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CHAPTER I

INTRODUCTION

The structure of many mathematical systems is much more compli­

cated than just being an algebraic system. Many times two or more 

algebraic systems are involved where the action between certain of 

the algebraic systems is very significant.

For example, a module over a ring has both an Abelian group and 

a ring involved with the action having to do with the scalar multi­

plication. In topological groups there is a similar situation; there 

is a group G, a topology on G, emd an action on the topological group 

having to do with the operations on G being continuous mappings with 

respect to the topology on G. We will not be concerned with this last 

situation but will restrict our discussion to where the systems involved 

are algebraic systems.

In fact, we will be interested in the case where there are only 

two algebraic systems involved. Such a system will be called a mixed 

algebra êuid will be studied in chapter II. There we will be concerned 

mainly with universal concepts, not with particular kinds of mixed 

algebras. It will be easy to see that the results contained there can 

be generalized to the case where more than just two algebraic systems 

are involved.



In 1966 Davis [10] first introduced the concept of an arena and 

studied some of its properties. An arena is a particular kind of 

mixed algebra. The concept of em arena was motivated by certain 

considerations in algebraic logic. In chapter III we will develop 

a theory of arenas which will be used in chapter IV to study some 

algebraic logic. We will look at several different kinds of arenas 

and several imbedding theorems for eurenas.

The concept of a free mixed algebra is introduced in chapter II 

and in chapter III we show that there do not exist free arenas in 

this sense. It would be interesting to consider under what conditions 

a free mixed algebra would exist. We do not undertake this question 

here, but do show that a negative solution holds in the case of arenas.

Henkin, Monk, and Tarski [16] along with Halmos [15] have contri­

buted much to the theory of algebraic logic. Their methods were some­

what different. Halmos uses the concept of a polyadic algebra whereas 

the others use the concept of a cylindric algebra. The arena concept 

gives a third approach to algebraic logic. It is quite different from 

the other two methods. In chapter IV we show, among other things, 

that certain mappings from a Boolean algebra into itself are quantifiers 

in the sense of Halmos.



CHAPTER II

A THEORY OF MIXED ALGEBRAS

In memy mathematical contexts situations arise where two alqebras 

of possibly different types are involved. For example, a vector space 

over a field has both an Abelian group and a field involved in which 

certain action, left and right scalar multiplication, hold satisfying 

certain prescribed conditions. Such a general system will be called 

a "mixed algebra". In this chapter we develop a beginning theory of 

such algebras.

Definition 2.1: By a mixed algebra we mean a system

= ( A, B, * 2 ) , where

(1) A and B are algebraic systems, not necessarily of the 

same type,

(2) : A X B + A : (a,b) -+ ab

* 2  *• B * A -► A : (b,a) -*■ ba

are mappings which satisfy a certain number of conditions.

The mappings and are called the action for the mixed algebra (SX.

Definition 2.2; Two mixed algebras ( A^, B^, * ^ 2 )

and ( Ag, 8 2 , *2 1 ' * 2 2  ̂ the same kind if A^ and are

algebras of the same kind «md B^ and B2 are algebras of the same kind.

He assume throughout this chapter that (2̂  ̂and @i^are mixed



alqebras of the same kind unless otherwise stated.

Example 2.3; Every module M over a rinq R is a mixed alaebra 

( M, R, , where

(1) M is an Abelian group,

(2) R is a ring,

(3) ; M X R M

* 2 : R X M M

are the right and left scalar multiplications defined on M 

satisfying the usual properties of a module.

Definition 2.4; A mixed algebra ^  = ( A', B', * )  is a 

mixed subalgebra of a mixed algebra (&.= ( A, B, ) if

(1) A' is a subalgebra of A,

(2) B' is a subalgebra of B,

(3) and = *
A' X B' B' X A'

Thus (Bl is a mixed subalgebra of ^  if is a subsystem of the 

mixed algebra ^  which is also a mixed algebra. The proofs for the 

next two results are similar to those which will be done later for 

arenas and consequently are omitted here.

Theorem 2.5; The intersection of any family of mixed aloebras 

^Dl^= ( A^, B^, * ^ 2 ) a mixed algebra = ( A, B, ) is

a mixed subalgebra of

Corollary 2.6; The family of all mixed subalgebras of a mixed 

algebra forms a complete lattice.

Given a mixed algebra ^  = { A, B, ) it follov;s that if

S is a nonempty subset of the algebra A and T is a nonempty subset of



the algebra B, then there exists a smallest mixed subalgebra 

(Hi = ( A', S', *^ ) of ^  so that S c A' and T r B'.

Definition 2.7; The mixed subalgebra of Qt is called the 

mixed subalgebra of (Qt generated by the subsets S and T.

Definition 2.8; Let ( A, B, ) be a mixed algebra.

By a mixed algebra congruence on we mean a pair ) so that

(1) is a congruence on A,

(2) « 2  is a congruence on B,

(3) if a aĵ and b then adj a^b^ and ba b^a^.

Theorem 2.9; Let @L = ( A, B, ) be a mixed algebra and let

( «1̂ ^, ) be congruences on @1. Then ( , ̂ **i2  ̂ ^ mixed

algebra congruence on Q l*

Proof ; Clearly is a congruence on A and ^ « ^ 2  i^ * congru­

ence on B. If p q and x Y ' then p g and x « ^ 2  V»

for all i. Since each ( ) is a congruence on then

px qy and xp yq, for all i. Thus px qy and

xp yq. Hence ) is a mixed algebra congruence

on ® . //

Corollary 2.10: The family of all mixed algebra congruences on

a mixed algebra &  forms a complete lattice.

A mapping from one mixed algebra into a second mixed algebra 

which preserves the action of the first mixed algebra and also preserves 

the structure of the algebras in the first mixed algebra will be called 

a mixed algebra homomorphism.

Definition 2.11; By a mixed algebra homomorphism from @1^to (ig 

we mean a pair (f,g) of mappings so that



(1 ) f is a homomorphism from to A^,

(2 ) q is a homomorphism from to B^,

(3) f(ab) = f(a)g(b), 

f (ba) = g(b)f (a),

for all a 6  A^, for all b €

Statement (3) written out explicitly would be 

f(*^^(a,b)) = *2 ^(f(a),q(b)) ,

= *2 2 (9(b) ,f(a)),

for all a € A^, for all b E B^. It simply states that (f,q) preserves

the action of the mixed algebra ^ . We write

(f,g) : (01.^ 0L.I 2
Definition 2.12; A mixed algebra homomorphism (f,g) is one-to-one

if both f and g are one-to-one. A mixed algebra homomorphism (f,g) is

onto if both f and g are onto. If (f,g) : a mixed algebra

homomorphism from 0 L̂ to which is one-to-one and onto, then (f,g)

is called a mixed algebra isomorphism and we say that and are
I 2

isomorphic mixed algebras and write

By a mixed algebra monomorphism we mean a mixed algebra homomorphism 

(f,g) so that (f,g) is one-to-one. A mixed algebra monomorphism is 

also called a mixed algebra imbedding. By a mixed algebra epimorphism 

we mean a mixed algebra homomorphism (f,g) so that (f,g) is onto.

'We now state a couple of trivial results for mixed algebras which 

have to do with mixed algebra homomorphisms.

Theorem 2.13; If (f,g) : ^ ^i^is a mixed algebra homomorphism,

then ( f(A^), g(B^), ) is a mixed subalgebra of where



and * 2 2 are the natural restrictions of *2 ^̂ and *2 2 ’ respectively.

Theorem 2.14: If (f,g) ; is a mixed algebra homomorphism

and @^2 = ( , B^, *^^, ) is a mixed subalgebra of then

( f ^(A^) f g ^(B^) , *^^, * ^ 2 ) rs a mixed subalgebra of where *̂ ^̂

and * ^ 2  are the natural restrictions of *̂ ^̂  and *-̂ 2 ' respectively.

Definition 2.15; If (f,g) ; ■* ®^and (h,k) ; ^k^are

mixed algebra homomorphisms, then by the composition of (f,g) and 

(h,k) we mean the mapping 

(hf ,kg) :

where hf and kg are the natural compositions.

Theorem 2.16: The composition of two mixed algebra homomorphisms

is a mixed algebra homomorphism.

Theorem 2.17: Let (f,g) ; ((ĝ be a mixed algebra homomor­

phism and define

X ( ) y if and only if f(x) = f(y) or g(x) = g(y).

Then ( s»̂  ) is a mixed algebra congruence on

Proof ; Clearly and are congruences on and , respect­

ively. Moreover, if a â  ̂and b bĵ , then f(a) = f(a^) and 

g(b) = g(b^). Thus

f(ab) = f(a)g(b)

V  = f(a^)g(b^)

= f(a^b^),

that is, ab a^b^. Similarly ba ^1*1* Hence ( ) is a

mixed algebra congruence on //

Definition 2.18: This congruence ) is called the mixed

algebra congruence on A  induced by the mixed algebra homomorphism (f,g)



Let ) be a congruence on the mixed algebra (tti and let

a = ^ x  € A : X alp, 

b = ^ y € B  :

for all a Ç A, for all b € B. Then the quotient algebras A/«^ and 

B/w^ are defined. We wish to construct a mixed algebra

( A/«^, B/«2r *1, *2 ) 
for some appropriate and Define

* 2 ' ^ ^ 2  

by *^(a,b) = âb,

*2 (b,a) = ba,

for all a 6  A/k^^, for all b € B/big. We roust show that and are 

well-defined. If a = a^ and b = b^, then a a^ and b Since

( «l» « 2   ̂ is a congruence on the mixed algebra , then ab a^b^

and ba b^a^, that is, ab = a^b^ and ba = b^a^. Hence and

are well-defined.

Theorem 2.19; ( A/sâ ,̂ B/sa^, ) is a mixed algebra of the

same kind as ( A, B, .

Proof ; Tedious but easy. //

Definition 2.20; This mixed algebra ( A/sâ ,̂ B/w^, ) is

called the quotient mixed algebra induced by the mixed algebra congru­

ence ( <̂2.' ̂ 2  ̂ denoted by ® / ( ***2 ' **2  ̂*
Theorem 2.21; (Fundamental Homomorphism Theorem) Let (f,g) be 

a homomorphism from the mixed algebra to the mixed algebra @^which 

is onto. Then

^ / (  «f' «g > «



where ( ) is the mixed algebra congruence on induced by the

mixed algebra homomorphism (f ,g).

Proof ; Define

(h,k) : ®k|/( 

by h(a) = f (a) , if a E

k(b) = g(b), if b G

We must show that (h,k) is well-defined. If a = a^, then f(a) = f(a^) 

so that h is well-defined. If b = b^, then g(b) = g(b^) so that k is 

well-defined. Thus (h,k) is well-defined. (h,k) is a mixed algebra 

homomorphism since

h(ab) = h(ab)

= f (ab)

= f(a)g(b)

= h(a)k(b) , 

and h(ba) = h(ba)

= f(ba)

= g(b)f (a)

= k(b)h(a) .

(h,k) is onto since both f and g Eire onto. If h(a) = h(a^) , then 

f(a) = f(a^) so that a = a^. Similarly, if k(b) = k(b^), then 

g(b) = g(b^) so that b = b^. The last two sentences show that (h,k) 

is one-to-one. Hence

«f' «g ) « //
We conclude this chapter with a discussion of a possible class 

of mixed algebras which we will call free mixed algebras. Throughout 

the remainder of this chapter we let G  be a class of mixed algebras
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of the same kind.

Definition 2.22; Let S and T be any sets. By a free mixed algebra

on (S ,T) with respect to the class we mean a mixed algebra

= ( A^, B^, ) together with a mapping (f,g) : (S,T) (8L

so that (1 ) (DT is a mixed algebra in

(2) If 0Lis any mixed algebra in G  and (h,k) is êmy mapping 

from (S,T) to then there is a unique mixed algebra 

homomorphism (m,n) : ^  + (^so that the following 

diagram is commutative.

(s,T) r?) ». o f

(h,k) / (m,n)

It may or may not happen that a free mixed algebra on (S,T) exists;

however, if one exists, then it is unique up to a mixed algebra isomor­

phism.

Theorem 2.23; If ^^and ĵ^etre free mixed algebras on (S,T)

with respect to the class G , then ^  ^ .

Proof ; Since (Ẑ îs free, then there exists a mapping

from (S,T) to satisfying condition <2) of definition 2.22. Similar­

ly, since ^  is free, then there exists a mapping (f«,g_) from (S,T)X . 2 ^

to dissatisfying condition (2) of definition 2.22. Since and (0^ 

are free mixed algebras, there exist unique mixed algebra homomorphisms 

(h^,k^) and (h2 ,k2 ) so that the following diagram is commutative.

(S,T)
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By the uniqueness requirement, we have

*1^2 ' V l  ‘

* 1̂ 2 - * 2̂ 1 '
where 1^ is the identity mapping on the algebra Y. Hence (ĥ r̂ĥ ) is 

a mixed algebra isomorphism and

//
If = ( A, B, * 2  ) is a free mixed algebra with respect to 

the class Q , then the freedom of ^  implies the freedom of A and B , 

but not conversely as we will see in the arena case.

Theorem 2.24; If ( A, B, ) is a free mixed algebra,

then A and B are free algebras of their respective kinds.

Proof: This follows immediately from definition 2.22. //



CHAPTER III

ARENAS

This chapter deals with a particular kind of mixed algebra called 

an arena. The basic definitions and terminology in the beginning of 

this chapter are due to Davis [10].

Definition 3.1; By an arena we mean a mixed algebra

€1= ( P, X, * 2 ) ' 

where (1) P is a lattice,

(2) X is a semigroup,

(3) : P % X ̂  P : (p,x) px,

* 2  : X X P ♦ P : (x,p) ♦ xp,

cire mappings so that

(a) p(xy) = (px)y and (xy)p = x(yp),

(b) P q implies px qx,

(c) p <_ (xp) X ,

(d) x(pAqx) = xpAq,

for all x,y € X, for all p,q € P.

The mappings and called the action of the arena ̂ .

We now give some examples of arenas.

Example 3.2; Let s be a compact Hausdorff space. If we take P 

to be the class of compact subspaces of S and X to be the class of all

12
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continuous mappings of S into itself, then ( P, X, * 2 ) is

an arena, where px and xp are the inverse and direct images of p under

X, respectively.

Example 3.3; Let S be any algebra. If we take P to be the class

of all subsystems of S and X to be the class of all endomorphisms of S ,

then ( D t =  { P, X, * 2 ) is an arena, where px eind xp are the inverse 

and direct images of p under x, respectively.

Example 3.4; Let S be a set. If P is a collection of subsets of 

S which forms a lattice and X is a collection of mappings from S into

S which forms a semigroup so that W  = ( P, X, ) is an arena,

where px and xp are the inverse and direct images of p under x, respect­

ively, then @ 1  is called a set arena.

For more examples, see Davis [10]. In this chapter we will be 

concerned with arenas where the lattice P is a Boolean algebra. Hence 

from now on we will always assume that given any arena^ the lattice 

P is a Boolean Algebra.

An alternate definition of an arena is given by the following 

theorem.

Theorem 3.5: (&= ( P, X, *^, ) is an arena if and only if

P is a Boolean algebra, X is a semigroup, and the mappings and 

satisfy the following conditions:

(1 ) p(xy) = (px)y and (xy)p = x(yp),

(2) P 5. q implies px <_ qx and xp xq,

(3) x(px) p 1  (xp)x,

(4) if p ^  xq, then p » xr, for some r q,

for all x,y Ç X, for all p,q € P.
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Proof ! Assume that 01= ( P, X, ) is an arena.

Clearly (1) holds. Let p ^ q. If xq r, then

P i q 
1  (xq)x 

± rx.

Thus p A rx = p. So

xp = x(pArx)

= xpAr.

Thus xp ^  r. Taking r = xq, we obtain xp ^  xq, and so (2) holds.

If xq p, then q ^  (xq)x ^  px. Thus x(px) and (3) holds.

Let p ̂  xq. Then xqAp » p. If r = qApx, then 

xr = x(qAPx)

= xqAp 

= P

and (4) holds. Conversely, if (1) - (4) hold, then we need only show 

that x(pAqx) = xpAq. Clearly x(pAqx) ^  xp and x(pAqx) ^x(qx) <^q, 

so that x(pAqx) <^xpAq. If r ^.xpAq» then r £  xp and r ^ q.

Since r ^ xp, then by (4) we have r = xs, where s ^  p. Since 

xs = r q, then we have 

s (xs)x 

< qx.

Thus s ^ PA qx and r = xs <^x(pAqx). Hence x(pAqx) = xpAq. // 

Theorem 3.6; If (R = ( P, X, *^, «g ) is an arena, then

(1) xO = 0, 0 = x(ox),

(2 ) Ix = 1, 1 = (xl)x,

(3) x(qx) = xl A 9 ,
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(4) x(lx) = xl, 

for all X C X, for all q € P.

Proof ; For any q € P we have 

xO ■ x(OAqx)

■ xO A q.

Thus xO » 0. Since x(px) ^  p, for all x € X, then x(Ox) = 0. Hence

(1) holds. Since xl ^ 1, then 1 (xl)x ^ Ix. Thus Ix = 1. Since

p ^ (xp)x, for all p € P, then 1 ̂  (xl)x. Hence 1 = (xl)x and (2) holds.

For all q 6  P we have x(lAqx) ■ xlAq, that is, x(qx) = xl/\ q and (3) 

holds. In particular for q = 1 we have 

x(lx) = xlA 1 

= xl.

This completes the proof of this theorem. //

Theorem 3.7; If &  = { P, X, *^ ) is an arena, then xp <_ q if 

and only if p qx.

Proof ! If xp ^ q, then p ^  (xp)x ^  qx. Thus p ̂  qx. Conversely,

if p qx, then xp ^  x(qx) ^  q. Thus xp q. //

Theorem 3.8: Let = ( P, X, ) be an arena. Then

x(pvq) “ xpyxq, 

for all p,q € P, for all x € X.

Proof ; Since p ^ PV 9  and q ^ py q, then xp <^x(pvq) and 

xq ^x(pvq). Thus xp\/xq ^  x(pyq). If xpyxq ^  r , then xp ^  r 

and xq ^  r. By theorem 3.7 we have p ^  rx and q ^  rx. Thus p y q <_ rx 

and x(py q) i x(rx) i  r. Taking r » xpyxq, we have x(pyq) ^xpVxq. 

Thus x(pyq) = xpyxq, for all p,q € P, for all x 6  X. //

We can actually prove a more general result than the previous
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theorem.

Theorem 3.9; Let @L= ( P, X, ) be an arena and let x € X.

Then the mapping p ♦  px preserves all infima and the operation p + xp

preserves all suprema.

Proof ; Assume that A  exists. Since Ap^ —  P j ' all j» then 

(Apj^)x 5 .PjX, for all j. If q f_PjX, for all j, then by theorem 3.7 

we have xq p^, for all j. Thus xq ^ APi* Again by theorem 3.7 we 

have q ^  (Ap^)x. Hence (AP^)x = A  (p̂ x̂). The second part of the

theorem can be shown by the dual argument of the first part. //

Corollary 3.10; Let ®L» ( P, X, *^ ) be an arena and £Pj^c P. 

If Ap^ exists, then (Ap^)x - A(p^x). If Vpj^ exists, then 

x( Vpĵ ) = V(xp^) .

Proof; Immediate from theorem 3.9. //

Theorem 3.11: If ( P, X, ) is an arena, x € X, and

p € P, then

xp = : p i q x j

and px o V  : xq 1  P$

Proof : We prove only the first half of the conclusion; the other

half can be demonstrated by a similar argument. First note that 

xp € ^q : p ^  qx ̂  . If r € ^q : p qx^ , then p rx. Thus 

xp <_ X (rx)

<_ r

and xp is a lower bound for the set ^q : p qxj . If r ^  g , for all

q € P so that p £qx, then r ^  xp, since p ^  (xp)x. Hence

xp = A  : P i q x j -  //

Corollary 3.12; in the context of theorem 3.11 given either or
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*2 # the other is uniquely determined.

Proof ; This is precisely the statement of the last theorem. //

One may expect that the action determined by and will

completely determine P and X, given one or the other. In some cases 

this may be the case, but in general it is not.

If there are enough Boolean algebra elements to distinguish 

elements of the semigroup, then the arena ®L= ( P, X, *^, * 2  ) is 

called operational.

Definition 3.13; By an operational arena we mean an arena

= ( P, X, *^, * 2 ) so that if xp » yp, for all p € P, implies that

X = y, for all x,y € X.

Let ®L= ( P, X, *^, * 2 ) be an arena and let x € X. Define a 

mapping : P + P  by 

T^(p) = xp, 

for all p 6  P.

Theorem 3.14: An arena d =  ( P, X, *^, * 2  ) is operational if

and only if = T^ implies x = y, for all x,y € X.

Proof ; Immediate from definition 3.13. //

In the non-operational arena case the action of the arena can be

very general indeed.

Excunple 3.15; Let P be any Boolean algebra and X be any semigroup. 

Define the action by

px = xp = p,

for all p 6  P, for all x € X. Then ( P, X, *^, * 2  ) is an arena

which is non-operational in the worst possible way, that is, the semi­

group does not act on the Boolean algebra.
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Theorem 3.16; An arena @L= ( P, X, ) is operational if

and only if px = py, for all p € P, implies x = y, for all x,y G X.

Proof ; Assume that ^  = ( P, X, ) is an operational arena

and let px = py, for all p € P. If q G P, then by theorem 3.11 we

have xq = A ^ P  : q 1  pxj

= A  {̂ p : q 1 pyj 
= yq-

since is operational and q G P is arbitrary, then x = y. The converse 

can be shown by a dual argument. //

In an operational arena ( P, X, ) we will see that the

number of elements in P and X are somewhat related.

Theorem 3.17: Let =* ( P, X, ) be an operational arena

so that P is a finite Boolean algebra with n elements. Then the semi­

group X has at most n" elements.

Proof ; If ^  is an operational arena, then for each x G X, there 

is a mapping : P P defined by 

T%(P) " xp,

for all p G P. By theorem 3.14 &  is operational if and only if

= Ty implies x = y, for all x,y € X. There are n" possible mappings 

of P into P, and hence only n*' possible mappings T^. Hence X has at 

most n" elements. //

Definition 3.18; An arena = ( P ', X ', *^, ) is a subarena

of the arena ®L* ( P, X, ) if

(1) P' is a Boolean subalgebra of P,

(2) X ’ is a subsemigroup of X,

(3) and - * .
P" X X' X' X p«
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Thus ^  I is a subarena of A  if, in terms of mixed algebras, 01̂  

is a mixed subalgebra of

Theorem 3.19; The intersection of any family of subarenas 

( P^f x^, * ^ 2 ) an arena (&= ( P, X, * 2 ) is an

arena if Ox^ ji 0 .

Proof ! Let ( P^, X^, * ^ 2  ) be subarenas of the arena

= ( P, X, * 2  ). Then

n  0 i^= ( rtPi» A x . , n a * ^ 2  )

is an arena, since AP^ is a Boolean subalgebra of P, A X^ is a

, andsubsemigroup of X, if Ax^ ^ , * « *il 1 p. X X. 
1 1

Corollary 3.20: If the family of all subarenas @^of an arena

@L is such that Ax̂  ̂^ ^ , then the family of all subarenas forms 

complete lattice.

Given an arena I0L= ( P, X, *g ) it follows that if S is a 

nonempty subset of the Boolean algebra P and T is a nonempty subset 

of the semigroup X , then there exists a smallest arena 

= ( P', X', ) so that S c P' and T c X'.

Definition 3.21: The subarena 0^ of A  is called the subarena

of 0^ generated by the subsets S and T.

Definition 3.22; By an arena congruence on the arena 

= ( P, X, * 2  ) we mean a mixed algebra congruence ^

on ex.

Theorem 3.23; Let 0X* ( P, X, ) be an arena and let

( « ^ 2  ) be congruences on Ql. Then (\^^2  ̂ ® congruence
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on m  .

Proof ; Clearly is a congruence on P and ® congru­

ence on X. If p q and x 7» then p;w^^ q and x V»

for all i. Since each ( ) is a congruence on @ l , then

px qy and xp yq, for all 1. Thus px qy and
xp yq. Hence 0 « ^ 2   ̂ arena congruence on 01. //

Corollary 3.24; The family of all arena congruences on an arena 

forms a complete lattice.

A mapping from one arena into a second arena which preserves the

action of the first arena and also preserves the structure of the

Boolean algebra and semigroup of the first arena will be called an

arena homomorphism.

Definition 3.25; By an arena homomorphism from an arena 

= ( P, X, * 2  ) into an arena Qk' = ( P', X', ) we mean

a pair (f,g) of mappings, where

(1) f : P ^ P' is a Boolean homomorphism,

(2) g : X -»-X' is a semigroup homomorphism,

(3) f(px) = f(p)g(x),

f (xp) = g(x)f (p) ,

for all p € P, for all x € X.

In the context of mixed algebras an arena homomorphism is simply 

a mixed algebra homomorphism for arenas. If (f,g) is an arena homo­

morphism from into , then we write

(f,g) : 0L-*- Ql‘
Definition 3.26; By am arena monomorphism we meam am aurena 

homomorphism (f,g) so that both f and g are one-to-one mappings. An
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arena monomorphism (f,g) is also called an imbedding. By an arena 

epimorphism we mean an arena homomorphism (f,g) so that both f and g 

are onto mappings. By an arena isomorphism we mean an arena homomor­

phism (f,g) so that both f and g are one-to-one and onto mappings.

If there is an arena isomorphism from C^^onto then we say that

and cure isomorphic and write

We now state some trivial results for arenas.

Theorem 3.27; If (f,g) : 0 1 ^ is an aurena homomorphism, 

then ( f(P^), g(X^), ) is a subarena of 01̂ ,̂ where *^^and

* 2 2 are the natural restrictions of and *2 2 » respectively.

Theorem 3.28: If (f,g) : (IJLj** is an arena homomorphism and

0 Lg= ( Pg' ^2 ' *2 1 ' * 2 2   ̂ ^ subarena of then

< ’''«j'' *il' ' Ù  >
is a subarena of where *j|̂  ̂and * ^ 2  are the natural restrictions

of *ĵĵ and *^2 , respectively.

Definition 3.29; If (f,g) ; (ttt̂curid (h,k) : (01̂ •> 01^are

arena homomorphisms, then by the ccmposition of (f,g) and (h,k) we mean

the mapping (hof,k«g) : @ 1  ̂+ where h*f and k«g are the natural

compositions.

Theorem 3.30; The composition of two arena homomorphisms is an 

arena homomorphism.

Let dDi,= ( P, X, *ĵ , * 2 ) be an arena and ( « 2  ) be an arena

congruence on Then and are well-known quotient structures.

We would like to define mappings *ĵ and so that ( P/w^, x/k*2 ' , *g )

is an arena. Define
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X X/ « 2  r

*2 ’’ P/^i'
by px = px,

xp = xp,

for all p 6  P/%^, for all x 6  X/y^. This construction gives precisely

the quotient mixed algebra in the case of arenas. As a conseguence of

the theory of mixed algebras we obtain the following result.

Theorem 3.31: ( P/», , X/w.,, is an arena. 1 2 1 2
Proof : This is a quotient mixed algebra in the particular case

of arenas. //

Definition 3.32 : This arena is called the quotient arena of

( P, X, *^, * 2 ) determined by the congruence  ̂ denoted

by l@L/( ««2 )-

Let (f ,g) : (2ILĵ  ®.^be an arena homomorphism from an arena

^ 1 “ ( ̂ 1 ' ^1 ' *1 1 ' * 1 2  ) onto the arena ( P^, X^, *^2  ̂'

Define ) on by

p g if and only if f(p) = f(q),

X  y if and only if g(x) = g(y) ,

for all p,q Ç P^, for all x,y € X.

Theorem 3.33: ( ) is an arena congruence on (kg.

Proof : This is a mixed algebra congruence in the particular case

of arenas. //

Definition 3.34; This congruence { ) is called the arena

congruence on induced by the arena homomorphism (f,g).

Theorem 3.35: (Fundamental Homomorphism Theorem) If and

are arenas and (f,g) 0 1 ^ is an arena homomorphism from 0 L|
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onto then

®,/( «g ) «

where ( «_, w ) is the congruence on 0 1 , induced by the arena f q •
homomorphism (f ,g).

Proof ; This is a corollary of the fundamental homomorphism

theorem for mixed algebras in the arena case. //

There are two natural types of arenas: those which are similar
to a set arena in which the join of two elements of the Boolean algebra

is given by set-union and those which eure not. The first kind of

arena is distributive in the sense that the inverse image of the join

of two elements is the join of the inverse images and the inverse image

of the zero element is itself.

Definition 3.36; By a distributive arena we mean an arena

®L = ( P, X, * 2 ) so that

(1 ) (pVq)x = px Vox,

(2) Ox = 0,

for all p,q € P, for all x € X.

At first glance there seems to be no properties of an arena which 

have anything to do with complements. We will show, however, that this 

is far from the case.

Theorem 3.37: Let Ck = ( P, X, ) be a distributive arena.

Then the following statements are equivalent:

(1 ) (px)' = p'x,

(2) (p Aq)x = px Aqx, 

for all p,q 6  P, for all x € X.

Proof; Assume that (px)' = p'x, for all p € P, for all x € X.
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Then (pA<7)x = (p'Vq')'x

= ((p'vq')x) '

= (p'x Vq'x) '

= (p'x) ' A (q'x) '

= p' 'xA q' X 

=> pxAqx,

for all p,q € P, for all x 6  X. Conversely, assume that 

(pAq)x = px A qx, for all p,q € P, for all x € X. Then 

pxvp'x = (p V/P')x 

= Ix 

= 1 ,
and pxAp'x = (pAP')x

= Ox 

= 0.
Hence (px)' = p'x, for all p € P, for all x € X. //

Theorem 3.38; Let = ( P , X , ) be a distributive

arena. Then (px)' = p'x, for all p € P, for all x € X.

Proof ; Let p € P and x € X. Since (pAq)x = pxAqx holds in 

every arena, then by theorem 3.37 the result is immediate. //

Theorem 3.39; Let = ( P, X, *^, ) be an arena so that

(px) ' = p'x, for all p € P, for all x € X. Then (&is a distributive

arena.

Proof ; Let p,q 6  P and x 6  X. Then 

(P Vq)x =» (p'A q')'x 

= ((p'Aq')x)' 

a (p'xA q'x) '
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= (q'x) 'V (o'x) '

= (px) ' ' V (qx) ' ’

= pxVax.

Also Ox = I'x

= (Ix) '

=  1'

= 0.

Hence Qtlis a distributive arena. //

Corollary 3.40: Let ®l = ( P, X, *,, *_ ) be an arena. Then @L---- ■"— —  '—  X 2

is a distributive arena if and onlv if (px) ' = o'x, for all n P , 

for all X Ç X.

This last corollary qives us an alternate definition for a distri­

butive arena.

Let (̂ )̂ = ( P, X, , *2^ be an arena and let x € X. Define a 

mapping : P *♦ p by 

R^(p) = px, 

for all p € P.

Theorem 3.41: If = ( P, X, ) is an arena and x € X,

then the mapping R^ is a lower semi-lattice homomorphism.

Proof : This is the statement of corollary 3.10. //

If ^  is a distributive arena, then much more can be said.

Theorem 3.42; If ^  = ( P, X, , *̂  ) is a distributive arena 

and X 6  X, then the mapping R^ is a Boolean algebra homomorphism from 

P into P.

Proof : Let p,q 6  P. Then by theorem 3,41 we have 

\(pAq) = R^(p) A Rjj(q) .
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Since vH. is a distributive arena, then 

Rjj(pvq) = (pvq)x 

= px Vqx 

= R^(p) VR^(q), 

and R^(p') = p'x

= (px)'

= (R^(P))'.

Hence is a Boolean algebra homomorphism from P into P. //

It is natural now to inquire whether or not the converse of 

theorem 3.42 is also true.

Theorem 3.43; If (&= ( P, X, ) is an arena so that the

mapping R^ is a Boolean algebra homomorphism for all x € X, then A  is

a distributive arena.

Proof ; If is a Boolean algebra homomorphism, then 

\ ( P ’) = (Rx(p))', 

for all p € P; that is, p'x = (px) ', for all x € X, for all p € P.

By theorem 3.39 we have ^  is a distributive arena. //

Corollary 3.44; Let Ck = ( P, X, *^, ) be an arena. Then 4R.

is a distributive arena if and only if R^ is a Boolean algebra homomor­

phism, for all X 6  X.

Combining corollary 3.40 and corollary 3.44 we have the following 

result.

Theorem 3.45; If = ( P, X, *^, «g ) is an arena, then the 

following statements are equivalent:

(1 ) (Otis a distributive arena,

(2) (px) ' = p'x, for all p Ç P, for all x € X,



27

(3) is a Boolean algebra homomorphism for all x € X.

Theorem 3.46: A subarena of a distributive arena is a distributive

arena.

Proof : Obvious. //

Theorem 3.47; The homomorphic image of a distributive arena is a 

distributive arena.

Proof ; Obvious. //

Theorem 3.48; If = ( P, X, ) is a distributive arena

and ( , « 2  ) is an arena congruence on Ô  , then the quotient arena

^/( , *«2 ) is a distributive arena.

Proof ; Let p,q Ç and x Ç Th^n

(p Vq)x = (p Vq)x

= (pVq)x

= px V qx 

= pxvqx 

= px V qx.

Hence Q,/1 ) is a distributive arena. //

Note that a subarena of an operational arena is not necessarily 

an operational arena.

Example 3.49; Let S = ^s,tj and (L= ( P, X, ) be the

set arena determined by S.

e a b c

P: X:

e a b c
a a c c
b a e c
c a a c
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The above diagram qives the Boolean algebra P and the operation table 

qives the semigroup X, where

- ( :  n -  : ) ■  - c  n -  - c  n

That A  is an operational arena is easily checked bv considering the 

following action table:

p ep ap bp cp
0 0 0 0 0

isj 1=3 (t3 It}
*4 it] Î sj 1=3 It}
s S ls\ s It} .

I ( ^1' *1' *11' *12 ^ determined by = ^0 ,sjThe subarena 

and = ^e,b^ is clearly not operational.

By corollary 3.10 we have

x (V p )̂ = V  (xp̂ ) ,
whenever \/ p^ exists and

(APj^)x = A(p^x) , 

whenever A  exists, where CP. We may inquire whether or not

(V p^)x = \/ (pux) 

or x (A p )̂ = A  (xPj, )

hold. The first condition seems very natural and is what motivates 

consideration of the following definition.

Definition 3.50: By a complete arena we mean an arena

&  = ( P, X, * 2 ) so that

(1) P is a complete Boolean algebra,

(2) If [p^\ C P and x 6  X, then (\/p^)x = |/(p^x).

We would like to characterize complete arenas. Without some



29

restrictions we will see that this is not easy.

Theorem 3.51: If ( P, X, *,, * ) is a distributive arena—  , ■ , — ——  1 2

where P is a complete Boolean algebra, then ^  is a complete arena.

Proof : Let C P and x 6  X. Then by theorem 3.38 we have

(VP ĵ )x = (((VPj^)x) ’) '

= ((VpJ ’X) '

= ((Ap^)x)’

= (/\(p!x))'

= (A(p.x) ') '

= ((V(p^x) )')'

= V  (p̂ x) .

Hence A  is a complete arena. //

The converse of theorem 3.51 is not true unless Ox = 0, for 

all X 6 X.

Theorem 3.52: If lA= ( P, X, ) is a complete arena and

Ox = 0, for all x € X, then ^  is a distributive arena.

Proof ! Obvious. //

Example 3.53; Let ft ■ ( P, X, ) be the arena where

P = £o,l^ , X = {xj , emd the structure of ft is given by the 

following action table:

1 I XI p xp px
0 0 1

1 0 1P: 0 X:

Then (St is a complete arena which is not distributive, since Ox ^ 0. 

Corollary 3.54: If ft = ( P, X, *^ ) is an arena so that

Ox = 0, for all x 6  X, and P is a complete Boolean algebra, then is
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a complete arena if and only if (Qlis a distributive arena.

Proof ; Immediate from theorem 3.51 and theorem 3.52. //

For some reasons, which will become clear, it is desirable for the 

semigroup of an arena to contain ein identity; therefore, we will show 

that every arena can be imbedded in an arena whose semigroup contains 

an identity.

Let ( X , * ) be a semigroup and X^ denote the semigroup 

( X U , *' ), where

X *' y = X * y,

X * '  e = e *' X = X,

e * ' e = e,

for ail x,y G X. This is the usual imbedding of a semigroup X in a 

semigroup X® with identity e.

Let ^  = ( P, X, *^, * 2 ) be an arena. We would like to make

( P, X®, *®, *^2 ) into an arena (Ê , where *® and *® are some appropri­

ate mappings which extend and * respectively. Define
e e: P X X -*• P

by *®(p,x) = px,

*®(p,e) = p,

for all p 6  P, for all x 6  X. Also define
6  G *2 : X X p + p

by *2 x̂,p) = xp,

*2 (e,p) = p, 

for all p 6  P, for all x € X.

Theorem 3.55; ^  = ( P, X®, *®, *® ) is an arena with A  being

subarena of &  .
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Proof ; Let x Ç X and p Ç P. Then

(xe)p = xp = x{ep),

(ex)p = xp = e(xp),

(ee)p = ep = e(ep).

Thus (xy)p = x(yp) , for all x,y 6  X®, for all p 6  P. Similarly, 

p(xy) = (px)y, for all x,y € X®, for all p Ç P. If p ^ q, then 

pe qe. Thus p < q implies px £ qx, for all x Ç X®. Since e = (ep)e, 

then X ^ (xp)x, for all x € X°, for all p € P. Since 

e(pAqe) = e(pAq)

= PAq 
= epAq,

for all p,q € P , then x(pAqx) = xpAq, for all p,q 6  P, for all x € X®.

Hence ^  = ( P, X , , *® ) is an arena. Clearly (2k is a subarena

of //

Corollary 3.56: Every arena 01= ( P, X, ) can be imbedded

in an arena = { P, X®, *®, *® ), where X® is a semigroup with 

identity e.

As a consequence of this corollary we may always assume, if 

necessary, that the semigroup X of an arena = ( P, X, ) has

an identity e such that pe = ep = p, for all p 6  P.

We next consider the idea of a simple arena and the interplay 

between the simplicity of the arena and the simplicity of its Boolean

algebra and semigroup. Since an arena 0^= ( P, X, ) can always

be imbedded in an arena 0L = ( P, X®, *®, *® ) above, we will 

assume throughout this portion on simple arenas that the semigroup of 

every arena has an identity e and that pe = ep = p, for all p.
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Let (DL= ( P, X, * 2 ) be an arena and let 6 ^ and denote the 

equality relations on P and X, respectively. Similarly, let Ap and 

denote the all relations on P and X, respectively. Then ( Ap, A^ ),

( Ap, ) , ( Ap, Ay ), eind ( A^, A^ ) are possible congruences on the

arena @ 1 .

Theorem 3.57; If » ( P, X, *^ ) is an arena, then ( Ap, A^ ), 

( Ap, A^ ), and ( Ap, Â  ̂) are arena congruences on 0 ..

Proof ; It is immediate. //

As the next example shows it is not the case that ( &p, A^ ) is 

always a congruence on 0 .

Example 3.58; Consider the arena (&= ( P, X, * 2 ) given below;

1
P  ̂
P: 0

u
u
u

Note that (1,1) € Ap and (e,u) € A^, but (el,ul) = (l,p) g Ap. Thus 

( Ap, Aĵ  ) is not a congruence on the arena

The following definition now seems very natural in view of 

theorem 3.57 emd example 3.58.

Definition 3.59; The three congruences ( Ap' )'  ̂

and ( Ap, A^ ) are called the trivial congruences on the arena 0 1 .

Definition 3.60; By a simple arena we mean an arena which has 

only the trivial congruences.

Recall that am algebra is simple if it has only the two trivial 

algebra congruences. In the case of semigroups a warning should be 

given. There aure two common definitions of a simple semigroup. A
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simple semigroup in the sense of Clifford and Preston is not the same 

as a simple semigroup in the sense which we are using. Our definition 

is the universal algebraic definition. It is well-known that the only 

simple Boolean algebra is the two element Boolean algebra.

If P is a simple Boolean algebra and X is a simple semigroup, 

then there are just four possible congruences on the corresponding 

arena @1, namely the three trivial congruences and ( A^, ). The

next example will at first seem surprising.

Example 3.61; Consider the arena » ( P, X, ) below:

1 e u p ep up pe pu

I e e u 0 0 0 0 0

P: 0 X: u u u 1 1 1 1 1

Note that ( Ap' ) is a congruence on for if (P,P) € Ap and

(x,y) € A^, then

(px,py) = (p,p) 6  Ap 

and (xp,yp) - (p,p) € Ap.

This last example shows that if P is a simple Boolean algebra and 

X is a simple semigroup, then the corresponding arena ^  need not be 

a simple arena.

Note that this last example also shows given any Boolean algebra P 

and any semigroup X how to construct an arena QL having P and X as the 

Boolean algebra and semigroup, respectively. That is, if p € P and 

X € X, then define

px » xp » p.

This gives am arena which essentially disregards the semigroup com­

pletely. It is clear that this type of arena is of little use.
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Definition 3.62; An arena Qt defined as above is called a null 

arena.

We use the term null arena to suggest that there is no action 

in the arena determined by the semigroup. We would now like to 

examine the simple arenas. As a first result we obtain the following 

theorem.

Theorem 3.63; If (&= ( P, X, *2 » ) is not a null arena such

that P is a simple Boolean algebra and X is a simple semigroup, then 

<01 is a simple arena.

Proof ; We need only show that ( Ap, A^ ) is not an arena congru­

ence. Since is not a null arena, then px ^ p or xp ^ p, for some

p 6  P, for some x Ç X. For simplicity let us assume that px ^ p, for 

some p € P, for some x 6  X. The other possibility would be done in a 

similar manner. ( ^p, A^ ) is not an arena congruence since (p,p) 6

and (x,e) € A^, where e is the identity of X, but 

(px,pe) = (px,p) g Ap, 

since px f p. Hence (&is a simple arena. //

The natural question now is whether or not the converse of this 

last theorem is true.

Theorem 3.64: If = ( P, X, *^, ) is an arena where X is not

a simple semigroup, then is not a simple arena.

Proof ; If X is not a simple semigroup, then let R be a non-trivial

congruence on X. It then easily follows that ( Ap, R ) is a non-trivial

congruence on @L. Hence is not a simple arena. //

It remains in doubt whether P not being a simple Boolean algebra

implies that 0 1  is not a simple arena.
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Example 3.65; Consider the arena (Dcgiven below.

O '
e V
V eP: 0 X;

Clearly the semigroup X is simple but the Boolean algebra P is not 
simple. It is easily checked that the non-trivial congruences on P are 

Rl = Ap U |_(p,0), (0,p), (p',1), (l.P')j 
and R2 = Ap U ^(p,l) , (l,p), (p',0 ), (0 ,p’)J .

Hence the possible non-trivial congruences on are ( Ap, ) ,

( «1 * Aĵ  ), { R^, A% ), ( *2 ' ( Rg, Ay ). We consider each

of these five possibilities:

(1 ) (p,p) € Ap and (e,v) € A^ but (pe,pv) = (p,p') g Ap.

(2 ) (0 ,p) € R^ and (v,v) € A^ but (Ov,pv) = (0 ,p') g Rĵ .

(3) (0,p) € Rĵ and (v,v) g A^ but (Ov,pv) = (0,p') g Rĵ .

(4) (0,p') 6  Rg and (v,v) € A^ but (ov,p'v) * <0,p) g R^.

(5) (0,p') g Rg and (v,v) g A^ but (Ov,p'v) = (0,p) g Rg.

Thus 01 contains no non-trivial congruences and hence (A is a simple

= ( P, X, *g ) with P not a simple

arena.

Thus given an arena 

Boolean algebra emd with X a simple semigroup, it may well be the case 
that ^  is still a simple arena.

Definition 3.66: Let ( P^, X^, *^g ) be a family of

arenas. Consider the system ( p, x, *g ), where

(1) P » T T p^ is the direct product of the Boolean algebras P^,

(2) X = TTx^ is the direct product of the semigroups X̂ ,̂
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(3) *2 * the mappings ; P x x •* P
and * 2  : X x p -► p defined by 

*l(p,%) “ (P̂ x^),
*2 (x,p) = (x\p^),

for all p = (pu) € P, for all x « (xu) € X.
We denote this system by TT @1̂ .
Theorem 3.67; TT is an arena.
Proof; Obvious. //
Definition 3.68: This arena TT Aj; is called the direct product

of the arenas .
We will now consider a particular type of direct product of 

arenas. Let = ( P, X, * 2  ) be an arena. Then X^ is a semigroup
Xunder the natural pointwise operations and P is a Boolean algebra

under the natural pointwise operations. Then
0L* . ( P*, X*, •*, ‘I ) 

is an arena, the direct product of the arena QL with itself as many 
tiwes as there are elements in the semigroup X. We consider conditions 
under which the aurena can be imbedded in the aurena Define

(f,g) : <01 01^
by f(p) = Bp,

g(x) « S^,
for all p € P, for all x 6 X, where : X ■* P and : X ♦ X  aure 
defined by

Bp(y) “ py,
Sjj(y) - xy,

for all y € X. If (f ,g) is an arena homomorphism, then
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(a) f(pVq) »f(p)Vf(q),

(b) f(p') - (f(p))',

(c) g(xz) = g(x)g(z),

(d) f(px) » f(p)g(x),

(e) f(xp) « g(x)f(p),

for all p,q € P, for all x,z 6  X. If (&is a distributive arena, 

then the mapping (f,g) satisfies conditions (a) - (d), since

(a) f ( p V q ) - B p ^ ^

= B V Bp q
= f (p) V f (q) r

(b) f(p') - Bp.

- (Bp) '

» (f(p))',

(c) g(xz) ■

" V z
- g(x)g(z),

(d) f (px) » B

= B S P X
« f (p)g(x),

for all p,q € P, for all x,z 6  X. That B^ ̂  ̂  = B^y B^ follows since

Bp^q(y) “ (pyq)y 

= pyvqy

= Bp(y)V Bq(y)

= (B ys )(y),p q
for all y S X. That B^, = (B̂ ) ' follows since 

Bp,(y) = p'y
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- (py)'
= (Bp (y))'

“ (Bp)'(y),

for all y € X. That follows since

S^gXy) “ (xz)y 

■ x(zy)

= Sjj(Sj,(y)),
for all y € X. That B S = B follows sinceP X px

(BpS^I(y) . Bp(S,(y,l 

= Bp(xy)

" p(xy)

= (px) y

-Bp^(y),

for all y € X. It is not the case that (e) holds in general; for if 

it did, then

f(xp) . B ^

- Vp
= g(x)f (p).

But B ■ S B does not always hold. If B » S B , then xp X p xp X p
(xp)y = B^p(y)

- (S^Bp)(y)

« S^(Bp(y))

= S^(py)

= x(py),

for all y € X, euid conversely. The following theorem has just been 

established.
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Theorem 3.69; If = ( P, X, ) is a distributive arena so
that (xp)y = x(py) , for all p 6 P, for all x,y € X, then the mapping 
(f,g) : defined above is an arena homomorphism.

It may be useful to note that 

f<PAq) " Bp

» f (p) A f (q),
since B (y) « (pAq)y PAq

“ py A qy
» B (y) AB (y)

“ < V  '
for all y € X. Under what conditions will the mapping (f,g) be an
arena imbedding?

Definition 3.70; By a P-operational arena we meam an arena
01 = { P, X, * 2  ) so that if px « qx, for all x 6 X, then p = q.

A P-operational arena is simply an arena &  = ( P, X, )
whose Boolean algebra is P and p has enough elements to distinguish
the elements of the semigroup X.

Theorem 3.71; If QL" ( P, X, ) is a P-operational arena,
then the mapping (f ,g) defined above is one-to-one.

Proof: If f(p) - f(q), then B_ ■ B_. Thus B (y) » B_(y), for  P q P q
all y 6 X. That is, py ■ qy, for all y € X. Since (Lis a P-operational 
aurena, then p » q and hence f is one-to-one. Also if g(x) » g(y), then

X " xe
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- Sy(e)

* ye

■ y.
Thus g is a one-to-one mapping. Hence (f,g) is a one-to-one mapping
of ^  into //

Corollary 3.72; If = ( P, X, is a distributive
P-operational arena so that (xp)y = x(py), for all p € P, for all x,y € X,
then the mapping (f,g) defined above is an arena imbedding.

Proof ; Combine the results of theorem 3.69 and theorem 3.71. //
We consider next a possible collection of arenas which we will

call free arenas.
Definition 3.73; Let S and T be sets. By a free arena on (S,T)

F _F P Pwe mean an arena = ( P , X , ) together with a mapping
(f ,g) : (S,T) -*■ so that if is any arena and (h,k) is any mapping
from (S,T) to then there is a unique arena homomorphism (m,n) from

to ^  so that the following diagram is commutative.

(S,T) -Jlz22--

(h,k) (m,n)
/

/

'9:

Thus a free arena on (S,T) is a free mixed algebra on (S,T) in the 
case of arenas. As an immediate consequence of this definition we can 
obtain the following theorem.

Theorem 3.74; If OiT" ( P^, X^, ) is a free arena on (S,T) ,
F Pthen P is a free Boolean algebra on S and X is a free semigroup on T.
This concept of freedom contains most others. Consider the case of 

free R-̂ nodules. We take the mixed algebras to be of the form
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( M, P., ) , where M is an Abelian group, P is a (fixed) ring, and

and * 2 are the right and left scalar multiplications. If wo define 

an R-fixed homomorphism to be a mixed algebra homomorphism where the 

second mapping is restricted to be the identity mapping on the ring R 

and then define an R-free mixed algebra in the obvious manner, then an 

R-free mixed algebra is precisely a free R-module in the usual sense.

Theorem 3.75; There does not exist a free operational arena 

(QL = ( P, X, * 2  ) so that P is a finite Boolean algebra.

Proof ; If (D)l = ( P, X, * 2  ) is a free operational arena with 

P a finite Boolean algebra, then X must be finite by theorem 3.17.

It is well known that every free semigroup is infinite. Hence (& can

not be free after all. //
_ p F FIf ^  is a free arena on (S,T), then by theorem 3.74 P and X

are determined. The action is all that remains to be found. However,

it may be, as the next example shows, that no action is definable so

as to have a free arena.

Excimple 3.76; Consider the arena (R = ( P, X, *̂ , * 2  ), where P
is the free Boolean algebra generated by a single element p and X is

the free semigroup generated by a single element a. Then P is the

four element Boolean algebra and X is a copy of the natural numbers.

Let S = ^x,y% , P^ = 2^, and X^ = S^, where and * ^ 2  are the usual

action. Let

e.r n , r  i, .= r r 'y
\x y/ \x xJ \y y) \y xj

Then the operation table for X^ is given below.
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e u w V

e e u w V

u u u w w
w w u w u
V V u w e

Clearly (Hljis an arena. We wish to show that it is impossible for 0, 

to be a free arena. Assume otherwise. Define ) -

by

k̂ (a) = V.

If is free, then

h^(pa) = h^(p)k^(a)

Thisis implies that pa = p*. Define (ĥ  rk̂ ) : ( JpJ, JaJ ) 0. by
hg(p) = 

kg(a) = u.

If is free, then

hg(pa) = hg(p)k2 (a)

= {x} u 

= £x,y} .

But this implies that pa = 1. Hence we have a contradiction unless 

is not free.

The same eurgument as in this last example shows that there do 

not exist any free arenas.

Theorem 3.77; There do not exist any free arenas.



CHAPTER IV

ALGEBRAIC LOGIC VIA ARENAS

Now that we have established a theory of arenas we will consider 

algebraic logic by using this theory. Halmos [14] began a study of 

algebraic logic in the early fifties amd about the same time Tarski 

and Thompson [18] were considering algebraic logic via cylindric algebras. 

Their points of view differ mainly in that Halmos's system doesn't have 

an equality relation whereas Tarski amd Thompson's system does.

We will be concerned mainly with Halmos's formulization of algebraic 

logic. For sake of completeness we now give his definition of a quanti­

fier in the monadic case.

Definition 4.1; Let P be a Boolean algebra. A mapping 3 : P -*■ P 

is a H-quantifier on P if

(1) 3 o  = 0,

(2) P 1 3 p »

(3) 3  (pa3o) = 3PA3q»
for all p,q € P.

Let C&= ( P, X, * 2  ) be an arena and let x € X. Define a

mapping 3 ; P •> P by

3 jjP = (xp)x,

for all p € P. We shall prove several theorems about this general

43
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setting.
Theorem 4.2; If p ^ q, then <_ g^q.
Proof ! Let p q. Then xp <_ xq and (xp)x (xq)x. That is,

3 ^  1  //

Theorem 4.3; If q ^ 3^p, then 3^q 5^.
Proof ; Let q ̂  3^p. Then q ft = q.

SO xq = x(q ft 3^)
= x(q ft(xp)x)
= xqftxp.

Thus xq <_ xp and (xq)x (xp)x. Hence 3^q ̂  3^p. //
Definition 4.4; By a closure operator on a Boolean algebra P we

mean a mapping C : P P so that
(1) CO = 0,

(2) p<Cp,
(3) CCp = Cp,
(4) C(pvq) = CpvCq, 

for all p,q 6 P.
Theorem 4.5; If ( P, X, ) is a distributive arena and

X € X, then 3^ is a closure operator on P.

Proof; (1) 3jj0 “ (xO)x 
= Ox 
= 0,

by theorem 3.6 êtnd definition 3.36.

(2) p <_ 3jjP» all P € Pf by the definition of an arena.
(3) By (2) above we have p 3^p. By theorem 4.2 we have 

3 ^  ^ 3jjP* On the other hand, if q 3 ^ ,  then by theorem 4.3



45

we have 3^q 1. 3 ^  In particular, for q • 3^p, we obtain

3 x 3 x P ' 3 x P -
(4) 3jj(pVq) ■ (x(pVq))x 

= (xpyxq)x 
“ (xp) X V (xq) X

“ 3x'"'3x'’'
by theorem 3.8 and definition 3.36. Hence 3^ is a closure operator 
on the Boolean algebra P. //

We can even say more about the mapping 3^ when ^  is a distribu­
tive arena.

Theorem 4.6; If C0L" ( P, X, ) is a distributive arena
and X € X, then 3 ̂ is a H-quantifier on P.

Proof ; We need only show that

3^ipa 3̂ 9) - 3 ^  A 3*9
for all p,q € P. Let p,q 6 P. Then

3^(pA3^q) - (x(p A(xq)x))x 
= (xpAxq)x 
= (xp)x A (xq)x

- 3*pa3*9.
Hence 3^ is a H-quantifier on P. //

Theorem 4.7; If r 6 3^P, then (xr)x ■ r.
Proof; Since r <_ (xr)x, we need only show that (xr)x <_r. Since

r € 3^P, then r = (xp)x, for some p € P. Thus 
(xr)x = (x((xp)x))x

- 3 x V

- 3 x P



46

«  ( x p ) x  

« r.
Hence (xr)x * r. //

Corollary 4.8; r € if and only if (xr)x * r.
Theorem 4.9: If ( P, X, *̂  ) is any arena, then 3^1 = 1.
Proof ! Obvious. //
Theorem 4.10; If C&= ( P, X, *̂ , *^ ) is a distributive arena

and X € X, then 3^( 3 ^ )  ' = ( 3̂ ) ', for all p € P.
Proof; Since 3^p /\ ( 3ĵ p) ' “ 0, then x ( ( 3^p) ' A (xp) x) = xO.

Thus x(3jjP)'Axp = 0 and (x( 3^p) ' Axp)x = 0, since the arena A  is
distributive. Thus (x(3^P) ')x A(xp)x = 0, that is, we have 
3jj<3jjP) ' A ̂ p  = 0. Thus 3^( 3^) • ^ (3^) ' • By theorem 4.5 we 
have ( 3^p) ' 1  ' • Hence 3^(3^p) ' » ( 3^p) '. //

Theorem 4.11; If 4^- ( P, X, ) is a distributive arena,
then the range 3^P of the quantifier 9^ is a Boolean subalgebra of P.

Proof; Clearly 0 € 3^P and 1 € 3!̂ P. If p,q 6 3^P, then 
P - 3jjP and q = 3^q. So

PAS = 3 jjPA 3x9
=  ( x p )  X A  ( x q )  X 

= ( x p A x q ) x  

=  ( x ( p  A ( x q ) x ) ) x  

=  ( x ( p A q ) ) x

= 3^(P A9)'
This shows that p a q  € 3x^* Hy theorem 4.10 we have 

P' » ( 3jjP) '
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This shows that p' 6 ^ P. Hence 3^P is a Boolean subalgebra of the 
Boolean algebra P. //
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