
sampling to help determine the distribution of p, we set up a similar

inequality as the criteria for choosing decision A:

S O

Substituting from equation 2.22 and 2,23 gives
E [Cy(y+ay-a-(l+a)yp)] < E [Cyl

y(1l+a)-a~-y(1l+a)E[p] < 1
(2.27)
v(1+a)E[p] > (1+a)(y-1)

E LD —
[p] -

Since the expected value of P desired here is that after sampling, equa-

tion 2.27 bécomes

atl , y-1 |
R (2.28)
a > (Y-l)x + (Y"Q) = g(x).

Y

Note that this equation indicates that, for ogasx, y must be greater
than one. Similarly, the criteria for choosing the reject decisioh, B,
is asgg(x).

The total risk,‘ikx,pl&) can be written

R (x,pl8) = Ry ¥\RD Pla>g(x)] + Ry Pla<g(x)]
A . VB
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=R, + R, +(R.-R_ \Plazg(x)]
T .DA (: Dy DA>
= C {:(l+B)x + y[y(1l+a)~a-y(1+al pl.

+y (Lea)(1-y+yp) P [a s g(x01] .

v v :
Since P [azg(x)] ='Z<:>pa(l—p)x_a, where w is [g(x)], i.e.:
_ v a=o .

greatést integer function of g(x), the risk becomes.
R (x,p]8) = ¢ { (1+8)x + y(x¥(1+a)-a-y(L+a)p]

W N
+ y(lt+a)(1-y+YP) > '<;:)pa(l—p)x7?;}_
. a=o “

(2.29)

. To determine the expected value of this risk as a function of the sample

size, X, we proceed as in equation 2.15

R (x|e) = ¢ f {(l+B)x + y[y(1+a)-a-y(1+a)6]
o .

: N
+ y(1+a) (1-y+v6) > (’;) ea(l-e)x“a} fPIg(eéo,o)de.
a=o

Substitution of the appropriate values, interchanging summation and inte-

gration, aﬁd pérforming_the integration (See Appendix A), gives

y(1ta)

R (x|g) = ¢ Ejz + Bx + >

(2.30)

' wtl = |
[}-2 t oD ) (2% + 4 - 2yx - 2y + Yw{l

(y-1)x : (Y_Q), there exists afrange of interger values for

’Qince g(x) =

x such that
< (yv=-1)x + (y=-2)
- Y

< wtl
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for every integer w. Thus

Yw + 2 Y
v-1 v-1

yw + 2.

Sx< 'Y"'l .

Choosing, as a trial value for x, the value

_yw+t+ 2 1 v
Xy = TyoT T, (2.31)
we satisfy the inequality for all allowable values of v,
Solving for w gives
w = Ly-1)xo-1 (2.32)
Y .
Substitution in equation 2.30 gives, after some algebra,
3 _ e (z-%xg ) (14x) (y-%o~3)
R (x5]8) = C {z t Bx, t Y (Rt 2) , (2.33)

The value of xy greater than or equal to zero which produces a

minimum for equation 2.33 is

[¢]

. \ 1/2
_ 1 (1l+e)(y=1)(2z+2) ,
= { By TorT ] -2. (2.34)

The Qalue of xy found by equation 2.34 is an approximation only.
To find the value of x which minimizes the risk requires substitution
’of‘integer values of x near Xo into equation 2.30 choesing, as xopt’
that which produces the minimum value of R(x|&). If this.minimum is.
less than the risk ﬁhen no sampling is done (from equation 2.24 if gamma
is less than two, or 2.25 when equal to or greater than two), a sample
size xopt should be taken; otherwise, ne sampies should be drawn and the

lot accepted or rejected on the basis of the results of equations 2,24

"and 2.25.
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A computer program for determining the optimum sample size has been
written to investigate the effects of varying the parameters of this ex-~
ample, o, B, Y, and z. C was not varied as it has no effect on the
sample size but only on the magnitude of the resulting expeéted risk.

Table I and Figure 4 show the effects of varying alpha and gamma
when beta and z are constant at two and fifty respectively. The values
of optimum sample size appear in the table and the concomitant risks are
plotted ip the figure; Note that with y = 1.1, 7, 8, 9, or 10, no sam-
pling would be done fegardless of d and the risk is that from equation
2.24 for ¥y = 1.1 and from equation 2.25 for the other gamma values.

Varying beta and gamma produces the results of Table II and Figure
5 for-,xopt and risk respectively. Alpha is held constant at 5.0 and z
is 50. Again, Y = 1.1 dictates no sampling for all beta as do certain
other coﬁbinations of beta and gamma.

Table III shows the Qalues of optimum sample size when alpha and
beta are constant (5 and 2 respectively) and gamma.and z .are varied.
Figure.ﬁ shows' the expected risks for certain lot sizes resulting when
these optimumé are used and gamma is.varied. In this figure, the risks
for the various lot sizes appear to be neadarly equal in the neighborhoed
of gamma equal 2.3, This area was investigated to determine the actual
values of gamma aﬁd risk whére the various lot size curves intersected.
The results of this invéstigation are tabulated in. Table IV.

The‘finai figures, 7 and 8, show the effects on the risk value when
the lot size is varied, 8 being merely an expansion of the lower end of
Figure 7. On both figures, the upper line represents the risk for gamma.
greater_thén two when no testing i1s done and gives a pictorial represen-

tation of the improvement in expected risk which can be:attained when



TABLE I
X,pt FOR VARIOUS o AND y
(B =2, 7 =50)
{J1.1f1.5] 2 3 4 5 6 10
o} o 0 1 0 0 0 0 0
1} 0 0 1 2 0 0 0 0
21 o 2 1 s | 0 0 0
3f o 2 3 3 4 0 0 0
T 2 3 3 4 5 0 0
5] 0 2 3 3 4 5 0 0
6| 0 2 3 5 4 5 0 0
7 o ' 2 3 5 4 5 6 0
8 {0 2 3 5 4 5 6 0
9l o0 2 |3 5 4 6 7 0
16 0 2 3 5 4 6 7 0

20



21

50C
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-25C

-50C

-75C

EXPECTED RISK

-100C

-125C

-150C

-i75C

Figure 4.

Expected Risk Versus o for Various y Using Optimum
Sampling (8 = 2, Z = 50)



TABLE II

X £ FOR VARIOUS B AND vy

op

(y =5, 2 = 50)
a1+l 1.5 | 2 | 3] & s| of 7 8 s | 10
olof s js | s {12 | 1] 1s] s} a7] 10f 22
1o | 2 3| s | 7 s 7] s o o o
2]o |2 ]3] 3 4 5] o} o vo 0ot o
slo |2 sl alu 1 o ol of of of o
Ly fo T2 l1fs]s] o of of of of o
slotlo |1} 2}]o ol of ol ol o .o
6jofoJ1]21}o ol of of of o 0
7o fo |12 o f of o] of of o o
slofolril2ato] of o of o of o
51 o lo|1]2 o of of of of of o
10 {0 ot 1 2 0 ol o 0 0 6 I o
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TABLE III

xopt FOR VARIOQOUS y AND Z.

24

(a‘=5,B=2) ,
.*2\\\1.1.1 15| 2| 3 4 s | e 7 8 | 9 | 1o
25 | 0 0o | 1 2| 3 0 0 0 0 0 0
50 | 0 ol sl s o | s | o ol o] of o
750 0 | 2 3 s | u | s 7 | o o | o 0
w0 o 3| s },é' s | s | 7 8 | o 0 0
ol o | s | 7| s 8 0] 8| 9w ]| o] o
- 200 0 5 71 9 12 11| 9 10 || 12
300 | © 6 o |22 |12 |15 |28 |15 |27 | 22| 18
wolo | 8|1 1w loae | 1e | 19 | 16 | 18 | 20 | 22
500 | o 9 113 17 20 ,201 19 | 22 18 | 20 | 22
600 | 0 - 11‘ ‘15' 18 .éo 21 _'19 '22‘ 25» 21 j23
700 | o '11‘V 15 | 20 |.20 | 21 25 | 28 | 26 | 21 | 28
goo| o | 12 | 17 21 oy |25 | 25 | 26 | 26 | 29 | ou
90| 0 RL Ta7 L 2a L ow |26 |25 |20 | 26 2 | a2
2000 ] o [.1v |19 | 2v |28 |26 | a1 | 20 | 83 | 50 | a2
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sampling is used.

TABLE IV

VALUES OF y AND RISK AT CERTAIN Z

INTERSECTIONS OF FIGURE 6

z | so0 75 100 150
2.185 | 2.263 | 2.304 | 2.359 |y

25 » ——
7.44 | 9.03 9.s4 | 10.10 |R

5o - 2.33% | 2.856 | 2.399] v
-- 12.06 |} 12.70 13.82 | R

— —_— 2,371 | 2.420 [y

[N - - |1s.57 |15.71 |®

- - - - 2,442 |y
© 100 , -
— - - 17.7% |R
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CHAPTER III
SEQUENTIAL SAMPLING IN THE TIME INVARIANT CASE

Having established the method of determining optimum sample size in
the case where the random variable P is time invariant and when the
sample size must be determined before any samples are taken, we are now
ready to consider the situation when the decision maker has the option
of another decision prior to making his final accept or reject decision.
This other decision can be made after each individual sample has been
drawn, if desired, and is to either continue sampling or to stop sam-
pling. The latfer decision of course implies a choice at that sampling
point of either of the previously described decisions, A or B, accept

or reject.

Risk as a Function of a and x

In order to eiamine this problem, we must first be able to determine
the risk involved as a function not only of the sample size, x, but also
of the number of favorable or unfavorable samples, a or b, encountered.
in the x samples. This can be done for each of the final.décisions; A
or B, by taking the expected values of Rp, and RDB(as shown in equations

2,13 and 2.l14)after the sampling experience. ‘Thus

w

R (a3x|Dp) = ‘j‘RT fplg (8lasx) de + JqRD

-0 - 00

\ ol (6]asx) dg (3.1)

and

29
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(x+1)!

- a X-a
fplg(pla’X) ® 3T (xoa)T P (1-p) (3.2)
vso that
1
R (axlng) = | L (ry v rp,) 03(1-0)*72 a0 (3.3)
4 .

Performing the indicated integration.and similar operation for ﬁ(a,xlDB)
will yield the desired risks as functions of x and a. Having determined,
by the method described in Chapter II, fhe values of a which would re-
éult in the choice of decision A or B; wa can;calculata the appropriate

risk for each discrete value of a, given the value of x.

|

(a,xlDB), o fasglx)
. (3.4)

o)

(a,xIDA), g(x) <a sx
Probability That Next Sample Is Favorable

Consider the case where we have sampledvm items and found k favor-
ables. If no more samples were taken, the risk incurred would be
R(k,m) as shown in equation 3.4. We are interested nbw, however, in
the risk incurred if one additional sample is drawn knowing that we have
experienced k‘favorables of m samples, .

To daterﬁine this, the probability that‘one sample‘will be favor-
able musr first be calculated. The distribution governing this single
sample is the point binomial:‘ i

¢, w=1

P () = ¢ (1-¢)" 7Y = ' | (3.5)
. ‘ l—¢’ w=0

Since the ¢ in this case is the same as the random variable, P, we can
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write its density function directly from equation 2.8 as

(m+1l)!

k -k
oot ¢ ()"

fP|8(¢|k;m) =.

We are now prepared.to find the probability the Q will equal one

given the sampling experience.

Q©

P (Q=1|6) = J‘ P (Q=1) £ . (¢lk;m) d¢ = — (3.6)

k+'l
m+2

Ple

-0

Similarly, the probability of £ being zero given the same sampling ex-

perience can be calculated as

m-k+1

P (Q=O|8) = —a:if

(3.7)

‘The Recursion Relationship

Since the value of R(a,x) from equatién 3.4 is the risk associated
with discontinuing éampling after x samples, the decision to continue
or stop sampling can be made by merely comparing the values of risk asso-
ciated with each décision and choosing that decision which minimizes the.
riék. Haviﬁg made this "best" decision, the final value of the risk at

any sampling point is established.

R(a,x) = min {;ﬁ(a,x); R(a,xlcontinue{}

The value of risk associated with continuing sampling, R(a,xlcontinue),

can be calculated as follows:

R(a,xlcontinue) = P(Q=1|8) R(a+l,x+1)
‘ (3.9)
+ P(Q=0]&) R(a,x+1)
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The decision tree applicable to the determination of R(a,x)bis

shown in Figuré 9 for one sampling point, a of x.

P(A= ¥ of A|a of x) fore (Pla,x) .

vea

D
2P

13 [R I Xx,a Dopf,p E]

D .
*—0 ®R(a+l, x+1)
D . . .. .
. OP_T O~ O R(a, x+l)
TEST RESULT ACTION OUTCOME

Figure 9. Sequential Decision Tree

In the figure, the value of A is dependent on ‘the previous decision used

© to optimize R(a,x), being x if that decision is to be stop sampling and

x+l if to continue sampling. When A =x, D is the accept or reject

opt

decision and the distribution.is fPlG

continue or stop sampling decision which yielés the indicated risk with

(pla,x). When Av= x+1l, Dopt is the

probability one.

The Dynamic Programming Solution

Equation 3.8 is a simplified recursion relation which is amendable
to solution by dynamic programming techniques (2).
Consider the case when the sample size, X, is equal to the lot size,

Zz. At this point, it is impossible to continue sampling so that equation
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3.8 reduces to

ﬁbB(a,z), osasg(z)
R(a,z) = R(a,z) = (3.10)
" ﬁbA(a,z), g(z)<asz ‘
Solution of this equation for all integer values of a between 0 and z

gives a starting point for successive solutions of equations 3.9 and

3.8. As an example, the next step would be calculation of
. . atl zZ-3
R(a,z-1|continue) = 33T R(a+1,2) + =27 R(a,2) (3.11)

for every a = 0, 1, 2, ..., z-1, followed by calculation of R(a,z-1)
from equation 3.8. | |

'The calculations are continued for z-2, z-3, etc., until the sample
size, x, is zero, recording the'appropriate sampling decision, stop or
continue, after each R(a,i) is determined. This set of decisions to-
gether with the appropriate»accept or réject decision at each Stbp sam~
pling point constitutes a dpmplete policy yielding minimum risk for the
problem at hand. | |

While the individual calculatiéés involved in fhis type solutién
are quite simpie, é verj iarge'nuﬁﬁep of them are required when the lot
size, z, is appreciable, fﬁe;use of a‘digital computer to assist in the
policy determination is highly Hésirable. Including only the probability
computations of the.negt béﬁpi;'being acceptable and ignoring the com-
pafisons involved; the number of individual computations required is in
excess of z(z+2). |

The results of the calculations, the optimum sequential sampling
policy, can best be shown by a graph 6f the poliéy. Such a sequential

sampling diagram plots the sample size, x, versus the number of favorable
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results, a, for the reject and accept decision boundaries, the area be-.
tween representing the continue.sampling decision. Such graphs are

shown in the example which follows,
The Operations Research Example

The operations research problem described in Chapter II is amenable
" to the dynamic programming solution of. sequential sampling. From equa-
tion 2.23 the risk associated with rejecting the lot is RDB'= Cy while
that assoclated with acceptance is, from equation 2.22,
Ry = Cy&(lw) -a -y (1+a)p} (3.14)
A
Using these, the sampling risk, and the post-sampling distribution of P

- from equation 3.2 gives the following risks as functions of a and x:

. 1l -
R(a,x|Dp) =_;f-%§:—i-)r§f£x(1+s) + y1 6%(1-8)"" de
s o]

(3.15)
_=_C(z+8x)

1l .
R(a,x|Dy) = 3%%§;§%%‘J7[;(1+B) +y [Y(;+u) -0 -y Cl+a)ei} e?(1~e)x'a de
’ o

. . (3.18)
(z-x)(1+0) '

= C{z+Bx + S X+2

[y(x-a+l) - (x+2)l3

Using the results of equatien 2,30, equation 3.4 becomes

(y=1)x + (y-2)
Y

R(a,x|Dg), oszac<

R(a,x) = (3.17)

(yv=-1)x + (y-2)

<asx
Y

| —R-(a,xlDA)’

Using these eguations with 3.6 and 3.7, a computer program was

written to produce data for determination of the optimum sequential
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sampling policy. (See Appendix B). Values of 2=50 and 100 with y = 2
and 5 were used as inputs to this program with alpha constant at 5 and
beta constant at 2. The complete results are shown in Appendix C.

Summaries of the results -are shown in Figures 10, 11, 12, and 13,
Discussion of Results

Of interest is a comparison of the expected risks when a sequential |
sampling plan is uséd as 6pposed to the expected risks when an optiﬁum
sized single samplé is taken as described in Chapter II.  These values
are tabulated in Table V. The values for the sequential case are those
which result when the sample size becomes zero. In each of the examples,

sequential sampling indicated an improvement in the expected risk.

TABLE V
RISK COMPARISON - SEQUENTIAL

VERSUS SINGLE SAMPLE

Expected Risk
5 Single Sample - Sequential Sampling
53 - .40000C - 4.67833C
50 ‘ » |
: 47.14289C 39.95562C
e -12.14285C -21,02875C
109 '81.78579¢C 68.90867C
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A comparison of the results presented in the figures with sequential
sampling graphs produced by conventional methods using the Wald (4) tech-
nique reveals several differences. The conventional technique, using
Neyman confidence limits, produces a pair of lines of the same slope
separating the accept, coﬁtinue, and reject regions. Thus, the maximum
number of.samples to be taken cannot be predetermined. The statistical
decision-dynamic programming approach used here eliminates this undesir-
éble characteristic. As shown in the figures, each examplevproduces a
definite maximum number of'samples {in these cases, always less than

half the lot size) which will be taken under any sampling circumstances.



CHAPTER IV
THE TIME VARYING PARAMETER

We now consider the case where P describes a stochastic process.
It will be assumed that the coefficients producing this change are also
random variables Qith some a priori distribution. This development will
only consider equally spaced sampling intervals, i.e.: samples will be
taken at times t + m with m = 0, 1, 2, 3, ..., Further, while P is sub-
ject tdichange;from t to t+l, it is considered time invariant during the
vtimé sampling is being done. This, in’effect, means that the time taken
to accomplish sampling at time t is very small compared to the time in-

terval between t and t+l.
The A Priori Beta Distribution

‘We must first review the previously developed forms of the distri-
butions on the random variables A, the number of acceptable samples, and

P. Consider the a priori distribution of P as Beta, that is

. CTOw2) A=
f.p sp(P’x’w) S TQ+LT(A-y+1) P (1-p) (4.2)

where 8? indicates the pre-sampling a priori estimate with parameters A
and y. From Chapter II, it is recalled that, when the distribution of A
given P is binomial, application of Bayes Theorem gives, upon carrying

out the integration of equation 2.5,

41
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I(x+A+2) Pa+w(l_p)x+x-ahw

(pla;x,w,k) ® T(at9t1) Nxtr-a-9t1)

'y 4,2
P|51 ( )

with él denoting the sampling experience, a favorables of x samples, at
time one. The restrictions stated in Chapter iI pertaining to the range
of equation 4.2, (i.,e.: valid for P in the closed interval [0,1] and
zero elsewhere), to the permissable values of A and y, (i.e.: y>-1,
A>¥=-1), and to x and a being non-negative integers, still hold.

When considering a time-varying P, equation 4.2 can be written

fP(t)|st(p'at?xt’At’wt)k

] T(xXptAet2) Pat+¢t xetAg-ag-Ve
P(at+wt+l)r(xt+xt-at-wt+1)

(1-p)

where the t subscript indicates the value of the variable at time t and
€+ denotes the pre-sampling estimate, &p, and all sampling experiences

thru time t. This Beta density give the following moments:

atﬂl)tfl
E [P(t)] = ;:;x;:g (4.4)
(a _+y +1)(x_+A_-a_=-y +1)
E [@u) - E [P(t')])a L IRA ’2: et | (4.5)
» (e #2, +2)° (x #2,+8) '

To further simplify notation, moments will henceforth be subscripted
with only the variable concerned followed by the integer time. As an
example, Hyp would, in this notation, repiesent the mean of M at time 2.

Thus, equation 4.4 becomes up, and 4.5 is ogt.
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The  Difference Equation Model

'We now consider the problem of predicting the distribution of P at

time (t+l). The following difference equation .is established:
P(t+l) = C(t)IP(t). : (4.6)

In this equation,.the distribution of P(t+l) and P(t) are assumed to be

Beta and C(t) is a sample at time t of random variable C, independent of

‘P, with a priori mean, “C’ and variance, oé. The sample values of C,
Cc(t), are also considered to be independent so that no learning of C is
possible.

To determine the mean of P(t+l), we can write
E [P(t+1)] = E [C(t)P(t)]

which, due to independence, is

Mp(t+1) T Mo Mpt (4.7)
where the "hat" indicates an estimate made prior to time t+l.
A similar procedure gives’
~2 = o2 2 2 2 .2 :
Spets1) = %t (%ot T ¥Q) * %G Mpee (4.8).

We now take advantage of the fact that the distribtuion of P at time t+l
is assumed to be Beta when P at t is Beta and A at t+l is Binomial.

Thus, our a priori of P for time t+l is of the form

(pla )

S ICTS R [T A LR S

: (4.9)
! (*e01%?) Verr ( _p))‘t+l—wt+l

T Tte 1P DTy 1V 1) P
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From this,'proceeding as for equations 4.4 and 4.5, we can determine

ﬁ = Eﬁiiii (4 lo)
P(t+l) A, ,+2
and
22 - (wtﬂﬂ) Q‘t+l—wt+_l+l)
o = ‘ : (4.11)
P(t+l) A +2)2 (h 43)
‘ ( t+l ) '( tt+l )
. i 5 A ~9 . . )
As shown in Appendix D, “P(t+l) and cP(t+l) are sufficient to determine
unique values for At+l and ¢t+l as

QP(;+;)(l'aP(t+1)) _

Mgp = = o 3 o (4.12)
P(t+l)"
and
A2 ' -A
- HP(t+l)<} uP(t+l)) 2 -1
wt+l' G2 o “Hp(t+1)

O P(t+1)

(4,.13)

) “P(t+1)(}t+1*2 -1

Using_thé results of equatidns 4,7 and 4.8 inxu.l2_and 4,13 will thus
give/the parameters of the a priori distribution of P for time t+l in
terms of the meéns and variances‘éf.P andFC at.time t. It should be
remembered that this was done prior to sampling'at time t+l. This is
/indicated by thg nbtation St.which indicates all.experience; including
:a priori, thru time t.
After sampling at time t+1, obtaining a7 favorables from x

t+1

samples, we find, from equation 4.3
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P(t+l)|8t 1< lat+l’xt+l’ t+1’ +1)

r( ee1 1t )

(4.14)
(t+1 t+l+l)r( 41 417301 Vet
+ ‘ +)\ - - .
E,atﬂ Verl(1opyXt+ltAtel-acel ‘Pt+J:|
From equation 4.4, the mean of this distribution is
" = w (4.15)
P(t+l) Rip1t et '
and its variance, from equations 4.4 and 4.5,
2. bp ey (1 Ve (1)) (4.16)
‘P(t+l) t+l+>\t+l+3 ‘

Expanding equations 4.15 and 4.16 from the results of equations 4.12 and

4,13 gives

Ce4l P(t+l) * uP(t+l)G P(t+l)) ~ “P(t+1) P(t+l) (4.17)

uP(t+l) M 1.
t+l P(t+l) P(t+l) uP(t+l) P(t+l)

and

Hp(t+1) P(t+l)) P(t+l) (4.18)

P(t+l)
B t+l + (a1 (- “P(t+1))

Further substitution from equations 4.7 and 4.8 yields
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2 42 2
_ 2o Pet%t t Bog P't:_l+ %CeHpr * “Ct“Pt(l “Ct“Pt)
PR(erL) T 02 o2 + + 0 + 1-
%41 |96t%¢ * Het% Gthpr * Mot “Ct“Pt>
(4.19)
2 2 2 .2
~ Hettpe [cr° * HoOpy t °Ct“Pt]
2
["cr Pt * Met%e "Ct“Pt]
and
52 i} MP(t+1) ;—PP(t+l))
Plt+l) 2 2' 2 2 2
Xe4l E’th’Pt T Ophor * °Ct”Pt]_
(4.20)
2 52 2
ct%t M3ty * G “Pt]
THet¥pt (l'“Ct“Pt)

While these expressions seem extremely unwieldy, calculation of
Hp(t+1) and oP(t+l) is relatively simple if carried out step-by—step.
First, calculate u(t+l) and oP(t+l) from equations 4.7 and 4.8. Next,
calculate At 1 andwt+l f?om equations 4.12 and 4.13. Finally, pP(t+l)

2 ' : K
and OP(t+l) are computed.u51ng 4,15 and 4.18.

At this point, the relative weights, wt, implicitly assigned to the

estimate, " £ and to the sémple result at time t can be calculated as

P

follows:

t

-:1 [—Eti-—] +i£wt
Pt xt+At+2 xt t

L at+¢t+} i (¢t+1) A +2 _Ji Xy
P xt+xt+2 (Apt2) Xy +A +2 LTI B +A +2

(4.21)

]
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Thus
wt, = ___:51__ (4.22)
St xt+lt+2
and |
wt, = ———— (4.23)
' i xt+lt+2
i=o

With these equations, it is possible to find the weight of any prior
sampling experience, say at time s, by

s-1

Wts[t = wtS | ‘ (1-wt;) (4.24)

i=t

where s < t. To determine the weight of the a priori estimate of P

after sampling through time t,
)
Wtﬁolt = v‘ l (1-wt3) (4.25)
i=t v .

Summary of the Procedure-

The entire preceding development for a time-varying P is summarized

in the following set of equations:

p(t+1) T MeMpt (4.26)

~

2
‘°P(t+1) (4.27)

2 2
= 042 (g 2,2
= opeloc + ue) + ogup,
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e eany (P (a1
P(t+l) P(t+l) -3, t>0
°§(t 1)
Ay (4.28)
Ao t =1
uP(t+1)<:)‘t+1+f> -1, t2o
beyy | (4.29)
wos t=-1
- e tt (4.30)
PO+L) %A *2
52 - uP(t+l)(}_uP(t+l))l (4.31)
PO+l) R P *O

Thesé equations establiéh a method for predicting'the distribution
of a random variable, P(t+l), when the‘applicable model is P(t+l) =
C(t)P(t),.andbbinomial sampling is done.. It should be noted that this
- is possible without considering the actual distribution of the random

variable C but merely its a priori mean and variance.
- Computer Simulation

A cdmputer simulation program using the foregoing de§elopment was
Qriften and appears in Appendix E. For the simulation, the Monte Carlo
method was used which requires an assumption of the density of C. The
form fc(c) = (d+1)cd was arbitrarily chosen. With this density, P(Czc) =
cdfl so that, given the probability, the value of C is the (d4+l) root of

the probability. Probabilities are obtained using a random number gen-

erator. The number of favorable samples, a, at this sampling time is
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similarly randomly generated using the binomial probability
ooy = (XY i@ (q_nry%-a
P (A=a) (a) Pl (1 Pt)

with p% = CtuPt’ Ct being the previously described randomly obtained
valuevof-C, and Hpt being calculated by equation 4,27,

Results of this simulatioﬁ using a constant sample size, x, of 100,
a priori Ay and.wo of 98, and d of 10, appear in Appendix F.  The es-
timated and calculated means of P(t) together with the calculated vari-
ance of P(t) are shown in Figure 14, As-ekpected, the figure indicates
a decreasing variance and generally more accurate estimates as time, and
thus the number of samples taken, increases. The relatively large dif-
ference between the estimated and caiculated mean at time 8 was caused
by the low value of 'CRAN' randomly generated at that time.. It shoﬁld
be noted that this fathen large pertupbation had only minor effects on

the subsequent estimates, the error of which approximated the magnitude

of the errors in the estimates immediately preceeding time 8.
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CHAPTER V
SAMPLING IN THE STOCHASTIC CASE

. Having deyeloped the metheds of Chapter IV for a time-varying bi-.
nomial variable, we can consider optimum sampling of a stochastic pro-
cess when. the sampling is to be done periodically. As in Chapter IV, we
will consider the sampling time to be small in relation to the time be-
tween samples so that P is time-invariant during any one sampling period.
A posteriori sampling results will also be considered available prior-to
subsequent sample size decisions. If this were not . the case, all deci-
sions ﬁduld be made on the a priori infofmation, reducing the problem

' to essentially that considered in Chapters II and III.
Sequential Block Sampling

Thé decision tree involved in the sequential block sampling situa-
tion is shown in Figure 15 for a two—stage problem. This modified tree
incorporates the result of the test, the action, and the outcome into
one of two portions of a stage. As explained in Chapter II, this is
permissible when the outcome.is governed by nature (as described by fPla)
. and the decision resulting in minimum.risk is selected with probability
one. In the figure, the sampling results designated a.are those which

would result in acceptaﬁce while the b's are those which choose rejection

as the best decision. That is

bt s g(xy)

51



52

a, > g(x)

where g(xt) is the decision boundary described in equation 2.12. DA and
DB are the accept and reject decisions respectively. The expected risks

are as follows:

t

1 ! P (A1 = a3 [xi3Mis¥1,) | Ry (5.1)
A

E [%Iat,xt,at_l,DA

n

(5.2)

Where the a and X, are the number of acceptables and the sample size at

time t, &t indicates a priori and sampling experience through time t.

As before, & _ implies Xt+l and wt+l,'the a priori parameters for the

t
Beta density of P for time t+1, calculated as shown in Chapter IV. Each
of these risks is a function of the random variable P which exists at
that stage.v The probabilities of A are calculated using the expected

mean of P calculated by‘equation 4,26 for the appropriate stage.

“Thus,

/ ’ ~ A W - -
P (?t = a, xt,xt,w€> (fﬁi)ugg <}'UP€) t 3¢ (5.3)
' a
t/ o

where

. v+l

M = —
Pt At+2 (5.4)



53

E[Rl.ﬂz » X,y 'DA]

X1y

E[R’ Br.is Xt 'Bt-ZrDB] , E[R‘ by, X, ’8”'08] ‘

TEST(t-1) = RESULT{t+]) . TEST(t)  RESULT(t)
Xt-| Aty Xt At

. Figure 15. Stochastic Sequential Sampling Tree

To perform these risk calculations, it is first necessary to caicu—
late‘thé Ai and wi pairs  that result for each path thru the tree up to
the final stage, n. This can be done by the methods of Chapter IV. When
An and wn for a path haye been determined, the appropriate risks for each
possible'An fop a given Xn can then be calculated. When this has been
done, the»Xn for which the summation of al; An risks is less than or
equal to that sum for every other Xn becomes the optimumvvalue for Xn’
X, This is the optimum sequential block sample size for stage n, that
is, the sample size which would bé selected if non-sequential sampling
was to_be done. For this last stage only, the calculation of optimum
X -can Be considerably éimplified by adaptiné the method of Chapter II
for optimum single sample size determination to this problem. The equa-
'tions necesSary are developed later in this chapter in the "Successive
Block Sampling"‘sectibn. -When the expected risk, ﬁ(xn)‘from this calcu-
lation is found, it must be modified by pre-multiplication by the appro-

priaté probabilities, i.e.

‘ ' n-1
R (ao,xo,al,xl,-é.,an_l,xn_l) = H P (A.i = ai|xi’)‘i’wi) Ti(xn) (5.5)
i=0
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Whichever methed is used, a numerical value for the risk and an associ-
ated optimum X result for each value of An-l for which the decision is

accept. When An- is a value resulting in rejection, An—l < g(xn_l),

1

then the lot is rejected and the sequential testing ends. This is also
true of all preceaing stages.

The determination of the optimum x requires the summation of the

n-1

risk values for all the An- pertaining to that value of X This is

1 -1

done for every x and the one with the lowest expected risk is chesen

n-1
as the optimum. This is then X1 for the given_value of An_2 and its
concomitant expected risk is the expected risk if the results of testing
at time n-2 give that value of A -

This procedure is repeated down through the tree until an optimum
‘value of X is determined.v The result is an optimum sequential policy
when blocks of samples are to be taken at discrete time intervals and
‘the single sample size at.time t must be determined after time t-1 but
before any sampling at-time't.

While the above procedure fér the sequential block sampling case is
straightférward‘and the qalculations simple, the number of individual
calculafions required is enormous. If e?ery péssible.combination is-

kinvestigated for an n-stage problem with a 1lot size of z, as many as
(%)Q(n-l)'sets of calculationé could be necessary. As each set of cal-
culations involves solution of six equations for determination of xn_and
wn, plus the probability and risk determination, this means (4z)2(n-1)
possible computations.

Fortunately, considerable reduction in this number is pessible.

yMost importantly, the maximum number of samples which will be taken at

any one stage will not exceed the optimum value of x calculated for

tot
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Ziot = DZ at the greatest P. When C is restricted to the range zero to
one, this is the a priori P, For most realistic problems, this value of

will be on the order of the square root of z . This reduces the

ot tot

. . nz \t1
calculations to approximately (75 .

The next reduction is possible by considering the fact that the pro-
blem terminates when a reject decision is made. Thus, no further calcu-
lations are necessary after a reject decision. While the exact number
of computations eliminated by this is completely dependent on the pro-
blem, for this general consideration it will be assumed. th&t the number
of acceptable samples must be greater than one-half of the number sampled

. . . nz\*-1
for an "accept" decision. This makes no more than o sets of com-
putations necessary. For a problem involving a lot size of 100 and ten

stages, this reduces the number of computations required from leolg

to 2.531011. Further reductions are possible when the particular pro-
blem at hand is carefully examined and unnecessary computations elimi-
nated but reduction past one more order of magnitude than already
achieved would probably not be possible.

Since each set of computations involves at least 15 multiplications
and additions, the lOC item, 10 stage problem would reguire more than
three years to solve on the latest commercially available digital com-
puters such as the IBM 360 series. A state-of-the-art computer designed
especially for this problem would still require approximately 50 days to
perform the necessary calculations.

Thus, while the sequential block sampling problem can be easily
solved theoretically, practical considerations make this approach imprac-

tical. We are therefore forced to consider some sub-optimization scheme

for solution of the problem. While the sequential block problem can be
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sub-optimized in many ways, such as considering only two or three stages
at a time and appiyiﬁg the above development, there is generaliy little
to be gained by any sequential sub-optimization‘vis-a-vis optimization
at each stage. The following section discusses stage by stage optimiza-

tion when P is time varying.
Successive Block Sampling

To optimize the sample size to be drawn at time t considering only
the experience prior to t requires the modification of the development
of Chapter II in accordance with the method .of a priori parameter deter-
mination of Chapter IV.

Assuming we have values for the parameters A and ¢ for time t based

on experience through time t-1,

.y - T(A+2) SVt AV
fP(t)l§t_l (Psheo¥y) = T DT O 9 1) © (1-p)7t ™* (5.86)

with the previously described restrictions on Pys kt and ¢t obtaining,
is our present a priori for Pte After sampling at t, ob-

£
P(t)|e,_;

serving a, favorable items from a total of X., our a posteriori density

is, from equation 4.3,

. T(x_+X, +2)
£ (pla,sx, A ,¢,) = _t T
P(t)]e, 271271277 T T(ap#P+ )T (xethemap P +1)

Eat'f'q)t (l"p )Xt'f' )\t-at—q)ﬂ

We use this latter density with RDA and RDB from equation 2.11 to deter-

(5.7)

mine the decision boundary, g(x+), of equation 2.12, again choosing

a, s g(x¢) as the criteria for choosing decisien B, reject, andat;fg&t)
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for the accept decision, A.

Equation 2.14 becomes

W
t X
= _ _ t at.,__yX¢—a
R (xt’PIGt-l) = R, + R +GD RD> E <)p (1-p)"t 7t (5.8)
A B A a
at=o t

This equation implies certain assumptions. First;the risks-involved
are considered time~invariant.  Secondly, the Sampling at time t is sta-
tistically independent of sampling at past or future times. While this
latter restriction will remain, the former will be slightly relaxed in
the examples. For this general development, to avoid the confusion of
additional subscripting, the time invariant form will be used.

With eqﬁations 5.7 and 5.8, we can fina the expected risk as a

function of xt:

[=<]

R (xtlp,ét__l) = f R (x, e[e;t 1 P(t)’st—l (851,,9,) d6

00

1

_ F(At+2) ¥t A=Vt

- j‘ GT * RDQ'I‘(wt+l)I‘(At-wt+l) 67 (1-6) a8
(o]

(5.9)

F()\t+2) X+
E‘(wt+l)1‘(>\t V).t'i'l) at'(xt—at)'
at =0

Eét+¢t( 1- e)xt+lt-at-zpt da

When ﬁ(xtlpt,ét) has been determined by solution of equations 5.9,

the integer value of %t which minimizes this risk must be found. Because
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of the comparative complexity of the factorial expressions when At and
wt are non-zero, an approximation of . the optimum xtvby differential cal-
culus is usually not feasible. The most efficient method of solution
dependé upon. the form of the risks, RDA ana RDB' Selection of a methed
of determination must consider that many reasoﬁable forms :of these

riéks produce an expected risk which is not unimodal, such as in the
example which follows. As a last resort, when a digital computer is

available, risk values for all x can be calculated and that which

t's
produces a minimum.chosen. Whenever a computer is used, whafever the
solution method, care must be exercised in calculation of the factorials
to insure tﬁat the machine capacity is not - exceeded. As~an example, 34!
will exceed the capacity of an IBM 7040, while 70! will exceed that of
the‘IBM 1620. This limitation can be circumvented by taking‘advantage
of the division by and of factorials in equation 5.9,

The optimum sample size thus determined becomes‘xt. After obser-

vation of a, acceptable items from the x samples, the procedures of

t t

Chapter IV can be utilized to determine the a priori distributien of.

P With X and wt+l’ the above, equations can again be utilized for

t+1° t+l

determination of the optimum value of Rirp®
This procedure should be successively applied until the sampling
results indicate the reject decision or, in the case where the same:

items are sampled, the lot depleted.
- Successive Sequential Sampling

If we now consider the case where the sampling at time t is to be
sequential (as described in Chapter III) rather than that described

above, we ‘eliminate much of the computational difficulty previously
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encountered; Here, the future of the problem past the current sampling
time, t, does not in general, determine the sample size at t. Rather,
the expected risks and the sampling results at time t dictate how many
samples will be drawn. A possible exception to this would be when the
risk at time t was-a function of the future sampling results. This
would require a special formulation, depending on the problem, beyond
the scope of this study. For our purposes, we need merely modify the
sequential sampling policy determination of Chapter III to accommodate-
the a priori parameters of Chapter IV.

The determinations of expected risks under each of the final deci-

sions, A and B, as functions of a and'xt, can be accomplished by use of

t

equation 3.1. Again, the density of Pt given a_ and x_ from equation

t t

5.7 should be used. Thus,

[z, +Xx +2)
R (at,xt|Datt) = L ‘
22T T(at+Pe+ 1) T(xt+Ait-at-vt+l)
(5.10)
1 ,
A
(o]
and
T (ay,x. |Dy6r) = D(xg¥Apt2) )
TREEATED T T At DT (Rt hp-ag - 1)
(5.11)

1
R, - R\ 6%t Vt(1-g)FtTA Tt Ve 4g
(Fr ™ Ry
o]

With these risks, the R(at,x%+) can be calculated as in equation 3.k.
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Ra,x¢ |DB,6t)s o < at < glxe)

ﬁ'(at,xt) = (5.12)

Rlap,x¢ [Dar6e)s  g(xe) < as x,

where g(x¢) is as described above for successive block sampling.
The probability of the next sample being acceptable give at of xy

becomes the expected value of Py when Pt has the density of equation 5.2.

at+wt+l
P (Q=lle¢) = TRV (5.13)

and-

xt+At—at-wt+l

P (0=0]8y) = (5.14)

xt+At+2,
The expected risk incurred if sampling is continued is"

at+w;+l

R (at,xtlcontlnue) = X A T2

R (§t+l’xt+l)‘
(5.15)
Xt+At-atfwt+l

+ .
xt+At+2

'R‘(at,xt+l)
where

R (at?xt) = minv{iﬁ (at,xt); R (at,xtlcontinuei} (5.186)

The policy for time t can be completely determined with these equa-
tions and the dynamic programming techniques described in Chapter III.

After sampling at t, the results must be observed, and aAAt+l and

Y calculated by the method of Chapter IV. At this peint, it should
t+l
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again be observed that, if the sample results at time t. result in a
"reject" decision, no further sampling is necessary and the problem for
this process or lot is terminated. |

If, sampling indicates an accept decision at time t, the sequential
policy determination is repeated for time t+l and continued for t+2, t+3,

etc. until a reject decision is made.
Successive Block Sampling Example

The example problem of Chapters II and III can be readily modified
according to the procedures described above for successive block. samp-

ling. Recalling from Chapter II.

Rp, = Cyt [y(lta)-a-y(ltalpl]

RDB = Cyt

we have, with equations 5.6 through 5.9, all that is necessary for
solution. For this example and for the successive sequential sampling

example which follows we will consider that we are sampling the same lot

of items, as, for instance, items subject to deterioration which are
held in storage. This as opposed to items that are being produced by a

process where the process itself 1s deteriorating. 1In the latter case,

the lot size is not affected by the number of previous samples taken.
In the "storage' case, the number of items remaining after sampling at

. The effect of this is time-

time t is z_ - x¢, which becomes Ziel

t

medification of the risk functions.
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The equations of this example are as follows:

X

| . |
R (%¢,P 8¢ q) = C'{}t+8xt+yt(l+a)(Y—l—Yp) :E <§€>pat(l-p)xt-at (5.17)
’ ’ ap=witl t

R (thp,gt,l) =C {zt+6xt+yt(l+a)

(5.18)
Xt ) ’
::E;:; X, T A2)T(apthet LT (xptAp-a =Y +l) .
agmwgtl atYF(¢t+l)(xt-at)!P(At-wt+l) (xe+At+2) YT+ "YHpy
(y=1)(x +2,) + y(1-y,)-2 ‘
glxy) = S — LI (5.19)
W, = [glxe) ] _ (5.20)

The value of xt which minimizes equation 5.18 is the optimum block

-sample size for this stage of sequence.
Successive Sequential Sampling Example

Using the same assumptions as in the above examples, equations for

the successive sequéntialvsamplingvcan be written. These are as follows:

R (ay,x¢|Dp6) = C §t+6xt+yt(‘l+a)|}—l-- %}l—)} . (5.21)
R (ag,xt|Dps6g) = C (ze+Bxry): | (5.22)

v a +y +1
P (R=1]g) = —tt (5.23)

xt+xt+2 |
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With these equations, equation 5.19 for g(x+) and the equations of
Chapter IV, an optimum successive sequential sampling policy can be found

using the techniques_df Chapter IIT.



CHAPTER VI
SUMMARY AND CONCLUSIONS
Summary

The problem of minimizing the expected risk of a dichotomous process
capable of being binomially sampled has been examined. Both the time-in-
vafiant and stochastic dases have been considered and the methods of de-
termining optimum sampling peolicies developed.

Cﬁapter II considered a time-invariant process when an optimum
single sample sizekwas to be determined invadvance.of sampling. The
statistical de@ision theory mefhod'of solution as it applied to this
problem was explained by first considering thé distributions of the
random variables involved and then by use of them in formulating the ex-
pected risk»functions.' Tﬁe Bayésian method of determining probability
densitieé was used to quantify the available prior experience and to
formulate the'after—Sampliﬁg density of the binomial parameter, P, Use
of the Beta distribution as the a priori of P was proposed because it
met the parameter criteria and is the Bayesian conjugate of the distri- '
bution which applies to the samples, the binomial. The equally likely
form of the Beta was chosen for this initial development.

The expected4risk involved as a function of the sample size was
developed and a parallel drawn befween the method of this paper and a
second Bayesian based method thch considers the distribution and risk

determination simultaneously. An example problem was introduced to

64
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illustrate an application of the preceding development and the effects
of varying the parameters of the example investigated.

Chapter III introduced the sequential sampling problem and the
dynamic programming approach to its solution in the time-invariant case.
The required form for the expected risks was shown and the necessary
recursion relation developed. The example was consideréd in the sequen-
tial case, the equations for it and a digital computer program incorpo-
rating them written, and certain results from the program presented in
graphical form.

The method of determining probability denéities when the random
variable possessed certain stochastic qualities was considered in Chap-
ter IV. The distribution was assumed to remain Beta. Also assumed was
a difference equation model for describing its time variation. A method
for determining the time-modified Beta parameters for successive a priori
densities was devised and a computer simulation program written and run.

Finally, the stochastic developments were incorporated into the risk
determinations in both the single sample and sequential sampling cases.
The dynamic programming method of determining the optimum sequential
single sample sizes was outlined. Sub-optimization in this case was.
also considered and formulated. The sequential sampling method of Chap-
ter III was modified to accommodate the stochastic c¢ase. Both the suc-
cessive block sampling and stochastic sequential sampling developments

were applied to the example problem and all pertinent equations developed.
Conclusions

A Bayesian approach to the optimum sampling problem when the samples

are discrete, independent and binomially distributed and the assumed P
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distributions are Beta yields mathematically feasible and intuitively
satisfactory results for both the time-invariant and the stochastic case.

Dynamic programming can be easily adapted to the problem of sequen-
tial sampling of a binomial variable. When used in conjunction with
statistical decision theory techniques, it produces a sampling policy
which, when used with finite lot sizes,’results.in a decision prior to
exhaustion of the lot due tovsampling. Further, the expected risks in
the sequential sampling case are less than those in the single sample
size case. A digital computer is required to feasibly produce a sequen-
tial policy by the dynamic programming methed.

The stochastic case is relatively easy to solve conceptually when
a difference equation for uniform time intervals is the appropriate
‘model and' the random variable concerned is Beta distribufed. Part of
the ease of this determination is due to the fact that the Beta distri-
bution is uniquely determined by its first two moments.

The dynamic programming approach te the sequential bleck sampling
problem, while not difficult.to formulate, results in computations too
time consuming to be feasible. Sub-optimization is feasible and easily
accomplished.

Successive sequential sampling produces optimum results in the
stochastic case as future change in the random variable.does not effect
present policy determinations. The improvement in expected risk when
sequential sémpling is used in both the time-invariant and stochastic

situations argues strongly for its adoption whenever possible.
Suggestions for Further Study

The example of this study could be made nearly universal if
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modified to include non-destructive testing. The major problem would:
arise in the stochastic case of testing the same lot where the return
of only the favérable survivors to the population would bias the subse-
quent sampling.

The methods developed herein should be investigated for applicabil-
ity when other distributions govern. For the stochastic case, the
Bayesian conjugate property and that of unique distributien determina-
tion by a finite number of determinable moments are desirable.

The problem of.learning the distribution of the stochastic modifi-
cation variable, C, perhaps on the basis of the learned distributions.

of P, should be investigated.>
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APPENDIX A

' CALCULATION OF R(x|&) FOR THE EXAMPLE

R(x|8) = J- Ep]g(Pla’X) 'fP|8(P) dp

1
= f Cglﬂ%)x +y [y(1+0) - a - y(1l+a)p]

. _
+y (1+a)[(1-y+yp)] g (2) p? (l?p)x—a} (1) dp
a=o .

=C{x+8x+y+yY(l+a)—y-ay-—-Y-%@-)—

. ] X l
+ y(l+a) . E EY‘Y)<:)X\ p2(1-p)* %dp +"Y(:>f pa+l(l;_P)x-v-a dJ
: azo I . d

(L+a)(y-2 :: 1-y) x! a! (x-a)!
= {z *oBx 4 L_OL_Y_—— + y(lta) [(xll))'{ a‘—:1 (x}:ai'

. _(xD(atl)! _(x-a)j

(x+2)1 al (x-a)!

_ (1t+a)(y-2 _2— (1-v) y(a+l)
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APPENDIX B

FORTRAN PROGRAM

SEQUENTIAL SAMPLING POLICY FOR AN OPERATIONS RESEARCH PROBLEM
USING DYNAMIC PROGRAMMING TECHNIQUES - We Co MCCORMICKsJRe '

DIMENSION RSKEP (200)s RSK(200}
FORMAT (5F10e¢4) :
FCRMAT(/31HSEQUENTIAL SAMPLING POLICY FOR F540913H TOTAL ITEMS.)

FORMAT(/51H NR OF NR OF RISK UNDER)
FORMAT {53HSAMPLES ONES RISK DECISION OTHER DECISION/)
FORMAT(I5+189F11le4915H STOP ~ REJECTF1l2e4)
FORMAT(I5+189F11a4s13H CONTINUEFl4e4)

FORMAT (/)

FORMAT(I59189F1lle&4915H STOP - ACCEPTF12.44/)
FORMAT(9H ALPHA = FT74499Hs BETA = FT7e4)
FORMAT(BHGAMMA = FT7e4914Hs MFGe COST = FBe4)
READ 1s Co Z9» ALPHAs BETAs GAMMA

C 1S MFG COSTs Z IS LOT SIZEs ALPHA 1S MARK~-UPs BETA IS SAMPLING COST
GAMMA IS PENALTY FACTOR .

TIF (Z) 500+ 500+ 12

PUNCH 2s Z

PUNCH 9 ALPHAy BETA

PUNCH 919 GAMMA, C

Gl = GAMMA =~ 1,0

G2 = Gl = 140

EN = (((Z*G1l) + G2)/GAMMA} + 1.0
NREJ = EN

.= 2

RSINT = C*{1e0+BETA)Y*Z

INITIAL VALUES OF RSKEP {(KEPT RISK) RESULT FROM 100 PER CENT SAMPLE

DO 11 I = 1sNREJ

RSKEP(1} = RSINT

NPUN = NREJ =1

PUNCH 5% Ls NPUN» RSINT» RSINT
DO 15 TAC = NREJsL

IDX = TAC + 1

RSKEP(IDX) = RSINT

PUNCH 8s L+ NREJs RSINT» RSINT
PUNCH 7

DO 50 J = 1lstL

Y=J

X = Z-Y

X IS 'NR OF SAMPLED ITEMSs Y IS NR OF NON-SAMPLED ITEMSe.

XREJ = (((X%G1l}) + G2)/GAMMA) + 1.0
KREJ = XREJ

KREJ TS UPPER BOUND FOR REJECT DECISION PLUS ONE = F(X) + 1

Cl = C*{Z+(BETA%*X)) v
C2 = CH(ALPHA+1,0)%Y/(X+2,0)
X

KX =
IF (KREJ)Y 279 27y 16
JIX = 00

CO 25 KR = 1y KREJ
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KRl = KR ~ 1

KR2 = KR1 = 1

A = KR1l "

A IS NR OF ACCEPTABLE SAMPLES

KIR = KR + 1

‘RSKST = (1

RISK INCURRED IF SAMPLING IS STOPPED W/ A ACCEPTABLE OF X SAMPLES
PLAX = (A+140)/(X+240)
PROBABILITY OF NEXT SAMPLE BEING OK GIVEN A OK'S OF X SAMPLES
RSKCN = RSKEP(KR) +P1AX*(RSKEP(K1R) = RSKEP(KR))

RISK INCURRED IF SAMPLING 1S CONTINUED

IF {RSKST - RSKCN) 20420518
RSK{KR) = RSKCN

JIX = JIX + 1

IF (JIX = 1) 20y 21 19 ‘
PUNCH 69 KX» KR1s RSKCNs RSKST
GO TO 25 ’

RSK(KR) = RSKST

RSKO:- = RSKCN

GO TO 25

IF (KR1) 23y 234 22 :
PUNCH 5» KX» KR2s RSK(KR1)s RSKO
DUNCH 6s KX3s KR1s RSKCNs RSKST
CONTINUE ‘ '

IF (JIX) 27y 269 27

PUNCH 59 KXs KR1s RSKST» RSKCN

KAX = 00

IF (KX -~ KREJ) 35y 270, 270

DO 35 KA = KREJs KX

A = KA

KAl = KA + 1

KA2 = KA + 2 : :
RSKST = C1 + C2%((GAMMA® (X~A+140j) = (X + 240))
P1AX = (A+140)/(X+2.0) '

RSKCN = RSKEP{KAl) + PlAX*(RSKEP(KA2) — RSKEP(KA1l})
IF {RSKST-RSKCN) 30s30428

RSK{KAl) = RSKCN

PUNCH 69 KXs KAs RSKCNs RSKST

GO TO 35

RSK(KAl) = RSKST

KAX = KAX + 1

IF (KAX = 1) 28» 31, 35

PUNCH 8s KXs KAs RSKSTs RSKCN

CONT INUE

MIND = KX + 1

DO 40 M = 1s MIND

RSKEP(M) = RSK(M)

PUNCH 7

CONTINUE

GO TO 10

STORP. -

END



APPENDIX C

SEQUENTIAL SAMPLING POLICY FOR 50s TOTAL ITEMS.
ALPHA = 54,0000+ BETA = 2,0000
GAMMA = 5,0000s MFGe COST = 10,0000

NR OF NR OF : RISK UNDER
SAMPLES ONES  RISK DECISION OTHER DECISION
50 40 1500,0000 STOP - REJECT 150040000
50 41  1500,0000 STOP - ACCEPT + 150040000
49 39 1480.0000 STOP - REJECT 150040000
49 40 147848236 STOP - ACCEPT 150040000
48 39 1460.0000 STOP — REJECT 147900589
48 40 1448,0000 STOP - ACCEPT 147440001
47 38 1440,0000 STOP ~ REJECT 14600000
47 39 1425.3062 STOP - ACCEPT  1450.2041
46 37 142040000 STOP — REJECT 144040000
46 38 1405,0000 STOP - ACCEPT - 1428+0613
45 36 140000000 STOP — REJECT 142040000
45 37 138742341 STOP - ACCEPT 140748724
44 35 138000000 STOP - REJECT 140060000
44 36 137241740 STOP ~ ACCEPT 13897318
43 35 136040000 STOP - REJECT 137347392
43 36 131343334 STOP ~ ACCEPT 13400001
42 34 134040000 STOP - REJECT 13600000
42 35 129643637 STOP - ACCEPT  1321.8183
41 32 - 132000000 STOP — REJECT 134040000
41 34 128243256 STOP — ACCEPT 13044821
40 32 1300.0000 STOP — REJECT 13200000
40 33 1271.4286 STOP — ACCEPT 128945017
39 31 1280,0000 STOP - REJECT = 13000000
29 32 1263.9025 STOP - ACCEPT  1277+0036
38 31 126040000 STOP - REJECT 126741220
38 32 117040000 STOP — ACCEPT 119745001
37 30 124040000 STOP - REJECT 126040000
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.37

36

36

35

- 35

34
34

33
33
33

32
32

31

31

‘30

30

29

29

28

28

27

27

26

25
25

24
24
24
23

23

31

29
30

28
29

27
28

25
27

28

- 26

27

25

26

24
25

‘22
23

22

24

22
23

21
22

20
21

19
20

21

18
19
20

116040000

122040000
115346843

120040000
115143514

-118040000

115343334

116040000

115846668

101442858

114040000
101249412

1120.,0000

10163637

1100.,0000

102540000

108040000
108040000

106040000 -

1047.4840
84040000

1040, 0000

84946552

1020.,0000
86507143

100040000
88848889

98040000
91042565
620,0000

9600000
92442052
6360000

STOP - ACCEPT

STOP — REJECT
STOP — ACCEPT

STOP - REJECT
STOP ~ ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP — REJECT

CONT INUE

STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP — REJECT
STOP - ACCEPT

STOP - REJECT -

STOP ~ ACCEPT

 STOP - REJECT
STOP - REJECT'

STOP - REJECT -

CONTINUE
STOP ~ ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT

CONT INUE

STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

118641539

124040000
117447369

122040000
116642306

120040000
116048109

118040000
11600000

10428573

1158,9413
103947649

114040000

103600429

1120.0000
103547956

110040000
110040000

1080.0000

1060.0000
87000001

105040736

8757732

104000000
883e6454

1020.0000

8942858

100040000
92040000
65348462

98040000
96040000
6664410
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22
22

21

21

20
20
20

19

19

18
18
18

17
17
16
16
16

15
15 .
15 .

.14

14

13

13

12
12
11

11
11

11

10

17
19

17
18

16
17
18

1%
17

14
15

13

~ 15

12
13
14

o 12

14

11
12
13

10

11

10
11

10
11

7

9400000
9316624
66040000

92040000
69360434

90060000
73443083
327,2727

88040000
7658686
34845714

860+0000
78846949
38000000

840+0000
80347065

42341579

82040000
811.7717
48040000

80040000
53845479
-66447058

7800000
58745702
=30.00C0

7600000
62640561
2000000

74040000
65447584
8845714

72040000
67404295
17546771

~72040000

70040000

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP ~ REJECT
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP ~ ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

/

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT-

CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP ~ REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP -~ ACCEPT

STOP - REJECT
CONT INUE
CONTINUE

STOP -  ACCEPT

STOP - REJECT

9600000 .

94040000
68440342

93344749
7072456

92040000
73643636
36643636

90040000
79144285
38544206

880,0000
86000000
41101660

8600000
84040000
44445307

84000000

82040000

48645826

81347078
55249411
~1949999

800+0000
6450000
10,7008

78040000
76040000
5243427

7600000
7400000
1065794

74040000
72040000
18040000
-663¢0768

72040000
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685.8221 -

25848025

=7000000

68040000

33604424

-661.8181

66040000

40501540
-60040000

64040000
46147864
=50606666

62040000
50603398
=~38546099

60040000
5388141
~25841885

580,0000
55902094

~12503547

56040000

1145581

54000000
14846685

52040000

27961123

39945562

CONT INUE
CONT INUE
STOP - ACCEPT

STOP - REJECT

CONT INUE
STOP - ACCEPT

STOP — REJECT
CONT INUVE
STOP - ACCEPT

STOP — REJECT
" CONTINUE
STOP. - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP ~ REJECT
~ CONTINUE
- CONT INUE

STOP -~ REJECT

CONTINUE
CONTINUE

STOP - REJECT
CONT INUE

STOP ~ REJECT
CONT INUE

STOP - REJECT
CONT INUE

" CONTINUE

7000000
30040000

~64503602

689.6888
45643636
~61248361

68040000

66040000
~56149920

66040000
64040000
~48843162

64060000
62040000
-370.0000

62060000
6000000
=172e4285

60040000
58040000
1200000

56745256
56040000

56040000
54040000

54040000

5200000

50040000
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SEQUENTIAL SAMPLING POLICY FOR

ALPHA =
GAMMA =

NR OF
SAMPLES

&0
50

49
49

. 48
48

47
4T

46
46

45"
45

44
44

43
43

42
42

41
41

40
40

39
a9

38
38

37

5.0000, BETA = . 2,0000
2,0000s MFG, COST =. 10,0000
~ NR' OF RISK UNDER

ONES RISK DECISION OTHER DECISION
25 150040000 STOP ~ REJECT 150040000
26  1500.0000 STOP - ACCEPT  1500.0000
24 1480400000 STOP — REJECT 15000000
25 147848236 STOP — ACCEPT 150040000
24 146040000 "STOP = REJECT  1479.4118
25 145542000 STOP ~ ACCEPT  1477.6001
23 144000000 STOP - REJECT 14600000
24 143643266 STOP - ACCEPT 145745511
23 1420.0000 STOP = REJECT 1438.1633
24 1410.0000 STOP ~ ACCEPT  1432.5001
22  1400,0000 STOP - REJECT = 142040000
23 139346171 STOP ~ ACCEPT = 141448937
22 1380.0000 ' STOP ~ REJECT - 1396.8086
23 136443479 . STOP = ACCEPT ~ 138649566
21 1360.0000 STOP = REJECT 138040000

22 135046667 STOP - ACCEPT 137240001
21 134040000 STOP — REJECT = 1355.3334
22 1318.1819 ~ STOP - ACCEPT 13409092
20 132040000 STOP - REJECT  1340.0000
21 1307«4419 STOP ~ ACCEPT  1328+8373
20 1300.0000 STOP - REJECT 131347210
21 1271.4286 STOP.— ACCEPT = 129442858
19 128000000 STOP - REJECT 130040000
20 126349025 STOP - ACCEPT 12853659
19 126040000 STOP - REJECT 1271.9513
20 1224.,0000 STOP - ACCEPT 12470001
18 1240.0000 STOP — REJECT 126040000

50. TOTAL ITEMS.
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37

36
36

. 35

35

34

34.

33
33

32
32

31

31

30,
30

.29
29 o

.28
28
28

27
27

26

- 26

26

25
25

24

24
26

23
23

‘15

19

18
19

17

- 18

17

18

16

17

16

15
16

15
16

14

13
15

13
992,4138

14

12

13

14

12
13

1l

12
13

11
12

122000000

122040000

117547895 -

120040000

117566757

11800000
112646667

11600000

11308572

114040000
107644706

11200000
108544546

1100, 0000
102560000

108040000
103943549

106040000 .

105946775
97240000

10400000

1020.,0000
101642069
91761429

100040000
944 o 4445

980, 0000

97242223 -

86040000

9606400060

. 895,2000

STOP - ACCEPT

STOP ~ REJECT
STOP - ACCEPT

STOP - REJECT
STOP ~ ACCEPT

.STOP =~ REJECT

STOP - ACCEPT

STOP - REJECT

"STOP = ACCEPT

STOP - REJECT

STOP - ACCEPT

STOP - REJECT

'STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

-STOP - REJECT
STOP ~ ACCEPT.

STOP = REJECT
CONT INUE

STOP. — ACCEPT :

STOP -~ REJECT
STOP - ACCEPT

STOP .~ REJECT
CONT INUE
STOP - ACCEPT

STOP ~ REJECT.

STOP ~ ACCEPT

STOP — REJECT
CONT INUE

STOP - ACCEPT

STOP -~ REJECT
STOP - ACCEPT

124145385

123040000

1198¢9474

122000000
11972974

1187.8379
1150.0001

118040000
115245715

114504286
1100,0001

114040000
1107.2728

110247273

104847501

1100.0000

106142904

108040000
. 106000000
99640001

1059+ 8444

1014.3271"

1040,0000
102000000
941.4285

101841737

9§4.8404

10000000

9800000

884.6154:

97642667
91348667
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22
22
22

21
21 .

20
20
20

19

19

18
18

17

16 . ..~

16
16
15
18
14

14

14

13
13

12
12
12

11
11
11
11

10
10

10

10
12
10
11

9
10
11

10

~owm @-30 . O ®~ =YX

~owmp

owm

94040000 -

927.6000

80040000

92040000

84443478

90000000

88241739

73643636

88040000
791¢4285

8600000
8357142

668,0000

84040000

73547894

82060000

78748947 -
59343333

8000000
6764705

78040000

73842353
5100000

76000000
6§12,0000

7400000
68640000
4142857

72040000
715.0769
53946923
18040000

70040000
62763846

- 3000000

68040000

STOP = REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT

STOP - ACCEPT

SToP ~ REJECT

CONT INUE
STOP - ACCEPT

STOP — REJECT
STOP -~ ACCEPT

STOP - REJECT
CONTINUE
STOP ~  ACCEPT

STOP -~ REJECT
STOP .~ ACCEPT

STOP ~ REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT
CONT INUE
stop - ACCEPT

STOP ~ REJECT
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP ~ ACCEPT

STOP - REJECT
CONT INUE
CONTINUE

SToP - ACCEPT

STOP ~ REJECT
CONTINUE
SToP - ACCEPT

STOP — REJECT

96040000
9400000

82540000

93440695
861.0260

920.0000
900,0000
761.8182

89145114
8057971

8800000

8600000
69440000

84804962

74764436

840.0000
8200000
62040000

80448916
68448916

800,0000
780.0000
537.5000

76045098

61645098

760.,0000
74000000
44248571

“740,0000

72040000
5404 0000
21348461

7179487

70040000
329.8718

700.0000
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66649930
44848112
940909

66040000
5579021
15640000

64000000
61446231
33446231
~21909999

62040000
47446231
~40+0000

60040000
55746956
18045527
-55741428

58040000

. 36961242
=340.0000

56060000
49546496
~5643503
~1132,0000

5400000
~90040000
21946496

43342156
~52627833

-4647833

CONTINUE
CONTINUE
STOP ~ ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
CONTINUE

STOP ~ ACCEPT

STOP — REJECT
CONT INUE
STOP = ACCEPT

SToP — REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP -~ ACCEPT

STOP — REJECT
CONTINUE
CONTINUE

STOP - ACCEPT

SToP — REJECT
STOP — ACCEPT
CONTINUE

CONT INUE
CONT INUE

CONTINUE

68040000
45643636
45,4545

67447972
66040000
18449790

66040000
64040000
35343333
~1799999

63044836
6200000
~12,0162

62040000
60040000
21442857
~511e4285

5858985

580.0000
~3112442

58040000
56040000
~440000
~107640000

54349124
~863.0875
54040000

52040000
~46040000

5000000

80



SEQUENTIAL SAMPLING POLICY FOR
20000
2400009 MFGe COST =

ALPHA =
GAMMA =

NR OF
SAMPLES

"~ 100
100

99
99

98
98

97
97

96
96

95
95

94
94

93
93

92
92

91
91

90Q
90

89
89

88
as

87

540000+

NR OF
ONES

50
51

49
50

49
50

48
49

48
49

T 47
48

48

46
47

46
47

45
46

45
46

44
45

44
45

43

BETA =

RISK

300040000
300Q.,0000

298040000
297944060

296040000
295746000

294060000
293841819

29200000
29151021

290040000
289649073

2080,0000
287245000

286040000
285545790

284040000
28297873

282040000
281441936

280040000

278609566

27800000
277267473

276040000

274440000

274040000

DECISION OTHER DECISION

STOP

SToP

SToP
sToP

sTOP
STOP

STOP
STop

sSToP

STOP -

S5ToP
STOP

sTOP
SToP

STOP
SToP

STOP
STop

STop
STopP

sToP
SToOP

STopP
SToP

STOP
SToP

SToOP

10

100 TOTAL ITEMS.

«0000

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

‘REJECT
ACCEPT

REJECT
ACCEPT

REJECT
-ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT

RISK UNDER

300040000

300040000

300040000
3000,0000

297947030

29788001

296040000
295847879

2939.0910
293603266

292040000
291745259

289844537
289347501

288040000
287642106

285747895
285140639

284040000
2834.8388

28170968
280842610

280040000
279304067

27763737
276543334

276040000

81



87

86
86

85
85

84
84

83
83

82
82

81
81

80
80

79
79

78
78

77
P 7 §

76
76

75
75

T4
T4

73
73

72
72

44

43
b

42
43

42
43

41
42

41
42

40
41

40
41

39
40

39
40

38
29

38
39

37
38

37
38

36
37

36
37

273142360

27200000
27009091

2700,0000
268946552

2680,0000
26576745

266000000
2648.0000

264000000
2614,2858

262000000
260602651

26000000
25707318

258000000
25640 4445

25600000
2527.0000

254040000
2522.5317

2520,0000
2483.0770

2500,0000
24805195

26480,0000
243849474

2460.0000
243844000

24400000
239445946

SToP

SToP
SToP

STOP
sToP

STOP
sToP

STOP
SToP

sToP
SToP

STOP
sTopP

sTop
SToP

STOP
SToP

sToP
STOP

STOP
STOP

STOP
5ToP

SToP
SToP

STOP
sTop

STOP
sToP

STOP
sSTOP

ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT

ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

ACCEPT
ACCEPT

27519102

2735.6180
2722.2728

2720,0000
271063449

269408276
267900699

268000000
26687060

265440000
26357143

2640.0000
262609880

261301326
259201952

26000000
2585,1853

257202223
254805001

256000000
2543.2912

25312659
250406155

25200000
2501.2988

249002598
246005264

2480,0000
245902001

24492000
241642163
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71
71

70
70

69
9

68
68

67
67

66
66

65
65

64
64

63

62
62

61
61

60
60

59
59

58
58
58

57
57

35
36

34
35

33
34

33
34

az
33

32
33

3l

31
32

30
31

30
3l

29
30

28
29
30

28
29

2420,0000
239641644

2400.0000
2350,0000

2380.,0000
235348029

2360.0000
230541429

2340.,0000
23113044

2320.0000
226000000

2300.0000
226846568

2280.0000
221445455

2260.,0000
2225.8462

2240.,0000
216847500

2220,0000
218240572

22000000
212245807

2180,0000
2139.,6722

2160,0000
2159.8361
20760000

2140.0000
209642712

SToP
STOP

SToOP
s5TOP

STOP
SToP

SToOP
STOP

STOoP
STOP

STOP
STOP

STOP
SToP

SToP
SToP

SToP
STOP

SToP
STOP

STOP
STop

STOP
STOP

SToOP
STOP

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
STOP - ACCEPT

2440,0000
241649864

24080822
237166668

2400,0000
237446479

236649015
232648573

2360,0000
2332,1740

23256522
228107648

2320,0000
228905523

228403284
223643638

2280.0000
224607693

2242,9231
2190.6251

224060000
2203.8096

22014286
2144.5162

22000000
216046558

2180,0000
21600000
209840001

21599195
21172076
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56
56
56

55
55

54
54
54

53
53

52
52
52

51
51

50
50
50

49
49

48
48
48

47
47

46
46
46

45
45

44

44

43
43

27
28
29

27
28

26
27
28

26
27

25
26
27

25
26

24
25
26

24
25

23
24
25

23
24

22
23
24

22
23

21
22
23

21
22

2120,0000
211841356
202849656

2100.0000
2052.6316

2080.0000
207643158
1981.4286

2060, 0000
2008,7273

2040,0000
203443637
193343334

2020,0000
1964.5284

2000,0000
1992.2642
188406154

1980, 0000
1920.,0000

1960,0000
1950, 0000
1835,2000

19400000
1875.1021

1920.0000
190745511
1785.,0000

1900.,0000
1829.,7873

1880,0000
18648937
1733,.,9131

1860,0000
1784.0000

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP — REJECT
CONT INUE
S10P = ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP = ACCEPT

STOP — REJECT
STOP = ACCEPT

214000000
2120.0000
205100346

211940842
2072.7685

21000000
2080.0000
200345715

207801914
20280096

206060000
20400000
195505557

2037.2351
1982.8955

202040000
2000.0000
190609232

199642080
1937.3845

1980,0000
19600000
18576000

1955+1021
1891.4286

19400000
1920.0000
18075001

1913.9080
1844.9719

1900.0000
18800000
17565219

1872.6147
1797.9481
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42
42
42

41
41

40
40

39
a9

38
38
38

37
37

36
36

36

35
35

34
34
34

33
33

32
32
32

31
31

30
30
30

29
29

20
21
22

20
21

19
20
21

19
20

18
19
20

18
19

17
18
19

17
18

16
17
18

16
17

15
16
17

15
16

14
15
16

13
14

1840.0000
1822.,0000
1681.8182

182040000
17376745

1800.0000
177848373
162845715

17800000
1690.7318

17600000
1735.3659
157440000

1740.,0000
1643.0770

17200000
16915385
1517.8948

1700.0000
159445946

1680.0000
164742973
146040000

16600000
154501429

1640.0000
160245715
1400.0000

16200000
149445455

1600.0000
1557.,2728
13375000

15800000
157943256

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP = REJECT
STOP = ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP — REJECT
STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP — REJECT
CONT INUE
STOP = ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONTINUE

186040000
1840.,0000
170445455

1831.2094
17502791

18200000
18000000
1651.4287

17896768
1701.8719

1780,0000
1760.0000
1597.0001

1747.9988
165246142

174000000
17200000
154100527

170641539
1602.,3702

17000000
168040000
148343334

166401159
15509730

166040000
16400000
1423.,5295

1621.8529
149842165

162000000
1600.0000
1361.2501

1600.0000
1580.0000
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29

28
28
28

27
27
27
27

26
26
26

25
25
25
25

24
24
24

23
23
23
23

22
22
22

21
21
21
21

20
20
20

19
19
19
19

18
18
18

15

13
14
15

12
13
14
15

12
13
14

11
12
13
14

11
12
13

10
11
12
13

10
11
12

10
11
12

10
11

144245807

1560.0000
151069532
1272,0000

1540,0000
153643223
1387.3568
108648966

152000000
14618396
1202.8572

1500,0000
14919969
132745525
1000,0001

1480.0000
14097747
1129.2308

14600000
144642919
1263.8919

905.6000

1440,0000
13550919
1050,0000

1420,0000
1399.,3918
119509136

801.7392

14000000
12976527
96346364

1380.,0000
1351.2632
1122,6918

6857143

1360.0000
123649775
868.0000

STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP = ACCEPT

STOP = REJECT
CONT INUVE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP ~ ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
CONTINUE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP -~ ACCEPT

STOP — REJECT
CONT INUE
CONTINUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP - ACCEPT

144348417

15796853
15600000
129600001

1560,0000
1540.0000
138809656
1113.1035

1538.2925
152000000
122643960

152040000
15000000
1333,.3334
102646668

149643063
148040000
1151.1782

148000000
146000000
1275.2000

932,8001

1453,7172
144000000
10698172

144040000
1420,0000
1213.9131

829.5653

1410.6327
1400.0000
98069094

1400,0000
1380.0000
1148.5715

71402857

1367.0685
13600000
BB82¢3542
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17
17
17
17

16
16
16

15
15
15
15

14
14
14
14

13
13
13
13

12
12
12
12

11
11
11
11

OO0 00

@®mmdo

WP w ~oWmPeWw ~ W ~ oW o~ @~ oW Ve~ O @~ (=R T

ocowvwEFwNn

13400000
1301.7262
1042,7789

55346843

1320.0000
1172,2526
760.0000

1300.0000
125044719
95440013
400,0000

1280.0000
127843315
1102.2366

635.0000

12600000
119641539
853.0438
21640000

1240,0000
123246374
102445989

48547143

1220.0000
113646197
73444303
~1243076

1200.,0000
1185.2583
93545250
29848332
-&00.0000

1180.0000
107147432

58842385
-309.0908

1160,0000
11366973
B29.9909
49.8409
-1048,0000

STOP = REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
CONTINUE

STOP — ACCEPT

STOP - REJECT
CONT INUE
CONTINUE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUVE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONTINUE
CONT INUE

STOP — ACCEPT

136040000
1340.0000
1077.8948

58341579

1322,9895
1320.,0000
7710597

1320.0000
1300.0000
1000,0000

430.5882

13000000
1280,0000
1280.0000

642+3755

12793326
1260.0000
912.0000
24840000

1260,0000
1240.0000
1240.0000

48900187

1237.1683
1220.0000
80942308
2145384

1220,0000
1200.0000
1200,0000

300.0000
-55949999

119446394
1180,0000

68346364
=273.1515

1180.,0000
11600000
11600000
5640000
=1003.9999
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1140.0000
1000.,3834

39645742
=720.,0000

1120.0000
1087.6438
698.4788
=301,2846
=1700,0000

11000000
920.8589
127.1854

=1342.8571

108040000
104002864
52440221
-852.8428
=2760.0000

1060,0000
833.7807
-302.0968
=2432,0000

100344452
26548419
-1900,0000

7575775
=1178,0526

=21062375

STOP - REJECT
CONTINUE
CONT INUE

STOP = ACCEPT

STOP - REJECT
CONT INUE
CONTINUE
CONTINUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONTINUE
CONTINUE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

CONT INUE
CONTINUE
STOP - ACCEPT

CONT INUE
CONT INUE

CONT INUE

1152.2325
1140.,0000

5200000
~682.0529

114040000
112000000
1120.0000
-290.0000
=1650.0000

11107554
11000000
2857143
=1300.3670

1100.0000
1080.0000
10800000
-840.0000
=-2699.9999

107240573
10600000
-104.0000
-2378.5685

10400000
1040,0000
-189945242

1020.,0000
=-96040000

1000.0000
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SEQUENTIAL SAMPLING POLICY FOR 100s TOTAL ITEMS.
ALPHA = 5,0000s BETA = 2,0000
GAMMA = 5,0000y MFGe COST = 10.0000

NR OF NR OF RISK UNDER
SAMPLES ONES RISK DECISION OTHER DECISION
100 80 3000,0000 STOP - REJECT 3000.,0000
100 81 3000,0000 STOP - ACCEPT 3000.0000
99 79 29800000 STOP - REJECT 3000.0000
99 80 297944060 STOP - ACCEPT 3000.0000
98 79 29600000 STOP = REJECT 29795248
98 80 295440000 STOP = ACCEPT 2977.0001
97 78 2940,0000 STOP = REJECT 29600000
97 79 2932.7273 STOP — ACCEPT 2955.1516
96 77 2920.0000 STOP - REJECT 294040000
96 78 291246531 STOP = ACCEPT 293401374
95 76 2900,0000 STOP = REJECT 292000000
95 77 2893,8145 STOP - ACCEPT 2914,0922
94 75 28800000 STOP - REJECT 2900,0000
94 76 287602500 STOP - ACCEPT 2895.0388
93 75 2860,0000 STOP - REJECT 28770000
93 76 2B837.8948 STOP - ACCEPT 28610527
92 T4 28400000 STOP - REJECT 28604,0000
92 75 281945745 STOP - ACCEPT 2842.1278
91 73 282040000 STOP - REJECT 284000000
91 T4 28025807 STOP - ACCEPT 282345279
90 72 28000000 STOP - REJECT 282040000
90 73 278649566 STOP - ACCEPT 2B05.9889
89 Tl 2780,0000 STOP - REJECT 2800,0000
89 T2 27727473 STOP - ACCEPT 278945367
8s 71 27600000 STOP - REJECT 277401979

88 72 27200000 STOP - ACCEPT 274343335



87
87

86

85
55

84
84

83
83

82
82

8l
81

80
80

79

78
78

77
77

76
76

75
75

T4
T4

73
13

T2
72

70
71

69
70

68
69

67

67
68

66
67

65
66

64
65

63
64

63
64

62
63

61
62

60
61

59
60

59
60

58
59

27400000
270449439

2720.,0000
269143637

270040000
26793104

26800000
266848373

26600000
2600.0000

26400000
258845715

262000000
2578.7952

2600,0000
25707318

25800000
256404445

25600000
24775000

2540,0000
247041266

25200000
246446154

2500.0000
246140390

2480,0000
2459,4737

2460,0000
2352,0000

2440,0000
23491892

STOP
SToP

sTOP
STOP

STOP
STOP

STop
STOP

sToP
SToOP

STOP
STOP

sToP
SToP

STOP
SToP

STOP
STOP

STOP
STOP

SToP
STOP

STOP
SToP

S5TOP
STOP

STOP
SToP

STOP
STOP

STopP
STOP

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

REJECT
ACCEPT

2760.0000
27276405

2740,0000
27117162

27200000
269649593

27000000
2683,4003

26710699
26235295

2660.0000
2611.4286

264040000
259844855

2620,0000
258646352

260040000
257645132

2567+5556
250102501

256040000
249341646

25400000
2483.5638

2520.0000
247504047

250040000
2468,7287

246345790
237640001

246000000
2372.4325
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71
71

70
70

69
59

68
68
68

67
67

66
66

65
65

64
64

63
63
63

62
62

61
61

60
60

59
59
59

58
58
58

57
58

56
57

55
56

54
55
56

54
55

53
54

52
53

51
52

50
51
52

50
51

49
50

48
49

47
48
49

46
&7
48

2420,0000
234844932

2400,0000
235040000

2380,0000
2353,8029

2360,0000
2359,0424
2222,8572

23400000
222542174

2320.0000
2230,0000

2300,0000
2237,3135

2280,0000
2247.,2728

226000000
2253.8183
2089.2308

2240.,0000
2097.5000

2220.0000
210845715

2200,0000
2122.5807

2180,0000
2137.8108
1938.,0328

2160,0000
214642487
19500000

sToOP
STOP

REJECT
ACCEPT

STOP = REJECT

STOP = ACCEPT
STOP = REJECT
STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP REJECT
STOP = ACCEPT

STOP - REJECT
STOP - ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
STOP ~ ACCEPT
STOP - REJECT
STOP =~ ACCEPT
STOP = REJECT
STOP - ACCEPT

STOP =~ REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

2440,0000
236645050

2420,0000
23623974

2400,0000
2359.8592

2380.0000
236060000
22471430

235902367
224845153

2340,0000
2247.1612

2320,0000
2247.4627

2300,0000
224946609

228000000
2260,0000
2113,8462

22550740
212000910

224000000
212446429

2220.0000
213041384

220040000
2139.6722
1963.9345

218040000
21600000
1974.6588
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57
57

56
56

55
5%

54
54
54

53
53
53

52

52

51
51

50
50

49
49
49

48
48
48

47

47

46
46

45
45
45

44
&4
44

46
&7

45
46

43
44

45

42
43
EEd

&2
43

41
42

40
41

39
40
41

38
39
40

a7
a9

37
38

36
a7
as

35
26
37

2140.,0000
1965.0848

21200000
1983,4483

2100,0000
2005.2632

2080,0000
2023.,8723
1784,2858

2060,0000
2035,0979
1803.,6364

20400000
1826.6667

2020.0000
18535850

2000.,0000
188446154

1980,0000
19072399
1620,0000

1960.0000
1921.7920
1648.,0000

1940,0000
1929.5896
1680,4082

1920.0000
1717.5000

1900,0000
175642766
140845107

1880,0000
1784.3964
1441.7392

STOP
STOP

REJECT
ACCEPT

STOP - REJECT

STOP = ACCEPT
STOP = REJECT
STOP - ACCEPT

SToP - REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
STOP = ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP -~ ACCEPT

STOP = REJECT
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

2149.0456
1986.5888

214000000
1998,2584

212040000

2009.8004

21000000
20307143
18107144

20800000
206000000
18278470

204041706
184604997

2040.0000
18669183

2020.0000
18855879

2000,0000
192000000
1647.0589

1980.0000
1960.0000
1671.7032

19600000
1940.0000
1698.2884

1931.7585
1727.1298

1920.,0000
175945745
143744469

19000000
1806+9566
1468.9918
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43
43
43

42
42
42

41
41

40

&0

39
39
39

38
38
38

37
37
37

36
36
el
36

35
35
35

34
34
34

33
33
33

32
32

31

34
35
36

33
34
35

a3
34

32
a3
34

31
32
33

30
31
32

29
30
31

28
29
30
31

28
29
30

27
28
29

26
27
28

25
26
27

24

186000000
180345172
1480.0000

1840,0000
1815.0706
1523.6364

1820,0000
1573.0233

1800,0000
16200665
1200,0001

1780,0000
165501755
124443903

1760.,0000
168041404
1295.0000

174040000
169645219
1352,3077

1720,0000
17056752
141547156

9115790

1700.0000
147045729
9621622

168040000
1515,1838
1020,0000

1660,0000
154801471
10B85.7143

1640,0000
15711757
11600000

1620,0000

STOP = REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
CONTINUE
STOP = ACCEPT

STOP - REJECT
STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP = REJECT
CONTINUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONT INVE
STOP = ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONTINUE
STOP — ACCEPT

STOP - REJECT
CONT INUE
STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT

18800000
1860.0000
1502.6561

1860,0000
1840,0000
1538.8214

1820.,2884
1577.8568

1820,0000
162845715
1230,0001

18000000
1690.7318
1271.7188

1780.0000
1760.,0000
13162778

1760,0000
1740.0000
136441278

1740.0000
17200000
141648422

944,2107

1708.7725
1489.1892
99343309

1700,0000
15700000
1046+8974

1680.0000
16600000
1104.8887

1660.,0000
1640.0000
1167.3201

1640.0000
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31
31
31

30
30
30
30

29
29
29

28
28
28

27
27
27

26
26
26
26

25
25
25
25

24

26
24

23
23
23

22
22
22
22

21
21
21
21

20

25
26
27

23
24
25
26

23
24
25

22
23
24

21
22
23

20
21
22
23

19
20
21
22

18
19
20
21

18
19
20

17
18
19
20

16
17
18
19

15

15857748
123447593
61643637

1600.,0000
1593,2616
1300.5748

681.,2500

158040000
13572239
75544839

1560,0000
14017792
840,0000

154000000
143405146
93508621

1520,0000
145701187
1024,9072

251+4287

1500, 0000
14710924
11049464
333,3334

1480,0000
14777634
117503591

42T7.6924

1460,0000
1235.8400
5360000

1440,0000
128245401

65266401
-315.0000

1420.0000
131647706

762.1880
-228+6956

1400.,0000

CONTINUE
CONT INUE
STOP = ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

sTop -.REJECT
CONT INUE
STOP = ACCEPT

STOP = REJECT
CONTINUE
STOP - ACCEPT

STOP = REJECT
CONT INUE
STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT

16200000
1243+6364
6509091

1620.0000
1600+,0000
1337.5000

712.9881

1594.7832
164425807
T8lelékl2

1580,0000
156000000
855.7740

1560+0000
154040000
9368585

1540,0000
1520.,0000
104442858

28B8+5714

1520.0000
15000000
116646667

36640182

1500.0000
1480,0000
130446154

45240431

14783002
146000000
5473191

1460.0000
144040000

66040000
~27245000

1440.0000
1420.0000

B01.7392
~188.7860

1420.0000
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20
20
20

19
19
19
19

18
18
18

17
17
17
17

16
16
16
16

15
15
15
15

14
14
14
14

13
13
13
13

12
12
12
12

11
11
11
10

10
10

16
17
18

14
15
16
17

14
15
16

13
14
15
16

12
13
14
15

11
12
13
14

10
11
12
13

10
11
12

10
11
12

134042319
B63,0213
~127.2726

1380,0000
1354,4625
953,9186
-8+5714

13600000
1034.0274
130,0000

1340,0000
1102.,6533
2T72.7412
=1018+9473

1320.,0000
1155.3971

411.0599
=920,0000

1300,0000
119401272

54244136
-800.0000

1280,0000
1220645954

66446099
=655.0000

1260,0000
12364367

T758070
-480.0000

124040009
87445134
-300.5989
~-2154,2856

1220,0000
95848565
-119.8123
-2066.1538

12000000
102441424
59.9658
=1950.,0000

CONT INUE
CONT INUE
STOP - ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP = ACCEPT

STOP - REJECT
CONT INUE
STOP = ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP -~ ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP — REJECT
CONT INVE
CONT INUE

STOP - ACCEPT

STOP = REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CCNTINUE

STOP - ACCEPT

STOP = REJECT
CONTINUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

1400.0000
96346364
=93.5751

14000000
1380.0000
114845715

1401979

136008469
1360+0000
135.8021

1360,0000
134000000

29145790
-9705263

1340.0000
13200000

480,0000
=87504263

1320,0000
130040000

700.0000
=T763+4047

1300.0000
1280.0000

957.5000
=632.,1983

128040000
1260.0000
126040000
=479.0520

1243.,1691
12400000
~26845714
209507142

1240.0000
1220.0000
=12+3076
=2011.6943

1220.0000
1200.,0000
300,0000
-1903.9586
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1180.0000
1072.1036
2352707
=-1798.1817

1160.0000
110444726
40246373
=1600.0000

1140,0000
1122,9818
5586008
=13774847

1120.0000
69946961
=1135.4740

1100,0000
819.7830
=873.3068

1080,0000
913.1887
=591,1251

1060,0000
979,9133
-290,2623

1040.0000
1019.9567
27.2816

1020,0000
358.1734

689.,0867

STOP = REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUE

STOP - ACCEPT

STOP - REJECT
CONT INUE
CONT INUVE
CONT INUE

STOP - REJECT
CONT INUE
CONT INUE

STOP = REJECT
CONT INUE
CONTINUE

STOP -~ REJECT
CONT INUE
CONT INUE

STOP - REJECT
CONT INUE
CONTINUE

STOP - REJECT
CONT INUE
CONT INUE

STOP - REJECT
CONT INUE

CONT I NUE

1200.0000
1180.0000
6B3.6364
=1767.2758

1180.0000
1160.0000
11600000
~159448364

1160,0000
1140.0000
1140.0000
=1340.,0000

1129+3637
1120,0000
=995.0000

1120.0000
1100.0000
~52B«5714

1100,0000
1080.0000
120.0000

10800000
1060.0000
106040000

106040000
1040.0000
1040.0000

1033,3190
1020.0000

1000.0000
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APPENDIX D

UNIQUE BETA DETERMINATION BY FIRST TWO MOMENTS

Proof that the mean and variance of a Beta distribution are suffi-

cient to uniquely determine the parameters of the density.

(A+1)!

. A B-A |
fP[A,B =TT P (1-p) » A>-1,B-A>-1,0s<p <1,

= Arl
T ER

.02 N (Afi)(B-A+l)

(B+2)2(B+3)

From 2, A = p(B+2) =1 for every A > -1.

2 _ p(B+2)[B-u(B+2)+2) _ u(B+2)[(B+2)(1-u)]
(B+2)2 (B+3) ~ (B+2)2 (B+3)

From 3 and 4, o

From 1, B - A > -1 and A > -1 imply B > -2 and u # 0, so that

ec 2 _ u(l~u)
5 becqmes.c = 5
o<
B = u(lfu) -3
g2

From 4 and 8, A = u(B+2) -1
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10. Since, from 1 and 2, u # 0, 1, A and B are uniquely determined

by u and 62 as shown in 8 and 9.
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APPENDIX E

FORTRAN SIMULATION FOR STOCHASTIC 'P'

FORTRAN PROGRAM
PROGRAM NAME = STOSIM

SIMULATION OF A STOCHASTIC PROCESS IN WHICH THE PARAMETER 'P' IS
DIMINISHING WITH TIME ACCORDING TO THE MODEL P(T+1) = C#P(T)s *C'
1S ASSUMED TO HAVE THE DENSITY FUNCTION (D+1)C*#Ds AN A PRIORI
BETA DISTRIBUTION OF 'P* 1S5 ASSUMEDs ~ We Co MCCORMICKs JRe

1 FORMAT (6F10e4)

2 FORMAT(TOH T A PSI PMU CMU EPMU
1 CRAN )

4 FORMAT(70H WT X AMDA PVAR CVAR EPVAR
1 PRAN /)

5 FORMAT (16 199 Fl2e49 4F10,.4)
& FORMAT (FB8459 I1Ts Fl2s49 3F10e7v FlOebs/)
10 READ 1» Xe AMDAs PSIs Ds TMAXs AAA

1Xt 1S THE NUMBER OF SAMPLES TO BE DRAWN EACH TIME. AMDA AND PSI
ARE THE PARAMETERS OF THE A PRIORI DISTRIBUTION OF 'P', ‘D' IS5 THE
COEFFICIENT OF THE ASSUMED DENSITY OF *'C*'s TMAX IS THE NUMBER OF
TIMES SAMPLING 1S5 TO BE DONEs AAA IS ANY TEN DIGIT NUMBER USED FOR
RANDOM NUMBER GENERATION.

IF (X) 500e 500, 11
11 CMU = (D + 140)/(D + 2,0)
CVAR = CMU/Z((D + 2.0) ® (D + 3.0))
EPMU = (PSI + 1.0)/(AMDA + 2,0)
EPVAR= (PMU*(1,0 = PMU))/(AMDA + 3.0)
JMAX = TMAX
L =X
PUNCH 2
PUNCH &
20 DO 50 J = 1ls JMAX
Jl w J - |
T = J1
RANC = RANDOM(AAA)
XPON = 1,0/(D + 1.0V
CRAN = RANC#*#*XPON

'CRAN' IS5 THE RANDOMLY GENERATED VALUE OF *C* THAT EXISTS NOWs
PPRIME = CRAN#*EPMU
'PPRIME® IS THE *P* WHICH EXISTS AT THIS TIME.

QPRIME = (1.0 - PPRIME)
FAC = 1.0

PPROB = (1.0 = PPRIME)##*X
PRAN = RANDOM (AAA)

'PRAN® 15 THE RANDOM NUMBER USED TO DETERMINE THIS 'A',

PTOA = 1,0

QTOB = PPROB

DO 35 1 = 1» L

A = |

PTOA = PTOA#PPRIME

QTOB = QTOB/QPRIME

FAC = (FAC®#(X = A + 1,0))/A
PROBA = PPROB + (FAC*PTOA®*QTOB)
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35
36

38

NnACANNANNN

50

500

160

IF (PROBA ~ PRAN) 35, 38y 36

PPROB = PROBA

IF((PROBA ~ PRAN) = (PRAN - PPROB})) 38+ 38s 37
At A~ 140

WTMU = X/(X+AMDA + 2,0)

PMU = (A + PSI + 1¢0)/7(X + AMDA + 2,0)

PVAR = (PMU*{1,0 -~ PMU)I/{X + AMDA + 3,0)

EPMU = PMU*CMU ] :

EPVAR = PVAR®(CVAR + (CMU¥%2)) + (CVAR¥(PMU*#2)}
PUNCH 5+ Jls As PSIs PMUs CMUs EPMU, CRAN

PUNCH 6» WTMU» Xs» AMDAs PVARes CVARs EPVARs PRAN

AMDA AND PSI ARE THE PARAMETERS OF THE 'P¢ DENSITY YIELDING THIS
RESULTe (MU AND CVAR ARE THE MEAN AND VARIANCE OF THE A PRIORI
OF *C's PMU AND EPVAR ARE THE ESTIMATES OF MEAN AND VARIANCE FOR

THE NEXT 'P's WTMU AND WTVAR ARE THE RELATIVE WEIGHTS OF THE MEAN

AND VARIANCE OF THIS SAMPLE ONLY IN RELATION TO THE PREVIOUS EX~-
PERIENCE« i

AMDA = ((EPMU®{1,0 - EPMU))/EPVAR) = 3,0

PSI = (EPMU*(AMDA + 2,0)) = 1,0
GO To 10 ’
STopP

END



T
WT

0
«5000C

1
78680

2
e67413

3

- 59990
4

56121
5

52115

6
048456

7
«46103

_ 8
43900

9
39568

10
36322

X

81
100

71
100

60
100

57
100

49
100

43

100

42
100

38
100

23

100

23
100

20
100

APPENDIX F

SIMULATION RESULTS

PSI
AMDA

9840000
9840000

2143548
2540967

31e5462
4643378

37.1421

- 6446940

399054

76.1838

4164975
89.8828

42,4457
104,3698

4343696

11449042

43,4835
12547877

4044762

"~ 15047283

39,9991

17343146

PMU
 PVAR

9000
¢ 0004477

e 7345

¢0015222

06238
0015712

"e5707

«0014609

5045
0013950

e 4455
«0012807

04140
«0011699

63797

«0010809

02962

«0009112

2551

«0007489

«2215

v00006241

101

CcMU
CVAR

29166

0058760

. 9166
« 0058760

9166
+0058760

e9166
«0058760

9166
« 0058760

09166

« 0058760

¢9166

40058760

e9166

00058760>

e9166

«0058760

09166
«0058760

¢9166

+0058760

EPMU
EPVAR

«8249
¢ 0051384

«6733

00044583

«5718
0036167

#5231
«0031504

04625
«0026764

04084
«0022503

3795
¢0019972

3481
¢0017620

«2715
« 0012868

02338
«0010161

02030 -

+ 0008166

CRAN
PRAN

+»8385
3183

9758
0137

09234
3589

#9599
e7311

+8541
#8235

«9867
e3445

«9948
06721

09424
6939

e 7480
02647

.9895
.2193

09524
3613
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