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4.4 Simulation result of Example 4.2. Estimated parameters, Θ̂1(t), Θ̂2(t),

and Θ̂3(t) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Picture of the experimental platform in Example 4.3. . . . . . . . . . 102

x



Figure Page

4.6 Experimental result of Example 4.3. Desired position, sd(t) = sin(0.4πt)

(top plot), angular position tracking error, x1(t) (middle plot), and an-

gular velocity tracking error, x2(t) (bottom plot), are shown. . . . . . 103

4.7 Experimental result of Example 4.3. The estimated of Z(t), Ẑ1(t) and
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CHAPTER 1

INTRODUCTION

It is common that whenever a practical system is modeled, there are uncertainties

in the model due to limited knowledge of the system. Uncertainties can be one

or combination of the following: (1) unknown parameters (time invariant or time-

varying), (2) unknown dynamics, (3) unmeasurable states. In literature, these three

uncertainties are commonly known as parametric uncertainty, dynamic uncertainty,

and static uncertainty, respectively.

To control a system with uncertainties, there are several possible avenues. The

first possible way is to depart from the idea of exploiting a priori information on

the system as much as possible. The most common used knowledge is the linear

parametrization property. The second possible way is the case where all uncertainties

are treated via a worst-case design by ignoring the uncertainty structure. The third

possible way is to go through a combination of the first two where some knowledge

of the structure of the uncertainty is used and other uncertainties are treated via a

worst-case design. All these avenues have their own advantages and disadvantages.

Robust adaptive control refers to control of partially known systems. It is very

effective for controlling a system with uncertainties, and it has been successfully

applied to applications such as autopilots for aircrafts and ships, cement mills, paper

machines, and power systems.

It is common that a control designer does not have access to all states of the

controlled system. To relax the requirement for full state measurement is practically

important. Adaptive output feedback control only uses the measured output infor-
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mation of the system and has the capability to handle uncertainties in the system. It

has been extensively studied in literature.

Due to diverse considerations and various behaviors of controlled systems, adap-

tive feedback control design is a complex process, and there are still many open

problems. For example, when a nonlinear system does not satisfy matching condi-

tions, that is, disturbances do not enter the control channel, the following question

arises: how to design adaptive feedback controllers to stabilize the closed-loop non-

linear system? Obviously, this problem is not always solvable. It is clear that there

is no universal adaptive output feedback controllers for general nonlinear systems. A

realistic way is to specify certain classes of nonlinear systems which are practically

relevant and design stable adaptive output feedback controllers for those systems.

This thesis considers adaptive output feedback control of such nonlinear systems.

1.1 Output feedback control of nonlinear systems

The output feedback control problem for nonlinear systems has received, and con-

tinues to receive, considerable attention in literature due to its importance in many

practical applications where measurement of all the state variables is not possible.

There are two major classes of output feedback control schemes: static output feed-

back scheme and observer-based output feedback scheme.

In static output feedback control, no observer is used to estimate the unmeasurable

states. The static output feedback control is classified into two major classes: the

direct output feedback control and the dynamic compensator. In the direct output

feedback control, the control law is given by a linear ([1], [2], [3]) or nonlinear ([4])

functions of the output of the controlled system. This method can only be applied

to very limited systems, like linear time-invariant systems with known dynamics. In

dynamic compensator ([5], [6], [7], [8], [9], [10], [11]), a compensator, which consists

of some linear differential equations, is added to the original system. The output
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feedback gain is computed based on the augmented system and desired poles of the

closed-loop system. A constructive procedure of this method for linear time-invariant

systems can be found in [5]. Other work on static output feedback control design can

be found in ([12], [13], [14], [15], [16]).

In observer-based output feedback control, an observer is designed to estimate

unmeasurable states, and the output of the system as well as the estimated states

are used to design the control law. Early work on the observer-based output feed-

back control design for linear time-invariant systems can be found in ([17], [18], [19],

[20], [21]). After that, a large amount of work was done by using observer design

technique, adaptive control technique, and robust control technique to design the

output feedback controller for linear and nonlinear systems. Both adaptive control

and robust control are capable of dealing with uncertainties. In adaptive control, an

adaptation law is designed to estimate unknown parameters in the system dynamics

([22], [23], [24]). In robust control, the uncertainties are considered by using some

sort of knowledge on the plant dynamics, such as bounds or bounding functions of

the uncertainties ([25], [26], [27]). The combination of adaptive control and robust

control results in the robust adaptive control design technique ([28], [29], [30], [31],

[32], [33], [34]). In most cases, an observer is required to implement a robust adaptive

control because only the output of the system is available for control design. To solve

the output tracking problem for certain classes of systems, variable structure con-

trol schemes were used in ([35], [36], [37], [38], [39], [40], [41], [42], [43]), and robust

adaptive control schemes were used in ([44], [45], [46], [41], [47], [48], [49], [50]).

Unlike linear systems, separation principle does not generally hold for nonlinear

systems. Therefore, the output feedback control problem for nonlinear systems is

much more challenging than stabilization using full-state feedback. It is well known

that the observer design problem for nonlinear systems by itself is quite challenging.

One has to often consider special classes of nonlinear systems to solve the observer
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design problem as well as the output feedback control problem. Due to their practical

significance, two special classes of systems that were often considered in the literature

are nonlinear systems with a triangular structure and Lipschitz nonlinear systems.

A systematic approach to the development of observers for nonlinear systems was

given in [51]; a nonlinear coordinate transformation was used to transform the original

nonlinear system to a linear system with the addition of an output injection term.

The nonlinear state transformations were also employed in [52, 53, 54] to obtain linear

canonical forms that can be used for observer design. A comparative study of four

techniques that appeared in the 1980’s for observing the states of nonlinear systems

was given in [55]. In [56], a new approach was given for the nonlinear observer design

problem; a general set of necessary and sufficient conditions was derived by using the

Lyapunov’s auxiliary theorem.

Observer design techniques for Lipschitz nonlinear systems were considered in

[57, 38, 58, 59, 60]. The observer design techniques proposed in these papers are

based on quadratic Lyapunov functions and thus depend on the existence of a positive

definite solution to an Algebraic Ricatti Equation (ARE). In [58], insights into the

complexity of designing observers for Lipschitz nonlinear systems were given; it was

discussed that in addition to choosing the observer gain in their nonlinear Luenberger-

like observer, one has to make sure that the eigenvectors of the closed-loop observer

system matrix must also be well-conditioned to ensure asymptotic stability. The

existence of a stable observer for Lipschitz nonlinear systems was addressed in [59];

a sufficient condition was given on the Lipschitz constant. Some of the results of

[59] were recently corrected by [60]. For the nonlinear observer of [59], it was shown

in [60] that two sufficient conditions are required to guarantee that the observer is

exponentially stable.

In [61], counterexamples were given to discuss the problem of global asymptotic

stabilization by output feedback; a phenomenon called “unboundedness unobservabil-
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ity” was defined; it means that some unmeasured state components may escape in

finite time whereas the measurements remain bounded. Recent research has focused

on considering a selective class of nonlinear systems by placing some structural condi-

tions on the nonlinearities to solve the output feedback problem. Global stabilization

by dynamic output feedback of nonlinear systems which can be transformed to the

output feedback form was given in [62]. Output feedback control of nonlinear systems

in triangular form with nonlinearities satisfying certain growth conditions was con-

sidered in [63, 64]. In [65], it was shown that global stabilization of nonlinear systems

is possible using linear feedback for a class of systems which have triangular structure

and nonlinearities satisfy certain norm bounded growth conditions. A backstepping

design procedure for dynamic feedback stabilization for a class of triangular Lipschitz

nonlinear systems with unknown time-varying parameters was given in [66]. Output

feedback control of nonlinear systems has been extensively studied in recent literature

[48, 67, 68, 69].

Many practical applications require estimation of the states and parameters that

can be used in designing a stable control algorithm; the unmeasurable states and pa-

rameters are generally estimated based on the knowledge of the physical system, such

as a model, and the available measurements. Design of a stable adaptive observer that

simultaneously estimates the unmeasurable state and the unknown parameters for a

general class of nonlinear systems is still an open problem. This has led to continued

strong interest over the years in the development of stable adaptive observers. Early

work on stable adaptive observers for linear time-invariant systems can be found in

[70, 71]. A large number of results in adaptive control of linear and nonlinear systems

can be found in [72, 73, 74]. In [49], an extensive survey of adaptive output feedback

control methods for nonlinear systems without derived input signal measurements was

given. [75] contains an extensive literature survey of reference model based adaptive

control of linear systems.
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Design of adaptive observers for nonlinear systems with exponential rate of conver-

gence was given in [76]. A new method for the design of locally convergent observers

using the backstepping method was proposed in [77]. A discussion of persistent exci-

tation in adaptive systems was given in [78]. In [56], design of a nonlinear observer for

nonlinear systems using Lyapunov’s auxiliary theorem was proposed; the proposed

nonlinear observer design is analogous to the linear Luenberger observer theory. A

dual-observer structure to estimate the unmeasurable state of the Lugre dynamic

friction model was proposed in [79]; an adaptive controller and observer was designed

to simultaneously estimate the unknown friction parameters and the unmeasurable

friction state.

Design of a stable adaptive observer that simultaneously estimates the unmea-

surable state and the unknown parameters for a general class of nonlinear systems

is still an open problem. This has led to continued strong interest over the years in

the development of stable adaptive observers. Adaptive observer design for nonlinear

systems is usually restricted to a certain class of systems. In [80], the linear adap-

tive observer derived in [81] has been modified and extended to a class of nonlinear

time-varying systems, in which the nonlinear system is considered to be transformed

into an adaptive observer canonical form. In the adaptive observer canonical form,

the unmeasured states and unknown parameters appear linearly in known functions

in the dynamics. An adaptive observer, which is driven by auxiliary filters, was de-

veloped; stable convergence of the estimates were shown under certain persistency of

excitation conditions.

Necessary and sufficient conditions for transforming a general nonlinear system

into a canonical form that is nonlinear purely in the output variables can be found

in [24]. Based on the early work of [80, 51], considerable work on adaptive nonlinear

observers has been reported by Marino et. al. in a series of papers; see [82] and the

references there-in; Marino et. al. studied adaptive observers for nonlinear systems
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that can be transformed via a global state space diffeomorphism into the form which is

similar to that given in [80]; the considered system is linear in the unknown parameters

and the nonlinearities are functions of the known output and input variables only.

1.2 Decentralized output feedback control of large-scale systems

Large-scale interconnected systems can be found in such diverse fields as power

systems, space structures, manufacturing processes, transportation, and communi-

cation. An important motivation for the design of decentralized schemes is that

the information exchange between sub-systems of a large-scale system is not needed;

thus, the individual sub-system controllers are simple and use only locally available

information. Decentralized control of large-scale systems has received considerable

interest in the systems and control literature. A large body of literature in decen-

tralized control of large-scale systems can be found in [83]. In [84], a survey of early

results in decentralized control of large-scale systems was given. Decentralized con-

trol schemes that can achieve desired robust performance in the presence of uncertain

interconnections can be found in [85, 86, 87]. A decentralized control scheme for ro-

bust stabilization of a class of nonlinear systems using the Linear Matrix Inequalities

(LMI) framework was proposed in [88].

In many practical situations, complete state measurements are not available at

each individual sub-system for decentralized control; consequently, one has to con-

sider decentralized feedback control based on measurements only or design decentral-

ized observers to estimate the state of individual sub-systems that can be used for

estimated state feedback control. There has been a strong research effort in litera-

ture towards development of decentralized control schemes based on output feedback

via construction of decentralized observers. Early work in this area can be found in

[89, 85, 83]. Subsequent work in [90, 91, 92, 93] has focused on the decentralized

output feedback problem for a number of special classes of nonlinear systems. Design
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of an observer-based output feedback controller is a challenging problem for nonlin-

ear systems. It is well known that the separation principle may not be applicable to

nonlinear systems [68]. In [94], the decentralized controller and observer design prob-

lems were formulated in the LMI framework for large-scale systems with nonlinear

interconnections that are quadratically bounded. Autonomous linear decentralized

observer-based output feedback controllers for all sub-systems were obtained. The

existence of a stabilizing controller and observer depended on the feasibility of solv-

ing an optimization problem in the LMI framework; further, for a solution to exist,

this formulation also required, for each sub-system, that the number of control inputs

must be equal to the dimension of the state.

1.3 Adaptive control of time-varying systems

It is evident from a study of the literature that an important motivation for de-

signing adaptive controllers is in dealing with time-varying parameters. Even though

research in identification and control of time-varying systems has been active during

the past two decades, adaptive estimation of time-varying parameters in linearly pa-

rameterized systems is still an open problem. Most adaptive estimation algorithms,

such as the least-squares and the gradient algorithms and a number of variations

of them, have nice stability and convergence properties in the ideal case when the

parameters are constant[72, 33]. But these algorithms fail to retain most of their

properties when the parameters are time-varying.

The amount of adaptive control research for systems with uncertain constant pa-

rameters is much larger than systems which have uncertain time-varying parameters.

As pointed out in [72], one of the compelling reasons for considering adaptive meth-

ods in practical applications is to compensate for large variations in plant parameter

values. Adaptive control of a class of slowly time-varying discrete-time systems is

considered in [95]; it is shown that the traditional gradient algorithm designed for
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the estimation of the constant parameters can maintain stability when the plant

parameters are slowly time-varying. In [96], time-varying linear systems in linear

parameterized form with modeling error is considered for adaptive control design;

gradient algorithm with projection is used to estimate the time-varying parameters;

it is shown that the parameter estimation error is bounded under the assumption that

the parameter variations are uniformly small and the modeling errors are bounded

by a small exponentially weighted sum of plant inputs and outputs. Model reference

adaptive control with slowly time-varying plants can be found in [97]. A number of

results in adaptive control of linear-time varying plants can be found in [98]. In [99],

a comparative survey with respect to performance and robustness between recursive

and direct least-squares estimation algorithms is presented; a non-recursive algorithm

that improves robustness to bounded disturbances for the case of slowly time-varying

parameters is given.

In [100], it is shown via simulation results that applying local regression in tradi-

tional least-squares with a forgetting factor algorithm can reduce the estimation error

in the mean-square sense for systems with slowly time-varying parameters. Adap-

tive control of discrete-time systems with time-varying parameters can be found in

[101, 102]; polynomial approximation of the time-varying parameters in a discrete-

sense is used in the parameter estimation algorithms. Nonparameteric regression tech-

niques to various statistical problems, using local polynomial modeling, are discussed

extensively in [103]. In [104], an adaptive controller is developed for time-varying

mechanical systems based on polynomial approximations of time-varying parameters

and disturbances; experimental results of the adaptive controller on a planar robot

are given to verify the proposed adaptive controller.

High performance tracking control of mechanical systems is essential in a number

of industrial applications; examples include, material handling and parts assembly. In

many of the industrial applications, the mechanical system dynamics is time-varying
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due to a time-varying payload and/or time-varying disturbances. Examples of such

applications include pouring and filling operations using robots. There has been an

increase in recent research activity in adaptive control of time-varying systems. But

most of this research has focused on assuming worst case bounds for time-varying

parameters and/or their derivatives; an amalgam of adaptive control and robust con-

trol techniques has been used in the control designs with the controller gains chosen

based on worst case bounds. The resulting controllers, although stable, give rise to

large and often practically unbounded control inputs.

In [105], a robust switching controller was designed for robot manipulators with

time-varying parameters performing path tracking tasks; properties of the element

by element product of matrices was used to isolate the time-varying parameters from

the inertia matrix. A robust adaptive controller for robot manipulators consisting

of slowly time-varying parameters was presented in [106]. A smooth robust adaptive

sliding mode controller was given in [107]. A robust adaptive control algorithm subject

to bounded disturbances and bounded and (possibly) time-varying parameters was

given in [108]; it was shown that the controller achieves asymptotic tracking if the

disturbances vanish and the parameters are constant. In [109], an adaptive controller

for time-varying mechanical systems was proposed based on the assumption that

the time-varying parameters are given by a group of known bounded time functions

and unknown constants. A time-scaling technique of mapping one cycle period of

the desired trajectory into a unit interval was proposed to provide robustness to

the parameter adaptation algorithms. A novel experimental platform consisting of

a two-link manipulator with time-varying payload that mimics filling and pouring

operations was built to verify the proposed adaptive algorithm experimentally.

A number of results in adaptive control of linear-time varying plants can be found

in [98]. Adaptive control of discrete-time linear systems with time-varying parameters

can be found in [101, 102]. In [102], the problem of estimating the unknown time-
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varying parameters is transformed to the problem of observing an unknown state

of a linear discrete-time system using the Taylor’s formula. In [100], it is shown

that applying local regression in traditional least-squares algorithm with a forgetting

factor can reduce the estimation error in the mean-square sense for systems with

slowly time-varying parameters. Regressions techniques and their applications using

local polynomial modelling are discussed in great detail in [103].

1.4 Contributions

The contributions of this thesis can be summarized as follows.

1. The output feedback control problem for unmatched Lipschitz nonlinear systems

is investigated. A new observer design and output feedback control law are

proposed, and sufficient conditions under which the proposed method can be

applied are given. An illustrative example on a flexible link robot is provided to

illustrate the design procedures an verify the proposed method. The proposed

solution to the output feedback control problem for unmatched Lipschitz is the

first result on this topic.

2. Decentralized output feedback control problem for large-scale interconnected

nonlinear systems is considered. The nonlinear interconnection function of each

subsystem is assumed to satisfy a quadratic constraint on the entire state of the

large-scale system. A decentralized estimated state feedback controller and a de-

centralized observer are designed for each subsystem. Sufficient conditions, for

each subsystem, under which the proposed controller and observer can achieve

exponential stabilization of the overall large-scale system are developed. An

LMI approach is also used to design a decentralized output feedback control for

the large-scale interconnected system considered. It is shown that the proposed

LMI approach is feasible. Further, the proposed LMI approach does not require
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the invertibility of the input matrix of each subsystem, which was the case in a

recent paper in the literature [94]. Simulation results on a numerical example

are given to verify the proposed design.

3. Output feedback control of a class of nonlinear systems, which contains prod-

uct terms of unknown parameters and unmeasurable states, is studied. By

representing the dynamics of the original nonlinear system in a suitable form,

a new observer design and output feedback control law are designed based on

a parameter-dependent Lyapunov function. Numerical examples are given to

illustrate the proposed design. Also, experiments on the dynamic friction on

a two-link robot is provided. The simulation and experimental results are dis-

cussed.

4. On-line estimation of time-varying parameters in dynamic systems, which can

be represented by linearly parameterized model, is studied. The problem of esti-

mating time-varying parameters in such systems is transformed to the problem

of estimating time-invariant parameters in small time intervals. Modification

of the least-squares algorithm and gradient algorithm are proposed to estimate

time-varying parameters, and a resetting strategy for estimates at the begin-

ning of each interval is provided. Based on the proposed method for estimating

time-varying parameters, an adaptive output feedback controller for mechanical

systems with time-varying parameters and disturbances is designed. A novel

experiment on a two-link robot is designed and conducted to verify the proposed

design.

5. Matrix equations, such as linear differential matrix equations, algebraic Riccati

equations, and Lyapunov equations, which play an important role in systems

and control theory, are investigated. Important results from literature are re-

viewed. Some useful and easily computable necessary conditions for the exis-

12



tence of a positive semi-definite solution to the algebraic Riccati equation are

derived; an upper bound on the solution of ARE is also derived. Further, upper

and lower bounds for the trace of the solution of the time-varying linear matrix

differential equation are obtained.

1.5 Organization of the report

The rest of the thesis is organized as follows.

• Chapter 2 considers the output feedback control of Lipschitz nonlinear systems.

• Chapter 3 investigates the decentralized output feedback control for large-scale

interconnected nonlinear systems.

• In Chapter 4, a class of nonlinear systems which contain products of unknown

parameters and unmeasurable states are studied; an adaptive output feedback

controller is designed based on a parameter–dependent Lyapunov function.

• Adaptive control of mechanical systems with unknown time-varying parameters

and unknown time-varying disturbances is addressed in Chapter 5.

• Some well known matrix equations in systems and control theory are reviewed

and investigated in Chapter 6.

• Summary and future work are given in Chapter 7.
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CHAPTER 2

CONTROLLER AND OBSERVER DESIGN FOR LIPSCHITZ

NONLINEAR SYSTEMS

In this chapter, a solution to the output feedback control problem for Lipschitz

nonlinear systems under some sufficient conditions on the Lipschitz constant is pro-

vided. Systems with Lipschitz nonlinearity are common in many practical appli-

cations. Many nonlinear systems satisfy the Lipschitz property at least locally by

representing them by a linear part plus a Lipschitz nonlinearity around their equilib-

rium points. First, a linear full-state feedback controller is proposed and a sufficient

condition under which exponential stabilization of the closed-loop system is achieved

with full-state feedback is derived. Second, a Luenberger-like observer is proposed,

which is shown to be an exponentially stable observer under a sufficient condition.

Given that the sufficient conditions of the controller and observer problem are satis-

fied, it is shown that the proposed controller with estimated state feedback from the

proposed observer will achieve global exponential stabilization, that is, the proposed

controller and observer designs satisfy the separation principle.

The rest of the chapter is organized as follows. In Section 2.1, the class of Lipschitz

nonlinear systems considered, the assumptions, the notation used, and some prior

results that will be useful for the developments in the chapter are given. The full-

state feedback control problem, the observer design problem, and the output feedback

control problem are considered in Sections 2.2, 2.3, and 2.4, respectively. Section

2.5 gives an algorithmic procedure for computing the controller and observer gains

while satisfying the sufficient conditions. An illustrative example is provided with
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simulation results in Section 2.6 to verify the proposed methods. Section 2.7 gives

summary and some relevant future research.

2.1 Preliminaries

Consider the problem of controller and observer design for the following class of

Lipschitz nonlinear systems:

ẋ = Ax + Bu + Φ(x, u), (2.1a)

y = Cx (2.1b)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq are the system state, input, and output, respec-

tively. It is assumed, without loss of generality, that x = 0 is the equilibrium point

of the system (2.1).

Assume that the system (2.1) satisfies the following.

Assumption A2.1 Φ(x, u) is Lipschitz with respect to the state x, uniformly in the

control u, that is, there exists a constant γ such that

‖Φ(x1, u)− Φ(x2, u)‖ ≤ γ‖x1 − x2‖ (2.2)

for all x1, x2 ∈ D ⊂ Rn and u ∈ Rp.

Assumption A2.2 Φ(x, u) is such that ‖Φ(x, u)‖ ≤ γ‖x‖ for all u ∈ Rp.

Assumption A2.3 The pair (A,B) is controllable.

Assumption A2.4 The matrix A is Hurwitz. If the matrix A is not Hurwitz, since

(A, B) is controllable, a preliminary control can be used to make it Hurwitz.

Assumption A2.5 The pair (C, A) is observable.

Definition 2.1 The number δ(M, N) is defined as

δ(M,N) = min
ω∈R

σmin




iωI −M

N


 (2.3)
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where i =
√−1 and I is an identity matrix with appropriate dimension.

The distance between a pair (A,C) and the set of pairs with an unobservable

purely imaginary mode is given by δ(A,C). Similarly, δ(A>, B>) gives the distance

between the pair (A,B) and the set of pairs with an uncontrollable purely imagi-

nary mode. See [60] for a discussion of the number δ and a bisection algorithm for

computing it.

The distance δ(A, C) can be computed by the bisection algorithm with precision

prec in MATLAB as follows:

a=0;

b=norm(A,2)+norm(C,2);

choose N such that b/2^N < prec

for i=1:N

gamma=(a+b)/2;

form H_gamma;

if H_gamma is hyperbolic %see Lemma 2.2

a=gamma;

else

b=gamma;

end

end

Lemma 2.1 Consider the Algebraic Ricatti Equation (ARE)

A>P + PA + PRP + Q = 0. (2.4)

If R is symmetric positive semi-definite, Q is symmetric positive definite, A is Hur-

witz, and the associated Hamiltonian matrix

H =




A R

−Q −A>


 (2.5)
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is hyperbolic, that is, H has no eigenvalues on the imaginary axis, then there exists a

unique symmetric positive definite matrix P , which is the solution of the ARE (2.4).

Proof. See [60]. ¥

Lemma 2.2 Let γ ≥ 0 and define

Hγ =




A I

C>C − γ2I −A>


 .

Then γ < δ(A,C) if and only if Hγ is hyperbolic.

Proof. See [59, 60]. ¥

The results on this chapter will be shown in the following order.

(1) A linear full-state feedback controller is designed and sufficient conditions under

which the equilibrium is exponentially stable are provided.

(2) A ‘Luenberger-like’ nonlinear observer for state estimation is proposed, and a

sufficient condition under which the observer is exponentially stable is given.

(3) An output feedback controller for the Lipschitz nonlinear systems (2.1) is designed

by using the results from that of the controller of (1) and observer of (2).

2.2 Full-state feedback controller design

In this section, the regulation problem for the system (2.1a) with full-state linear

feedback under the Assumptions A2.2, A2.3, and A2.4, is considered. Consider the

following control input:

u = − K

‖B‖2
x (2.6)
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where K is the feedback gain matrix. With this control input, the closed-loop dy-

namics is

ẋ =

(
A− BK

‖B‖2

)
x + Φ(x, u)

4
= Ācx + Φ(x, u).

(2.7)

To determine K, we consider the following Lyapunov function candidate

Vc(x) = x>Pcx (2.8)

where Pc is a symmetric positive definite matrix. The time derivative of the Lyapunov

function candidate along the trajectories of (2.7) is

V̇c(x) = x>
(
Ā>

c Pc + PcĀc

)
x + 2x>PcΦ(x, u)

≤ x>
(
Ā>

c Pc + PcĀc

)
x + 2γ‖Pcx‖‖x‖

≤ x>
(
Ā>

c Pc + PcĀc + PcPc + γ2I
)
x (2.9)

where the first inequality is a consequence of assumption A2.2 and the second in-

equality is obtained by using the inequality

2γ‖Pcx‖‖x‖ ≤ x>PcPcx + γ2x>x.

For any ηc > 0, if

Ā>
c Pc + PcĀc + PcPc + γ2I = −ηcI, (2.10)

then

V̇c ≤ −ηcx
>x. (2.11)

Using the definition of Āc, the ARE (2.10) can be simplified to

A>Pc + PcA− K>B>Pc

‖B‖2
− PcBK

‖B‖2
+ PcPc + (γ2 + ηc)I = 0. (2.12)

The choice of the control gain matrix

K =
1

2
B>Pc (2.13)
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results in the following ARE:

A>Pc + PcA + Pc

(
I − BB>

‖B‖2

)
Pc + (γ2 + ηc)I = 0. (2.14)

Now we consider the problem of the existence of a symmetric positive definite

matrix Pc, which is the solution to the ARE (2.14). Since A is Hurwitz, the matrix(
I − BB>

‖B‖2

)
is positive semi-definite, and the matrix (γ2+ηc)I is positive definite, by

Lemma 2.1, the problem reduces to showing that the associated Hamiltonian matrix

Hc =




A I − BB>

‖B‖2

−(γ2 + ηc)I −A>


 (2.15)

is hyperbolic. The following lemma gives the condition under which the Hamiltonian

Hc is hyperbolic.

Lemma 2.1 Hc is hyperbolic if and only if

√
γ2 + ηc < δ

(
A>,

√
γ2 + ηc

‖B‖ B>
)

. (2.16)

Proof. Consider the determinant of the matrix (sI −Hc) given by

det(sI −Hc) = det




sI − A −I +
BB>

‖B‖2

(γ2 + ηc)I sI + A>




= (−1)n det




(γ2 + ηc)I sI + A>

sI − A −I +
BB>

‖B‖2


 .

(2.17)

Since (γ2 + ηc)I is non-singular, using the formula for determinant of block matrices

[110, p. 650], we obtain

det(sI −Hc) = (−1)n(γ2 + ηc)
n det

[(
−I +

BB>

‖B‖2

)
− (sI − A)(γ2 + ηc)

−1(sI + A>)

]

= (−1)n det

[
(γ2 + ηc)

(
−I +

BB>

‖B‖2

)
− (sI − A)(sI + A>)

]
. (2.18)

Define

G(s) = (γ2 + ηc)

(
−I +

BB>

‖B‖2

)
− (sI − A)(sI + A>). (2.19)
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From the equations (2.18) and (2.19), s is an eigenvalue of Hc if and only if G(s)

is singular. Hence, to prove that Hc is hyperbolic, one can prove that G(−iω) is

non-singular for all ω ∈ R. Notice that

∆c(−iω)
4
= −(−iωI − A)(−iωI + A>) + (γ2 + ηc)

BB>

‖B‖2

=




iωI − A>
√

γ2 + ηc

‖B‖ B>




H 


iωI − A>
√

γ2 + ηc

‖B‖ B>


 .

(2.20)

Therefore, if

δ

(
A>,

√
γ2 + ηc

‖B‖ B>
)

>
√

γ2 + ηc ,

then

G(−iω) = −(γ2 + ηc)I + ∆c(−iω) > 0 (2.21)

for all ω ∈ R. Thus, Hc is hyperbolic. This completes the sufficiency part of the

proof. The necessary part of the proof is similar to that of Lemma 2.2; it can be

shown in [60] and omitted here. ¥

Remark 2.1 Since δ

(
A>,

γ

‖B‖B>
)

is a continuous function of γ, the function

f(γ)
4
= γ−δ

(
A>,

γ

‖B‖B>
)

is also a continuous function of γ. Therefore, if f(γ) < 0,

then there exists a γ1 > γ such that f(γ1) < 0. Hence, if f(γ) < 0, then there exists

an ηc > 0 such that f(
√

γ2 + ηc ) < 0. Consequently, the condition for Hc being

hyperbolic given by (2.16) can be simplified to be γ < δ

(
A>,

γ

‖B‖B>
)

.

The following theorem summarizes the results pertaining to the full-state feedback

controller design.

Theorem 2.1 For the nonlinear system (2.1), with the Assumptions A2.2, A2.3,

A2.4, and with the control input given by (2.6), the equilibrium x = 0 is exponentially
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stable if the following condition is satisfied:

γ < δ

(
A>,

γ

‖B‖B>
)

. (2.22)

2.3 Observer design

First consider the following recent result from [60].

Theorem 2.2 Consider the n-dimensional system

ẋ = Ax + Φ(x, u)

y = Cx

where the matrix A is stable, (C, A) is observable, the non-linearity Φ(x, u) is globally

Lipschitz with respect to the state x, uniformly in control u, with a Lipschitz constant

γ. If

γ < δ(A,C) (2.23)

and

γ < δ

(
A,

γ

‖C‖C

)
(2.24)

then there exists a gain matrix L such that the observer

˙̂x = Ax̂ + Φ(x̂, u)− L(Cx̂− y)

is an exponential observer for the system.

In the following, a different exponentially stable observer for the system (2.1) will

be proposed. It will also be shown that one of the two conditions given by (2.23) and

(2.24), is sufficient for the proposed observer to be exponentially stable.

Consider the following observer for the system (2.1):

˙̂x = Ax̂ + Bu + Φ(x̂, u) +
γ2 + εo

‖C‖2
L(y − Cx̂) (2.25)
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where εo ≥ −γ2 and L is the observer gain matrix. Define the estimation error

x̃ = x− x̂. The error dynamics is

˙̃x =

(
A− γ2 + εo

‖C‖2
LC

)
x̃ + Φ(x, u)− Φ(x̂, u)

4
= Āox̃ + Φ(x, u)− Φ(x̂, u).

(2.26)

To find L we consider the following Lyapunov function candidate

Vo(x̃) = x̃>Pox̃. (2.27)

The time derivative of the Lyapunov function candidate along the trajectories of

(2.26) is

V̇o(x̃) = x̃>
(
Ā>

o Po + PoĀo

)
x̃ + 2x̃>Po (Φ(x, u)− Φ(x̂, u)) . (2.28)

Simplifying along the same lines as done in the full-state feedback controller case, we

obtain

V̇o(x̃) ≤ x̃>
(

A>Po + PoA− γ2 + εo

‖C‖2
(C>L>Po + PoLC) + PoPo + γ2I

)
x̃. (2.29)

Choosing

L =
1

2
P−1

o CT (2.30)

we obtain the following. If

A>Po + PoA + PoPo − γ2 + εo

‖C‖2
C>C + γ2I = −ηoI (2.31)

for some ηo > max(ε0, 0), then

V̇o(x̃) ≤ −ηox̃
>x̃. (2.32)

Now the problem reduces to finding conditions under which there exists a positive

definite solution Po to the ARE

A>Po + PoA + PoPo + (γ2 + ηo)I − γ2 + εo

‖C‖2
C>C = 0. (2.33)
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Since A is Hurwitz and the matrix (γ2 + ηo)I − γ2 + εo

‖C‖2 C>C is positive definite, by

Lemma 2.1, we need to show that the associated Hamiltonian

Ho =




A I

−(γ2 + ηo)I +
γ2 + εo

‖C‖2
C>C −A>


 (2.34)

is hyperbolic. The following lemma gives the condition under which Ho is hyperbolic.

Lemma 2.3 Ho is hyperbolic if and only if

√
γ2 + ηo < δ

(
A,

√
γ2 + εo

‖C‖ C

)
. (2.35)

Proof. Similar to the Lemma 2.2. ¥

Notice that the arguments of Remark 2.1 also hold for Lemma 2.3. The following

theorem summarizes the results of this section.

Theorem 2.3 For the nonlinear system given by (2.1), with the Assumptions A2.1,

A2.4, and A2.5, if

γ < δ

(
A,

γ

‖C‖C

)
(2.36)

is satisfied, then the observer (2.25) is an exponentially stable observer for the system

(2.1).

Remark 2.2 Notice that the proposed observer, (2.25), requires only one sufficient

condition, (2.36), as opposed to the two sufficient conditions for the observer given

in Theorem 2.2. The two conditions are required because: (1) the observer structure

does not guarantee that the “Q” matrix in the ARE (2.4) is positive definite and (2)

the associated Hamiltonian matrix must be hyperbolic. The proposed observer, (2.25),

guarantees that the “Q” matrix in the ARE (2.4) is positive definite.

Remark 2.3 Notice that the conditions given by (2.22) and (2.36) guarantee the

existence of ηc > 0 and ηo > 0, but not their values. Instead, we can check the condi-
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tions (2.16) and (2.35) with specified ηc and ηo, which give the rate of convergence of

controller and observer, respectively.

2.4 Output feedback controller design

Combining the full-state feedback control design of Section 2.2 and the observer

design of Section 2.3, one can design an output feedback controller for the system

(2.1), which is illustrated by the following theorem.

Theorem 2.4 Consider the system (2.1) with the Assumptions A2.1, A2.2, A2.3,

A2.4, and A2.5. If the conditions (2.22) and (2.36) hold, then the equilibrium x = 0

of the system (2.1) is exponentially stable, with

u = − 1

‖B‖2
Kx̂ (2.37)

where x̂ is the estimate of x generated by (2.25), K is the gain matrix given by (2.13),

and Pc is the solution to the ARE (2.14). Further, the observation error, x̃ = x− x̂,

exponentially converges to zero.

Proof. Substituting the output feedback control law given by (2.37) in (2.1) and

simplifying it is obtained that

ẋ =
(
A− 1

2

BB>

‖B‖2
Pc

)
x + Φ(x, u) +

1

2

BB>

‖B‖2
Pcx̃. (2.38)

Notice that (2.38) is the same as (2.7) except for an additional term in (2.38). The

time derivative of the Lyapunov function candidate Vc(x) given by (2.8) along the

trajectories of (2.38) is

V̇c(x) ≤ x>
(

A>Pc + PcA + Pc

(
I − BB>

‖B‖2

)
Pc + γ2I

)
x +

1

‖B‖2
x>PcBB>Pcx̃

(2.39)

Since Pc is the solution to the ARE (2.14), one has

V̇c(x) ≤ −ηcx
>x + ζc‖x‖‖x̃‖ (2.40)

24



where ζc = ‖Pc‖2.

Now consider the function

W (x, x̃) = ζVc(x) + Vo(x̃) (2.41)

where ζ > 0 and Vo(x̃) is as given by (2.27). The time derivative of W (x, x̃) is given

by

Ẇ (x, x̃) ≤ −ζηc‖x‖2 + ζζc‖x‖‖x̃‖ − ηo‖x̃‖2. (2.42)

Choosing ζ = ηcηo/ζ
2
c results in

Ẇ (x, x̃) ≤ −1

2
ζηc‖x‖2 − 1

2
ηo‖x̃‖2. (2.43)

Therefore, x and x̃ exponentially converge to zero. ¥

Remark 2.4 The number δ is realization dependent, that is, it depends on A, B,

C. If A is unstable to begin with, then any preliminary control used to stabilize

A will affect δ. Since δ and γ depend on the realization, appropriate coordinate

transformations as discussed in [59], in some cases, can be used to increase δ and

reduce γ.

Remark 2.5 The bisection algorithm given in [60] can be used to compute δ; it was

suggested that 0 and ‖A‖ be used as the initial guess for the lower and upper bounds,

respectively, for δ(A,C). It is possible that the value of δ may be greater than ‖A‖.

The upper bound must be changed to σmin




A

C


 because

δ(A, C) = min
ω∈R

σmin




iωI − A

C


 ≤ σmin



−A

C


 = σmin




A

C


 .

Remark 2.6 If Φ(x, u) is globally Lipschitz with respect to x, then the three results

given by Theorem 2.1, 2.3, and 2.4 will be applicable globally.
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2.5 Algorithm to compute gain matrices

In the following, a systematic procedure is provided to compute the observer and

controller gain matrices with respect to the original system (2.1) in the event of the

use of the preliminary control and coordinate transformations.

2.5.1 Observer gain matrix

1. Pole placement

Rewrite (2.1) in the following form

ẋ = (A− L1C)x + Bu + L1y + Φ(x, u), (2.44a)

y = Cx (2.44b)

where L1 is chosen such that (A− L1C) is stable.

2. Similarity transformation

Let x = Tox
′. Then (2.44) becomes

ẋ′ = T−1
o (A− L1C)Tox

′ + T−1
o (Bu + L1y) + T−1

o Φ(Tox
′, u)

4
= A′x′ + B′u + T−1

o L1y + T−1
o Φ(Tox

′, u), (2.45a)

y = CTox
′ 4= C ′x′ (2.45b)

where To ∈ Rn×n is a nonsingular matrix. The new Lipschitz gain γ′ is obtained

from the following inequality

‖T−1
o Φ(Tox1, u)− T−1

o Φ(Tox2, u)‖ ≤ γ′o‖x1 − x2‖ ∀x1, x2 ∈ Rn, u ∈ Rp.

(2.46)

The observer for (2.45) is given by

˙̂
x′ = A′x̂′ + B′u + T−1

o L1y + T−1
o Φ(Tox̂′, u) +

γ′2 + εo

‖C ′‖2 L′(y − C ′x̂′), (2.47a)

ŷ = C ′x̂′. (2.47b)
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After choosing εo ≥ −γ′o
2 and ηo > max(εo, 0), check the condition

γ′o
2
+ ηo < δ2

(
A′,

√
γ′2 + εo

‖C ′‖ C ′
)

(2.48)

for the existence of the solution Po to the ARE

A′>Po + PoA
′ + PoPo + (γ′o

2
+ ηo)I − (γ′o

2
+ εo)

C ′>C ′

‖C ′‖2 = 0. (2.49)

If (2.48) is satisfied, the observer gain is chosen to be L′ = 1
2
P−1

o C ′> where

Po = P>
o > 0 is the solution of (2.49).

3. Observer gain matrix for the original system

Notice that if one defines x̂ = Tox̂′ as the estimate of x, the system (2.47) can

be rewritten in terms of x̂ by the following equations.

˙̂x = Ax̂ + Bu + Φ(x̂, u) + L(y − Cx̂), (2.50a)

ŷ = Cx̂ (2.50b)

where

L = L1 +
γ′o

2 + εo

‖CTo‖2 ToL
′. (2.51)

2.5.2 Controller gain matrix

1. Pole placement

Rewrite (2.1) in the following form

ẋ = (A−BK1)x + B(u + K1x) + Φ(x, u) (2.52)

where K1 is chosen such that (A−BK1) is stable.

2. Similarity transformation

Let x = Tcx
′, (2.52) becomes

ẋ′ = T−1
c (A−BK1)Tcx

′ + T−1
c B(u + K1Tx′) + T−1

c Φ(Tcx
′, u)

4
= A′x′ + B′(u + K1Tcx

′) + T−1
c Φ(Tcx

′, u) (2.53)
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where Tc ∈ Rn×n is a nonsingular matrix. The new Lipschitz gain γ′c is obtained

from the following inequality

‖T−1
c Φ(Tcx1, u)− T−1

c Φ(Tcx2, u)‖ ≤ γ′c‖x1 − x2‖ ∀x1, x2 ∈ Rn, u ∈ Rp.

(2.54)

Choosing the control for (2.53) as u = −K1Tcx
′ − 1

‖B′‖2K ′x′ results in the

following closed-loop system

ẋ′ =
(
A′ − 1

‖B′‖2B′K ′
)
x′ + T−1

c Φ(Tcx
′, u). (2.55)

Choose ηc > 0 and check the condition

γ′c
2
+ ηc < δ2

(
A′>,

√
γ′c

2 + ηc

‖B′‖ B′>
)

(2.56)

for the existence of the solution Pc to the ARE

A′>Pc + PcA
′ + Pc

(
I − 1

‖B′‖2B′B′>
)
Pc +

(
γ′2 + ηc

)
I = 0. (2.57)

If (2.56) is satisfied, the control gain is chosen to be K ′ = B′>Pc/2 where

Pc = P>
c > 0 is the solution of (2.57).

3. The control gain matrix for the original system

The gain matrix used in the full-state feedback controller or output feedback

controller is

K = K1 +
1

‖T−1
c B‖2K ′T−1

c . (2.58)

Remark 2.7 The changes of coordinates for the observer design and the full-state

feedback control design may not be the same.

Remark 2.8 The transformed system, for instance, (2.45) in the observer design

case, has the Lipschitz constant γ′o, which depends on the transformation matrix To.
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It is possible to choose a suitable transformation T0 such that γ′o < γ. From Theorem

2.3, it is seen that, to satisfy the condition (2.36), it is better to decrease γ and increase

δ

(
A,

γ

‖C‖C

)
. To reduce the Lipschitz gain by using similarity transformation may

increase δ(·) also.

The argument above holds for the full-state feedback control design also.

2.6 An illustrative example: a flexible link robot

In this section, consider the observer and controller design for a flexible link robot

[38, 59, 60, 111].

Example 2.1 The dynamics of the robot is described by the following state space

representation:

ẋ = Ax + bu + Φ(x, u), (2.59a)

y = Cx (2.59b)

where

x =




θm

ωm

θ1

ω1




, A =




0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −19.5 0




, B =




0

21.6

0

0




,

C =




1 0 0 0

0 1 0 0


 , Φ(x, u) =




0

0

0

−3.33 sin(x3)




,

and θm is the angular position of the motor; ωm is the angular velocity of the motor;

θ1 is the angular position of the link; and ω1 is the angular velocity of the link.

29



In the following, the procedure for the observer design and output feedback control

design are presented.

Observer design: Since A is not stable, we design a preliminary gain L1 such that

(A− L1C) is stable with poles at −9.3275,−8.9203,−9.6711 and −4.7722. The gain

L1 is found to be

L1 =




9.3275 1.0000

−48.7804 22.1136

−0.0524 3.1994

19.4066 −0.9032




.

The Lipschitz constant of Φ(x, u) with respect to x is γ = 3.33. Using the similarity

transformation x = Tox
′, transform the system (2.59) with To = diag(1, 1, 1, 10). The

new Lipschitz constant is γ′o = 0.333. Choose constants εo = 0.1111 and ηo = 0.1211,

and check the condition given by (2.48). It is computed that δ

(
A′,

√
γ′2 + εo

‖C ′‖ C ′
)

=

0.8389, so (2.48) is satisfied. Solving the ARE (2.49) results in

Po =




18.6546 −0.0234 0.0396 0.0012

−0.0234 5.9522 −12.5731 1.9503

0.0396 −12.5731 30.8320 −8.8656

0.0012 1.9503 −8.8656 9.7302




.

Then, the observer gain matrix is given by

L′ =
1

2
P−1

o C ′> =




0.0268 0.0003

0.0003 1.1392

0.0001 0.5405

0.0000 0.2641




.
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The observer for the flexible link robot (2.59) is in the form of (2.50) with

L =




9.3334 1.0001

−48.7804 22.3665

−0.0524 3.3194

19.4066 −0.3167




where (2.51) is used.

The simulation results of the observer, (2.59), are shown in Figures 2.1 and 2.2.

In the simulation, the initial value of x, x(0), is chosen to be

[
1 1 1 1

]>
; the

initial value of x̂, x̂(0), is chosen to be

[
0 0 0 0

]>
. The system is assumed to be

under no control, that is, u = 0. Figure 2.1 shows the motor angular position, motor

angular velocity, and their estimates. Figure 2.2 shows the link angular position, the

link angular velocity and their estimates. From both the figures, one can see that the

estimates converge to the true states.

Output feedback control: As done in the observer design case, we first use

a preliminary control to make (A − BK1) stable with poles at −5.8989, −5.6390,

−4.9245 and −8.9109. The gain K1 is found to be

K1 =

[
7.8092 1.1168 −4.3436 1.12

]
.

Then, a similarity transformation, x = Tcx
′, is used to reduce the Lipschitz gain with

Tc = diag(1, 1, 1, 10). The new Lipschitz constant is γ′c = 0.333. Choose constants

ηc = 3.7947(10−4), and check the condition given by (2.56). It is computed that

δ

(
A′>,

√
γ′2 + εc

‖B′‖ B′>
)

= 0.3552, so (2.56) is satisfied. Solving the ARE (2.57)

results in

Pc =




13.4725 1.4496 −8.8421 17.387

1.4496 0.18736 −0.99393 1.8462

−8.8421 −0.99393 6.1806 −11.1047

17.387 1.8462 −11.1047 26.2607




,
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which in turn results in

K ′ =
1

2
B′>Pc =

[
15.6553 2.0235 −10.7345 19.9385

]
.

The control input for the flexible link robot (2.59) is u = −Kx̂ with

K =

[
7.8428 1.1212 −4.3666 1.1243

]

where (2.58) is used.

The simulation results for regulating the states of the flexible robot (2.59) to zero

are shown in Figures 2.3 and 2.4. In this simulation, the initial values of x and x̂

are chosen to be the same as those in the simulation for the observer in the previous

simulation. Figure 2.3 shows the motor angular position, motor angular velocity,

and their estimates. Figure 2.4 shows the link angular position, the link angular

velocity and their estimates. Comparing Figures 2.3 and 2.4 with Figures 2.1 and

2.2, it is clearly seen that, under the output feedback control, four states of the robot

(θm, ωm, θ1 and ω1) converge to zero rapidly; whereas, without control, the states

converge to zero very slowly. Also, the convergence of the estimated states to their

true values is observed.

2.7 Summary

In this chapter, the full-state feedback control problem, the observer design prob-

lem, and the output feedback control problem for a class of Lipschitz nonlinear systems

are considered. A linear full-state feedback controller and a nonlinear observer are

proposed, and sufficient conditions under which exponential stability is achieved are

given. Generally, for nonlinear systems, stabilization by state feedback plus observ-

ability does not imply stabilization by output feedback, that is, separation principle

usually does not hold for nonlinear systems. However, for the class of nonlinear

systems considered in this chapter, by using the proposed full-state linear feedback
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controller and the proposed nonlinear observer, it is shown that the separation prin-

ciple holds; that is, the same gain matrix which was obtained in the design of the

full-state linear feedback controller can be used with the estimated state, where the

estimates are obtained from the proposed observer.

Systems with Lipschitz nonlinearity are common in many practical applications.

Many nonlinear systems satisfy the Lipschitz property at least locally by representing

them by a linear part plus a Lipschitz nonlinearity around their equilibrium points.

Hence, the class of systems considered in this chapter cover a fairly large number of

systems in practice.

There are some challenging problems that need to be addressed in the future. It

is clear that the number δ is realization dependent. So, a natural question to ask is

which realization gives the maximum value for δ and further, how does one transform

the system given in any arbitrary form to this particular realization. Moreover, it is

also not clear as to how one can, in general, find transformations that increase δ and

decrease γ simultaneously.

It is also emphasized here that the conditions for both full-state feedback and out-

put feedback stabilization are sufficient conditions; how to satisfy these two sufficient

conditions is a challenging problem which needs to be investigated in the future. The

problem essentially reduces to the following: how are the eigenvalues of A and the

singular values of (iωI − A) related. Further, how does one influence the singular

values of (iωI − A) if we have control over arbitrary assignment of eigenvalues of A.
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Figure 2.1: Simulation result of Example 2.1. The motor angular position θm and

its estimate θ̂m are shown in the top plot. The motor angular velocity ωm and its

estimated ω̂m are shown in the bottom plot. The control is u = 0.
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Figure 2.2: Simulation result of Example 2.1. The link angular position θ1 and its

estimate θ̂1 are shown in the top plot. The link angular velocity ω1 and its estimate

ω̂1 are shown in the bottom plot. The control is u = 0.
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Figure 2.3: Simulation result of Example 2.1. The motor angular position θm and

its estimate θ̂m are shown in the top plot. The motor angular velocity ωm and its

estimated ω̂m are shown in the bottom plot. The control is u = −Kx̂.
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Figure 2.4: Simulation result of Example 2.1. The link angular position θ1 and its

estimate θ̂1 are shown in the top plot. The link angular velocity ω1 and its estimate

ω̂1 are shown in the bottom plot. The control is u = −Kx̂.
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CHAPTER 3

DECENTRALIZED OUTPUT FEEDBACK CONTROL OF

LARGE-SCALE INTERCONNECTED NONLINEAR SYSTEMS

The primary motivation for designing decentralized control laws for large-scale

systems is that they do not require information exchange between individual subsys-

tems. Only information from the local system can be used to design a controller to

stabilize the overall system. This constraint renders design of stable decentralized

control laws for large-scale systems difficult. Decentralized output feedback control

design is more challenging because only the output information of the local system

can be used to design local controllers. In this chapter, a solution is provided for

designing decentralized output feedback controller for a class of large-scale nonlinear

systems with quadratically bounded nonlinear interconnections. Designs using the

LMI approach and the ARE approach are addressed. Exponential stabilization of the

overall system under the proposed decentralized output feedback control is achieved.

The rest of the chapter is organized as follows. In Section 3.1, the class of con-

sidered large-scale systems is given with a discussion of the problem. In Section 3.2,

related results available in literature and their limitation by using Linear Matrix In-

equality (LMI) approach are discussed and a new LMI approach is proposed to design

a decentralized output feedback controller. In Section 3.3, another decentralized con-

troller/observer structure based on the existence of solutions to AREs is proposed;

sufficient conditions under which exponential stabilization is achieved are derived.

Simulation results on an example are given in Section 3.4. Section 3.5 summarizes

this chapter and highlights some future research topics on the problem.
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3.1 Problem formulation

The following class of large-scale interconnected nonlinear systems is considered:

ẋi(t) = Aixi(t) + Biui(t) + hi(t, x), xi(t0) = xi0, (3.1a)

yi(t) = Cixi(t) (3.1b)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rli , hi ∈ Rni , t0, and xi0 are the state, input, output,

nonlinear interconnection function, initial time, and initial state of the i-th sub-

system, and x =

[
x>1 x>2 . . . x>N

]>
is the state of the overall system. The term

hi(t, x) is called the interconnection of the i-th sub-system with other sub-systems

plus the uncertainty dynamics from the i-th sub-system itself, and it is assumed that

the exact expression of hi(t, x) is unknown. The large-scale system is composed of

N sub-systems, that is, i = 1, 2, . . . , N . The objective of this chapter is to design a

totally decentralized observer-based linear controller that robustly regulates the state

of the overall system without any information exchange between sub-systems, that is,

the local controller ui is constrained to use only local output signal yi. One specific

practical application whose system model conforms to (3.1) with quadratic intercon-

nection bounds (3.2) is a multimachine power system consisting of N interconnected

machines with steam valve control; the dynamic model is discussed in [112].

To make the problem tractable, we specify each sub-system given by (3.1) by the

following assumptions.

Assumption A3.1 The interconnections are piecewise-continuous functions in both

variables, and satisfy the quadratic constraints [94]

hT
i (t, x)hi(t, x) ≤ α2

i x
>H>

i Hix (3.2)

where αi > 0 are interconnection bounds, Hi are bounding matrices. Also, αi and

‖Hi‖ are known.
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Assumption A3.2 (Ai, Bi) is a controllable pair and (Ci, Ai) is an observable pair.

Without loss of generality, it is assumed that Ai is stable, that is, all eigenvalues of

Ai have negative real parts.

Remark 3.1 Comparing the assumption on the interconnection hi(·) given by (3.2)

and the assumption on the nonlinearity Φ(·) given by (2.2) in Chapter 2, one will

find a similarity between them. If Φ(0, u) = 0, then the Phi(x, u) also satisfies the

quadratic condition given by (3.2). This can be seen from the following. Since

‖Φ(x, u)− Φ(0, u)‖ = ‖Φ(x, u)‖ ≤ γ‖x‖,

one has

Φ>(x, u)Φ(x, u) ≤ γ2x>x,

which is an inequality in the form of (3.2). However, if Φ(0, u) 6= 0, conditions given

by (2.2) and (3.2) are generally different. The condition (2.2) says that the slope of

any two points on the trajectory Φ(·) should not exceed γ, whereas, the condition (3.2)

says that the norm of the trajectory hi(·) should be linearly bounded by the norm of

x, that is, ‖hi(t, x)‖ ≤ αi‖x‖.

Notice that, because of the nature of the interconnection, hi(t, x), in some cases, sys-

tem (3.1) may not be stabilizable even with full-state feedback control. For example,

consider the first sub-system in the following form

ẋ1 =




0 1

−2 −3




︸ ︷︷ ︸
A1

x1 +




0

1




︸ ︷︷ ︸
B1

u1 + γ1




x11 − x12

x21


 , (3.3a)

y1 =

[
1 0

]
x1. (3.3b)

If γ1 = 1, then the first state of x1, x11, has the following dynamics

ẋ11 = x11,
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which is unstable and we lose controllability of the system. Therefore, one cannot

design a controller to stabilize the system (3.3) with the given interconnection, al-

though (A1, B1) is a controllable pair. From the example, it is clear that the structure

and bounds of the interconnections will affect controllability of the sub-system. The

same holds true for observability of the system. So, there must be some conditions

on the system matrices and the interconnections under which the controllability and

observability properties are preserved.

Two broad methods are used to design observer-based decentralized output feed-

back controllers for large-scale systems: (1) Design local observer and controller for

each sub-system independently, and check the stability of the overall closed-loop sys-

tem. In this method, the interconnection in each sub-system is regarded as an un-

known input [89, 91]. (2) Design the observer and controller by posing the output

feedback stabilization problem as an optimization problem. The optimization ap-

proach using LMIs can be found in [94]. In the next two sections, both approaches

are investigated.

3.2 The LMI approach

In this section, the linear matrix inequality is briefly introduced. An LMI approach

to design a decentralized output feedback controller for the large-scale system (3.1)

is proposed. The proposed approach does not require the invertibility of the Bi, i =

1, . . . , N . Feasibility of the proposed LMI solution is also shown.

3.2.1 Preliminaries

A very wide variety of problems in system and control theory can be reduced to

a few standard convex or quasiconvex optimization problems involving linear matrix

inequalities. These optimization problems can be solved numerically very efficiently

using recently developed interior-point methods (e.g. MATLAB LMI solvers).
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A linear matrix inequality has the form

F (x)
4
= F0 +

m∑
i=1

xiFi > 0 (3.4)

where x ∈ Rm is the variable and the symmetric matrices Fi = F>
i ∈ Rn×n, i =

0, 1, . . . , m, are given. The inequality symbol in (3.4) means that F (x) is positive-

definite. Of course, the LMI (3.4) is equivalent to a set of n polynomial inequalities

in x, that is, the leading principal minors of F (x) must be positive. Nonstrict LMIs

have the form

F (x) ≥ 0.

It is usual to encounter the constraint that some quadratic function (or quadratic

form) be negative whenever some other quadratic function (or quadratic forms) are

all negative. In some cases, this constraint can be expressed as an LMI in the data

defining the quadratic functions or forms; in other cases, one can form an LMI that

is conservative but often useful approximation of the constraint. This approximation

by LMI is called the S-procedure. The following two lemmas [113, p. 23] describe

the S-procedure for quadratic functions and nonstrict inequalities, and for quadratic

functions and strict inequalities, respectively.

Lemma 3.1 Let F0, . . . , Fp be quadratic functions of the variable ξ ∈ Rn:

Fi(ξ)
4
= ξ>Tiξ + 2w>

i ξ + vi, i = 0, . . . , p

where Ti = T>
i . Consider the following condition on F0, . . . , Fp:

F0(ξ) ≥ 0 for all ξ such that Fi(ξ) ≥ 0, i = 0, . . . , p. (3.5)

Then, if

there exist τ1 ≥ 0, . . . , τp ≥ 0 such that for all ξ,

F0(ξ)−
p∑

i=1

τiFi(ξ) ≥ 0,
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then (3.5) holds. When p = 1, the converse holds, provided that there is some ξ0 such

that F1(ξ0) > 0.

Lemma 3.2 Let T0, . . . , Tp ∈ Rn×n be symmetric matrices. Consider the following

condition on T0, . . . , Tp:

ξ>T0ξ > 0 for all ξ 6= 0 such that ξ>Tiξ ≥ 0, i = 1, . . . , p. (3.6)

If

there exists τ1 ≥ 0, . . . , τp ≥ 0 such that T0 −
p∑

i=1

τiTi > 0,

then (3.6) holds. When p = 1, the converse holds, provided that there is some ξ0 such

that ξ>0 T1ξ0 > 0.

3.2.2 Decentralized output feedback controller design by the LMI ap-

proach

The overall system (3.1) can be rewritten as

ẋ(t) = ADx(t) + BDu(t) + h(t, x), x(t0) = x0, (3.7a)

y(t) = CDx(t) (3.7b)

where

AD = diag(A1, . . . , AN), BD = diag(B1, . . . , BN),

CD = diag(C1, . . . , CN), u =

[
u>1 . . . u>N

]>
,

y =

[
y>1 . . . y>N

]>
, h =

[
h>1 . . . h>N

]>
.

The nonlinear interconnections h(t, x) are bounded as follows:

h>(t, x)h(t, x) ≤ x>Γ>Γx (3.8)

43



where

Γ>Γ =
N∑

i=1

α2
i H

>
i Hi. (3.9)

The pair (AD, BD) is controllable and the pair (CD, AD) is observable, which is a

direct result of each subsystem being controllable and observable.

Since the system (3.7) is linear with nonlinear interconnections, a common ques-

tion to ask is under what conditions can we design a decentralized linear controller

and a decentralized linear observer that will stabilize the system in the presence of

bounded interconnections. Towards solving this problem, one can consider the fol-

lowing linear decentralized controller and observer:

u(t) = KDx̂(t), (3.10)

˙̂x(t) = ADx̂(t) + BDu(t) + LD(y(t)− CDx̂(t)) (3.11)

where

KD = diag(K1, . . . , KN), (3.12)

LD = diag(L1, . . . , LN) (3.13)

are the controller gain matrix and the observer gain matrix, respectively. Rewriting

(3.7) and (3.11) in the coordinates x(t) and x̃(t), where x̃(t)
4
= x(t) − x̂(t) is the

estimation error, the closed-loop dynamics is

ẋ(t) = (AD + BDKD)x(t)−BDKDx̃(t) + h(t, x), (3.14a)

˙̃x(t) = (AD − LDCD)x̃(t) + h(t, x). (3.14b)

Let

Ac
4
= AD + BDKD, Ao

4
= AD − LDCD. (3.15)

Consider the following Lyapunov function candidate

V (x, x̃) = x>P̄cx + x̃>P̄ox̃. (3.16)
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The time derivative of V (x, x̃) along the trajectories of (3.14) is given by

V̇ (x, x̃) = x>(A>
c P̄c + P̄cAc)x− x>P̄cBDKDx̃− x̃>K>

DB>
DP̄cx + x>P̄ch + h>P̄cx

x̃>(A>
o P̄o + P̄oAo)x̃ + x̃>P̄oh + h>P̄ox̃

=




x

x̃

h




> 


A>
c P̄c + P̄cAc −P̄cBDKD P̄c

−K>
DB>

DP̄c A>
o P̄o + P̄oAo P̄o

P̄c P̄o 0







x

x̃

h




.

(3.17)

The nonlinear interconnection condition given by (3.8) is equivalent to



x

x̃

h




> 


−Γ>Γ 0 0

0 0 0

0 0 I







x

x̃

h



≤ 0. (3.18)

The stabilization of the system (3.14) requires that

V̇ (x, x̃) < 0 (3.19)

for all x, x̃ 6= 0; together with the condition given by (3.18), one can apply Lemma

3.2 and obtain that if


A>
c P̄c + P̄cAc −P̄cBDKD P̄c

−K>
DB>

DP̄c A>
o P̄o + P̄oAo P̄o

P̄c P̄o 0



− τ




−Γ>Γ 0 0

0 0 0

0 0 I




< 0, (3.20a)

P̄c > 0, P̄o > 0, τ > 0, (3.20b)

then, the inequality (3.19) is satisfied. Let

Pc
4
=

P̄c

τ
, Po

4
=

P̄o

τ
.

The condition given by (3.20) is equivalent to



A>
c Pc + PcAc + Γ>Γ −PcBDKD Pc

−K>
DB>

DPc A>
o Po + PoAo Po

Pc Po −I




< 0, Pc > 0, Po > 0. (3.21)
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The Schur complement result:




Q S

S> R


 < 0

is equivalent to

Q < 0 and R− S>Q−1S < 0.

Considering (3.8) and (3.15), and applying the Schur complement to the inequality

(3.21), results in

Pc > 0, Po > 0, (3.22a)



WC −PcBDKD Pc α1H
>
1 . . . αNH>

N

−(PcBDKD)> WO Po 0 . . . 0

Pc Po −I 0 . . . 0

α1H1 0 0 −I . . . 0

... 0
...

...
. . .

...

αNHN 0 0 0 . . . −I




< 0 (3.22b)

where

WC
4
= A>

DPc + PcAD + (PcBDKD)> + (PcBDKD),

WO
4
= A>

DPo + PoAD − PoLDCD − (PoLDCD)>.

Rearranging entries and scaling corresponding columns and rows related to Hi, i =
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1, . . . , N , on the left hand side matrix (3.22b), one obtains

Pc > 0, Po > 0, (3.23a)



WC H>
1 . . . H>

N −PcBDKD Pc

H1 −γ1I . . . 0 0 0

...
...

. . .
... 0 0

HN 0 . . . −γNI 0 0

−(PcBDKD)> 0 0 0 WO Po

Pc 0 0 0 Po −I




< 0 (3.23b)

where γi =
1

α2
i

> 0. Now the problem of stabilization of the large-scale system (3.1) by

decentralized output feedback control is transferred to the problem of finding finding

γi > 0, i = 1, . . . , N , such that inequalities in (3.23) are satisfied. Further, if the

following optimization problem

Minimize
N∑

i=1

γi subject to Equation (3.23) (3.24)

is feasible, the selection of the control gain matrix KD and observer gain matrix LD

not only stabilizes the overall system (3.14), but also simultaneously maximizes the

interconnection bounds αi.

In the optimization problem given by (3.24), variables are Pc, Po, KD, LD and

γi, i = 1, . . . , N . Since there are coupled term of matrix variables Pc and KD, and Po

and LD in the matrix inequality (3.23b), the optimization (3.24) is not on a convex

set. One has to find a way to transform the inequality (3.23b) to a form which is

affine in variables. To achieve this, one can introduce variables

MD
4
= PcBDKD, ND

4
= PoLD. (3.25)
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Then, the optimization problem (3.24) becomes

Minimize
N∑

i=1

γi subject to

Pc > 0, Po > 0, (3.26a)



WC H>
1 . . . H>

N −MD Pc

H1 −γ1I . . . 0 0 0

...
...

. . .
... 0 0

HN 0 . . . −γNI 0 0

−M>
D 0 0 0 WO Po

Pc 0 0 0 Po −I




< 0 (3.26b)

The solution to the optimization problem (3.26) gives rise to MD and ND. The

controller and observer gain matrices were obtained from MD and ND in [94] in the

following manner. The observer gain matrix LD can be computed using (3.25) as

LD = P−1
o ND.

However, controller gain matrix KD can be obtained only in the case when BD is

invertible, that is,

KD = B−1
D P−1

c MD.

Obviously, invertibility of BD requires that Bi, i = 1, . . . , N be invertible, which is too

restrictive. When all the Bi are not invertible, it is not possible to obtain the control

gain matrix KD from the optimization problem (3.26). The following addresses the

LMI solution to the case when Bi are not invertible.

One can pre-multiply and post-multiply the left hand side of (3.23b) by

diag(P−1
c , I, I, . . . , I)
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and define Y = P−1
c to obtain following conditions which are equivalent to (3.23):

Y > 0, Po > 0, (3.27a)



W ′
C Y H>

1 . . . Y H>
N −BDKD I

H1Y −γ1I . . . 0 0 0

...
...

. . .
... 0 0

HNY 0 . . . −γNI 0 0

−(BDKD)> 0 0 0 WO Po

I 0 0 0 Po −I




< 0 (3.27b)

where W ′
C

4
= Y A>

D + ADY + (BDKDY )> + (BDKDY ).

Let

M̄D
4
= KDY,

[
S1 S2

]
4
=




−BDKD I

0 0

...
...

0 0




.

Now, the problem is to find Y , Po, KD, LD, and γi, i = 1, . . . , N , which can be found

by the following two steps.

Step 1. Maximize the interconnection bounds αi by solving the following opti-

mization problem:

Minimize
N∑

i=1

γi subject to

Y > 0, Fopt =




W ′
C Y H>

1 . . . Y H>
N

H1Y −γ1I . . . 0

...
...

. . .
...

HNY 0 . . . −γNI




< 0. (3.28)

Step 2. Find Po and ND by using KD obtained from Step 1 and solving the
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following optimization problem

Minimize
N∑

i=1

βi subject to

Po > 0, Λ > 0,




ΛFopt S1 S2

S>1 WO Po

S>2 Po −I




< 0. (3.29)

where Λ = diag(β1I1, β2I2, . . . , βNIN , β1I1, β2I2, . . . , βNIN), and Ii denotes the ni×ni

identity matrix. The matrices Fopt and S1 in Step 2 are obtained from Step 1.

The control gain KD is obtained from Step 1 as

KD = M̄DY −1, (3.30)

and the observer gain LD is obtained from Step 2 as

LD = P−1
o ND. (3.31)

Remark 3.2 Unlike the case when BD is invertible, inequalities given by (3.28) and

(3.29) cannot be solved simultaneously. The optimization problem (3.28) of step 1

must be solved followed by step 2.

Remark 3.3 Since Y , AD, BD and M̄D are all block diagonal matrices, it is not

difficult to show that ΛFopt = Λ1/2FoptΛ
1/2 < 0 when Fopt < 0, and further in this

case, ΛFopt < Fopt < 0 if βi > 1, i = 1, 2, . . . , N .

Remark 3.4 If Λ = I, the LMI (3.29) may not be feasible for the selection of Fopt

and KD resulting from the optimization problem (3.28). On the other hand, by choos-

ing Λ as a matrix variable, the LMI (3.29) becomes feasible, which will be shown in

the following.

The following lemmas illustrate the feasibility of the LMI problems (3.28) and (3.29).
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Lemma 3.3 The optimization problem given by (3.28) is feasible if (Ai, Bi), i =

1, . . . , N , is a controllable pair.

Proof. To prove the LMI optimization problem (3.28) is feasible, one needs to show

that there exists a solution that satisfies the inequality (3.28). In view of (3.28) and

Hi being constant matrices, to show that there exist Y > 0, M̄D, γi > 0, i = 1, . . . , N ,

such that Fopt < 0, it is sufficient to show that

there exists a Y > 0, M̄D such that

W ′
C < 0

(3.32)

because of the existence of large enough γi to dominate the off-diagonal block elements

Hi in (3.28). Notice that

W ′
C =Y A>

D + ADY + (BDM̄D)> + BDM̄D

=P−1
c A>

D + ADP−1
c + (BDKDP−1

c )> + BDKDP−1
c

=P−1
c

(
(AD + BDKD)>Pc + Pc(AD + BDKD)

)
P−1

c .

Since (Ai, Bi) is a controllable pair, there exist a Pc > 0 and a KD such that

(AD + BDKD)>Pc + Pc(AD + BDKD) < 0.

Therefore, the statement (3.32) is true. This completes the proof. ¥

Lemma 3.4 If (Ai, Ci), i = 1, . . . , N is an observable pair, the optimization problem

(3.29) is feasible.

Proof. We first prove that

there exists a Po > 0 and ND such that



WO Po

Po −I


 < 0.

(3.33)
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Applying the Schur complement to the above matrix inequality yields the following

equivalent inequality

WO + PoPo < 0. (3.34)

Recall that ND = PoLD and WO = A>
DPo +PoAD−PoLDCD− (PoLDCD)>. Equation

(3.34) can be rewritten as

Po

(
(AD − LDCD)Yo + Yo(AD − LDCD)> + I

)
Po < 0 (3.35)

where Yo = P−1
o . Since (Ai, Ci) is an observable pair, there exists a Yo > 0 and an

LD such that

(AD − LDCD)Yo + Yo(AD − LDCD)> + I < 0.

Hence, the statement (3.33) is true.

Since Fopt < 0 and the statement (3.33) is true, all the principal minors of the

matrix on the left hand side of (3.29) are negative. Since S1 and S2 are constant

matrices after solving the optimization given in Step 1, to guarantee that (3.29)

holds, it is sufficient to let the principal minor ΛFopt dominate the off-diagonal block

elements S1 and S2; this can be achieved by a large Λ > 0. This completes the proof.

¥

Remark 3.5 The final uncertainty gains γi, i = 1, . . . , N , is βiγi where γi is obtained

from the optimization problem (3.28) and βi is obtained from (3.29).

The LMI optimization problems given by (3.28) and (3.29) do not pose any re-

strictions on the size of the matrix variables Y , M̄D, Po and ND. Consequently, the

results of these two optimization problems may yield very large controller and ob-

server gain matrices KD and LD, respectively. In view of (3.30) and (3.31), one can

restrict KD and LD by posing constraints on the matrices Y , M̄D, Po and ND, and a
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further constraint on γi [88] as

γi − 1

ᾱ2
i

< 0, ᾱi > 0; Yi
−1 < κYi

I, κYi
> 0;

M̄Di
M̄>

Di
< κM̄Di

I, κM̄Di
> 0; (3.36)

βi − β̄i > 0, β̄i > 0; Poi

−1 < κPoi
I, κPoi

> 0;

N>
Di

NDi
< κNDi

I, κNDi
> 0 (3.37)

where M̄Di
and NDi

are the i-th diagonal blocks of M̄D and ND, respectively. The

constraints given by (3.36) and (3.37) place restrictions on the size of the control gain

matrix KD and observer gain matrix LD, respectively. Equations (3.36) and (3.37)

are respectively equivalent to

γi − 1

ᾱ2
i

< 0,



−Yi −I

−I −κYi
I


 < 0,



−κM̄Di

I M̄Di

M̄>
Di

−I


 < 0, κYi

, κM̄Di
> 0, (3.38)

βi − β̄i > 0,



−Poi

−I

−I −κPoi
I


 < 0,



−κNDi

N>
Di

NDi
−I


 < 0, κNDi

, κPoi
> 0. (3.39)

Combining (3.28) and (3.38), (3.29) and (3.39), and changing the optimization ob-

jectives to the minimization of
∑N

i=1(γi + κYi
+ κM̄Di

) and
∑N

i=1(βi + κPoi
+ κNDi

),

respectively, results in the following two LMI optimization problems:

Step 1′. Maximize the interconnection bounds αi by solving the following opti-

mization problem:

Minimize
N∑

i=1

(γi + κYi
+ κM̄Di

) subject to

Equations (3.28) and (3.38). (3.40)
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Step 2′. Find Po and ND by using KD obtained from Step 1′ and solving the following

optimization problem

Minimize
N∑

i=1

(βi + κPoi
+ κNDi

) subject to

Equations (3.29) and (3.39). (3.41)

Similar to Lemmas 3.3 and 3.4, it can be shown that the optimization problems

(3.40) and (3.41) are feasible when all the subsystems are controllable and observable,

provided that ᾱi is chosen sufficiently small. This is because one can choose large β̄,

κM̄Di
, κYi

, κNDi
and κPoi

, and small ᾱi to satisfy (3.38) and (3.39).

The results of the LMI solution to the decentralized output feedback control prob-

lem for the large scale system (3.1) are summarized in the following theorem.

Theorem 3.1 Consider the large scale system (3.1) with the observer given by (3.11)

and the controller given by (3.10). If

αi ≤ min(
1√
γi

,
1√
βγi

) (3.42)

where γi and β are solutions to the optimization problems (3.40) and (3.41), then

the selection of controller and observer gain matrices as given by (3.30) and (3.31)

results in a stable closed-loop system.

3.3 The ARE approach

In this section, the problem of decentralized exponential stabilization of the large-

scale system via output feedback will be reduced to that of the existence of symmetric

positive definite solutions of two Algebraic Ricatti Equations (AREs). Further, suf-

ficient conditions for the existence of symmetric positive definite solutions will be

derived; the conditions are developed using the concepts of distance to controllability

and distance to observability [114] and their related results.
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Consider the following linear decentralized controller and observer for the i-th

sub-system:

ui(t) = Kix̂i(t), (3.43)

˙̂xi(t) = Aix̂i(t) + Biui(t) + Li(yi(t)− Cix̂i(t)) (3.44)

where Ki and Li are the controller and observer gain matrices. Substituting these

into the system, (3.1), one obtains

ẋi(t) = (Ai + BiKi)xi(t)−BiKix̃i(t) + hi(t, x), (3.45)

˙̃xi(t) = (Ai − LiCi)x̃i(t) + hi(t, x) (3.46)

where x̃i = xi − x̂i. For simplicity define the following:

ABi = BiKi and ACi = LiCi. (3.47)

To find the controller and observer gain matrices, consider the the following quadratic

Lyapunov function candidate:

V (x, x̃) =
N∑

i=1

(
x>i Pixi + x̃>i P̃ix̃i

)
. (3.48)

The time derivative of V (x, x̃) along the trajectories of (3.45) and (3.46), after some

simplification, is given by

V̇ (x, x̃) =
N∑

i=1

{
x>i [(Ai + ABi)

>Pi + Pi(Ai + ABi)]xi

+ x̃>i [(Ai − ACi)
>P̃i + P̃i(Ai − ACi)]x̃i

−x̃>i A>
BiPixi − x>i PiABix̃i︸ ︷︷ ︸ + h>i Pixi + x>i Pihi︸ ︷︷ ︸ + h>i P̃ix̃i + x̃>i P̃ihi︸ ︷︷ ︸

}
.

(3.49)

To simplify the terms with under braces in (3.49), one can use the following well known

inequality. For any two real matrices X and Y , which are of the same dimension,

X>Y + Y >X ≤ X>X + Y >Y. (3.50)
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Using the inequality (3.50) for the terms with under braces in (3.49), yields

x̃>i (−ABi)
>Pixi + x>i Pi(−ABi)x̃i ≤ x̃>i (−ABi)

>(−ABi)x̃i + x>i PiPixi, (3.51a)

h>i Pixi + x>i Pihi ≤ h>i hi + x>i PiPixi, (3.51b)

h>i P̃ix̃i + x̃>i P̃ihi ≤ h>i hi + x̃>i P̃iP̃ix̃i. (3.51c)

Each interconnection function, hi(t, x) satisfies

h>i (t, x)hi(t, x) = α2
i x
>H>

i Hix ≤ α2
i νix

>x, (3.52)

where νi = λmax(H
>
i Hi). Further, one has

N∑
i=1

2h>i hi ≤
N∑

i=1

2α2
i vi(x

>
1 x1 + . . . + x>NxN)

= γ2(x>1 x1 + . . . + x>NxN) (3.53)

where γ2 4
=

∑N
i=1 2α2

i vi. Using inequalities (3.51) and (3.53) in (3.49), one obtains

V̇ (x, x̃) ≤
N∑

i=1

{
x>i

[
(Ai + ABi)

>Pi + Pi(Ai + ABi) + 2PiPi + γ2I
]
xi

+ x̃>i
[
(Ai − ACi)

>P̃i + P̃i(Ai − ACi) + A>
BiABi + P̃iP̃i

]
x̃i

}
.

(3.54)

Choose the following gain matrices:

Ki = −(B>
i Bi)

−1B>
i Pi, (3.55)

Li =
1

2
εiP̃

−1
i C>

i . (3.56)

where εi > 0. Substituting the gains into the derivative of the Lyapunov function

candidate results in

V̇ (x, x̃) ≤
N∑

i=1

{
x>i

[
A>

i Pi + PiAi + 2Pi(I −Bi(B
>
i Bi)

−1B>
i )Pi + γ2I

]
xi

+ x̃>i
[
A>

i P̃i + P̃iAi + P̃iP̃i + Q̃i1 − εiC
>
i Ci

]
x̃i

}
.

(3.57)

where Q̃i1
4
= K>

i B>
i BiKi.
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From (3.57), one has the following result. For some ηi > 0 and η̃i > 0, if there

exist positive definite solutions to the AREs

A>
i Pi + PiAi + 2Pi(I −Bi(B

>
i Bi)

−1B>
i )Pi + γ2I + ηiI = 0, (3.58)

A>
i P̃i + P̃iAi + P̃iP̃i + Q̃i1 + η̃iI − εiC

>
i Ci = 0, (3.59)

then

V̇ (x, x̃i) ≤ −
N∑

i=1

[
ηix

>
i xi + η̃ix̃

>
i x̃i

]
(3.60)

where εi and η̃i are chosen such that Q̃i1 + η̃iI − εiC
>
i Ci > 0. As a result, if there are

positive definite solutions to the AREs (3.58) and (3.59), then V (x, x̃) is a Lyapunov

function; that is, V (x, x̃) is positive and V̇ (x, x̃) is negative for x, x̃ 6= 0.

Remark 3.6 The control gain matrix Ki given by (3.55) requires that B>
i Bi is in-

vertible; B>
i Bi is invertible if Bi has full column rank; if two or more columns in Bi

are dependent, then one can always combine the control signals corresponding to the

dependent columns.

Remark 3.7 If Ai is not stable, then we can use pre-feedback to stabilize Ai by chang-

ing Ki and Li given by equations (3.55) and (3.56), respectively, to the following:

Ki = −(B>
i Bi)

−1B>
i Pi − K̄i, (3.61)

Li =
1

2
εiP̃

−1
i C>

i + L̄i. (3.62)

where K̄i and L̄i are pre-feedback gains such that Ac
i

4
= Ai−BiK̄i and Ao

i

4
= Ai− L̄iCi

are Hurwitz. In such a case, Ai in (3.58) and (3.59) must be replaced by Ac
i and Ao

i ,

respectively.

Remark 3.8 Notice that one cannot design the controller and observer indepen-

dently, that is, the separation principle does not hold; the ARE (3.59) depends on

the control gain matrix Ki. It is well known that the separation principle generally
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does not hold for nonlinear systems. But it should be noted that the above reduction

procedure has yielded the following: one can design the controller gain independent

of the observer and further, only the first ARE, (3.58), explicitly depends on the

interconnection bounds.

The problem of designing a stable controller and stable observer for the large-scale

system (3.1) now reduces to the following: What are the conditions under which

there exist positive definite solutions to the AREs (3.58) and (3.59). In the following

sufficient conditions which guarantee the existence of positive definite solutions to

the two AREs, for each sub-system, are developed, and the main theorem about the

overall closed-loop system is shown.

3.3.1 Sufficient conditions

We first consider the ARE (3.58). The associated Hamiltonian matrix is given by

Hi =




Ai Ri

−Qi −A>
i


 (3.63)

where

Ri = 2
(
I −Bi(B

>
i Bi)

−1B>
i

) ≥ 0 and Qi =
(
γ2 + ηi

)
I > 0.

The following lemma gives a condition under which Hi is hyperbolic; thus, by lemma

2.1, it gives a sufficient condition for the existence of a unique symmetric positive

definite solution to the ARE (3.58).

Lemma 3.5 Hi is hyperbolic if and only if

δ
(
A>

i ,
√

2(γ2 + ηi) (B>
i Bi)

−1/2B>
i

)
>

√
2(γ2 + ηi) . (3.64)
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Proof. Consider the determinant of the matrix (sI −Hi) given by

det(sI −Hi) = det




sI − Ai −2
(
I −Bi(B

>
i Bi)

−1B>
i

)

(γ2 + ηi)I sI + A>
i




= (−1)ni det




(γ2 + ηi)I sI + A>
i

sI − Ai −2
(
I −Bi(B

>
i Bi)

−1B>
i

)


 (3.65)

Since (γ2 + ηi)I is non-singular, using the formula for determinant of block matrices

[110, p. 650], we obtain

det(sI −Hi)

=(−1)ni(γ2 + ηi)
ni det

[−2
(
I −Bi(B

>
i Bi)

−1B>
i

)− (sI − Ai)(γ
2 + ηi)

−1(sI + A>
i )

]

=(−1)ni det
[−2(γ2 + ηi)

(
I −Bi(B

>
i Bi)

−1B>
i

)− (sI − Ai)(sI + A>
i )

]
. (3.66)

Define

G(s) = −2(γ2 + ηi)
(
I −Bi(B

>
i Bi)

−1B>
i

)− (sI − Ai)(sI + A>
i ). (3.67)

From the equations (3.66) and (3.67), s is an eigenvalue of Hi if and only if G(s)

is singular. Hence, to prove that Hi is hyperbolic, one can prove that G(−iω) is

non-singular for all ω ∈ R. Notice that

∆c(−iω)
4
= −(−iωI − Ai)(−iωI + A>

i ) + 2(γ2 + ηi)Bi(B
>
i Bi)

−1B>
i

=




iωI − A>
i

√
2(γ2 + ηi) (B>

i Bi)
−1/2B>

i




H 


iωI − A>
i

√
2(γ2 + ηi) (B>

i Bi)
−1/2B>

i


 .

(3.68)

Therefore, if

δ
(
A>

i ,
√

2(γ2 + ηi) (B>
i Bi)

−1/2B>
i

)
>

√
2(γ2 + ηi) ,

then

G(−iω) = −2(γ2 + ηi)I + ∆c(−iω) > 0 (3.69)
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for all ω ∈ R. Thus, Hi is hyperbolic. This completes the sufficiency part of the

proof. The necessary part of the proof is similar to that of Lemma 2.2. ¥

Now consider the ARE (3.59). The Hamiltonian matrix associated with the ARE

(3.59) is

H̃i =




Ai R̃i

−Q̃i −A>
i


 (3.70)

where

R̃i = I > 0 and Q̃i = Q̃i1 + η̃iI − εiC
>
i Ci.

Choose η̃i > 0 and εi > 0 such that Q̃i > 0. The following lemma gives a condition

under which H̃i is hyperbolic; thus, by Lemma 2.1, it gives a sufficient condition for

the existence of a symmetric positive definite solution to the ARE (3.59).

Lemma 3.6 H̃i is hyperbolic if and only if

√
λmax(Q̃i1) + η̃i < δ(Ai, Ci). (3.71)

Proof. Similar to the Lemma 3.5. ¥

Notice that, by using the arguments of Remark 2.1 to Lemmas 3.5 and 3.6, the

two conditions given by (3.64) and (3.71) can be respectively simplified to

√
2 γ < δ

(
A>

i ,
√

2 γ(B>
i Bi)

−1/2B>
i

)
, (3.72)

√
λmax(Q̃i1) < δ(Ai, Ci). (3.73)

Now, it is ready to introduce the main theorem on the results of the proposed

method.

Theorem 3.2 For the large-scale system given by (3.1) or (3.7), the decentralized

controller and observer as given by (3.43) and (3.44) will result in exponential sta-

bilization of the overall large-scale system, if (3.72) and (3.73) are satisfied for all

i = 1, 2 . . . , N .
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Proof. If (3.64) and (3.71) are satisfied for all i = 1, 2, . . . , N , then from Lemmas 3.5,

3.6 and 2.1, the AREs (3.58) and (3.59) have symmetric positive definite solutions,

Pi and P̃i, respectively. Consequently, one can choose V (x, x̃) given by (3.48) as the

Lyapunov function of the overall system (3.7). Thus, exponential stabilization of the

overal closed-loop system is achieved. ¥

3.3.2 Remarks

Remark 3.9 If the sufficient condition, given in Lemma 3.5 or by (3.72), is satisfied,

then there exists a symmetric positive definite matrix Pi that satisfies (3.58) and the

state feedback gain matrix Ki can be obtained by (3.55). As a special case, when the

matrix Bi is invertible, we have the following result.

Lemma 3.7 If Bi is invertible, then there always exists a symmetric positive definite

solution Pi to the ARE (3.58).

Proof. When Bi is invertible, I − Bi(B
>
i Bi)

−1B>
i = 0, as a result, the ARE (3.58)

reduces to following Lyapunov equation

A>
i Pi + PiAi + (γ2 + ηi)I = 0.

Since (γ2 + ηi)I > 0 and Ai is stable, the above Lyapunov equation always has a

symmetric positive-definite solution Pi for any positive γ and ηi. ¥

Remark 3.10 When Ci is a square matrix and with independent columns, that is, the

state xi can be uniquely determinated from the output yi, the ARE (3.59) always has

a symmetric positive-definite solution if εi is chosen large enough. This is illustrated

in the following lemma.

Lemma 3.8 If Ci is invertible, there always exists a symmetric positive definite ma-

trix P̃i to the ARE (3.59).
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Proof. Because Q̃i1 + η̃iI is a constant matrix, εi can be chosen large enough such

that

Q̃i
4
= Q̃i1 + η̃iI − εiC

>
i Ci < 0. (3.74)

Notice that−Q̃i is a symmetric positive definite matrix. Using Cholesky factorization,

one can find a real symmetric positive definite invertible matrix G̃i such that −Q̃i =

G̃iG̃
>
i . Now, the problem of finding a symmetric positive definite solution to the ARE

(3.59) reduces to the problem of finding a symmetric positive definite solution P̃i to

the following ARE:

(−Ai)
>P̃i + P̃i(−Ai)− P̃iP̃i + G̃iG̃

>
i = 0. (3.75)

Since (I,−A>
i ) is observable and (−A>

i , G̃i) is controllable, the ARE (3.75) has a

unique positive definite solution P̃i [115]. ¥

It is possible that for some sub-systems the matrix Ci is invertible, that is, all

state variables of the i-th sub-system are available for feedback, then the condition

for existence of a positive definite solution to the ARE (3.59) is given by (3.74) instead

of (3.71).

The above lemmas, Lemmas 3.7 and 3.8, can be understood in the following ways:

(1) If Bi is invertible, then the interconnection hi(x) satisfies matching condition,

therefore the stabilization of the i-th sub-system can always be achieved as long as

stable estimates of states of the overall system are provided. (2) If Ci is invertible,

then the state of i-th sub-system can be obtained for the output of the i-th sub-system,

hence, the state of the i-th sub-system is always observable.

Remark 3.11 Since the constant εi affects the convergence rate of the observation

error and the stability of the overall system, a natural question to ask is what happens

if we increase/decrease the value of εi. The following lemma gives a result related to

this.
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Lemma 3.9 If the sufficient condition (3.71) is satisfied for a particular εi, then

there exists a symmetric positive definite solution to the ARE (3.59) for any εi
′ ≥ εi

instead of εi. Moreover, the solution corresponding to ε′i for the ARE (3.59), P̃ ′
i ,

satisfies P̃ ′
i ≥ P̃i.

Proof. Lemma 3.9 is the direct result of the following lemma, Lemma 3.10. ¥

Lemma 3.10 [116]: Let A,Q2 and R be given n×n matrices such that Q2 is symmet-

ric and R is symmetric positive-definite. Furthermore, assume that P2 is a symmetric

positive-definite matrix satisfying

A>P2 + P2A + P2RP2 + Q2 = 0

and Q1 is a symmetric matrix such that Q1 ≤ Q2. Then there exists a symmetric

positive-definite matrix P1, such that P1 ≥ P2, and

A>P1 + P1A + P1RP1 + Q1 = 0.

Remark 3.12 The convergence rate of each sub-system observer can be increased

by amplifying the observer gain matrix Li obtained from (3.56) by ε′i/εi. Let Li =

1

2
ε′iP̃

−1
i C>

i , where P̃i is the symmetric positive definite solution to the ARE (3.59)

obtained with εi. Then the inequality (3.60) becomes

V̇ (x, x̃) ≤ −
N∑

i=1

[
ηix

>
i xi + η̃ix̃

>
i x̃i + (ε′i − εi)x̃

>
i C>

i Cix̃i

]
. (3.76)

Since ε′i − εi > 0, the convergence rate of x̃i to zero is increased.

Remark 3.13 The inequality (3.50) used in separating the terms can be quite con-

servative. Instead of (3.50), one can use the following inequality

X>Y + Y >X ≤ 1

ε
X>X + εY >Y (3.50′)

where ε is a real positive scalar. The disadvantage of this approach is that one has

to choose the constants ε in the design also. Using (3.50′) for the terms with under
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braces in (3.49), we obtain

x̃>i (−ABi)
>Pixi + x>i Pi(−ABi)x̃i ≤ 1

εi1

x̃>i (−ABi)
>(−ABi)x̃i + εi1x

>
i PiPixi, (3.51′a)

h>i Pixi + x>i Pihi ≤ 1

εi2

h>i hi + εi2x
>
i PiPixi, (3.51′b)

h>i P̃ix̃i + x̃>i P̃ihi ≤ 1

εi3

h>i hi + εi3x̃
>
i P̃iP̃ix̃i. (3.51′c)

Then by choosing same observer matrix as given by (3.56) and the controller gain

matrix as follows

Ki = −εi1 + εi2

2
(B>

i Bi)
−1B>

i Pi, (3.55′)

the two AREs give by (3.58) and (3.59), respectively, become

A>
i Pi + PiAi + (εi1 + εi2)Pi(I −Bi(B

>
i Bi)

−1B>
i )Pi + γ2I + ηiI = 0, (3.58′)

A>
i P̃i + P̃iAi + εi3P̃iP̃i + Q̃i1 + η̃iI − εiC

>
i Ci = 0. (3.59′)

The sufficient conditions for the existence of the symmetric positive definite solutions

to (3.58′) and (3.59′), respectively, are given by

δ
(
A>

i ,
√

(γ2 + ηi)(εi1 + εi2) (B>
i Bi)

−1/2B>
i

)
>

√
(γ2 + ηi)(εi1 + εi2) . (3.64′)

and √
εi3(λmax(Q̃i1) + η̃i) < δ(Ai,

√
εi3εi Ci). (3.71′)

where Q̃i1
4
=

1

4εi1

(εi1 + εi2)
2PiBi(B

>
i Bi)

−>B>
i Pi. Notice that with this approach, one

has to also choose three more constants, εi1, εi2, εi3, for each sub-system in the design

of the decentralized controller and observer.
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3.4 Numerical example and simulation

Example 3.1 Consider the following large-scale system composed of two sub-systems:

ẋ1 =




0 1

−125 −22.5


 x1 +




0

1


 u1 + h1(t, x), x1(0) =




5

5


 , (3.77a)

y1 =

[
1 0

]
x1 (3.77b)

and

ẋ2 =




0 1 0

0 0 1

−37.5 −50 −13.5




x2 +




0

0

1




u2 + h2(t, x)x, x2(0) =




5

5

5




, (3.78a)

y2 =

[
1 0 0

]
x2 (3.78b)

where

x1 =




x11

x12


 , x2 =




x21

x22

x23




, x =




x>1

x>2


 ,

h1(x) = α1 cos(x22)H1x, h2(x) = α1 cos(x11)H2x, α1 = α2 = 0.2,

H1 =
1√
10




1 1 1 1 1

1 1 1 1 1


 , H2 =

1√
15




1 1 1 1 1

1 1 1 1 1

1 1 1 1 1




.

where H1 and H2 are normalized matrices.
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3.4.1 The LMI approach

Choosing ᾱi = 0.001, βi = 0.0001, i = 1, 2, and solving the optimization problems

(3.40) and (3.41) results in

MD =




6.9444 −0.00219 0 0 0

0 0 0.02921 0.05512 −0.01157


 ,

Y =




5.0306 −7.50042 0 0 0

−7.5004 442.7348 0 0 0

0 0 64.4923 −36.8027 −8.94841

0 0 −36.8027 32.8764 −10.34002

0 0 −8.94841 −10.34 387.4311




,

ND =




0.048412 0

−0.22122 0

0 0.14179

0 −0.03029

0 −0.27011




,

Po =




38.8031 6.9728 0 0 0

6.97282 1.5802 0 0 0

0 0 9.13782 10.0134 2.9448

0 0 10.0134 13.4936 3.6363

0 0 2.94483 3.63628 1.273




,

γ1 = 38.2554, γ2 = 6.9444, β1 = 0.5227, β2 = 0.5628.
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Gain matrices KD and LD are found to be

KD =




1.4162 0.02399 0 0 0

0 0 0.00411 0.00635 0.00023


 ,

LD =




0.12752 0

−0.70268 0

0 0.25635

0 0.10646

0 −1.1093




by (3.30) and (3.31), respectively. It is easy to check that the condition given by (3.42)

is satisfied. Hence, according to Theorem 3.1, the closed-loop system is quadratically

stable.

The simulation results are shown in Figures 3.1 and 3.2. In Figure 3.1, the state

x11 and its estimate x̂11, the state x12 and its estimate x̂12, and the control u1 are

shown in the first, second and third plot, respectively. Figure 3.2 shows the states x2,

their estimates x̂2, and the control u2. It can be observed from both the figures that

the state of the overall system, x, and their estimates, x̂, converge to zero.

3.4.2 The ARE approach

The gain γ is computed based on the values of α1, α2, H1 and H2 as γ = 0.4. The

following constant gains are chosen in the simulation.

ε1 = 0.5, ε2 = 0.125, η1 = 0.1,

η̃1 = 0.5, η2 = 0.01, η̃2 = 0.2.

It can be checked that the conditions given by (3.64) and (3.71) are satisfied for both

sub-systems. Thus, there exist positive definite solutions to (3.58) and (3.59). These
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solutions are

P1 =




0.93171 0.00798

0.00798 0.00614


 , P̃1 =




1.6912 0.01144

0.01144 0.01163


 ,

P2 =




0.78946 0.66216 0.03058

0.66216 0.8394 0.0378

0.03058 0.0378 0.00927




, P̃2 =




0.43093 0.38521 0.00547

0.38521 0.61093 0.01494

0.00547 0.01494 0.00853




.

The control gain matrices and observer gain matrices are obtained from (3.55) and

(3.56) as

K1 =

[
−0.00798 −0.00614

]
, K2 =

[
−0.03058 −0.03780 −0.00927

]
,

L1 =




0.14882

−0.14645


 , L2 =




0.33579

−0.2157

0.1625




.

To increase the convergence rate of the observers, we choose 100L1 and 10L2 as

the observer gain matrices for the first and second sub-system, respectively, in the

simulation.

The simulation results are shown in Figures 3.3 and 3.4. In Figure 3.3, the state

x11 and its estimate x̂11, the state x12 and its estimate x̂12, and the control u1 are

shown in the first, second and third plot, respectively. Figure 3.4 shows the states x2,

their estimates x̂2, and the control u2. It can be observed from both the figures that

the state of the overall system, x, and their estimates, x̂, converge to zero.

3.5 Summary

In this chapter, a decentralized output feedback controller and observer for a class

of large-scale interconnected nonlinear systems are proposed. The interconnecting

nonlinearity of each sub-system was assumed to be bounded by a quadratic form
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of states of the overall system. Local output signals from each sub-system are re-

quired to generate the local feedback controller and exact knowledge of the nonlinear

interconnection is not required for designing the proposed decentralized controller

and observer. The LMI approach and ARE approach are investigated. In the ARE

approach, sufficient conditions for the existence of the decentralized controller and

observer are given via the analysis of two AREs. Simulation results on a numerical

example verify the proposed design.

There are some challenging problems related to the quantity δ. The quantities

δ(A,C) or δ(A>, B>) are realization dependent. The properties of δ as a function of

various state-space realizations is of importance. In particular, finding the realization

of the state-space maximizes the value of δ will be useful.
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Figure 3.1: Simulation result of Example 3.1 for the first sub-system (3.77) from the

LMI approach. The top plot shows the first state x11 and its estimate x̂11. The

middle plot shows the second state x12 and its estimate x̂12. The bottom plot shows

the control u1.
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Figure 3.2: Simulation result of Example 3.1 for the second sub-system (3.78) from

the LMI approach. The top plot at the left column shows the first state x21 and its

estimate x̂21. The top plot at the right column shows the second state x22 and its

estimate x̂22. The bottom plot at the left column shows the third state x23 and its

estimate x̂23. The bottom plot shows the control u2.
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Figure 3.3: Simulation result of Example 3.1 for the first sub-system (3.77) from the

ARE approach. The top plot shows the first state x11 and its estimate x̂11. The

middle plot shows the second state x12 and its estimate x̂12. The bottom plot shows

the control u1.
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Figure 3.4: Simulation result of Example 3.1 for the second sub-system (3.78) from

the ARE approach. The top plot at the left column shows the first state x21 and its

estimate x̂21. The top plot at the right column shows the second state x22 and its

estimate x̂22. The bottom plot at the left column shows the third state x23 and its

estimate x̂23. The bottom plot shows the control u2.
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CHAPTER 4

ADAPTIVE CONTROLLER AND OBSERVER DESIGN FOR A

CLASS OF NONLINEAR SYSTEMS

In this chapter, observer and controller design for a class of nonlinear systems,

which contain coupled unknown parameters and unmeasurable states, is considered.

Unlike prior research on adaptive observer design, existence of a transformation that

can transform the original system to a system where unknown parameters appear

linearly with known signals is not assumed.

The rest of the chapter is organized as follows. Section 4.1 gives introduction to

representative adaptive observer design. The problem formulation is given in Section

4.2. The dynamics, assumptions on the dynamics, and the control objective are also

given in Section 4.2. Section 4.3 gives the procedure for obtaining the modified form

of the dynamics of the original system. Based on the modified form of the dynamics,

the adaptive controller and observer design are presented in Section 4.4. Examples on

reducing the dimension of the modified dynamics, simulation on a nonlinear system,

and experimental results on a single link with dynamic friction compensation are

given in Section 4.5. Summary of the chapter is given in Section 4.6.

4.1 Representative work on adaptive observer design

Many practical applications require estimation of the states and parameters in

designing a stable control algorithm; the unmeasurable states and parameters are

generally estimated based on the knowledge of the physical system, such as a model,

and the available measurements. The adaptive scheme which would identify unknown
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S1 S2

x z

Figure 4.1: A simple observer.

parameters and observe unknown states in a dynamic system is usually called the

adaptive observer.

A Luenberger observer [20, 19, 117, 118] allows asymptotic reconstruction of the

state of a linear time-invariant system from its its input and output, provided that (1)

the system parameters are known, (2) the structure of the system is known, and (3)

the system is observable. The basic theory of the Luenberger observer is that “almost

any system is an observer” [118]. Consider a cascaded system shown in Figure 4.1.

S1 is a free system described by

ẋ(t) = Ax(t) (4.1)

where x(t) ∈ Rn is the state, A ∈ Rn×n is a constant matrix. S2 is described by

ż(t) = Fz(t) + Hx(t) (4.2)

where z(t) ∈ Rm is the state, F ∈ Rm×m and H ∈ Rm×n are constant matrices. S2 is

driven by the available outputs Hx(t) from S1. It is shown (Theorem 1, [118]) that

if there is a transformation T satisfying TA− FT = H, then

z(t) = Tx(t) + eFt[z(0)− Tx(0)] (4.3)

It is noted that, if A and F have no common eigenvalues, there is a unique solution

T to the equation TA− FT = H [20].

Equation (4.3) shows the relationship between x(t), the state of the first system

S1, and z(t), the state of the second system S2. This relationship indicates that the

second system will almost always serve as an observer of the first system in that
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its state will tend to track a linear transformation of the state of the first system,

provided matrix F is negative definite. In this case, limt→∞ z(t) = Tx(t). The second

system can be freely constructed as long as two conditions are satisfied: (1) F is a

negative definite matrix, and (2) A and F will not share same eigenvalues. If the first

system is a forced system, that is,

ẋ(t) = Ax(t) + Bu(t) (4.4)

where u ∈ Rq is the input and B ∈ Rn×q is a constant matrix, the second system can

be chosen as

ż(t) = Fz(t) + Hx(t) + TBu(t). (4.5)

A similar result as in (4.3) can be achieved.

From the basic theory of the Luenberger observer, it can be seen that to design an

observer for the first system is to design the second system by using the knowledge of

the first system (matrices A, B and H). For the case where no priori knowledge of the

system parameters is available, which occurs for example in model reference adaptive

control design, an adaptive observer is applied. The basic idea of the adaptive observer

design is to use a Luenberger observer to observe the state, while the parameters of

the Luenberger observer are continuously adapted such that the observation error

asymptotically approaches to zero. Notice that the estimated parameters may not

converge to their true values.

Early work on stable adaptive observers for linear time-invariant systems can

be found in [119, 120, 81, 70]; Lyapunov synthesis technique is applied to derive

the parameter adaptation law and Luenberger observer technique is used to design

the state observer. Certain auxiliary filters are used to generate signals from the

input and output signals and those filtered signals are fed into the observer. Global

asymptotic convergence of the observation process is achieved. One essential feature

in the design of an adaptive observer for a linear time-invariant system is choosing a
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suitable representation of the original system, which is illustrated in the following by

a single-input single-output system. Consider a dynamic system which has one input

u(t) and one output y(t), described by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (4.6a)

y(t) = h>x(t) (4.6b)

where x(t) ∈ Rn is a state vector, A ∈ Rn×n, B ∈ Rn, and h ∈ Rn are unknown

constant matrices. The adaptive observer design problem is: (1) estimate the state

vector x, and (2) identify the parameters of the triple (A,B, h) under the following

assumptions:

Assumption A4.1 The order of the system, n, is known.

Assumption A4.2 Only u(t) and y(t) are available for feedback.

Assumption A4.3 The system (4.6) is completely observable.

The coupling term Ax(t) is an obstacle for designing adaptive observer because

the the product of unknown parameter in A and unknown state in x appears in the

dynamics. Further, h>x(t) also has coupling terms. One way to solve this problem

is to transform the representation of system (4.6) into another form such that the

coupling terms disappear. It is shown in [117, 118, 120] that under Assumption A4.3,

system (4.6) can be represented by




ẏ

. . .

ż




=




... r>

a
... . . .

... F







y

. . .

z




+

[
b

]
u,

y(0) = y0

z(0) = z0

(4.7)

where z ∈ Rn−1 is the unknown state, a ∈ Rn and b ∈ Rn are two unknown parameter

vectors to be identified, r ∈ Rn−1 and F ∈ R(n−1)×(n−1) are known such that (r>, F )

is a completely observable pair. Since F is chosen by the designer and eigenvalues
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of F are eigenvalues of the observer for state vector z, the convergence speed of the

observation of z can be arbitrarily selected. A particular choice [120] of r and F can

be r =

[
1 1 . . . 1

]>
and F = diag(λ1, λ2, . . . , λn−1), λi < 0, i = 1, 2, . . . , (n− 1).

The reason that the system (4.6) can be presented in the form of (4.7) is that the

system (4.6) can be described by an n-th order transfer function, and therefore only

2n parameters are needed to be identified, and there is a great amount of freedom

in choosing the internal state representation x, or equivalently, in the choice of the

triple (A, b, h). It is noted that in the new representation (4.7), there are no coupling

terms. All unknown parts (state z, parameter vectors a and b) are coupled with

known variables in that z with F , a with y, and b with u. Based on this canonical

form, a large amount of work ([71, 70, 121]) on adaptive observer design for linear

time-invariant system was conducted.

Design of a stable adaptive observer that simultaneously estimates the unmea-

surable state and the unknown parameters for a general class of nonlinear systems

is still an open problem. This has led to continued strong interest over the years in

the development of stable adaptive observers. Adaptive observer design for nonlinear

systems is usually restricted to a certain class of systems. In [80], the linear adaptive

observer derived in [81] has been modified and extended to a class of nonlinear time-

varying systems, in which the nonlinear system is considered to be transformed into

an adaptive observer canonical form given by

ẋ(t) = Rx(t) + Ω(ω(t))θ(t) + g(t), (4.8a)

y(t) = x1(t) (4.8b)

where x ∈ Rn, u ∈ R, y ∈ R, Ω(ω(t)) ∈ Rn×p, ω(t) is a vector of known functions of

u(t) and y(t), θ(t) ∈ Rp is a vector of unknown parameters, g(t) ∈ Rn is a vector of

known functions, and R ∈ Rn×n is a known constant matrix. Notice that the state x(t)

and parameter θ(t) appear linearly in known functions in the dynamics. An adaptive
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observer, which is driven by a p(n − 1) dimensional auxiliary filter, was developed

for (4.8); stable convergence of the estimates is shown under certain persistency of

excitation conditions.

Necessary and sufficient conditions for transforming a general nonlinear system

into a canonical form that is nonlinear purely in the output variables can be found

in [24]. Based on the early work of [80, 51], considerable work on adaptive nonlinear

observers has been reported by Marino et. al. in a series of papers; see [82] and the

references there-in; Marino et. al. studied adaptive observers for nonlinear systems

that can be transformed via a global state space diffeomorphism into

ẋ(t) = Acx(t) + ψ0(y(t), u(t)) + bψT (y(t), u(t))θ,

y(t) = Ccx(t)

(4.9)

where x(t) ∈ Rn, y(t) ∈ R, u(t) ∈ Rm, ψ(y(t), u(t)) ∈ Rp is a known smooth function

of the output, y(t), and the input vector, u(t), θ ∈ Rp is an unknown parameter

vector, and Ac =




0 In−1

0 0


 , Cc =

[
1 0 . . . 0

]
. Notice again that the system is

linear in the unknown parameters and the nonlinearities are functions of the known

output and input variables only.

In [122], global adaptive output feedback controller for a class of nonlinear systems

which consist of a set of unknown constant parameters and unmeasurable state vari-

ables was considered. Under certain assumptions and parameter dependent filtered

transformations (see [122]), the nonlinear system was transformed into the following
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form

ż = F (x̄, x, ω, t)z, (4.10a)

˙̄z = S(x̄, x, ω, t)z̄, (4.10b)

ω̇ = Ω(ω, x̄, x, t), (4.10c)

˙̄x = Ax̄ + bx, (4.10d)

ẋ = u + π(x̄, x, ω, t) + z̄>l(x̄, x, t)

+ π̄(x̄, x, ω, t)θ + p>(z)δ(x̄, x, ω, t) + p>(z)δ̄(x̄, x, ω, t)θ (4.10e)

where z ∈ Rv1 and z̄ ∈ Rv2 are unmeasurable states; ω ∈ Rv1+v2+d−r, x̄ ∈ Rr and

x ∈ R are measured states, A ∈ Rr×r is a stable matrix and b ∈ Rr is known, u ∈ R
is the control input, matrix functions F , S, Ω, π, l, π̄, δ, and δ̄ are known, θ ∈ Rq̄ is

an unknown constant parameter vector, p(z) ∈ Rs is a vector function whose entries

are products of entries of vector z. Under the assumption that there exist symmetric

positive-definite matrices Pz and Pz̄ such that

PzF (x̄, x) + F>(x̄, x)Pz ≤ −Iv1 , (4.11)

Pz̄S(x̄, x) + S>(x̄, x)Pz̄ ≤ 0 (4.12)

for all (x̄, x) ∈ Rr+1, it was proved that the bounded estimation of θ, the boundedness

of z̄, and the convergence to zero of z, x̄ and x were achieved. Equations (4.11) and

(4.12) are equivalent to requiring that the z-dynamics and z̄-dynamics be asymptot-

ically stable and stable, respectively. Notice that the the unmeasurable state z is

coupled with the unknown parameter θ, but z̄ is not; the method proposed in [122]

cannot be applied to systems which do not have asymptotically stable z-dynamics.
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4.2 Problem statement

In this chapter, we consider the following class of systems that contain the product

of the unmeasurable state variables as well as unknown parameters:

ẋ = Mx + hu + h
(
d(x) + f>θ (x)θ + f>z (x)z + θ>Gz(x)z

)
, (4.13a)

ż = Bz(x)z + az(x) (4.13b)

where x ∈ Rn is the measured state, z ∈ Rm is the unmeasured state, u ∈ R is

the control input, θ ∈ Rp is an unknown constant parameter vector, M ∈ Rn×n

is a known constant matrix, h ∈ Rn is a known constant vector, and d(x) ∈ R,

fθ(x) ∈ Rp, fz(x) ∈ Rm, Gz(x) ∈ Rp×m, az(x) ∈ Rm, and Bz(x) ∈ Rm×m are known

smooth functions of x.

To specify the class of nonlinear systems, it is assumed that the system dynamics

described by (4.13) satisfies the following four assumptions:

Assumption A4.4 The pair (M,h) is controllable.

Assumption A4.5 There exists a symmetric positive definite matrix Pz ∈ Rm×m

such that B>
z (x)Pz + PzBz(x) ≤ −Qz for all x ∈ Rn, where Qz is a positive semi-

definite matrix. Also, for every bounded x(t), the solution z(t) is bounded for any

initial condition z(t0).

Assumption A4.6 The sign of each parameter, θi, i = 1, 2, . . . , p, in the parameter

vector θ is known, and θi is bounded.

Assumption A4.7 The functions d(x), fθ(x), fz(x), Gz(x), az(x) and Bz(x) are

bounded functions of x.

We have the following remarks on the above four assumptions.

Remark 4.1 Assumption A4.4 guarantees the existence of a control gain vector c ∈
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Rn that can stabilize the linear part of the x-dynamics; that is, there exists a symmetric

positive definite solution, P , to the Lyapunov equation (M−hc>)>P +P (M−hc>) =

−Q, where Q is a symmetric positive definite matrix and c is a feedback gain vector.

Remark 4.2 Assumption A4.5 ensures that z has a stable dynamics provided x(t) is

bounded.

Remark 4.3 Assumption A4.6 is the only required knowledge of the unknown pa-

rameters and is reasonable for many practical plants. The sign of the unknown pa-

rameters are used in a parameter dependent Lyapunov function candidate during the

design process.

Remark 4.4 Assumption A4.7 is a common and reasonable assumption in the con-

trol design for nonlinear systems.

The system given by (4.13) has the following features.

• The uncertainties in the (4.13a) satisfy the matching condition, that is, they

enter the control channel. This is different with systems discussed in Chapter

2 and Chapter 3, where uncertainties are unmatched. One can incorporate

unmatched uncertainty in the (4.13a) and use similar method applied in Chapter

1 and Chapter 2 to design controller and observer plus the proposed method in

the subsequent sections of this chapter.

• The last term in the x-dynamics in (4.13) is a product of the unmeasurable

state z and the unknown parameter vector θ.

• The unknown dynamics, given by (4.13b), is driven by known vector function

of the measured state x.

The objective of this chapter is to design an adaptive controller and observer for

the system (4.13) such that asymptotic regulation of the measurable state, asymp-
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totic convergence of the state estimation errors to zero or their boundedness based

on certain conditions, and boundedness of the estimated parameters are achieved.

Instead of using the parameter-dependent filtered transformation as in [122], the ap-

proach proposed in this chapter is to cast the system in a modified form which can

be used to design a control algorithm based on a parameter dependent Lyapunov

function. The process of casting the original nonlinear system into the modified form

is constructive and is always possible.

4.3 Modified form of the system dynamics

In this section, the procedure of expressing the system given by (4.13) into a

modified form will be described. The controller and adaptive observer design for the

system (4.13) in subsequent sections will be based on the modified form. The modified

form has larger dimension than the original system given by (4.13). However, the

modified form still describes the same system given by (4.13). Similar assumptions

on the modified form will be obtained based on Assumptions A4.5 to A4.7.

The nonlinear system (4.13) can be cast in the following form:

ẋ = Mx + h
(
u + d(x) + f>(x)Θ + Z>G(x)Θ

)
, (4.14a)

Ż = a(x) + B(x)Z (4.14b)
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where

Z> =
[
z>, . . . , z>, . . . , z>︸ ︷︷ ︸

(p+1)−times

]
, (4.15a)

Θ> =
[
θ1, . . . , θ1︸ ︷︷ ︸

m−times

, θ2, . . . , θ2︸ ︷︷ ︸
m−times

, . . . , θp, . . . , θp︸ ︷︷ ︸
m−times

, 1, . . . , 1︸ ︷︷ ︸
m−times

]
, (4.15b)

f>(x) =
[
fθ1(x), 0, . . . , 0︸ ︷︷ ︸

(m−1)−times

, . . . , fθp(x), 0, . . . , 0︸ ︷︷ ︸
(m−1)−times

, 0, . . . , 0︸ ︷︷ ︸
m−times

]
, (4.15c)

a>(x) =
[
a>z (x), . . . , a>z (x), . . . , a>z (x)︸ ︷︷ ︸

(p+1)−times

]
, (4.15d)

B(x) = diag
(
Bz(x), . . . , Bz(x), . . . , Bz(x)︸ ︷︷ ︸

(p+1)−times

)
, (4.15e)

G(x) = diag(gz11(x), . . . , gz1m(x), . . . , gzp1(x), . . . , gzpm(x), fz1(x), . . . , fzm(x))

(4.15f)

where gzij(x), i = 1, 2, . . . , p, j = 1, 2, . . . , m, is the ij-th element of Gz(x), fzi(x), i =

1, 2, . . . , m, is the i-th element of fz(x), and fθi, i = 1, 2, . . . , p, is the i-th element of

fθ(x).

Equations (4.13) and (4.14) describe the same system. The unknown parameter

vector Θ and the unmeasurable state vector Z in (4.14) are of larger dimension than

that of θ and z in (4.13); Z ∈ Rm(p+1) is a vector cascaded by (p+1) z’s; Θ ∈ Rm(p+1)

is a vector cascaded by m times θi’s, i = 1, 2, . . . , p, and an m-vector with each entry

equal to 1; a(x) ∈ Rm(p+1) is cascaded by (p + 1) az(s)’s; G(x) ∈ Rm(p+1)×m(p+1) is

a diagonal matrix whose diagonal entries are the entries of Gz(x) and fz(x); f(x) ∈
Rm(p+1) is a vector whose [(j − 1)m + 1]-th element is fθj(x), j = 1, 2, . . . , p and the

other elements equal to zero.

The motivation for casting the nonlinear system described by (4.13) in the form

given by (4.14) with a new parameter vector Θ and a new state vector Z is to account

for the non-zero off-diagonal entries in Gz(x) and the non-zero entries in fz(x); as a

result of this, the proposed stable adaptive controller and observer design is feasible. A
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non-zero off-diagonal entry in Gz(x) means that two unknown parameters are coupled

with the same unmeasurable state variable (or two unmeasurable state variables are

coupled with the same parameter). Assuming that none of the elements of the matrix

Gz(x) and vector fz(x) are zero, then Z ∈ Rq and Θ ∈ Rq, where q = m(p + 1). If

some entries in Gz(x) and/or fz(x) are zero, it is possible to reduce the dimension of

the vector Z. Correspondingly, the dimensions of G(x), Θ, f(x), a(x) and B(x) are

also reduced. An example is given in Section 4.5 to illustrate the reduction procedure.

With the assumptions on the original system described by (4.13), it can be proved

that the following three assumptions, which correspond respectively to Assumptions

A4.5, A4.6, and A4.7 on the original system (4.13), are true for the system in the

modified form (4.14):

Assumption A4.5′ There exists a symmetric positive definite matrix PZ = P>
Z > 0

such that B>(x)PZ + PZB(x) ≤ QZ. Further, PZ = diag(Pz, . . . , Pz, . . . , Pz), and

QZ = diag(Qz, . . . , Qz, . . . , Qz). Also, for every bounded x(t), the solution of Z(t) is

bounded for any initial condition Z(t0).

Assumption A4.6′ The sign of each parameter, Θi, i = 1, 2, . . . , q, in the parameter

vector Θ is known, and Θi, is bounded.

Assumption A4.7′ The functions d(x), f(x), G(x), a(x) and B(x) are bounded

functions of x.

The proof of Assumptions A4.6′ and A4.7′ is straightforward. In the following, we

prove the Assumption A4.5′.

Proof of Assumption A4.5′. From the Assumption A4.5, one has

B>
z (x)Pz + PzBz(x) ≤ −Qz, ∀x ∈ Rn. (4.16)
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From (4.16),

diag(Bz(x), . . . , Bz(x), . . . , Bz(x))diag(Pz, . . . , Pz, . . . , Pz)

≤diag(Qz, . . . , Qz, . . . , Qz), ∀x ∈ Rn.

(4.17)

Let PZ
4
= diag(Pz, . . . , Pz, . . . , Pz) and QZ

4
= diag(Qz, . . . , Qz, . . . , Qz), and consider-

ing (4.15e), one has

B>(x)PZ + PZB(x) ≤ QZ , ∀x ∈ Rn.

Also, PZ = P>
Z > 0 and QZ = Q>

Z ≥ 0. ¥

4.4 Adaptive controller and observer design

In this section, the adaptive controller and observer design for the system (4.13)

will be proposed. The actual design will be based on the modified representation of

(4.13), given by (4.14), as both representations, (4.13) and (4.14), describe the same

nonlinear system. First, the design strategy is illustrated by a simple example, then

the design for the general case is proposed.

4.4.1 Design for a simple example

In this section, a simple example is considered to show the design process using

Lyapunov’s method. The example is given by the following equations:

ẋ = u + f(x)θ + g(x)zθ,

ż = b(x)z (4.18)

where x, u, θ, z, f(x), g(x), b(x) ∈ R. The sign of θ is known and b(x) ≤ −ε, ε > 0,

for all x ∈ R. The goal is to design a control algorithm such that x converges

asymptotically to zero; this involves design of the control input u, observer design to

estimate z, and design of an adaptation scheme for θ.
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Choose the following control input:

u = −cx− f(x)θ̂ − g(x)ẑθ̂ (4.19)

where c > 0. Substituting the control input (4.19) into the x-dynamics of (4.18)

results in the equation:

ẋ = −cx− f(x)θ̃ − g(x)ẑθ̃ − g(x)z̃θ (4.20)

where (̂∗) is the estimate of (∗), and (̃∗) = (̂∗)− (∗) is the estimation error of (∗). To

design an observer for z and a parameter adaptation algorithm for θ, the following

Lyapunov function candidate is chosen:

V =
1

2
x2 + Vθ̃ + Vz̃ (4.21)

where Vθ̃ is a radially unbounded positive function of θ̃ and Vz̃ is a positive function

of z̃ and θ, and is radially unbounded with respect to z̃. The time derivative of V

along the trajectory of (4.19) is

V̇ = −cx2 − f(x)xθ̃ − g(x)xẑθ̃ − g(x)xz̃θ + V̇θ̃ + V̇z̃. (4.22)

A sufficient condition for V̇ ≤ −cx2 is

V̇θ̃ + V̇z̃ ≤ f(x)xθ̃ + g(x)xẑθ̃ + g(x)xz̃θ. (4.23)

One possible choice of V̇θ̃ and V̇z̃ that satisfy inequality (4.23) is

V̇θ̃ = f(x)xθ̃ + g(x)xẑθ̃, (4.24)

V̇z̃ ≤ g(x)xz̃θ. (4.25)

The following choice of Vθ̃ and
˙̃
θ can satisfy (4.24):

Vθ̃ =
1

2γ1

θ̃2, (4.26)

˙̃
θ = γ1(f(x) + g(x)ẑ)x (4.27)
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where γ1 > 0. Equation (4.25) can be rewritten as

∂Vz̃

∂z̃
˙̃z ≤ g(x)xz̃θ. (4.28)

Substituting the z-dynamics of (4.18) into (4.28) yields

∂Vz̃

∂z̃
( ˙̂z − b(x)z) ≤ g(x)xz̃θ. (4.29)

Now consider the following choice for Vz̃:

Vz̃ =
1

2γ2

|θ|z̃2 (4.30)

where γ2 > 0, and |θ| > 0 is assumed. Equation (4.29) becomes

z̃[ ˙̂z − b(x)z − γ2 sgn(θ)g(x)x] ≤ 0. (4.31)

Therefore, if

˙̂z = b(x)ẑ + γ2 sgn(θ)g(x)x (4.32)

then

V̇z̃ = b(x)z̃2 ≤ 0. (4.33)

Thus, for the given system, by choosing the control input given by (4.19), the param-

eter adaptation scheme given by (4.27) for θ and the observer (4.32) for z, a Lyapunov

function for the system is

V =
1

2
x2 +

1

2γ1

θ̃2 +
1

2γ2

|θ|z̃2. (4.34)

The time derivative of V is

V̇ = −cx2 +
1

γ2

b(x)|θ|z̃2 ≤ −cx2 − 1

γ2

ε|θ|z̃2. (4.35)

Hence, x(t) and z̃(t) converge asymptotically to zero, and the parameter estimate

θ̂(t) is bounded.
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4.4.2 Design for the general case

The design process outlined in the previous section for the simple example can be

extended to the general case given by (4.14). The following theorem illustrates the

main result of this paper.

Theorem 4.1 Consider the plant described by (4.14), the following control law (4.36),

parameter estimation algorithm (4.37), and observer (4.38)

u = −c>x− d(x)− f>(x)Θ̂− Ẑ>G(x)Θ̂, (4.36)

˙̂
Θ = 2Γ

(
G(x)Ẑ + f(x)

)
h>Px, (4.37)

˙̂
Z = a(x) + B(x)Ẑ + P−1

Z G(x)sgn(Θ)h>Px (4.38)

where Γ = Γ> ∈ Rq×q > 0, c ∈ Rn, sgn(Θ) =

[
sgn(Θ1) . . . sgn(Θq)

]>
, and

c is chosen such that P is the symmetric positive definite solution of the Lyapunov

equation

(M − hc>)>P + P>(M − hc>) = −Q, (4.39)

for any given positive definite matrix Q. Then, the closed-loop system has the follow-

ing properties.

i) u(t), Θ̂(t), Θ̃(t), Ẑ(t), and Z̃(t) are bounded.

ii) limt→∞ x(t) = 0.

iii) If Qz > 0, limt→∞ Z̃(t) = 0.

Proof. Using the control input and the observer given by (4.36) and (4.38), respec-

tively, the x-dynamics and the state estimation error dynamics are

ẋ = (M − hc>)x− h
(
f>(x) + Ẑ>G(x)

)
Θ̃− hΘ>G(x)Z̃, (4.40)

˙̃
Z = B(x)Z̃ + P−1

Z G(x)sgn(Θ)h>Px. (4.41)

89



Consider the following Lyapunov function candidate:

V (x, Θ̃, Z̃, Θ) = x>Px +
1

2
Θ̃>Γ−1Θ̃ + Z̃>Λ|Θ|PZZ̃ (4.42)

where Λ|Θ| is a diagonal matrix whose i-th diagonal element is the absolute value of

the i-th element of the parameter vector Θ. From (4.15b), one obtains

Λ|Θ| = diag(|Θ1|, |Θ2|, . . . , |Θq|)

= diag(|θ1|Im, . . . , |θi|Im, . . . , |θp|Im).

Notice that V (x, Θ̃, Z̃, Θ) is indeed a Lyapunov function candidate because Λ|Θ|PZ

is a symmetric positive definite matrix, which can be seen from the following:

Λ|Θ|PZ = diag(|θ1|Im, . . . , |θi|Im, . . . , |θp|Im)diag(Pz, . . . , Pz, . . . , Pz)

= diag(|θ1|Pz, . . . , |θi|Pz, . . . , |θp|Pz)

= diag(
√
|θ1| Pz, . . . ,

√
|θi| Pz, . . . ,

√
|θp| Pz)

= Λ√|Θ| PZΛ√|Θ|

(4.43)

Since PZ is a symmetric positive definite matrix, from (4.43) we can see that Λ|Θ|PZ

is a symmetric positive definite matrix.

Taking the the time derivative of V (x, Θ̃, Z̃, Θ), and simplifying using (4.37),

(4.40), and (4.41), we obtain

V̇ = ẋ>Px + x>Pẋ + Θ̃>Γ−1 ˙̃
Θ + 2Z̃>Λ|Θ|PZ

˙̃
Z

= x>
(
(M − hc>)>P + P (M − hc>)

)
x + Z̃> (

B>(x)PZΛ|Θ|

+ Λ|Θ|PZB(x)
)
Z̃ + 2Z̃>Λ|Θ|G(x) sgn(Θ)h>Px− 2Z̃>G(x)Θh>Px

(4.44)

Since G(x) and Λ|Θ| are diagonal, we have

Λ|Θ|G(x) sgn(Θ) = G(x)Λ|Θ| sgn(Θ) = G(x)Θ.
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Also,

B>(x)PZΛ|Θ| + Λ|Θ|PZB(x)

= diag
(|θ1|(B>

z (x)Pz + PzBz(x)), . . . , |θp|(B>
z (x)Pz + PzBz(x))

)

≤ diag (−|θ1|Qz, . . . ,−|θp|Qz)

= −Λ|Θ|QZ .

Notice that Λ|Θ|QZ is a positive semi-definite matrix. Therefore, we have

V̇ = −x>Qx− Z̃>Λ|Θ|QZZ̃

≤ −λmin(Q)x>x− λmin(Λ|Θ|QZ)Z̃>Z̃ (4.45)

where λmin(·) denotes the minimum eigenvalue of a matrix.

Hence, (4.42) is a Lyapunov function for the closed-loop system, which guarantees

that x, Θ̃ and Z̃ are bounded; Θ̂ is bounded because Θ̂ = Θ̃+Θ and Θ is bounded; Z is

bounded by Assumptions A4.5 and A4.5, which in turn guarantees that Ẑ (= Z+Z̃) is

bounded; the control input u(t) is bounded as it is a function of all bounded variables.

From equations (4.40) and (4.41), both
˙̃
Z and ẋ are bounded. Therefore, Z̃ ∈ L∞,

˙̃
Z ∈ L∞, x ∈ L∞ ∩ L2 and ẋ ∈ L∞. By invoking Barbalat’s Lemma [73], we obtain

limt→∞ x = 0. Moreover, if Qz is positive definite, Z̃ ∈ L2 in addition to Z̃ ∈ L∞,

˙̃
Z ∈ L∞; therefore, limt→∞ Z̃ = 0. ¥

Remark 4.5 Theorem 4.1 addresses the regulation problem for the class of nonlinear

systems described by (4.13). This design process can be extended to the tracking

problem as well, which is shown in Example 4.3 of the next section. Further, one can

also extend the proposed design to multiple-input systems.

Remark 4.6 Notice that the original system described by (4.13) contains m state

variables and p parameters that are to be estimated. In the proposed design, if none

of the elements of the vector fz(x) and the matrix Gz(x) is zero, we require m(p + 1)
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filters for the estimation of the unmeasurable states and mp filters for the estimation

of the unknown parameters.

Remark 4.7 The estimated parameters are not guaranteed to converge to their true

values. From the control point of view, it is not necessary that the estimated param-

eters converge to their true values. Since the nonlinear system studied in this paper

cannot be expressed in the form of a standard parametric model (see [33]), it is difficult

to obtain the persistency of excitation conditions under which the estimated parameter

Θ̂ converges to its true value Θ. To enhance the robustness of the closed-loop system

due to parameter drift, we can use the σ-modification procedure given in [33]. In such

a case, the parameter estimation algorithm (4.37) can be changed to

˙̂
Θ = −σΓΘ̂ + 2Γ

(
G(x)Ẑ + f(x)

)
h>Px. (4.46)

Choosing the same Lyapunov function candidate V as in (4.42), the time derivative

of V becomes

V̇ ≤ −x>Qx− λmin(Λ|Θ|QZ)Z̃>Z̃ − 2σΘ̃>Θ̂. (4.47)

Since −2σΘ̃>Θ̂ ≤ −σΘ̃>Θ̃ + σ‖Θ‖2, we have

V̇ ≤ −λmin(Q)x>x− λmin(Λ|Θ|QZ)Z̃>Z̃ − σΘ̃>Θ̃ + σ‖Θ‖2. (4.48)

Since the parameter Θ is bounded, it follows that x, Θ̃ and Z converge to a residual

set whose radius is proportional to the square root of the upper bound of σ‖Θ‖2.

4.5 Numerical examples with simulations and experimentation on a

two-link robot

In this section, three examples are presented. The first example illustrates the

reduction procedure for the case when some elements of Gz(x) and/or fz(x) in the

original dynamics (4.13) are zero. The second and the third examples verify the
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adaptive controller and observer design via numerical simulations. In the second

example, the system has two measurable states, two unmeasurable states and two

unknown parameters. The objective is regulation of states. In the third example, we

consider the tracking problem for a mechanical system with dynamic friction.

Example 4.1 This example will illustrate the reduction procedure. Consider the sys-

tem described by (4.13) with m = 2, p = 3, and Bz(x) diagonal. The modified system

has

Z =

[
z1 z2 z1 z2 z1 z2 z1 z2

]>
,

Θ =

[
θ1 θ1 θ2 θ2 θ3 θ3 1 1

]>
,

G(x) = diag(gz11(x), gz12(x), gz21(x), gz22(x), gz31(x), gz32(x), fz1(x), fz2(x)),

a(x) =

[
az1(x) az2(x) az1(x) az2(x) az1(x) az2(x) az1(x) az12(x)

]>
,

B(x) = diag(Bz(x), Bz(x), Bz(x), Bz(x)),

f(x) =

[
fθ1(x) 0 fθ2(x) 0 fθ3(x) 0 0 0

]>
.

If f>z (x) = [0, 0], discard the last two rows of Z, Θ, a(x) and f(x), and the last two

rows and columns of G(x) and B(x), which will result in q = 6, which is less than the

maximum size of eight. If gz12(x) = 0, then the second row of Z, Θ, a(x) and f(x),

and the second row and the second column of G(x) and B(x) can be discarded, which

gives q = 7. ¥

Example 4.2 Consider the system

ẋ = Mx + hu + h(d(x) + f>θ (x)θ + f>z (x)z + θ>Gz(x)z), (4.49a)

ż = az(x) + Bz(x)z (4.49b)
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where

M =




0 1

0 0


 , h =




0

1


 , d(x) = 0,

fθ(x) =




fθ1

fθ2


 =




x2

x1


 , fz(x) =




fz1

fz2


 =




x2

0


 ,

Gz(x) =




gz11 gz12

gz21 gz22


 =




x1

2−e−|x2| 5

x2

2−e−|x1| 0


 , az(x) =




az1

az2


 =




x1 + x2

x2


 ,

Bz(x) =




bz11 bz12

bz21 bz22


 =



−1.5− cos(x1) 0

0 −1.5− sin(x2)


 .

The system described by (4.49) can be represented in the following form:

ẋ = Mx + hu + h[f>(x)Θ + Z>G(x)Θ],

Ż = a(x) + B(x)Z

where

f(x) =

[
fθ1 0 fθ2 0 0

]>
,

G(x) = diag(gz11, gz12, gz21, fz1, fz2),

a(x) =

[
az1 az2 az1 az1 az2

]>
,

B(x) = diag(bz11, bz22, bz11, bz11, bz22),

Z =

[
Z1 Z2 Z3 Z4 Z5

]>
=

[
z1 z2 z1 z1 z2

]>
,

Θ =

[
Θ1 Θ2 Θ3 Θ4 Θ5

]>
=

[
θ1 θ1 θ2 1 1

]>
,

and Θ4 = Θ5 = 1; Θ4 and Θ5 are not estimated. The following values are chosen:

c =

[
25 10

]>
, Pz = 10I, Γ = 0.1I
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where I is the 5× 5 identity matrix. The true parameter vector is

θ =

[
2 4

]>
.

The initial values used in the simulation are:

x(0) =

[
1 1

]>
, Θ̂(0) =

[
0 0 0 1 1

]>
,

Z(0) =

[
−1 −1 −1 −1 −1

]>
, Ẑ(0) =

[
0 0 0 0 0

]>
.

Simulation results are shown in Figures 4.2 through 4.4; it can be observed that x

asymptotically converges to zero; the estimated state Ẑ converges to Z; and the esti-

mated parameter Θ̂ is bounded.

Example 4.3 Consider a single-link mechanical system described by

Js̈ = u− ff (4.50)

where J is the inertia of the link, s is the angular position of the link, ṡ is the angular

velocity of the link, u is the control input, and ff is the friction torque described by

the following LuGre dynamic friction model [123]:

ż = ṡ− σ|ṡ|
g(ṡ)

z, (4.51)

ff = θ1z + θ2ż + θ3ṡ, g(ṡ) = Fc + (Fs − Fc)e
−(ṡ/ωs)2 (4.52)

where σ, θ1, θ2, θ3, Fs, Fc and ωs are positive friction coefficients; σ, Fs, Fc and ωs

are generally identified by experiments off-line and are assumed to be known for this

simulation. J is known. The objective is to control the link such that the position and

velocity of the link track a predefined trajectory sd and ṡd, respectively. It is assumed

that that sd and ṡd are bounded, and the angular position and the angular velocity are

measurable.
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Combining (4.50), (4.51) and (4.52) and representing in matrix form yields

ζ̇ = Mζ + hu + h(f>θ θ + θ>Gz(ζ)z), (4.53a)

ż = az(ζ) + Bz(ζ)z (4.53b)

where

ζ =




ζ1

ζ2


 =




s

ṡ


 , M =




0 1

0 0


 , fθ =




0

−ζ2

−ζ2




,

h =




0

1

J


 , Gz(ζ) =




−1

σ|ζ2|
g(ζ2)

0




, θ =




θ1

θ2

θ3




,

az(ζ) = ζ2, Bz(ζ) = −σ|ζ2|
g(ζ2)

.

Defining the trajectory vector xd =

[
sd dsd

]>
and representing (4.53a) and

(4.53b) in terms of the tracking error x
4
=

[
x1 x2

]>
= ζ − xd results in the

following error dynamics and z-dynamics:

ẋ = Mx + hu + h(f>θ (x + xd)θ + θ>Gz(x + xd)z), (4.54a)

ż = az(x + xd) + Bz(x + xd)z. (4.54b)

The above two equations can be re-written in the following form suitable for the adap-

tive controller and observer design:

ẋ = Mx + hu + h(f>(x)Θ + Z>G(x)Θ), (4.55a)

Ż = a(x) + B(x)Z (4.55b)
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where

Θ
4
=




Θ1

Θ2

Θ3




=




θ1

θ2

θ3




, Z
4
=




Z1

Z2

Z3




=




z

z

z




,

f(x) =




0

−x2 − ṡd

−x2 − ṡd




, G(x) =




−1 0 0

0 σ|x2+ṡd|
g(x2+ṡd)

0

0 0 0




,

a(x) =




x2 + ṡd

x2 + ṡd

x2 + ṡd




, B(x) =




− σ|x2+ṡd|
g(x2+ṡd)

0 0

0 − σ|x2+ṡd|
g(x2+ṡd)

0

0 0 − σ|x2+ṡd|
g(x2+ṡd)




.

Notice that x (= ζ − xd) is available because ζ is measurable and xd is known; and Θ

and Z are estimated; Z3 need not be estimated because g33(x) = 0.

Experiments were conducted on the base link of a two-link NSK manipulator shown

in Figure 4.5. The base link is controlled to follow a sinusoidal trajectory,

xd(t) =

[
sin(0.4πt) 0.4π cos(0.4πt)

]>
.

The inertia of the base-link is J = 3.4. The following values are chosen:

c = 3.4 ∗




2500

100


 , P =




626.25 0.01

0.01 0.2501


 , Γ = diag(5, 5, 5), Pz = 0.1I.

The parameters in z-dynamics are:

σ = 340, Fs = 11, Fc = 1.557, ωs = 0.14.

The initial values are chosen as

Θ̂>(0) = [0, 0, 0], Ẑ>(0) = [0, 0, 0].

Experimental results are shown in Figures 4.6 through 4.8. Figure 4.6 shows the

desired position trajectory, position tracking error and velocity tracking error from
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the top plot to the bottom plot, respectively. The estimates of the unmeasured state

Z(t), Ẑ1(t) and Ẑ2(t), are shown in Figure 4.7. Parameter estimates are shown in

Figure 4.8. ¥

4.6 Summary

A new adaptive controller and a nonlinear observer are designed for a class of

nonlinear systems which contain the products of an unmeasured state and an un-

known parameter. A stable adaptive controller and a stable nonlinear observer are

designed using a parameter dependent Lyapunov function. The proposed design is

verified via simulation and experimental examples, the results of which are shown

and discussed. Future work should focus on the inclusion of coupled terms of the

unknown parameters and unmeasured states in the unmeasurable state dynamics.

Future research should also focus on the investigation of the existence of parameter

independent state diffeomorphisms that will transform a general nonlinear systems

to the class of systems considered in this chapter.
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Figure 4.2: Simulation result of Example 4.2. Trajectory of x(t) is shown.
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Ẑ1(t)
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Figure 4.3: Simulation result of Example 4.2. The top plot shows the trajectory of

Z1(t) and its estimates Ẑ1(t), Ẑ4(t) and Ẑ5(t). The bottom plot shows the trajectory

of Z2(t) and its estimates Ẑ2(t) and Ẑ4(t).
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Figure 4.4: Simulation result of Example 4.2. Estimated parameters, Θ̂1(t), Θ̂2(t),

and Θ̂3(t) are shown.
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Figure 4.5: Picture of the experimental platform in Example 4.3.

102



0 2 4 6 8 10 12
−1

0

1

2

(r
ad

)

0 2 4 6 8 10 12
−0.04

−0.02

0

0.02

(r
ad

)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

(r
ad

/s
)

Time (s)

Desired position: sd(t)

Position tracking error: x1(t)

Velocity tracking error: x2(t)

Figure 4.6: Experimental result of Example 4.3. Desired position, sd(t) = sin(0.4πt)

(top plot), angular position tracking error, x1(t) (middle plot), and angular velocity

tracking error, x2(t) (bottom plot), are shown.
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Figure 4.7: Experimental result of Example 4.3. The estimated of Z(t), Ẑ1(t) and

Ẑ2(t), are shown.
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Figure 4.8: Experimental result of Example 4.3. Estimated parameters: Θ̂1(t), Θ̂2(t)

and Θ̂3(t) are shown.
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CHAPTER 5

ADAPTIVE CONTROL OF MECHANICAL SYSTEMS WITH

TIME-VARYING PARAMETERS AND DISTURBANCES

The adaptive control design for mechanical systems is considered in this chap-

ter. It is assumed that the mechanical system is subject to unknown time-varying

parameters and disturbances. As mechanical systems can be linearly parameterized,

the adaptive estimation of time-varying parameters in linearly parametric model is

first considered. Local polynomial approximation in a finite time interval is used to

represent the unknown time-varying parameters. The coefficients of the polynomials

are estimated locally instead of the unknown time-varying parameter. The accuracy

of the approximation depends on the order of the polynomial and the width of the

time interval, which can be chosen. The polynomial coefficients vary from one inter-

val to the other, but within an interval they are constant. Thus, each time-varying

parameter is approximated independently in each interval by a set of constant co-

efficients. Based on the approximation, modifications to traditional least-squares

algorithm with covariance resetting and the gradient algorithm are provided for the

linear time-varying parametric model. Stability of the modified algorithms is shown

and discussed. Comparative simulation results for the two algorithms on an example

are presented. Adaptive control design for time-varying mechanical systems using the

adaptive estimation algorithm proposed is investigated.

The rest of this chapter is organized as follows. Section 5.1 proposes adaptive es-

timation algorithms for estimating time-varying parameters in linearly parameterized

system. Section 5.1.1 introduces how to obtain a linear parametric model for a class
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of systems. Representation of the time-varying parameters via local polynomials is

discussed in Section 5.1.2. The linear time-varying parametric model in terms of the

local polynomial approximations is described in Section 5.1.3. Two estimation algo-

rithms, the modified least-squares with covariance resetting and the modified gradient

algorithm, are discussed in Section 5.1.4. Section 5.1.5 gives simulation results for an

example. In Section 5.2, an adaptive controller is proposed for mechanical systems

with time-varying parameters and time-varying disturbances. Section 5.2.1 gives the

dynamics of mechanical systems. Design of an adaptive controller is given in Section

5.2.2. Experimental setup, including how to generate time-varying dynamics to the

base link, conditions, and results are discussed in Section 5.2.3. Summary of this

chapter is given in Section 5.3.

5.1 Adaptive estimation of time-varying parameters using local

polynomial approximation

Given a plant, its behavior is determined by its dynamic structure and its pa-

rameters. When model parameters, time-varying or time-invariant, are known, the

control design process is generally straightforward. In practice, we usually do not

have all the information about the model. Instead, partial information may be avail-

able, such as the structure of the model and the features of the model parameters.

When the parameters are unknown, they have to be deduced by observing the sys-

tem’s response to certain inputs if these parameters are required in control design. In

the case when the parameters are fixed, that is, they are constant all the time, it is

easier to use frequency or time domain techniques to estimate them. Whenever the

model parameters are time-invariant, the estimated parameters can be used instead

of their true value. However in many applications, the parameters are time-varying

because of changes in operating conditions, aging of equipment, etc. In such cases,

off-line estimation results cannot be applied directly. A frequent estimation of the
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parameters based on the input/output response is required. Contrast to the off-line

estimation, this is usually called on-line estimation. The methodology of processing

the measurable signals to arrive at the estimations of the parameters yields many

estimation algorithms.

The essential idea behind on-line identification is using the difference between

the observed system output y(t) and estimated system output ŷ(t) to modify the

estimated parameter θ̂(t) continuously so that the difference between y(t) and ŷ(θ̂, t)

becomes small, that is, force ŷ(θ̂, t) to approach y(t) as time t increases. The model for

generating ŷ(θ̂, t) is usually chosen such that it has a similar structure to that of the

system under study. The stability properties are usually derived by using Lyapunov

method.

The design of the on-line estimation algorithm involves mainly three steps. (1)

The first step is to parameterize the plant model. This is very important because some

plant models are more convenient than others. The linear parametric model is among

the most prevalent system models chosen for on-line estimation design. In this type of

model, the unknown parameters are organized into the parameter vector θ. The model

is in the linear form of the parameter vector θ, that is, in the form of y(t) = θ>φ where

y(t) is the system output and φ is the regression matrix which is composed of signals

which can be measured or computed. As φ may contain high order time derivatives of

the input and/or output of the system, filter technique is usually used so that only the

input and output of the system can be used to generate φ. If the estimated output

ŷ(θ̂, t) is generated from the system model with θ̂ instead of θ then the difference

between y(t) and ŷ(θ̂, t) is linear in the parameter error θ− θ̂. The output difference

reflects how close the estimated parameters are to the true parameters. This is the

main advantage of the linear parametric model. (2) The second step is to design an

adaptation law for the estimated parameter vector. The adaptation law is usually a

differential equation whose state is θ̂ and is designed using stability considerations or
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simple optimization techniques to minimize a cost function with respect to θ̂ at each

time t. This cost function usually contains the information of the difference between

y(t) and ŷ(θ̂, t). (3) The last step is to design the input such that the adaptation

law has the property that the estimated parameter θ̂(t) approaches the unknown

system parameter θ as time t approaches infinity. This is important if the objective

of the adaptation law is to find the true value of the system parameters. To achieve

this objective, the input signal should be able to excite all modes in the plant. In

other words, the input signal must have all frequency components which exist in the

plant. In the situation where control is the main objective and estimation is just

for providing estimation of the unknown parameters, the input signal is the control

signal which is generated by the controller. The input signal is determined by the

control law and the predefined trajectory of the output of the system. Consequently

the input signal may not contain all frequency components needed for estimating the

unknown plant parameters. In this case, the properties of the adaptation law should

imply that the estimated parameters are bounded.

In this section, the on-line estimation of time-varying parameters in the parametriz-

able system is considered. The system under study can be expressed in the parametric

model:

z(t) = θ∗>(t)Φ(t) (5.1)

where θ∗(t) =

[
θ∗0(t) θ∗1(t) . . . θ∗m(t)

]>
∈ Rm is the unknown time-varying pa-

rameter vector, Φ(t) =

[
Φ1(t) Φ2(t) . . . Φm(t)

]>
∈ Rm is the known signal

vector, and z(t) ∈ R is the measured output. It is assumed that θ∗(t) belongs to the

class of piecewise continuous m-times differentiable functions, that is,

θ∗(t) ∈ {
θ∗(m)(t) ∈ L∞, m = 1, . . . , p

}
(5.2)

where θ∗(m)(t) denotes the m-th time-derivative of θ∗(t).
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Remark 5.1 If the parameters are constant, then their time-derivative is zero; hence

the control design problem with on-line estimation is generally straightforward. Stan-

dard method for the estimation of the unknown parameters can be found in may text-

book (e.g. [33, 24, 73, 124, 125, 126]).

Remark 5.2 We make an assumption that system under control can be parameter-

ized linearly in parameters. This is not valid for all systems. However, for a class of

linear and nonlinear systems, such as mechanical systems, linear parameterization is

possible. On the other hand, if the system cannot be linearly parameterized, it can be

represented by a linear parametric model plus a modelling error, and the modelling

error can be considered as a disturbance to the system. In the next section, the method

to obtain the linear parametric model for a system described by a differential equation

is briefly introduced.

Remark 5.3 A continuous-time model rather than a discrete-time model is chosen

because results in the continuous-time domain can be extended to the discrete-time

domain easily under the assumption of fast sampling, however the converse is gener-

ally not feasible. As such, all systems considered in this report are continuous-time

systems.

5.1.1 Linear parametric models

The parametric models and their properties are crucial in parameter identification

and adaptive control problems to be studied in subsequent sections. We introduce

parameterization methods of dynamic systems with time-invariant and time-varying

parameters here. The objective of the parameterization is to represent the plant

in a form such that the coefficients of the polynomials in the transfer function de-

scription are separated from signals formed by filtering the system input and output.

Parameterization is important when the system under study can only provide the
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measurements of the input and output. The parameterization of a time-invariant

system will provide a linear parametric model without modelling error. In contrast,

the parameterization of a time-varying system will give rise to a modelling error. This

modelling error depends on the rate of the time-varying parameter. The methods de-

scribed here are based on the developments in [33, 127, 98, 128].

Linear parametric model of time invariant systems

Consider a system described by the following nth-order differential equation

y(n) + an−1y
(n−1) + . . . + a0y = bn−1u

(n−1) + bn−2u
(n−2) + . . . + b0u (5.3)

where u and y are input and output of the system, respectively. u(i) and y(i) denote

the i-th derivative of u and y, respectively; ai and bi are constant coefficients.

Lumping all the parameters in (5.3) in the parameter vector θ∗ and all the in-

put/output signals and their derivatives in the signal vector Y yields

θ∗ =

[
bn−1 bn−2 . . . b0 an−1 an−2 . . . a0

]>
, (5.4)

Y =

[
un−1 un−2 . . . u −yn−1 −yn−2 . . . −y

]>

=

[
α>n−1(s)u −α>n−1y

]>
(5.5)

where αi(s)
4
=

[
si si−1 . . . 1

]>
, s denotes the Laplace operator. Equation (5.3)

can be expressed in the following compact form

y(n) = θ∗>Y. (5.6)

Equation (5.3) is represented linear in the parameter vector θ∗. The linear represen-

tation of (5.6) is crucial for designing parameter estimation algorithm for θ∗ from y(n)

and the signal vector Y . However in most applications, only the input signal u and

output y of the system are available, and computation of the time derivatives of u
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and y is not desirable. y(n) and the time derivative signals in the signal vector Y

should be avoided. The common approach to solve this problem is to filter both sides

of (5.6) with an n-th order stable filter
1

Λ(s)
, which results in

z = θ∗>φ (5.7)

where

z =
sn

Λ(s)
y,

φ =

[
α>n−1(s)

Λ(s)
u −α>n−1(s)

Λ(s)
y

]>
,

Λ(s) = sn + λn−1s
n−1 + . . . + λ0.

Λ(s) is an arbitrary Hurwitz polynomial in s, and it can be expressed as

Λ(s) = sn + λ>αn−1(s) (5.8)

where λ =

[
λn−1 λn−2 . . . λ0

]>
. Using (5.8) we have

z =
sn

Λ(s)
y =

Λ(s)− λ>αn−1(s)

Λ(s)
y = y − λ>

αn−1(s)

Λ(s)
y. (5.9)

Hence,

y = z + λ>
αn−1(s)

Λ(s)
y. (5.10)

Because z = θ∗>φ = θ∗>1 φ1 + θ∗>2 φ2 where

θ∗1 =

[
bn−1 bn−2 . . . b0

]>
,

θ∗2 =

[
an−1 an−2 . . . a0

]>
,

φ1 =
αn−1(s)

Λ(s)
u,

φ2 = −αn−1(s)

Λ(s)
y,

it follows that

y = θ∗>λ φ (5.11)
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where θ∗λ =

[
θ∗>1 θ∗>2 − λ>

]>
and φ =

[
φ>1 φ>2

]>
.

The state-space representation for generating (5.7) and (5.11) may be obtained

by using the identity

adj(sI − Λc))]l = αn−1(s) (5.12)

where adj((·)) denotes the adjoint matrix of a matrix, and

Λc =




−λn−1 −λn−2 . . . −λ0

1 0 . . . 0

...
. . .

...
...

0 . . . 1 0




, l =




1

0

...

0




, (5.13)

which implies that

det(sI − Λc) = Λ(s), (sI − Λc)
−1l =

αn−1(s)

Λ(s)
(5.14)

where det(·) denotes the determinant of a matrix. Therefore, the following implemen-

tation can be applied to generate the signal vector without using the time derivatives

of the input and output of the system

φ̇1 = Λcφ1 + lu, φ1 ∈ Rn, (5.15a)

φ̇2 = Λcφ2 − ly, φ2 ∈ Rn, (5.15b)

y = θ∗>λ φ, (5.15c)

z = θ∗>φ. (5.15d)

Notice that the vector φ is generated from the filtered signals of the system input

u and system output y; the differentiations of the input and output signal of the

system is avoided in the representation given by (5.15), which is important in practical

applications because the differentiation of a signal usually results in a very noisy one.

Hence, the linear parametric model given by (5.15c) or (5.15d) contains only the
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information from the input and output of the system. As stated in [33], (5.15) only

considers the case when the initial state in (5.3) is zero. If the initial state of (5.3) is

not zero, a minor modification on (5.15) can be made. Since Λc is a stable matrix,

the effect of the nonzero initial state will converge to zero exponentially.

Linear parametric model of time-varying systems

In this section, the parameterization of the linear system described by ordinary

differential equations with time-varying parameters is considered. The time-varying

linear system is characterized by the following equation

y(n) +an−1(t)y
(n−1) + . . .+a0(t)y = bn−1(t)u

(n−1) + bn−2(t)u
(n−2) + . . .+ b0(t)u (5.16)

where ai(t) and bi(t), i = 0, . . . , (n− 1), are time-varying parameters.

By defining the following differential operators

s
4
=

d

dt
,

si 4=
di

dti
,

Lf
4
= fn(t)sn + fn−1(t)s

n−1 + . . . + f0(t)

where fi(t) is an arbitrary scalar time-varying parameter for each i, the system char-

acterized by (5.16) can be written in the compact form

La[y] = Lb[u] (5.17)

where La
4
= sn+an−1(t)s

n−1+. . .+a0(t) and Lb
4
= bn−1(t)s

n−1+bn−2(t)s
n−2+. . .+d0(t).

We want to derive the linear parametric model for the system described by (5.17).

Notice here s denotes the differential operator which differs from the notation used in

the previous section. The linear parametric model is desired to have a similar form

as that of the linear time invariant case, that is, it is modeled as follows:

y(t) = θ∗>λ (t)φ + η(t) (5.18)
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where θ∗>λ (t) is the parameter vector containing the time-varying parameters ai(t)

and bi(t), φ is a vector whose element is generated from the system input and output

without differentiations, and η(t) is the modeling error term. Notice that different

from the linear parametric model for the time invariant system shown in (5.11), there

exists an additional term η(t) in (5.18). It can be seen from the following analysis

that η(t) depends on the time derivatives of the parameters.

Denoting Lλ
4
= Λ(s) and rewriting (5.17) yields

Lλ[y] = (Lλ − La)[y] + Lb[u]

= (Lλ − La)LλL
−1
λ [y] + LbLλL

−1
λ [u]. (5.19)

Multiplying both sides of (5.19) by L−1
λ gives

y =L−1
λ (Lλ − La)LλL

−1
λ [y] + L−1

λ LbLλL
−1
λ [u] (5.20)

=(Lλ − La)L
−1
λ y + LbL

−1
λ [u]

+ L−1
λ [(Lλ − La)Lλ − Lλ(Lλ − La)]L

−1
λ [y] + L−1

λ [LbLλ − LλLb]L
−1
λ [u] (5.21)

=(Lλ − La)L
−1
λ [y] + LbL

−1
λ [u]

+ L−1
λ [LλLa − LaLλ]L

−1
λ [y] + L−1

λ [LbLλ − LλLb]L
−1
λ [u] (5.22)

Let

θ∗>λ (t)φ(t)
4
=(Lλ − La)L

−1
λ [y] + LbL

−1
λ [u] (5.23)

η(t)
4
=L−1

λ [LλLa − LaLλ]L
−1
λ [y] + L−1

λ [LbLλ − LλLb]L
−1
λ [u], (5.24)

equation (5.22) becomes

y = θ∗>λ (t)φ(t) + η(t) (5.25)
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where

θ∗λ(t) =

[
θ∗>1 (t) θ∗>2 (t)− λ>

]>
,

θ∗1(t) =

[
bn−1(t) bn−2(t) . . . b0(t)

]>
,

θ∗2(t) =

[
an−1(t) an−2(t) . . . a0(t)

]>
.

Clearly, if η(t) in (5.25) is negligible, y(t) can be generated by using the same imple-

mentation given in (5.15) as in the case of linear time invariant system.

From (5.24), it can be seen that the modeling error η(t) is caused by the switching

between Lλ and La, and the switching between Lλ and Lb. Generally, two differential

systems with linear time-varying parameters cannot be commuted, that is,

Lη1

4
= LλLa − LaLλ 6= 0, (5.26)

Lη2

4
= LbLλ − LλLb 6= 0. (5.27)

Consequently the modeling error η(t) will not be zero.

It is not easy to determine exactly how much contribution to the modeling error,

η(t), is coming from the control input u(t), the Schwartz polynomial Λ(s), and varia-

tions of ai(t) and bi(t), because it involves the manipulation of differential equations.

In general, combining two differential equations to obtain a third differential equa-

tion, as one might wish to do if two systems characterized by known scalar-differential

equations are considered, is not a trivial matter. In [129], the techniques for combin-

ing and rules of manipulation of differential equations are developed in the form of an

algebra of linear transformations; Two basic operations: multiplication and addition,

of two systems are considered. In following, the techniques and methods introduced

in [129] are applied to derive the relationship between the modeling error η(t) and

the input u(t), time-varying parameters ai(t) and bi(t), and the Schwartz polynomial

Λ(s).
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It is possible to obtain η(t) by using the two basic operations of the differential

equations: multiplication and addition introduced in [129]. Figure 5.1 gives a step-

by-step procedure to obtain the following differential equation to describe the I/O

relationship between the input u(t) and the modeling error η(t):

LA[η(t)] = LB[u(t)]. (5.28)

In Figure 5.1, diagram (a) describes the system in (5.24); diagram (b) explains

Lη1 and Lη2 as given by (5.26) and (5.27), or the input/output properties given by

(5.31) and (5.32) in the following, respectively. In (c), y is substituted in accordance

with (5.17). In (d), Laλ = LaLλ. In (e), Lα1 and Lδ1 come from the cascading of two

differential equations and are determined by the following equality:

Lα1Lη1 = Lδ1Laλ. (5.29)

Lα2 and Lδ2 also come from the cascading of two differential equations and are deter-

mined by the following equality:

Lα2Lη2 = Lδ2Lλ. (5.30)

In (f), Lb′ = Lδ1Lb, La′ = Lα1Lλ, Ld′ = Lδ1 and Lc′ = Lα2Lλ. The system in (f)

results from the addition of two systems, whose step-by-step procedure is shown in

Figure 5.2.

Lη1 and Lη2 can be derived as follows. As

Lλ =
n∑

i=0

λi
di

dti
,

La =
n∑

i=0

ai(t)
di

dti
,

Lb =
n−1∑
i=0

bi(t)
di

dti
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where an = 1 and λn = 1, the system characterized by the differential operator Lη1

can be expanded as follows:

wy(t) =Lη1 [vy(t)]

=LλLa[vy(t)]− LaLλ[vy(t)]

=
n∑

i=0

λi
di

dti

[
n∑

j=0

aj(t)
djvy(t)

dtj

]
−

n∑
i=0

ai(t)
di

dti

[
n∑

j=0

λj
djvy(t)

dtj

]

=
n∑

i=0

n∑
j=0

i∑

k=0




i

k


 λi

di−kaj(t)

dti−k

dj+kvy(t)

dtj+k
−

n∑
i=0

n∑
j=0

i∑

k=0




i

k


 ai(t)

di−kλj

dti−k

dj+kvy(t)

dtj+k

=
n∑

i=0

n∑
j=0

i−1∑

k=0




i

k


 λi

di−kaj(t)

dti−k

dj+kvy(t)

dtj+k
+

n∑
i=0

n∑
j=0

λiai(t)
dj+ivy(t)

dtj+i

−
n∑

i=0

n∑
j=0

ai(t)λj
dj+ivy(t)

dtj+i

=
n∑

i=0

n∑
j=0

i−1∑

k=0




i

k


 λi

di−kaj(t)

dti−k

dj+kvy(t)

dtj+k
(5.31)

where vy(t) and wy(t) represent the input and the output of the system described by

Lη1 , respectively. Using the same procedure as in (5.31), the system characterized by

the differential operator Lη2 can be obtained as

wu(t) = Lη2 [vu(t)]

= LbLλ[vu(t)]− LλLb[vu(t)]

= −
n∑

i=0

n∑
j=0

i−1∑

k=0




i

k


 λi

di−kbj(t)

dti−k

dj+kvu(t)

dtj+k
. (5.32)

From (5.31) and (5.32), we have the following.

Remark 5.4 The time derivatives of the parameters, from the first order to the (n−
1)-th order time derivatives of ai(t) and bi(t), i = 0 : n, appear in the differential

operators Lη1 and Lη2. In other words, the modeling error η(t) depends on the time
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derivatives of parameters. Notice that, the modeling error does not depend on the

magnitude of the parameters, but depends on the variations of the parameters.

Remark 5.5 If these time derivatives are small enough, the modeling error can be

negligible. The system in such a case is usually called a “slow time-varying system”.

Remark 5.6 If the parameters are constant, Lη1 and Lη2 will become zero which in

turn means that η(t) = 0, that is, there is no modeling error. Actually, the system is

linear time invariant system in this case.

Remark 5.7 The Schwartz polynomial Λ(s) also affects the modeling error η(t).

5.1.2 Representation of time-varying parameters

To represent a time-varying parameter, consider the following result [130]:

Lemma 5.1 Let I be an open interval in R, and f be a p-times continuously differ-

entiable function of I into R; then, for any pair of points t0, t in I

f(t) = f(t0) +
(t− t0)

1!
f (1)(t0) + . . . +

(t− t0)
p

p!
f (p)(t0) +

∫ t

t0

(t− ξ)p+1

(p + 1)!
f (p+1)(ξ)dξ

(5.33)

where f (i)(·) denotes the i-th derivative of the function f(·).

As a result of Lemma 5.1, the time-varying function can be approximated locally at

t0 as a polynomial of time with constant coefficients, that is,

f(t) = a0(t0) + a1(t0)(t− t0) + . . . + ap(t0)(t− t0)
p, t ∈ [t0, t0 + T )

=

p∑
i=0

ai(t0)(t− t0)
i

(5.34)

where ai(t0)
4
=

1

i!
f (i)(t0), i = 0, . . . , p, f (i)(t0) is the i-th time derivative evaluated

at t = t0, and T is the window length that can be chosen. Assuming the window is
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Figure 5.1: Procedure for the derivation of the modeling error η(t) given by (5.24).
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sufficiently small, the last term of (5.33) is neglibible; that is,

δ
4
=

∫ t

t0

(t− ξ)p+1

(p + 1)!
f (p+1)(ξ)dξ

is negligible. Suppose that the (p + 1)-th derivative of f(t) is bounded, that is,

supt ‖f (p+1)(t)‖ ≤ cp, then δ can be bounded by

|δ| ≤ cp(t− t0)
p+1

(p + 1)!
≤ cpT

p+1

(p + 1)!
, t ∈ [t0, t0 + T ). (5.35)

The time derivative of δ can be obtained by using Leibnitz rule1 of differentiating

an integral with variable limits, and is given by

δ̇ =

∫ t

t0

(t− ξ)p−2

(p− 2)!
f (p)(ξ)dξ. (5.36)

With the knowledge of the bound on f (p)(t), one can obtain a bound on δ̇f (t, t0) as

|δ̇| ≤ cp(t− t0)
p−1

(p− 1)!
≤ cpT

p−1

(p− 1)!
, t ∈ [t0, t0 + T ). (5.37)

Therefore, it is possible to use (5.34) to approximate f(t) closely by choosing either

a higher order polynomial, that is, p large, or a small interval T such that t− t0 ≤ T ,

or both. If we choose t0 as a nondecreasing sequence of time instants with each

difference between adjacent t0 not more than T , in other words, partition time into

segments with the length of each segment not larger than T , then the time-varying

function f(t) can be approximated by a number of polynomials of time locally at each

t0 with constant coefficients ai; Figure 5.3 illustrates the idea, where fi(t), i = 0, 1, . . .,

locally represents the function f(t) by a polynomial in the i-th window. In general,

the coefficients ai between two intervals are different.

1Leibnitz rule

d

dt

[∫ ψ(t)

θ(t)

f(x, t)dx

]
=

∫ ψ(t)

θ(t)

∂f(x, t)
∂t

dx− dθ(t)
dt

f(θ(t), t) +
dψ(t)

dt
f(ψ(t), t)
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The function f(t) can also be approximated locally at tr 6= t0 by

f(t) = a0(tr) + a1(tr)(t− tr) + . . . + ap(tr)(t− tr)
p

=

p∑
i=0

ai(tr)(t− tr)
i

(5.38)

where ai(tr)
4
=

1

i!
f (i)(tr). To express each aj(tr) in terms of ai(t0), i = 0, . . . , p,

evaluate the j-th derivative of (5.38) and (5.34) at t = tr; notice that one can do this

under the assumption that tr − t0 ≤ T . The j-th derivative of (5.34) and (5.38) are:

f (j)(t) =

p∑
i=0

ai(t0)
i!

(i− j)!
(t− t0)

i−j, (5.39)

f (j)(t) =

p∑
i=0

ai(tr)
i!

(i− j)!
(t− tr)

i−j. (5.40)

Evaluating (5.39) and (5.40) at t = tr, we obtain

aj(tr) =

p∑
i=0

ai(t0)
i!

j!(i− j)!
(t− tr)

i−j. (5.41)

Therefore, the relationship between aj(tr), j = 0, . . . , p, and ai(t0), i = 0, . . . , p, is

given by 


a0(tr)

a1(tr)

...

ap(tr)




=




1 tr − t0 . . . (tr − t0)
p

0 1 . . . p(tr − t0)
p−1

...
...

. . .
...

0 0 . . . 1




︸ ︷︷ ︸
A(tr,t0)




a0(t0)

a1(t0)

...

ap(t0)




. (5.42)

5.1.3 Local polynomial approximation model

Applying the local polynomial approximation to each element of the time-varying

parameter vector θ∗(t) locally at t0, that is,

θ∗i (t) = θi0 + θi1(t− t0) + . . . + θip(t− t0)
p

= θ>i (t0)L(t, t0)

(5.43)
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Figure 5.3: Local polynomial approximation of the continuous function f(t).

where θi(t0)
4
=

[
θi0(t0) θi1(t0) . . . θip(t0)

]>
is the unknown constant vector and

L(t, t0)
4
=

[
1 (t− t0) . . . (t− t0)

p

]>
is a column vector. Notice that θ∗i (t) is the

original time-varying parameter that is being approximated by the time-polynomial

with coefficients θi0, θi1, . . . , θip. If tr,i is defined as the time instant at which the i-th

window of the local polynomial approximation begins, then t0 is given by the sequence

t0 = {tr,i} with i = 0, 1, . . . , and tr,i+1− tr,i = T . In the following tr,i is referred to as

the resetting time, which is the beginning of the i-th window of the local polynomial

approximation. Notice that θi(t0) is constant only within each interval [tr,i, tr,i+1)

and in general differs from one interval from another for a time-varying parameter.

The parameter vectors at two adjacent resetting times, that is, θi(tr,i) and θi(tr,i+1),

are related by (5.42). The polynomial order p can be chosen for different θ∗i (t) based

on some a priori knowledge; for convenience, p is chosen to be the same for all the

time-varying parameters. Therefore, the original parameter vector θ∗(t) is related to
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the approximation polynomial coefficient vector θ(t0) by

θ∗(t) =




1 . . . (t− t0)
p

1 . . . (t− t0)
p

. . .

1 . . . (t− t0)
p




θ(t0)

=




L>(t, t0)

L>(t, t0)

. . .

L>(t, t0)




θ(t0)

4
= Λ(t, t0)θ(t0)

(5.44)

where Λ(t, t0) is an m×m(p + 1) matrix. Equation (5.1) and the resetting times can

be written as

z(t) = θ∗>(t)φ(t) = θ>(t0)Ψ(t, t0), (5.45a)

t0 = {tr,i}, i = 0, 1, 2, . . . , (5.45b)

where Ψ(t, t0) = Λ>(t, t0)Φ(t). As θ(t0) is now a piecewise constant vector, the

problem of estimating the time-varying parameter in (5.1) can be transformed to

that of estimating the constant parameter in (5.45a) based on the observations within

each interval [t0, t0 + T ). Consequently, various estimation algorithms designed for

estimating constant parameters may be employed with appropriate modifications.

By using (5.42), θ(tr,i+1) and θ(tr,i) are related by the following equation:

θ(tr,i+1) =




A(tr,i+1, tr,i)

A(tr,i+1, tr,i)

. . .

A(tr,i+1, tr,i)




θ(tr,i)

4
= B(tr,i+1, tr,i)θ(tr,i).

(5.46)

125



Notice that θ(tr,i) is constant in the i-th interval, that is, θ(τ) = θ(tr,i) for all τ ∈
[tr,i, t

−
r,i+1]. Equation (5.46) will form the basis for resetting the initial value of the

estimate at the beginning of each interval, and equation (5.45a) will be used to identify

the constant coefficients of the polynomial in each time interval. In the next section,

the least-squares and the gradient algorithms are modified to estimate the time-

varying parameter vector by introducing a resetting scheme at the beginning of each

interval; the resetting scheme ensures that the estimate of the time-varying parameter

vector, θ̂∗(t), is continuous consistent with the assumptions on the true time-varying

parameters. Stability properties of each identification algorithm with the proposed

resetting scheme is shown and discussed.

5.1.4 Time-varying parameter estimation algorithms

Based on the local polynomial approximation described in the previous section,

modified versions of the two classical algorithms, the least-squares and the gradient

algorithms, are given for identification of time-varying parameters.

Modified least-squares with covariance resetting

Least-squares algorithm with covariance resetting has been widely used for esti-

mating an unknown constant parameter vector, β, for the following model:

y(t) = β>φ(t) (5.47)

where φ(t) is a known signal vector. The estimate of β, β̂, is given by minimizing the

following integral cost function

J(β) =
1

2

∫ t

0

(y(τ)− β>(t)φ(τ))2dτ, (5.48)
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that is, β̂ = arg minβ J(β). The minimization of (5.48) with covariance resetting

results in the following estimation algorithm [33]:

˙̂
β =

Pφ(y − β̂T φ)

1 + φ>φ
(5.49a)

Ṗ = −Pφφ>P

1 + φ>φ
, P (t+cr) = ρ0I (5.49b)

where tcr is the time at which λmin(P (t)) ≤ ρ1, λmin(·) denotes the smallest eigenvalue

of a matrix, I is the identity matrix, and ρ0 > ρ1 > 0 are some design scalars.

In the following, a modified version of the above algorithm where, in addition to

the covariance resetting, the initial value of the estimate is reset at the beginning of

each time window of the local polynomial approximation. For the time-varying model

given by (5.45a), choose the cost function as follows:

J(θ̂) =
1

2

∫ t

0

ε2(t, τ)m2(τ)dτ (5.50)

where

ε(t, τ) =
z(τ)− θ̂>(t)Ψ(τ)

m2(τ)

is the normalized estimation error, m2(τ) = 1 + n2
s and n2

s = Ψ>(τ)Ψ(τ). The adap-

tation law is chosen as follows:

˙̂
θ(t) = P (t)ε(t, t)Ψ(t) (5.51a)

Ṗ (t) = −PΨΨ>P

m2
, P (t0) = ρ0I (5.51b)

where θ̂(t) is the estimate of θ(t0). Further, the covariance matrix is reset as follows:

P (t) = ρ0I, if λmin(P (t)) ≤ ρ1. (5.52)

Equation (5.52) ensures that the covariance matrix is does not get too close to singu-

larity, that is, the covariance matrix is reset within each time window if its minimum

eigenvalue becomes less than ρ1. At the beginning of each window the initial value

of the estimate is reset according to the following equation:

θ̂(tr, i+1) = B(tr,i+1, tr,i)θ̂(t
−
r, i+1). (5.53)
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The motivation for resetting the initial value at the beginning of each interval by

(5.53) is the following: Since the true parameter θ∗i (t) is continuous, the estimate,

θ̂∗i (t), should also be continuous; (5.53) guarantees this at the resetting points tr,i. The

following shows the continuity of θ̂∗(t) at the resetting point. Just before resetting

for the (i + 1)-th interval, using (5.44) for the estimate, we obtain

θ̂∗(t−r,i+1) = Λ(t−r,i+1, tr,i)θ̂(t
−
r,i+1) (5.54)

At the resetting point, again using (5.44) for the estimate with t0 = tr,i+1,

θ̂∗(tr,i+1) = Λ(tr,i+1, tr,i+1)θ̂(tr,i+1)

= Λ(tr,i+1, tr,i+1)B(tr,i+1, tr,i)θ̂(t
−
r,i+1)

where (5.53) has been used to obtain the second equality. Notice that

Λ(tr,i+1, tr,i+1) = diag(e>1 , e>1 , . . . , e>1 )

where e>1 =

[
1 0 . . . 0

]
. Also, from the definition of B(tr,i+1, tr,i) given by (5.46),

we obtain

Λ(tr,i+1, tr,i+1)B(tr,i+1, tr,i) = diag
(
e>1 A(tr,i+1, tr,i), e

>
1 A(tr,i+1, tr,i), . . . , e

>
1 A(tr,i+1, tr,i)

)

= Λ(tr,i+1, tr,i).

Therefore, (5.55) becomes

θ̂∗(tr,i+1) = Λ(tr,i+1, tr,i)θ̂(t
−
r,i+1) (5.55)

From (5.54) and (5.55), since Λ(t, t0) is a continuous function of t, it can be seen that

θ̂∗(t−r,i+1) = θ̂∗(tr,i+1).

The following theorem gives the stability of the modified least-squares algorithm

with covariance resetting for the time-varying model.

Theorem 5.1 The least-squares algorithm given by (5.51), together with the covari-

ance resetting given by (5.52) and the resetting of the estimate, θ̂(t), at the beginning

of each interval, given by (5.53), has the following properties:
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(i) ε, εns, θ̂,
˙̂
θ ∈ L∞.

(ii) ε, εns,
˙̂
θ ∈ L2.

(iii) If ns, Ψ ∈ L∞ and Ψ satisfies the following persistence of excitation (PE) con-

dition:

α1T0I ≥
∫ t+T0

t

Ψ(τ)Ψ>(τ)dτ ≥ α0T0I, ∀t ≥ 0 and T0 < T, (5.56)

for some 0 < α0 ≤ α1, then θ̂(t) converges exponentially to θ(t0).

(iv) The estimate of θ∗(t), θ̂∗(t), is continuous and bounded. Furthermore, if Ψ

satisfies the PE condition given in (iii), the estimation error θ̃∗(t) exponentially

converges to zero within each time interval.

Proof. Consider the Lyapunov function candidate

V (θ̃(t)) =
θ̃>(t)P−1(t)θ̃(t)

2
. (5.57)

It can be shown that, within an interval (t ∈ [t0, t0 + T )), the derivative of the

Lyapunov function candidate satisfies:

V̇ (t) = −ε2m2

2
≤ 0. (5.58)

Thus, one can can arrive at (i), (ii) and (iii) of the theorem as given in [33]. Notice

that in (iii) there is an additional constraint in the PE condition (5.56), that is,

T0 < T . This is necessary for the coefficients of the local polynomial approximation

to converge to their true values within any interval. The following gives the proof of

(iv).

The estimate of θ∗(t) for t ∈ [t0, t0 + T ), θ̂∗(t), is given by

θ̂∗(t) = Λ(t, t0)θ̂(t). (5.59)
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Hence,

‖θ̂∗(t)‖ ≤ ‖Λ(t, t0)‖ ‖θ̂(t)‖ ≤
√

λmax(Λ>(t, t0)Λ(t, t0)) ‖θ̂(t)‖

≤ κ(T )‖θ̂(t)‖ (5.60)

where λmax(Λ
>(t, t0)Λ(t, t0)) = 1+(t−t0)

2+. . .+(t−t0)
2p is the maximum eigenvalue

of Λ>(t, t0)Λ(t, t0) and κ(T ) =
√

1 + T 2 + . . . + T 2p. The boundedness of θ̂∗(t) follows

from the fact that θ̂(t) is bounded. Also, taking the time-derivative of (5.59), we

obtain

˙̂
θ∗(t) = Λ̇(t, t0)θ̂(t) + Λ(t, t0)

˙̂
θ(t). (5.61)

˙̂
θ∗(t) is bounded within each time interval because Λ̇(t, t0) and Λ(t, t0) are bounded

within each time interval, and θ̂(t) and
˙̂
θ(t) are bounded (from (i)). Hence, θ̂∗(t)

is continuous within each time interval. Recall that the continuity of θ̂∗(t) at each

resetting point is guaranteed by the resetting of the estimate at the beginning of

each time interval according to (5.53). Therefore, it follows that θ̂∗(t) is uniformly

continuous.

Subtracting (5.44) from (5.59) yields

θ̃∗(t) = Λ(t, t0)θ̃(t). (5.62)

Therefore, the estimation error, θ̃∗(t), is bounded by

‖θ̃∗(t)‖ ≤ κ(T )‖θ̃(t)‖. (5.63)

Recall that, from (iii), θ̃(t) exponentially converges to zero, which implies that θ̃∗(t)

exponentially converges to zero within each interval.

Rate of convergence: In the following an estimate of the rate of convergence of the

parameters is derived. The least-squares algorithm, (5.51), satisfies [33]:

θ̃(t) = P (t)P−1(t0)θ̃(t0), t ∈ [t0, t0 + T ) (5.64)
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and

P (t) ≤
[
(t− t0 − T0)α0

]−1

m̄I, ∀t ≥ t0 + T0 (5.65)

where m̄ = supt m
2(t). So, the worst case bound of θ̃(t) is given by

‖θ̃(t)‖ ≤ ‖P (t)‖ ‖P−1(t0)‖ ‖θ̃(t0)‖

≤
[
ρ0(t− t0 − T0)α0

]−1

m̄‖θ̃(t0)‖. (5.66)

At the end of the i-th interval, that is, t = iT + T−, we have

‖θ̃(iT + T−)‖ ≤
[
ρ0(T − T0)α0

]−1

m̄‖θ̃(iT )‖. (5.67)

From (5.62), we have

‖θ̃∗(iT + T )‖ ≤ κ(T )‖θ̃(iT + T−)‖

≤ κ(T )
[
ρ0(T − T0)α0

]−1

m̄‖θ̃(iT )‖. (5.68)

Notice that, from (5.67) and (5.68), faster convergence of the estimate of the time-

varying parameter vector, θ̂∗(t), and the vector of coefficients of the polynomial, θ̂(t),

within a time interval depends on how small T0 is with respect to T . Further, it also

depends on the persistency of excitation level of the signal vector Ψ(t) (α0) and ρ0.

Modified gradient algorithm

The gradient algorithm for the time-varying model is given by

˙̂
θ(t) = ΓεΨ, t ∈ [tr,i, tr,i+1), i = 0, 1, 2, . . . , (5.69a)

θ̂(tr, i+1) = B(tr,i+1, tr,i)θ̂(t
−
r, i+1), if t = tr,i+1, (5.69b)

where Γ is a constant symmetric positive definite gain matrix. The stability of the

modified gradient algorithm can be proved by using a similar procedure as that of the

modified least-squares with covariance resetting algorithm with the following Lya-

punov function candidate:

V (θ̃(t)) =
1

2
θ̃(t)>Γ−1θ̃(t). (5.70)
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With the adaptation law (5.69a) and the resetting algorithm (5.69b), the modified

gradient algorithm also has the same properties, (i)− (iv), as given by Theorem 5.1.

The stability analysis of the gradient algorithm is similar to that of the least-squares

with covariance resetting and is omitted here.

5.1.5 Simulations

Example 5.1 Consider the following first-order system given in [99]:

z(t) = θ∗1(t)uf (t) + θ∗2(t)zf (t) + n(t) = θ∗>(t)φ(t) + n(t)

where θ∗(t) =

[
θ∗1(t) θ∗2(t)

]>
, φ(t) =

[
uf (t) zf (t)

]>
, and n(t) is the noise

introduced into the system. The filtered input and output signals, uf (t) and zf (t), are

given by

u̇f (t) = −300uf (t) + 300u(t), żf (t) = −300zf (t) + 300z(t)

where u(t) and z(t) are the input and output of the plant, respectively. The input u(t)

is chosen to be a random signal with zero mean and a variance of 0.01.

In the simulation, θ∗1(t) is approximated by a sixth order polynomial of time, and

θ∗2(t) is approximated by first order polynomial of time. The following values are used

in the simulations:

T = 0.1 seconds, ρ0 = 2400, ρ1 = 0.005, Γ = 2400I.

The following five sets of simulations are shown for different sets of time-varying

parameters.

Figure 5.4 through Figure 5.8 show the results corresponding to the parameter

sets 1 through 5 shown in the table. In each figure, (a) and (b) show the estimation

results for the modified least-squares with covariance resetting and (c) and (d) show

results for the modified gradient algorithm. Simulation results show that the estimate
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Set θ∗1(t) θ∗2(t) n(t)

1 sin(πt/10) 0.5 0

2 sin(πt) 0.5 0

3 sin(πt/10) 0.5 N(0, 0.01)

4 sin(πt) 0.5 N(0, 0.01)

5 sin(πt) + sin(πt/5) 0.5 N(0, 0.01)

Table 5.1: Parameters and noises used in simulations

converges to a small region around the true value for both the least-squares and the

gradient algorithms.

Without the effect of noise in the model, that is, n(t) = 0, the the modified gradi-

ent algorithm gives better estimation of parameters than the modified least-squares

algorithm. This is because the adaptation of the estimated parameters is driven by

instantaneous output error in the gradient algorithm. However, the least-squares al-

gorithm focuses on minimizing an integral function of the normalized output error.

Consequently, the least-squares algorithm responds slower to parameter variations

than the gradient algorithm. In the presence of noise, modified least-squares algo-

rithm gives smoother estimates than the modified gradient algorithm. Simulation

results also show that both algorithms provide stable estimation of time-varying pa-

rameters.
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Figure 5.4: Simulation result of Example 5.1. The top two plots, (a) and (b), show the

results by using modified least-squared algorithm, and the bottom two plots, (c) and

(d), show the results by using the modified gradient algorithm. The true parameters

are: θ∗1(t) = sin(πt/10) and θ∗2(t) = 0.5. n(t) = 0.
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Figure 5.5: Simulation result of Example 5.1. The top two plots, (a) and (b), show the

results by using modified least-squared algorithm, and the bottom two plots, (c) and

(d), show the results by using the modified gradient algorithm. The true parameters

are: θ∗1(t) = sin(πt) and θ∗2(t) = 0.5. n(t) = 0.
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Figure 5.6: Simulation result of Example 5.1. The top two plots, (a) and (b), show the

results by using modified least-squared algorithm, and the bottom two plots, (c) and

(d), show the results by using the modified gradient algorithm. The true parameters

are: θ∗1(t) = sin(πt/10) and θ∗2(t) = 0.5. n(t) = N(0, 0.01).
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Figure 5.7: Simulation result of Example 5.1. The top two plots, (a) and (b), show the

results by using modified least-squared algorithm, and the bottom two plots, (c) and

(d), show the results by using the modified gradient algorithm. The true parameters

are: θ∗1(t) = sin(πt) and θ∗2(t) = 0.5. n(t) = N(0, 0.01).
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Figure 5.8: Simulation result of Example 5.1. The top two plots, (a) and (b), show the

results by using modified least-squared algorithm, and the bottom two plots, (c) and

(d), show the results by using the modified gradient algorithm. The true parameters

are: θ∗1(t) = sin(πt) + sin(πt/5) and θ∗2(t) = 0.5. n(t) = N(0, 0.01).
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5.2 Adaptive control of mechanical systems with time-varying

parameters and disturbances

In this section, a new robust adaptive control algorithm for mechanical systems

with time-varying parameters and/or time-varying disturbances is proposed and in-

vestigated. The proposed method does not assume any structure to the time-varying

parameter or disturbance. The adaptive law for unknown time-varying parameters

and time-varying disturbance is based on the modified gradient algorithm proposed in

Section 5.1. A novel experiment is designed using a two-link mechanical manipulator

to investigate the proposed algorithm experimentally. Simulation and experimental

results are discussed. The development presented in this section is presented in the

paper [104].

The contributions of the section can be summarized by the following: (1) Design of

a stable adaptive controller for mechanical systems with time-varying parameters and

disturbances using local polynomial approximations, and (2) experimental evaluation

of the adaptive controller, and its comparison with an ideal non-adaptive controller.

5.2.1 Dynamics of mechanical systems with time-varying parameters and

disturbances

The dynamics of an n degree-of-freedom mechanical system with time-varying

parameters and disturbances [109] is given by

M(q, θ∗)q̈ + C(q, q̇, θ∗)q̇ + F (q, θ̇∗)q̇ + g(q, θ∗) = τ + d(t) (5.71)

where q ∈ Rn is the vector of generalized coordinates, M(q, θ∗) ∈ Rn×n is the inertia

matrix, C(q, q̇, θ∗) ∈ Rn×n is the matrix composed of Coriolis and centrifugal terms,

g(q, θ∗) ∈ Rn is the gravity vector, F (q, θ̇∗) ∈ Rn×n is a symmetric matrix, which is a
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consequence of the symmetry of the inertia matrix, θ∗ ∈ Rm is the vector of constant

and/or time-varying parameters, τ ∈ Rn is the vector of control inputs, and d(t) ∈ Rn

is the vector of time-varying disturbances.

The properties of the dynamic model (5.71) are given in the following:

Property P5.1 The inertia matrix, M(q, θ∗), of the time-varying mechanical sys-

tem is a symmetric positive definite matrix. Assuming θ∗(t) is bounded, M(q, θ∗) is

bounded from above and below for all system configurations.

Property P5.2 F (q, θ̇∗) is a symmetric matrix, which is a consequence of the sym-

metry of the inertia matrix.

Property P5.3 The matrix Ṁ(q, θ∗) − 2C(q, q̇, θ∗) − F (q, θ̇∗) is skew-symmetric.

Notice that the skew-symmetry property for the time-varying case is different from

that of the time-invariant case [131, 105, 109].

Property P5.4 The dynamic model, (5.71), is linear in the unknown parameters,

θ∗, θ̇∗, that is,

M(q, θ∗)q̈ + C(q, q̇, θ∗)q̇ + F (q, θ̇∗)q̇ + g(q, θ∗) = Y1(q, q̇, q̈)θ
∗ + Y2(q, q̇)θ̇

∗ (5.72)

where Y1(q, q̇, q̈) and Y2(q, q̇) are the regressor matrices corresponding to θ∗(t) and

θ̇∗(t), respectively.

5.2.2 Adaptive control design

Applying the local polynomial approximation method introduced in Chapter 5.1,

we can represent each element of the time-varying parameter vector θ∗(t) locally at

t0 as follows

θ∗i (t) = L(t, t0)θi(t0) + δθ∗i (t, t0) (5.73)
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where θi(t0)
4
=

[
θi0(t0) θi(p−1)(t0) . . . θip(t0)

]>
is the unknown constant vec-

tor and L(t, t0)
4
=

[
1 (t− t0) . . . (t− t0)

p−1

]>
is a row vector. Notice that

θ∗i (t) is the original time-varying parameter that is being approximated by the time-

polynomial with coefficients θi0, θi1, . . . , θi(p−1). Therefore, the original parameter vec-

tor θ∗(t) is represented by the polynomial coefficient vector θ(t0) plus residue vector

δθ∗(t, t0) by

θ∗(t, t0) =




L(t, t0)

L(t, t0)

. . .

L(t, t0)




θ(t0) + δθ∗(t, t0)

4
= Λ(t, t0)θ(t0) + δθ∗(t, t0)

(5.74)

where Λ(t, t0) is an m ×mp matrix, θ(t0)
4
=

[
θ>1 (t0) . . . θ>i (t0) . . . θ>m(t0)

]>
∈

Rmp×1 and δθ∗(t, t0)
4
=

[
δθ∗1 (t, t0) . . . δθ∗i (t, t0) . . . δθ∗m(t, t0)

]>
is the m-vector

consisting of the residue from approximation of each parameter. The time derivative

of θ∗(t) can be represented by

θ̇∗(t, t0) = Λ̇(t, t0)θ(t0) + δ̇θ∗(t, t0). (5.75)

Since each component of the vectors δθ∗(t, t0) and δ̇θ∗(t, t0) is bounded, they are

bounded vectors; assume that the bounds are given by

‖δθ∗(t, t0)‖ ≤ kδθ∗ , ∀t ≥ 0, (5.76)

‖δ̇θ∗(t, t0)‖ ≤ kδ̇θ∗ , ∀t ≥ 0. (5.77)

As θ(t0) is now a piecewise constant vector, the problem of estimating the time-

varying parameter θ∗(t) in the controller design for (5.71) can be transformed to that

of estimating the constant parameter θ(t0) in (5.74) based on the observations within
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each interval [t0, t0 + T ). Consequently, various estimation algorithms designed for

estimating constant parameters may be employed with appropriate modifications. By

using (5.42), θ(tr,i+1) and θ(tr,i) are related by the following equation:

θ(tr,i+1) =




A(tr,i+1, tr,i)

A(tr,i+1, tr,i)

. . .

A(tr,i+1, tr,i)




θ(tr,i)

4
= B(tr,i+1, tr,i)θ(tr,i).

(5.78)

In the following of this section, an adaptive control algorithm is proposed and its

stability properties are investigated. A modified gradient projection algorithm given

by (5.69) in Chapter 5.1 is used to estimate the time-varying parameter vector.

Consider the trajectory tracking problem for the mechanical system, (5.71), with

time-varying parameters and disturbances. Let qd(t) be the desired trajectory. It is

assumed that qd(t) is twice continuously differentiable. Let e = q(t) − qd(t) be the

joint tracking error, and ev = ė + Γe be the reference velocity error. The following

notations will be used: (̂∗) is the estimate of (∗), and (̃∗) = (̂∗)− (∗) is the estimation

error of (∗).
Consider the control law, τ , given by

τ =−Kvev + M(q, θ̂∗)q̈r + C(q, q̇, θ̂∗)q̇r + F (q, φ̂∗)
q̇ + q̇r

2
+ g(q, θ̂∗) + δτ (5.79)

where q̇r = q̇d − Γe, Kv and Γ are positive definite gain matrices, δτ is the additional

robust control term which will be designed later, and

θ̂∗(t, t0) = Λ(t, t0)θ̂(t0), (5.80)

φ̂∗(t, t0) = Λ̇(t, t0)θ̂(t0), (5.81)

where θ̂(t0) will be generated by the adaptation law. Subtracting (5.74) and (5.75)
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from (5.80) and (5.81), respectively, results in

θ̃∗(t, t0) = Λ(t, t0)θ̃(t0)− δθ∗(t, t0), (5.82)

φ̃∗(t, t0) = Λ̇(t, t0)θ̃(t0)− δ̇θ∗(t, t0), (5.83)

where φ̃∗(t, t0)
4
= φ̂∗(t, t0)− θ̇∗(t, t0). Substitution of the control input (5.79) into the

dynamic equation (5.71) and simplifying using the linear parameterization property,

Property P5.4, we obtain the error dynamics in terms of ev as

M(q, θ∗)ėv + C(q, q̇, θ∗)ev +
1

2
F (q, θ̇∗)ev + Kvev

= M(q, θ̃∗)q̈r + C(q, q̇, θ̃∗)q̇r + F (q, φ̃∗)
q̇ + q̇r

2
+ g(q, θ̃∗) + δτ + d(t)

= Y1(q, q̇, q̇r, q̈r)θ̃
∗ + Y2(q, q̇, q̇r)φ̃

∗ + δτ + d(t)

(5.84)

where

Y1(q, q̇, q̇r, q̈r)θ̃
∗ = M(q, θ̃∗)q̈r + C(q, q̇, θ̃∗)q̇r + g(q, θ̃∗), (5.85)

Y2(q, q̇, q̇r)φ̃
∗ = F (q, φ̃∗)

q̇ + q̇r

2
. (5.86)

Substituting θ̃∗(t, t0) and φ̃∗(t, t0) given by (5.82) and (5.83), respectively, into (5.84)

yields

M(q, θ∗)ėv + C(q, q̇, θ∗)ev +
1

2
F (q, θ̇∗)ev + Kvev

= Y1(q, q̇, q̇r, q̈r)(Λ(t, t0)θ̃(t0)− δθ∗(t, t0)) + δτ + d(t)

+ Y2(q, q̇, q̇r)(Λ̇(t, t0)θ̃(t0)− δ̇θ∗(t, t0))

= Y (q, q̇, q̇r, q̈r)θ̃(t0) + δτ − Y1(q, q̇, q̇r, q̈r)δθ∗(t, t0)

− Y2(q, q̇, q̇r)δ̇θ∗(t, t0) + d(t)

(5.87)

where Y (q, q̇, q̇r, q̈r) = Y1(q, q̇, q̇r, q̈r)Λ(t, t0) + Y2(q, q̇, q̇r)Λ̇(t, t0).

In the following, for brevity, all the arguments of vectors and matrices are omitted

whenever there is no confusion. Consider the following Lyapunov function candidate

during each interval, that is, t ∈ [tr,i, tr,i+1),

V =
1

2
e>v M(q, θ∗)ev +

1

2
θ̃>Γ−1

1 θ̃. (5.88)
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where Γ1 = Γ>1 > 0. The time derivative of V along the trajectories of (5.87) is

V̇ = e>v M(q, θ∗)ėv +
1

2
e>v Ṁ(q, θ∗)ev + θ̃>Γ−1

1
˙̃
θ

= −e>v Kvev + e>v Y θ̃ + e>v (δτ − Y1δθ∗ − Y2δ̇θ∗ + d) + θ̃>Γ−1
1

˙̃
θ (5.89)

where the Property P5.3 is applied.

To estimate the unknown parameter vector θ̂, we use the gradient projection

algorithm given in [132], which we briefly illustrate in the following. Consider a

convex parameter set Π given by

θ̂ =

[
θ̂1 . . . θ̂i . . . θ̂mp

]>
∈ Π ⇐⇒ |θ̂i − ρi| < σi, ∀i ∈ {1,mp} (5.90)

with ρi and σi some given real numbers. Consider the function

P(θ̂) =
2

ε

[
mp∑
i=1

∣∣∣∣∣
θ̂i − ρi

σi

∣∣∣∣∣

q

− 1 + ε

]
(5.91)

where 0 < ε < 1 and q ≥ 2. Now, consider the “smooth projection” Proj(·), which

will be used to estimate θ̂ while maintaining it in Π:

Proj(θ̂, y) =





y, if P(θ̂) < 0.

y, if P(θ̂) = 0 and ∇P
>y ≤ 0.

y − P(θ̂)∇P∇P
>

‖∇P‖2
y, otherwise.

(5.92)

where ∇P =

[
∂P(θ̂)

∂θ̂

]>
is a column vector. Based on the smooth projection defined

above, θ̂ is estimated by

˙̂
θ = Γ1Proj(θ̂,−Y >ev). (5.93)

With the projection algorithm given by (5.93), we have

e>v Y θ̃ + θ̃>Γ−1
1

˙̃
θ = θ̃>(Y >ev + Proj(θ̂,−Y >ev)) ≤ 0. (5.94)

Substituting (5.94) into (5.89) results in

V̇ ≤ −e>v Kvev + e>v (δτ − Y1δθ∗ − Y2δ̇θ∗ + d). (5.95)
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Notice that the Lyapunov function candidate, (5.88), and the adaptation law,

(5.93), are designed for each time interval, that is, t ∈ [tr,i, tr,i+1). At the beginning of

each interval, say (i+1)-th interval, the initial value of the estimate is reset according

to the following:

θ̂(tr, i+1, tr,i+1) = B(tr,i+1, tr,i)θ̂(t
−
r, i+1, tr,i). (5.96)

The additional robust control term, δτ , in (5.95) is chosen as follows:

δτ =




−

(
kδθ∗‖Y1‖+ kδ̇θ∗‖Y2‖+ kd

) ev

‖ev‖ , if ‖ev‖ ≥ ε0,

− 1

ε0

(
kδθ∗‖Y1‖+ kδ̇θ∗‖Y2‖+ kd

)
ev, if ‖ev‖ < ε0

(5.97)

where ε0 > 0 and kd = supt≥0 d(t). It can be shown that the system (5.87) is uniformly

ultimately bounded [133], and ev converges in finite time to the set Π1 defined by

Π1
4
= {ev : ‖ev‖ ≤ ε0}. (5.98)

Since ev(t) is bounded and ev = ė+Γe, the tracking error, e(t), and its time derivative,

ė(t), are also uniformly ultimately bounded. Therefore, q(t), q̇(t), q̇r(t) and q̈r(t) are

bounded, since e(t), ė(t), qd(t), q̇d(t) and q̈d(t) are bounded. The estimated parameters

θ̂∗(t) and φ̂∗(t) are also bounded because θ̂(t) and Λ(t, t0) are bounded. From (5.79),

the control input τ(t) is bounded as it is composed of all bounded signals. The

following theorem summarizes the results of the analysis.

Theorem 5.2 For the time-varying mechanical system given by (5.71), the proposed

adaptive control law given by (5.79), the parameter estimation algorithms given by

(5.93), the resetting scheme given by (5.96), and with the knowledge of the bounds

given in (5.76) and (5.77), the control input τ(t), the estimated time-varying param-

eters θ̂∗(t) and
˙̂
θ∗(t) and the tracking error e(t) are uniformly ultimately bounded.

Remark 5.8 In the “ideal” case, that is, the unknown parameter vector, θ∗(t), is

constant and the disturbance d(t) = 0, we have δθ∗ = 0, δ̇θ∗ = 0. The time derivative
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of the Lyapunov function candidate given by (5.95) becomes

V̇ ≤ −e>v Kvev + e>v δτ = −e>v Kvev ≤ 0. (5.99)

Therefore, asymptotic convergence of e(t) to zero is achieved. Thus, the proposed

adaptive algorithm can be applied to control of mechanical systems irrespective of

whether they involve time-varying parameters or not.

Remark 5.9 The disturbance vector d(t) can also be approximated locally by polyno-

mials of time. The control input τ(t) is in the same form as (5.79) except that kd in

(5.97) is replaced by the upper bound of the approximation error δd(t, t0) given by the

following equation:

d(t) = Λ′(t, t0)θd(t0) + δd(t, t0)

where θd(t0) is the coefficient vector and Λ′(t, t0) is the matrix that depends on the

time interval for approximation. The vector θd(t0) can be estimated in each interval.

5.2.3 Experiments

To experimentally investigate the proposed control algorithm, a time-varying ex-

periment is designed for a two-link robot, which consists of a two-axis direct drive

manipulator as shown in Figure 4.5. The direct drive manipulator operates in the

absence of the undesirable factors of mechanical backlash and gear train compliance.

Each axis of the manipulator is driven by an NSK Megatorque direct drive servo-

motor.

The NSK-Megatorque motor system consists of a high torque direct drive brushless

actuator, a high-resolution brushless resolver, and a heavy duty precision bearing.

The servo-motors are capable of up to 3 revolutions per second maximum velocity

and position feedback resolution of up to 156, 400 counts per revolution. The base

motor delivers up to 240 N-m of rated torque output, and the elbow motor produces up
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to 40 N-m rated torque output. The real-time system associated with the direct drive

manipulator consists of a host computer, a servo DSP card, and a DSP associated

with the sensors. For a complete description of the experimental platform we refer

the reader to [109].

The elbow link of the planar manipulator is used to generate a time-varying dis-

turbance to the base link. This is done as follows. A constant torque is applied to

the elbow link; this has an effect of generating a time-varying payload to the base

link; that is, due to the rotation of the elbow link the mass moment of inertia of

the base link is varying with time. Further, since the dynamics of both the links is

coupled, the motion of the elbow link also causes a disturbance to the base link that

is time-varying. Then, the goal is to control the base link, which has a time-varying

inertia and is acted on by time-varying disturbances, by using the proposed adaptive

controller. The procedure of obtaining the time-varying dynamics for the base link is

explained in the following section.

Generation of time-varying dynamics for the base link

The dynamics of the two-link manipulator is given by

M(q)q̈ + C(q, q̇)q̇ = τ − ff (5.100)

where

M(q) =




p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2


 , C(q, q̇) =



−p3q̇2s2 −p3(q̇1 + q̇2)s2

p3q̇1s2 0


 ,

q1 and q2 are angular positions of the base and the elbow link, respectively, τ =

[τ1, τ2]
> is the vector of motor torques, ff = [f1, f2]

> is the vector of friction torques,

c2 = cos(q2) and s2 = sin(q2), and p1, p2 and p3 are coupled inertial parameters. The

true values of the coupled inertial parameters without any payload on the elbow link

are p1 = 3.4, p2 = 0.2 and p3 = 0.15.
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Reducing the two second-order equations given by (5.100) into a single equation

results in

(p1p2 − p2
2 − p2

3c
2
2)q̈1 − p3(2p2q̇1q̇2 + p2q̇

2
1 + p2q̇

2
2 + p3c2q̇

2
1)s2

=p2(τ1 − f1)− (p2 + p3c2)(τ2 − f2).

(5.101)

Equation (5.101) can be rewritten as

I(t)q̈1 + İ(t)q̇1 + f1 = τ1 + d(t) (5.102)

where

I(t) =p1 − p2 − p2
3

p2

c2
2, (5.103)

d(t) =p3

(
(q̇1 + q̇2)

2 +
p3

p2

c2q̇
2
1 +

2p3

p2

c2q̇1q̇2

)
s2 −

(
1 +

p3

p2

c2

)
(τ2 − f2), (5.104)

f1 =fv q̇1 + fcsgn(q̇1), (5.105)

where fc and fv are the Coulomb and viscous friction coefficients, respectively. Equa-

tion (5.102) represents the dynamics of a single degree-of-freedom system with time-

varying inertia (I(t)) and time-varying disturbance (d(t)). By choosing τ2, one can

introduce a desired I(t) and d(t). In practice, due to the coupling between the base

link and the elbow link, the motion of the base link affects the motion of the elbow

link, and consequently affects I(t) and d(t). However, a high constant torque applied

to the elbow link will generate a high velocity, almost constant, rotation of the elbow

link; then, the effect of the motion of the base link on I(t) and d(t) is relatively small,

and thus can be neglected.

Experimental conditions

The desired trajectory for the angular position of the base link is chosen to be

sinusoidal with an amplitude of 0.5 radians and a frequency of 0.5 Hz; that is, qd1(t) =

0.5 sin(πt). The elbow link is used to generate a time-varying disturbance and time-

varying moment of inertia to the base link. Data from two sets of experiments is
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shown in this paper; a constant torque of 4 N-m for the elbow link is used as input

in the first case, and a constant torque of 3 N-m is used in the second case. With

the applied torques of 4 N-m and 3 N-m, the elbow link will rotate with an angular

velocity of around 20 rad/s and 6 rad/s, respectively, after reaching the steady state.

A control sampling period of 2 milli-seconds is chosen in all the experiments.

To track the desired trajectory, the torque input to the base link, τ1, is designed

using the proposed adaptive controller (5.79). The parameters I(t), d(t), fc and fv

are estimated by Î0 + (t − t0)Î1, d̂0 + (t − t0)d̂1, f̂c and f̂v, respectively. Hence, the

parameter vector which is estimated in the experiment is

θ =

[
I0 I1 d0 d1 fv fc

]>
.

The window width for local polynomial approximation is chosen to be 0.1 seconds,

that is, T = 0.1 seconds. The gain values used in the experiments are

Γ = 50, Kv = 100, Γ1 = diag(20, 20, 100, 1000, 5, 10).

The constants in the robust control term δτ are chosen to be

kδθ∗ = 0.05, kδ̇θ∗ = 16, kd = 20, ε0 = 0.1.

The initial values for the estimate vector θ̂ is chosen to be

θ̂(0) =

[
3.4 0 0 0 0 0

]>
.

The following bounds for the estimated parameters are chosen in the projection al-

gorithm:

Î0 ∈ [1, 10], Î1 ∈ [−10, 10], d̂0 ∈ [−100, 100], d̂1 ∈ [−2000, 2000].

Experimental results

The data shown in all the figures corresponds to u2(t) = 4 N-m during the first 16

seconds and u2(t) = 3 N-m for the remaining 14 seconds; see bottom plot of Figure
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5.11. Also, notice that the cycle time of the desired angular position trajectory of the

base link is 2 seconds; therefore, the data corresponds to implementation results for

15 cycles.

The time-varying inertia and the disturbance of the base link which are computed

by using (5.103) and (5.104) are shown in Figure 5.9. Notice that the time-varying

disturbance is periodic with an amplitude of about 50 N-m (with u2 = 4 N-m). The

moment of inertia is periodic with an average value of 3.15 Kg-m2 and a peak-to-peak

variation of 0.11 Kg-m2.

The tracking error of the base link is shown in the top plot of Figure 5.10. It can

be observed that the peak tracking error of the base link is less than 0.04 radians

even in the presence of time-varying inertia and very large time-varying disturbance;

from 16 seconds onwards, when the variation of the inertia and the disturbance are

reduced, the tracking error is also reduced. Notice that the motor torque input of

the base link, shown as top plot in Figure 5.11, has similar amplitude and frequency

as that of the time-varying disturbance. The estimated d(t) and I(t) are shown in

Figure 5.12 and Figure 5.13, respectively. Figure 5.14 shows the estimates of the

friction coefficients fv and fc. It can be observed that all the estimated parameters

are within the range defined in the projection algorithm.

Comparison with an ideal non-adaptive controller

To compare the performance of the proposed adaptive controller with a controller

that uses true parameter values, an ideal non-adaptive controller is designed and im-

plemented on the experimental platform. Experimental results of the two controllers

are compared and discussed.

Equation (5.102) can be rewritten in terms of the tracking error of the base link,
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e1
4
= q1 − qd1, as follows:

ë1 + 2ξωnė1 + ω2
ne1

=
1

I
(τ1 − İ q̇1 + d− f1 − Iq̈1d + 2Iξωnė1 + Iω2

ne1)

=
1

I
(τ1 − İ q̇1 + d̄− Iq̈1d + 2Iξωnė1 + Iω2

ne1) +
1

I

(
(1 +

p3

p2

c2)f2 − f1

)
(5.106)

where ξ, ωn are two positive constants, and d̄ is given by

d̄ = p3

(
(q̇1 + q̇2)

2 +
p3

p2

c2q̇
2
1 +

2p3

p2

c2q̇1q̇2

)
s2 −

(
1 +

p3

p2

c2

)
τ2.

Now assuming that the true values of all the constant and time-varying parameters

are known, an ideal non-adaptive controller is given by

τ1 = İ q̇1 − d̄ + Iq̈1d − 2Iξωnė1 − Iω2
ne1 + δτ1 (5.107)

where δτ1 is a robustness term to account for the unknown terms involving friction.

Notice that the term d̄ in the control law can be computed based on the measurements

and constant parameters p1, p2 and p3. Substitution of the control law, (5.107), into

(5.106) results in

ë1 + 2ξωnė1 + ω2
ne1 =

1

I

(
δτ1 + (1 +

p3

p2

c2)f2 − f1)
)
. (5.108)

In the following, the robustness term δτ1 will be designed based on bounds on f1 and

f2. Consider the viscous plus Coulomb friction models for f1 and f2. Then f1 and f2

can be bounded as given below:

|f1| ≤ Fv1|q̇1|+ Fc1

|f2| ≤ Fv2|q̇2|+ Fc2

where Fv1 , Fc1 , Fv2 and Fc1 are bounds on the viscous and Coulomb friction coeffi-

cients. Therefore, the uncertain term in the right-hand-side of (5.108) can be bounded

as given below:
∣∣∣∣
(
1 +

p3

p2

c2

)
f2 − f1

∣∣∣∣ ≤ µ
4
=

(
1 +

p3

p2

)
(Fv2|q̇2|+ Fc2) + Fv1|q̇1|+ Fc1 .
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Now, the robustness term in the controller can be chosen as

δτ1 = − ė1

|ė1|+ ε
µ (5.109)

where ε > 0 is a small constant.

The experimental results for the non-adaptive controller are shown in Figure 5.15.

The parameters used in the experiment are ξ = 1, ωn = 35, Fv1 = Fv2 = 0.1, ε =

0.05, Fc1 = 8 and Fc2 = 2. In Figure 5.15, the top plot shows the tracking error of the

base link, the middle plot shows the control input to the base link, and the bottom

plot is the input torque to the elbow link.

Comparing with the experimental results of the proposed adaptive controller, we

can observe that the tracking error using the ideal non-adaptive controller is smaller

as expected since it assumes full knowledge of both the time-varying parameters and

disturbances. But the performance improvement is not significant. Further, we can

observe that the control inputs are comparable.
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Figure 5.9: The time-varying inertia, I(t) (top plot), and the time-varying distur-

bance, d(t) (bottom plot) are shown. I(t) and d(t) are computed by using the ex-

perimental data of q2(t), q̇2(t), q̇1(t) in (5.103) and (5.104). The data from zero to 16

seconds corresponds to τ2 = 4 N-m and the data from 16 to 30 seconds corresponds

to τ2 = 3 N-m.
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Figure 5.10: Tracking error of the base link (e1(t), top plot) and the angular velocities

of the base link and elbow link (q̇1(t) and q̇2(t), bottom plot) are shown.
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Figure 5.11: Motor control torques of base link (τ1(t), top plot) and elbow link (τ2(t),

bottom plot) are shown.
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Figure 5.12: Estimated disturbance parameters d̂0(t) and d̂1(t) are shown in the top

plot. The estimate of the disturbance d̂(t) = d̂0(t) + (t − t0)d̂1(t) is shown in the

bottom plot.
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Î0(t) Î1(t)

Figure 5.13: Estimated inertia parameters Î0(t) and Î1(t) are shown in the top plot.

The estimate of the inertia Î(t) = Î0(t) + (t− t0)Î1(t) is shown in the bottom plot.
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Figure 5.14: Estimated friction parameters f̂v(t) and f̂c(t) are shown.
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Figure 5.15: Experimental results from the ideal non-adaptive robust controller given

by (5.107) and (5.109). Tracking error of the base link (e1(t), top plot), motor control

torques of the base link (τ1(t), middle plot) and the elbow link (τ2(t), bottom plot)

are shown.
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5.3 Summary

Modified versions of the traditional least-squares and gradient algorithms for adap-

tive estimation of unknown time-varying parameters in linear parametric models is

proposed. The time-varying parameters were approximated locally in small intervals

of time by truncated Taylor series expansion in finite intervals of time. A strategy to

reset the initial value of the parameter estimate at the beginning of each time inter-

val is given; this assures that the parameter estimate is continuous at the resetting

points. Stability and convergence properties of the proposed estimation algorithms

were given. Simulation results conducted on an example verify the proposed algo-

rithms. One particular feature of the method described is that the time-varying pa-

rameters are not assumed to be slow time-varying, because both the parameters and

their time derivatives are estimated locally. Although the estimation algorithms are

developed in the continuous-time domain, they can be extended to the discrete-time

domain under the assumption of fast sampling.

A new adaptive controller for mechanical systems with time-varying parameters

and disturbances was proposed. Based on the local approximation of the time-varying

parameters/disturbances, an adaptive controller was developed for trajectory track-

ing. The unknown coefficients within each time interval were estimated using a gra-

dient projection algorithm. The tracking error was shown to be ultimately bounded

within a certain neighborhood of zero; the size of the neighborhood depends on the

choice of the control gains. Using a two-link planar manipulator system, a novel

experiment platform was designed to create a time-varying inertia system with time-

varying disturbances. This platform was used to validate the proposed adaptive

controller experimentally. Further, an ideal non-adaptive controller that assumes full

knowledge of the time-varying parameters and disturbances was also implemented.

160



The performance of the proposed adaptive controller was comparable to an ideal

non-adaptive controller.

Future research will focus on robustness of the proposed on-line parameter estima-

tion algorithms in Section 5.1 to the modeling error in the linear time-varying para-

metric model, that is, consider time-varying systems that cannot be exactly placed

in the form given by (5.1).
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CHAPTER 6

RICCATI AND LYAPUNOV EQUATIONS

In this chapter, aspects of some matrix equations relevant to systems and con-

trol theory will be considered. Matrix equation arises in many problems; especially,

Cauchy problems for Riccati operator equations in many linear filtering and predic-

tion [134], transport theory [135], optimization and automatic control problems [136].

In this chapter, the Riccati differential equation in the following form is considered:

Ṗ (t) = A(t)>P (t) + P (t)A(t) + P (t)R(t)P (t) + Q(t) (6.1)

where A(t), R(t), Q(t) and P (t) are all n × n square matrices. The steady-state

solution of (6.1), denoted by P , satisfies the following equation

A>P + PA + PRP + Q = 0 (6.2)

where A,R and Q are limits of A(t), R(t) and Q(t), as t → ∞. Equation (6.2) is

generally called the Algebraic Riccati Equation (ARE).

If R(t) = 0, equations (6.1) and (6.2) reduce to the following two equations,

respectively.

Ṗ (t) =A(t)>P (t) + P (t)A(t) + Q(t), (6.3)

A>P + PA + Q = 0. (6.4)

The linear matrix equation (6.3) is the special form of (6.1), and is usually called the

Lyapunov Matrix Differential Equation or Lyapunov Differential Equation (LDE).

Equation (6.4) is a special form of the ARE (6.2), and is usually called the Lyapunov
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Matrix Equation or the Lyapunov Equation (6.4). The equation (6.4) is very im-

portant in the study of linear systems. The basic properties of it were studied by

Liapunov in connection with stability questions.

The rest of this chapter is organized as follows. In Section 6.1, the explicit expres-

sion of the solution and bounds on the solution of linear matrix differential equations

is studied. Section 6.2 considers the trace bounds on the solution to the Lyapunov

equation. In Section 6.3, a class of algebraic Riccati equations are considered; neces-

sary conditions for the existence of a positive semi-definite symmetric matrix as the

solution to the ARE are given.

6.1 Linear matrix differential equation

In this section, the linear matrix equation: linear matrix differential equation and

Lyapunov matrix equation are considered. Linear matrix equation is encountered in

many applications, such as automatic control, optimization, and linear filtering. A

motivational example for the application of the linear matrix differential equation is

introduced in Section 6.1.1. The solution to the linear matrix differential equation

which is in a general form is derived, in which the elements of coefficient matrices of the

linear matrix differential equation are assumed to be time-varying. The uniqueness of

the solution is proved. Based on the explicit form of the solution to the linear matrix

differential equation derived in Section 6.1.2, bounds on this solution are derived in

Section 6.1.3.

6.1.1 An application of the linear matrix equation

As an application of a linear differential equation in the form of (6.3), let us

consider the problem of evaluating the integral

η =

∫ t1

t0

x>(τ)Q(τ)x(τ)dτ (6.5)
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where x(t) satisfies the following first order differential equation

ẋ(t) = A(t)x(t). (6.6)

The trajectory of (6.6) can be described by

x(t) = Φ(t, t0)x(t0) (6.7)

where Φ(t, t0) is the transition matrix of (6.6). Substituting (6.7) in (6.5) yields

η(x0) = x>(t0)

(∫ t1

t0

Φ>(τ, t0)Q(τ)Φ(τ, t0)dτ

)
x(t0). (6.8)

Define

P (t1, t0) =

∫ t1

t0

Φ>(τ, t0)Q(τ)Φ(τ, t0)dτ.

Equation (6.8) becomes

η(x0) = x>(t0)P (t1, t0)x(t0). (6.9)

From (6.8), it is seen that in order to evaluate η, it is necessary to solve Φ(t, t0) first,

and then compute P (t1, t0) by taking integration over [t0, t1]. Actually, it is possible

to derive a linear differential equation for P (t1, t0) itself. In fact, replacing t0 by t in

P (t1, t0) and differentiating with respect to t yields

d

dt
P (t1, t) =

d

dt

∫ t1

t

Φ>(τ, t)Q(τ)Φ(τ, t)dτ (6.10)

= −A>(t)P (t1, t)− P (t1, t)A(t)−Q(t). (6.11)

The value P (t1, t1) = 0, so one obtains the first order differential equation with

boundary condition for P (t1, t) as

Ṗ (t1, t) = −A>(t)P (t1, t)− P (t1, t)A(t)−Q(t), P (t1, t1) = 0. (6.12)

Equation (6.12) is in the same form as (6.3). We can evaluate η be directly solving

the linear differential equation (6.12), which has a boundary condition at the final

time.
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6.1.2 Solution to the linear matrix equation

The more general linear matrix equation of (6.3) is

Ṗ (t) = A1(t)P (t) + P (t)A2(t) + Q(t) (6.13)

where A1(t) ∈ Rn×n, A2(t) ∈ Rn×n and Q ∈ Rn×n. The solution of (6.13) can be

expressed by the following theorem [137, p. 59].

Theorem 6.1 The solution of (6.13) with the initial value P (t0) is given by

P (t) = Φ1(t, t0)P (t0)Φ
>
2 (t, t0) +

∫ t

t0

Φ1(t, τ)Q(τ)Φ>
2 (t, τ)dτ (6.14)

where Φ1(t, t0) is the transition matrix for the system

ẋ(t) = A1(t)x(t)

and Φ2(t, t0) is the transition matrix for the system

ẋ(t) = A>
2 (t)x(t).

Proof. Differentiating both sides of (6.14) with respect to t and using the properties

of the transition matrices,

Φ̇1(t, t0) = A1(t)Φ1(t, t0),

Φ̇2(t, t0) = A>
2 (t)Φ2(t, t0),

Φ1(t, t) = Φ2(t, t) = I,

results in

Ṗ (t) = A1(t)

(
Φ1(t, t0)P (t0)Φ

>
2 (t, t0) +

∫ t

t0

Φ1(t, τ)Q(τ)Φ>
2 (t, t0)dτ

)

+

(
Φ1(t, t0)P (t0)Φ

>
2 (t, t0) +

∫ t

t0

Φ1(t, τ)Q(τ)Φ>
2 (t, t0)dτ

)
A2(t) + Q(t)

= A1(t)P (t) + P (t)A2(t) + Q(t).
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Also,

P (t0) = Φ1(t0, T0)P (t0)Φ
>
2 (t, t0) = P (t0).

This completes the proof. ¥

Remark 6.1 In the case of A>
1 (t) = A2(t) = A(t) ∈ Rn×n and Q(t) ∈ Rn×n, the

differential equation (6.13) becomes (6.3), which has the solution

P (t) = Φ(t, t0)P (t0)Φ
>(t, t0) +

∫ t

t0

Φ(t, τ)Q(τ)Φ>(t, τ)dτ (6.15)

where Φ(t, t0) is the transition matrix for the system ẋ(t) = A>(t)x(t).

Remark 6.2 In the case when A1(t) = A2(t) = A ∈ Rn×n and Q(t) = Q ∈ Rn×n,

the solution is

P (t) = eA>(t−t0)P (t0)e
A(t−t0) +

∫ t

t0

eA>(t−τ)QeA(t−τ)dτ. (6.16)

Remark 6.3 Theorem 6.1 does not indicate whether the solution given by (6.14) is

unique or not. Further, Theorem 6.1 can be extended to the case where A1(t) ∈ Cn×n,

A2(t) ∈ Cn×n and Q ∈ Cn×n. An extension of Theorem 6.1 will be presented regarding

the uniqueness of the solution of the linear matrix equation with complex coefficient

matrices.

Eigenvalues of a matrix M are continuous functions of its elements mij. If all the

elements of M are continuous functions of t, then eigenvalues of M are also continuous

functions of t. As ‖M‖ =
√

λmax(MHM) , ‖M‖ is also a continuous function of t.

Theorem 6.2 Consider the linear matrix differential equation

Ṗ (t) = A1(t)P (t) + P (t)A2(t) + Q(t), P (t0) = P0 (6.17)

where A1(t) ∈ Cn×n, A2(t) ∈ Cn×n and Q ∈ Cn×n. If all the elements of the matrices

A1(t) and A2(t) are continuous functions of time defined on the interval t0 ≤ t ≤ t1
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where t1 can be infinity, then (6.17) has at most one solution which is defined on the

interval t0 ≤ t ≤ t1 with the initial value of P0. Moreover, this unique solution is

given by

P (t) = Φ1(t, t0)P (t0)Φ
H
2 (t, t0) +

∫ t

t0

Φ1(t, τ)Q(τ)ΦH
2 (t, τ)dτ (6.18)

where Φ1(t, t0) is the transition matrix for the system

ẋ(t) = A1(t)x(t), t ≥ t0, x(t) ∈ Cn

and Φ2(t, t0) is the transition matrix for the system

ẋ(t) = AH
2 (t)x(t), t ≥ t0, x(t) ∈ Cn.

Proof. The uniqueness of the solution to (6.17) will be proved by contradiction. Let

P1(t) and P2(t) are two distinct solutions to (6.17) with P1(t0) = P2(t0) = P0. One

obtains

Ṗ1(t) = A1(t)P1(t) + P1(t)A2(t) + Q(t), P1(t0) = P0, (6.19)

Ṗ2(t) = A1(t)P2(t) + P2(t)A2(t) + Q(t), P2(t0) = P0. (6.20)

Let Z(t)
4
= P2(t)− P1(t). Subtracting (6.19) from (6.20) results in

Ż(t) = A1(t)Z(t) + Z(t)A2(t), Z(t0) = 0. (6.21)

Then

d

dt
(ZH(t)Z(t)) = ZH(t)(A1(t) + AH

1 (t))Z(t) + AH
2 (t)ZH(t)Z(t) + ZH(t)Z(t)A2(t).

(6.22)

Let

A′
1(t)

4
= A1(t) + AH

1 (t),

Z(t) =

[
z1(t) z2(t) . . . zn(t)

]
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where zi(t), i = {1, 2, . . . , n}, is the i-th column of the matrix Z(t). On has the

following results

tr
(
ZH(t)Z(t)

)
=

n∑
i=1

zH
i (t)zi(t), (6.23a)

tr
(
ZH(t)(A1(t) + AH

1 (t))Z(t)
)

=
n∑

i=1

zH
i (t)A′

1(t)zi(t)

≤ ‖A′
1(t)‖

n∑
i=1

zH
i (t)zi(t), (6.23b)

tr
(
AH

2 (t)ZH(t)Z(t) + ZH(t)Z(t)A2(t)
)

= tr
(
AH

2 (t) + A2(t)
)
tr

(
ZH(t)Z(t)

)

= 2
n∑

i=1

Re(λi(A2(t)))
n∑

i=1

zH
i (t)zi(t) (6.23c)

where (6.23c) is obtained by using the trace property of the product of two matrices

M and N with appropriate dimensions,

tr(MN) = tr(NM),

the relationship between the trace and eigenvalues of the n× n matrix M ,

tr(M) =
n∑

i=1

λi(M),

and the property

λi(M
H) = λ̄i(M), i ∈ {1, 2, . . . , n}.

Let η(t)
4
= 1 + ‖A′

1(t)‖ + 2
∑n

i=1 Re(λi(A2(t))) and z(t)
4
=

∑n
i=1 zH

i (t)zi(t). η(t) is a

continuous function of t and η(t) is a real number. Hence, the following factor, ρ(t),

ρ(t) = e
− ∫ t

t0
η(τ)dτ

,

exists and is positive.

Taking trace on both sides of (6.22) and using the results given by (6.23), one

obtains

d

dt
(z(t)) ≤ η(t)z(t). (6.24)

168



Multiplying both sides of (6.24) by ρ(t) and simplifying, we have

d

dt
(ρ(t)z(t)) ≤ 0. (6.25)

Integrating (6.25) in the interval [t0, t] for all t ≤ t1 yields

ρ(t)z(t)− ρ(t0)z(t0) ≤ 0. (6.26)

Since Z(t0) = 0, z(t) =
∑n

i=1 zi(t)
Hzi(t) = 0. Also, ρ(t) > 0. From (6.26), it is

concluded that

z(t) = 0, ∀t0 ≤ t ≤ t1.

Therefore, zi(t) = 0, i = {1, 2, . . . , n}, which in turn implies that Z(t) = 0, that

is, P1(t) = P2(t) for all t0 ≤ t ≤ t1. This contradicts with the assumption that

P1(t) 6= P2(t). Hence, the solution to (6.17) is unique provided it exists.

To prove that (6.18) is the solution of (6.17), one can use the similar method with

that used in the proof of Theorem 6.1. Here, the property of Φ2(t, t0),

Φ̇2(t, t0) = AH
2 (t)Φ2(t, t0), (6.27)

should be used. ¥

Remark 6.4 One can directly apply Theorem 6.2 to the special case of (6.17),

ẋ(t) = A(t)x(t) (6.28)

where x(t) ∈ Cn and A(t) ∈ Cn×n. Compare to (6.17), (6.28) is a reduced version

of (6.17) with A1(t) = A(t) and A2(t) = Q(t) = 0. Equation (6.28) describes a

linear time-varying system. If A(t) satisfies the hypotheses given in Theorem 6.2, the

solution of (6.28) is obviously unique.

Theorem 6.2 provides sufficient conditions for the existence of the solution to the

linear matrix differential equation (6.17) because the solution is unique if it exists.
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From (6.18), it is seen that, if Φ1(·) and Φ2(·) exist, and if the integral in (6.18) exists,

then solution P (t) exists. The following theorem summarizes sufficient conditions for

the existence of a solution to (6.17).

Theorem 6.3 Consider the linear matrix differential equation

Ṗ (t) = A1(t)P (t) + P (t)A2(t) + Q(t) (6.29)

where A1(t) ∈ Cn×n, A2(t) ∈ Cn×n and Q ∈ Cn×n. If the following conditions are

satisfied:

1. All elements of the matrices of A1(t) and A2(t) are continuous functions of time

defined on the interval t0 ≤ t ≤ t1.

2. The following two linear time-varying equations are solvable,

ẋ(t) = A1(t)x(t), t ≥ t0, x(t) ∈ Cn,

ẋ(t) = AH
2 (t)x(t), t ≥ t0, x(t) ∈ Cn,

and have transition matrices Φ1(t, t0) and Φ2(t, t0), respectively.

3. The integral

∫ t

t0

Φ1(t, τ)Q(τ)ΦH
2 (t, τ)dτ,

exists.

Then, the linear matrix differential equation (6.29) has a unique solution. Moveover,

this solution is given by (6.18).

6.1.3 Bounds on the solution of the linear matrix equation

In this section, the bounds on the solution to the linear matrix differential equation

(6.17), given by (6.18), and its special case where A1(t) = AH
2 (t) is considered. It is
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well known that the linear matrix differential equation of the following form

Ṗ (t) = AH(t)P (t) + P (t)A(t) + Q(t) (6.30)

plays an important role in systems, control and optimization [137]. A number of

applications of equation (6.30), and its special cases, can be found in systems and

control theory. It is of importance to find bounds on the solution of the equation

without explicitly solving it.

Trace and eigenvalue bounds on the solution of the following matrix differential

equation, also called the Lyapunov matrix differential equation, can be found in [138]

and [139]:

Ṗ (t) = A>P (t) + P (t)A + Q (6.31)

where A ∈ Rn×n, Q = Q> ∈ Rn×n, Q ≥ 0 and A is stable. Notice that equation (6.30)

is a more general case of (6.31). Upper and lower bounds for the trace or eigenvalues

of the solution to (6.30) have not been reported in the literature. The upper and

lower bounds for the trace of the solution to (6.30) will be derived in this section.

Because the solution to the linear matrix differential equation (6.17), given by

(6.18), is unique, we can be obtaine the bounds on the solution based on the explicit

form of the solution. First introduce several technical lemmas which are required to

derive the bounds.

Lemma 6.1 Let M = MH ≥ 0 and N = NH , then

λmin(N)tr(M) ≤ tr(MN) ≤ λmax(N)tr(M). (6.32)

Proof. Since N is a Hermitian matrix, by Schur triangularization theorem [140, p. 69],

there exists a unitary matrix H such that

D = UNUH (6.33)
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where D is a diagonal matrix whose diagonal elements are the eigenvalues of N .

Hence we have

tr(MN) = tr(UMUHUNUH)

= tr(UMUHD).

Since M ≥ 0, which in turn implies that UMUH ≥ 0, all diagonal elements of UMUH

are nonnegative real numbers. Hence, we have

λmin(N)tr(UMUH) ≤ tr(UMUHD) ≤ λmax(N)tr(UMUH). (6.34)

Notice that tr(UMUH) = tr(M). Equation (6.32) follows. ¥

The inequality (6.32) is well known to hold for the case where both M and N are

symmetric positive definite [141, 138, 140, 142], and for the case where both M and

N are symmetric and M is positive definite [143]. Lemma 6.2 shows that (6.32) holds

for any Hermitian matrix N .

Lemma 6.2 Let A(t) ∈ Cn×n, X ∈ Cn×n, and Φ(t, t0) be the transition matrix of the

linear time-varying system

ẋ = A(t)x(t), t ≥ t0. (6.35)

Then, for any X = XH ≥ 0, the following is true:

tr(X)e
∫ t

τ 2µm(A(ξ))dξ ≤ tr(Φ(t, τ)XΦH(t, τ)) ≤ tr(X)e
∫ t

τ 2µM (A(ξ))dξ (6.36)

for all t ≥ τ ≥ t0, where µm(M)
4
= λmin((M + MH)/2) and µM(M)

4
= λmax((M +

MH)/2).

Proof. Using the property of Φ(t, τ),

d

dt
Φ(t, τ) = A(t)Φ(t, τ), (6.37)
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and the trace properties of a matrix,

tr(MN) = tr(NM), (6.38)

tr(M + N) = tr(M) + tr(N), (6.39)

we have

d

dt

(
tr

(
Φ(t, τ)XΦH(t, τ)

))
= tr

(
d

dt

(
Φ(t, τ)XΦH(t, τ)

))

= tr
(
A(t)Φ(t, τ)XΦH(t, τ) + Φ(t, τ)XΦH(t, τ)AH(t)

)

= tr
(
A(t) + AH(t))Φ(t, τ)XΦH(t, τ)

)
.

Since Φ(t, t0)XΦH(t, t0) ≥ 0 and
(
A(t) + AH(t)

)
is a Hermitian matrix, we can apply

Lemma 6.1 to the right-side of the above identity to get

d

dt

(
tr

(
Φ(t, τ)XΦH(t, τ)

)) ≥ 2µm(A(t))tr(Φ(t, τ)XΦH(t, τ)), (6.40a)

d

dt

(
tr

(
Φ(t, τ)XΦH(t, τ)

)) ≤ 2µM(A(t))tr(Φ(t, τ)XΦH(t, τ)). (6.40b)

Notice that tr(Φ(τ, τ)XΦH(τ, τ)) = tr(X), and µM(A(t)) and µm(A(t)) are continu-

ous functions. Equation (6.40) consists of two first-order scalar differential inequali-

ties. Solving these two first-order scalar differential inequalities gives rise to (6.36).

¥

Remark 6.5 Lemma 6.2 reduces to the inequality

e2µm(A)t ≤ 1

n
tr

(
eAteAH t

)
≤ e2µM (A)t, (6.41)

when A(t) = A. This inequality is used in [138] to derive the upper and lower bounds

on the solution to the linear matrix differential equation (6.31).

Remark 6.6 Since Φ(t, t0)Φ
H(t, t0) is a Hermitian matrix, its eigenvalues are real

numbers. From the relation between the trace and eigenvalues of an n× n matrix M ,

tr(M) =
∑n

i=1 λ(M), and Theorem 6.2, one can obtain the following corollary on the

lower and upper bounds on the maximal and minimal eigenvalues of Φ(t, t0)Φ
H(t, t0).
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Corollary 6.1 The maximal and minimal eigenvalues of Φ(t, t0)Φ
H(t, t0) are bounded

by

λmax(Φ(t, t0)Φ
H(t, t0)) ≥ e

∫ t
t0

2µm(A(τ))dτ
, (6.42a)

λmin(Φ(t, t0)Φ
H(t, t0)) ≤ e

∫ t
t0

2µM (A(τ))dτ
, (6.42b)

for all t ≥ t0.

Proof. Let X = I in (6.36), one has

ne
∫ t

τ 2µm(A(ξ))dξ ≤ tr
(
Φ(t, τ)ΦH(t, τ)

) ≤ ne
∫ t

τ 2µM (A(ξ))dξ (6.43)

Using the following inequality

nµm(Φ(t, τ)ΦH(t, τ)) ≤ tr
(
Φ(t, τ)ΦH(t, τ)

) ≤ nµMΦ(t, τ)ΦH(t, τ),

results in inequalities (6.42). ¥

Lemma 6.3 Let M ∈ Cn×n and N ∈ Cn×n. Then

Re(tr(MHN)) ≤ 1

2
(tr(MHM) + tr(NHN)). (6.44)

Proof. Since

0 ≤ tr((M −N)H(M −N))

= tr(MHM + NHN −MHN −NHM)

= tr(MHM) + tr(NHN)− tr(MHN)− tr(NHM)

= tr(MHM) + tr(NHN)− tr(MHN)− tr(MHN)

= tr(MHM) + tr(NHN)− 2 Re(tr(MHN)),

inequality (6.44) follows. ¥

In the following, the upper trace bound on the real part of the solution to the

linear matrix differential equation (6.17) is derived based on its solution given by

(6.18). The result is illustrated by the the following theorem.
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Theorem 6.4 Consider the linear matrix differential equation which satisfies the hy-

potheses given in Theorem 6.2. The real part of the solution to the linear matrix

differential equation (6.17) is bounded by

Re(tr(P (t))) ≤ n

2

(
e

∫ t
t0

2µM (A1(ξ)P0)dξ
+ e

∫ t
t0

2µM (A2(ξ))dξ

+

∫ t

t0

(
e

∫ t
τ 2µM (A1(ξ)P0)dξdτ + e

∫ t
τ 2µM (A2(ξ))dξ

)
dτ

)
(6.45)

for all t ≥ t0.

Proof. Taking the real part of the trace on both sides of (6.18) results in

Re(tr(P (t))) = Re

(
tr

(
Φ1(t, t0)P0Φ

H
2 (t, t2) +

∫ t

t0

Φ1(t, τ)Q(τ)ΦH
2 (t, τ)dτ

))

(6.46a)

≤ 1

2
tr

(
Φ(t, t0)P0P

H
0 ΦH

1 (t, t0)
)

+
1

2
tr

(
Φ2(t, t0)Φ

H
2 (t, t0)

)
(6.46b)

+
1

2
tr

(∫ t

t0

Q(τ)Φ1(t, τ)ΦH
1 (t, τ)QH(τ)dτ

)
(6.46c)

+
1

2
tr

(∫ t

t0

Φ2(t, τ)ΦH
2 (t, τ)dτ

)
(6.46d)

where Lemma 6.3 is used. By Lemma 6.3, we have

tr
(
Φ(t, t0)P0P

H
0 ΦH

1 (t, t0)
) ≤ ne

∫ t
t0

2µM (A1(ξ)P0)dξ
, (6.47a)

tr
(
Φ2(t, t0)Φ

H
2 (t, t0)

) ≤ ne
∫ t

t0
2µM (A2(ξ))dξ

, (6.47b)

tr

(∫ t

t0

Q(τ)Φ1(t, τ)ΦH
1 (t, τ)QH(τ)dτ

)
≤ n

∫ t

t0

(
e

∫ t
τ 2µM (A1(ξ)P0)dξdτ

)
dτ, (6.47c)

tr

(∫ t

t0

Φ2(t, τ)ΦH
2 (t, τ)dτ

)
≤ n

∫ t

t0

(
e

∫ t
τ 2µM (A2(ξ))dξdτ

)
dτ. (6.47d)

Using (6.47) and (6.46) and simplifying results in (6.45). ¥

Remark 6.7 If A1(t), A2(t) and P (t) are all real matrices in t, then Re(tr(P (t))) =

tr(P (t)). In this case, Theorem 6.4 gives the upper bound on the trace of P (t).

Remark 6.8 From the proof of Theorem 6.4, it is seen that, since A1(t) and A2(t)

are assumed to be arbitrary, the completion of square inequality given by Lemma 6.3
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is used to obtain the upper bound of the trace of the product of two matrices. In the

case where some restriction on coefficient matrices, A1(t), A2(t) and Q(t), and the

initial matrix P0, are posed, we have the following theorem on the two-side bounds on

the solution of the linear matrix differential equation.

Theorem 6.5 Consider the following linear matrix differential equation

Ṗ (t) = AH(t)P (t) + P (t)A(t) + Q(t), P (t0) = PH(t0) = P0 ≥ 0 (6.48)

where A(t) ∈ Cn×n, Q(t) = QH(t) ∈ Cn×n and Q(t) ≥ 0 are continuous functions of

t. The trace of the solution to (6.48) is bounded by

tr(P (t)) ≤ tr(P0)e
∫ t

t0
2µM (A(ξ))dξ

+

∫ t

t0

tr(Q(τ))e
∫ t

τ 2µM (A(ξ))dξdτ, (6.49a)

tr(P (t)) ≥ tr(P0)e
∫ t

t0
2µm(A(ξ))dξ

+

∫ t

t0

tr(Q(τ))e
∫ t

τ 2µm(A(ξ))dξdτ. (6.49b)

for all t ≥ t0.

Proof. By Theorem 6.2, the unique solution to (6.48) is given by

P (t) = Φ(t, t0)P0Φ
H(t, t0) +

∫ t

t0

Φ(t, τ)Q(τ)ΦH(t, τ)dτ, t ≥ t0 (6.50)

where Φ(t, t0) is the transition matrix of the linear time-varying system

ẋ(t) = AH(t)x(t).

Since all eigenvalues of P (t) are real, taking trace on both sides of the solution, we

have

tr(P (t)) = tr(Φ(t, t0)P0Φ
H(t, t0)) +

∫ t

t0

tr(Φ(t, τ)Q(τ)ΦH(t, τ))dτ. (6.51)

Applying Lemma 6.2 to the two terms at the right-hand side of (6.51) yields respec-
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tively

tr(P0)e
∫ t

t0
2µM (A(ξ))dξ ≥ tr(Φ(t, t0)P0Φ

H(t, t0)) ≥ tr(P0)e
∫ t

t0
2µm(A(ξ))dξ

, (6.52a)
∫ t

t0

tr(Q(τ))e
∫ t

τ 2µM (A(ξ))dξ ≥
∫ t

t0

tr(Φ(t, τ)Q(τ)ΦH(t, τ))dτ

≥
∫ t

t0

tr(Q(τ))e
∫ t

τ 2µm(A(ξ))dξdτ . (6.52b)

Applying (6.52) to (6.51) results in (6.49). ¥

Remark 6.9 [138] considers a special case of the linear matrix equation (6.48) given

by

Ṗ (t) = A>P (t) + P (t)A + Q, P (0) = P>(0) = P0 > 0 (6.53)

where A ∈ Rn×n, Q = BB> ∈ Rn×n and A is a stable matrix. The upper and lower

bounds for the trace of the solution of (6.53) were given by

tr(P (t)) ≤
(

tr(P0) +
tr(Q)

2µM(A)

)
e2µM (A)t − tr(Q)

2µM(A)
, (6.54a)

tr(P (t)) ≥
(

tr(P0)− tr(Q)

2µM(−A)

)
e−2µM (−A)t +

tr(Q)

2µM(−A)
(6.54b)

for all t ≥ 0. It is easy to see that (6.49a) is identical to (6.54a) with t0 = 0. Also,

since µM(−A) = −µm(A) for any stable real matrix A, (6.49b) is identical to (6.54b).

We can also recover the bounds on the steady-state solution to (6.53) given in [138].

Remark 6.10 It is observed from the inequality (6.49) that the bounds of P (t), either

in terms of the trace or eigenvalues, are affected by two factors: (1) the traces of Q

and P0, and (2) the minimal and the maximal eigenvalue of the matrix A + AH .

Remark 6.11 If the steady-state solution of (6.48), Pss, that is, the solution given

by (6.50) when t approaches to infinity, exists, equation (6.50) evaluated at t = ∞
gives the solution to the following Lyapunov matrix equation

0 = AH
ssPss + PssAss + Qss. (6.55)
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The lower trace bound of the solution to (6.55) can be obtained from (6.49b) directly

by replacing t with ∞. However, the upper trace bound of the steady-state solution

may not be able to obtain by directly applying (6.49a) because the right-hand side of

(6.49a) may go to infinity which is meaningless to define an upper bound. The trace

bound on the solution to the Lyapunov matix equation in the form of (6.55) will be

presented by Lemma 6.4 in Section 6.2.

The upper and lower bounds for the trace of the solution to the time-varying

linear matrix differential equation are derived in this section. Previous work ([138]

and [139]) gave bounds for the time-invariant linear matrix differential equation; the

results can be used only for time-invariant systems. Whereas, the results of Theorem

6.5 can be applied to linear time-varying systems.

6.2 Lyapunov equation

In this section, the solution to the Lyapunov matrix equation and the bound on

the solution will be considered.

6.2.1 Solutions to the Lyapunov equation

Unlike the linear matrix differential equation in the form of (6.17), the Lyapunov

matrix equation with time-varying coefficient matrices in the following general form

A1(t)P (t) + P (t)A2(t) = Q(t) (6.56)

where A1(t) ∈ Cn×n, A2(t) ∈ Cn×n and Q(t) ∈ Cn×n, may not have a unique solution.

For example, if A1(t) = A2(t) = Q(t) = 0, any P (t) can be the solution to (6.56).

Also, equation (6.56) may not have a solution.

The case where A1(t), A2(t) and Q(t) are constant is of importance. When A1

and A2 are stable matrices, one has the following theorem on the solution to the

corresponding Lyapunov equation.
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Theorem 6.6 If all eigenvalues of A1 and A2 have negative real parts, then the

Lyapunov equation

A1P + PA2 + Q = 0 (6.57)

where A1 ∈ Cn×n, A2 ∈ Cn×n and Q ∈ Cn×n, has a unique solution. The solution P

is given by the convergent integral

P =

∫ ∞

0

eA1tQeA2tdt. (6.58)

Proof. The integral is convergent since it is a sum of terms of the form tke(λi+λj)t where

λi and λj are eigenvalues of A1 and A2, respectively, and k is a nonnegative integer.

Since Re(λi + λj) < 0,
∫∞
0

tke(λi+λj)tdt converges. Hence, P exists and bounded.

Notice that

d

dt
eAt = AeAt = eAtA, (6.59)

where the second equality is obtained by using the the property that eAt and A

commute. Thus, we have

A1P + PA2 + Q =

∫ ∞

0

(A1e
A1tQeA2t + eA1tQeA2tA2)dt + Q (6.60)

=

∫ ∞

0

d

dt
(eA1tQeA2t) dt + Q (6.61)

= eA1tQeA2t|t=∞ − eA1tQeA2t|t=0 + Q (6.62)

= 0 (6.63)

The uniqueness of the solution can be shown by proving that the equation

A1P + PA2 = 0 (6.64)

has only one solution P = 0. Observe that L(P )
4
= A1P + PA2 is a linear mapping

of Cn2
to Cn2

. Because there exists a P , given by (6.65), such that L(P ) = Q for

any given Q, the range space of the mapping L(P ) is n2 dimensional. Hence the
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dimension of the null space of L(P ) is zero, that is, the only solution to L(P ) = 0 is

P = 0. This proves that the solution given by (6.58) is unique. ¥

A special case of (6.57) is

A>P + PA + Q = 0 (6.65)

where A ∈ Rn×n and Q ∈ Rn×n, and A is stable. The Lyapunov equation (6.65) is very

important in linear systems. The following theorem describes important properties

of the Lyapunov equation (6.65).

Theorem 6.7 If A is stable, then the Lyapunov equation (6.65) has a unique solu-

tion. Moreover, the solution is given by the convergent integral

P =

∫ ∞

0

eA>tQeAtdt. (6.66)

In additional, if Q = Q>, then P = P> has the same sign as Q.

Proof. The proof for (6.66) being the solution to (6.65) and this solution being unique

is similar to that for Theorem 6.6. The last statement in Theorem 6.7 is easy to

prove since (1) eA>t and eAt are nonsingular matrices, and (2) Q can be decomposed

as Q = M>M (if Q ≥ 0) or −Q = M>M (if Q ≤ 0). Refer to the following Schur

triangularization theorem. ¥

Theorem 6.8 (Schur triangularization theorem [140, p. 67]) If M ∈ Cn×n,

then there exists a unitary matrix U ∈ Cn×n such that T = UAUH is an upper

triangular matrix with the characteristic roots of M along the main diagonal. If

M ∈ Rn×n, then U may be chosen to be a real orthogonal matrix. The matrix M is

normal if and only if T is diagonal.
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6.2.2 Trace bounds for the solution to the Lyapunov equation

Lemma 6.4 Assume that the solution to the Lyapunov algebraic equation

AHP + PA + Q = 0 (6.67)

where A ∈ Cn×n, Q = QH ∈ Cn×n and Q ≥ 0 exists and µM(A) < 0. Then, the trace

of the solution to the above equation is bounded by

− tr(Q)

2µM(A)
≤ tr(P (t)) ≤ − tr(Q)

2µm(A)
. (6.68)

Proof. From Theorem 6.6, it is obtained that the solution to (6.67) is given by

P =

∫ ∞

0

eAH tQeAtdt. (6.69)

Then one obtains

tr(P ) =

∫ ∞

0

tr
(
eAH tQeAt

)
dt. (6.70)

Applying Lemma 6.3 to (6.70) results in

tr(Q)e
∫∞
0 2µm(AH)dξ ≤ tr(P ) ≤ tr(Q)e

∫∞
0 2µM (AH)dξ. (6.71)

Since µm(AH) = µm(A), µM(AH) = µM(A), and µM(A) < 0 which implies µm(A) <

0, it follows that

tr(Q)e
∫∞
0 2µm(A)dξ = − tr(Q)

2µm(A)
, (6.72a)

tr(Q)e
∫∞
0 2µM (A)dξ = − tr(Q)

2µM(A)
. (6.72b)

Combining (6.71) and (6.72) yields (6.68). ¥

Other results on the bounds for the solution to (6.67) for the case where A is a

real stable matrix can be found in [142, 143, 138].

Remark 6.12 In Lemma 6.5, if Q ≤ 0 and other hypotheses are the same, then the

trace of the solution of (6.67) is bounded by

− tr(Q)

2µm(A)
≤ tr(P (t)) ≤ − tr(Q)

2µM(A)
.
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These bounds are obtained by considering the following Lyapunov matrix equation

AH(−P ) + (−P )A + (−Q) = 0.

Lemma 6.4 illustrates the relationship between the traces (eigenvalues) of three

matrices, A, P and Q, when (6.67) is satisfied. An important quantity regarding the

matrices P and Q for the control problem is the “condition number” which is defined

as
λmin(Q)

λmax(P )
. Consider the following problem. Given a system

ẋ = Aox + Bu + f(x) (6.73)

where x ∈ Rn, u ∈ Rm, f(x) ∈ Rn, A0 ∈ Rn×n and B ∈ Rn×m. Assume (Ao, B) is a

controllable pair, and f(x) is unknown but is bounded by ‖f(x)‖ ≤ 1
2
c‖x‖. We want

to design a full state feedback control u = Kx such that the closed-loop system

ẋ = (Ao + BK) + f(x)

4
= Ax + f(x) (6.74)

is stable. Obviously, A should be stable. Now, consider the following Lyapunov

function candidate

V = x>Px

where P = P> ∈ Rn. The time derivative of V is given by

V̇ = x>(A>P + PA)x + 2x>Pf(x)

≤ x>(A>P + PA) + cλmax(P )x>x. (6.75)

Since A is a stable matrix, for any given Q = Q> > 0 ∈ Rn, a unique symmetric

positive definite matrix P exists for the following Lyapunov equation

A>P + PA + Q = 0.
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Hence, from (6.75), one obtains

V̇ ≤ −x>Qx + cλmax(P )x>x

≤ −(λmin(Q)− cλmax(P ))x>x.

Therefore, if

λmin(Q)

λmax(P )
> c (6.76)

then V̇ ≤ −αx>x where α > 0, which implies that the closed-loop system (6.74) is

exponentially stable. One interesting question is, for any constant c, is it possible

to have (6.76) satisfied? Unfortunately, there is no general solution to this question.

The complexity of this problem can be seen from Lemma 6.4. Consider the case when

λmax(A) < 0. From Lemma 6.4, one has

−2µm(A) ≤ tr(Q)

tr(P )
≤ −2µM(A). (6.77)

By the fact that

λmin(Q) ≤ tr(Q)

n
, λmax(P ) ≥ tr(Q)

n
,

one has

λmin(Q)

λmax(P )
≤ tr(Q)

tr(P )
≤ −2µM(A). (6.78)

From (6.78), it is seen that the condition number for the Lyapunov matrix equation

(6.67) is bounded by the maximum eigenvalue of A + AH . It is well-known that if

(Ao, B) is a controllable pair, then the eigenvalue of A = Ao + BK can be arbitrarily

assigned. However, there is no direct relationship between the eigenvalues of A and

the eigenvalues of A + AH .

The following two results [144] pertinent to the condition number of the Lyapunov

equation (6.67) are also important.
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1. For a given stable matrix A ∈ Rn×n, the maximum value of
λmin(Q)

λmax(P )
can be

obtained if Q is chosen as an identity matrix.

2. If a stable matrix A ∈ Rn×n is in the block diagonal form, that is,

A = diag






−σ1 −ω1

−ω1 −σ1


 , . . . ,



−σi −ωi

−ωi −σi


 ,−σ2i+1, . . . ,−σn


 ,

then there exists a special pair of matrices P and Q satisfying (6.67) and

λmin(Q)

λmax(P )
= 2 min

i
{σi}, i = 1, 2, . . . , n.

6.3 Algebraic Riccati Equation

In this section, we consider the characterization of solvability of the algebraic

Riccati equation

A1P + PA2 + PRP + Q = 0 (6.79)

where A1 ∈ Cn×n, A2 ∈ Cn×n, R ∈ Cn×n and Q ∈ Cn×n. The ARE (6.79) permits

a functional treatment of two linear operator equations. The results are summarized

from [145, 146] and discussed. Later, the case where A1 = A2 = A = AH of (6.79),

which is very important in applications, such as optimization theory, control theory

and linear filtering theory, is studied from the perspective of existence of positive

(negative) solution and stability.

6.3.1 Asymmetric Algebraic Riccati Equation

The necessary and sufficient conditions for the existence of the solution to the

ARE (6.79) were investigated in [147, 148, 149, 150, 151, 145, 146]. The main result

can be illustrated by the following theorem.
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Theorem 6.9 Let the associated matrix of the ARE (6.79) H and any polynomial

f(x) with complex coefficients and the order less or equal to n be given by

H =




A2 R

−Q −A1


 , f(H) =




M E

N F


 . (6.80)

A matrix P is a solution to the ARE (6.79) if and only if either one of the following

conditions are satisfied:

1. P satisfies the identity

P




M

E


 =




N

F


 (6.81)

and M−1 and/or E−1 exists.

2. P satisfies the identity




E

F


 P =



−M

−N


 (6.82)

and E−1 and/or F−1 exists.

Proof. See [145, 146]. ¥

Remark 6.13 Two conditions of Theorem 6.9, given by (6.81) and (6.82), respec-

tively, stem from one property of matrix H, that is, H is similar to the matrix


A2 + RP R

0 −A1 − PR


, since




I 0

−P I







A2 R

−Q −A1







I 0

P I


 =




A2 + RP R

0 −A1 − PR


 . (6.83)
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6.3.2 Symmetric Algebraic Riccati Equation

The solutions to the following ARE was first studied in [152].

AHP + PA− PRP + Q = 0 (6.84)

where A ∈ Cn×n, B ∈ Cn×n and C ∈ Cn×n.

It is necessary to investigate the solutions of (6.84) because (6.84) is the steady-

state form of the Riccati differential equations with constant coefficient matrices. Also

the ARE (6.84) arises in the multiwire lines [153], linear filtering and prediction, and

optimal control.

Properties of the associated matrix of the ARE

The ARE (6.84) is associated with the following 2n× 2n matrix

H =




A −R

−Q −AH


 . (6.85)

We use the notation

ai =




bi

ci




where bi ∈ Cn and ci ∈ Cn, for the 2n-dimensional eigenvector of H corresponding to

the eigenvalue λi. The properties of H can be summarized as follows.

Property P6.1 If R and Q are hermitian, then H is Hamiltonian, that is, H satis-

fies the following equality:

HHT + TH = 0 (6.86)

where T =




0 −I

I 0


, I is the identity matrix of dimension n×n, 0 is a zero matrix

of appropriate dimension.
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Proof. By direct matrix computation.

Property P6.2 If R and Q are hermitian, H has at most n eigenvalues with positive

(negative) real parts. Moreover, if λ is an eigenvalue of H, then so is −λ̄.

Proof. Assume λ is an eigenvalue of H and




x

y


 be the corresponding eigenvector,

where x, y ∈ Cn. Thus we have




A −R

−Q −AH







x

y


 = λ




x

y


 ,

which is equivalent to




AH −Q

−R −A






−y

x


 = −λ



−y

x




due to the fact that R = RH and Q = QH . Hence, −λ is an eigenvalue of HH , which

in turn implies that −λ̄ is an eigenvalue of H and H has at most n eigenvalues with

positive (negative) real parts.

Property P6.3 Let b1, . . . , bn be eigenvectors ofH corresponding to eigenvalues λ1, . . . , λn,

and assume that

[
b1 . . . bn

]−1

exists. If λ̄j 6= −λk, 1 ≤ j, k ≤ n, then

P =

[
c1 . . . cn

] [
b1 . . . bn

]−1

is Hermitian.

Proof. See [152, 154].

Explicit expression for the solutions of the Algebraic Riccati Equation

The explicit expression for the solutions to the ARE (6.84) was first investigated in

[152], where the solutions are explicitly expressed by the eigenvalues of the associated
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matrix H given in (6.85). The matrix H is assumed to have a diagonal Jordan form.

Later, in [154], the assumption on the matrix H to have a diagonal Jordan form is

relaxed to that H must have a Jordan block form. The solution of (6.84) is described

by the Property P6.3.

6.3.3 Trace bounds for the solution to the Algebraic Riccati Equation

Consider the following ARE:

A>P + PA + PRP + Q = 0 (6.87)

where R = R> ≥ 0 ∈ Rn×n, Q = Q> ≥ 0 ∈ Rn×n and A ∈ Rn×n. Finding necessary

and sufficient conditions for the ARE is of considerable interest. Notice that, in

(6.87), if R = R> ≤ 0 and other matrices remain the same properties, the ARE

(6.87) becomes

A>P + PA− PRP + Q = 0. (6.88)

The ARE (6.88) appears in the systems and control areas [141, 155, 143]. There

has been a strong interest in determining the bounds on solutions to the Lyapunov

equation and the ARE (6.88). The ARE (6.87) is also important in linear control

designs for nonlinear systmes; for example, see Chapter 2. Extensive work has been

reported on this topic in the literature [156, 157, 158]. In this section, the trace bounds

on the solution to the ARE (6.87) are derived. Based on the trace bounds, some useful

necessary conditions for the existence of a positive definite solution to the ARE (6.87)

are also derived. The necessary conditions obtained are easily computable.

Theorem 6.10 The trace bounds on the solution to the ARE (6.87) satisfy the fol-

lowing inequalities.

x ≤ n

λmin(R)

(
−µm(A) +

√
µm(A)2 − λmin(R)tr(Q)

n

)
, if λmin(R) > 0, (6.89a)

x ≤ − tr(Q)

2µm(A)
, if λmin(R) = 0 (6.89b)
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where x = trace(P ).

Proof. Taking trace on both sides of the ARE (6.87) results in

tr(A>P ) + tr(PA) + tr(PRP ) + tr(Q) = 0. (6.90)

Using the matrix trace property tr(MN) = tr(NM), we obtain

tr(A>P ) + tr(PA) = 2tr

(
P

A + A>

2

)
. (6.91)

Now, consider the following inequalities (see Lemma 6.1):

µm(A)tr(P ) ≤ tr

(
P

A + A>

2

)
≤ µM(A)tr(P ), (6.92)

λmin(R)[tr(P )]2/n ≤ tr(PRP ) ≤ λmax(R)[tr(P )]2 (6.93)

where (6.93) is obtained by using Lemma 6.1 twice. Using (6.91), (6.92) and (6.93)

in (6.90) yields

2µm(A)tr(P ) +
λmin(R)

n
tr(P )2 + tr(Q) ≤ 0. (6.94)

Equation (6.94) is equivalent to
(

tr(P ) + n
µm(A)

λmin(R)

)2

+
n

λmin(R)2

(
λmin(R)tr(Q)− nµm(A)2

) ≤ 0, if λmin(R) > 0,

(6.95a)

2µm(A)tr(P ) + tr(Q) ≤ 0, if λmin(R) = 0. (6.95b)

Inequalities given by (6.95) give rise to (6.89). ¥

From the Theorem 6.10 and its proof, we have the necessary conditions for the

existence of a solution to the ARE (6.87), which are given by the following corollary.

Corollary 6.2 Suppose that P ≥ 0 is a solution to the ARE (6.87). It is necessary

that the following be true:

λmin(R)tr(Q)− nµm
2(A) < 0, (6.96a)

µm(A) < 0. (6.96b)
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Proof. From (6.95a), it is clear that the second term in the left-hand side of the

inequality must be negative. Hence, (6.96a) must be true. From (6.89a) and (6.89b),

it is clear that (6.96b) must be true. ¥

The following lemma gives an interesting result related to the condition (6.96b).

Lemma 6.5 If A is Hurwitz, then µm(A) < 0.

Proof. Let v 6= 0 be an eigenvector of A corresponding to the eigenvalue of A. Then

Av = λ(A)v. (6.97)

Taking the complex conjugate transpose on both sides of (6.97) results in

vHA> = λ̄(A)vH . (6.98)

Pre-multiplying both sides of (6.97) by vH and post-multiplying both sides of (6.98)

by v, and adding the resulting equations yield

vH(A + A>)v = (λ(A) + λ̄(A))vHv. (6.99)

Because A is Hurwitz, the real part of any eigenvalue of A is negative. Hence

(λ(A) + λ̄(A))vHv = 2Re(λ(A))vHv < 0. (6.100)

From (6.99), (6.100), and S being symmetric, one has

µm(A)vHv ≤ vH

(
A + A>

2

)
v = Re(λ(A))vHv < 0. (6.101)

Therefore, µm(A) < 0. ¥

Example 6.1 Consider the following example.

A =




a1 0

0 a2


 , R =




1 0

0 1


 , Q = ε




1 0

0 1


 (6.102)

where a1, a2 ∈ R and ε > 0.
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Let P =




p1 p2

p2 p3


. For any a1, a2, one solution of the ARE is





p1 = −a1 ±
√

a2
1 − ε

p2 = 0

p3 = −a2 ±
√

a2
2 − ε

(6.103)

If |a1| = |a2|, in addition to (6.103), we also have other solutions given by




p1 = −a1 ±
√

a2
1 − ε− p2

2

p3 = −a2 ∓
√

a2
2 − ε− p2

2

(6.104)

and p2 is arbitrary.

For (6.103), the necessary and sufficient conditions for P to be a symmetric posi-

tive definite matrix are

a1 < 0, a2 < 0, ε− a2
1 < 0, and ε− a2

2 < 0. (6.105)

Similarly, the necessary and sufficient conditions for P to be a symmetric positive

definite matrix, for the solutions given by (6.104) (|a1| = |a2|), are

a1 < 0, a2 < 0, ε− a2
1 − p2

2 < 0, and ε− a2
2 − p2

2 < 0. (6.106)

The condition given by (6.96) for this example is equivalent to

ε− a2
min < 0, (6.107a)

amin < 0 (6.107b)

where amin = min(a1, a2). For (6.105) and (6.106) to be true, it is necessary that

(6.107) must be true.

6.4 Summary

In this chapter, explicit expression of the solution and the bounds on the solution

of a class of linear matrix differential equations were studied. Trace bounds of solution
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to Lyapunov matrix equation and algebraic Riccati equation were also derived. A set

of easily computable necessary conditions for the existence of solutions to a class of

algebraic Riccati equation was given.
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CHAPTER 7

SUMMARY AND FUTURE WORK

A chapter by chapter summary of the thesis is given below.

In Chapter 2, stabilization of a class of Lipschitz nonlinear systems via output

feedback was considered. This class of nonlinear systems are not required to sat-

isfy matching conditions. A new full-state feedback control design is first addressed,

then a new observer is proposed. Further, an output feedback control scheme which

combines the results from the full-state feedback control and the observer design is

provided. Both linear full-state feedback controller and Luenberger-like observer are

exponentially stable. The output feedback controller achieves exponential stabiliza-

tion of the closed-loop system. Sufficient conditions are developed for the design of

the proposed observer and controller, and these sufficient conditions are easy to check.

A numerical simulation example is given. To the author’s best knowledge, this is the

first time that a stable output feedback controller is designed for unmatched Lipschitz

nonlinear systems.

In Chapter 3, decentralized output feedback control of large-scale systems with

quadratically bounded nonlinear interconnections on the state of the overall system is

addressed. The key feature of the decentralized output feedback controller is that the

control of each subsystem can use only the output information of the local system.

Two approaches are provided: the LMI approach and the ARE approach. In the

LMI approach, the decentralized control gain matrices and the decentralized observer

gain matrices are obtained by solving two LMI problems. These two LMI problems

were shown to be feasible under the assumption that each local system is controllable
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and observable. The proposed LMI solution in this chapter does not require that the

input matrix of each subsystem be invertible. Decentralized output feedback control

design is also solved by the ARE approach, in which the problem of finding the control

gain matrices and observer gain matrices is reduced to the problem of solving Alge-

bra Riccati Equations under sufficient conditions. In both approaches, exponential

stabilization of the overall system under the proposed decentralized output feedback

control is achieved. A numerical example is provided to verify the ARE approach.

Chapter 4 investigates the design of stable adaptive controller and observer for a

class of nonlinear systems. The class of nonlinear systems considered contain product

terms of unmeasurable states and unknown parameters, which are boarder than those

systems which only have product terms of unknown parameters and known functions.

The nonlinear system is cast into a modified form. The modified representation of

the dynamics of the system is always feasible and has the advantage that the number

of filters can be reduced, when the controller and observer design are based on the

modified dynamics. The design strategy is illustrated by a simple example first and

then extended to the general case. A parameter–dependent Lyapunov function is

used to design the controller and observer. Asymptotic convergence of the output

error is obtained and all signals in the closed-loop system are bounded. Simulation

results on examples are shown and discussed for the proposed scheme. The key

feature in the proposed design is the relaxation of the requirement on the dynamics

of unmeasurable states. Unlike other papers where the nominal part of the dynamics

of unmeasurable states is required to be asymptotically stable, the proposed design

requires the unmeasurable dynamics to be stable.

On-line estimation of time-varying parameters and adaptive output feedback con-

trol design for mechanical systems with time-varying parameters and time-varying dis-

turbances were addressed in Chapter 5. A large amount of literature on time-varying

systems is reviewed and relevant topics on estimation and control of time-varying sys-
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tems are discussed and summarized. The time-varying parameters appear linearly in

the dynamics of the system. A strategy for approximating a time-varying parameter

locally by a polynomial is presented. The estimation of time-varying parameters in

linear plants is transformed to the estimation of time-invariant parameters of the sys-

tem in different time intervals via local polynomial approximations. The estimation

time is divided into small intervals; in each interval the time-varying parameter is

approximated by a time polynomial with unknown constant coefficients. A condition

for resetting of the estimate at the beginning of each interval is given; this guarantees

that the estimate of a time-varying parameter is continuous; and also allows for the

coefficients of the polynomial to be different in different time intervals. It is shown

that the proposed strategy for the estimation of time-varying parameters is applicable

with simple modifications of the least-squares algorithm with covariance resetting and

the gradient algorithm. Simulation results of the proposed algorithm on a number

of examples with time-varying parameters are shown and discussed. A new adap-

tive control algorithm for mechanical systems with time-varying parameters and/or

time-varying disturbances is proposed and investigated. The proposed method does

not assume any structure to the time-varying parameters or disturbances. A novel

experiment is designed by using a two-link mechanical manipulator to investigate the

proposed algorithm experimentally. Simulation and experimental results are shown

and discussed.

In Chapter 6, matrix equations, especially, linear differential matrix equation,

Lyapunov equation and algebraic Riccati equation, are considered. A large amount

of literature is reviewed. Important issues of matrix equations, such as the conditions

for the existence of a solution to matrix equations, the expressions of solutions, and

upper and lower bounds of the solution to matrix equations are investigated and

new results are given. New results on the bounds obtained in this report are useful

since the considered equations are encountered in many applications in systems and
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control.

There are some challenging open issues related to the problems studied in the

thesis.

For the output feedback control of Lipschitz nonlinear systems in Chapter 2,

the relaxation of the sufficient conditions can be further investigated. Because the

sufficient conditions directly depend on the number δ and the Lipschitz constant γ,

finding a way to simultaneously decrease δ and increase γ must be investigated. The

LMI technique may be a possible way to solve this problem.

Application of the techniques, studied in Chapter 3, to decentralized output feed-

back control of large-scale systems must be investigated. Design of decentralized

controllers and decentralized observers poses challenging problems due to the nonlin-

ear, and often uncertain, interconnections between subsystems of large-scale systems.

Future work should focus on the inclusion of coupled terms of the unknown param-

eters and unmeasured states in the unmeasurable state dynamics. Future research

should also focus on the investigation of the existence of parameter independent state

diffeomorphisms that will transform a general nonlinear systems to the class of sys-

tems considered in Chapter 4.

Robustness of the proposed algorithms in Chapter 5 to modeling error in the linear

time-varying parametric model must be considered in the future. Output feedback

control design for broader nonlinear systems with time-varying parameters and time-

varying disturbances should also be investigated.
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