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CHAPTER I 

INTRODUCTION 

The fundamental theorem of algebra states that a 

polynomial with complex coefficients of degree n where n 

is at least one has at least one complex root. We will 

examine the history of this theorem and investigate some 

proofs that have been devised in different areas of 

mathematics. 

If by algebra we mean the science which 

allows us to solve the equation ax2 + bx + c = 

o, express~d in these symbols, then the history 

begins in the 17th century; if we remove the 

restriction as to these particular signs, and 

allow for other and less convenient symbols, we 

might properly begin the history in the 3d 

century; if we allow for the solution of the 

above equation by geometric methods, without 

algebraic symbols of any kind we might say that 

algebra begins with the A}exandrian School or a 

little earlier; and if we say that we should 

class as algebra any problem that we should now 

solve by algebra (even though it was first 

solved by mere guessing or by some cumbersome 

1 



arithmetic process), then the science was known 

about 1800 BC, and probably still earlier. 

{Smith, History II 378} 
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our survey of the history of the fundamental theorem 

of algebra begins with the Babylonians. They were able to 

solve linear and quadratic equations. We will work our 

way through Egypt, India, Arabia, and Greece examining 

their ability and methods for solving linear and quadratic 

(and even some cubic} equations. Continuing on through 

Christian Europe, we will arrive in Italy in the 1500's. 

The algebraists of the sixteenth century discovered 

general methods to solve cubic and quartic equations and 

began the search for a method to solve the general quintic 

equation by radicals. 

With the onset of the seventeenth century, 

mathematicians' interests lay in infinitesimal analysis 

and analytic geometry. The search for a method to solve 

the quintic equation continued, while approximation 

methods for solving polynomial equations began to appear. 

Albert Girard is generally credited as being "the first to 

assert that (for an equation of the nth degree] there are 

always n solutions" in 1629 (Remmert 99). Rene Descartes' 

La Geometrie appeared in 1637. He gave a brief summary of 

all that was known of equations at this time. In this 

paper we can find what is known as "Descartes' Rule of 

Signs" which described the signs and number of real roots 

that a real polynomial equation may have. 



The fundamental theorem of' algebra is of 

outstanding significance in the history of the 

theory of complex numbers because it was the 

possibility of proving this theorem in the 

complex domain that, more than anything else, 

paved the way for a general recognition of 

complex numbers. (Remmert 97) 
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By the eighteenth century, complex numbers were known 

but not completely understood or accepted. Even the great 

mathematicians of the time, Newton and Leibniz, were 

unclear about their exact meaning. 

D'Alembert, a French mathematician, published an 

essay in 1746 in which the algebra of complex numbers was 

analyzed. He gave the first "proof" of the fundamental 

theorem of algebra, and for this reason, it is known as 

d'Alembert's Theorem in France. However, he assumed that 

all complex numbers were of the form a + bi, a fact which 

was yet to be proven, and in his proof of the fundamental 

theorem, he made some assumptions that were unfounded. 

The reason for the sudden interest in the proof of 

the fundamental theorem of algebra was a claim made by 

Bernoulli that every polynomial could be factored into a 

product of linear and quadratic factors. This is just a 

restatement of the fundamental theorem of algebra that 

Bernoulli and others needed for their work on integrating 

rational functions. 

Other "proofs" followed d'Alembert's, including 
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proofs by Euler, Lagrange, and Laplace, the leading 

mathematicians of the day. Each of these proofs was found 

to be faulty, and Carl Gauss pointed the faults out in his 

dissertation of 1799 on the fundamental theorem of 

algebra. His proof is considered to be the first 

logically sound proof, and in his lifeti~e he found three 

other proofs. 

A few years later it was found that the general 

quintic equation was not solvable by radicals, a fact that 

mathematicians had suspected for some time. Galois was 

able to "give a simple necessary condition for the 

solvability by radicals of a polynomial equation" (Hadlock 

5). Thus the question of which equations could be solved 

was hereafter answered. 

A blossoming of mathematics occurred, and many 

branches of mathematics sprouted. As the branches began 

to mature, different methods of proof of the fundamental 

theorem of algebra appeared. 

We will look at Gauss' four proofs, proofs from 

Complex Analysis, Algebra, Analysis, and Topology. Then 

we will consider some historically significant 

approximation methods for finding roots of polynomials. 

There are many other proofs of the fundamental 

theorem of algebra. The Appendix contains a 

bibliographical listing of some of these other proofs. 



CHAPTER II 

PREHISTORY 

The Babylonians 

To begin the history of the fundamental theorem of 

algebra, we look to the time of King Hammurabi of Babylon, 

around 1800 BC. Two tablets from that period were found 

in 1854 at Senkerah on the Euphrates by a British 

geologist, w. K. Loftus. These tablets contain the 

squares of numbers from,one to sixty and the cubes of 

numbers from one to thirty-two. Since this important 

discovery, 50,000 tablets have been unearthed. Many 

relate to mathematics. These include multiplication and 

division tables, tables of squares and square roots, 

geometric progressions, a few computations, and some work 

on mensuration. The study of a large number of tablets 

shows that the sumerians and Babylonians could solve 

linear, quadratic, and cubic equations and had some 

knowledge of negative numbers (Smith 40). 
-

As early as 3000 BC the Babylonia~s had begun 

cuneiform writing on clay tablets, and the sexagesimal 

(base 60) number system was already in use. King 

Hammurabi's time was a time of "flowering of algebra and 

geometry" in Babylonia (van der Waerden 62). 

5 
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Although the city of Babylon was not the center of 

the culture associated with the two rivers, the Tigris and 

the Euphrates, the series of people who occupied that area 

are now referred to as Babylonians by historians of 

mathematics. This region, then known as Mesopotamia, is 

now part of Iraq. This area was settled by the Sumerians 

about 4000 BC. 

Much information about the lives of the Babylonians 

can be found in the tablets that were unearthed. Carl 

Boyer writes: "Laws, tax accounts, stories, school 

lessons, personal letters - these and many other records 

were impressed on soft clay tablets with a stylus, and the 

tablets then were baked in the hot sun or in ovens" {27). 

These tablets have weathered well, and we know a great 

deal more about Babylonia than some other ancient 

civilizations because of it. 

The great majority of the texts are Old Babylonian -

that is, contemporary with Hammurabi - and the rest are 

from the Seleucid period, which took place during the last 

three centuries BC. It is not known why there have been 

no tablets found from between the Old Babylonian and 

Seleucid periods. The language and symbolism had changed 

from the first tablets to those of later date, but says 

Otto Neugebauer in The Exact Sciences in Antiquity, 

so far as the contents are concerned, little 

change can be observed from one group to the 

other. The only essential progress which was 
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~ade consists in the use of the zero sign in the 

Seleucid texts (29). 

The texts fall into two classes, besides the tables 

mentioned earlier. One kind of text formulates the 

problem and then shows the method of solution. The second 

kind consists of lists of problems arranged from the 

simplest cases to problems with very "elaborate 

polynomials." Neugebauer found that sometimes the 

solutions to all the problems on a certain tablet were the 

same, and he believed that these tablets were for 

students. 

It was no concern to the teacher that the result 

must have been known to the pupil. What he 

obviously had to learn was the method of 

transforming such horrible expressions into 

simpler ones and to arrive finally at the 

correct solutions. (42) 

The problems found on these tablets were stated and solved 

verbally. 

The words us (length), sag (breadth), and asa, 

(area) were often used for the unknowns, not 

because the unknowns necessarily represented the 

geometric quantities, but probably because many 

algebraic problems came from geometric 

situations and the geometric terminology became 

standard. (Kline 9) 

There now exist translations of some of the mathematical 
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tablets. The one that contained the following example 

originally had twenty-two problems solvable as linear 

equations in one unknown. 

I found a stone, (but) did not weigh it; (after) 

I weighed (out) 6 times (its weight), [added] 2 

gin, (and) added one-third of one-seventh 
-

multiplied by 24, I weighed (it): 1 ma-na. What 

was the origin(al weight) of the stone? The 

origin(al weight) of the stone was 4 1/3 gin. 

In our symbols: 

(6x + 2) + (1/3) ·(1/7) •24•(6x + 2) = 60. Note that 1 

ma-na is 60 gin (Fauvel 26) . 

A tablet which can now be found in the British Museum 

gives this problem: 

I have added the area and two thirds of the side 

of my square and it is 0;35. You take 1, the 

coefficient. Two thirds of 1, the coefficient, 

is 0;40. Half of this, 0;20, you multiply by 

0;20 (and the result) 0;6,40 you add to 0;35, 

and (the result) 0;41,40 has 0;50 as its square 

root. 0;20, which you multiplied by itself, you 

subtract from 0;50 and 0;30 is the (side of) the 

square. (Aaboe 23) 

This example states and solves the quadratic equation 

x2 + (2/3)x = 0;35. Recall that this problem is in base 

60 and that 0;35 means 35/60. So 2/3 of 1 is 2/3 of 60/60 

which is 40/60 or 0;40. 0;6,40 is (6•60 + 40)/3600 or 



400/3600 and 0;41,40 is (41•60 + 40)/3600 or 2500/3600. 

We should note also that words like the coefficient and 

the result are used, perhaps indicating that this shows a 

general method for solving all quadratic equations, not 

just this specific example. 

9 

Many Old Babylonian texts show solutions of quadratic 

equations. "[The Babylonians) could transpose terms in an 

equation by adding equals to equals, and they could 

multiply both sides by like quantities to remove fractions 

or to eliminate factors" (Boyer 33). One problem asks for 

a number which added to its reciprocal yields a given 

number. In our symbols: 

Find x and y such that xy = 1 and x + y = b. By 

solving for y in the second equation, and substituting 

into the first equation, we arrive at a quadratic equation 

in x, x2 - bx + 1 = 0. As the example above shows, the 

Babylonians formed (b/2) 2: then j(b/2) 2 - 1; and then 

(b/2) + j(b/2) 2 - 1 and (b/2) - ~(b/2) 2 + 1. Other 

problems were reduced to the above problem and then 

solved. The solution to each specific problem was found 

in this general way, without explicitly stating this 

formula; the Babylonians emphasized procedure (Kline 8). 

The following problem is taken from a text from 

Senkereh where many of the tablets were found and was 

written during the Hammurabi dynasty. 

Length, width. I have multiplied length and 

width, thus obtaining the area. Then I added to 



the area, the excess of the length over the 

width: 183. Moreover, I have added length and 

width: 27. Required length, width, and area. 

This problem also leads to a quadratic equation. The 

10 

complete Babylonian solution is,given in Science Awakening 

(van der Waerden 63). 

We should note that the Babylonians added lengths to 

areas. Both Aaboe and Boyer point out that these problems 

could not be practical mensuration problems (Aaboe 25; 

Boyer 33). 

The Babylonians also solved some cubic equations. 

Pure cubics were solved by using tables of cubes and cube 

roots. Linear interpolation was used when the value was 

not listed in the tables. Similarly, tables were used to 

solve cubics of the form x3 + x2 =a (Boyer 36). 

With regard to the Babylonians and the fundamental 

theorem of algebra Boyer writes, "questions about the 

solvability or unsolvability of a problem do not seem to 

be raised" (44). 

The Egyptians 

(" . . 
Next, we look to the fert1le N1le valley where as 

early as 3000 BC the Egyptians were using hieroglyphics 

and had symbols for numbers up to 100,000. The pyramids 

of Egypt were built in the period now referred to as the 

Old Kingdom. During the Middle Kingdom, from 2000 BC to 

1800 BC, many papyri were written by the scribes of that 
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time. The most famous of the mathematical papyri, now 

called the Rhind Papyrus, was copied sometime around 1700 

BC. This papyrus was discovered in some ruins of the 

Rameseum at Thebes, and was acquired in 1858 by A. H. 

Rhind, a Scottish Egyptologist who specialized in tombs 

(Gillings 89). 

The Rhind Papyrus, which is now in the British 

Museum, was deciphered by Eisenlohr in 1877 and found to 

be a "mathematical manual" (Cajori 9). The papyrus is one 

foot high and eighteen feet long. The papyrus is not 

written in hieroglyphics but in a more cursive script, 

called hieratic, which, according to Boyer, was "better 

adapted to the use of pen and ink on prepared papyrus 

leaves" (12). It was copied by the scribe Ah-mose or 

Ahmes and is sometimes referred to as the Ahmes Papyrus. 

The Ahmes Papyrus is contemporary with the Babylonian 

tables of squares and cubes found at Senkerah (Karpinski 

3) • 

The prologue promises much: "Complete and thorough 

study of all things, insight into all that exists, 

knowledge of all secrets." Van der Waerden says, 

It soon becomes evident that we shall not 

witness the revelation of the origin of things, 

but that we shall merely be initiated into the 

secrets of numbers and into the art of 

calculating with fractions, in order to apply 

these to various practical problems with which 



the officials of the great state had to deal. 

(16) 

There seems to be differing opinions on the purpose 

of the Ahmes Papyrus. Smith says, 

12 

It is not a textbook, but is rather a practical 

handbook. It contains material on linear 

equations of such types as x + 1/7x = 19; it 

treats extensively of unit fractions; it has a 

considerable amount of work on mensuration, and 

it includes problems in elementary series. 

(History I 48) 

Boyer, on the other hand, believes that the calculations 

are "practice exercises for young students." He says, 

"Although a large proportion of them are of a practical 

nature, in some places the scribe seems to have had 

puzzles or mathematical recreations in mind" (17). The 

papyrus contains eighty-five problems and solutions. 

Kline remarks, "Presumably such problems occurred in the 

work of the scribes and they were expected to know how to 

solve them" {16). 

The problems found on the Ahmes papyrus are 

equivalent to linear equations of the form x + ax = b or 

x + ax + bx = c, where a, b, and c are known and x is 

unknown. The unknown quantity was referred to as aha or 

heap. The following problem, number 24 from the Rhind 

Papyrus, is solved by the method of false position or the 

rule of false. In this method, a value is assumed for 



13 

aha, usually a false one, the operations are performed on 

this value, and then the result is compared to the result 
-

desired. Then by the use of proportions the correct value 

is found. 

Problem 24: A quantity and its 1/7 added 

together become 19. What is the quantity? 

Assume 7. 

\1 

\1/7 

Total 

As many times as 

7 

1 

8. 

8 must be multiplied to give 

so many times 7 must be multiplied to give the 

required number. 

1 8 

\2 16 

1/2 4 

\1/4 2 

\1/8 1 

Total 2 1/4 1/8. 

\1 2 1/4 1/8 

\2 4 1/2 1/4 

\4 9 1/2 

Do it thus: The quantity is 16 1/2 1/8, 

1/7 2 1/4 1/8 

Total 19. (Chace 36) 

19, 

The problem is solved like this: Assume 7 is the answer. 

Find 1/7 of 7 which is 1. 7 and 1 are 8, so we will find 
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how many times 8 will go into 19, and then multiply 7 by 

this to arrive at the correct answer. The Egyptians did 

not divide 19 by 8, but calculated parts of 8, like twice 

8, half 8, and so on. The sum of 16 and 2 and 1 is 19, 

and you will see the parts marked in the column on the 

left: 2, 1/4, and 1/8. And so, 8 will divide into 19, 2 

1/4 1/8 times. (The Egyptians almost always worked with 

unit fractions, except for the fraction 2/3.) Then since 

7 is 1 and 2 and 4, Ahmes finds once, twice, and four 

times 2 1/4 1/8 and adds to get the result, 16 1/2 1/8. 

These problems employed practically no symbolism. 

However, addition and subtraction are represented by the 

legs of a man coming and going,~ and~' and the symbol 

l was used to denote square roots (Kline 19). 

Other mathematical papyri have been found including 

the Moscow papyrus which is 18 feet long and 3 inches 

wide. 

It was written, less carefully than the work of 

Ahmes, by an unknown scribe of the twelfth 

dynasty (1890 BC). It contains twenty-five 

examples, mostly from practical life and not 

differing greatly from those of Ahmes . . . 

(Boyer 20) 

Although we know that the Babylonians could solve 

quadratic and cubic equations, the. Egyptians could get no 

further than linear equations and simple quadratic 

equations which we would write in the form ax2 = b. In 



Science Awakening, van der Waerden says, 

the aha calculations constitute the climax of 

Egyptian arithmetic. The Egyptians could not 

possibly get beyond linear equations and pure 

quadratics with one unknown, with their 

primitive and laborious computing technique. 

(29) 

The Hindus 

15 

There was a highly cultured civilization in India as 

far back as the days of the pyramid builders in Egypt. 

The religious leader Buddha was active about the same time 

Pythagoras was supposed to have visited India (Boyer 229). 

Trade was carried on between India and Greece, and India 

and Rome via Alexandria. The Indian society was one of 

castes, and only the religous caste and the war and 

government caste had the privelege and leisure to think 

about mathematics (Cajori 83). 

We know little of the development of Hindu 

mathematics. Cajori mentions the discovery of an 

anonymous arithmetic written on birch bark whose probable 

date was the eighth century. The Indians put all 

mathematical results into verse, "clothing them in obscure 

and mystic languages" (Cajori 83). 

Hindu mathematics may be resolved into two periods: 

the S'ulvasutra period which lasted until AD 200 and the 

Siddhantas period, which lasted until AD 1200. The word 
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S'ulvasutra means the rules of the cord. The main purpose 

of the book was religious and the mathematical portion 

dealt with the construction of squares and rectangles 

(Cajori 85). 

Siddhantas means a system of astronomy. Aryabhata, 

born in AD 476, was a noted Hindu astronomer of this 

period. His celebrity rests on a work entitled 

Aryabhatiya which was a summary of earlier developments in 

astronomy and mensuration. Most of the work of Hindu 

mathematicians was motivated by astronomy and astrology. 

There were no separate mathematical texts. Mathematics is 

presented in chapters of works on astronomy (Kline 184). 

Brahmagupta was born in AD 598; in 628 he wrote 

Brahma-sphuta-Siddhanta which translates as The Revised 

System of Brahma. Two chapters deal with mathematics. He 

applies algebra to astronomical calculations and solves 

indeterminate equations (Smith 158). The arithmetic of 

negative numbers and zero are first found in his work. 

Brahmagupta knew the general solution to quadratic 

equations and found two roots, even when one was a 

negative number (Boyer 242). His recognition of negative 

roots enabled him to bring the three forms of the 

quadratic equation previously studied under one general 

case, px2 + qx + r = 0 {Cajori 94). 

Mahavira lived in the ninth century. According to 

c. N. Srinivasiengar in The History of Ancient Indian 

Mathematics, Mahavira was a mathematician only, not an 



astronomer. He wrote Ganita Sara Sangraha in AD 850. 

There are no new discoveries and the problems are often 

long and complicated. 

17 

Out of a certain number of Sarasa birds, one­

fourth the number are moving about in lotus 

plants; one-ninth coupled with one-fourth as 

well as seven times the square root of the 

number move on a hill; 56 birds remain in Vakula 

trees. What is the total number of birds? 

If x is the number of birds, this problem leads to the 

equation x = x/4 + x/9 + X/4 + 7vx [+56], whose solution 

is x = 576 (71). 

Three centuries later we find Bhaskara filling gaps 

in Brahmagupta's work. Boyer says "There is a striking 

lack of continuity of tradition in the mathematics of 

India; significant contributions are episodic events 

separated by intervals without achievement" (229) . 

Bhaskara wrote Lilavati which contained problems from 

Brahmagupta and others, adding new observations of his 

own. He discussed linear and quadratic equations, both 

determinate and indeterminate (Boyer 245). Bhaskara says 

the square of a positive as also of a negative 

number, is positive; that the square root of a 

positive number is twofold, positive and 

negative. There is no square root of a negative 

number, for it is not a square. 

An example of the type of problem found in the Lilavati 
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follows. Note, as Cajori calls it, "the pleasing poetic 

garb in which all arithmetical problems are clothed" {92). 

Out of a swarm of bees a number equal to the 

square root of half their number went to the 

Malati flowers; 8/9th of the total number also 

went to the same place. A male bee enticed by 

the fragrance of the lotus got into it. But 

when it was inside it, night fell, the lotus 

closed, and the bee was caught inside. To its 

buzz, its consort was replying from outside. 

What is the number of bees? (Srinivasiengar 86) 

If x is the total number of bees, this problem leads to 

the equation Jx/2) + (8/9)x + 2 = x and the solution is 

x = 72. Quadratic equations were solved by both completing 

the square and by using some version of the quadratic 

formula. 

The Indians "greatly aided the progress of 

mathematics" by "never discerning the dividing line 

between numbers and magnitude" as the Greeks had. They 

advanced beyond Diophantus in observing that a quadratic 

equation always has two roots. "But," says Bhaskara, "the 

[negative] value is not to be taken, for it is inadequate; 

people do not approve of negative roots" (Cajori 93). The 

Indian arithmetic and algebra was completely independent 

of geometry {Kline 186). 

The most important contribution of the Hindu 

mathematicians was the development of our system of 
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notation for integers. They could solve linear and 

quadratic equations and were not hampered by negative 

solutions. Of equations of degree three and higher, they 

could solve special cases in which both sides of the 

equation could be made perfect powers by the addition of 

some terms (Cajori 94). 

The Greeks 

. . . we now have reason to believe, on the 

basis of the Iliad and the Odyssey of Homer, the 

decipherment of ancient languages and scripts, 

and archeological investigations, that the Greek 

civilization dates back to 2800 BC. (Kline 24) 

The Greeks lived in Asia Minor and on the mainland of 

Europe, in southern Italy, Sicily, Crete, Rhodes, Delos, 

and in North Africa. During the time period 1000 BC to 

AD 600, most of the Mediterranean world, as far as 

mathematical achievements are concerned, can be considered 

to be under Hellenic influence. 

Some authors find it desirable to distinguish two 

periods in the history of Greek civilizaton, the Classical 

Period, which lasted from 600 BC to 300 BC, and the 

Alexandrian or Hellenistic Period, 300 BC to AD 600. "The 

adoption of the alphabet and the fact that papyrus became 

available in Greece during the seventh century BC may 

account for the blossoming of cultural activity about 600 

BC" (Kline 25). Schools were formed in which knowledge 
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was passed from one pers9n to the next, with the first, 

the Ionian school, founded by Thales in Miletus around 585 

BC. Pythagoras is supposed to have learned from Thales 

and then formed his own school in Southern Italy around 

550 BC. The most celebrated school was the Academy of 

Plato in Athens. Plato was taught ·by two Pythagoreans, 

Theodorus of Cyrene and Archytas of Tarentum. Plato 

founded his school in 385 BC {Kline 27). 

our knowledge of the mathematics of ancient Greece 

comes from Byzantine Greek codices or manuscript books 

that were written 500 to 1500 years after the original 

Greek works were composed. Kline writes "These codices 

are not literal reproductions but critical editions, so 

that we cannot be sure what changes may have been made by 

the editors" (25). We also have some Arabic translations 

of the works of the Greeks. Neugebauer points out another 

important fact: 

Any attempt to reconstruct the origin of 

Hellenistic mathematics and astronomy must face 

the fact that Euclid's Elements and Ptolemy's 

Almagest reduced all their predecessors to 

objects of mere historical interest with little 

chance of survival. As Hilbert once expressed 

it, the impo,rtance of a scientific work can be 

measured by the number of previous pu~lications 

it makes superfluous to read. {145) 

Eudemus, who lived in the fourth century BC, wrote a 
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history of arithmetic, a history of geometry, and a 

history of astronomy. These histories are lost except for 

fragments quoted by later writers (Kline 26). 

The intellectuals or scholars of ancient Greece did 

not "concern themselves with practical problems. They 

confined themselves to philosophical and scientific 

activities and took no hand in commerce or the trades" 

(Kline 49). Thus we find that they did not concern 

themselves with arithmetic nor algebra, but focused 

instead on geometry. Kline says: "It is clear •.. that 

Plato and other Greeks for whom he speaks valued abstract 

ideas and preferred mathematical ideas as a preparation 

for philosophy" (44). He also points out that the Greeks 

were the first to consciously recognize that "mathematical 

entities, numbers, and geometrical figures are 

abstractions, ideas entertained by the mind and sharply 

distinguished from physical objects or pictures" (29). 

We have established that the Babylonians could solve 

quadratic equations. Neugebauer raises the question of 

the "specific-way in which such knowledge found its way to 

Greece. Here we are left to mere speculation" (150). 

Boyer describes the creation of geometrical algebra: 

The dichotomy between number and continuous 

magnitude required a new approach to the 

Babylonian algebra that the Pythagoreans had 

inherited. The old problems in which, given the 

sum and product of the sides of a rectangle, the 
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dimensions were required, had to be dealt with 

differently from the numerical algorithms of the 

Babylonians. A geometrical algebra had to take 

the place of the older arithmetical algebra, and 

in this new algebra there could be no adding of 

lines to areas or of areas to volumes. From now 

on there had to be a strict homogeneity of terms 

in equations, and the Mesopotamian normal forms, 

xy = A, x ± y = b, were to be interpreted 

geometrically. (85) 

Aaboe points out that the "irrationality of -12 has serious 

consequences for algebra, for it showed that the simple 

problem of finding x such that x2 = 2 which could easily 

be stated, had no exact solution in numbers, for numbers 

meant rational numbers." He felt this is what gave rise to 

geometrical algebra. (44) 

Algebra was reformulated in geometric terms. The 

phrase "the rectangle of sides a and b" was used instead 

of "a times b." Even today we say x squared and x cubed 

for x2 and x3. Throughout Greek mathematics, there are 

numerous applications of this algebra. 

The line of thought is always algebraic, the 

formulation geometric. The greater part of the 

theory of polygons and polyhedra is based on 

this method; the entire theory of conic sections 

depend on it. (van der Waerden 119). 

The arguments of van der Waerden make a good case for 



geometrical algebra although some mathematics historians 

are in total disagreement with him. 
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We have seen that the Babylonian treatment of 

problems of second degree consist in reducing 

them to normal form where two quantities, x and 

y, should be found from their given product and 

their sum or difference. It seems significant 

that the geometric formulation of this problem 

leads precisely to the central problem of the 

geometrical algebra, a problem which is 

otherwise rather difficult to motivate. This 

problem is known as the application of area, 

which consists, in its simplest form, in the 

following: Given an area A and a line segment b; 

construct a rectangle of area A such that one of 

its sides falls on b but in such a way that the 

rectangle of equal height and of length b is 

either larger or smaller by a square than the 

rectangle of area A. The identity of this 

strange geometrical problem with the Babylonian 

normal form is at once evident when we formulate 

it algebraically. Let us call, in both cases, x 

and y the sides of the rectangle. Then we are 

given xy = A. In the first case a square should 

remain free; its sides are y and we must require 

x + y = b. In the second case, a square should 

exceed the rectangle of side b; thus we should 
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have x - y = b. These are indeed the normal 

forms. Attempts have been made to motivate the 

problem of application of area independently of 

this algebraic background. There is no doubt, 

however, that the above assumption of a direct 

geometrical interpretation of the normal form of 

quadratic equations is by far the most simple 

and direct explanation. (149) 

However, not all historians are in agreement about 

geometrical algebra. Sabetai Unguru refutes the arguments 

of van der Waerden and others by saying 

the view that Greek mathematics, especially 

after the discovery of the irrational by the 

Pythagorean school, is algebra dressed up 

primarily for the sake of rigor, in geometrical 

garb • I believe such a view is offensive, 

naive, and untenable. It is certainly 

indefensible on the basis of the historical 

record • (85) 

Discussion of geometric algebra leads us to Euclid 

and Elements. Euclid is believed to have lived around 

300 BC and it is 

. most probable that Euclid received his 

mathematical training in Athens from the pupils 

of Plato • • • and it was in Athens that the 

older writers of elements and the other 
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mathematicians on whose works Euclid's Elements 

depend, had lived and taught. (Heath 2) 

Not much else is known of Euclid's life. 

Elements is written in thirteen parts or books. 

Book I covers congruence, parallels, and the Pythagorean 

Theorem; Book II discusses identities which we would now 

treat algebraically, like (a+ b)2 = a2 + 2ab + b2 but 

which were then treated geometrically, application of area 

problems, and the Golden Ratio. In Book III we find 

circles, in IV, inscribed and circumscribed polygons. 

Book V treats proportion geometrically, as Smith says in 

History of Mathematics, "a geometric way of solving 

fractional algebraic equations" (105). Book VI is on 

similarity of polygons, VII-IX are on arithmetic (the 

ancient theory of numbers) treated geometrically, Book X 

is about incommensurable magnitudes and the rest of the 

books are on solid geometry. 

By Euclid's time, geometrical algebra had "reached 

such a stage of development that it could solve the same 

problems as our algebra so far as they do not involve the 

manipulation of expressions,of a degree higher than the 

second" (Heath 372). The theory of proportions was 

necessary to make the geometric algebra effective. 

Eudoxus, who lived from 408 BC to 355 BC, is credited with 

the discovery of the theory of proportions. 

What Eudoxus accomplished was to avoid 

irrational numbers as numbers ••• Eudoxus' 
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theory enabled the Greek mathematicians to make 

tremendous progress in geometry . it forced 

a sharp separation between number and geometry, 

for only geometry could handle incommensurable 

ratios. (Kline 48) 

Theorem 4 in Book I of Elements is.the first example 

of a geometric solution of an equation, according to 

Aaboe. 

Theorem 4: .In any parallelogram the complements 

of parallelograms about the diagonal are equal. 

(58) 

This translates to a construction problem, the task is to 

find an x such that x•a = b·c where a, b, and c are given 

line segments. 

The application of area was used to solve simple 

linear equations such as ax = F; and to solve x2 = F which 

amounts to the transformation of a given area into a 

square; and to solve the pure cubic x3 = V which poses the 

problem of constructing a cube of a given volume. Other 

quadratics were solved with this method after first being 
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reduced to one of the forms x(x + a) = F, x(a - x) = F, or 

x(x- a)= F (van der Waerden 124). 

The geometrical solution of a quadratic equation can 

be found in Proposition 5 of Book II. 

Proposition 5: If a straight line be cut into 

equal and unequal segments, the rectangle 

contained by the unequal segments of the whole 

together with the square on the straight line 

between the points of section is equal to the 

square on the half. 

A C D 

Heath translates this into algebraic symbols in this way: 

Suppose that AB = a, DB = x then 

ax - x2 = the rectangle AH 

= the gnomon NOP. 

Thus if the area of the gnomon is given (= b2, 

say), and if a is given(= AB), the problem of 

solving the equation ax - x2 = b2 is, in the 

language of geometry, to a given straight line 

(a) to apply a rectangle which shall be equal to 



a given square (b2) and shall fall short by a 

square figure. (383) 

Heath defines a gnomon as the figure which remains of a 

square when a smaller square is cut out of one corner. 
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The geometrical solution of the quadratic equation 

derived from Euclid is a geometric version of our practice 

of completing the square on the side containing the terms 

in x2 and x. 

In Science Awakening, van der Waerden wonders about 

geometric algebra: 

Why did the Greeks not si~ply adopt Babylonian 

algebra as it was, why did they put it in 

geometric form? . . • Would these worshippers of 

numbers have solved quadratic equations, not in 

terms of numbers, but by means of segments and 

areas, purely for the delight in the visible? 

This is hard to believe; there must have been 

another push towards the geometrisation of 

algebra. 

He discusses the discovery of the irrational, which 

originated in the Pythagorean school. He then says, 

For the Babylonians, every segment and every 

area simply represented a number. They had no 

scruples in adding the area of a rectangle to 

its base. When they could not dete~mine a 

square root exactly, they calmly accepted an 

approximation. . . . But the Greeks were 
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concerned with exact knowledge, with the 

diagonal itself, as Plato expresses it, not with 

an acceptable approximation. In the domain of 

numbers, the equation x2 = 2 can not be solved, 

not even in that of ratios of numbers. But it 

is solvable in the domain of segments: indeed 

the diagonal of the unit square is a solution. 

Consequently, in order to obtain exact solutions 

of quadratic equations, we have to pass from the 

domain of numbers to that of geometric 

magnitudes .... It is therefore logical 

necessity, not the mere delight in the visible, 

which compelled the Pythagoreans to transmute 

their algebra into a geometric form. (125) 

Archimedes, around 250 BC, was able to solve cubic 

equations which we would now write as x3 ± ax2 ± b2c = 0 

by the intersection of conics. In On the Sphere and 

Cylinder, we find this problem: 

Proposition 4: To cut a given sphere by a plane 

so that the volumes of the segments are to one 

another in a given ratio. 

This problem is equivalent to solving the equation 

x2(a- x) = b2c (Works 70). Archimedes solved it by 

intersecting the parabola, x2 = (a2jc)y and the hyperbola, 

y(c- x) =be (Kasir 13). 

Hero, or Heron of Alexandria, who lived in AD 60 was 

able to solve ax2 + bx = c. But his method of solving 



resembled the Babylonian method of solving and he felt 

free to add areas and line segments. Heath discusses a 

problem from Hero's Geometrica that leads to a quadratic 

equation. 
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Given a square such that the sum of its area and 

perimeter is 896 feet: to separate the area from 

the perimeter. 

Hero solves this by the method we now call completing the 

square. Neugebauer says this return to the Babylonian 

methods should no longer be "viewed as a novel sign of the 

rapid degeneration·of the so called Greek spirit, but 

simply reflects the algebraic or arithmetic tradition of 

Mesopotamia" (146). We will find whole sections of these 

works again in the famous Algebra of al-Khowarizmi, who 

lived in AD 800. 

Diophantus of Alexandria lived around AD 250. He was 

the author of Arithmetica, a book containing 189 problems 

and solutions. He reduces all of his problems to 

equations in one unknown. He apparently knew how to solve 

the general quadratic equation of the form ax2 = 2bx + c 

by using what we now know as the quadratic formula. Many 

of the problems and solutions are closely related to 

Babylonian problems, and as van der Waerden expresses it: 

It is probable that the tradition of these 

algebraic methods was never interrupted so that, 

along with the scholarly tradition of Greek 

geometry, there has always existed a more 



popular tradition of small algebraic problems 

and methods of solution . • . " (280) 
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Arithmetica covers much that is now included in 

algebra. Diophantus introduced some symbolism, including 

a symbol for the unknown quantity, and special names for 

powers of the unknown (van der Waerden 281). Cajori 

notes, 

If we except the Ahmes Papyrus, which contains 

the first suggestions of algebraic notation and 

of the solution of equations, then Diophantus' 

Arithmetica is the earliest treatise on algebra 

now extant. (60) 

"The Arithmetica is not," according to Boyer, "a 

systematic exposition of the algebraic operations or of 

algebraic functions or of the solution of algebraic 

equations" (202). It is a collection of problems solved 

with specific numerical examples and Diophantus makes no 

effort to find all solutions. Even for indeterminate 

equations he is satisfied with one solution. 

The following problem and solution are from Book VI 

of Arithmetica. 

Problem 6: To find a right angled triangle such 

that the area added to one of the perpendiculars 

makes a given number. 

Given number 7, triangle (3x,4x,5x). 

Therefore 6x2 + 3x = 7. 

In order that this might be solved, it would be 
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necessary that 

(half coefficient of x)2 + product of 

coefficient of x2 and absolute term should be a 

square; 

but (3/2)2 + 6•7 is not a square. 

Hence we must find, to replace (3,4,5), a right 

angled triangle such that 

(1/2 one perpendicular)2 + 7 times area 

= a square. 

Let one perpendicular be m, the other 1. 

Therefore (7/2)m + 1/4 = a square, 

or 14m + 1 = a square. 

Also, since the triangle is rational, 

m2 + 1 = a square. 

The difference m2- 14m= m(m- 14); 

and putting, as usual, 72 = 14m + 1, 

we have m = 24/7. 

The auxiliary triangle is therefore 

(24/7,1,25/7) or (24,7,25). 

Starting afresh, we take as the triangle 

(24x,7x,25x). 

Therefore 84x2 + 7x = 7, and x = 1/4. 

We have then (6,7/4,25/4) as the solution. 

(Heath, Diophantes 228) 

Note that no instructions are given to solve the quadratic 

equation 84x2 + 7x = 7. 

Diophantus accepted only positive roots. If a 
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quadratic equation led to two negative roots or imaginary 

roots, he rejected the equation as not solvable. Until 

negative and imaginary roots are accepted, the fundamental 

theorem of algebra can not be formulated. 

The Arabs 

Around AD 600 the peninsula of Arabia was inhabited~ 

by desert nomads called Bedouins. These Bedouins could 

neither read nor write. Mohammed was a Bedouin and he 

became a military as well as a religious leader; he 

established an Islamic state whose center was Mecca. The 

expansion of the state was not slowed by his death, and 
-

soon the whole Mesopotamian valley as well as Alexandria 

fell to the Arabic conquerors. Legend has it that the 

leader of the victorious troops was told to burn the books 

of the Alexandrian library; "for if they were in agreement 

with the Koran they were superfluous, if they were in 

disagreement they were worse than superfluous." The story 

continues that the baths of th~ city were long heated from 

the flames of the burning books {Boyer 249). 

By 750, these conquerors became eager to absorb the 

learnings of the civilizations they had overrun. An 

astronomical-mathematical work known by the Arabic name 

sindhind was brought to Baghdad from India about 766. It 

is generally believed to be the Siddhanta of Brahmagupta 

(Boyer 250). Greek physicians and scholars were called to 

Baghdad and translations of other works began. 
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The translation of mathematical works must 

have been very deficient at first, as it was 

evidently difficult to obtain translators who 

were masters of both Greek and Arabic and at the 

same time proficient in mathematics. The 

translations had to be revised again and again 

before they were satisfactory. {Cajori 101) 

Important authors that were translated into Arabic were 

Euclid, Ptolemy, Appolonius, Archimedes, Heron, and 

Diophantus. 

One of the translators was Mohammed ibn Musa al­

Khowarizmi who lived during the ninth century. The Book 

of Chronicles, a collection of biographies of learned men 

of all nations, was completed in AD 987. We find this 

entry: 

Mohammed ibn Musa, born in Khowarizm, worked in 

the library of the caliphs under Al-Mamun. 

During his lifetime and afterward, where 

observations were made, people were accustomed 

to rely upon his tables, which were known by the 

name Sind-Hind. He wrote: The Book of 

Astronomical Tables, On the Sundial, On the Use 

of the Astrolabe, The Book of Chronology. 

The bibliography does not mention four other works by 

al-Khowarizmi, including 'The Book of Algebra and On the 

Hindu Art of Reckoning, but we find them listed mistakenly 

in the biography that follows his (Karpinski 14). 
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Al-Khowarizmi was the first Islamic author to write on the 

solutions of problems by al-jabr and al-muqabala. The 

nearest English translation of these words is "restoration 

and reduction. By ,restoration was meant the transposing 

of negative terms to the other side of the equation; by 

reduction the uniting of similar terms" (Cajori 103). It 

is believed that the term "algebra" originates from 

"al-jabr" and the term "algorithm" is from the name 

"al-Khowarizmi." This work explains the elementary 

operations and the solutions of linear and quadratic 

equations. Kline says, 

The algebra of Al-Khowarizmi is founded on 

Brahmagupta's work but also shows Babylonian and 

Greek influences . He uses special names for 

the powers of the unknown. The unknown he 

refers to as the 'thing' or the root of a plant, 

whence our term root • • . He recognizes that 

there can be two roots of quadratics, but gives 

only the real positive roots, which can be 

irrational. {192) 

He presented demonstrations of his solutions to quadratic 

equations by drawing a square and adding rectangles to it. 

The following is from The Algebra, Chapter IV: concerning 

squares and roots equal to numbers. 

The following is an example of squares and roots 

equal to numbers: a square and 10 roots are 

equal to 39 units. The question is therefore in 
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this type of equation is about as follows: what 

is the square which combined with ten of its 

roots will give a sum total of 39? The manner 

of solving this type of equation is to take one­

half of the roots just mentioned. Now the roots 

in the preble~ before us are 10. Therefore, take 

5, which multiplied by itself gives 25, an 

amount which you add to 39, giving 64. Having 

taken then the square root of this which is 8, 

subtract from it the half of the roots, 5, 

leaving 3. The number 3 therefore represents 

one root of this square, which itself, of 

course, is 9. Nine therefore 'gives that square. 

(Karpinski 71) 

The geometric solution is discussed on page 77 of Robert 

of Chester's Latin Translation of the Algebra of al­

Khowarizmi. 

At the beginning of the eleventh century, a work on 

the theory of numbers and algebra was done by Al-Karkhi of 

Baghdad. This work, drawn largely from Hindu sources, 

includes algebraic operations, finding roots, solving 

equations of the first and second degree, and 

indeterminate analysis. Al-Karkhi gives both arithmetical 

and geometrical proofs for the solutions of quadratic 

equations (Kasir 17). 

Abu Ja'far Alchazin was the first Arab to solve cubic 

equations by using conic sections. The one who did most 
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to "elevate to a method the solution of algebraic 

equations by intersecting conics, was the poet Omar 

Khayyam." omar Khayyam lived in the eleventh century and 

was a poet, philosopher, mathematician, and astronomer. 

His algebra was mainly geometric, solving linear and 

quadratic equations with the methods of Euclid. He solved 

six types of trinomials that had a cubic term. To solve a 

problem that leads to "a cube and a number equal to 

sides", which we would write as x3 + a = bx, Omar Khayyam 

used a parabola and a hyperbola. He showed methods to 

solve equations of the form x3 + cx2 + bx = a and x3 + cx2 

= bx +a (Kasir 75). In The Algebra of Omar Khayyam by 

Daoud s. Kasir, Omar Khayyam states that if the numerical 

solution is not supplemented by geometric construction, or 

vise versa, "the art of algebra could not be verified" 

·(21). He rejected negative roots of equations and 

sometimes failed to discover all the positive ones. 

With Al-Kharki and Omar Khayyam, mathematics among 

the Arabs of the East reached a high mark and then began 

to fade. In the West, in Spain, there lived an astronomer 

named Jabir ibn Aflah. It was formerly believed that he 

was the inventer of algebra and that the word algebra came 

from the name, Geber, by which Aflah was frequently known. 

He was a very good astronomer, but "like so many of his 

contemporaries, his writings contain a great deal of 

mysticism", (Cajori 109). 

We have seen that the Arabs could solve linear, 
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quadratic, and some cubic equations. It was not clear to 

them that all quadratic equations should have two 

solutions unless both those solutions were positive. 

Christian Europe 

With the third century after Christ begins an 

era of migration of nations in Europe. The 

powerful Goths quit their swamps and forests in 

the North ... crossing the Roman territory, 

and stopping and recoiling onlY- when reaching 

the shores of the Mediterranean. . wild 

hordes sweep down on the Danube. The Roman 

Empire falls to pieces, and the Dark Ages begin. 

(Cajori 113) 

During this period of the Dark Ages and onward, to 

about AD 1000, we find, quoting Smith in History of 

Mathematics, 

the slow civilizing of the northern races, the 

development of monastic schools, the work of 

Charlemagne, and the contact with oriental 

civilization, chiefly through the Moors of 

Spain. In mathematics it was the era of the 

development of the Christian calendar in the 

West, and little else. (177) 

scattered groups of people who had been part of the Roman 

Empire had acquired some learning. Before the collapse of 

the Empire, the Catholic Church was organized and 
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powerful. The Church converted the "Germanic and Gothic 

barbarians" and began to found schools, attaching them to 

already existing monasteries. 

As the Church extended its influence it imposed 

the culture it favored. Latin was the official 

language of the Church and so Latin became the 

international language of Europe and the 

language of mathematics and science. 

(Kline 201) 

As the Europeans began to seek knowledge, they naturally 

turned to books written in Latin. As Roman mathematics 

was practically insignificant, only a few facts of 

arithmetic and a primitive number system were available to 

the people. 

Boethius lived at the opening of the Dark Ages and 

was a "statesman, philosopher, mathematician, man of 

letters, and founder of medieval scholasticism" (Smith 

178). His mathematical works included arithmetic, 

geometry, and music. The Geometry consisted of the 

statements of the propositions of Book I, III, and IV of 

Euclid's Elements, and the Arithmetic is a translation of 

Nichomachus' Introduction to Arithmetic, a book concerned 

with the properties of numbers. Boethius understood the 

subject sufficiently so as not to leave out anything 

essential (Gibson 138). "The importance of Boethius", 

says Eves, 

is the fact that his writings remained standard 



texts in the monastic schools for many 

centuries. These very meager works came to be 

considered the height of mathematical 

achievement, and thus well illustrate the 

poverty of the subject in Christian Europe 

during the Dark Ages. (206) 
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"The rise of Christianity had unfortunate 

consequences," says Kline. The Christian leaders opposed 

"pagan learning and ridiculed mathematics, astronomy, and 

physical science" (180). Few of the first Christian 

scholars had an interest in mathematics or science because 

"their religious faith was too intense, their persecutors 

too real, and their lives too precarious" (Smith 179). 

Bede the Venerable, who lived from 672 to 735, was 

considered to be the most learned man of his time. "His 

works contain treatises on the Computus, or the 

computation of Easter-time, and on finger reckoning" 

{Cajori 114). It seems that the determination of Easter 

and other holiday~ was a problem, and so each monastery 

needed a monk who was able to compute the calendar. Some 

mathematics was taught in the early medieval schools for 

this purpose and others: "finding heights and distance, 

[as] good training for theological reasoning, and [for] 

astrology (Kline 202). 

Alcuin, who lived from 735 to 804, was called to the 

court of Charlemagne to direct the progress of education 

in the empire. A book, Problems for Quickening the Mind, 
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is attributed to Alcuin by some scholars, although there 

is some doubt about the authorship. According to Cajori 

The solutions require no further knowledge than 

the recollection of some few formulas used in 

surveying, the ability to solve linear equations 

and to perform the four fundamental operations 

with inte'gers. Extraction of roots was nowhere 

demanded, fractions hardly ever occur. (114) 

The type of problem found in this book can be illustrated 

by the following example: 

A wolf, goat, and some cabbage need to be rowed 

across a river in a boat, holding only one 

besides the ferry-man. Query: How must he 

carry them across so that the goat shall not eat 

the cabbage, nor the wolf the goat? 

(Cajori 114) 

The greatest mathematician of the tenth century was 

Gerbert, who was born in Auvergne. He received a monastic 

education and then studied mathematics. Tn 999, he was 

made pope and reigned under the name of Sylvester II. He 

wrote A Small Book on.the Division of Numbers and Rule of 

Computation on the Abacus (Cajori 115). 

By 1100, the civilization of Europe had begun to 

stabilize. The Europeans had come into contact with the 

Arabs of the Mediterranean area and with the people of the 

Eastern Roman Empire. The Crusades, which were military 

campaigns to conquer territory, brought Europeans into 
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Arab lands. The Europeans began to learn about Greek 

works. This awareness created great excitement; 

"Europeans energetically sought out copies of Greek works, 
\_ 

their Arabic versions, and texts written by Arabs" (Kline 

205). Translating Arabic manuscripts into Latin began 

about 1100. Two of the earliest scholars-turned-

translators were Athelard of Bath, and Gerard of Cremona. 

They translated the Elements of Euclid, the Almagest of 

Ptolemy, works of al-Khowarizmi and Jabir ibn Aflah 

(Cajori 118). "The twelfth century was to Christian 

Europe what the ninth century was to the eastern 

Mohammedan world, a period of translations" (Smith 200) . 

This "influx of Arabic learning" led to the 

establishment of universities in Europe (Cajori 129). The 

University of Paris received a charter from the state in 

1200 and its degrees were recognized by the Pope in 1283, 

Oxford's degrees were recognized in 1296 and Cambridge's 

in 1318 (Smith 212). Ve+y little mathematics was taught 

at these universities. 

The first great mathematician of the thirteenth 

century and the most productive mathematician of the 

Middle Ages, was Leonardo Fibonacci, known also as 

Leonardo Pisano, or Leonardo of Pisa (Smith 214). 

Leonardo traveled about the Mediterranean and collected 

all the knowledge he could on mathematics. In 1202, he 

published Liber Abaci which introduced Hindu-Arabic 

numerals, methods of calculation with integers and 
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fractions, and methods of solving certain problems of 

concern to merchants. He also explained square and cube 

roots, and both determinate and indeterminate equations of 

the first and second degree. He recognized that the 

quadratic x2 + c = bx may be satisfied by two values of x. 

But, says Cajori, "he took no cognizance of negative and 

imaginary roots." In 1220, he published Practica 

Geometria which contained all the knowledge of geometry 

and trigonometry transmitted to him (Cajori 123). 

According to Eves in An Introduction to the History of 

Mathematics, Fibonacci was invited to a mathematical 

tournament by Emperor Frederick II. One of his problems 

was to find a soluton to x3 + 2x2 + lOx = 20. 

Fibonacci attempted a proof that no root of the 

equation can be expressed by means of 

irrationalities of the form va + vb, or in other 

words, that no root can be constructed with 

straightedge and compass. He then obtained an 

approximate answer correct to nine decimal 

places. This answer appears, without 

accompanying discussion in a work by Fibonacci 

entitled Flos (blossom or flower). It seems 

very probable that the approximation was found 

by the Arabian method of double false position. 

(Eves 210) 

The Black Death swept across Europe during the 

fourteenth century taking more than a third of the 



population to their deaths. The Hundred Years War began 

and absorbed the energies of the people. 
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Mathematical science was almost stationary . • • 

The growth of science was retarded not only by 

war, but also by the injurious influence of 

scholastic philosophy. The intellectual leaders 

of those times quarrelled over subtle subjects 

in metaphysics and theology. Frivolous 

questions, such as 'How many angels can stand on 

the point of a needle?' were discussed with 

great interest. Indistinctness of ideas 

characterized the reasoning during this period. 

(Cajori 124) 

Van der Waerden mentions Master Dardi of Pisa who 

lived in the fourteenth century. He wrote Aliabraa 

Arqibraa, an algebra textbook that presented a list of 198 

different types of equations and their rules of solution. 

Benedeeto of Florence wrote a literal Italian translation 

of a Latin translation of the algebra of al-Khowarizmi. 

This book also contained a long list of equations (42). 

At the universities, the study of mathematics was 

gaining ground. At the University of ~aris, no student 

was allowed a degree without attending lectures in 

mathematics. At the University of Prague, the six books 

of Euclid were studied along with applied mathematics. By 

the middle of the fifteenth century, the first two books 

of Euclid were read at Oxford (Cajori 129). 
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No great mathematician appeared and significant 

mathematical progress did not occur. "Fortunately, forces 

of revolutionary strength did begin to exert their effects 

on the European intellectual, political, and social scene" 

(Kline 214). The·invention of the printing press helped 

disseminate ideas throughout Europe. The first 

comprehensive algebra was printed in 1494. Written in 

Italian by Luca Pacioli, summa de Arithmetica, Geometria. 

Proportioni e Proportionalita was very influential. It 

contained a simpler notation than that of Fibonacci (van 

der Waerden 47). It was comprised of all the knowledge of 

the day on arithmetic, such as devices for multiplication 

and for finding square roots, algebra, including standard 

solutions of linear and quadratic equations, very 

elemen·tary Euclidean geometry, and double-entry 

bookkeeping (Boyer 307). "(Pacioli] closes his book by 

saying that the solution of the equations x3 + mx = n, 

x3 + n = mx is as impossible at the present state of 

science as the quadrature of the circle. This remark 

doubtless stimulated thought" (Cajori 133). 



CHAPTER III 

HISTORY 

1500 to 1650 

The Italian algebraists of the sixteenth 

century tacitly assumed that every rational 

integral equation has a root. The later ones of 

that century were also aware that a quadratic 

equation has two roots, a cubic equation three 

roots, and a biquadratic equation four roots. 

(Smith, History I 473) 

As we pass from the Middle Ages to the sixteenth 

century and beyond, the fundamental theorem of algebra 

begins to take' form, and is stated and restated and proofs 

are attempted. As we shall see, the proof was not 

successfully completed until 1799, but many interesting 

events led to the improvement of the state of mathematics 

and hence to a correct proof of the theorem. 

In 1515, Scipione del Ferro, a professor at the 

University of Bologna, succeeded in solving x3 + mx = n. 

He did not publish his results, but he imparted the 

solution to his student, Antonio Maria Fiore, also called 

Floridas. Nicolo of Brescia, also known as Tartaglia, 

found an imperfect method for solving x3 + px2 = q, but 

46 
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also kept his result a secret. Cajori says: 

[Tartaglia] spoke about his secret in public and 

thus caused Floridas to proclaim his knowledge 

of the form x3 + mx = n. Tartaglia, believing 

him to be a mediocrist and braggart, challenged 

him to a public discussion. Hearing meanwhile 

that his rival had gotten the method from a 

deceased master, and fearing that he would be 

beaten in the contest, Tartaglia put in all the 

zeal, industry, and skill to find the rule for 

the equations, and he succeeded in it ten days 

before the appointed date, as he himself 

modestly states. {133) 

These challenges, often for a great deal of money, were a 

normal form of competition in the learned world. 

Tartaglia was very successful in these contests and had 

won several prizes. This particular contest was to have 

thirty questions and the loser would have to pay for 

thirty banquets. Tartaglia prepared a variety of 

problems, but Fiore's problems all led to equations of the 

form x3 + mx = n. Tartaglia, having discovered the method 

of solution, solved all of his problems in a few hours 

while Fiore was unable to solve most problems presented to 

him. Fiore was declared the loser. "The honour alone was 

satisfaction enough for Tartaglia, and he renounced the 

thirty banquets" (van der Waerden 55). 

He was asked to reveal his solution but he would not, 



48 

saying that later he would publish a large algebra 

containing his method. Enter Girolamo Cardano, a famous 

medical doctor, astrologer, philosopher, and mathematician 

from Milan. Cardano invited Tartaglia to Milan. Cardano 

swore an oath, "the most solemn and sacred promises of 

secrecy," that he would never publish Tartaglia's 
J 

discovery. Tartaglia then divulged his secret to Cardano. 

Right after Tartaglia's visit, Cardano extended the method 

of solution to other types of cubics: x3 = mx + n and 

x3 + n = mx. Cardano was writing his Ars Magna and cajori 

remarks "he knew no better way to crown his work than by 

inserting the much sought for rules for solving cubics" 

(134). He went to Bologna to examine the papers of del 

Ferro after hearing a rumor that del Ferro had previously 

solved the cubic. He decided to publish the results and 

stated that the equation had been solved by del Ferro, the 

solution rediscovered by Tartaglia, and that he had 

extended it to other cases (Cardano 8). Thus Cardano 

broke his vows, and published in 1545 in his Ars Magna 

Tartaglia's solution to cubics. Tartaglia now was without 

his secret and was not able to write his own "immortal 

work." He wrote a history of his invention including 

cardano's promises and then challenged Cardano and his 

pupil to a contest. Tartaglia succeeded in solving all 

problems offered him in a few days whereas Cardano and his 

pupil, Ferrari, were only able to solve one of their 

problems correctly. Following this, Tartaglia proceeded 
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the algebra he had been determined to write for 

but he died before h~ reached the consideration 

equations (Cajori 134) • 

method for solving cubics is explained by Cardano 

fashion: 

Cube one-third the coefficient of x; add to it , 

the square of one-half the constant of the 

equation; and take the square root of the whole. 

You will duplicate this and to one of the two 

you add one-half the number you have already 

squared and from the other you subtract one half 

the same. You will then have a binomium and its 

apotome. Then, subtracting the cube root of the 

apotome from the cube root of the binomium, the 

remainder [or) that which is left is the value 

of x. (98) 

In other words, if you have a cubic of the form 

x3 + mx = n, form t = J[ (m/3) :3 + (n/2)2] + (n/2) 

and u = ~[ (m/3) 3 + (n/2)2] (n/2) • 

Your solution will be X = 3.jt - 3JU. To arrive at this 

solution, let n = t- u and ((1/3)m]3 = tu in the original 

equation. 

In the first chapter of Cardano's Ars Magna or The 

Great Art, he presents a discussion of the number of 

positive and negative roots of equations. He says "If, 

therefore, an even power is equal to a number, its root 

has two values, one plus, the other minus, which are equal 
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to each other." He described a case of the fourth degree 

equation that had four roots, and cases that he declared 

had only two roots. He then went case by case through 

cubic equations explaining the number of positive and 

negative roots each particular type has (Cardano 10). In 

explaining the solutions of cubic equations, he avoided 

the casus irreducibilis (van der Waerden 56). In the 

irreducible case, t and u in the above formulas are 

complex numbers, but the solutions to the cubic equation 

are three real and distinct values. Kline remarks: "One 

would think that the fact that real numbers can be 

expressed as combinations of complex numbers would have 

caused Cardan to take complex numbers seriously, but it 

did not" (266). 

Lodovico Ferrari was born in 1522 and was a servant 

in cardano's household. He developed into a very good 

mathematician, discovering that the general equation of 

degree four can be reduced to a cubic equation and then 

solved by means of square roots and cube roots. Cardano 

published Ferrari's method in Ars Magna and says, "There 

is another rule, more noble than the preceding (on cubic 

equations). It is Lodovico Ferrari's, who gave it to me 

on my request" (237). 

Rafael Bombelli published L'Algebra parte maggiore 

dele'aritmetica divisa in tre libri in 1572. He discussed 

solutions of equations up to degree four following the 

methods of Cardano. He fully discusses the casus 
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irreducibilis. "Bombelli introduced a notation for what 

we call ±i and he presented rules of calculation" (van der 

Waerden 59). "This book contained the most teachable and 

the most systematic treatment of algebra that had appeared 

in Italy up to that time" (Smith 301). 

After the solution to fourth degree equations had 

been found, mathematicians' interests naturally turned to 

equations of fifth degree and higher. Attempts at 

solutions proved fruitless and so they began to devise 

processes to approximate real roots of equations. 

Francois Viete, or Vieta, authored De numerosa protestatum 

purarum atgue adfectarum ad exegesin resolutione tractatus 

in which he demonstrated a method of approximating roots 

that resembled the rule of ordinary root extraction. 

Viete, who lived from 1540 to 1603 was French. He solved 

an equation of the forty-fifth degree by using a 

trigonometric substitution. He only found twenty-three 

roots however, since the remaining ones involved negative 

sines which he did not understand (Cajori 138). 

Cajori, in History of Mathematics, describes Viete's 

approximation method. 

In x5 - sx3 + soox = 7905504, he takes r = 

20, then computes 7905504 - r5 + sr3 - soor and 

divides the result by a value which in our 

modern notation takes the form 

I (f(r + s1) - f(r) 1- sln, where n is the degree 

of the equation and s1 is a unit of the 
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denomination of the digit next to be found. 

Thus if the required root is 243, and r has been 

taken to be 200, then s1 is 10; but if r is 

taken as 240, then s1 is 1. In our example, 

where r = 20, the divisor is 878295, and the 

quotient yields the next digit of the root equal 

to four. We obtain x = 20 + 4 = 24, the 

required root. (137) 

Viete's most famous work is In artem analyticem 

isagoge, published in 1591. He used general letters 

instead of numbers in equations. "He studied ax2 + bx + c 

= o instead of x2 + Sx + 6 = O" (Struik, Source Book 74). 

viete 

considered the possibility of resolving the 

polynomial f(x) in an algebraic equation f(x) = 

0 into linear factors. Anything approaching 

completeness or proof in this direction was far 

beyond the algebra of that time . • . (Bell 119) 

Another notable algebraist of this time was Robert 

Recorde who wrote the first English treatise on algebra, 

The Whetstone of Witte. He is credited with the modern 

symbol for equality, =. 
I will sette as I doe often in woorke use, a 

paire of paralleles, or Gemowe lines of one 

lengthe, thus: =, bicause noe.2. thynges, can be 

more equalle. (N. pag.) 



In "The Art of Cossike Nombers", a chapter of The 

Whetstone of Witte, Recorda gave this rule: 

The Somme of the rule of equation: 
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When any question is proponded, apperteinyng to 

this rule, you shall imagin a name for the 

number, that is to bee soughte, as you remember, 

that you learned in the rule of false position. 

And with that nomber shall you procede, 

accordyng to the question, until you find a 

Cossike nomber, equalle to that nomber, that the 

question expresseth, whiche you shal reduce 

evermore to the leaste nombers. And then divide 

the nomber of the lesser denomination, and the 

quotient deeth aunswere to the question. Except 

the greater denominatio, doe beare the signe of 

some rooted nomber. For then must you extract 

the roote of that quotiente, accordyng to that 

sign of denomination. (N. pag.) 

He then discussed simplifying equations by adding "equalle 

portions to thynges that bee equal." 

Simon stevin lived in Belgium from 1548 to 1620. He 

publ,ished several books on mathematics and mechanics. He 

introduced several simplifications of algebraic notation, 

including +, -, M, D, and v (van der Waerden 58). He 

was the first person to discuss the theory and arithmetic 

of decimal numbers. From his book De Thiende (or in 

French, La Disme): 



Dime is a kind of arithmetic, invented by the 

tenth progression, consisting in characters of 

ciphers, whereby a certain number is described 

and by which also all accounts which happen in 

human affairs are dispatched by whole numbers, 

without fractions or broken numbers •••• As 
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3 (D7 ®5 09 0, that is to say: 3 primes, 7 

seconds, 5 thirds, 9 fourths and so proceeding 

infinitely, but to speak of their value, you may 

note that according to this definition the said 

numbers are 3/10, 7/100, 5/1000, 9/10000, 

together 3759/10000. . . (405) 

This general notion of real numbers was accepted by all 

later scientists. Stevin accepted negative numbers, but 

not imaginary solutions to equations (van der Waerden 58). 

Thomas Harriet, born in 1560 and died in 1621, was 

the founder of the English school of algebraists. He 

accompanied the first colony sent out by Sir Walter 

Raleigh to Virginia (Cajori 156). No mathematical work of 

Harriet's was published in his lifetime and "his 

reputation has oscillated as his papers were studied or 

forgotten" (Fauvel 291). His most famous work, Artis 

analyticae praxis discusses equations of the first, 

second, third, and fourth degrees. 

John Wallis wrote Treatise of Algebra in 1685. In 

it, he discusses Harriet and his work. 
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(Harriot] hath also made a strange improvement 

of Algebra, by discovering the true construction 

of compound Equations, and how they be raised by 

a Multiplication of Simple Equations, and may 

therefore be resolved into such. By this means 

he shews the number of Roots {real or imaginary) 

in every Equation, and the Ingredients of all 

the Coefficients, in each degree of Affection . 

And amongst other things, teacheth {thereby) 

to resolve, not only Quadraticks, but all Cubick 

Equations; even those whose roots have, by 

others, been thought Inexplicable, and but 

Imaginary. (Fauvel 294) 

The following is from the second section of Artis 

analyticae praxis. 

Propositio Prima 

Aequatio canonica aa - ba 

+ ca -- + be 

ab originali a - b -- ---- -- aa - ba 

a + c + ca -be 

posito b. ipsi a. aequali deducitur. 

Nam fi ponatur a -- b erit a - b -- o. 

Posito igitur a -- b erit d -- o. 

c 

Est autem ex genesi a - b j 

~ 
aa - ba 

+ ca - be 

que est aequatio originalis hie designata. 
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Ergo • . . aa - ba 

+ ca - be -- o. 

Ergo . . . aa - ba 

+ ca == + be quae est aequatio 

proposita. Aequatio igitur canonica proposita ab 

originali delignata, posito b. ipsi a. aequatio 

deducitur. Ut est enunciatum. (16) 

Harriet is showing that in an equation such as 

aa - ba + ca = be, the solution would be a = b. There is 

example after example showing this type of equation and 

solution. 

"Harriet is erroneously credited with the statement 

that any polynomial of degree n has n roots and Descartes' 

rule of signs" (Eves 250). Since Harriet did not 

recognize imaginary and even negative roots, he could not 

have known the fundamental theorem of algebra (Cajori 

157) . 

Another mathematician to consider is William 

Oughtred, an Englishman who "contributed vastly to the 

propagation of mathematical knowledge in England by his 

treatises, the Clavis mathematicae, Circles of Proportion, 

and Trigonometrie . 11 He invented the circular and 

rectilinear slide rules (Cajori 157). 

John Wallis writes on Oughtred's Clavis mathematicae, 

which translates as Key of Mathematics: 

Mr. Oughtred contents himself (for the most 

part) with the solution of Quadratick Equations 
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• in Resolving Equations, to take notice of 

the Affirmative or Positive Roots; omitting the 

Negative or Ablative Roots, and such as are 

called Imaginary or Impossible Roots. And of 

those which he calls Ambiguous Equations, (as 

having more Affirmative Roots than one,) he doth 

not (that I remember) any where take notice of 

more than Two Affirmative Roots; (Because in 

Quadratick Equations there are indeed no more.) 

Whereas yet in Cubick Equations, there may be 

Three, and in those of Higher Powers, yet more. 

Which Vieta was well aware of, and mentioneth in 

some of his Writings; and of which Mr. Oughtred 

could not be ignorant. (Fauvel 303) 

The last mathematician we will consider here is 

Albert Girard who lived from 1595 to 1632 in Holland. He 

was responsible for the earliest use of the abbreviations 

sin, tan, and sec for sine, tangent, and secant. He 

edited the works of Simon Stevin (Eves 301). In 

L'Invention nouvelle en !'algebra, Girard stated: 

Theorem II. Every algebraic equation except the 

incomplete ones admits of as many solutions as 

the denominations of the highest quantity 

indicates. Explication. Let there be a complete 

equation 1(4) equal to 4(3) + 7(2) - 34(1) - 24. 

Then the denomination of the highest quantity is 

(4), which signifies that there are four 
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determinate solutions, neither more nor 

less . . . As for the incomplete equation, they 

do not always have as many solutions •.•• 

An incomplete equation is a "mixed equation that does not 

have all its quantities", that is, an equation where some 

power of x less than the highest degree is missing. The 

notation 1{4) equal to 4(3) + 7{2) - 34(1) - 24 represents 

in our notation the equation x4 = 4x3 + 7x2 - 34x - 24, 

and denomination means the exponent. Girard continues: 

In the same way, if 1(4) is equal to 4(1) - 3 

the four solutions will be 1, 1, -1 + v=z, 

-1 - v=T . . . Someone could ask what good these 

impossible solutions are. I would answer that 

they are good for three things: for the 

certainty of the general rule, for being sure 

that there are no other solutions, and for its 

utility. (Girard 139) 

Struik says that "many authors seem to be willing to 

give Girard ,priority in the formulation of the fundamental 

theorem of algebra" (85). 

By the middle of the 1600's, we see the fundamental 

theorem of algebra taking shape just as we see the 

beginnings of the necessary acceptance and understanding 

of complex numbers taking place. 
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1650 to 1700 

Most mathematicians of the second half of the 

seventeenth century were interested in analytic geometry 

and infinitesimal analysis. "It is likely that it was the 

very success in these branches that made men of the time 

relatively oblivious to other aspects of,mathematics" 

(Boyer 391). And so, although many consider this era to 

be the greatest in mathematical achievement since the time 

of the Greeks, we find very little work on algebra and the 

fundamental theorem of algebra. However, we should 

consider what transpired during this century to better 

understand later developments. 

No professional mathematical organizations existed, 

but there were loosely organized scientific groups which 

helped to spread knowledge and discoveries from one 

mathematician to another. A Minimite friar, Marin 

Mersenne, who lived from 1588 to 1648, was a friend of 

Descartes, Fermat, and other mathematicians of the time, 

and "through correspondence [Mersenne] served as a 

clearinghouse for mathematical information" (Boyer 367). 

Rene Descartes wrote La Geometrie as an appendix to 

his philosophical work Discours de la Methode in 1637. He 

is credited with the introduction of the modern 

exponential notation, and the practice of using the first 

letters of the alphabet as known quantities and the last 

letters as unknown quantities (Eves 281). In his La 

Geometrie, Descartes discussed what is now called 



Descartes' Rule of Signs. In this section, he came very 

close to stating the fundamental theorem of algebra. 
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Every eqU:,ation can have as many distinct 

roots (values of the unknown quantity) as the 

number of dimensions of the unknown quantity in 

the equation. Suppose, for example, x = 2 or 

x - 2 = 0, and again, x = 3, or x - 3 = o. 

Multiplying together the two equations x - 2 = 0 

and x - 3 = o, we have x2 - 5x + 6 = 0, or 

x2 = 5x - 6. This is an equation in which x has 

the value 2 and at the same time x has the value 

3. If we next make x - 4 = 0 and multiply this 

by x2 - 5x + 6 = o, we have x3 - 9x2 + 26x - 24 

= o another equation, in which x, having three 

dimensions, has also three values, namely, 2, 3, 

and 4. 

It often happens, however, that some of the 

roots are false or less than nothing. Thus, if 

we suppose x to represent the defect of a 

quantity 5, we have x + 5 = 0 which, multiplied 

by x3 - 9x2 + 26x - 24 = o, yields 

x4 - 4x3 - 19x2 + 106x - 120 = 0, an equation 

having four roots, namely three true roots, 2, 

3, and 4, and one false root, 5 •••• 

on the other hand, if the sum of the terms of 

an equation is not divisible by a binomial 

consisting of the unknown quantity plus or minus 
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some other quantity then this latter quantity is 

not a root of the equation. Thus the above 

equation x4 - 4x3 19x2 + 106x - 120 = o is 

divisible by x - 2, x - 3, x - 4, and x + s, but 

is not divisible by x plus or minus any other 

quantity. Therefore the equation can have only 

the four roots, 2, 3, 4, and 5. We can 

determine also the number of true and false 

roots that any equation can have, as follows: 

An equation can have as many true roots as it 

contains changes of sign, from + to - or from -

to +; and as many false roots as the number of 

times two + signs or two - signs are found in 

succession. (159) 

Descartes is frequently criticized for his lack of 

completeness in stating this rule. "J. Wallis claimed 

that Descartes failed to notice that the rule breaks down 

in case of imaginary roots, but Descartes does not say 

that the equations always has but that it may have so many 

roots" (Cajori 179). Descartes went on to describe 

methods used to increase or decrease the value of the 

roots. He then said: 

Neither the true nor the false roots are 

always real; sometimes they are imaginary; that 

is, while we can always conceive of as many 

roots for each equation as I have already 

assigned, yet there is not always a definite 
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quantity corresponding to each root so conceived 

of. Thus, while we may conceive of the equation 

x3 - 6x2 + 13x - 10 = 0 as having three roots, 

yet there is only one real root, 2, while the 

other two, however we may increase, diminish, or 

multiply them in accordance'with the rules just 

laid down, remain always imaginary. {175) 

D. E. Smith and M. L. Latham, the translators of this 

edition of La Geometrie, remark in a footnote to this 

passage, "This seems to fndicate that Descartes realized 

the fact that an equation of the nth degree has exactly n 

roots" (175). 

The merits of (Descartes• La Geometrie) 

according to the commonly accepted point of 

view, consist mainly in the creation of so-

called analytic geometry .. La Geometrie 

itself can hardly be considered a first textbook 

on the subject. There are no explicit 

'Cartesian' axes, and no equations of the 

straight line or of conic sections are 

derived • (Struik 96) 

Boyer remarks, "the goal (of La Geometrie) is generally a 

geometric constuction, and not necessarily the reduction 

of geometry to algebra" (37C). So it appears that 

although the creation of analytic geometry was not 

Descartes• goal, this was the eventual result of La 

Geometrie. 



63 

Descartes was very thorough in his symbolic algebra, 

and La Geometrie is the earliest mathematical manuscript 

that a "present-day student of algebra can follow without 

encountering difficulties in notation" (Boyer 371). 

Pierre Fermat is credited by some as discovering 

analytic geometry nearly simultaneously and independently 

of Descartes (van der Waerden 69). In Introduction to 

Loci, Fermat was applying Renaissance algebra to problems 

from ancient geometry. He emphasized the sketching of 

indeterminate equations and was aware that every quadratic 

equation in x and y represented a line or a conic. Of 

course, Fermat is most famous for what is now called 

Fermat's Last Theorem. In the margins of Claude Gaspard 

Bachet's edition of Diophantus' Arithmetica, Fermat wrote 

notes and ideas. Next to the equation xn + yn = zn, he 

wrote 

To divide a cube into two other cubes, a fourth 

power, or in general any power whatever into two 

powers of the same denomination above the second 

is impossible, and I have assuredly found an 

admirable proof of this, but the margin is too 

narrow to contain it. (Smith, Source Book 213) 

This conjecture is still unproven. 

Fermat is also credited, together with Blaise Pascal, 

with the creation of the theory of probability. Pascal 

"came remarkably close to a discovery of the calculus - so 

close that Leibniz later wrote that it was upon reading 
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this work by Pascal that a light suddenly burst upon 

him " (Boyer 400) 

Probably the most important geometric problems of the 

day concerned finding tangents to curves and areas under 

curves. Algebraic analysis and geometric intuition were 

used to try to find solutions to these problems, but the 

success of this endeavor rested on the invention of the 

calculus by Newton and Leibniz. 

Isaac Newton had just earned his·A.B. degree from 

Trinity College when it was closed for a year because of 

the plague. He went home to 

live and think. The result was the most 

productive period of mathematical discovery ever 

reported, for it was during these months, Newton 

later averred, that he had made four of his 

chief discoveries: (1) the binomial theorem, 

{2) the calculus, (3) the law of gravitation, 

and (4) the nature of colors. (Boyer 430) 

In 1687 he published Philosophiae Naturalis Principia 

Mathematica. In Newton's lectures of 1673 to 1683, 

published as Arithmetica Universalis, we find that Newton 

has stated that imaginary roots of real polynomials occur 

in pairs and he gives rules for finding upper bounds to 

the roots of polynomials (Eves 335) . · In his book Method 

of Fluxions, we find Newton's method, a method used to 

find approximate solutions to equations. Joseph Raphson 

published a tract in 1690, Analysis aeguationum 
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universalis, in which he also discussed a method of 

approximating solutions to equations. In fact the method 

taught in modern texts is not really Newton's method but 

Raphson's modification of it. 

Newton worked with imaginary numbers in 1685. This 

work was "confined to the question of the number of roots 

of an equation" {Smith, History II 264). 

Gottfried Wilhelm Leibniz was born at Leipzig in 

1646. He studied theology, law, philosophy, and 

mathematics at the university and "he sometimes is 

regarded as the last scholar to achieve universal 

knowledge" (Boyer 438). Fauvel credits Leibniz 1' interest 

in logic and language as "the key ingredient in the 

invention of calculus" (424). 

Leibniz realized, in about 1673, that the 

determination of the tangent to a curve depended 

on the ratio of the differences in the ordinates 

and abscissas, as these became infinitely small, 

and that quadratures depended on the sum of the 

ordinates or infinitely thin rectangles making 

up the area. (Boyer 441) 

Leibniz developed an "appropriate language and notation" 

for this calculus much of which we still use today. 

Many arguments have taken place over who was the 

first to discover calculus. It has been established, 

however, that both men deserve equal credit as they found 

their methods independently of one another. Newton is 
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credited with discovering it first (in 1665) while 

Leibniz' work was done in 1673. But Leibniz published it 

first in 1684, while Newton did not publish his until 

1704. 

The Bernoullis were brothers who lived in 

Switzerland. Jakob Bernoulli began correspondence with 

Leibniz about the new calculus in 1687 (Struik, History 

118). Jakob Bernoulli invented the method of partial 

fractions to integrate rational functions in 1699. 

Leibniz had also discovered the method independently and 

~ublished it in 1702. Johann Bernoulli, Jakob's younger 

brother,began working on I dx • 
ax2 + bx + c 

Having 

succeeded in integrating some rational functions by the 

method of partial fracions, Johann 

asserted in the Acta Eruditum of 1702 that the 

integral of any rational function need not 

involve any other transcendental functions than 

trigonometric and logarithmic functions. (Kline 

411) 

Since the denominator of a rational function is a 

polynomial of degree n, this statement could only be true 

if a polynomial with real coefficients can be factored 

into the product of linear and quadratic factors with real 

coefficients. If this is true, than it implies that every 

polynomial equation with real coefficients has a root of 

the form a + bi, in other words, the fundamental theorem 

of algebra. Serious attempts at proofs would now be made. 
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1700 to 1799 

By 1700 all the numbers we are now familiar with were 

known. Mathematicians used whole numbers, fractions, 

irrationals, and negative numbers with ease. complex 

numbers were used but not completely understood. cardano 

had discussed them in Ars Magna but found them to be 

useless. Girard discussed the need for them in 

!'Invention nouvelle en !'algebra, but his "advanced views 

were not influential." Descartes rejected complex roots 

and "coined the term imaginaries." Since thay had no 

physical meaning, Newton regarded them as insignificant 

and Leibniz was less than clear about their meaning. He 

says, 

The Divine Spirit found a sublime outlet in that 

wonder of analysis, that portent of the ideal 

world, that amphibian between being and not­

being, which we call the imaginary root of 

negative unity. {Kline 253) 

Despite the trouble with imaginary numbers, 

mathematicians continued to search for methods of solving 

all polynomial equations. Many thought that perhaps the 

way to solve quintic or higher degree polynomial equations 

was to use substitutions. Count Ehrenfried Walter von 

Tschirnhaus {or Tschirnhausen) believed that the secret 

was to reduce an equation of the nth degree to a pure 

equation of the nth degree, that is, an equation 

containing only the terms of degree n and degree zero. 



The substitutions that he used are still known as 

"Tschirnhaus transformations." Although this method 

seemed promising, it proved inadequate for solving the 

quintic, as the best that could be done was to eliminate 

the x4 and the x3 term (Boyer 473). 
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Another method of solving equations, that of using 

infinite series, had caught the attention of several 

mathematicians. Daniel Bernoulli solved a quartic using 

recurring series but,was aware that there may not always 

be convergence to the root. Others to successfully employ 

series were Brook Taylor in 1717, Francois Nicole in 1738, 

and A. c. Clairaut in 1746. Later Leonard Euler used 

similar methods (Cajori 227). 

Jean le Rend D'Alembert was born in France in 1717. 

He was abandoned by his parents at birth, but his father 

provided for his education. He showed remarkable 

intelligence at an early age and was broadly educated: in 

law, in medicine, in science, and in mathematics. Later 

in life he became secretary of the French Academy and was 

"the most influential man of science in France" (Struik, 

History 128). He collaborated with Denis Diderot to write 

the twenty-eight volume Encyclopedia. D'Alembert was very 

interested in proving the fundamental theorem of algebra. 

He published a prize-winning essay in Memoirs of the 

Berlin Academy entitled "The General cause of the Winds" 

in 1746. This essay, according to Boyer, is the reason 

why the fundamental theorem is known as d'Alembert•s 
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Theorem in France (490). In his essay, d'Alembert showed 

that any "algebraic quantity, composed of as many 

imaginaries as one wishes, can always be reduced to a + 

bv-1, for a and b real numbers." He showed that 

addition, subtraction, multiplication, and division of two 

complex numbers led to a complex number. An imaginary 

quantity raised to an imaginary quantity was more 

difficult, and no strictly algebraic method would give the 

necessary result. He used logarithms, differentiation, 

integration, exponentials, and trigonometric methods to 

simplify his expression (Rider 47). Robin Rider, in her 

doctoral dissertation, Mathematics in the Enlightenment, 

points out that d'Alembert had made an assumption that 

could have made all of his work useless. Like others 

before and after him, he had assumed that all imaginary 

quantities were of the form a + bv-1. They assumed that 

these imaginaries would follow the same algebraic rules as 

real numbers, except for the fact that v-1·v-1 = -1 and 

not v[(-1)•(-1)]. As we now know, thay had not made a 

critical mistake but this was a reasonable complaint about 

d'Alembert•s and other works on imaginaries (50). 

D'Alembert published a proof of the fundamental 

theorem of algebra in Memoirs in a paper entitled 

"Recherches sur le calcul integral". His goal was to 

demonstrate that any polynomial had a real root or a root 

of the form a + bi. This, in turn, would prove 

Bernoulli's claim that any polynomial could be factored 



into a product of linear and quadratic factors with real 

coefficients since it was commonly known that imaginary 

roots appeared in conjugate pairs. 

For a polynomial, P(z), d'Alembert wanted to find a 

z = a + bi such that P(z) = o. He considered the curve 
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u = P(z). He then supposed that z = takurk where u was 

very small and rk was an increasing sequence of rational 

numbers. (Rider says this is "consonant with much 

eighteenth-century practice.") He assumed that u does not 

equal zero here; this is necessary since ork does not 

make sense for all rational numbers rk. However, if u was 

positive, then ur~ would be a sequence of real numbers 

and hence z would be real. If u was negative, then each 

urk would have the form p + qi. (D'Alembert had shown 

this previously.) The sum of the quantities of the form p 

+ qi would itself be of this form. He claimed the 

expression for z would converge to a value satisfying the 

equation of the curve. Next, he considered the behavior 

of u = P(z) in a small neighborhood of zero. He assumed 

that u attained a "minimal" value, that is, a value 

closest to zero but not equal to it, in this neighborhood. 

He chose this u 0 infinitesimally small. Then d'Alembert 

considered a u1 between uo and 0. He then claimed he 

would find a corresponding series development for z using 

u1 . But u1 was closer to zero than the closest value, uo. 

Therefore, by contradiction, u = P(z) actually attained a 

zero value for some z (Rider 55). 
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Rider remarks that d'Alembert•s proof was "composed 

more of assertions than demonstrated conclusions. Even 

d'Alembert recognized that the scrupulous reader might 

question the convergence of the series for z." Other 

criticisms of the proof were made. Mathematicians had 

doubts that every u near uo was the image of P(z) for some 

z; there was skepticism that there existed a value z such 

that P(z) lay between zero and the supposed "closest" 

value, and even that P(z) had a minimum at all (Rider 58). 

One of the most prolific writers of all time was from 

Basel, Switzerland. Leonard Euler lived from 1707 to 1783 

and published more than 500 books and papers during his 

lifetime. He made "significant contributions in every 

field of mathematics which existed in his day" (Struik, 

History 120). His textbooks were very influential and his 

notation became standard notation. Some of the symbolism 

credited to Euler is the letter e for the base of the 

natural logarithm, n, i for the square root of -1, a, b, c 

for the lengths of the sides of triangles and A, B, c for 

the corresponding angles, lx for the logarithm of x, ~ for 

summation, and f(x), our standard function notation (Boyer 

484). Later in life Euler became blind but his blindness 

did not stop his work. Euler dictated an elementary 

algebra text, Anleitung zur Algebra, to his servant, which 

was "meritorious as one of the earliest attempts to put 

the fundamental processes on a sound basis" (233). 

Euler searched for a general solution to algebraic 
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equations. He substituted x = vp + vq + vr into a 

biquadratic equation. This led him to a system of linear 

equations which he solved by the method of elimination. 

He is credited with the invention of the method of 

elimination as is Etienne Bezout, who discovered it 

independently of Euler (Cajori 235). 

Another of Euler's interests was logarithms. Much 

mathematical discussion had taken place on the logarithms 

of negative numbers. In 1747, he disproved d'Alembert's 

claim that log(-1) = 0. He believed that log(n) had an 

infinite number of imaginary values, except when n was a 

positive number, in which case one of the infinite number 

of values is real. In 1751 he published a paper in the 

Berlin Memoirs entitled "Recherches sur les racines 

imaginaries des equations." In this paper, we find 

Euler's proof of the fundamental theorem of algebra. 

To begin his work, Euler showed that complex roots 

occur in conjugate pairs. He then used geometric 

arguments to prove three theorems: (1) an equation of odd 

degree has at least one root, (2) an equation of even 

degree has either no real roots or pairs of such roots, 

and (3) an equation of even degree with a positive leading 

term and a negative constant has at least one positive and 

one negative real root. 

The initial goal was to show the truth of 

Theorem 4. Every equation of the fourth degree, as 

x4 + Ax3 + ax2 + ex + o = o, 
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can always be decomposed into two real factors of 

the second degree. 

Euler first eliminated the x3 term by use of the 

substitution x = y - ~A. The equation was simplified to 

one of the form 

x4 + Bx2 + ex + D = o. 

Struik then translates: "It is clear that these factors 

will be of the form (xx + ux + a} (xx - ux + 6) = O." If 

u, a, and 6 can be determined to be real, the proof will 

be complete. 

The next step was to multiply the factors given above 

and equate the coefficients with the coefficients of x4 + 

Bx2 + ex + D. This gives three equations which Euler 

solved for a and 6. Finding 2a = uu + B - {C/u) and 26 = 

uu + B + (efu), he then eliminated a and 6 to get an 

equation in u, B, e, and D: 

u6 + 2Bu4 + (B2 - 4D)u2 - e2 = o. 

Now since the constant term is -e2, by Theorem 3, this 

equation has one negative and one positive root. 

When we take one of them as u, then the values 

of a and 6 will also be real and hence the 

supposed factors of the second degree 

xx + ux + a and xx + ux + 6 will be real. 

Q. E. D. (Struik, Source Book 100) 

Rider says: 

Euler observed that the force of this 

demonstration derived from the degree of the 
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equation in u and the sign of its last 

term. . • . He therefore wanted to establish the 

degree and sign a priori •.• (61) 

So now Euler supposed that the roots of the fourth degree 

equation were a, b, c, and d. Since the equation had no 

x3 term, a + b + c + d = o, and u would be the sum of two 

roots of the fourth degree equation. {This is true since 

the quadratic factors are of the form x2 + ux + a, so u 

must be the sum of two factors of a, hence the sum of two 

solutions of the fourth degree equation.) Thus, u could 

assume six values, {a+ b), (a+ c), {a+ d), (b +c), 

(b +d), and (c +d). Since a+ b + c + d = o, these six 

values can be reduced to ±p, ±q, and ±r, and so the sixth 

degree equation in u can be written 

(u2 _ p2) (u2 - q2) {u2 - r2) = o. 

To guarantee that u has a real value, (-p2) (-q2) (-r2) = 

-(pqr)2 had to be negative (from Theorem 3.) This would 

be true if (pqr) was real. Since 

x4 + Bx2 +ex+ o = {x- a) {x- b) (x- c)(x- d), 

Euler concluded that a, b, c, and d were dependent on B, 

c, and D. Since pqr ={a+ b) (a+ c) (a+ d), (pqr) was 

also determined by B, c, and D. Hence {pqr) was real, 

implying -{pqr)2 was negative and therefore u was real. 

Euler used the same reasoning to prove similar 

results for equations of degree 8 and degree 16, and then 

in general for equations of degree 2n. Struik notes: 



Euler believes that the proof is solid, but to 

strengthen the argument he gives extra proofs 

for degree 6, 4n + 2, Bn + 4, ..• , and 2np 

for p prime. (Sourcebook 102) 
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Gauss (in his dissertation) pointed out that Euler 

used relationships among roots and coefficients that were 

known to be true for real numbers. Euler had not 

established "the nature of their roots and their 

mathematical behavior" (Rider 64). 

Joseph-Louis Lagrange was born in Italy in 1736. He 

too attempted a proof of the fundamental theorem of 

algebra. He began his task by analyzing the methods of 

solving third and fourth degree equations. By doing this 

he hoped to find why these methods worked and to look for 

adaptations of these methods that might help him solve 

higher degree equations (Kline 601). He published 

"Reflexions sur la resolution algebrique des equations" in 

the Memoirs of the Berlin Academy in 1770. This paper 

dealt with the question of why the methods used to solve 

equations of degree four or less were not useful for 

solving equations of higher degree. "This led Lagrange to 

rational functions of the roots and their behavior under 

the permutations of the roots" (Struik, History 133). 

van der Waerden notes that several "fundamental ideas of 

Galois theory" can be found in this paper (79). 

Lagrange also studied the use of continued fractions 

to find approximations to the irrational roots of 
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equations (Kline 460). He continued to research the 

theory of equations and in 1772 he published "Sur la forme 

des racines imaginaires des equations". In this paper, he 

attempted to complete Euler's proof of the fundamental 

theorem of algebra. 

Lagrange's proof is similar to Euler's. He also 

"wanted to discover a priori the degree and character of 

the auxiliary equation in u." But again Gauss pointed out 

that Lagrange also "freely manipulat(ed) functions of 

imaginary roots without ascertaining the patterns of their 

mathematical behavior" (Rider 66). 

Daviet de Foncenex, a student of Lagrange's, tried a 

similar proof that suffered from similar difficulties. 

Pierre Laplace's proof sought real quadratric factors 

instead of linear imaginary ones, but his too left some 

doubts in people's minds (Rider 70). 

Other mathematicians continued to work on solving 

general polynomial equations. Edward Waring found a 

process for approximating the value of imaginary roots of 

an equation in 1757. In 1762, he published Miscellanea 

Analytica in which he discussed polynomial equations of 

degree n that have n roots. van der Waerden says, " .•• 

it is well known since the time of Vieta that the 

coefficients of the equation are all equal to the 

elementary symmetric functions of the roots" (76) . waring 

showed that all rational symmetric functions of the roots 

can be expressed as rational functions of the coefficients 
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of the equations. 

Waring and others investigated the cyclotomic 

equation xn - 1 = 0. Alexandre-Theophile Vandermonde 

presented a paper to the Paris Academy, "Sur la resolution 

des equations". He claimed that if n is prime, this 

equation is solvable by radicals. But he could only 

verify it up to 11 (Kline .600). The important work on the 

cyclotomic equation was done by Gauss. 

And so, as the turn of the century approached, 

mathematicians realized that the fundamental theorem of 

algebra was true and that the issue of imaginaries had not 

been completely settled. The theory of equations became a 

branch of mathematics, separate from other studies. 

Notation had become standard and mathematicians agreed on 

a certain amount of rigor in their proofs. In 1799, a 

proof of the fundamental theorem of algebra was accepted 

as correct. 



CHAPTER IV 

GAUSS AND HIS PROOFS 

Carl Friedrich Gauss 

Johann Friedrich Carl Gauss was born the only child 

of a bricklayer on April 20, 1777 in the city of Brunswick 

(Braunschweig), Germany. By the age of three, he was able 

to perform long computations in his head (Gallian 257). 

Gauss said of himself that 

he "could count before he spoke." The earliest 

mathematical legend about him claims that at the 

age of three he followed his father's 

calculations with a bricklayer, unexpectedly 

corrected him, and turned out to be right. 

{Gindikin 116) 

In 1784, he entered elementary school, the Collegium 

Catharineum. Once, a taskmaster asked a group of students 

to sum the integers from 1 to 100. Gauss finished his 

calculation almost as soon as the teacher had finished 

dictating the problem. His answer was correct; he had 

figured out the formula for the sum of an arithmetic 

progression (Gindikin 117). This and other incidents 

brought him to the attention of the Duke of Brunswick who 

secured an education for Gauss. 

78 
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In 1788, he entered the gymnasium. There he studied 

classical languages and "acquired a solid knowledge of 

Latin, the indispensible prerequisite for the pursuit of 

higher learning and an academic career" (BUhler 6). 

Felix Klein says: 

[Gauss] calculated continually, with 

overpowering industry and untiring 

perserverance. By this incessant exercise in 

manipulating numbers (for example, calculating 

decimals to an unbelievable number of places) he 

acquired not only the astounding virtuosity in 

computational techniques that marked him 

throughout his life, but also an immense memory 

stock of definite numerical values, and thereby 

an appreciation and overview of the realm of 

numbers such as probably no one, before or after 

him, has possessed. (29) 

At eighteen, Gauss left Brunswick to study at the 

University of Gottingen where he invented the method of 

least squares for handling statistical data. At nineteen, 

he began his diary which had entries dated up until 1814. 

His was no regular diary, but a list of important 

mathematical discoveries that he had made. The first 

entry is dated March 30, 1796, and refers to his discovery 

of a method of inscribing a regular 17-sided polygon into 

a circle (Cajori 435). The question of the 

constructibility of regular n-sided polygons using only a 
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compass and straightedge had been open for more than 2000 

years. It is often said that this discovery convinced 

Gauss to devote his time and energy to mathematics instead 

of the study of languages (BUhler 10) . 

While at Gottingen, he began to write Disquisitiones 

Arithmeticae, which was not published until 1801. In this 

treatise, the full proof of the solvability of xm - 1 = 0 

by radicals was given. An equation xm - 1 = 0 is called a 

cyclotomic equation because its solution is closely 

connected with the construction of a regular polygon of n 

sides inscribed in a given circle. The equation x17 - 1 

= 0 was treated as a special case (van der Waerden 91). 

He also discussed the law of quadratic reciprocity, "a law 

which involves the whole theory of quadratic residues" 

(Cajori 435). This book had an enormous impact on the 

development of number theory. 

In the fall of 1798, carl Gauss left the University 

of Gottingen without a diploma. He submitted his doctoral 

dissertation to the University of Helmstadt in 1799. "The 

degree was awarded in absentia, without the usual oral 

examination" (BUhler 17)• 

In a letter, Gauss described the contents of his 

dissertation: 

The title describes the main objective of the 

paper quite well though I devote to it only a 

third of the space. The rest mainly contains 

history and criticisms of the works of other 
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mathematicians (namely d'Alembert, Bouganville, 

Euler, de Foncenex, Lagrange, and the authors of 

compendia - the latter will presumably not be 

too happy) about the subject, together with 

diverse remarks about the shallowness of 

contemporary mathematics. (BUhler 41) 

In the following sections of this chapter, we will look at 

the proof of the fundamental theorem of algebra given in 

the dissertation and the three others that Gauss provided 

during his lifetime. 

In 1801, Gauss was able to calculate the orbit of a 

newly found planet, Ceres, by using only three 

observations. "He showed that the variation inherent in 

experimentally derived data follows a bell shaped curve, 

now called the Gaussian distribution" (Gallian 257). 

Astronomers managed to locate Ceres at positions very 

close to where Gauss had predicted it would be. "The 

result made Gauss a European celebrity" (BUhler 44). 

Gauss was then offered a position as professor of 

astronomy at Gottingen. BUhler lists several reasons 

Gauss decided to take .the position: 

. the firm commitment of the administration 

to erect a new observatory, the presence of the 

experienced and skillful observer c. L. Harding 

as Gauss's assistant, and the fact that Gauss 

would only be loosely connected with the 

university. This gave him relative freedom from 
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lecturing and from participation in the 

administrative affairs of the university. (53) 

Most authors remark on Gauss's dislike for teaching. "He 

typified much more the research-oriented eighteenth 

century scholar than the educator and teacher." But he 

seems to have been willing to advise any interested 

student who asked for his help or for explanations. 

(Buhler 70) • 

Gauss married Johanna Osterhoff in October of 1805 

Following the birth of their third child, both Johanna and 

the baby died. Shortly after her death, Gauss remarried. 

His second wife, Minna Waldeck, bore him three children. 

Gauss held the post of professor of astronomy at 

Gottingen from 1807 until his death in 1855 (Smith, Source 

Book 292). Astronomy "absorbed him most" but he was 

actively interested in many other areas of science. He 

"earned great distinction in his physical research on 

theoretical and experimental magnetism" and, although he 

did not invent the telegraph, he and Wilhelm Weber 

improved earlier inventions. Gauss also studied optics 

(Kline 870) . The kingdom of Hanover was surveyed from 

1818 to 1832 and Gauss was the director of the initial 

phase of this vast project. "Geodesists list Gauss as one 

of the greatest geodesists, a man who introduced new 

standards of observational and theoretical accuracy" 

{BUhler 110). 

In 1849# the University of Gottingen celebrated the 
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fiftieth anniversary of Gauss's doctorate. {The 

University of Helmstadt no longer existed.) Gauss 

submitted his fourth and final proof of the fundamental 

theorem of algebra, an improved version of his original 

proof. Gauss died in February of 1855 and was buried in 

Gottingen (BUhler 155). 

Gauss was one of the first mathematicians to use 

Argand's "visualization of the complex numbers in the two­

dimensional plane" (BUhler 43). Gauss coined the term 

complex numbers (Gallian 258). His interest in geodesy, 

surveying, and map-making led to a now famous work on 

differential geometry, Disquisitiones generales circe 

superficies curvas. He made many other contributions to 

algebra, complex functions, and potential theory (Kline 

870). Struik says: 

His publications, however, do not give an 

adequate picture of his full greatness. The 

appearance of his diaries and some of his 

letters has shown that he kept some of his most 

penetrating thoughts to himself. We now know 

that Gauss, as early as 1800, had discovered 

elliptic functions and around 1816 was in 

possession of non-Euclidean geometry. 

(History 145) 

As most of Gauss's contemporaries were specialized in one 

field or another, Gauss's universal activities are "all 

the more remarkable." Kline says he was not "so much an 
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innovator as a transitional figure from the eighteenth to 

the nineteenth century" (871). 

In closing, it was Gauss who remarked that 

"mathematics is the queen of the sciences and arithmetic 

is the queen of mathematics" (Boyer 553). Gauss is 

sometimes called the Prince of Mathematics. And BUhler 

says, "Gauss's brain with its exceptionally deep and 

numerous convolutions has been incorporated in the 

anatomical collection of the University of Gottingen" 

( 155) . 

Gauss's First Proof 

In 1799, Gauss published his doctoral dissertation 

under the title Demonstratio nova theorematis omnem 

functionem algebraicam rationalem integram unius 

variabilis in factores reales primi vel secundi gradus 

resolvi posse or New proof of the theorem that every 

integral rational algebraic function of one variable can 

be decomposed into real factors of the first or second 

degree. Before~giving his proof, Gauss criticized the 

proofs of others, including d'Alembert, Euler, de 

Foncenex, and Lagrange. 

He first discussed d'Alembert's Recherches sur le 

Calcul Integral which was published in 1746. He 

summarized d'Alembert's proof and then he discussed "the 

basic points which seem able to be brought against 

d'Alembert•s demonstration" (Fauvel and Gray 490). 



1. Ill. d'A. nullum dubium mouet de 

"existentia" valorem ipsius x quibus valores 

datisius X respondent, sed illam supponit, 

solamque "formam" istorum valorum 

inuestigat. . • . (Gauss 11) 
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D'Alembert raises no doubts about the existence 

of values of x, to which given values of X may 

correspond, but supposes their existence, and 

investigates only the form of the values. 

(Fauvel and Gray 490) 2.) 

Assertio, w per talem seriem qualem ponit semper 

exprimi posse, certo est falsa, si X etiam 

functionem quamlibet transcendentem designare 

debet (uti d'A. pluribus locis innuit). Hoc 

e. g. manifestum est, si ponitur x = e1/x, siue 

x = 1/ (log X) . (Gauss 11) 

The assertion, that w can always be expressed 

through such a series as he proposes, is 

certainly false, if X is meant to designate any 

transcendental function (as d'Alembert indicates 

in several places.). This is clear if, for 

example, X= e1/x, or x = 1/(log X). 

(Fauvel and Gray 490) 

Gauss also discussed d'Alembert•s free use of infinitely 

small quantities, which was not "consistent with the 

rigours of geometry, at least in our age .•. " (Fauvel 

and Gray 491) 



86 

He then discussed Euler's "Recherches sur les racines 

imaginaires des equations" published in 1749. Gauss 

remarked: 

Euler tacitly supposes that the equation 

X = 0 has 2m roots, of which he determines the 

sum to be = 0 because the second term in X is 

missing. What I think of'this licence I have 

already declared in art. 3. The proposition 

that the sum of all the roots of an equation is 

equal to the first coefficient with the sign 

changed does not seem applicable to other 

equations unless they have roots; now although 

it ought to be proved by this same demonstration 

that the equation X = o really does have roots, 

it does not seem permissible to suppose the 

existence of these. . . . (Fauvel and Gray 491) 

After fully describing Euler's attempt to prove the 

fundamental theorem, Gauss discussed the proofs of de 

Foncenex and Lagrange. Of Lagrange's work he remarked: 

Magnus hie geometra imprimis operam dedit, 

defectus in Euleri demonstratione prima supplere 

et reu era praesertim ea, quae supra . (26) 

This great geometer handed his work to the 

printers when he was worn out with completing 

Euler's first demonstration •.. {Fauvel and 

Gray 491) 



Gauss begins his proof with a polynomial 

X = xm + Axm-1 + Bxm-2 + . • . + Lx + M where 

87 

A, B, . . . , M are real numbers. His goal was to show 

that a linear or quadratic factor of X existed. A real 

linear factor of X would imply the existence of a root ±r. 

The existence of a quadratic factor implied a pair of 

complex roots, z and z, defined by r(cos ~ ± i sin ~) for 

r > 0. Thus the quadratic factor (x - z) (x - z) could be 

written x2 - 2xrcos~ + r2. He first stated and proved 

this lemma: 

Lemma. Denotante m numerum integrum positimum 

quemeunque functio 

sin~·xm - sinm~·rm-1x + sin(m - l)~·rm 

divisibilis erit per xx - 2cos~·rx + rr. (26) 

Lemma. If m is an arbitrary positive integer, 

then the function 

sin~·xm - sinm~·rm-1x + sin(m - 1)~·rm is 

divisible by x2 - 2cos~·rx + r2 (Struik, Source 

Book 115). 

Next Gauss considered this: 

Lemma. If the quantity r and the angle ~ are so 

determined that the equations 

rmcosm~ + Arm-1cos(m - 1)~ + Brm-2cos(m - 2)~ + etc. 

+ Krrcos2~ +Lrcos¢ + M = O, (1) 

rmsinm~ + Arm-1sin(m - 1)~ + Brm-2sin(m - 2)~ + etc. 

+ Krrsin2~ + Lrsin~ = 0 (2) 

exist, then the function 



xm + Axm-1 + Bxm-2 + etc. + Kx2 + Lx + M = X 

will be divisible by the quadratic factor 
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x2 - 2cosr~ + r2, unless rsin¢ = o. If rsin¢ = o, 

then the same function is divisible by x - rcos¢. 

This may be proved by examining the sum of the following 

functions, each of which is divisible by 

x2- 2cos¢·xr + r2 {from the first lemma). 

sin¢•rxm sinm¢•rmx + sin(m - l)¢•rm+1 

Asin¢·rxm-1 - Asin(m - 1)¢•rm-lx + Asin(m - 2)¢•rm 

Bsin¢•rxm-2 - Bsin(m - 2)¢·rm-2x + Bsin(m - 3)¢•rm-1 

Ksin¢•rx2 

Lsin¢•rx 

Msin¢•r 

Ksin2¢•r2x + 

Lsin¢•rx 

+ 

Ksin¢·r3 

Msin(-¢) •r. 

The sum is sin¢•rX + 0 + o. (The second and third 

column add up to zero by the hypothesis of the theorem.) 

If sin¢ = o, then cos¢ = ±1, cos2¢ = ±1, cos3¢ = ±1, 

etc. and X becomes zero for x = rcos¢. 

In the proof, Gauss substituted 

a + bi = r(cos ¢ + isin ¢) in for x in X. After 

substitution, he separated the result into two equations, 

the real and the imaginary parts. These two pieces, 

represented above by equations (1) and (2), Gauss consider 

as curves, U = 0 and T = o, in the Cartesian plane. Next, 

he showed that U and T must intersect somewhere. 
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. • . if the two curves intersected, then there 

necessarily existed a pair of points a1, b1 such 

that U(al,bl) = 0 and T(a1,bl) = 0. But then 

X(al + v-lbl) = o; that is, there was at least 

one imaginary value of the form a + bv-1 

satisfying the polynomial equation. (Rider 72) 

To do this, Gauss must describe the behavior of T and 

U and convince his reader that they do in fact intersect. 

He said: 

We consid~r a fixed infinite plane (the plane of 

our Fig. 1) and in it ,a fixed infinite straight 

line GG' passing through the fixed point c. 

G 

In order to express all line segments by numbers 

we take an arbitrary segment as unit, and erect 

at an arbitrary point P of the plane, with 

distance r from center C and with angle GCP = ~, 

a perpendicular equal to the value of the 

expression rmsinm~ + Arm-lsin(m - 1)~ + etc. + 

Lrsin~. I shall denote this expression by T. 

(Struik, Source Book 116) 

He next described how the endpoints of this perpendicular 
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formed a "continuous, curved surface, infinite in all 

directions" which is above the plane when T is positive, 

below the plane when T is negative, and vanishes when T = 

0. The expression for U forms a similar surface using the 

same plane, center, and axis. The intersection of the 

first surface and the plane form the curve T = o, while 

the intersection of the second surface and the plane form 

the curve U = 0. Each curve, T = 0 and U = o, could have 

multiple branches but "each by itself forms a continuous 

curve (Struik, Source Book 117). 

Rider, in Mathematics in the Enlightenment, says Gauss 

offered as an example the polynomial X = x4 - 2x2 + 3x + 

10. The sketch of U = 0 and T = 0 would look like this: 

If a circle were drawn about the center c 

with radius R, intersecting the curves T = o and 

u = o, Gauss indicated that, consonant with the 

example and our intuition, there would be 2m 

points on the circle where T = o (and 2m where 

U = 0). (Rider 74) 
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Gauss remarked that these points "are situated in such a 

way that each point of the second kind lies between two of 

the first kind" (Struik, Source Book 118) • 

Then he said: 

It is now possible to deduce from the 

relative position of the branches which enter 

into the circle that inside the circle there 

must be an intersection of a branch of the first 

curve with a branch of the second curve, and 

this can be done in so many ways that I hardly 

know which method is to be preferred to another. 

Now it is known from higher geometry that 

every algebraic curve (or the single parts of an 

algebraic curve when it happens to consist of 

several parts) either runs into itself or runs 

out to infinity in both directions and that 

therefore, if a branch of an algebraic curve 

enters into a limited space, it necessarily has 

to leave it again. (Struik, Source Book 121) 

Since U = 0 and T = 0 intersect in the circle, then there 

exists a point where X = 0. Thus he had proved the 

fund~mental theorem of algebra. 

Gauss's Second Proof 

;The second proof uses no geometrical arguments. The_ 

following is from a translation of the second proof by 

c. Raymond Adams and can be found in A Source Book in 



Mathematics by D.E. Smith. Smith says "The term 

fundamental theorem of algebra appears to have been 

introduced by Gauss." This proof first appeared in 1816 

in commentationes Societatis reqiae scientiarum 

Gottingensis recentiores under the title "Demonstratio 

nova altera theorematis omnem functionem algrebraicam 

rationalem integram unius variabilis in factores reales 

primi vel secondi gradus resolvi posse" (292)o 
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The solution of Y = o is made to depend on the 

solution of the auxiliary equation F(u,X) = o provided the 

discriminant of Y is not zero. 

To determine the discriminant of Y, suppose 

V - (X a) (x - b) (x - c) 

_ xm ~·xm-1 +Xxm-2 _ 

Note that each ~ or function of A is a symmetric 

function of a, b, c, • Form the product 

1T = (a - b) (a - c) (a - d) .•• X (b - a) (b - c) (b - d). o o 

X (c - a) (c - b) (c - d) ••• X ••• 

This product is an integral function of the Denote 

the same function of 1' , 1", . by p. Then p is 

defined to be the discriminant of 

y = xm - l'xm-1 + l"xm-2 - 0 

Now let Y be a particular, arbitrary function of the 

same type with constant coefficients L', L", o o • 

Then Y has the form 

y = xm - L'xm-1 + L"xm-2 + . • . Then P, which is the 

same as p with the l's replaced by L's, is the 
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discriminant of Y. 

Gauss proved the following two theorems. 

I. If P is zero, then Y and Y' = dYfdx have a 

common factor. 

II. If P is not zero, then Y and Y1 have no 

common factors. 

He described how to create the auxiliary 

equation. 

We will now consider the product of all 

u - (a + b)x + ab without repetitions, where u 

and x indicate unknowns, and denote the same by 

~ • Then ~ will be the product of the following 

~m(m -1) factors: 

u - (a + b)x + ab, u - (a + c)x + ac, 

u - (a + d)x + ad, 

u - (b + c)x + be, u - {b + d)x + bd, 

u - (c + d)x + cd, . 
• • • I • 

. . . . , 

. 
• • • I 

Since this function involves the unknowns 

a, b, c, •.• symmetrically, it determines an 

integral function of the unknowns 

u, x, 1 1 1 1 11 1 ••• , which shall be denoted by z, 

with the property that it goes over into t if the 

unknowns 1 1 1 1" 1 • • • are replaced by >-. 1 , )\", • 

Finally we will denote by Z the function of the 

unknowns u and x alone to which z reduces if we 

assign to the unknowns 1', 1", •.. the particular 

values L 1 , L", . • . {299) 
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Gauss then proved the following theorem: 

Theorem. Whenever P is not zero, the discriminant 

of the function z certainly cannot vanish 

identically. 

Rename Z as Z = F(u,x). If Pis not zero, the 

discriminant of z is a function of x that is not 

identically zero. So the number of particular values of x 

for which the discriminant of Z can vanish is finite. 

Thus there exists an infinite number of x•s which make the 

discriminant of Z nonzero. 

Let X be a real value of x such that the discriminant 

of Z is not zero. Then by the second theorem F(u,X) and 

dF(u,X)/du have no common divisors. Using this 

information, Gauss generated a zero for F(u,X) of the form 

g + hv-1. From this, it follows that for the same g + hv-

1, Y will also be zero. 

If the discriminant of Y is zero and the degree of Y 

is m = 2~k where k is an odd number, he showed that it is 

possible to find another function whose degree is 2¥ k, 

where ~ < ~· This new function is a divisor of Y and its 

discriminant is not zero. Every solution of the new 

equation is a solution of Y = 0, and the solution is 

made to depend upon the solution of another 

equation whose degree is expressed by a number 
J-1 of the form 2 k. 

From this we conclude that in general the 

solution of every equation whose degree is 
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expressed by an even number of the form 2~k can 

be made to depend on the solution of another 

equation whose degree is expressed by a number 

of the form 2~ 1 k with ~· < ~. In case this 

number is also even- i. e., if~· is not zero, 

- this method can be applied again, and so we 

proceed until we come to an equation whose 

degree is expressed by an odd number; the 

coefficients of this equation are all real if 

all the coefficients of the original equation 

are real. It is known, however, that such an 

equation of odd degree is surely solvable and 

indeed has a real root. Hence each of the 

preceding equations is solvable, having either 

real roots or roots of the form g + hv-1. (306) 

Gauss's Third Proof 

Gauss's third proof also appeared in 1816 in 

Commentationes Societis regia scientiarum Gottingensis 

recentiores with the title "Theorematis de resolubilitate 

omnem functionem algebraicam rationalem integram unius 

variablilis in factores reales primi vel secundi gradus 

resolvi posse" (Smith, Source Book 292). 

This explanation of the proof is from an article in 

Bulletin of the American Mathematical Society by Maxime 

Bocher published in 1895. He said: 
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It is hoped that the following note may be of 

interest to some readers of the Bulletin as 

indicating the connection between Gauss's third 

proof that every algebraic equation has a root 

and those branches of mathematics which have 

since been developed under the names of the 

Theory of Equations and the Theory of the 

Potential •..• [This) is essentially Gauss's 

proof. (205) 

It should be noted that in Gauss's original third proof 

the coefficients of the polynomial were real and that he 

only used complex coefficients in his fourth proof. 

Let f(z) = zn + (a1 + b1i)zn-1 + 

Let zf'(z) =a'+ T'i. Now substitute 

z = r(cos ~ + isin ~) and solve for a, T, a', and T'. 

Define F(z) =a' + T 1 i 
a + Ti 

= aa' + TT' 
a2 + T2 

= u + vi. 

+ O'T 1 - T0" 1 i 
0 2 + .,.2 

Next, find formulas for the derivative of u and v with 

respect to r and ~. We find 

ou = l. ov 
or r o~ 

= (a2 + T2) (aa" + TT") + (aT' - Ta')2 - (aa' + TT 1 )2 
r(a2 + T2)2 

= T. 

Form the double integral n = J: J~ff T d~ dr. 
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First, integrate with respect to ¢ and then r, and we find 

n = o. Now integrate in the opposite order. 

Remembering that u vanishes at the origin, 

n = J~n u d¢, the integral being taken around the 

circumference of a circle with radius a and centre 

at the origin, so that n will be positive if a is 

sufficiently large. The fact that we get different 

values for n according to the order of,integration 

shows that T cannot be everywhere finite, 

continuous, and single valued, and this can be 

explained only by the vanishing of a2 + T2. (208) 

If a2 + T2 vanishes at a point, this point must be a root 

of f(z) = o. Hence, the fundamental theorem of algebra 

has been proved. 

Gauss's Fourth Proof 

Gauss submitted his fourth proof in honor of the 

fiftieth anniversary of the awarding of his doctorate. 

The title of his fourth proof was "Beitrage zur Theorie 

der algebraichen Gleichungen" and was published in 

Abbandlungen der Konilgiden Gesellshaft der Wissenschaften 

zu Gottingen (Smith, Source Book 292). 

This version of his proof is from Appendix I of 

Theory of Equations by J. V. Uspensky. He says: 

Among the many existing proofs perhaps the first 

and the fourth (which is only another 

presentation of the first) proofs by Gauss show 



in the clearest intuitive way why any equation 

should have a root, and although partisans of 

extreme rigor may insist on the necessity of 

various additions, we shall present here the 

fourth Gaussian proof as the most suitable for 

the purposes of this book. (293) 
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Let f(x) = xn + axn-1 + bxn-2 + •• + 1 be a 

polynomial with complex coeficcients. Substitute x ·. 

r(cos ~ + isin ~). Separate the real and imaginary parts 

to get two equations, T and u. The goal will be to show 

the existence of a point where both T and U vanish. 

A circle r of a certain radius is selected and 

divided into 2n arcs. on each of the arcs, the sign of T 

is shown to be alternately negative and positive. 

It is shown that u has positive values at the even 

endpoints of the arcs and negative values at the odd 

endpoints. Uspensky says: 

To describe the situation more intuitively we 

shall call those n regions outside of r, where 

T < o, "seas", and the other n regions where 

T > o, "lands." Lines on which T = o will be 

then "seashores." Now then seas and then 

lands existing in the interior of r extend 

themselves into the interior of r across the 

arcs (0) (1), (1) (2); etc. Starting from the 

endpoint (1) of the arc (0) (1), through which a 

sea penetrates into the interior of r, we 
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imagine that we walk along the seashore so that 

the land is always on our right, heading inward. 

We must eventually come out of r, and when we 

cross it again, heading outward, the land must 

still be on our right. If the circumference is 

followed in a counterclockwise direction, lands 

and seas alternate, whence it follows that we 

cross r, heading outward, at a point (k) with k 

even, that is either (2), which is the simplest 

case 1 or at (4), (6), etc. Thus, there is a 

continuous line L leading from (1) to some point 

(k) with even k. On the line L constantly 

T = o, and at the point (1), u < o, whereas 

U > 0 at the point (k). Since U varies 

continuously, at some point of L it must take 

the value o, so that there is a point within r 

at which both T = o and U = 0, which proves the 

existence of a root. (297) 

Uspensky said the following diagram was borrowed from 

Gauss. The shaded area represents "seas" and the white 

area "lands." It represents an equation of the fifth 

degree. 



CHAPTER V 

COMPLEX VARIABLES 

Augustin-Louis cauchy 

In a very important sense, it may be said 

that Cauchy brought ancient and modern 

mathematics together. He cast his rigorous 

calculus in the deductive mould characteristic 

of ancient geometry • he not only gave his 

work a Euclidean form but presented definitions 

that generally are adequate to support the 

desired results, proofs that basically are 

valid, and methods that were fruitful sources 

for later mathematical work. . . • There is 

little in nineteenth century analysis that was 

not marked, directly or indirectly, by his 

ideas. (Grabiner 164) 

Augustin-Louis cauchy was born in Paris in 1789. His 

father educated him and his five brothers and sisters when 

they were young. The elder Cauchy was a barrister and a 

police lieutenant (Bell, Men 272). At sixteen, Cauchy 

began to study engineering at l'Ecole Polytechnique and 

from there went to l'Ecole des Pontes et Chaussees 

{Calinger 548). In 1813, he became an instructor at 

100 
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l'Ecole Polytechnique. 

At forty, he left France and taught in switzerland 

and Italy, and then became the private tutor of the heir 

of the deposed king of France, Charles X. Cauchy 

continued his research, and following the Revolution of 

1848, he returned to France. Cauchy resumed the chair of 

celestial mechanics at the Sorbonne, where he remained the 

rest of his career (Calinger 549). 

Cauchy published rapidly and is second only to Euler 

in volume of output (Calinger 549). "Cauchy's productivity 

was so prodigious that he had to found a sort of journal 

of his own, the Exercises de Mathematigues, continued in a 

second series as Exercises d'Analyse Mathematigue et de 

Physique" (Bell, Men 287). His numerous contributions 

include researches in convergence and divergence of 

infinite series, real and complex function theory, 

differential equations, determinants, probability, and 

mathematical physics. Fauvel credits him with "the e and 

o beloved of analysts" in his definitions (563). His 

importance in the world of mathematics is acknowledged by 

the number of concepts and theorems named for him; more 

than any other mathematician (Calinger 549). 

Definitions 

As with most branches of mathematics, the theory of 

functions of a complex variable has its own terminology 

and definitions. To prove the fundamental theorem of 
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algebra using this theory, we will need to look at a few 

of these terms. 

We begin with the notion of a simple closed curve. A 

simple closed curve is a curve which does not cross itself 

and whose initial and terminal points are the same. A 

useful example is a circle. The interior of a circle is 

an example of a simply connected domain. One way to think 

about simply connected domains is that they are domains 

such that every closed curve in them can be shrunk 

continuously to a point in the domain without bumping into 

the boundary of the domain (Boas 44). 

If you were walking along a simple closed curve and 

the inside of the curve was to your left, then we would 

say that the curve is positively oriented. 

A function that has a complex derivative at every 

point in a region is said to be analytic or holomorphic 

there. If a function is analytic in the whole finite 

plane, it is called entire. In some literature, 

especially British, entire functions are called integral 

functions. 

The last term that we will need is line integral. In 

ordinary calculus, we integrate functions over intervals. 

In multivariable calculus, when we integrate functions 

over curves, we get these line integrals. In complex 

analysis, we integrate complex functions over curves to 

get contour integrals. 
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Cauchy Integral Theorem 

Many theorems in Complex Variables are due to Cauchy 

and bear his name. This one is usually called the Cauchy 

Integral Theorem. 

Suppose R is a closed region that consists of 

points interior to and on a·simple closed curve 

c in the xy plane. If f is an analytic function 

on R and f' is continuous there, then 

Jcf(z)dz = o. 

To see this, le~ f(z) = u(x,y) + iv(x,y) be analytic 

throughout R. The integral along C can be written as a 

contour integral which is equal to a line intedral. 

Since f is analytic in R, u and v are analytic there, and 

since f' is continuous, so are the first-order bartial 

derivatives of u and v. Assume C is positively~ oriented. 

Then Green's Theorem from multivariable calculus then 

enables us to write 

But, the cauchy-Riemann equations state ux = vy and 

uy = -vx, so that the integrands of these two double 

integrals are zero throughout R. Thus Jcf(z)dz = o. 

This theorem is sometimes called the Cauchy-Goursat 

Theorem, after E. Goursat, a French mathematician who 

lived from 1858 to 1936. He was the first to prove that 
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the condition of continuity of f' could be omitted. 

However, since our functions are polynomials, we know that 

their derivatives are continuous and so we may use the 

weaker form of this theorem (Churchill 94). 

Proof Using the Cauchy Integral Theorem 

This proof of the fundamental theorem of algebra 

needs only the Cauchy Integral Theorem. Like most 

complex variables proofs, it is a proof by contradiction. 

If p(z) is a nonconstant polynomial of degree n, 

then p(z) has at least one root. 

Suppose not. Let 

p(z) = ao + a1z + •.• + anzn = ao + zq(z), then 

1 = p(z) = z zp(z) 
ao + zq(z) = ao 

zp ( z) zp ( z) 
+ g{ Z) • 

p(z) 

Integrating around the circle jzj= r, we find 

2ni = J ao dz 
lzl;,r zp(z) 

+ o. 

The last term on the right integrates to zero by 

the cauchy Integral Theorem since q(z)/p(z) is analytic. 

As lzl = r -> oo, p(z)fanzn -> 1, and hence for larger, 

Thus 

27T = 

~ 

= 

which implies 

IJizl=r ~dzl 
2nr · 2layl 

rlan rjtl 

4nlaob 
lanlr 

IP(Z) I ~ lanznl. 
2 
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Now, as r -> oo, this inequality gives 2~ ~ o, which is a 

contradiction. Thus, p(z) has a root. 

Another Proof Using the Cauchy 

Integral Theorem 

The following proof uses only the Cauchy Integral 

Theorem and is from Invitation to Complex Analysis by 

R. P. Boas. This proof is based .on a proof by N. c. 

Ankeny of Stanford University. Ankeny's proof ~ay be 

found in the October 1947 issue of The American 

Mathematical Monthly, Volume'54. 

Every polynomial of positive degree has at least 

one zero. 

Assume not. Since every polynomial of degree one 

obviously has a zero, there is a polynomial p(z) of degree 

greater than one with no zeros. We may assume that p is 

real on the real axis. Since p(z) ~ 0, p(2cos9) + o. 

Consider 

I = 

Since p(z) is real for real z, and never zero, we see that 

p(2cos9) is always of the same sign, and hence the 

integral is never zero. Now interpret I as an integral 

around the unit circle, parameterized by z = eie, 

dz 
zp(z + 1/z) 
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If p(z) = ao + a1z + ••• + anzn, then 

p(z + 1/z) = a 0 + a1(z + 1/z) + •• + an(z + 1/z)n 

= z-nq(z), 

where q(z) is a polynomial with q{O) = an f o. Thus the 

integrand in I is zn-1/q(z) with 1/q(z) analytic, n ~ 1, 

and therefore I = 0 by the Cauchy Integral Theorem. This 

is a contradiction and so the assumption must be false. 

Joseph Liouville 

There are many mathematical journals now in 

existence. Some of these have a very long history, 

published for the first time in the first half of the 

nineteenth century. 

Foremost among these are the German journal 

entitled Journal fUr die reine und anqewandte 

Mathematik, first published in 1826 by A. L. 

Crelle, and the French journal entitled Journal 

de mathematigues pures et appliguees, which 

appeared in 1836 under the editorship of J. 

Liouville. (Eves 303) 

These journals are frequently known as crelle's Journal 

and Liouville's Journal. This is the same Liouville of 

Liouville's Theorem which we will use to prove the 

fundamental theorem of algebra. 

Joseph Liouville lived from 1809 to 1882. He was a 

professor at the College de France {Cajori 440). He 

showed, in his Journal of 1844, that neither e nor e2 
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could be the root of a quadratic equation with integral 

coefficients (Boyer 602). He founded his Journal in 1836 

(Kline 624). 

Although the theorem we are interested in is called 

Liouville's Theorem, some believe 

it is incorrectly attributed to Liouville by 

Borchardt (whom others copied), who heard it in 

Liouville's lectures in 1847. It is due to 

Cauchy, in Comptes Rendus, Volume 19 (1844), 

although it may have been known to Gauss 

earlier. (Marsden 171) 

Borchardt was then the editor of Crelle's Journal. 

Liouville's Theorem 

For the next proofs, we will need Liouville's 

Theorem. We will need to consider a, a small circle 

around a point inside a simple closed curve, c. It can be 

shown that the contour integral of an analytic function f 

over c is equal to the contour integral of f over a. 

Suppose that c is in a simply connected domain where f is 

analytic. Connect c and a with lines L1 and L2 as in the 

following diagram. 
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Consider Jf(z)dz separately along the upper and lower 

curves formed by c, a, L1, and L2. By Cauchy's Integral 

Theorem, each of those two integrals is zero and the 

integrals along L1 and L2 cancel, so 

(Boas 52) 

Another Cauchy theorem follows, this one called 

Cauchy's Integral Formula. 

Let C be a simple closed positively oriented 

curve in a simply connected domain, and z 

a point inside c. Then 

To see this, notice that the function fCw> is analytic 
w - z 

on and inside c except at w = z. Let a be a small 

circle around z, so small that it is entirely in c. 

Then by the fact above we have 

1 J f(w) dw = 
21fi c w - z 

1 J fCw) dw. 
2ni a w - z 

If we let r be the radius of the circle a whose center 

is z, then 

1 J f(w) dw 
2ni a w - z 

Since f(z + reie) -> f(z) uniformly as r -> o with 

respect to e, we obtain 

lim J21r f(z + reie)de = 
r->0 o 

f ( z) • 



From Cauchy's Integral Formula it is not hard to 

derive the following useful formula: 

f'(z) = __ l_J f(wl dw. 
27Ti a (w- z)2 

Cauchy's Estimate will give us a bound on the 

derivative of f at the center of a circle. 
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Suppose f is analytic inside and on a circle of 

radius r, whose center is a. Suppose also that 

!f(z) I ~ M for all z inside the circle. Then 

If' (a) I ~ M/r. 

This is easy to see using the formula above. 

lf'(a)l = I 1 J fCwl dwl 
27ri a (w- a)2 

~ _1 • M • 21rr = _M_. (Conway 73) 
27T ~ r 

Now we can prove Liouville's Theorem. 

If f is entire and there is a constant M such that 

lf(z) I ~ M for all z € c, then f is constant. 

For any z € C, by Cauchy's Estimate, lf'(z) I ~Mfr. 
Letting r approach oo, we may conclude that lf'(z) I = o, 

and therefore f'(z) = o, so f is constant. 

Proof Using Liouville's Theorem 

Most complex variables textbooks use a version of the 

following proof. Marsden and Hoffman, in their book Basic 

Complex Analysis, believe this proof is essentially due to 

Gauss. 
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If p(z) is a nonconstant polynomial then there 

is a complex number zo such that p(zo) = o. 

To see this, suppose p(z) = ao + a 1z + ••• + anzn = o 

for all z. Let f(z) = _!_ 
p(z) 

Then f is an entire 

function. We may write 

p(z) = zn[an + an-1 + • • • + ~], 
z z 

from which it is easily seen that if z -> oo , p(z) -> oo 

and so lim f(z) = o. In particular, there is a number 
z->oo 

R > 0 such that lf{z) I < 1 if lzl > R. But f is 

continuous in and on the circle of radius R and center o, 

so there is a constant M > o such that lf(z) I s M for 

lzl s R. Hence f is bounded and, therefore, must be 

constant by Liouville's Theorem. It follows that p must 

be constant which is a contradiction. Hence, there exists 

a zo € c such that p(zo) = o. (Conway 77) 

Proof Using Rouche's Theorem 

Another ·complex var.iables proof uses a theorem known 

as Rouche's Theorem. This theorem was first published in 

1862 in Journal de l'Ecole Imperiale Polytechnique by 

M. Eugene Rouche, a graduate of l'Ecole Polytechnique and 

a professor at Lycee Charlemagne. This is a proof of the 

alternate version of the fundamental theorem of algebra: 
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Any polynomial p(z) = ao + a1z + ••• + anzn of 

degree n, where n ~ 1, has precisely n zeros, 

counting multiplicities. 

First, we will look at Rouche's Theorem. We will not 

prove it here. The proof is not difficult, but some 

powerful theorems are needed for it. The original proof 

may be found in the journal mentioned above, while easy-

to-understand proofs may be found in Invitation to Complex 

Analysis by R. P. Boas. 

Let f and g be functions which are analytic in 

and on a positively oriented simple closed 

curve c. If lf(z) I > lg(z) I at each point z on 

C, the functions f(z) and f(z) + g(z) have the 

same number of zeros, counting multiplicities, 

inside c. 

Now we will prove the fundamental theorem of algebra. 

Without loss of generality, we may assume that an = 1 in 

p(z). Let f(z) = anzn = zn and 

g(z) = a 0 + a 1z + • • 

so f(z) + g(z) = p(z). 

Let R >max {1, laol + la1l + .•. + lan-11}· Now 

f(z) has n zeros inside a circle c of radius R, so if we 

can show that lf(z) I > jg(z} I at each point z of c, we 

will be done. We have jf(z) I = Rn for z on c and 

lg(z) I ~ <laol + la1l + • • • + lan-11> lzn-ll 

< R(Rn-1) = Rn. 

Thus lf(z) I > lg(z) I· The theorem is proved (Churchill). 



CHAPTER VI 

ALGEBRA 

Definitions 

The proof of the fundamental theorem that we are 

about to consider uses the basic ideas of Gauss. This 

proof is based on a proof from Algebra by Serge Lang. He 

says, "The variation of the ideas which we have selected, 

making a particularly efficient use of the Sylow group, is 

due to Artin" (311). Other algebra textbooks give proofs 

similar to this one. Unlike the complex variables proofs, 

much background information is needed. 

We will begin our discussion with some assumptions 

about the real numbers that have to be made in order for 

this and similar proofs to be valid. 

We will assume that the real numbers, R, form an 

ordered field. An ordered field is a commutative field 

such that the property of positiveness (r > 0) is defined 

for its elements; and for every r in the field either r = 

0, r > o, or r < 0; and· if r1 > 0 a'nd r2 > 0, then r1 + 

r2 > 0 and r1r2 > o. 

We must also assume that every positive r € R has a 

square root. This is easily seen by recalling that the 

function f{x) = x2 restricted to the positive real numbers 

112 



113 

is one-to-one and onto. Therefore it has an inverse. 

Note also that every polynomial of odd degree in R[x] has 

a root in Rand thus has a linear factor in R[x]. (R[x] 

is the polynomial ring in x over R; that is, the set of 

all polynomials in x whose coefficients are real numbers.) 

To see this, consider a monic polynomial f(x) of odd 

degree. As x approaches positive infinity, then f(x) 

approaches positive infinity. As x approaches negative 

infinity, f(x} approaches negative infinity. So the graph 

of f{x) must cross the real axis somewhere, thus f(r} = o 

for some real number r. 

If we adjoin the roots of the polynomial x2 + 1 to 

the real .numbers, we get a new field denoted R(i), where 

±i are the roots of x2 + 1. R(i} is another name for c, 

the field of complex numbers. This field is a finite 

extension field of R. ~A field F is an extension field of 

K if K is a subfield of F. F is always a vector space 

over K. F is a finite extension field if the dimension of 

F over K is finite. 

It is neccessary to establish that any element in 

R(i) has a square root. All elements in R(i) have the 

form a + bi, where a,b e R. Our goal then is to show for 

each a + bi there exists x such that x2 = a + bi for some 

x e R(i). So assume x has the form c + di, c, de R. 

Then (c + di)2 = a + bi implies c2 - d2 = a and 2cd =b. 

Solving simultaneously we arrive at 

c2 = a ± ja2 + b2 and d2 = -a ± ~a2 + b2. 
2 2 
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Since choosing the plus sign in both right-hand 

expressions yields non-negative quantities, real values 

for c and d exist, therefore x = c + di exists such that 

x2 = a + bi. 

A ring R has characteristic n if there exists a 

least positive integer n such that na = 0 for all a e R. 

For the real numbers no such n exists: we say R has 

characteristic zero. 

Let F be an ,extension field of K. An element u e F 

is algebraic over K if u is a root of some nonzero 

polynomial f e K[x]. A polynomial f(x) E K[x] is 

irreducible if the degree of f is greater than or equal to 

one and f(x) can not be written as the product f(x) = 

g(x)h(x) with g, h e K(x] and both g, h E K. The 

irreducible polynomial over K of an element u of an 

extension field of K is the polynomial in K(x] of least 

degree satisfied by u. In general, and consistently with 

the notation for R(i), K(u) is a new field whose elements 

take the form g(u) for g e K(x] with the degree of g less 

than the degree of the minimal polynomial of u. 

Let f e K[x) be a polynomial of positive degree. If 

f can be written as a product of linear factors in K(x], 

then f splits over K. An extension field F of K is a 

splitting field over K of the polynomial f if f splits in 

F[x] and F = K(ul, u2, .•• , un) where u1, u2, ... , 

un are the roots of f in F. A splitting field for a 

polynomial over a base field can always be constructed 
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abstractly. 

Let's pause and see how these definitions relate to R 

and R(i). The element i is algebraic over R since i is 

the root of x2 + 1 € R[x]. Since it cannot be written as 

a product of linear factors whose coefficients are real, 

x2 + 1 does not split in R[x]. R(i) is a splitting field 

over R of the polynomial x2 + 1 since x2 + 1 splits in 

C[x] where c = R(i). x2 + 1 is irreducible in R[x]. 

In characteristic zero, F is a finite Galois 

extension of K if and ~nly if F is the splitting field of 

a polynomial over K (Hungerford 257). R(i) is a finite 

Galois extension of R since R(i) is a splitting field of 

x2 + 1 over R. 

The proof of the fundamental theorem of algebra 

considers finite extensions of R(i). These extensions are 

contained in some extension K of R(i) that is finite and 

Galois over R. Our goal will be to show tha,t K = R(i), 

that is, there is no finite extension of R(i). This would 

imply that every polynomial in C[x] has a root in c. 

We will need to use theorems from Galois theory and 

one of the Sylow theorems. So let's look at the lives of 

Galois and Sylow, and at Emil Artin whose proof we are 

imitating. 

Evariste Galois 

The life and death of Galois have long been a 

source of fascination and speculation for 
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mathematics historians. One article argues 

convincingly that three of the most widely read 

accounts of Galois's life are highly fictitious. 

(Gallian 158) 

The information in this section is gleaned from both 

the "highly fictitious" accounts and the article mentioned 

by Gallian in the quote above. 

Evariste Galois was born on October 25, 1811 in a 
0 

village just outside Paris. His father was the mayor of 

the village. Galois's mother taught him lessons at home 

until he reached the age of twelve. He received a 

"thorough classical and religious education." He then 

entered the Lycee of Louis-le-Grand (Bell, Men 362). His 

first two years were marked by a number of successes 

including a prize in General Concourse and three mentions. 

Galois was asked to repeat his third year because of his 

poor work in rhetoric (Rothman 86). 

After he had been demoted, Galois enrolled in his 

first mathematics course. "With the discovery of 

mathematics, Galois became absorbed and neglected his 

other courses" (Rothman 86). He quickly mastered the 

works of Legendre and Lagrange. His mathematics teacher ~ 

"constantly implored Galois to work more systematically 

... Galois did not take the advice." At the age of 16, 

he attempted the entrance examination to l'Ecole 

Polytechnique a year early, without the special course in 

mathematics that was usually taken (Rothman 87). He did 
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most of the work in his head but apparently did not know 

some basics (Gallian 158). Thus, he failed the 

examination and Bell says he "suspected his examiners of 

incompetence in their.office" (366). 

At 17, he was encouraged by his mathematics 

instructor and soon published his first small paper in 

Annales de Gerqonne titled "Demonstration d'un theoreme 

sur les fractions continues periodiques" which translates 

as "Proof of a Theorem on Periodic Continued Fractions". 

He then submitted a paper to the Academy on the 

solvability of equations of prime degree. Cauchy was 

appointed referee (Rothman 87). 

That same year, Galois's father comitted suicide 

(Rothman 87). Just days after his father's death, Galois 

attempted the entrance exams at l'Ecole Polytechnique 

again. He failed them and returned to prepare for a 

teaching career (Bell, Men 369). 

Cauchy did not present the paper Galois submitted to 

the Academy on the date that had been scheduled (Rothman 

88). It was believed that he had lost the manuscript. 

Galois published a paper in June 1830, "Sur la theorie des 

nombres", in which the structure of finite fields was 

determined (van der Waerden 104). Galois then submitted a 

paper to the Academy of Science in competition for the 

Grand Prize in Mathematics. Fourier, who was the 

secretary of the Academy at the time, took the manuscript 

home to read. Soon after, Fourier died and no trace of 
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the paper was ever found (Bell, Men 370). 

"[Galois's) hatred grew," Bell says, "he flung 

himself into politics." He wrote a letter to the Gazette 

des Ecoles, complaining of inaction of the students and 

the school director during the beginning of the 

Revolution. He was expelled. He then joined the 

Artillery of the National Guard, a republican organization 

(Bell, Men 371). Since he was no longer a student, he 

attempted to organize a private class in mathematics. 

About forty students attended the first meeting, but the 

"endeavor did not last long, evidently because of Galois's 

political activities" (Rothman 90) . Around the same time, 

the Academy received a revised version of Galois's memoir, 

"Memoire sur les conditions de resolubilite des equations 

par radicaux". The Academy asked two of its members, 

Poisson and Lacroix, to read the manuscript. Poisson 

"examined it carefully, but he declared he could not 

understand it" (van der Waerden 104). 

A banquet was held at a restaurant to celebrate the 

acquittal of nineteen republicans on conspiracy charges. 

Alexander Dumas wrote in his memoirs: 

A young man-who had raised his glass and held 

an open dagger in the same hand was trying to 

make hi~self heard. . 

Evariste Galois was scarcely 23 or 24 at the 

time. He was one of the most ardent 

republicans. The noise was such that the very 



reason for this noise had become 

incomprehensible. 
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All I could perceive was that there was a 

threat and that the name of Louis-Phillipe had 

been mentioned; the intention was made clear by 

the open knife. (Rothman 92) 

Galois was arrested the following day and held in 

detention. He was acquitted at his trial on the charge of 

threatening the king's life (Rothman 93). Later, he was 

arrested again as a precautionary measure. He spent six 

months in jail and then was paroled (Bell, Men 373). 

He was soon after challenged to a duel. The reasons 

for the challenge are not clear. Bell says that Galois 

spent the last hours before the "affair of honor 

feverishly dashing off his scientific last will and 

testament" (Men 375). This correspondence took the form 

of a letter to his friend Chevalier. Galois wrote: 

My Dear Friend, 

I have made some new discoveries in analysis. 

The first concern the theory of equations, 

the other integral functions. 

In the theory of equations I have researched 

the condition for the solvability of equations 

by radicals; this has given me the occasion to 

deepen this theory and describe all the 

transformations possible on an equation even 
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though it is not solvable by radicals. 

All this will be found here in three memoirs. 

(Rothman 102) 

Rothman says that Galois then went on to describe 

the memoir rejected by Poisson and other previous work. 

"During the course of the night he annotated and made 

corrections on some of his papers" (Rothman 102). His 

last work contained "no less than the theory of groups, 

the key to modern algebra and to modern geometry" (Struik, 

History 153). 

Galois died at twenty-one, "shot through the 

intestines and left to die. He was buried in a common 

ditch. His enduring monument is his collected works. 

They fill sixty pages" (BellM 377). 

Galois's works were first publishedby Liouville in 

1846 in his Journal. cajori reports that "As a rule 

Galois did not fully prove his theorems. It was only with 

difficulty that Liouville was able to penetrate Galois's 

ideas." Galois was the first to use the word group in a 

technical sense (351). 

Modern algebra begins with Evariste Galois. 

With Galois, the character of algebra changed 

radically. Before Galois, the efforts of 

algebraists were mainly directed towards the 

solution of algebraic equations. . • • Galois 

was the first to investigate the structure of 

fields and groups, and he showed that these two 
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structures are closely connected. If one wants 

to know if an equation can be solved by 

radicals, one has to analyze the Galois group. 

After Galois, the efforts of the leading 

algebraists were mainly directed towards the 

investigation of the structure of rings, fields, 

algebras, and the like. (van der Waerden 76) 

In 1852, Enrico Betti published the first "rigorous 

exposition of Galois's theory of equations that made the 

theory intelligible to the general public." The theory is 

first found in a textbook in 1866, J. A. Serret's Algebre 

(Cajori 352). 

Ludvig Sylow 

Ludvig Sylow was born on December 12, 1832 in 

Christiania, Norway (now called Oslo). He attended 

Christiania University and while a student there, won a 

gold medal for competitive problem solving. 

In 1855, he became a high school teacher but "found 

time to study the papers of Abel." Sylow received a 

t~mporary appointment at Christiania University in 1862 

and gave lectures on Galois's theory and permutation 

groups (Gallian 341). 

In the spring of 1872, Sylow presented a "paper of 

fundamental importance for the structure and theory of 

finite groups" to the Mathematische Annalen, entitled 

"Theorems sur les groupes de substitutions" (van der 
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Waerden 139). In it, Sylow extended a theorem given 

nearly thirty years earlier by Cauchy, which is now known 

as Sylow's Theorem (Cajori 354). "The result took on 

greater importance when the theory of abstract groups 

flowered in the late nineteenth and early twentietn 

centuries" (Gallian 341). 

Retired from high school teaching, Sylow held a chair 

at Christiania University until his death in 1918. We note 

that the mathematician Sophus Lie, after whom Lie algebras 

and groups are named, was a student of Sylow's at the 

University. 

Emil Artin 

Emil Artin was born on March 3, 1898 in Vienna, 

Austria. He grew up in what is now known as 

Czechoslovakia. In 1921, he received his Ph.D. from the 

University of Leipzig. He was a professor at the 

University of Hamburg, Notre Dame, Indiana University, and 

Princeton. 

Artin solved one of the twenty-three problems posed 

in 1900 by the mathematician David Hilbert (Gallian 285). 

Artin solved the ninth problem which "concern[ed] the most 

general reciprocity law in an arbitrary algebraic number 

field" (Browder 311). 

We are most interested in Artin and his work with 

Galois theory. Joseph Rotman in his book Galois Theory 

explains: 
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••. for its first century, 1830-1930, the 

Galois group was a group of permutations. In 

the late 1920's, E. Artin, developing ideas of 

E. Noether going back at least to Dedekind, 

recognized that it is both more elegant and more 

fruitful to describe Galois groups in terms of 

field automorphisms (Artin's version is 

isomorphic to the original version). In 1930, 

van der Waerden incorporated much of Artin's 

viewpoint into his influential text Moderne 

Algebra, and a decade later Artin published his 

own lectures. {93) 

Artin made contributions in many areas of 

mathematics. He invented the theory of braids; he did 

much work in ring theory, "in fact, there is a class of 

rings named after him." He also made advances in number 

theory, group theory, field theory, geometric algebra, and 

algebra.ic topology (Gallian 285). 

Emil Artin died in 1962 at the age of 64. 

More Definitions 

The Galois group of F over K is the set of all 

automorphisms of F that fix K. That is, G = G{FjK) 

= {ala is an automorphism of F and aiK = identity}. Recall 

that an automorphism is a one-to-one onto mapping from a 

set to itself that preserves the operations. So a{a + b) 

= a(a) + a(b) and a(ab) = a(a)a(b) for a and b e F. 
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If His a subgroup of the Galois group G = G(FiK), 

then the fixed field of H is the subset of elements of K 

that are fixed by every function in H. This subset forms 

a subfield of K. Keep in mind that G and H are sets of 

functions while F and the fixed field of H are sets of 

elements. 

F is a Galois extension of K if the fixed field of 

G(FiK) is K. This says F is a Galois extension of K if 

the only elements that are fixed by all of the 

automorphisms in G are the elements of K itself. 

A p-group is a finite group whose order (or number of 

elements) is a power of p. H is a p-Sylow subgroup of a 

group G if the order of H is pn and pn is the highest 

power of p dividing the order of G. 

We will need to use a theorem known as the First 

Sylow Theorem. It states that if G is a group of order 

pnm, with n ~ 1, p prime and (p,m) = 1, then G contains a 

subgroup of order pi for each 1 ~ i ~ n. You may find the 

proof in Algebra by Hungerford (94). 

The Fundamental Theorem of Galois Theory 

Now we are ready to discuss the fundamental theorem 

of Galois Theory. This version is from Hungerford's 

Algebra (245). 

If F is a finite dimensional Galois extension of 

K, then there is a one-to-one correspondence 

between the set of all intermediate fields of 



the extension and the set of all subgroups of 

the Galois group G(FjK) such that: 
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i.) the relative dimension of two intermediate 

fields is equal to the relative index of 

the corresponding subgroups. 

ii.) F is Galois over every intermediate field 

E, but E is Galois over K if and only if 

the corresponding subgroup G(FIE) is 

normal in G(FIK). 

It may be helpful to consider the following diagrams. We 

are given a Galois extension F of K and two intermediate 

fields L and M. 

F --> G(FjF) = 1 

u n 

M --> G(FjM) 

u n 

L --> G(F!L) 

u n 

K --> G{FjK) 

What the fundamental theorem says is that not only is 

there a one-to-one correspondence between the elements in 

the first and second columns but that the dimension of F 

over M is equal to the relative index of 1 and G(FjM}; 

that is, 

Further, 

dimMF = jG(FjM} l/j1j. 

dimLM = IG(FIL) I/IG(FjM) j, 

dimKL = jG(FIK) I/IG(FjL) j, 



and F is Galois over M, L, and K but M (or L) is Galois 

over K only if G(FIM) (or G(FIL)) is normal in G(FIK). 

We are given the Galois group G = G{FIK) and the 

subgroups J, H, and 1. 

As before, 

1 --> F 

n u 

H --> fixed field of H 

n u 

J --> fixed field of J 

n u 

G --> K 

the dimensions and indices match up. 

Proof Using the Fundamental Theorem 

of Galois Theory 

We now have all the definitions and theorems 

necessary to prove the fundamental theorem of algebra: 

The complex numbers are algebraically closed. 
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Every finite extension of R(i) is contained in a finite 

Galois extension Kover R. We need to show that K = R(i). 

Let G be the Galois group of K over R. 

(G = G(KIR)) 

Let H be a 2-Sylow subgroup of G. 

Let L be the fixed field of H. 

(The diagram looks like 



127 

1 K 

n u 

H --> L 

n u 

G R 

and we know from the fundamental theorem of Galois Theory 

that dimLK = IHI and dimRL = IGI/IHI .) Since H is a 

2-Sylow subgroup, IHI =2m for some m and IGI/IHI is odd. 

(Remember m is the highest power of 2 that will divide 

IGI.) Thus dimRL is odd. In fact, we can show 

dimRL = 1, that is, R = L. 

For let a be any element of L. Then 

dimRL = dimRR(a)•dimR(a)L, so dimRR(a) is odd. This 

implies that a is the root of an irreducible real 

polynomial of odd degree. But the only irreducible real 

polynomials of odd degree are linear by one of our initial 

assumptions from calculus. So a is real. Hence dimRL = 1, 

so G = H and thus G is a 2-group. 

From the fundamental theorem of Galois Theory ~e know 

that K is Galois over R(i). 

Let G1 be the Galois group of Kover R(i). G1 is a 

p-group with p = 2 (since G1 G and G is a 2-group.) 

If G1 is not the trivial group, then G1 has a 

subgroup G2 of index 2 (from the first Sylow theorem). 

Let F be the fixed field of G2. {The diagram looks 

like 
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1 --> K 

n u 

G2 --> F 

n u 

G1 --> R(i) 

n u 

G --> R 

and we know that dimR(i)F = I G2 II I G11 . ) 

Thus dimR(i)F = 2. But we know that every element in R(i) 

has a square root. Hence the quadratic formula yields 

roots in R(i) for any quadratic polynomial in R(i)[x]. So 

there are no extensions of R{i) of degree 2. So G1 must 

be the trivial group 1, which implies that K must be R(i), 

which was our goal. Thus, every polynomial in C[x] (or 

R(i)[x]) has a root in c. 

Symmetric Polynomials 

We will now look at another algebraic proof of the 

fundamental theorem of algebra that uses known 

relationships between coefficients and roots of polynomial 

equations. This proof is from Modern Algebra: A 

Constructive Introduction by Ian Connell. The basic 

relationship that we will use is: 

If f = xn - s 1xn-1 + s 2xn-2 - •.. + (-1)nsn 

= (x - a1) (x - a2) • • • (x - an) 

then + "'n 
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+ 

The history of the study of coefficients and roots of 

equations seems to begin with Viete. Although he failed 

to realize that coefficients and roots could be negative, 

he was aware of relationships between the roots and 

coefficients for some specific equations, for example 

x3 + b = 3ax {Boyer 336). 

In Invention nouvelle en !'algebra, Girard stated 

clearly the basic relationships just given (Boyer 450). 

In each Si above, any permutation of the a's will not 

affect the value of the Si· For this reason, each Si is 

known as a symmetric polynomial. 

There exist symmetric polynomials other than the Si 

given above, for example, 1 + a 14 + a24 ·as a polynomial of 

only a1 and a2. (Note that if we exchange a1 for a2 and 

vice versa, we obtain 1 + a24 + a14 which is equivalent to 

the original polynomial.) 

It can be shown that every symmetric polynomial with 

integer coefficients can be written as a polynomial with 

integer coefficients in s1, s2, ..• , sn· For example, 



1 + a14 + a24 = 1 + s14 - 4s12s2 + 2s22. 

Thus s1, s2, . , sn are called the elementary 

symmetric polynomials. For a proof of the above 

proposition, see Connell page 293. 
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The interest in symmetric functions arose 

when the seventeenth century algebraists noted 

and Newton proved that the various sums of the 

products of the roots of a polynomial equation 

can be expressed in terms of the coefficients. 

(Kline 600) 

Vandermonde, in 1771, showed that any symmetric function 

of the roots can be expressed in terms of the coefficients 

of the equation, the proposition we just discussed. 

Lagrange analyzed the methods of solution of third 

and fourth degree equations hoping to find a method to 

solve higher degree equations. Much work on symmetric 

functions can be found in his paper "Reflexions sur la 

resolution algebrique des equations" (Kline 600) . 

Proof Using Symmetric Polynomials 

We will prove c is algebraically closed. 

Let f € C[x] have degree n > 0. 

We have shown that f has roots in C if either n = 2 

or f € R[x] and n is odd. We will now consider f € R[x] 

for general n and show that such an f has a root in c. We 

will then show that any f € C[x] of general degree n has a 

root. Upon completion of these two tasks, we will have 



131 

shown that c is algebraically closed. 

Let f = xn + an-lxn-1 + ••. + ao 1 aj € R, and 

n = 2qm where 2 does not divide m. Since we know our 

theorem is true for q = o, let's assume q > o, and so n is 

even. 

If we think off € C[x], then f has a splitting field 

k c. c. Over k[x] 1 factor f as (x - a1) • • · (x - an) 1 

Define g = n(x - (ai + aj) - haiaj) € k[x] 

where h is an integer to be specified. 

The coefficients of g are symmetric polynomials in 

the ai, hence are polynomials with integer coefficients in 

the elementary symmetric polynomials ±ai and are therefore 

real numbers. So g € R[x]. 

Calculating the degree of g we find 

deg g = [n(n- 1)]/2 = [2qm(n- 1)]/2 = 2q-1m(n- 1) = N. 

(Note that m(n - 1) is odd since n is even and 2 does not 

divide m.) 

By induction on q, at least one of the roots 

ai + aj + haiaj is in c. 

Now let h = o, 1, 2, . . . , N. 

This leads us to N + 1 different polynomials g. 

Each of these g's has a root in c. 

Each g is the product of N factors 

(x- (ai + aj - haiaj)). Thus two of the roots 

guaranteed above are composed of the same pair of ai and 

aj· That is, there exist h1 = h2 such that 
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ai + aj + h1aiaj and ai + aj + h2aiaj are both in c. So 

[(ai + aj + h1a1a2) - (ai + aj + h2aiaj)]/(hl- h2) 

= aiaj f c. And since ai + aj + h1aiaj f c, ai + aj f c. 

So x2- (ai + aj)X + aiaj f C[x]. But 

x 2 - (ai + aj)X + aiaj = (x- ai}(x- aj)· 

Thus ai and aj are in c, because quadratic 

polynomials have their roots in c. 

Hence f € R[x] of even degree has roots in c. 

Now we will consider f f C[x]. 

Recall if f = ao + a1x + . . . + anxn then 

f = a 0 + 'llfx + • 

Also ? = f. 

+ CIJlXn. 

Let g = f • f . Then g = f • f = f ·"' = Y'· f = g. Thus 

g f R[x]. Therefore, by the first part of the proof, g 

has a root in c, say a. 

So g(a) = f(a}·lr(a) = o. 

If f(a} = o, we have found a root of f in c. 

If T(a} = o, then T(a) =0 = o, and 

1r(a) = r(a) = f(a) and thus a is the required root. 

Thus f f C[x] has a root inc {Connell 306}. 



CHAPTER VII 

ANALYSIS 

The Foundations.of Analysis 

Up to the present • • • more concern has been 

given to enlarging the building than to 

illuminating the entrance, to raising it higher 

than giving proper strength to the foundations. 

(d'Alembert in Kline 619) 

Some mathematicians of the eighteenth century were 

becoming increasingly alarmed over the "deepening crisis" 

in the foundation of analysis (Eves 367). 

Geometrical methods were used during the first part 

of the century but mathematicians such as Euler and 

Lagrange had begun to realize the "greater effectiveness 

of analytic methods" (Kline 614). Intuition played a big 

role in the thinking of these mathematicians. Kline says: 

Any delicate question of analysis, such as 

the convergence of series and integrals, the 

interchange of the order of differentiation and 

integration, the use of differentials of higher 

order, and questions of existence of integrals 

and solutions of differential equations, were 

all but ignored. (617) 
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This mathematical era is sometimes called the heroic age 

because the mathematicians were willing to "plunge· ahead 

so boldly without logical support" (Kline 617). 

Rigorous analysis began in the early 1800's with the 

work of Bolzano, Cauchy, Abel, Direchlet, and Weierstrass 

(Kline 948). We will look at the lives and work of 

Bolzano, Weierstrass, and another analyst of a later date, 

Riemann. We have previously discussed Cauchy's life and 

some of his work, but let's look at his importance in the 

"rigorization of analysis". 

Around 1820 Cauchy began to collect the lectures he 

had given on analysis at l'Ecole Polytechnique and other 

colleges to publish a book. The book, entitled Cours 

d 1 analyse de l'Ecole Polytechnigue, was to become very 

famous (Grattan-Guinness 48). In his introduction, Cauchy 

explained that he "seeks to give rigor to analysis" (Kline 

948) . 

The legend surrounding this book and its 

companions is that they revolutionized the whole 

of analysis and created the standards of 

mathematical rigor to which we are now 

accustomed. (Grattan-Guinness 48) 

But the books had many weaknesses although they "marked a 

great step forward from their predecessors" (Grattan­

Guinness 48). 

The work of Cauchy and others "freed the calculus and 

its extensions from all dependence upon geometrical 
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notions, motion, and intuitive understanding" (Kline 972). 

Bernhard Balzano 

Bernhard Balzano lived as a priest, philosopher and 

mathematician in Bohemia. He was born in 1781 and died in 

1848 (Kline 950}. He held the post of professor of the 

philosophy of religion at the University of Prague (Cajori 

367}. 

His mathematical interests were varied. He studied 

the foundations of real variable analysis, Euclidean 

geometry, number theory, and rational and irrational 

numbers. His papers were issued in the form of pamphlets 

and in journals, where he gave a proof: Purely analytical 

proof of the theorem that between any two values which 

guarantee an opposing result fin signl lies at least one 

real root of the equation (Grattan-Guiness 52). 

He also gave a proof of the binomial formula and 

"exhibited clear notions on the convergence of series. He 

held advanced views on variables, continuity and limits" 

(Cajori 367). 

Karl Weierstrass 

Karl Weierstrass was born in 1815 in Westphalia. He 

studied law at the University of Bonn, but did not 

complete his doctoral work. Instead he became a gymnasium 

(high school) teacher (Kline 643). He taught at several 

different gymnasia, instructing his pupils in subjects 
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such as science, gymnastics, and writing. He taught at 

Braunsberg where he "entered upon the study of Abelian 

functions." After the publication of some scientific 

papers, he received an honorary doctorate from Konigsberg 

(Cajori 424). 

In 1856, he began teaching at the Industrial 

Institute in Berlin. Later that year he became an 

instructor at the University of Berlin, and then 

professor. He remained at this post until his death in 

1897 (Kline 643). 

Weierstrass' lectures were "meticulously prepared" 

and he became increasingly famous. "It is mainly through 

these lectures that Weierstrass' ideas have become the 

common property of mathematicians" (Struik 160). The 

number of successful research workers that he produced led 

Boyer to proclaim that Weierstrass was "the greatest 

mathematics teacher of the mid-nineteenth century" (609). 

The "age of rigor" brought us the kind of analysis 

with which we are now familiar. 

But the age did not dawn before Weierstrass, for 

these levels of technique and subtlety of 

reasoning were introduced only in his analysis 

lectures at Berlin. Uniform and nonuniform 

convergence; noninfinitesimal analysis to avoid 

the difficulties of his infinitesimal 

predecessors; the "(€,6')" formulation of 

Balzano's arithmetical approach to analysis; all 
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these ideas were urged by Weierstrass on his 

students, who then began to use and develop them 

in their own research and teaching. (Grattan­

Guinness 120) 

In 1835, N. I. Lobachevsky had discussed the 

necessity of distinguishing between continuity and 

differentiability. "The mathematical world received a 

great shock" when Weierstrass brought forth his discovery 

of a function which was continuous over an interval but 

did not have a derivative at any point in the interval 

(Cajori 425). Mathematicians refused to take such 

functions seriously and called them "pathological 

functions" (Struik 158). 

Weierstrass's fame rests on his "extremely careful 

reasoning" and the rigor which he used in all of his work. 

"He clarified the notions of minimum, of function, and of 

derivative," and this, claims Struik, "eliminated the 

remaining vagueness of expression in the fundamental 

concepts of the calculus" (160). 

Georg F. B. Riemann 

Georg Friedrich Bernhard Riemann was born in Hanover 

in 1826. He studied theology at the University of 

Gottingen and attended some mathematics lectures there 

(Smith 404). He was bashful and although his father 

wished for him a career in religion, "[Riemann] realized 

he would not be a preacher" (Bell, Men 485). He gave up 



138 

theology and studied under Gauss and Stern. In 1847, he 

traveled to Berlin to study under the group of famous 

mathematicians that had gathered there, including 

Dirichlet, Jacobi, Steiner, and Eisenstein. He returned 

to Gottingen and studied physics under Weber (Smith 404). 

In 1851 he wrote his doctoral thesis on the theory of 

complex functions. Riemann "clarified [his] definition of 

a complex function: its real and imaginary parts have to 

satisfy the Cauchy-Riemann equations (Struik, History 

158). Soon after the completion of his thesis, Riemann 

began his career as a professor at Gottingen (Smith 404). 

Riemann was a "many-sided mathematician with a 

fertile mind." He made contributions in analysis, 

geometry, and the theory of numbers. He is "recalled for 

his part in the refinement of the definition of the 

integral, for emphasis on the Cauchy-Riemann equations, 

and for Riemann surfaces" (Boyer 601). 

Riemann was sickly as a child and as an adult. He 

died at the age of 40 in Italy. He published a relatively 

small number of papers but "each of them was - and is -

important, and several have opened entirely new and 

productive fields" (Struik, History 158). 

Proof Using the Cauchy-Riemann Equations 

This proof uses the Cauchy-Riemann equations which 

were first stated by d'Alembert in 1752 in a paper on the 

resistance of fluids (Struik, History 151). Later, Cauchy 
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published a paper in which he "concentrated on saving 

complex variable integration" by finding the conditions 

that made the integration valid. In this paper, written 

in 1814 and published in 1825, Cauchy states the equations 

for the first time (Grattan-Guinness 31). They are known 

as the Cauchy-Riemann equations "for the fundamenta-l role 

that they play in Riemann's formulation of the theory of 

functions of a complex variable" (Grattan-Guiness 33). 

A complex valued function w(x,y) = u(x,y) + iv(x,y) 

satisfies the cauchy-Riemann equations if its real and 

imaginary parts do, that is, if ux = vy and uy = -vx. 

We will need some theorems from calculus to complete 

this proof. The first result, if u is a sufficiently 

well-behaved function of x and y, then Uxy = Uyx 1 was 

stated in 1734 by Euler (Grattan-Guinness 3). It is very 

easy to prove if u is a polynomial. 

We also need a theorem similar to the second 

derivative test for extrema of functions of one variable. 

This theorem states that at a minimum of the polynomial 

function g(x,y), both gx = 0 and gy = O, and gxx ~ 0 and 

gyy ~ o. For a discussion of this, you may refer to 

Calculus and Analytic Geometry by Douglas Riddle, page 

999. 

The author of this proof of the fundamental theorem 

of algebra, Raymond Redheffer, says, "the only other deep 

theorem we need is that a continuous function in the 

closed circle attains a minimum in the closed circle. 



This is not trivial even for polynomials" (582). See 

Advanced Calculus by John Olmsted, page 188, for more 

information on this theorem. 

Before we begin the proof, we will look at some 

algebraic properties of the Cauchy-Riemann equations. 
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Property 1: If w and W are complex functions 

which satisfy the cauchy-Riemann equations, so 

are w + W and ww. 

suppose w = u + iv and W = U + iV. It is easy to show 

that the Cauchy-Riemann equations hold for w + W. Let's 

look at ww. 

ww = (uU - vV} + i(uV + vU) 

and (uU - vV)x = (uUx + Uux) - (vVx + Vvx) 

= uVy + Uvy + vUy + Vuy 

= (uVy + Vuy) + (Uvy + vUy) 

= (uV + vU)y· 

Similarly, (uU - vV)y = -(uV + vU)x· 

Property 2: Let u and v be real and imaginary 

parts of a polynomial 

u + iv = anzn + an-1zn-l + • . • + a1z + ao 

where z = x + iy and ai is constant for all i. 

Then u and v are polynomials that satisfy the 

Cauchy-Riemann equations. 

It is clear that u + iv = x + iy satisfies the cauchy­

Riemann equations. Hence, (x + iy) (x + iy) = (x + iy)2, 

(x + iy)3, and consequently (x + iy)m satisfy the 

equations (by Property 1). Also, u + iv =a+ ib where a 



and b are constants satisfies the Cauchy-Riemann 

equations, and hence so does am(x + iy)m. And so by 

Property 1, the sum of such terms satisfies the Cauchy­

Riemann equations. 
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Next, suppose that u and v are the real and imaginary 

parts of a polynomial as in Property 2. Then we have 

Theorem 1: If 2f = u2 + v2 and m = ux2 + uy2, 

then fx2 + fy2 = m(u2 + v2) and fxx + fyy = 2m. 

If 2f = u2 + v2, then 

fx = UUx + VVx = UVy - VUy and 

fy = UUy + VVy = -UVx + VUx. 

Then fx2 + fy2 = {uvy- vuy)2 + (vux - uvx)2 

= m(u2 + u2). 

Now let's consider fxx and fyy· 

So 

fxx = {uvyx + vyux) - (vuyx + uyvx) and 

fyy = -(UVxy + VxUy) + (VUxy + UxVy)• 

fxx + fyy = 2vyux - 2VxUy 

= 2ux2 + 2uy2 

= 2m. 

Now we will look at Theorem 2. Theorem 2 contains 

the fundamental theorem of algebra as a.special case. 

so after proving theorem 2, we will have just one more 

step to finish our proof. 

Theorem 2: With f(x,y) as above, suppose 

f(O,O) = c and f(x,y) ~ c + 1 on the circle 

x2 + y2 = r2. Then f = o at some point inside 

this circle. 
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To prove this, define g(x,y) = f(x,y) - hx2 where h is a 

small positive constant. Then g{O,O} = c, and on the 

circle x2 + y2 = r2 

g(x,y) ~ c + 1 - hx2 ~ c + 1 - hr2 > c 

for sufficiently small h. 

Since g is continuous, it reaches an absolute minimum in 

x2 + y2 s r2. This minimum is not on the boundary since 

g(O,O) < g(x,y) for all (x,y) on x2 + y2 = r2. So the 

minimum is at an interior point. At the minimum, 

9x = fx - 2hx = 0 

9y = fy = 0 

and 

9xx = fxx - 2h ~ 0 

9yy = fyy = o. 

so m(u2 + v2) = fx2 + fy2 = (2hx)2 + o2 = 4h2x2 

and 2m = fxx + fyy ~ 2h + o = 2h. Dividing these two 

expressions gives us 

(u2 + v2)/2 ~ (4h2x2)/(2h) = 2hx2 ~ 2hr2, 

so (u2 + v2) ~ 4hr2. 

Since h is arbitrary, u2 + v2 cannot have a positive 

lower bound in the circle, and so u2 + v2 0 at some 

point in the circle. 

Now, the last step. Suppose 

u + iv = anzn t ... + a1z + ao where z = x + iy, 

an = o, and n ~ 1. Then we know that the Cauchy-Riemann 

equations hold and that 

lim u + iv = 1. 
z~oo anzh 
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Hence, for large z, lu + ivl >..!_, or 
lanznl 2 

lu + ivl > < 1 I 2 > I an I I z I n · So as x2 + y2 -> oo, 

u2 + v2 -> oo. Therefore, the hypothesis of Theorem 2 is 

satisfied if r is large enough, and so u + iv = 0 at 

some point inside the circle. The point (x,y) where u 

and v both vanish yields a complex number z = x + iy 

where the polynomial vanishes. Thus, the existence of a 

root is established. (Redheffer 582) 

An Elementary Proof 

This proof is from Principles of Mathematical 

Analysis by Walter Rudin. This proof uses the fact that 

if z is a complex number with lzl = 1, then there is a 

unique t € [0,2n) such that eit = z. 

Again, let p(z) = ao + a1z + . 

loss of generality, let an= 1. Let L = glblp(z) I· If 

lzl = r, then 

I P ( z) I ~ rn [ 1 - I an-11 - • • • - 1~1 ] · 
r r 

As r -> oo, the right side of the inequality tends to oo. 

Hence, there exists an ro such that IP(Z) I > L if 

lzl > ro. Since p(z) is continuous in and on the circle of 

radius r 0 with center o, then lp(zo) I = L for some zo, 

lzol s r. 

Now we want to show that L = o. Suppose not. Let 

q(z) = p(z + z~). 
p(zo 

Then q is a nonconstant polynomial, 

q(O} = 1 and lq(z) I ~ 1 for all z. There is a smallest 



integer k, 1 s k s n, such that 

q(z) = 1 + bkzk + ••• + bnzn, bk = o. 

By the fact above, there is a real t E [0,2") such that 

eiktbk =- lbkl· Then if r > o, 

lq(reit) I S 1- rk[lbkl - rlbk+11 - · • ·- rn-klbnll 

144 

For sufficiently small r, the expression in brackets is 

positive, hence lq(reit) I < 1, which is a contradiction. 

Thus, L = o, that is, p(zo) = o. (Rudin 170) 

A Precalculus Proof 

The following proof was published in the April 1981 

issue of the American Mathematical Monthly. The authors, 

J. L. Brenner and R. c. Lyndon remark: 

It is a truism that the [fundamental theorem of 

algebra) is not really a theorem of algebra but 

of analysis or topology. In the present note we 

present a proof that ought to be intelligible to 

a precalculus student. (253) 

Since no "big" theorems are used, the proof seems 

very long. The proof of the fundamental theorem of 

algebra requires one brief step after we have proved the 

following theorem. 

Let P(z) be a nonconstant polynomial with 

complex coefficients. Then there is a positive 

number s, depending only on P, with the 

following property: for every 6 > o there is a 
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complex number z such that lzl s S and 

jP(z) I < 6. 

The proof will use only the elementary algebra of the 

complex numbers and simple inequalities. What we will do 

is make a circle around the origin of a specific size. 

CAround the circle we will put an equilateral triangle. 

This triangle will be divided into a mesh of smaller 

triangles. We will show that if z and z' are vertices of 

a triangle that are "close", then their corresponding P{z) 

and P{z') values will be "close". Then we will show that 

if P(z) and P(z') are in opposite quadrants, then each of 

jP(z) I and IP(z') I will be less than jP(z') - P(z) I· 
Since P(z) and P(z') are "close", this will imply that 

jP(z) I is less than any arbitrary small positive number, 

from which we may conclude that P(z) = 0. 

" . Define P(z) =J~ajz) and suppose ao + o and an= 1. 

Let A= !lajl and R = 2A. (Note that A> 1.) 

First we will need to prove the following three 

inequalities. If lzl ~ R then 

1.) IP(z)j ~A 

2. > I P < z > - zn I s I zn I 12 

3.) jarg[P(z)] - arg[znJI S n/6 

where arg[w] denotes the principal value of 

the angle of w. 

so let's begin with the first inequality. 

I P(z) I 
n-1 • 

~ lznl - ~lajl lzJI 

~ lzn-1 1 <lzl - ~ lajl) 



= lzn-11 <lzl - (A - an)) 

~ Rn-1(R - A + 1) 

~ Rn-1(R - A) 

= Rn-1A 

~ A. 

Before we begin the next step we need to 

I z I ~ R so I z I ~ 2A and so I z I ~ 2A - 2. 

I P(z) - znl 
11-1 • 

s }~I aj I I z I J 

s j~:1 aj II z I n-1 

= (A - 1) lzln-1 

= (A - 1) lzl-1 1zln 

s lzln(A- 1)/(2A- 2) 

= !zln/2. 

For the last inequality, we will use the 

inequality and the following diagram. 

In the diagram, a= lznl and b = IP(z) I. 
c S IP(z) - znl 

S lzln/2 

= a/2. 

note that 

previous 

Let e = jarg(P(z)]- arg[zn]l. considers, a 

perpendicular to b drawn from the endpoint of b to a, 
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extended if necessary. Then tane = S/b 

~ C/b 

~ (~a) /b 

~ ~ (since I P(z) I ~ I zn I.) 
Thus ~ ~ 1Cf6. 

Now we need some notation. We ,say w lies in the kth 

quadrant (k = 1, 2, 3, or 4) when w = 0 and 

(k - 1)1f/2 ~ arg(w] < [k1f]/2. Let Q(w) = k if w lies in 

the kth quadrant. If z1 and z2 lie in opposite quadrants, 

then Q(z1) and Q(z2) differ by two. 

From the following diagram it is clear that if z1 and 

z2 lie in opposite quadrants then both lz11 and lz2l are 

less than or equal to lz2 - z11 • 

• 'iz. 

We need to show that 

If s > o, there exists a number K > o, depending 

only on sand P, such that whenever lz11, 

1z21 ~ s, we have !P(z2) - P(z1) I ~ Klz2- z1l· 

Explicitly, we may choose K =A • {max(1,S)}n. 

Suppose that S > 1. Then 
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P(z2) - P(z1) = I:aj(z 2 j - z1j) 
J'!IO 

= (z2 - z1)~a·l:z1hz2k 
,P.I J ..... J'"I 

So I p ( Z2) - P(z1) I :S lz2 - z111~lajiSj-1 

:S lz2 - z11snA 

Now we are ready to prove the theorem stated at the 

beginning. 

Let o be given such that 0 < 5' < 1. 

Choose an equilateral triangle T enclosing the 

circle lzl =Rand a numbers> 0 such that T is 

enclosed in the circle lzl = S. 

Let € = 5/K where K is as above. 

Let be the closed two-dimensional set inside T. 

Then if z1 and z2 are in and lz2 - z1l < €, 

= K • € 

= K • ( 5/K) 

= o. 

Now divide into congruent equilateral triangles 1 

by equidistant lines parallel to the sides of T. We 



will make the mesh small enough so that each triangle 

has sides of length no greater than e and so that if z 

and z' are adjacent vertices of the mesh lying on the 

sides ofT, then larg[z']- arg[zJI < "/(6n). 
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So if z and z• are vertices of the same small 

triangleAr, then lz' - zl < e and IP(z') - P(z) I < o. 

case I. Assume the two vertices z and z• are such that 

P(z) and P(z') lie in opposite quadrants. 

Then IP(z) I < IP{z') - P{z) I < o. 

Case II. Assume for a contradiction that none of the 

triangles ~r has two vertices z and z' such 

that P{z) and P{z') lie in opposite quadrants 

(and that there is no vertex z such that 

P(z)=O). 

Suppose that z and z• are two adjacent vertices of our 

mesh, so w = P{z) and w• = P(z') do not lie in opposite 

quadrants. Define d(w,w') = Q(w') - Q(w); then d(w,w') 

can take on only the values -1, o, and 1. The following 
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chart shows the values of d(W 1 W1 ) for wand w' in various 

quadrants. 

Q(w) 

d(w',w) 1 2 3 4 

1 0 -1 no 1 

Q(w') 2 1 0 -1 no 

3 no· 1 0 -1 

4 -1 no 1 0 

Let Z1 1 ••• 1 Zt be the vertices of the mesh that 

lie on the sides of T taken in counterclockwise order and 

let w· = J 

The sequence Q(z1n) 1 ••• 1 Q(ztn) runs through the 

cycle 1 1 2 1 3 1 4 exactly n times apart from repetitions. 

Let's stop to examine an example here. Suppose 

z = a + bi and n = 2. Then 

z2 = (a+ bi)2 = (a2 - b2) + 2abi. 

We want to know what the sequence of Q's looks like as 

z = a + bi goes through the various quadrants. We know 

that Q(z2) = 1 if a2 - b2 > 0 and ab > o. The shaded part 

of the diagram below indicates where z would have to be in 

order that Q(z2) = 1. Going around counterclockwise we 

find where z would have to be for Q(z2) = 2 and 3 and 4. 

Then the pattern repeats. So we see that 1 1 2 1 3 1 and 4 

each appear twice in the sequence of Q's. 
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The sequence Q(w1), • 1 Q(Wt) is almost the same 

as the previous sequence. The only difference is that 

certain subsequences of the form 

h1 ••• 1 h1 h'1 •.• 1 h' where hand h' are numbers 

representing adjacent quadrants are replaced by 

subsequences of the form h, h1 1 . 1 hm 1 h' where the 

hi'S are either h or h' for all i. This is true since we 

know jarg[P(z))- arg[znJI < ff/6. For example, a 

subsequence of the form 1 1 1 1 o 1 11 21 21 • • • 1 2 

might be replaced by 1 1 2 1 1 1 2 1 1 1 1 1 2, • 

Define D(~) = Ld(Wj+1 1Wj) summed over 

j = 1 1 . . • 1 t where Wt+1 = w1. 

D(6) = Ld(Wj+1 1Wj) 

= Ld(Zj+1n,zjn) 

= 4n. 

. . ' 1, 2. 

Let's go back to our example to check on this 

calculation. Recall Q(z12) 1 ..• 1 Q(zt2 ) was 

1, 2, 3, 4, 1, 2, 3, 4 {without repetition.) Thus D(~) 

would be 



D{A) =l:d{Zz+12,zj2) 

= {2 - 1) + {3 - 2) + (4 - 3) + (1 - 4) 

+ (2 - 1) + (3 - 2) + (4 - 3) + (1 - 4) 

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 = 4 • 2. 

(Refer to the chart to find these values.) 
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Let z1, z2, and z3 be the vertic~s of some triangle 

~T, taken in order counterclockwise. We have assumed 

that no two vertices of~r can be in opposite quadrants 

so Q(P(z1)), Q(P(z2)), and Q(P(z3)) can assume at most 

two adjacent values. Therefore 

D(~r) = d(w2, w1) + d{w3, w2) + d{w1, w3) = o. 

For example, ifLlr was such that Q{w1) = 1, 

Q(w2) = 1, and Q(w3) = 2, then 

D(~r) = (1 - 1) + (2 - 1) + (1 - 2) = o. 

It follows then that l:D ( ~ T) = o where the summation 

is over all the triangles in the mesh. 

Now we want to consider the relationship between 

D { Ll ) and l:D ( A r) . 

Let's look again at l:D(~r)· Suppose that two small 

triangles, ~a and As, are joined at the vertices z and 

z'. Then d(w' ,w) is in either D(~a) or D(Ll s), and 

d(w,w') is in the other. Now d(w',w) = -d(w,w'), so in 

the sum :ED (AT) all the interior vertices force similar 

pairs which cancel each other out. Thus l:D ( A T) depends 

only on the vertices on the edges of T. So 

l:D ( i3. r) = D ( A ) • 

But D ( A) = 4n and l:D { Ll T) = 0, so we have a 
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contradiction. Remember, we had assumed that no two 

vertices of a small triangle could lie in opposite 

quadrants and that there did not exist a vertex z such 

that P{z) = o. Since we have contradicted this, either 

there does exist a vertex z such that P(z) = o in which 

case we are done, or two vertices z and z' of a triangle 

~T lie in opposite quadrants, which is case I. We have 

proved the fundamental theorem of algebra. {253) 



CHAPTER VIII 

TOPOLOGY 

History 

Topology is concerned with those properties 

of geometric figures that remain invariant when 

the figures are bent, stretched, shrunk, or 

deformed in any way that does not create new 

points or £use existing points. The 

transformation presupposes, in other words, that 

there is a one-to-one correspondence between the 

points of the original figure and~the points of 

the transformed figure, and that th~ 

transformation carries nearby points into nearby 

points. (Kline 1158) 

Topology can be thought of as two separate and 

distinct areas: point-set topology and combinatorial or 

algebraic topology. Point-set topology is "concerned with 

geometrical figures regarded as collections of points with 

the entire collection often regarded as a space" (Kline 

1158). According to Kline, the origins of point-set 

topology can be traced back to Maurice Frechet•s doctoral 

dissertation of 1906. In this paper, Frechet treated 

functions as points of a space, a common practice in the 

154 



155 

study of the calculus of variations. He "launched the 

study of abstract spaces" and introduced the class of 

metric spaces (1159). 

The subject of point-set topology has "continued to 

be enormously active. It's relatively easy to introduce 

variations, specializations, and generalizations of the 

axiomatic bases for the various types of spaces" (Kline 

1162). 

Combinatorial topology, or analysis situs as it was 

first called, is the 

study of intrinsic qualitative aspects of 

spatial configurations that remain invariant 

under one-to-one transformations. It is often 

referred to popularly as rubber-sheet geometry, 

for deformations of, say, a balloon, without 

puncturing or tearing it, are instances of 
I 

topological transformations. (Boyer 652) 

In 1679, Leibniz, in his Characteristica Geometrica, tried 

to "formulate basic geometric properties of geometrical 

figures." He called this study analysis situs or 

geom~tria situs. One geometric property, known to Euler 

and even Descartes before him, was that for a closed 

convex polyhedron, V - E + F = 2, where V is the number of 

vertices, E the number of edges, and F the number of 

faces. Euler used the property to classify polyhedra 

(Kline 1163). 

The Koenigsberg bridge problem was solved in 1735 by 
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Euler. This is a problem "whose topological nature was 

later appreciated." In a river in Koenigsberg there exist 
-

two islands joined to the shore and each other by seven 

bridges. The townspeople amused themselves by trying to 

cross all seven bridges without recrossing any of them. 

Euler proved it was not possible by looking at a diagram 

of points and arcs. He also gave criteria to determine 

when such paths are possible for a given set of points and 

arcs (Kline 1163). 

In 1848 Johann B. Listing published Vorstudien zur 

Topologie or Introductory Studies in Topology. Listing 

was a professor of physics at Gottingen and formerly was a 

student of Gauss. Topology, to him, was the "geometry of 

position." In 1858 he began a series of topological 

investigations seeking qualitative laws for geometrical 

figures (Kline 1164). 

An assistant to Gauss, Augustus Ferdinand Mobius, is 

credited by Kline as being "the man who first formulated 

properly the nature of topological investigations" (Kline 

1164). Mobius was a native of Prussia. He was a 

professor of astronomy at Leipzig from 1825 until his 

death in 1868 (Cajori 289). He classified the various 

geometrical properties, projective, affine, similarity, 

and congruence, and in 1863 in his "Theorie der 

elementaren Verwandschaft" (Theory of Elementary 

Relationships), he "proposed studying the relationships 

between two figures whose points are in one-to-one 
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correspondence and such that neighboring points correspond 

to neighboring points" (Kline 1164). Mobius is best known 

for his discovery of a one-sided surface which is now 

known as the Mobius band or strip {Kline 1165). 

The conjecture that four colors will always be 

sufficient to color all maps so that countries with at 

least one common border will be colored differently is 

known as the four-color problem or the map problem. This 

was first conjectured by Francis Guthrie, a professor of 

mathematics, whose brother communicated the problem to 

DeMorgan. The map problem is also considered to be 

topological in nature {Kline 1166). In 1977, Dr. Kenneth 

Appel and Dr. Wolfgang Haken of the University of Illinois 

published a paper proving that four colors "were indeed 

enough. But the 100-page proof relied on extensive 

computer calculations ..•• Many mathematicians found the 

proof difficult to swallow" (Kolata 4E). 

Riemann's dissertation of 1851 on complex function 

theory also contained topological discussions. Riemann 

classified surfaces according to their connectivity, a 

topological property (Kline 1166). In 1882, Felix Klein 

introduced a two-dimensional closed figure now called the 

Klein bottle. This surface has "no edge, no inside, and 

no outside; it is one-sided and has a genus of one." 

Genus of one means that the bottle has one hole. The 

Klein bottle illustrates the complexity of figures that 

can be studied using topology {Kline 1168). 
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As a date for the beginning of the subject 

[of topology) none is more appropriate than 

1895, the year in which Poincare published his 

Analysis situs. This book for the first time 

provided a systematic development. (Boyer 652) 

Henri Poincare was born at Nancy in 1854. He graduated 

from !'Ecole Polytechnique with a degree in mining 

engineering. In 1879 he earned a doctorate in science at 

the University of Paris where he held professorships in 

mathematics and science until his death in 1912 {Boyer 

651). He wrote 

a vast number of research articles, texts, and 

popular articles, which concerned almost all the 

basic areas of mathematics and major areas of 

theoretical physics, electromagnetic theory, 

dynamics, fluid mechanics, and astronomy. {Kline 

1170) 

In his lectures at the Sorbonne he would lecture on 

different topics each year. The list of subjects included 

capillarity, elasticity, thermodynamics, optics, 

electricity, telegraphy, and cosmogony (Boyer 652). 

Poincare "decided that a systematic study of the 

analysis situs of general or n-dimensional figures was 

necessary." He published some notes in Comptes Rendus and 

articles in various journals (Kline 1170). 

Poincare, like Riemann, was especially adept at 

handling problems of a topological nature, such 
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as finding out the properties of a function 

without worrying about its formal representation 

in the classical sense. (Boyer 653) 

Boyer says "others regard [Luitzen E. J.] Brouwer as 

the founder of topology." He published, in 1911, theorems 

on topological invariance. With Brouwer's "fusion of the 

methods of Cantor with those of analysis situs", there 

began a period of "intensive evolution of topology that 

has continued to the present day" (Boyer 668). 

In 1913 Hermann Weyl lectured on Riemann surfaces at 

Gottingen. He "emphasized the abstract nature of a 

surface, or a two-dimensional manifold." In 1914, Felix 

Hausdorff, working on the same thing as Weyl, generalized 

the notion of a metric space. This led to a space having 

a neighborhood topology. In GrunzUge der Mengenlehre or 

Basic Features of Set Theory, Hausdorff gave a systematic 

exposition of set theory, where "the nature of elements is 

of no consequence; only the relations among the elements 

are important." The last half of the book was dedicated 

to the development of Hausdorff topological spaces from a 

set of axioms (Boyer 668). 

Topology has emerged in the twentieth century 

as a subject that unifies almost the whole of 

mathematics. . Because of its primitiveness, 

topology lies at the basis of a very large part 

of mathematics, providing it with unexpected 

cohesiveness. (Boyer 669) 
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Proof Using the Fundamental Group 

of a Circle 

The first topological proof we will consider is based 

on the notion of the fundamental group of the circle. 

This proof is from Topology: A First Course by James 

Munkres. 

We will need to define some terms, the first being 

path homotopy. 

We 

Two paths f and f 1 , mapping the interval I= (0,1] 

into X, are path homotopic if they have the same 

initial point xo and the same final point x1, and 

if there is a continuous map F: I X I -> X such 

that 

F(s,O) = f (s) and F(s,l) = f 1 ( s) 

F ( 0 It) = xo and F(l,t) = xl 

for each s e: I and each t e: I. F is a path 

homotopy between f and f 1 • 

should think of F as representing a continuous way of 

deforming the path f to the path f' in such a way that the 

endpoints of the path remain fixed during the deformation 

( 319) • 

We are interested in the unit circle, sl, which we 

consider as a subspace of R2 and we define as 

sl = {(x,y) lx2 + y2 = 1}. 

Since we are going to discuss a group, we need a 

group operation, *· Munkres says: 
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If f is a path in X from xo to x1, and g is a path 

in X from x1 to x2, the composition f * g is the 

path h defined by 

h(s) = r f{2s) 

l g (2s - 1) 

for s € [O,~] 

for s € [~,1] 

We should note that h maps the interval [0,1] to X and it 

is a path from xo to x2. We think of h as the path whose 

first half is the path f and whose second half is the path 

g {322). 

If bo is a point of s1, and we have a path in 

s1 that begins and ends at bo, that path is 

called a loop based at bo. The set of path 

homotopy classes of loops based at bo, with the 

operation *, is called the fundamental group of 

s1 relative to the base point b0 • It is denoted 

7T1 (s1,b0) {326). 

Next we would like to define a covering space. We 

need some intermediate definitions. 

Let p: R -> sl be the continuous onto map 

p(x) = (cos{27Tx),sin(27TX)). Any open subset U 

of s1 is.evenly covered by p if the inverse 

image p-1(u) can be written as the union of 

disjoint open sets Vn in R such that for each n, 

the restriction of p to Vn is a homeomorphism of_ 

Vn onto U (331). 

Recall the definition of homeomorphism: 
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Let X and Y be topological spaces. Let f: X -> 

Y be a bijection. If both the function f and 

the inverse function f-1: Y -> X are continuous, 

then f is called a homeomorphism (104). 

If every point b of s1 has a neighborhood U 

that is evenly covered by p, then p is called a 

covering map, and R is said to be a covering 

space of s1 (331). 

It's easiest to picture p as a function that wraps the 

real line R around s1 and maps each interval [n,n + 1] 

onto s1. In the following diagram' from Topology: A First 

Course, Munkres considers the subset U of s1 consisting of 

those points having positive first coordinates. Then the 

set p-1(u) consists of those points x for which cos(2nx) 

is positive; that is, it is the union of the intervals 

Vn = (n- 1/4,n + 1/4), for all n € z (332). 

-3 
I ) 

-'2. -1 
l\"'1 (I) 

,0 
( I 1 ( \ ) 

1. 

l I "\ 



If fn is a continuous mapping from I into s1, a 

lifting of fn is a map f from I to R such that 

p o f = fn· 

If fn is a loop in nl(sl,bo) defined by 
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fn(x) = (cos{2nnx),sin{2nnx)), then fn sends a point x0 in 

[0,1] to the point (cos(2nnxo),sin(2nnxo)) on s1 that can 

be arrived at by traveling n times around sl. The map fn 

can be lifted to f, the map from [0,1] toR defined by 

f(x) = nx. Clearly, p of = fn· 

We define a map h to be inessential if h is 

homotopic to a constant map. Otherwise, h is 

essential. 

This leads to a lemma that is important in our proof. It 

says: 

Let h: sl -> Y. Then the following are equivalent: 

1.) h is inessential 

2.) h can be extended to a continuous map 

g: s2 -> Y. 

The unit ball, s2 is defined by s2 = {(x,y) lx2 + y2 S 1}. 

The proof of this lemma may be found in Topology: A First 

Course on page 358. 



164 

We need one more definition before we can prove our 

theorem. 

Consider p: R -> s1 defined as above. If f is a 

loop on s1 based at bo, let f be the lifting of 

f to a path on R beginning at 0. The point f(1) 

must be a point of the set p-1(bo)i that is, 

f(1) must equal some integer n. Define 

~= ~1(s1,bo) -> z by letting ~(f) be this 

integer n. ~ is called the standard isomorphism 

of ~1 (s1,b0 ) (340). 

Now we are ready to prove the fundamental theorem of 

algebra. 

Step 1. 

A polynomial equation of degree n > o, 

xn + an-1xn-1 + ... + a1x + ao = o, 

with real or complex coefficients has at least 

one (real or complex) root. 

Consider the map h: s1 -> s1 given by h(z) = zn, z 

a complex number. Our first goal is to show that the 

induced homomorphism 

h*: ~1(s1,bo) -> ~1(s1,bo), 

defined by h*(f) = ho f, carries a generator of the 

fundamental group to n times itself., 

Let p: R -> s1 be p(s) = (cos(2ns),sin(2ns)) = e2nis. 

Then the image of p under h* is the loop 

h(p(s)) = (e2nis)n = e2nins = (cos(2nns),sin(2nns)}. 

We know this loop lifts to the path f(s) = ns in the 



covering space R. So the loop h o p corresponds to the 

integer n under the standard isomorphism of n1 (s1,bo). 

Step 2. Given a polynomial equation 

zn + an-1zn-1 + ••• + a1z + ao = o, 

assume 

lan-11 + • · • + la1l + laol < 1. · 

our goal is to show that the equation has a root lying 

in the unit ball B2o. 

Assume that it does not, that is, there is no root 

of the equation in B2. Then we can define a map 

g: B2 -> R2 - {0} by the equation 

g(z) = zn + an_1zn + o . o + a1z + ao. 
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Let f: s1 -> R2 - {0} be the restriction of g to s1o 

Because f is extendable to the map g of·a2 into R2- {0}, 

the map f is inessential by our lemma. 

But f is homotopic to the map k: s1 -> R2 - {0} 

defined by k(z) = zn. To see how, define the homotopy 

F: s1 X I -> R2 - {0} by 

F(z,t} is the required homotopy and F(z,t) never vanishes 

since 

~ 1- t(lan-1zn-11 + 

= 1- t(lan-11 + · 

> 0. 

• + ao) I 
+ I ao I> 

+ I ao I) 

Furthermore, the map k is essential. To see this note 

the map k equals the composite of the map h: s1 -> s1 of 



Step 1, given by h(z) = zn, and the inclusion map 

j: sl -> R2 - {0}. Since h* is "multiplication by n" 

and j* is an isomorphism, k* is not the zero 

homomorphism. So k must be essential. 
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Since f is homotopic to k, f must also be essential. 

This contradicts the fact we just proved, that f is 

inessential. Therefore, the polynomial equation has a 

root in B2. 

step 3. Given any polynomial equation 

xn + an-lxn-1 + ... + a1x + ao = o; 

choose a real number c > 0 and substitute x = cy. This 

gives 

(cy)n + an-1 (cy)n-1 + ... + a 1 (cy) + a 0 = o 

or 

yn + (an-1/c)yn-1 + ... + (a1fcn-l)y + (aofcn) = o. If 

this equation has the root y = Yo, then the original 

equation has the root xo = CYo· So we need to choose c 

large enough so that lan-1/cl + lan-2fc2 ! + ... + 

la1/cn-11 + lao/cnl < 1. Then this is the same as the 

special case that we considered in Step 2. Thus any 

polynomial equatio~ of degree n > 0 with real or complex 

coefficients has at least one (real or complex) root 

( 3 62) • 
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Theorem 
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The next topological proof is from the September 1949 

issue of The American Mathematical Monthly. This proof 

was written by B. H. Arnold. 

This proof is based on Brouwer's Fixed-point Theorem. 

If g: s2 -> B2 is continuous, then there exists 

a point x € B2 such that g{x) = x. 

For a proof, see Munkres• Topology: A First Course on page 

365. 

Now we will prove the fundamental theorem of 

algebra: 

If f{z) = zn + a 1zn-1 + ••• + an is a complex 

polynomial with leading coefficient unity, f(z} 

has at least one zero. 

To begin, set z = reie, 0 S e < 2n and 

R = 2 + I all + • . • + lanl • Define a function g(z) by 

g{z) 

=t: 
_ f(z}/(Rei(n-1)9r) for I z I s 1 

- f(z)/(Rzn-1) for I z I > 1. 

The function g(z) is well-defined and continuous for all 

values of z. Here's why: 

Each of the two expressions for g(z) is continuous 

throughout the range specified since neither denominator 

becomes zero, and for z = o, r = o, so i(n - 1)9r = 0 for 

all e. When lzl = 1, the two expressions are identical. 

For lzl s R, we have lg(z) I s R. Here's why: 



For I z I s 1, 

I gCz> I 

For 1 s I z I 
I gCz> I 

s I z I + lf(z}/RI 

s 1 + (1 + la1l + . . • + I ani} /R 

s 1 + 1 

s R. 

s R, 

s lz - ( Z/R) - [ ( a1 + • • 

s I {R - 1) (z/R) I + {I all 

S R- 1 + (R- 2)/R 

S R. 

. + anz1-n)/RJI 

+ • . • + I an I) /R 
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Now consider the correspondence z -> g(z). We have 

shown that this is a continuous transformation which maps 

the circle lzl s R into itself. Therefore, by Brouwer's 

fixed point theorem, there exists at least one value z0 

such that g(zo) = zo. This means, then, that f(zo) = o 

and so f(z) has at least one zero. (465) 



CHAPTER IX 

APPROXIMATION OF ROOTS 

Methods of Approximations of Roots 

The history of approximation methods of roots of 

equations may well begin with the Egyptians. Their Method 

of False Position starts with a first approximation to a 

root of an equation which is manipulated until the actual 

root is found. 

Historians mention a Chinese method of approximating 

roots of quadratic and higher degree equations used in the 

thirteenth century. More discussion on this method 

follows. 

Around the time of Vieta, other approximation methods 

began to appear in print. We will examine three methods: 

Horner's method, the Bisection Method, and Newton's 

Method, also called the Newton-Raphson Method. 

Horner's Method 

William George Horner was born in Bristol, England in 

1786. He was educated at Kingswood School near Bristol, 

and became headmaster at the age of eighteen. In 1809, he 

established his own school at Bath where he re~ained until 

his death in 1837 (Dictionary 510). 
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Horner never received university training and was 

"not a noted mathematician" (Smith, Source Book 232). His 

only "significant contribution to mathematics lay in the 

method of solving algebraic equations which still bears 

his name." Horner submitted a paper to the Royal Society 

which was read by Davies Gilbert in July of 1819. It was 

entitled "A New Method of Solving Numerical Equations of 

All Orders by Continuous Approximations." Published first 

in the Philosophical Transactions of 1819, and then later 

in Ladies' Diary (1838) and Mathematician (1843), Horner 

found influential sponsors in J.R. Young of 

Belfast and Augustus de Morgan, who gave 

extracts and accounts of the method in their own 

publications. Horner's method spread rapidly in 

England but was little used elsewhere in Europe. 

(Dictionary 510) 

Many English and American textbooks written in the 

nineteenth and early twentieth centuries that dealt with 

the theory of equations gave Horner's Method a prominent 

place. But with the increasing use of computers, Horner's 

Method has declined in importance, although some of his 

techniques can be found in courses on numerical analysis 

(Dictionary 510). 

Horner's Method closely resembles a method used by 

the Chinese of the thirteenth century to approximate roots 

of equations. In 1247, Ch'in Chiu-shao wrote the Su-shu 

Chiu-chang which translates as Nine Sections of 
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Mathematics. In this treatise, he explained the process 

of solving numerical equations of all degrees. 

Yoshio Mikami points out, in The Development of 

Mathematics in China and Japan, that although Genghis Khan 

terrorized the Asiatic countries at the beginning of the 

thirteenth century, mathematical progress was still made. 

He states "the dates of Ch'in•s birth as well as his death 

are utterly unknown. Nor know we much about the 

particulars of his life" (64). 

In Ch'in's work, eighty-one problems are found in 

nine sections {Mikami 65). Ch'in solves the problem 

-x4 + 76320ox2 - 40642560000 = 0 by a method that is 

similar to Horner's Method. The computations were 

"probably carried out on a computing board, divided into 

columns, and by the use of computing rods" {Cajori 74). 

These rods were called sangis and the Chinese could 

extract square and cube roots with the sangi-board. For a 

complete discussion of Ch'in's method, see Mikami's The 

Development of Mathematics in China and Japan, page 73. 

Another method similar to Horner's Method was 

discussed by Paolo Ruffini. The Italian scientific 

society offered a gold medal for improvements in the 

solutions of numerical equations. Ruffini was awarded the 

medal in 1804. Using calculus, he developed the theory of 

transforming one equation into another whose roots are 

diminished by a certain amount. His device "is simpler 

than Horner's scheme of 1819 and practically identical to 
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what is now known as Horner's procedure." However, 

Ruffini's paper was neglected and forgotten (Cajori 271). 

Smith says: 

The probablity is that neither Horner nor 

Ruffini knew of the work of the other and that 

neither was aware of the ancient Chinese method. 

Apparently Horner knew very little of any 

previous work in approximation, as he did not 

mention in his article the contributions of 

Vieta, Harriot, Oughtred, or Wallis. (Source 

Book 232) 

Horner's Method consists of synthetic division used 

to find a root of an algebraic equation, digit by digit. 

Horner stated in the introduction to "A New Method of 

Solving Numerical Equations of All Orders, by Continuous 

Approximations": 

The process which is the object of this Essay 

to establish, being nothing else than the 

leading theorem in the Calculus of Derivations, 

presented under a new aspect, may be regarded as 

a universal instrument of calculation, extending 

to the composition as well as analysis of 

functions of every kind. But it comes into most 

useful application in the numerical solutions of 

equations. (Smith, Source Book 233) 

Algebra, the classic textbook by G. Chrystal, first 

published in 1886, has a complete discussion of Horner's 
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Method. Chrystal gives a few preliminary results. 

Result 1: To deduce from the equation 

Poxn + P1xn-1 + • • • + Pn-1x + Pn = O (*) 

another equation each of whose roots is m times a 

corresponding root of (*). 

To do this, let x be any root of(*); and let o = mx. 

Then X= ofm. Hence, from(*), we have 

Po(o/m)n + P1(o/m)n-1 + .•• + Pn-1(6/m) + Pn = o. 

If we multiply by the constant mn, we deduce the 

equivalent equation 

Poon + P1mon-1 + ... + Pn-1mn-1o + Pnmn = o, 

which is the equation desired. 

Result 2: To deduce from the equation (*) 

another, each of whose roots is less by g than a 

corresponding root of (*). 

To do this, let x denote any root of(*), o the 

corresponding root of the required equation; so that 

o = x- a, and x = o +a. Then we deduce from(*), 

Po(o + a)n + ... + Pn-1(6 + a) + Pn = o. If we rearrange 

this equation according to powers of o, we get 

p 0on + q1on-1 + . . . + qn_1o + qn = o which is the 

equation desired. 

It is important to have a systematic process for 

calculating the coefficients of the above equation. 

Comparing this and(*), we find 

Poxn + P1xn-1 + · · · + Pn-1x + Pn 

= Po(x - a)n + ql(x - a)n-1 + . + qn-1(x - a) + qn· 
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The problem before us is to expand 

Poxn + P1xn-1 + • • • + Pn-1x + Pn in powers of 

(x- a). When this polynomial is divided by (x- a), qn 

is the remainder. If the integral quotient of the last 

division is divided by (x- a), the result is qn-1, and so 

on. The calculation of these remainders will be carried 

out by means of synthetic division. 

one last result is needed. 

Result 3: If one of the roots of the equation 

(*) be small then an approximate value of that 

root is -pn/Pn-1· 

This will give us approximate values to try in our 

synthetic division (Chrystal 338). 

To perform Horner's Method, we first determine, by 

examining the sign of f(x), an interval where a root is 

located. Then we diminish the roots by the value of the 

lower endpoint of the interval. 

Now, Chrystal says, "to avoid the trouble and 

possible confusion arising from decimal points, we 

multiply the roots of (this and every following] 

subsidiary equation by 10" (343). 

By Result 3, since the root we are now looking for is 

between 0 and 1, an approximate value of the root is 

-pn/Pn-1· So we calculate this which suggests the next 

digit of our root. We diminish the roots of f1(x) = 0 by 

this number. As long as'the constant term continues to 

have the same sign as f(O), we proceed to calculate the 
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digits in this manner, stopping when we have reached the 

desired accuracy. 

Let's look at the necessary calculations to find a 

root of x3 + x2 + x - 100 = o, accurate to three decimal 

places, by Horner's Method. 

If f(x) = x3 + x2 + x - 100, then f(4) < o and 

f(S) > 0. Thus, the first digit of our root is 4, and 

we must now diminish the roots of our equation by 4. 

1 1 

4 

5 

1 

20 

21 

4 36 

9 57 

4 

13 

-100 (4 

84 

-16 

Our new equation is x3 + 13x2 + 57x - 16 = o. Since we 

are now looking for a decimal root, we increase the value 

of the root by a factor of 10. our equation becomes 

x3 + 130x2 + 5700x - 16000 = 0. Calculating -pn/Pn-1, we 

find 16000/5700 = 2.8 •.. , so we try 2 as our next digit. 

1 130 

2 

132 

5700 

264 

5964 

2 268 

134 6232 

2 

136 

-16000 (2 

11928 

-4072 



Our new equation (after multiplying the roots by 10) is 

x3 + 136ox2 + 623200x - 4072000 = o. Calculating 

-pn/Pn-1 = 4072000/623200 = 6.5 •.. , so we now try 6. 

1 1360 623200 -4072000 (6 

6 

1366 

6 

1372 

6 

1378 

8196 

631396 

8232 

639628 

3788376 

-283624 
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Now we have x3 + 1378ox2 + 63962800x - 283624000 = o and 

283624000/63962800 = 4.4 ••• , so next we would try 4. If 

the last number in the right column is negative, then we 

will know that 4 is the next digit, and the root, 

accurate to three decimal places, is 4.264. 

The advantages of Horner's Method over other methods 

of root calculations, according to J.V. Uspensky in Theory 

of Equations, is that "the necessary calculations are 

arranged in a very convenient manner, and the root can be 

computed to a greater number of decimals for a given 

expenditure of labor" {157). 

The disadvantages are that this method applies only 

to algebraic equations and it is not an efficient method 

for a computer. For this last reason, Horner's Method is 

not usually found in up-to-date algebra or numerical 

analysis textbooks. 
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Here's how Horner's method would look in columnar 

form: 

1 1 1 -100 (4.264 

4 20 84 
.___ 

5 21 -16000 

4 36 11928 

9 5700 -4072000 

4 264 3788376 

130 5964 -283624000 

2 268 256071744 

132 623200 -27552256 

2 8196 

134 631396 

2 8232 

1360 63962800 

6 55136 

1366 64017936 

6 

1372 

6 

13780 

4 

13784 

The Bisection Method 

The bisection method is based on the Intermediate 

Value Theorem, a theorem from calculus. The Intermediate 
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Value Theorem states: 

Suppose f(x) is continuous on the closed 

interval (a,b] and f(a) = f(b). Then for any 

number k between f(a) and f(b), there exists c € 

(a,b) such that f(c) = k. 

So if we could find an interval [a,b] where f(a) < o 

and f(b) > o (or vice versa) then there is c € (a,b) such 

that f(c) = o. Horner's method used the Intermediate 

Value Theorem to find the first value. 

The continuity of the function is essential for the 

Intermediate Value Theorem to work. The concept of 

continuity was an important idea in the development of 

Calculus and Analysis. Priestly, in Calculus: An 

Historical Approach quotes Leibniz: 

Nothing happens all at once, and it is one of 

my great maxims, and among the most completely 

verified, that nature never makes leaps: which I 

called the Law of Continuity ..• (117) 

A precise formulation of the modern concept of 

continuity first appeared in a pamphlet published by 

Bolzano in 1817. In fact, in this pamphlet, "Purely 

analytical proof of the theorem, that between each two 

roots which guarantee an opposing result, at least one 

real root of the equation lies", Bolzano proves the 

Intermediate Value Theorem (Edwards 308). 

The proof of the Intermediate Value Theorem depends 



on the definition for the least upper bound of a set s, 

lub S: 
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If there exists a real number b such that x s b 

for all x f s, then s is bounded above and b is 

an upper bound of s. If B is an upper bound of 

S, but no number less than B is, then B is 

lub s. (Trench 5) 

Now to prove the Intermediate Value Theorem, suppose 

f(a) < k < f(b). The sets= {xla s x s band f(x) s k} 

is bounded and nonempty. Let B = lub s. If f(B) > k, 

then B > a and since f is continuous at B, there exists an 

f > o such that f(x) > k for B - f < x s B. Therefore 

B - f is an upper bound for s, which is a contradiction of 

the definition of B as the least upper bound. So now 

suppose f(B) < k. Then B < b and there exists an f > o 

such that f(x) < k for B s x < B - €. This implies B is 

not an upper bound for s, another contradiction. Thus 

f(B) = k. 

The other case, f(b) < k < f(a), works similarly. 

(Trench 67) 

Now with the Intermediate Value Theorem proved, we 

can consider the Bisection Method for calculating roots of 

equations. 

Suppose we have an equation f(x) = o, and f(a) and 

f(b) do not have the same sign. Calculate Pl =~(a+ b). 

If f(p 1 ) = o, we are done. If not, f(Pl) has the same 

sign as either f(a) or f(b). Suppose f(Pl) and f(b) have 
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the same sign. Then the root lies in the interval (a,p1). 

Now calculate P2 = ~(P1 +a), and continue in the same 

manner until reaching the root or an appropriate 

approximation. 

Let's look at the equation 8x2 - 17x + 2 = o, and 

calculate one root by the bisection method. We find 

f{O) > 0 and f(1) < 0 so we know a root lies in the 

interval {0,1). First we calculate P1 = ~{0 + 1) = ~-

Now f(~) < o, so we know the root lies in {0, ~). Next 

calculate P2 = ~(0 + ~) = 1/4. We find f(1/4) < o, so the 

root lies in {0,1/4). We find P3 = ~{0 + 1/4) = 1/8. We 

see that f{l/8) = o, thus the root we were looking for is 

1/8. 

This method is easily programmed even by beginners 

and it will always converge to a solution. But according 

to Richard Burden et al. in Numerical Analysis, it has 

"significant drawbacks. It is very slow in converging 

and, moreover, a good intermediate approximation may be 

inadvertantly discarded" {24). 

~ewton's Method or the 

Newton-Raphson Method 

Newton's Method for approximating the roots of an 

equation was first published in Principia Mathematica 

(Goldstine 64). In his Papers, Volume II, Newton said 

this procedure "is essentially an improved version of the 

procedure expounded by Vieta and simplified by Oughtred." 
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Vieta•s method first appeared in a work published in 

1600 on solving equations. Like Horner's Method, this 

procedure yields one digit of the root at a time. Suppose 

the equation is f(x) = N and the root is x = ao·lok + 

a1•1ok-1 + a2•1ok-2 + ..• , and let an approximation to 

that root be xp = ao·1ok + a 1 ·1ok-1 + .•. + ap•lok-p. To 

find the next digit ap+l, Vieta formed the auxiliary value 

gk(Xp) = f(xp + 1ok-p-1) - f(xp) - lo(k-p-1)n, where n is 

the degree of the equation. Vieta then divided this 

quantity into f(Xp) - N or perhaps [f(xp + lok-p-1) + 

f(xp)J/2- N, and the integer part of the result gave the 

next digit ap+lr and thus the next approximation, Xp+l 

(Goldstine 66). 

Goldstine, in A History of Numerical Analysis from 

the 16th through the 19th Century, remarks: 

In passing it is worth noting that this 

method was very useful and, until Newton 

replaced it by his own, was much employed. 

There are instances of its use by Harriet, 

Oughtred, and Wallis. In fact Oughtred made 

simplifications of Vieta's method in his Clavis 

Mathematicae from 1647 onwards. (66) 

Kline discusses Newton's Method. He says: 

In his De Analysi and Method of Fluxions, 

[Newton] gave a general method of approximating 

the roots of f(x) = 0, which was published in 

Wallis's Algebra of 1685. In his tract Analysis 
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Aeguationum Universalis (1690), Joseph Raphson 

{1648-1715) improved on this method; though he 

applied it only to polynomials, it is much more 

broadly useful. It is this modification that is 

now known as Newton's method or the Newton­

Raphson method. (381) 

To approximate roots of f(x) = 0 by the Newton­

Raphson Method, we will have to insist that f is 

continuous on [a,b) and differentiable on (a,b), where 

f(a) and f(b) have different signs. 

Estimate a zero, x = xo. We will assume that the 

tangent line to fat (x0 ,f(xo)) crosses the x-axis at 

about the same point where f(x) crosses the x-axis. See 

the following diagram. 

The equation of the tangent line is 

y- f(xo) = f'(xo) (x- x0) since f'(xo) is the slope of 



the tangent line to f at xo. Solving for y we find 

y = f'(xo) (x- xo) + f(xo>· on the x-axis y = o. This 

gives o = f'(xo) (x- xo) + f(xo)· Solving for x, we 

arrive at x = xo- f(xo)/f'(xo)· 
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The Newton-Raphson Method generates a sequence {Xn} 

defined by Xn = Xn-1- f(Xn-1)/f'(Xn-1>· This is a 

sequence of successive approximations of the root of f(x) 

(Larson et al. 234). 

Let's consider the equation 8x2 - 17x + 2 = o again, 

and let's approximate the root by the Newton-Raphson 

Method. We will use the following generating equation: 

Xn = Xn-1- [8Xn-12- 17Xn-1 + 2]/[16Xn-1- 17]. We know 

there exists a root near zero, so let xo = o. Then 

x 1 = 0 - [8•02 - 17•0 + 2]/[16•0 - 17] = 2/17. Then 

X2 = 2/17- [8•(2/17)2- 17(2/17) + 2)/[16(2/17) - 17] 

= 546/4369 ~ .1249713. 

After only two iterations, we are already very close to 

the root 1/8 = .125. 

The Newton-Raphson Method is easily programmed and 

will always converge to a root provided a "sufficiently 

accurate initial approximation is chosen" (Burden et al. 

38). Kline says: 

J. Raymond Mourraille showed in 1768 that [the 

first approximation] must be chosen so that the 

curve y = f(x) is convex toward the axis of x in 

the interval between [the approximation] and the 
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root. Much later Fourier discovered this fact 

independently. (381) 

Two disadvantages of the Newton-Raphson Method are 

that sometimes f'(x) is difficult to find and sometimes 

f'(x) = o, which leads to failure. 
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