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Abstract:  

 

Social networks are characterized by their user-oriented nature, and interactive, 

community-driven and emotion based content. There are some known paradoxes about 

social network of which ‘friendship paradox’ is the most famous one. According to this 

paradox, on an average your friends have more friends than you have. This paradox can 

have either of the two types of origin: statistical or behavioral. A statistical origin can be 

determined based on the mathematical properties of social connectivity such as mean and 

median. The research analyzes this problem by using data from one of the online social 

networks. We first show that the social connectivity data does not satisfy Benford’s law.  

This fact and other statistical analysis performed by us establish that the friendship 

paradox data from social networks has a large behavioral component. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Network paradoxes 

The basic components of a network are the nodes and edges. A social network is 

constituted of interconnected nodes and edges where the nodes are the uses and the edges 

represent the connectivity between each pair of users. The interaction between users and 

their decision of whom to link with leads to the formation of the social network.  

 

Figure 1.1 Structure of Social Network 

Edge 

Node 
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For example, in Facebook, whom you add as friends or whom you follow forms the 

topology of the network. 

Networks are associated with some properties that may appear paradoxical at first sight. 

Some of the prominent paradoxes are given below: 

I. Braess’s Paradox. This paradox is named after Dietrich Braess which states that 

adding extra capacity to a moving network when the moving entities rationally choose 

their route can reduce overall performance [1]. The Braess Paradox has relevance in 

traffic control management. Consider the following example : 

A 

 

 

    B  

                   Figure 1.2 Braess paradox network [35] 

  

In the road network of Figure 1.2, suppose if 200 drivers are travelling from 

Start to End. On the road Start-A the time taken to travel is t= (number of travelers) 

divided by 100 i.e. t=200/50 = 4 whereas on the Start-B time taken is t= 5 which is 

constant and similarly on the other cross roads. Consider if the road connecting A and 

B doesn’t exist. The time taken from Start-A-End would be 4+5=9 and from Start-B-

End would be 5+4=9. If the system is supposed to be in Nash Equilibrium then out of 

200 drivers, 100 drivers would take the A route while other half would take B route. 

Hence each route takes 7 minutes to reach the End.  

Start End 

t=T/50 

t=T/50 t=5 

t=5 
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Now consider the road connecting A and B has negligible travelling distance. 

The drivers will now choose the shortest route Start-A route which will require 

maximum of 4 minutes whereas Start-B takes constant of 5 minutes. From point A the 

drivers will select the A-B route and from there similarly B-End route which adds up 

the travel time to 4+4=8 minutes which is greater than 7 minutes required when A-B 

did not exist. Hence it shows that if every driver selects the road which seems to be 

most favorable then he will end up in not choosing the road requiring optimal 

travelling time. 

Let Te(x) be the time required for x drivers driving along edge e [2]. If the graph is   

linear then the let energy edge e for x drivers, E(e) be : 

∑ 𝑇𝑒(𝑖) 𝑒𝑥

𝑖=1 = Te(1) + Te(2) + ….. + Te(e
x
)   

The total energy of the graph is the sum of energies of every edge. Consider that 

the system is not in equilibrium and one of the drivers decides to opt for the most 

favorable path. If the original path is along the edges a1, a2, ….. an and the new path is 

b1, b2, ….. bn. After choosing the new path, the old one is removed and new one is 

added. Hence the energy associated with the old one for the entire graph E will be 

reduced by ∑ 𝑇𝑛
𝑖=0 e (𝑒

𝑥
) . Since the new path is shorter than the old one, the energy E 

will reduce. If the process is repeated, E will decrease further and since E has to be 

positive equilibrium will occur.  

II. Parrondo’s Paradox. This paradox is named after Parrondo who discovered it in 1996. 

The paradox states that there exist pairs of games, each with a higher probability of 



4 
 

losing than winning, for which it is possible to construct a winning strategy by 

planning the games alternately [3]. 

 

III. Friendship Paradox. The friendship paradox was discovered by sociologist Scott Feld 

in 1991 which states that “regardless of which individual we pick in the social 

network, on average, his/her friends have more friends than he/she has” [4]. This 

paradox is normally contingent on the existence of symmetric relation between users. 

In Facebook, for example if A is friend of B then obviously B is also friend of A 

which marks the symmetric relation. But this paradox also appears to be applicable to 

social networking sites like Twitter where the users follow each other [5]. 

A statistical fact references in PEW Internet and American Project 2011 is that the 

average user in Facebook has 245 friends but the average friend of that user has 359 

friends [6]. The intuitive explanation of this is that there are small sets of people 

isolated in a network and hence they do not appear in most peoples’ network. But the 

popular people appear repeatedly and hence on average your friends always appear to 

have more friends than you. But as we will see later, the mathematical proof is more 

subtle than this explanation. 

1.2 Origin of Network Paradoxes 

Statistical sampling gives rise to paradox in mean. For example in Twitter, the 

user’s attribute of mean of number of followers compared to the mean of the followers  of 

the user’s followers results in paradox even if network is completely random [4]. In any 

social network, the paradox exists on mean for any attribute. Such paradox is also called 

as ‘Traditional paradox’. It has been found that the paradox also exists in median for 
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social network. This means that the paradox is not just the result of statistical properties 

of network but has a behavioral origin. 

The behavioral origin of paradoxes has been proved by shuffling the network 

which destroys all the correlations between the nodes and correlation within the nodes 

and its attributes. Shuffling the network means interchanging the number of attributes of 

a node with another node but its distribution in the network remains same. 

The main objective of our work is to establish that the friendship paradox for 

social network has a large behavioral component. In the examination of its mathematical 

origin, we use statistical parameters of mean and median. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

2.1 Previous work for statistical and behavioral origin of network paradoxes 

As discussed in the previous chapter, social network paradoxes are not purely 

statistical but they also arise due to behavioral reasons. In order to prove that the network 

paradox has behavioral origin, one study examined the effect of the removal of 

correlation on it [4]. This study performed shuffle test that involves interchanging the 

values of attributes of a nodes and assigning new one to all. The network links between 

the nodes remain the same and hence the overall distribution of the network remains 

unchanged. 

For example if the node attribute is number of friends of a user, new friends are 

added for a node which are taken from other neighboring nodes. Due to this shuffling of 

network, the assortativity is destroyed but friendship paradox exists in the mean but 

ceases to exist in median. Shuffling results in both the correlations existing in the 

network to be destroyed. The origin of strong network paradox exists in the between and 

within-node correlations. 
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After shuffling, paradox exists in mean but it cannot be determined if it is due to 

within-node or between-node correlation. Therefore to sort this confusion controlled 

shuffle test was performed in which at a given time within-node correlation is eliminated 

and between-node correlation still exists and vice-a–versa was also performed. 

Controlled shuffle test is achieved by grouping that node together which has same 

value for degree attribute. After grouping the nodes, shuffling is carried out in each 

group. Sometimes both type of correlation exists because of the nature of the attributes of 

the nodes in the network. Considering within-node correlation we can see that if one of 

the attribute likes ‘number of friends’ change or exists because users add more friends or 

delete friends and eventually affects the existence of the correlation. On the other hand 

for between-node correlation assortativity takes place i.e. nodes place themselves near 

those nodes that have matching attributes.  

 A social network is characterized by heavy-tailed degree distribution. Due to the 

largeness of social network data, sampling techniques for heavy-tailed degree 

distributions using fraction of sample nodes are needed. The authors in [7] proposed a 

new method called ‘tail-scope’ which has more advantages over the traditional uniform 

node sampling method for estimating heavy tailed degree distributions [8]. Later a hybrid 

method comprising of both the UNS and ‘tail-scope’ was devised. This method helps in 

getting the structure of network by estimating the heavy-tailed degree distribution.  

 Friendship paradox proves to be a useful tool to estimate heavy tails in 

distribution. The higher degree nodes are much more likely to be observed by their 

respective neighbors. Using this observation, sampling of nodes is carried out. The results 
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show that from randomly chosen nodes with group of friends have more highly 

connected nodes than those formed by uniformly sampled nodes [7]. These ideas have 

also been applied to a growing network, mechanism followed by degree and qualities.  

2.2 Statistical and Behavioral properties of social network: 

 We will see later that the friendship paradox has its foundation in the 

heterogeneous distribution of nodes attributes like node degree. The paradox with mean 

values of user’s traits arises from statistical sampling from a heavy-tailed distribution. 

Attributes such as node degree often have a heavy tail when it has extremely large values, 

which means that the user who is very popular appears much more frequently than 

expected.  

Degree is the most common attribute for a node in social network for which we 

get heavy-tailed distributions. Degree in a network is the number of other nodes that a 

particular node is connected.  Apart from degree many other attributes exist for which we 

do get heavy-tailed distribution such as activity, diversity, virality etc.  

For social network sites, a stronger version of friendship paradox holds known as 

Strong friendship paradox [9]. Strong friendship paradox states that majority of your 

friends have more friends than you do.  

Behavioral nature is related with the correlation between nodes and correlation 

within node and attributes. There are two types of correlation in a network: between-node 

correlation and within-node correlation: 

a) Within-node correlation- This type of correlation exists between users’ degree and 

its own attributes. Pearson’s Correlation Co-efficient is used to measure this 

correlation. 
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b) Between-node correlation- This type of correlation exists between attributes of a 

node and attributes of its neighbors. Assortativity is used to measure this 

correlation. 
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CHAPTER III 
 

 

MATHEMATICAL BASIS OF FRIENDSHIP PARADOX 

 

3.1 Degree Distribution in social network: 

 

In a social network we know that some nodes have a high degree while some have 

less value of the degree. Since it is driven by the community, variations in degree of 

nodes are to be expected [10]. When sampling is carried out, there will always be uneven 

tails on both sides or we can say that the distribution is skewed or not symmetric. For a 

skewed distribution, the values of mean and median are not same. Skewness pulls the 

mean is pulled in that direction. When the right tail is heavier then mean is greater than 

median and for heavy left tail mean is less than median. In Figure 3.1 we can see that the 

right tail is heavier than the left tail.  

 

Figure 3.1 Distribution with right heavy tail 
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Due to which the mean is shifted towards the heavy tail i.e. the right side resulting 

in the value of mean (2.6) being greater than value of median (2.0). In the above graph, 

we see that there are very few nodes with higher probability and more nodes with lower 

probability. The nodes with higher probability skew the average and pull the value 

towards the side of heavy tail. In the above graph, it has right heavy tail and hence mean 

is greater that median. In Figure 3.2 we can see that the left tail is heavier than the right 

tail where the mean (4.375) is less than median (5).  

 

Figure 3.2 Distribution with left heavy tail 

3.2 Examples of Friendship Paradox: 

In order to understand how exactly the paradox is true, we will take a small 

example of four individuals (Figure 3.3).  

                                    

                            

 

Figure 3.3 Example network-1 

A 
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D 

C 

B 

H 
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Let there be four individuals A, B, C and D. We need to basically compare the 

average number of friends of an individual to the average number of friends of the friends 

of that individual.  

In the above graph also, we see that there are very few nodes with higher 

probability and more nodes with lower probability. The nodes with higher probability 

skew the average and pull the value towards the side of heavy tail. In the above graph, it 

has left heavy tail and hence mean is less that median. 

 

In the Figure 3.3 graph, the following is true: 

A has 4 friends – B, C, D, E    F has 3 friends – E, G, H 

B has 1 friend – A      G has 1 friend - F 

C has 1 friend - A      H has 1 friend - F 

D has 1 friend - A. 

E has 2 friends – A and F 

Now we know that A has 4 friends B, C, D and E of which B has 1, C has 1, D 

has 1 and E has 2 friends. Hence total friends of A become 5. Similarly total friends for B 

become 4, for C friends are 4, for D friends are 3, for E friends are 7, for F friends are 4, 

for G friends are 3 and for H friends are 3 
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The next step is to calculate the average number of friends of each individual’s 

friends which is calculated by dividing the two values that we calculated above for each 

individual. 

Calculating average number of friends of each individual’s friends 

A- 1.25                    E -3.50 

B- 4.00    F – 1.33 

C- 4.00    G- 3.00 

D- 4.00    H- 3.00 

Taking a look at the above values we see that the average number of friends of each 

individual’s friends for A is the least which an exception because A is the most famous 

individual with highest node degree i.e. higher number of friends. Summarizing the 

above calculation, we can present the date in the form of the table below. 

 #friends #friends_of_friends Average_friends_of_friends 

A 4 5 1.25 

B 1 4 4.00 

C 1 4 4.00 

D 1 4 4.00 

E 2 7 3.50 

F 3 4 1.33 

G 1 3 3.00 

H 1 3 3.00 

 

Figure 3.4 Table showing the calculation for Friendship paradox for network-1 
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From the above table, we get µ for individual user which is 1.75 whereas µ of 

friends of friend of the user is 2.43. This means that average individual has 1.75 friends 

but the average friend has 2.43 friends. Hence we get that, on average your friends have 

more friends than you have.  

Let us see one more example for friendship paradox. 

   

 

 

       

Figure 3.5 Example network-2 

Consider the above network graph in which we can see that among the five individuals. 

A has 2 friends – B, C     D has 2 friends – B, C 

B has 3 friends – A, C, D    E has 1 friend - C 

C has 4 friends – A, B, D and E      

Now we know that A has 2 friends B and C of which B has 3 and C has 4. Hence total 

friends of A become 7. Similarly total friends for B become 8, for C friends are 8, for D 

friends are 7, for E friends are 4. 

A 

C 

B

\ 

E 

D 
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The next step is to calculate the average number of friends of each individual’s 

friends which is calculated by dividing the two values that we calculated above for each 

individual. 

Calculating average number of friends of each individual’s friends 

A- 3.5                   D -3.5 

B- 2.66   E – 4 

C- 2     

    

Taking a look at the above values we see that the average number of friends of each 

individual’s friends for A is the least which an exception because A is the most famous 

individual with highest node degree i.e. higher number of friends. 

Summarizing the above calculation, 

 #friends #friends_of_friends Average_friends_of_friends 

A 2 7 3.5 

B 3 8 2.66 

C 4 8 2.00 

D 2 7 3.50 

E 1 4 4.00 

 

Figure 3.6 Table showing the calculation for Friendship paradox for network-2 

From the above table, we get µ for individual user which is 2.4 whereas µ of 

friends of friend of the user is 2.83. This means that average individual has 2.4 friends 
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but the average friend has 2.83 friends. Hence we get that, on average your friends have 

more friends than you have.  

3.3 Mathematical Proof of Friendship Paradox  

Considering the friendship paradox, we will need to find the average number of 

friends for an entire graph and the average number of friends of an individual’s friends 

[11]. 

We will follow mathematical approach in order to prove the friendship paradox. 

As said above we need two values – the average friends and the average of friends’ 

friends.  

Let i be the representation for any individual for e.g. A, B, C or D and let t denote 

the total number of individuals. Hence for any individual i, total number of friends are fi. 

Now we can calculate the average number of friends in the network which is as 

follows, 


n

fi
f   

where µf is the average number of friends in network, fi is the number of friends and n is 

the total number of individuals in the network. 

Now we calculate the second quantity i.e. average number of friends of friends in 

the network. For this we need to calculate friends for each individual and finally sum 
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them up. For each individual i (A, B, C or D) his/her total friends are the sum total of 

friends of his/her friends.  

For example, if i is B then friends of B according to Figure 2 are A and D. Hence 

it would be the sum of fA + fD. Similarly for A, it would be fB + fC + fD. 

We notice that for any individual i we need to include his count of number of 

friends fi in the final summation when his friends are considered. 

  In the above calculation we see that for any term fi it is included in the sum only 

when his/her friends fi are considered.  

This gives us that for every individual i ; the final summation includes the term  

(𝑓𝑖)  (𝑓𝑖) =
 
𝑓𝑖2  

We get the total number of friends of an individual’s friends by summation of = ∑ 𝑓i
2  

The average number of friends of an individual’s friends is calculated by the ratio of total  

=
friends. s'individual ofnumber  total

friends s'individualan  of friends ofnumber  total
 

So we get average number of friends of an individual’s friends as µff =   ∑ 𝑓i
2

 
/ ∑ 𝑓i  

The formula for variance (σ) is given by- σ
2 = (∑ 𝑓i

2 / n) - µ2
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Simplifying it further, we get   ∑ 𝑓i
2 = (µ

2 
+ σ2) n 

Dividing L.H.S by ∑ 𝑓i  and R.H.S by µn (since ∑ 𝑓i= µn ), we get 

µff= ∑ 𝑓i
2

 / ∑ 𝑓i     = (µ2 + σ2) n / µn      = µ + (σ2 
/ µ) ………… (I) 

Finally we get the mathematical formula for average number of friends of an 

individual’s friends. 

Let us compare the two values average number of friends µ and average number 

of friends of an individual’s friends µ + (σ2 
/ µ). 

  As we can observe, µf ≤ µff which proves that the average/mean number of 

friends of an individual is less than or equal to the average/mean number of friends of 

his/her friends. This mathematical proof proves the Friendship paradox. 

In the above proof in line (I), we get    µff  = µ + (σ
2 

/ µ) 

As stated in the PEW Internet and American Project 2011, average friends of 

friends for any user are 359 and average friends of the user are 245 [6]. 

µ + (σ
2 

/ µ) = 359  

245 + (σ
2 

/ 245) = 359 

Solving further we get,   σ
2 

= √ 27930 =  

Hence, σ
 
= 167.112 
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We can say that since σ
 
has a large value, the data points are spread out around the 

mean in the heavy tail distribution. 

The Friendship Paradox is not just related with degree of count of friends but it can be 

stated in the following forms: 

a) On average your friends have more friends than you do. 

b) On average your followers have more friends than you do. 

c) On average your friends have more followers than you do. 

d) On average your followers have more followers than you do. 

Other similar paradoxes also exist such as Twitter has users who tweets fewer 

messages and receive less-viral content than his/her friends do on average, A scientist’s 

co-authors are more productive and better cited on average [5]. Network paradoxes result 

in systematic biases in how individuals perceive their world. 
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CHAPTER IV 
 

 

STATISTICAL ANALYSIS OF DATA 
 

4.1 Data Analysis using R 

R is an open source language implemented from S (Statistical Language). It has 

more than 4000 packages catering to various applications like exploratory analysis, 

graphics and visualization, cluster analysis, natural language processing etc. [12]. 

R offers a special package for Facebook data analysis called ‘Rfacebook’. This 

package offers variety of functions which can be utilized to access Facebook’s API to 

retrieve information about Facebook user’s details and other updates. In order to access 

any API requests, an access token is required for the same. There are two ways to acquire 

an access token, one which produces a temporary access token whereas the other 

produces access token for a much longer duration 

# token generated here: https://developers.facebook.com/tools/explore 

Token <─ “access-token” 

Access token granted by Facebook is used by methods in R for further process. A 

function ‘fbOauth’ is used which takes ‘appid’ and ‘appsecret’ as input and authorizes the 

user for Facebook.  



21 
 

Fb_outh<─fbOAuth(app_id="596561593788794",app_secret="cac820fb2c8acdd83

d6e5540410c9442",extended_permission = T) 

Further we get the information of the user, friends list of the user and his friends 

network using the functions  ‘getUsers’,’getFriends’,’getNetwork’ respectively. 

4.2 Retrieving Facebook data 

me <- getUsers("snehapilgaonkar”, token,private_info=TRUE) 

 

Figure 4.1  R command -getUsers 

my_friends <- getFriends(token, simplify = F) 

 

Figure 4.2 R command- getFriends 
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my_friendnetwork <─ getNetwork(token, format="edgelist", verbose=TRUE) 

 

Figure 4.3 R command – getNetwork(edgelist) 

my_friendsnetwork<─getNetwork(token,format="adj.matrix",verbose=TRUE) 

 

Figure 4.4 R command – getNetwork(adjacency matrix) 
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Figure 4.5 Gephi visualization of Facebook network 

The above network graph takes nodes and edges data to create the Facebook 

friends’ network. Gephi is used to create the visualization of the network. The clusters 

that can be seen represent the communities in my Facebook network. The size of the 

nodes depend on the degree of that node which represents my friends i.e. number of 

people it is connected to in the network graph. 

There are some nodes which are very popular and are connected to other nodes in 

more than one community. The average degree and modularity is calculated and 

accordingly the nodes are colored. The visualization graph undergoes many layout 

changes such as Force atlas, Expansion, Contraction etc. which segregates the nodes, 

rotates the graph clockwise or anticlockwise, repels the weakly connected nodes and 

bring strongly connected nodes resulting in formation of clusters.  
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4.3 Friendship paradox on Facebook data: 

Figure 4.6 consists of scatter graph of Friends-of-friends count, Mean-FF, Median-FF of 

the friends in a Facebook network of a circle of friends. 

 

 
 

Figure 4.6 Scatter graph of Friends-of-friends count, Mean-FF, Median-FF of the friends in 

Facebook network 

 

 

As we can see in the above graph, the mean/median value is greater than that of 

individual’s value. Comparing the mean and median value we can observe that the 

friendship paradox lies in mean as well as median.  

By definition friendship paradox exist in heterogeneous distribution where mean 

is greater than median. We can see from the graph that there lies a node with highest 

degree which defiantly skews the average resulting in large difference between mean and 

median. 

The graph below clearly shows us that the mean is greater than median in almost 
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all nodes but there are some nodes where the median is greater than the mean value. 

Hence friendship paradox for social network data like Facebook is not simply based on 

statistical values but it does have a behavioral base. 

 

 

 

 
 

Figure 4.7 Plot of Mean-FF and Median-FF of Facebook friends 

 

 

Next we compare this data to that obtained from non-social situations.  

 

4.4 Friendship paradox on random Transportation data: 

We consider a dataset of a Road Network which doesn’t have any attributes 

which are based on human behavior or psychology. We plot the nodes and edges data in 

Gephi and we can see the connection of the nodes with each other. Further we analyze 

this data and calculate the mean and median for each node with respect to the nodes that 

it is connected. 
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We plot a graph for those values and it is seen that the mean values are always 

greater than the median value. We find that the paradox exists in only the mean values for 

the Road network. 

 

 
 

Figure 4.8 Gephi Visualization of Road Network 

 

 
 

Figure 4.9 Scatter graph of degree count, Mean-FF, Median-FF plot of road network 
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Figure 4.10 Mean-FF and Median-FF plot of nodes of Road network  

 Let us take a look at the actual data for the above network which will help to 

understand the analysis of meanFF  and medianFF . 

 

Figure 4.11 Mean-FF and Median-FF table of nodes of Road network 

In the above table we calculated the RoadsFF, meanFF, and medianFF for every 

individual node. We observe that for the sample of nodes that we can see in the table, 



28 
 

either meanFF is greater than medianFF or they are equal. Hence the friendship paradox 

exists in mean for non-social network. On the other hand, for graph 4.10, we see that for 

most of the nodes the mean (FF) is greater than median (FF) values, for some nodes mean 

(FF) and median (FF) are equal but there are no cases in which median (FF) is greater 

than mean (FF). Thus for non-social network, the friendship paradox exists only in mean. 

We conclude that in 29.72% of the cases in non-social network, mean (FF) is 

greater than median (FF). But in the sampling distribution of the Facebook (and other 

social network [4]), for 24% of the cases median (FF) is greater than mean (FF). This 

discovery is important in defining the behavioral intervention in social network paradox. 

By comparing graphs for mean (FF) and median (FF) for both the data, Facebook 

and Road network, we can observe that the paradox for social network data has those 

attributes which are not purely statistical in nature.  
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CHAPTER V 
 

 

BENFORD’S LAW- BEHAVIORAL ORIGIN 

 

 

5.1 First Digit Phenomenon 

 

In the previous chapter we saw how mean and median characteristics affect the 

network paradox. We found that for Facebook data, paradox exists in mean as well as 

median whereas for the road data it exists in mean. We are going to take a look at 

Benford’s Law also known as First Digit Phenomenon which is also viewed as a paradox, 

although it has a straightforward mathematical explanation [13].  

According to Benford’s Law, tables of statistics or listings etc. the digit 1 tends to 

occur with the probability of approximate 30% which is much greater than the expected 

value 11.1% (1 digit out of 9). There are several other studies that describe the first digit 

phenomenon. Astronomer Simon Newcomb first observed this phenomenon in 

logarithmic books. He observed that the log books have their initial pages dirty i.e. 

seemed to have been used more often than the other page. The fellow scientists used the 

log tables with digit 1 more often than with digit 2 more than with digit 3 and so on. 

Newcomb proposed that probability of the first significant non-zero digit can be 

calculated as follows: 

 

 

Probability (first significant digit =d) = log10 [1+
d

1
 ]              (where d = 1, 2, …, 9) 
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Simon Newcomb had stated that the law of probability of occurrence of numbers 

is such that all mantissas of their logarithms are equally likely [16]. Hence for the digit 1, 

for mantissa 10, the probability is log10 2 is approximately 0.301.  

In 1938, physicist Frank Benford also proposed the same logarithmic law unaware 

of Newcomb’s proposed law. He further pursued this discovery by collecting variety of 

data over the years. He finally published his observations of the first digit phenomenon 

over the wide variety of datasets.  

The table below shows the predicted frequencies for first significant digits 

according to Benford’s law. 

 

First Significant digit Frequency % 

1 30% 

2 18% 

3 12% 

4 10% 

5 8% 

6 7% 

7 6% 

8 5% 

9 5% 

 

Figure 5.1 Benford’s Law standard values for significant digit 
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Figure 5.2 is the graph on the digit frequencies: 

 

 

Figure 5.2 Graph plots of the percentage standard values of Benford’s Law 

Benford’s Law can be generalized to higher digits as well. According to the 

second digit significant law the probability is given by: 

Probability (second significant digit =d) =  ∑  9
𝑘=1 log 10 (1+(10k+d)

-1
) .  

This general law leads to a corollary that the significant digits are not independent 

on each other but have dependency. As we know the probability of the second digit being 

2 will be approximately 0.109 according to the above formula. But according to the 

general law corollary, the probability that the second digit is 2, given the first digit is 1 is 

0.115. This shows that there is dependency among the significance digits. The 

dependency is inversely proportional to distance between the significant digits in a 

uniform distribution. It decreases as the distance increases.  

Benford’s Law is the consequence of the sum of many independent random 

variables where the higher end of the range is different. It is rooted in the mixture of 
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uniform distributions. The nodes in the social network are strongly correlated due to three 

reasons namely influence, homophily and environment [18]. Due to the strong correlation 

present in social network, the above laws of uniform distribution are not true for social 

network. 

Benford’s Law has proven to be helpful in detecting frauds in auditing and 

forensic accounting, since the fraudster is unlikely to be aware of it. It helps auditors in 

the planning phase of audit to identify the unusual transactions and also errors when used 

with transactional data. Auditors supervise and identify payment amounts for duplicates, 

invalid or missing check or invoice numbers. It is applied to an entire account and 

checked for invalid distribution of numbers and not just by sampling the account [14]. 

Although all the datasets obey Benford’s first digit phenomenon, there are several 

other that do not [15]. Exceptions include the random numbers (like lottery), data with 

minimum and maximum constraints, artificially created data, dataset influenced by 

human psychology etc. The exceptions are: 

 The value of the nodes should have same attribute. 

 There should be no maximum or minimum value defined for that attribute. 

 The values if numeric should not be pre-assigned. They should be random in 

nature. 

 There should not be any human intervention in the data. 

In 1994, Boyle showed that the data that obeys first digit phenomenon only when the 

data has random variables from different sources, being multiplied, divided or underwent 

any mathematical calculations [19]. Detection of fraud in any statistical data is merely 

manipulation by humans which turns to be behavioral intervention. This leads to an 
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inference that only those datasets which are a result of statistics obey Benford’s law and 

those with human intervention do not obey. 

4.2 Implementing Benford’s Law 

Applying Benford’s First Digit Phenomenon on Facebook data of friend count of 

each of my friends in my friend list gives some surprising results. The steps to implement 

the law on Facebook data: 

i. The count of friends of my friends is sorted in ascending order according to the 

first significant digit. 

ii. The count of the groups formed is thereby noted. 

iii. Table is formed with columns of significant digits from 1 to 9, the count of groups 

and the Benford’s standard values for respective significant digits.  

iv. Graph is plotted with the above table formed. 

v. The friend count and Benford’s values are in percentage unit. 

The image below gives the idea how data was formatted to plot Benford’s law: 

 

Figure 5.3 Data formatting for Benford Law implementation 
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The friends data that was retrieved from Facebook is arranged is ascending order 

of the first digit of the friend count. Then groups are formed according to the first 

significant digit. The total count for each group is noted and used further for analysis. 

The final table that is generated: 

 

Figure 5.4 Final table for Benford law implementation 

Figure 5.5 presents the results in a graphical form. 

 

Figure 5.5 Benford’s Law implementation for Facebook data 
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As we can see from the above graph that friend count plotted does not obey 

Benford’s Law of first digit phenomenon. The count of friends with significant digit as 1 

is 15% and hence much less than that of standard Benford value i.e. 30%. It’s the same 

for other values of friend count, either less than or greater than standard values. 

Concluding, Facebook data does not obey the law establishing that it has a behavioral 

component that alters the statistical frequencies.   
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Chapter VI 

 

 

FURTHER ANALYSIS 

 

 

The main objective of the thesis is to prove that social network paradoxes have a 

behavioral origin and not consequence of just mathematical properties of networks.  

In Chapter III, we carried out statistical analysis on the Facebook data and the 

non-social data (road network) by calculating the mean and median of friends-of-friends 

and plotted the graph. As we saw for the road data, the mean equated or exceeded the 

median. For the Facebook data, the median exceeds the mean. 

This characteristic of the data is a result of heterogeneous distribution of the 

degree of nodes in a social network. There are always some nodes with very high degree 

leading to formation of heavy tail in distribution which in turn skews the average. 

 Social network data like that of Facebook will always have heavy tail in the 

probability distribution skewed to the right (for larger degree nodes concentrated towards 

the left) due to the fact that friends have similar attributes, which is different from a non-

social network where the nodes have independent attributes. 

In the figure below we can see a highest degree node which is connected to 

maximum other nodes in the network. This node skews the average and results in large 

difference between its  mean and median values giving rise to friendship paradox in. 
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mean. But for the Facebook data, it also exists in median which clearly indicates that it is 

not purely statistical but also has a behavioral origin 

 

 

Figure 6.1 Gephi visualization of Facebook network showing the most popular node 

 

Observe that the node attribute that we considered in the data analysis is the 

‘friend count’. This attribute definitely changes from person to person in the sense whom 

to be added is completely the decision of the user. The user might add someone who 

shares a common community or who has an equal standard of living or he might add 

someone outside of his immediate interests. This decision is completely non-statistical in 

nature.  

As discussed in an earlier chapter, a social network has two types of correlation: 

within-node-correlation and between-node-correlation. Within-node-correlation is a 

correlation existing between the user node and its degree while between-node-correlation 



38 
 

is correlation between attributes of the user and those of its neighbors. Such correlations 

do not exist in networks governed completely by random behavior. 

Social network characteristics are an aggregate of the behavior of many users who 

are driven by the behavior of their friends and with whom they might also be in 

competition.  Thus social network paradoxes are not just result of mathematical results 

but have a behavioral component. 
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Chapter VII 

 

 

CONCLUSION 

 

 

 

The thesis has analyzed the friendship paradox of social networks. We did a statistical 

study of dataset retrieved from Facebook and we analyzed it for its relation between the 

mean and median of the distribution of friends of friends (FF). We found that in an 

overwhelming number of cases, the median (FF) was higher than the mean (FF). We also 

examined non-social network such as transportation network and found that in such cases 

the mean (FF) was greater than median (FF). This difference points to the behavioral 

basis of the social network paradox. In other words, the friendship paradox is not purely 

statistical in nature but has a behavioral component. 

Further testing of the same data showed that it did not satisfy the Benford 

distribution. Since Benford’s Law is not obeyed by psychology-driven data, our research 

establishes that friendship paradox related to mean and median of friends of friends has a 

behavioral origin.  
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