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Free Vibrations of Multilayer
Anisotropic Cylindrical Shells

C. W. BERT J. L. BAKER D. M. EGLE

School of Aerospace and Mechanical Engineering
University of Oklahoma, Norman, Oklahoma 73069

(Received May 10, 1969)

A theoretical analysis is presented for determining the free vibra-
tional characteristics of thin-walled, circular cylindrical shells with
layers of anisotropic elastic material arbitrarily laminated either sym-
metrically or unsymmetrically about the shell middle surface. An
arbitrarily laminated, anisotropic version of Love’s first-approximation
shell theory is used to formulate the coupled equations of motion. An
exact solution with a classical checkerboard nodal pattern is found for
the case of a shell with specially orthotropic layers arbitrarily laminated
and with freely supported ends. For a boron/epoxy composite cylinder,
the significant effect of omitting bending-stretching coupling is
demonstrated and various lamination arrangements are investigated.
Also, a general solution is presented for the axisymmetric modes of
an arbitrarily laminated anisotropic shell. Finally, an approximate
solution, using a combination of two helical-nodal-pattern modes, is
obtained for the unsymmetric modes of the same general class of shell
with a supported boundary condition.

INTRODUCTION

LAMINATED FILAMENTARY composite materials are becoming of rapidly-~ increasing importance in aerospace and hydrospace applications.
The cylindrical shell configuration is widely used in launch-vehicle struc-
tures, reentry vehicles, aircraft fuselages, and hulls of submersibles. Thus,
there is considerable current interest in the vibrational characteristics
of cylindrical shells constructed of laminated filamentary composite
materials.

A single layer of a filamentary composite material behaves macro-
scopically as if it were a homogeneous orthotropic material, i.e. one
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having three mutually perpendicular planes of material symmetry. If the
material-symmetry axes are lined up with the shell-surface principal
coordinates (i.e. the axial and circumferential directions), the shell is
said to be specially orthotropic. Since cylindrical shells with closely
spaced ring and/or stringer stiffeners also can be approximated by con-
sidering them to be specially orthotropic, a number of analyses have
been carried out for such shells, for example [1,2].

If the material-symmetry axes are not lined up with the shell principal
coordinates, the shell is said to be anisotropic (or generally orthotropic).
This induces coupling between the membrane and in-surface shear effects
and between bending and twisting effects. Since there is no structural
advantage, or even requirement, for shells constructed in this way,
apparently it has not been subjected to analysis.

When a shell is constructed of more than one isotropic layer with each
layer having different elastic properties and the layers arranged sym-
metrically with respect to the shell middle surface, the governing equa-
tions are identical to those of a single-layer isotropic shell [3]. However,
if the isotropic~layers are arranged unsymmetrically with respect to the
shell middle surface, there is coupling between in-surface (stretching
and/or shear) and out-of-plane (bending and/or twisting) effects. This is
called bending-stretching coupling and it is greatest for two-layer shells
[4] such as those used in reentry-vehicle heat shields.

For a shell constructed of multiple orthotropic layers, with the layers
aligned either axially or circumferentially and arranged symmetrically
with respect to the shell middle surface, the equations are the same as
those for a single-layer specially orthotropic shell [5]. If the specially
orthotropic layers are arranged unsymmetrically, bending-stretching
coupling is induced. Such shells were considered in [5] but only approxi-
mately in terms of an equivalent single-layer specially orthotropic shell.
Using a Donnell-type shell theory, Dong [7] considered arbitrarily lami-
nated, specially orthotropic cylindrical shells of finite length.

The most general case of laminated shells is that of arbitrarily lami-
nated anisotropic layers, i.e. multiple orthotropic layers arbitrarily
oriented and arbitrarily arranged. Kunukkasseril [8] analyzed simple
helical-mode extensional vibrations for an infinitely long shell of this type.
Also an approximate inextensional solution was obtained for a finite-
length shell. The present analysis is believed to be the first to consider
general vibrational modes of finite-length shells with arbitrarily laminated
anisotropic layers.

HYPOTHESES

The following hypotheses form the bases for the analysis:
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HI. Displacements are small compared to the shell thickness, so that
the strain-displacement relations may be assumed to be linear.

H2. The Kirchhoff hypothesis is applicable, i.e. line elements normal
to the middle surface before deformation remain straight, normal to the
deformed middle surface, and unchanged in length after deformation.

H3. The ratio of the shell thickness to the radius of the middle surface
is small as compared with unity, i.e. Love’s first-approximation shell
theory [9] is used.

H4. All components of translational inertia are included, but all com-
ponents of rotatory inertia, as well as all dissipative effects, are neglected.

H5. Each individual layer is considered to behave macroscopically as
a homogeneous, anisotropic, linearly elastic material.

H6. Each layer may be of arbitrary thickness (within the limitation of
H3), properties, and may be arranged either symmetrically or unsym-
metrically with respect to the middle surface.

H7. The layers are assumed to be bonded together with a perfect bond
(massless, infinitesimal thickness, no relative deformation at the inter-
face).

Hypotheses H 1-H4 are the bases for small-displacement, thin elastic
shell dynamics. It is emphasized that the simplifying assumptions of the
Donnell type [10] are not used, although the more exact strain-displace-
ment expressions of the Love second-approximation [9] or Flugge exact
theory [11] are not employed either. Hypothesis H4 is consistent with
the neglect of transverse shear flexibility (H2).

FORMULATION OF EQUATIONS OF MOTION

The differential equations of motion are formulated in terms of the
three middle-surface displacement components u, v, w.

In view of hypotheses H1-H3, the linear equations relating the middle-
surface strain components to the displacements are as follows:

where a subscript comma denotes differentiation with respect to the varia-
ble following the comma. The curvature components are related to the
displacements by the following linear equations:

The total strains at an arbitrary distance z from the middle surface are:
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In view of H3, H5, and H6, each individual layer is assumed to be in
a state of generalized plane stress governed by the two-dimensional
Hooke’s law:

In the general anisotropic case, the Q,, matrix is fully populated.
Using Love’s first-approximation shell theory, the stress resultants and

stress couples are defined as follows:

Putting (4) into (5) yields the following constitutive relations for the
composite shell:

where the stretching, bending-stretching coupling, and bending stiff-
ness submatrices are defined as follows:

For a shell laminated symmetrically with respect to the middle surface,
the bending-stretching submatrix Bu vanishes.

Considering H4, Newton’s second law can be applied to a differential
element of the shell to obtain the following three equations of transla-
tional motion and two equations of rotational equilibrium:

Equations (11) and (12) can be used to eliminate the transverse shear
resultants from equations (9) and (10) with the following results:

Substituting equations (6) into motion equations (8), (13), and (14)
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yields the following set of coupled equations in terms of the displacements
U, v, w:

where

Equations (15) can be written in abbreviated linear differential operator
form as follows:

where
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Using the procedure originated by Batdorf [ 12] in 1947, being careful
not to take any derivatives, equations (17) can be combined into the fol-
lowing single integrodifferential equation:

where L,-’ denotes the integral operator which is the inverse of differ-
ential operator Li.

As discussed in a very recent paper by Batdorf [13], an integrodiffer-
ential equation of the above type cannot be differentiated to convert it to a
differential equation without risking the introduction of unwanted solu-
tions. If equation (19) is escalated in this manner, the following differential
is obtained.

Equation (20) can be obtained also by setting the determinant of the
operator matrix in equation (17) equal to zero. Equation (20) agrees with
the result obtained by Nikulin [14] by another method. However, the
definitions of the operators L, used here for the laminated anisotropic
case are considerably more complicated than in the homogeneous iso-
tropic case considered by Nikulin.

In principle, an exact solution of the problem could be obtained by
assuming a solution in the following form:

where Wk, Àk, ~6~? and Cù are constants. This would lead to a characteristic
equation in the form of an eighth-order polynomial in Àk as a function of
/3n and w. For homogeneous, isotropic cylindrical shells, such a method of
solution was suggested by Flfgge in 1934 [11] and carried out by Forsberg
[15] for the isotropic case and by Dong [7] for the laminated specially
orthotropic case. For these cases, only even partial derivatives appear and
the roots of the characteristic equations are of the form:

where a, b, c, d are real quantities. However, in the laminated anisotropic
case considered here, not only do various odd partial derivatives appear,
but also the algebra is highly complicated.

EXACT SOLUTION FOR LAMINATED
SPECIALLY ORTHOTROPIC SHELL

WITH BOTH ENDS FREELY SUPPORTED

One of the boundary conditions treated most often in the literature is
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Figure 1. Checkerboard nodal patterns.

Table 1. Comparisons Among Theoretical and Experimental Resonant Frequencies (cps) for a
Homogeneous, Isotropic Cylinder with Freely Supported Ends
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that of simple support without axial restraint (often called freely sup-
ported) :

It can be shown that for a shell with these boundary conditions at
each end, the following set of functions satisfy both the differential
equations (17) and the boundary conditions, thus constituting an exact
solution:

where a&dquo;z = n17r/L, {3 = n/R. The modal shape represented by the ex-
pression for w in (23) is often referred to as a checkerboard type, since it
has nodes consisting of axial and circumferential lines forming a checker-
board pattern (see Figure 1).

Since no published results of vibrational experiments on unsymmetri-
cally laminated specially orthotropic cylindrical shells are known to the
authors, a complete check on the analysis by comparison with experi-
mental data could not be made. Furthermore, it takes painstaking care
in the experimental setup to achieve physically the freely supported
boundary condition. The present analysis was applied to the case of a
homogeneous isotropic cylinder investigated experimentally by Egle
and Bray [16] and theoretically using an exact Fliigge type solution due
to Egle and Soder [17]. The agreement among all three results was quite
good as shown in Table 1. This not only verifies the applicability of the
Love first-approximation shell theory used in the present paper, but also
it serves as a check on the algebra and programming.

Although the end conditions used in the experiments of Weingarten
[3] were those of an elastic support, he carried out a series of calculations
for a homogeneous, isotropic cylinder with freely supported ends. His
analysis utilized Donnell’s shell theory. The results of his calculations
are compared with those of the present analysis, which uses Love’s first-
approximation theory, as shown in Table 2. The good agreement at higher
circumferential wave numbers indicates that in this region, the more
approximate Donnell theory is probably adequate.

Weingarten also showed that laminated shells consisting of isotropic
layers all having the same Poisson’s ratio are mechanically equivalent to
a homogeneous, isotropic shell. The results of his Donnell-theory analysis
of a symmetrically laminated, three-layer shell, using this equivalent
homogeneous shell hypothesis, are listed in Table 3, along with the results
of the present analysis. It is seen that the differences between the two
analyses are even less than those for the homogeneous shell of Table 2.
This corroborates the equivalent shell hypothesis.
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Table 2. Comparison Between Resonant Frequencies Calculated by Donnell and Love First-Approxi-
mation Shell Theories for a Homogeneous, Isotropic Cylinder with Freely Supported Ends

Using a Donnell-type shell theory, Dong [7] carried out frequency
calculations for a two-layer cylinder with freely supported ends. The
elastic coefficients, Qi;, when converted to the usual engineering moduli,
are as follows:

1 nner Layer Outer Layer
Major Young’s modulus, psi 29.3 X 106 9.87 X 106
Minor Young’s modulus, psi 29.3 X 106 5.50 X 106

Major Poisson’s ratio 0.333 0.565
Shear modulus, psi 13.2 X 106 2.51 X 106

Density p 0.5p
Layer orientation Axial or Circumferential Circumferential
Layer thickness, in. 0.20 0.20
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Table 3. Comparison Between Resonant Frequencies Calculated in [3] and the Present Analysis
for a Three-Layer, Isotropic Cylinder with Freely Supported Ends

It is noted that both layers are orthotropic. Dong intended the
inner layer to be isotropic. However, although the major and minor
Young’s moduli of the inner layer are equal, its shear modulus is not

1 / [2 (1 + Poisson’s ratio) ] times the Young’s modulus and thus it is not
orthotropic.

Only relative values, rather than numerical values, were given for the
layer densities, since the frequency results were presented in dimen-
sionless form, normalized by the lowest extensional ring frequency
given by:

The shell dimensions used were: h = 0.4 in., L = 200 in., R = 10 in.
It is noted that since the example used by Dong was a two-layered one,

bending-stretching coupling was present. Figure 2 presents curves de-
picting natural frequencies associated with four different axial half-wave
numbers as a function of circumferential wave number, as determined by
Dong’s Donnell-type analysis as well as the present analysis using Love’s
first-approximation theory.
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Figure 2. Dimensionless frequency versus
circumferential wave number for a two-

layer specially-orthotropic cylinder as

computed by Dong and the present
analysis.

The bending-stretching coupling effect is greatest for the case of two
layers cross plied of a highly orthotropic material. It is noted that the
materials used in Dong’s example are not as highly orthotropic as

boron/epoxy which is of considerable interest in airframe applications.
Therefore, a two-layer, cross-ply cylinder having the following properties,
typical of boron/epoxy [18] was studied:
Major Young’s modulus, 31.0 X 106 psi Major Poisson’s ratio, 0.28
Minor Young’s modulus, 2.7 X 106 psi Shear modulus, 0.75 X 106 psi

Density, 192 X 10-6 lb-seC2/in4
The shell dimensions used were: h = 0.02 in., L = 31.5 in., R = 2.481 in.

The results are shown by the solid lines in Figure 3 as a function of
circumferential wave number n. For comparison, the dashed lines denote
the frequencies calculated by omitting the bending-stretching terms
(i.e., by setting Bu = 0). It can be seen that the effect of omitting the
coupling was negligible in the lower-n modes; however, at higher values
of n, omission of coupling resulted in erroneous frequencies appreciably
higher than the correct values obtained by including coupling.

For design guidance, a series of calculations was made to study the
effects of various three-ply, specially orthotropic, lamination arrangements
of boron/epoxy on the lowest frequency. The parameters are the same as
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Figure 3. Effect of bending-stretching
coupling (BZ~ terms) on natural frequencies
for a two-layer, cross-ply boron/epoxy
cylinder.

the two-ply cylinder mentioned above, except here h = 0.03 in. The
results are presented in Figure 4. It is noted that the natural frequencies
for one axial and two circumferential plies nearly coincide with those for
the all-circumferential case, except at n = 1 and 2. Similarly the fre-
quencies for one circumferential and two axial plies are reasonably close
to those for the all-axial case. Since the case of one axial and two circum-
ferential plies would be appropriate (nominally according to netting
theory) for a long cylinder pressurized internally, it is fortunate that this
case has reasonably high natural frequencies.

EXACT SOLUTION FOR LAMINATED ANISOTROPIC SHELL
UNDERGOING AXISYMMETRIC MOTION

For a shell undergoing axisymmetric motion, the tangential displace-
ment v is identically zero and the axial and normal displacements are
independent of tangential position. Then equations (17) can be reduced to
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Figure 4. Effect of lamination arrange-
ment on the natural frequencies (m = 1)
for a three-layer, cross-ply boron/epoxy
cylinder.

the following form:

where

It is noted that the coefficients Cl and C2 contain elastic coefficients with
subscripts 16 and 26 not present in the corresponding coefficients for
orthotropic or isotropic materials. The explanation for this is that although
there are no shear strains produced by the axisymmetric displacement,
the normal strains produced by axisymmetric motion induce shear stresses
as a result of anisotropic cross-elasticity effects.

The solution of equation (25) can be expressed as follows:
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APPROXIMATE SOLUTION FOR LAMINATED ANISOTROPIC
SHELL UNDERGOING UNSYMMETRIC MOTION

As mentioned before, it is not feasible to expand and solve the charac-
teristic equation in the general anisotropic case. Another approach to
obtain an approximate solution is to assume a simplified functional form
which satisfies the equations of motion (17) exactly. Due to the presence
of terms containing odd mixed partial derivatives, the checkerboard
modes expressed by equation (23) do not satisfy equations (17). To accom-
modate these terms, functions having the combined argument (ax + /?!/)
are necessary. Motivated by the work of Pagano, Halpin, and Whitney
[19], who demonstrated that axial tension of a general anisotropic cylin-
drical shell produces helical buckling modal patterns, the following
helical-mode displacement functions were investigated:*

It was found that these functions are exact solutions of the equations
of motion**. Unfortunately, since the nodal pattern associated with such
a function is helical (see Figure 5), it cannot satisfy any boundary condi-
tions at the ends (x = constant). However due to the effects of the terms
with odd mixed partial derivatives, the natural frequency calculated for
a specific a and /3 is different from that calculated for the same value of
a and a /3 value equal in magnitude but opposite in sign. Thus, contrary
to the case for specially orthotropic or isotropic shells, the +{3 and -{3
solutions are linearly independent solutions. Thus, it was decided to use
the following two functions for w (along with analogous ones for u and v):

where W, and W2 are constants. Following the approach suggested by
Nikulin for isotropic shells, the ratio W2 / Wl is determined so that the

primary boundary condition (w = 0) is satisfied exactly at each end of
the shell. Equation (28) can be expanded as follows:

°Kunukkasseril [8] demonstrated analytically that such modes occur in cylindrical shells with closely spaced helical
stiffeners and Koval and Cranch [20] showed experimentally that application of an initial static torque tended to rotate
the axial nodal lines into helices.

**Similar terms with the trigonometric functions replaced by the corresponding hyperbolic functions of the same
argument were also found to satisfy the equations of motion. However, they are not possible solutions for a complete
(circumferentially closed) shell, such as the one considered here, since they are not periodic (single-valued) in the
circumferential coordinate y.
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..............

Figure 5. Single helical nodal pattern. Figure 6. Typical nodal pattern asso-

ciated with combination of two helical
modes.

Now it is convenient to choose the origin of the x axis at the middle of
the shell length. Then the primary boundary conditions are:

where t = L/2.
This results in the following set of homogeneous, linear, algebraic

equations in the constants WI and W2:

To assure a nontrivial solution of equations (31), the determinant
of the coefficients must be equal to zero. This leads to the following
transcendental equation:

The solution of equation (32) is expressed simply as follows:

where p is any integer other than 0. Figure 6 shows a typical nodal pattern.
The procedure used to obtain an approximate solution is as follows.

From the frequency determinant obtained from the coupled equations of
motion for a single helical mode, frequency is calculated and plotted as
a function of ml for the desired value of circumferential wave number n.

Similarly frequency is determined and plotted versus m2, using the same
single helical mode but a negative value of n. For graphical convenience,
equation (33) is rewritten as follows:
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Figure 7. Graphical solution to determine
natural frequencies.

Then a third line is drawn in which frequency is plotted against the mean
value of ml and m2 (shown as a dashed line in Figure 7). Finally, the
natural frequencies are those frequencies at which the frequency vs.
(ml + m2) /2 curve intersects integer values of (ml + m2) /2. Thus,
Figure 7 shows that the lowest natural frequency for n = 2 occurs at
approximately 123 cps, the second frequency at approximately 425 cps,
and the third at approximately 925 cps. Since the two curves of frequency
vs. ml and vs. m2 are generally similar, it is generally sufficiently accurate
to assume that the frequency associated with (ml + m2) /2 is approximated
with sufficient accuracy by

The shell used in the illustrative example of Figure 7 has the same
geometry as the boron/epoxy laminated cylinder considered previously,
except here, the outer layer is oriented circumferentially, while the inner
layer is oriented at 45 degrees to exaggerate the tangential anisotropic
effect. Figure 8 shows natural frequency associated with m = 1 as a

function of circumferential wave number.
For the same shell geometry and a fixed outer-layer orientation
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Figure 8. Effect of circumferential wave
number on natural frequencies (m = 1)
of a two-layer boron/epoxy cylinder with
outer layer circumferential, inner at 45

degrees.

(circumferential), Figure 9 shows the effect of inner-layer orientation on
the frequencies for m = 1 and various values of n. It is interesting to
note that the lowest frequency is associated with n = 2 regardless of
inner-layer orientation. Although inner layer orientation has only a weak
effect on this lowest frequency, it is maximized by selecting an axial
orientation (0 degrees).

CONCLUSIONS

On the basis of the present investigation, the following conclusions
are drawn:

1. The concept of using an equivalent homogeneous isotropic shell, as
proposed by Weingarten, to predict the behavior of a shell with multiple
isotropic layers, all having the same Poisson’s ratio, is valid. Of course,
this concept cannot be applied to multiple anisotropic layers.

2. The effect of bending-stretching coupling in an unsymmetrically
laminated shell can be appreciable, as demonstrated here for a two-layer
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Figure 9. Effect of inner-layer orientation
on the natural frequencies (m = 1) for

a two-layer boron/epoxy cylinder with
outer layer circumferential.

boron-epoxy shell.
3. The exact solutions for two helical-type modes can be combined to

obtain an approximate solution for a finite-length shell.
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NOMENCLATURE

Az, = elements of stretching stiffness matrix for shell
Bz, = elements of bending-stretching coupling matrix for shell
C, = coefficients defined in equations (25)
Du = elements of bending stiffness matrix for shell
d,, d,, dt = linear partial differential operators with respect to x, y, t
h = total shell wall thickness
i, j = indexes 1, 2, 6

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


498

k = index
L = length of shell
L, = linear differential operators defined in equations (18)
1 = L/2
m, n = axial half-wave and circumferential wave numbers
M = shell mass per unit middle-surface area
M, = stress couple
N, = stress resultant
p = a non-zero integer
Q, = transverse shear stress resultant

Qu = reduced elastic stiffness coefficient
R = radius of shell middle surface
u, v, w = respective displacements in x, y, z directions
U, V, W = coefficients in expressions for u, v, w
t = time

x, y = axial and circumferential position coordinates
z = radial position coordinate, measured outward from middle surface
a = parameter
a-__ = m7r / L
18 = n/R
EJ 

= strain component at radial position z
ËJ = strain component at middle surface
K, = curvature component
p = density
a-, = stress component
oi = natural frequency
coo = lowest extensional ring frequency, given by equation (24)
{ } = column matrix
[ ] = square matrix

, 

= subscript denoting differentiation with respect to the variable follow-
ing the comma
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