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CHAPTER I 

INTRODUCTION 

The thrust to clean up the environment has been accelerated in 

the last decade due to increasingly stringent legislatiori. In con­

sequence, much time, moneY and research have been expended to modify 

and develop wastewater treatment systems to enhance the efficiency 

and effectiveness of pollution control facilities. With the new 

Environmental Protection Agency regulations for waste treatment plant 

effluent suspended solids, the clarification function has become a 

critical consideration. The Environmental Protection Agency has set 

limits on both effluent suspended solids and effluent BOD; effluent 

suspended solids contribute to both effluent suspended solids and 

effluent BOD. 

The performance of a secondary wastewater treatment system is 

dependent not only on the performance of the biological solids in 

removing BOD, but it is also dependent on the performance of the system 

in retaining the biological solids in the system. The removal of tbe 

biological solids from the activated sludge treatment plant is by 

gravity settling in the secondary clarifier. The secondary clarifier 

in an activated sludge system has two functions. One is the clarifi­

cation function, and the second is to provide a concentrated sludge to 

return to the aeration basin. Some treatment plants perform both func­

tions efficiently and economically by monitoring zeta potential. To 

optimize the effluent system in reducing effluent solids, the zeta 
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potential value is maintained constant by adding cationic additives. 

The performance of the secondary clarifier in an activated sludge 

system could be enhanced greatly by increased knowledge of the effects 

of the many variables which affect the performance of the secondary 

clarifier. In the present study, the effect of sludge age and zeta 

potential on the clarification function of the secondary clarifier in 

an activated sludge system was investigated. 
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CHAPTER II 

LITERATURE REVIEW 

Sludge Age 

It is well known that sludge age, or specific growth rate, affects 

certain characteristics of biological solids such as sludge yield and 

BOD removal. Sludge age may have a gross effect on the settling prop­

erties of activated sludge biological solids. If, in fact, sludge age 

does have a significant effect on the settling properties of activated 

sludge, the relationship between sludge age and the various settling 

properties of an activated sludge could be of great significance both 

to the treatment plant designer and the operator. 

Overflow area, volume, and sludge removal rate can be varied to 

meet the desired operational characteristics of a secondary clarifier 

for the activated sludge system. Once the plant has been built and is 

in operation, the only clarifier control variable open to the treatment 

plant operator is the sludge removal rate. The solids loading on the 

secondary ~larifier may be reduced by wasting more solids from the sys­

tem. Decreasing the mixed liquor suspended solids decreases sludge 

age, and sludge age does affect the settling characteristics of the 

activated sludge biological solids. 

In 1967, Ford and Eckenfelder (1) ran three bench scale activated 

sludge units with different wastes. Their data suggest that slJdge age 

does in fact affect the settling characteristics of activated sludge 
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biological solids. In 1971, Bisogni and Lawrence (2) ran several 

bench scale activated sludge units simultaneously, varying only the 

sludge ages of the units; the sludge ages of the units varied from 

4 

0.25 days to 12 days. They found that effluent suspended solids increas­

ed from a minimum at a sludge age of one day to a maximum at a sludge 

age of three days. The effluent suspended solids then decreased to a 

minimum at a sludge age of six days, and again increased with increas~ 

ing sludge age. They also found that the zone settling velocity and 

sludge volume index varied with sludge age. The effluent suspended 

solids data suggest a complex relationship between sludge age and clar­

ification. 

Flocculation 

The mechanism of bacterial flocculation is not yet established, 

but bacterial flocculation can be classified into three types: natural 

flocculation, autoflocculation, and chemical flocculation. Natural 

flocculation was supposed to be due to the collision of bacteria with 

impurities present in the wastes. Arden and Lockett in l914 proposed 

the idea of natural flocculation. In aerated organic wastes, natural 

slimes are developed, and this results in the subsequent formation of 

zoogloeal floes. These floes consist of organisms, food, and slime 

materials (3, 4). 

Colloidal characteristics of the cells is said to be the reason 

for autoflocculation. Negative charges on the bacterial surface set 

up force between electrostatic repulsion and van der Waal 's attraction, 

and when the latter predominates, autoflocculation results. In 1925, 

Theriault and Clark (5) and Miller (6) set forth the fundamental 
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concept of chemical flocculation. They said that there must be present 

t · · · t't f 1 · · (Al+++) or fe· rr1'c (Fe+++) a cer a1n m1n1mum quan 1 y o a um1n1um 

cations. There should be present an anion of strong coagulating power 

and pH must be carefully adjusted. 

According to Dubos (7), most bacteria are found to have definite 

capsules, and it appears that bacteria are joined at the capsul~r sur­

face. Abramson (8) found that bacteria had a definite electrokinetic 

potential, and that the reduction of this potential resulted in agglu­

tination of the bacteria. It was shown by McCalla (9) in 1940 that 

bacteria adsorbed positive ions from solution as a result of their neg-

ative surface charge. The chemical composition of the slime layer is 

believed to be responsible for the electrical charge on the bacteria, 

which is predominantly polysaccharide. 

Buswell and Long (10) in 1923 proposed that activated sludge floes 

were composed of a synthetic gelatinous matrix in which filamentous and 

unicellular bacteria are embedded and on which various.protozoa feed 

and crawl. The purification is attained by digestion and assimilation 

by the organisms in the sewage and subsequent resynthesis of organic 

matter into the 1 iving material of organisms. Buswell also stated that 

activated sludge is made up of zoogloeal floc and that the protozoa on 

this floc are responsible for the major portion of the purification of 

the sewage. 

Heukelekian and Littman (11) and other investigators felt that 

the bacteria were bound together by a gelatinous material surrounding 

each cell. The work of Dunbar, Theriault, Cavel, Buswell, Baly, and 

others (12) showed that the colloidal matter in sewage was adsorbed by 

the slimes, but none agreed on the mechanisms involved. Theriault 



believed that the gelatinous matrix of activated sludge was a biogeo­

litic substance and that the organic materials were adsorbed onto the 

sludge by an ion exchange process. Electrical charge was the theory 
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of Cavel and others. Cavel felt that the slimes were positively charg­

ed as they adsorbed negative colloids. This idea was disproved by Bus­

well, who showed that both the colloid and slime had negative charges. 

McKinney and Weichlein (13) in 1953 noted that floc formation has 

some relation with bacterial metabolic activities. Complete metabolism 

of the organic waste was related to floc formation. Again in 1952, 

McKinney (14) came up with another theory on floc formation. He 

said that floc formation was due to the collisions between cells and 

bacterial surface charges. McKinney further said that the overall sur­

face potential has been reduced with respect to the surface area in 

contact. Again in 1956, McKinney (15) maintained that_ floc formation 

was dependent on the energy of bacteria but not on the surface charge. 

He said van der Waal •s forces would overcome low energy systems and 

floc results. 

In 1964, Tanney and Stumm (16) proposed that biological self­

flocculation results from the interaction of naturally produced poly­

electrolytes. In 1965, Crabtree, Boyle, McCoy, and Rohlich (17) 

pointed out that bacterial flocculation is not absolutely related to 

slimes. They proposed that bacterial flocculation is due to the accu­

mulation of polymer poly-s-hydroxybutyric acid (PHB). They observed 

that the rapid accumulation of PHB by zoogloea was associated inti­

materly with the flocculation of the organism. 



Zeta Po tent i a 1 

The stability of the colloid system or emulsion is dependent upon 

adsorption of ions (or polymers) from the bulk of the suspending liq­

uid. There are three methods by which the colloid can be stabilized; 

one method is mutual repulsion due to high zeta potential; the second 

method is adsorption of a small lyophilic colloid on a larger electro­

negative colloid. The third and last method is steric hindrance due 
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to adsorption of an oriented nonionic polyelectrolyte. Colloids are 

electro-negative in tap water in the pH range of 5 to 10, and such col­

loids have zeta potential in the range of -14 to -30 millivolts. The 

zeta potential must be less electro-negative for coagulation. Accord­

ing to Brinton and Lauffer (18), the zeta potential of bacteria ranges 

between -22 to -76 mv in wastes with pH equal to 7.3. 

According to Selye (19), vigorous microbial activity on an aqueous 

organic colloid system leads to lowering of zeta potential, and subse­

quent agglomeration results in sedimentation. According to Riddick 

(20), the action of microorganisms on the colloidal organic waste leads 

to lowering of zeta potential, and subsequent agglomeration. results in 

sedimentation according to Stoke•s law. Abramson (21) notes that most 

colloids are electro-negative in water at low ionization in the pH 

range around neutrality. According to Salle (22), the end products of 

intense microbial activity lead to agglomeration. Salle also noted 

that microbial decomposition takes place by decarboxylation wherein 

carbon dioxide leaves as gas and hydrogen is left. The removal of car­

boxyl radical reduces the electro-negative charge on the surface of a 

particle, which results in agglomeration and subsequent sedimentation. 
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Kupec, Smatla, Jaromir, and Milan (23) measured the zeta potential 

during evaluation of compositions formed during biological purification 

of tannery wastewaters by activated sludge. Carlson (24) removed col­

loidal particles from wastewater by passing the liquid through a flow 

path, determining the zeta potential and then adjusting the zeta poten­

tial to a predetermined value to cause flocculation and coagulation. 

Additives used included inorganic electrolytes FeCl 3 or alum, or syn-j 

thetic polyelectrolytes. Grutsch and Mallatt (25) optimized the efflu­

ent system of the activated sludge process by a chemical treatment 

approach. 

Sedimentation 

Sedimentation is a widely used physical process in wastewater 

treatment plants to remove undesirable solids from the carrying water. 

In order to separate solids from the carrying water by sedimentation, 

certain conditions must be met. First, the solids must be of greater 

density than the water; second, the solids must either be of suffi­

cient particle size to allow gravity settling to occur or be capable 

of agglomeration into sufficiently large particles for gravity set­

tling to occur. These requirements are due to the nature of the sedi­

mentation operation and the physical laws governing it. 

In wastewater treatment, sedimentation has two functions. First, 

the solids are separated from the bulk of the water, producing clari­

fied supernatant. Second, the solids are allowed to settle further 

after separation from the bulk of the liquid to reduce the water con­

tent of the solids. In wastewater treatment, these two functions are 

important. 
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There are four classifications of sedimentation as defined by Fitch 

(26). The four classifications are not quite distinct, but they do pro­

vide a basis for design procedure. Camp (27) came up with a refined 

version of Hazen•s analysis along with design procedure and equation. 

Fitch (28, 29) later showed that both overflow rate and detention time 

influence solids removal. Talmadge and Fitch (30) described an equa-

tion for clarification in an activated sludge secondary clarifier. It 
' ,, 

does not account for remova 1 of dispersed growth or very sma 11 floc 

particles which are removed with increased detention time in the clari-

fier. It is simply the equation describing the required overflow rate 

for the initial gross removal of floc particles in the secondary clari­

fier. 

Temperature would affect the settling rate of activated sludge by 

changing the viscosity of the water. Temperature, stirring, and other 

physical and chemical variables should be controlled. 



CHAPTER III 

MATERIALS AND METHODS 

To study the performance and the characteristics of the effluentf 

of the activated sludge biomass of various ages, a bench scale acti­

vated sludge unit was operated under closely controlled conditions. 

For ease of presentation, the experimental laboratory apparatus, the 

feed solution, initial startup, daily protocol, analytical procedures 

and methods of analysis used to carry out the objetives of this study 

are described separately. 

Experimental Laboratory Apparatus 

A schematic diagram of the activated sludge unit with other appar­

atus used in this experimental investigation is shown in Figure 1. The 

aeration tank was a bench scale unit having a volume of 6.5 liters. 

The tank was rectangular in shape and made of one-fourth inch thick 

plexiglass with internal recycle of bacterial cells serving as the 

aeration tank and secondary clarifier. An adjustable baffle was used. 

to separate the aeration and settling compartments. A feed rate of f 

19.6 liters/day was set. The feed was mixed every day in a five-gallon 

glass bottle. The bottle volume was marked in one-liter graduations to 

twenty liters. 

Air was supplied to the aeration tank through four porous diffuser 

stones at a total rate of approximately 7.5 ~ 0.5 cubic feet per hour. 

10 



Figure 1. Experimental Activated Sludge Unit 
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A Gelman airflow meter was used to monitor the airflow. This compressed 

air was adequate to provide thorough and complete mixing and to supply 

sufficient oxygen for the microorganisms, but also created required 

movement to recycle solids from the settling tank compartment. A glass 

cotton filter was placed between the diffusers and the air outlet to 

prevent any oil in the airlines from entering the experimental unit. 

The temperature was maintained at 23 ~ 2°C. During the summer, when 

operation of the unit was initiated, temperature control was no problem. 

However, the temperature in the laboratory began to fluctuate with the 

onset of winter. 

The feed was supplied to the reactor by means of a Milton Roy dual 

positive displacement pump (Mini-pump Model MM2-B-96R). The feed rate 

was checked daily by reading the volume pumped during the previous 

twenty-four hours. If the pumping rate was incorrect, a graduated 

cylinder and timer were used to adjust the pumping rate. The feed lines 

were disinfected by pumping a one-percent solution of Clorox for at 

least one hour, followed by tap water to cleanse the lines of the dis­

infectant. One of the feed lines was being disinfected while the other 

was being used. 

Feed Composition 

The composition of the synthetic waste used in this study is given 

in Table I. Glucose was used as the carbon and energy source in these 

studies. The synthetic wastewater fed to the aeration tank was designed 

to have a chemical oxygen demand (COD) of 300 mg/1. Other required 

nutrients contained in the feed are shown in Table I. The feed pH was 
+ maintained at approximately 7·.6- 0.2. The pH of the system was 
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monitored daily using a Beckman Expandomatic SS-2 pH-meter. Tap water 

was used in ma\ing the feed solution. 

TABLE I 

COMPOSITION OF SYNTHETIC WASTE 

S toe k So 1 uti on Feed 
Concentration Concentration 

Constituent ( g/1 ) (mg/1 ) 

Glucose 200 300 

(NH4)2 100 150 

MgS04 10 15 

FeC1 3 0.05 0.075 

MnS04 1.0 1.5 

CaC1 2 0.75 1 . 125 

KHl04 38.75 116.25 

K2HP04 124.5 373.5 

Tap water to volume 

Initial Startup 

The original inoculum for this activated sludge was obtained from 

the primary clarifier effluent of the municipal sewage treatment plant 

at Stillwater, Oklahoma. The unit was operated on a batch basis until 

the solids concentration had built up to approximately 3000 mg/1. The 
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microorganisms were batch fed on a once-a-day basis for three weeks. 

One third of the total volume was wasted from the supernatant after 

allowing the cells to settle for an hour each day and again made up to 

the volume with tapwater. 

Once the biological solids concentration reached approximately 

3000 mg/1, the unit was switched to continuous flow operating condi­

tions. Sludge age was selected as the controlling parameter of oper-' 

ation. The selected sludge age was maintained by wasting biological 

solids from the aeration tank. Microorganisms were wasted daily at 

the same time. The amount to be wasted was computed using- equations 

to be discussed later. The experimental unit was operated continuously 

at four sludge ages--thirteen days, eight days, five days, and two 

days. 

Da i 1 y Protoco 1 

The use of sludge age as the operational parameter required per­

iodic measurement of biological solids concentration and substrate 

concentration. Effort was made to develop operating procedures leading 

to efficient and accurate collection of data. Table II shows the para­

meters which were monitored and recorded daily. Twenty-ml samples of 

the fresh feed (Si) was removed for chemical oxygen demand (COD) deter­

mination. A 50-ml effluent sample was pipetted for the determination 

of effluent solids concentration (Xe). From this filtrate, a 20-ml 

sample was removed for the determination of chemical oxygen demand (Se). 

Another 100-ml effluent sample was collected in a beaker for the 

determination of zeta potential, specific co<nductance, pH, and temper­

ature. Each day before changing the feed, ·the effluent line was plugged 
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and the feed was shut off momentarily. The dividing baffle was then 

lifted and the contents of the total system were allowed to mix com­

pletely. Then a 25-ml sample was pipetted from the unit for deter­

mination of mixed liquor solids concentration (XR) in the total system, 

and the dividing baffle was again replaced. The settling chamber ef-

fluent plug was removed and the feed restarted. The unit was then 
l. 

back on continuous flow operation. The pH was monitored daily in thef 

feed, mixed liquor solids, and effluent. 

TABLE II 

PARAMETERS MONITORED DAILY 

(1) Feed 

a) chemical oxygen demand 
b) pH 

(2) Filtered Effluent 

a) chemical oxygen demand 

(3) Unfiltered Effluent 

a) suspended solids concentration 
b) zeta potential 
c) specific conductance 
d) temperature 
e) pH 

(4) Mixed Liquor 

a) suspended solids 
b) pH 
c) temperature 
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Analytical Methods 

In the present study, chemical oxygen demand, biological solids 

concentration, pH, temperature, zeta potential, and specific conduc­

tance were monitored daily. 

Chemical Oxygen Demand 

Chemical oxygen demand (COD) determination is an important method 

to measure the oxygen equivalent of the organic matter in a sample. 

The principle of the COD test is based upon the fact that all organic 

components with a few exceptions can be totally oxidized to co2 and H2o 
by the action of the strong oxidizing agent, potassium dichromate, 

under acid conditions. In spite of the fact that the chief limitation 

of the COD test is its inability to differentiate between biologically 

oxidizable and biologically inert organic matter, it is widely used in 

research work because of the speed with which results can be obtained 

and its helpfulness in indicating the presence of biologically resis­

tant organic substances (31). 

The dichromate reflux method has been selected for the chemical 

oxygen demand determination in the bioengineering laboratory of the 

Oklahoma State University because it has advantages over other oxi­

dants in reproducibility and applicability to a wide variety of samp­

les (31). The detailed procedures for running the COD test are given 

in Standard Methods (32). 

Biological Solids Concentration 

Concentration of the biological solids' were determined by-filtering 
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the appropriate volume through membrane filters (0.45 ~ pore size, 

Millipore Filter Corp., Bedford, Mass.). The filter pads were placed 

in light weight aluminum tare pans and dried at l03°C in a drying oven 

for two hours. Then the filter pads were cooled to room temperature 

in a calcium carbonate desiccator and the initial weights of the pans 

were determined. The samples were filtered with the aid of a vacuum 

pump. Filtrate samples were taken at this point for COD determination. 

After filtration, the pans were replaced in the drying oven for two 

hours at l03°C, cooled in the calcium carbonate desiccator, and weighed 

to determine the biological solids concentration. 

The pH of the mixed liquor suspended solids and effluent were mon­

itored daily using a Beckman Expandomatic SS-2 pH-meter. The pH was 

maintained at 7.6 ~ 0.2 by means of a phosphate buffer system. Perio­

dic standardization of the meter at pH values of 4, 71 and 10 ensured 

accuracy of the readings. 

Temperature 

Temperatures of the effluent and mixed liquor suspended solids 

were monitored with a Curtin laboratory thermometer. In the case of 

effluent, temperature was monitored before and after measuring zeta 

potential, since applied voltage, while measuring zeta potential, may 

increase the temperature and hence average temperature was taken into 

consideration. 
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Zeta Ptitential and Specific Conductance 

Zeta potential and specific conductance of the effluent were mon­

itored daily using a Zeiss Zetameter, as shown in Figure 2 (Zeta­

Meter Inc., New York). About 100 ml of effluent was coll~cted after 

thorough shaking of the effluent bottle. Then temperature was moni-

tored with a laboratory thermometer. About 3/4ths of the cell tube w~s 
' ~ 

filled with effluent and a voltage of 100 volts was applied across the 

two ends of the cell tube. Voltage of 100 volts was selected for 

accurate measurement of time during movement of the particles. The 

lower the voltage, the slower the movement of the particles; the higher 

the voltage, the faster the movement of the particles. Under the 

influence of applied voltage, negative particles move to the positive 

direction and positive particles move to the negative direction. The 

zeta potential and specific conductance were computed using equations 

to be discussed later. Once the zeta potential and specific conduc­

tance were monitored, the temperature of the effluent in the cell tube 

was measured again. Average temperature was used fortemperature cor-

rection in computing zeta potential and specific conductance. 

Methods of Data Analysis 

The data obtained in the present study were analyzed by means of 1 
j 
\ 

the mathematical relationships for a completely mixed, activated sludge 

process presented by Lawrence and McCarty (33, 34). 

Lawrence and McCarty have made use of the mean cell residence time, 

ec, a parameter that is mathematically equivalent to the reciprocal of 

net microbial growth rate, ~n' as the primary system parameter to 



Figure 2. Zeiss Zetameter 
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control treatment plant design. 

where 

COD removal efficiency was calculated by means of the equation: 

E = 
(S. - S ) 

1 e x 100 s. 
1 

E = COD removal efficiency, percent 

Si = influent COD concentration, mg/1 

S = effluent COD concentration, mg/1 e 

22 

( 1 ) 

Sludge age or mean cell residence time was calculated by means of 

the equation: 

where 

e = sludge age, days c 

V =volume of aeration tank, liters 

X = aeration tank solids concentration, mg/1 

Fw =waste flow rate, liters/day 

F =flow rate through system, liters/day 

X =effluent solids concentration, mg/1 e 

The observed yield coefficient was calculated by means of the 

equation: 

F X + (F - F )X w w e 
yo = F(Si - se) = 

where 

t:..X/ t:..t 
t:..S/ t:..t 

(2) 

(3) 
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Y0 = observed yield coefficient, mg/mg 

The specific utilization of substrate was calculated using the 

equation: 

(4) 

U = specific utilization, days-l. 

The true yield coefficient and the maintenance energy coefficient 

(or decay coefficient) were determined graphically by plotting the 

experimentally derived values of observed growth rate versus the spe­

cific utilization. The relevant equations are: 

where 

l-In = 8 
c 

l-In = net specific growth rate, day-l 

Yt =true yield coefficient, mg/mg 

Kd =maintenance energy coefficient, day-l 

(5) 

(6) 

The true yield coefficient and the decay coefficient were also 

determined graphically by plotting the observed yield coefficient versus 

sludge age. 
I 

The relevant equation describes a straight line relation-

ship of the form: 

(7) 



where 

Y0 = observed yield coefficient, mg/mg 

Yt = true yield coefficient, mg/mg 
-1 Kd = decay coefficient, day 

ec = sludge age, days 

24 

The microorganism concentration in the aeration tank was estimated 

using the equation: 

X = (8) 

Waste sludge production was calculated using the equation: 

X = F X + (F - F )X w w w e (9) 

where 

Xw = waste sludge production, mg/day 

The formula for determining specific conductance with the Riddick 

Zeta-Meter cell is: 

where 

SC - K. I - -E-

SC = specific conductance of the sample in micromhos/cm 

K =cell constant, which for the cell tube averages about 65 

I = current in microamps 

E = voltage in volts 

(1 0) 

Absolute electrophoretic mobility (EM) may be determined in any 

temperature, but it should always be corrected to and reported at 25°C. 



25 

EM = 1 Of.! 
Vt (11 ) 

where 

EM= absolute electrophoretic mobility 

f1 = tracking distance in microns, depending upon objective 

employed ) 

t = average time per full-scale division, sec l 
V =voltage applied, in volts 

Later on, the zeta potential is determined from the EM-ZP curves. 



CHAPTER IV 

RESULTS 

The results of this study are presented below. The observed oper~ 
; 

ational parameters of the experimental activated sludge unit are pre­

sented in order to provide a basis for evaluating the other parameters. 

The performance data of the activated sludge unit at a sludge age 

of thirteen days are presented in Figure 3. The performance data of the 

activated sludge unit at subsequent sludge ages of eight, five, and two 

days are presented in Figures 4, 5, and 6, respectively. As seen in Fig­

ure 3, the effluent suspended solids changed significantly after the six-

teenth day, and the maximum effluent suspended solids at the sludge age 

of thirteen days was found to be 75 mg/1. Corresponding change in zeta 

potential and specific conductance are also observed in Figure 3. 

In Figure 4, the maximum effluent suspended solids at the sludge 

age of eight days was found to be 150 mg/1, and there is a clear change 

in the specific conductance as the effluent suspended solids increased. 

Also seen in Figure 4, the effluent COD went up with increasing efflu-

ent suspended solids. 

In Figure 5, the effluent suspended solids at the sludge age of 

five days seems to be maintained consistently at low level. There is a 

marked change in the effluent suspended solids at the sludge age of two 

days in Figure 6. The maximum effluent suspended solids was found to 

be 125 mg/1. 

26 



Figure 3. Operational Performance of Activated Sludge Unit 
at a Sludge Age of Thirteen Days 
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Figure 4. Operational Performance of Activated Sludge Unit 
at a Sludge Age of Eight Days 
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Figure 5. Operational Performance of Activated Sludge Unit 
at a Sludge Age of Five Days 
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Figure 6. Operational Performance of Activated Sludge Unit 
at a Sludge Age of Two Days 
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The COD removal efficiencies for the activated sludge unit are pre­

sented in Figure 7. The removal efficiency is presented as a function 

of sludge age and specific growth rate. As seen in Figure 7, the per­

centage COD removed was 91 percent and was constant over the range of 

specific growth rate investigated. 

The effluent COD is shown in Figure 8 as a function of sludge age 

and specific growth rate. As can be seen, the effluent COD varied lit­

tle over the range of sludge ages investigated. 

The mixed liquor suspended solids concentrations are presented 

versus sludge age and specific growth rate in Figure 9. The points are 

the observed values of mixed liquor suspended solids concentration at 

each sludge age or specific growth rate. The mixed liquor suspended 

solids calculated was based on equation (8). As can be seen in Figure 

9, the mixed liquor suspended solids increased with increasing sludge 

age, which was predicted by equation (8). Excess sludge was wasted 

once a day and mixed liquor suspended solids concentration was deter­

mined before sludge wasting. 

Specific utilization is shown in Figure 10 as a function df sludge 

age and specific growth rate. Specific utilization decreased with 

increasing sludge age, as expected. 

An average value of observed yield was calculated for each sludge 

age. The relationship between observed yield, sludge age, and spe­

cific growth rate is shown in Figure ll. The observed yield increased 

with decreasing sludge age, as expected. 

The specific utilization as a function of specific growth rate is 

shown in Figure 12. The true yield coefficient and the decay coeffi­

cient were derived from Figure 12 using equation (11). The true yield 
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Figure 7. Percent COD Removed versus Growth Rate 
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Figure 8. Effluent COD versus Growth Rate 
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Figure 9. Mixed Liquor Suspended Solids versus Growth Rate 
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Figure 10. Specific Utilization versus Specific Growth Rate 
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Figure 11. Observed Yield Coefficient versus Growth Rate 
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Figure 12. Specific Growth Rate versus Specific Utilization 
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coefficient was found to be 0.53 mg/mg, and the decay coefficient was 

found to be 0.045 days-l. 
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The reciprocal of the observed yield versus sludge age and spe­

cific growth rate is shown in Figure 13. The true yield coefficient 

and decay coefficient were again determined, using equation (7). The 

true yield coefficient was found to be 0.52 mg/mg, and the decay coef~ 
-1 ficient was found to be 0.047 days 

Excess sludge production is presented as a function of sludge age 

and specific growth rate in Figure 14. As can be seen, sludge produc­

tion decreased with increasing sludge age, as predicted by the mean 

cell residence time. 

An average value of pH was calculated for each sludge age. The 

relationship between pH, sludge age, and specific growth rate is shown 

in Figure 15. The pH was constant over the range of sludge ages 

investigated. 

Specific conductance is shown in Figure 16 as a function of sludge 

age and specific growth rate. An average value of specific conductance 

was calculated for each sludge age, using equation (10). ·Specific con­

ductance increased with increasing sludge age. 

An average value of zeta potential was calculated for each sludge 

age using equation (11). An effluent sample was used in measuring zeta 

potential and specific conductance. The relationship between zeta poten­

tial, sludge age, and specific growth rate is shown in Figure 17. As 

can be seen, zeta potential decreased with increasing sludge age. 

The effluent suspended solids varied in a complex fashion with 

sludge age and specific growth rate. Effluent suspended solids is shown 

in Figure 18 as a function of sludge age and specific growth rate. The 



Figure 13. Reciprocal of Observed Yield versus Growth Rate 
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Figure 14. Sludge Production versus Growth Rate 
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Figure 15. pH versus Growth Rate 
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Figure 16. Specific Conductance versus Growth Rate 
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Figure 17. Zeta Potential versus Growth Rate 
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Figure 18. Effluent Suspended Solids versus Growth Rate 
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average effluent suspended solids were found to be less at five days 

sludge age than at two, eight, and thirteen days of sludge ages. 
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The relationship between specific conductance, zeta potential, 

and effluent suspended solids is shown in Figures 19 and 20. As seen, 

specific conductance and zeta potential do vary with effluent sus­

pended solids. 

Zeta potential versus mixed liquor suspended solids is shown in 

Figure 21. Zeta potential seems to be increasing with increasing mixed 

liquor suspended solids concentration. The relationship between spe­

cific conductance and mixed liquor suspended solids is shown in Figure 

22. Specific conductance is increasing with increasing mixed liquor 

suspended solids concentration. 



Figure 19. Specific Conductanc9 versus Effluent Suspended. 
- Sol ids 



63 

r--

" C) en 
~ E 

U1 
C) 
~ 

_J 
C) 
U1 

C) 
C) UJ 
~ C) 

2: 
UJ 
CL 
U1 
~ 
U1 

r-
2: 
UJ 

C) ~ 
~ _J 

u_ 
u_ 
LU 

SOHWO~JIW '3JN~1Jrt0NOJ JljJJ3dS 



Figure 20. Zeta Potential versus Effluent Suspended Solids 
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Figure 21. Zeta Potential versus Mixed Liquor Suspended 
Solids 
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Figure 22. Specific Conductance versus Mixed Liquor Suspended 
Solids 
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CHAPTER V 

DISCUSSION 

Results describing the operating characteristics of the activated 

sludge unit used in the present study, as presented in Figures 7 through 

14, were fit quite well by the mean cell residence time equations. 

An interesting finding with respect to the operating data was the 

observed relationship between average effluent suspended solids concen­

tration and sludge age Figure 18. This finding is of interest because 

sludge age apparently has some effect on the clarification function of 

a secondary clarifier for the activated sludge system. The Environmen­

tal Protection Agency has set limits on both effluent suspended solids 

and effluent BOD. Consequently, these are both important design and 

operation criteria. Effluent suspended solids contribute to both efflu­

ent suspended solids and effluent BOD, as seen in Figure 18. 

The average effluent suspended solids concentration was minimum 

6.5 mg/1 at a sludge age of 4.8 days. At other sludge ages, the aver­

age suspended solids concentration varied between 25 and 46 mg/1. The 

overflow rate and clarifier detention time were constant at all sludge 

ages. A relationship similar to that found in this study was observed 

by Bisogni and Lawrence (2), although the absolute values observed in 

each study were different, which is to be expected. There are differ­

ences in seed, overflow rate, and mixed liquor suspended solids in the 

Bisogni and Lawrence study and in the present study. Also in the present 
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study, activated sludge solids were wasted once per day and the acti­

vated sludge solids concentration measured prior to wasting was the 

value used in calculating sludge age. Another reason for the differ­

ence between the values observed in the present study and the values 

observed by Bisogni and Lawrence is possibly the differing operating 

procedures. Regardless of the slight difference between the values 

observed by Bisogni and Lawrence and values observed in the present 

study, both studies do suggest that sludge age affects clarification. 

However, the specific value of the relationship is not clear at this 

point, and more research needs to be done on the effect of sludge age 

on clarification of activated sludge. 

In the present study, zeta potential and specific conductance of 

the effluent suspended solids was also measured. The results seem to be 

quite interesting. It was observed that there is a relationship between 

zeta potential and sludge age (Figure 17). It was observed that zeta 

potential increases slightly with increasing sludge age. It was also 

observed that there is a relationship between specific conductance and 

sludge age (Figure 16). It is seen that specific conductance increases 

with increasing sludge age. Thus, it was observed that both zeta po­

tential and specific conductance increase with increasing sludge age. 

All of the calculations of zeta potential and specific conductance were 

corrected at a temperature of 25°C. 

It was also observed that there is a relationship between average 

effluent suspended solids and zeta potential (Figure 20). With increase 

of effluent suspended solids, zeta potential seemed to be increasing. 

A relationship similar to this was observed by Riddick (20). Riddick 

observed that zeta potential increases with increasing effluent sus­

pended solids concentration. 
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There is also a relationship between average specific conductance 

and average effluent suspended solids concentration. It was observed 

that specific conductance decreases with increasing effluent suspended 

solids concentration. Thus, with an increase in effluent suspended 

solids concentration, the zeta potential increases and specific conduc­

tance decreases. Concurrently, it was also observed that zeta poten­

tial and specific conductance increase with increasing sludge age. The 

studies of Riddick (20) and also the present studies suggest that zeta 

potential affects clarification. 

The most undesirable result of an overloaded secondary clarifier 

is an increase in-effluent suspended solids. Changing the sludge age 

would also probably result in increased effluent suspended solids. The 

safest strategy in dealing with an overloaded clarifier and the first 

strategy to be tried is increasing the return flow. Although this will 

likely decrease the underflow concentration, so will decreasing the 

sludge age. Adequate capacity for return flow should be designed into 

treatment plants and should receive careful consideration by the design 

engineer. 

It seems that sludge age is the independent variable of greatest 

significance. It is possible that the varying mixed liquor suspended 

solids concentration was either entirely or at least partially respon­

sible for the variations in effluent suspended solids concentration, 

zeta potential, and specific conductance (Figures 21 and 22). The most 

simple means of determining the effect of mixed liquor suspended solids 

concentration on the above parameters is to maintain a constant sludge 

age, while varying the feed concentration. 



CHAPTER VI 

CONCLUSIONS 

This study has led to the following conclusions, which are valid 

only within the range of sludge ages and mixed liquor suspended solids 

concentration with heterogeneous culture. 

1. At a constant overflow rate and detention time, the effluent 

suspended solids concentration will vary with sludge age and specific 

growth rate. 

2. Zeta potential seems to increase slightly with increasing 

sludge age and specific growth rate. 

3. Specific conductance increases with increasing sludge age and 

specific growth rate. 

4. Zeta potential and specific conductance vary with effluent sus­

pended solids and mixed liquor suspended solids concentration in the 

specific growth rates investigated. 
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CHAPTER VII 

SUGGESTIONS FOR FUTURE WORK 

The phenomenon of heterogeneous culture is extremely complex. Ef­

fluent solids concentration may depend upon a large number of factors, 

any one of which may predominate according to the peculiar and partic­

ular set of environmental conditions in which the heterogeneous culture 

exists. 

All of the experiments of the present study were performed using 

only glucose as substrate. It would be worthwhile to study effluent 

solids concentrations with different substrates to determine any pos­

sible relation between substrate structure and effluent solids con­

centration. 

It would also be of interest to isolate as many organisms as 

possible which are present in wastewaters for individual study to 

determine which increase or decrease effluent solids concentration. 
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