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AN APPLICATION OF MULTIVARIATE HOMOGENEITY OF VARIANCE TESTS

TO THE ELECTROCARDIOGRAM IN MYOCARDIAL INFARCTION
CHAPTER I
STATEMENT OF THE PROBLEM

Wishart (1928) published the distribution known by his name in
1928, and this publication may be regarded as the beginning of multivari-
ate sampling distribution theory. This was followed by the work of Wilks
(1932) who pointed out that the variance-covariance matrix of a multi-
variate population was the logical multivariate extension of the vari-
ance of a univariate population. Because of the univariate theory in
which statistical test criteria are based on variance ratios, it seemed
only natural to investigate the ratios of varilance-covariance matrices.

In the same publication, Wilks (1932) developed the theory nec-
essary for the multivariate extension of various univariate test criteria.
However, at the end of that publication, he stated, "The practical appli-
cation of the criteria developed in this paper must be left for further
discussion". Since that time, Pearson and Wilks (1933) have sol;ed the
problem for the case of k bivariate populations, and Wilks (1946) has
done the same for one p-variate population. Kendall (1961) says, "Methods
of a parallel kind could be followed for the testing of k samples of

p-variate populations, although I am not aware that the general case has

1
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been worked out explicitly". That is the purpose of this investigation.

In other words, we are interested in the derivation of statis-
tical test criteria for the testing of the three null hypotheses given
below in k p-variate normal populations.

Hl: The k populations have equal mean vectors and equal

variance-covariance matrices.

H2: The k populations have equal variance-covariance matrices

irrespective of their mean vectors.

H,: The k populations have equal mean vectors given that the

variance-covariance matrices are equal.

In addition to the development of the test criteria, it shall
be necessary to investigate their distributions in order that an appro-
priate test of the three hypotheses can be made. This shall be done in
subsequent chapters.

Following the derivation of the test criteria and their distri-
butions, a practical example of the use of these test procedures shall
be given. This example was obtained from clinical medicine, and is an
attempt to test the three hypotheses given above in 4 populations of
patients experiencing an acute myocardial infarction. The variables to
be used are measurements obtained from electrocardiograms.

Although much of this theory was first developed by Wilks
(1932), it shall be re-developed using matrix notation, and shall be
applied so as to arrive at a practical test procedure for the three null
hypotheses in k p-variate populations. In so doing, we shall make use
of methodology first reported by Tukey and Wilks (1946) and Box (1949).

Of the hypotheses, H3 is the multivariate analog of the



3
univariate analysis of variance, and as we shall see, its test criterion
has a simpler distribution function than either Hl or H2.

With this background, let us now turn to the development of
the test criteria. This shall be done in CHAPTER ITI. CHAPTER IIT will
be devoted to the derivation of the moments of the distributions of the
three test criteria. The nature of the exact distribution of the test
criteria will be investigated in CHAPTER IV, and approximations to these
exact distributions will be obtained in CHAPTER V. Finally, CHAPTER VI
will contain the application of this theory to clinical electrocardio-

graphic parameters.



CHAPTER IT
DERIVATION OF THE TEST CRITERTA

In this chapter, we shall be concerned with the derivation of
the test criteria for testing the three hypotheses discussed in CHAPTER
I. These results were first obtained by Wilks (1932) using the method
of maximum likelihood developed by Neyman and Pearson (1928). This deri-
vation will differ from Wilks' in that matrix notation and methods will
be used.

We shall adopt the following notation for our k p-variate nor-

mal populations. Iet u(t) represent the vector of means for the tEE
population, V<t) the matrix of variances and covariances for the tEE

population, R(t) the inverse of V(t), n(t) the sample size from the tt'h

population, Xi(t) the vector of observations obtained from the tég popu-

lation, and |V| the determinant of the matrix V. The range of t will

be from 1 to k and the range of i will be from 1 to n(t) for the ’c@—1

A
population. We shall use V to represent an estimate of V. n = E n(t).

With this notation the distribution for the tEE population will

£(X) = J_Iﬂrla_ exp I:_% (X(t) _ u(t))' r(t) (x(t) . u(ti'.

(2x) 2P

be:

Now if a sample of size n<t) is drawn from this population, the likelihood
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function for the sample can be written as:

1,(%)

(8 _ l g(t) oo [E%_g (Xi(t) _L(8)y" g(®) (Xi(t) ) u(t)g:].

(En)%Pn(t)

Therefore, the joint likelihood for samples obtained from all of the

populations is:

1.(%)
t=1 1n(t) t i 1 i
(2x)2P

Taking the logarithm, we get:

t
InL=4% n( ) lnl R(t) | -ip = n(t) 1n 2x
t

2
t

N~

pr (oW R0 o)

We shall first maximize this likelihood function in the unre-
stricted parameter space, that is, without restricting the values of the
means, variances, or covariances of the k populations. To do so, we

need the partial derivatives of 1ln L with respect to the u(t) and
y(),

d1n L L

—— -3 : 2 r(t) (Xi<t) _ u(t))

Setting this equal to zero and solving, we get:

a(t) ) (n(t))-lg Xi(t) _x(t) (1)



Similarly:
OlnL
> r(t)
L8y
Again, equating this expression to zero we get:
RENCIRRSED T ALIS SONCALINS RPN

Substituting these expressions into L, the maximum of L can be written

as:

k
L () = ;[I; I v(t) | (21) " exp (-dn) . (3)

Iet us now consider H_: u(l) = u(e) = see = u(k) =y , and

1
MV(;) = V(2) = see = V(k) = V. With these restrictions, 1n L becomes:

-%np In 2% + %n ln| R l - % Z
t

™M

in L

s (x, M -0 e () )

=

Maximizing this expression with respect to n and R, one obtains:

p=at zal®) 7t _x (1)

and:
]

snlp a®) v o pd s () @0 oz @) %) (5)

<>

~

=V, .

o

Using these estimates, the maximum of L in this restricted parameter

space can be written as:

A - .ln __1__n
v, 27 (2n)72 P exp (-Zkn).




T

Therefore, the test criterion for hypothesis H. is:

1
~ | -% ~ .(t
=L (w) N R YO 1n(t)
L (2) o
k A =-3n t) A 'y (t)
10 R R O (6)
t=1
Iet us now consider H2: V(l) = V(2) = ves = V(t) = V irrespec-

tive of the value of the means. Under this hypothesis, L (Q) remains
the same as (3).
In the restricted parameter space:

InL=%nln|R|-%nmpIner-3 23 (X () _ (el g (Xi(t) - u(t)y,

ti 1
Differentiating 1n L, equating the derivatives to zero, and solving, we
obtain:
ate) - x(t) (7)
and:

v=nl : () () _ 7. (8)

Using these estimates we find:

L(w) = (20 |7 | e (-3m) (9)
and so: (+)
_L |y & I 5(t) n
2 L(a) 2 =1
K | A p -2n(t) ()
IR |58 = (10)
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Finally, we shall obtain the test criterion for H3:

p(l) = p(e) = eee = u(t) = U given that the variance-covariance matrices

are all eqgual.

Now under the unrestricted hypothesis:

) !
InL=2n1n|R| - %pn In 2x - % z 2 (Xi(t) - uw(t)y'g (xi(t)- w(E)y,
i
From this, one can obtain:
alt) - x(t) (11)
and:
T=nl 2283 7 s (12)
t a
and so:
-%pn | 5 -in
L (2) = (2an) &7 |V |72 exp (-3kn) (13)

With the restriction imposed by the hypothesis of equality of means:

1 t ' t
InL =4n 1n| R | -%nplnEn:—T z 2 (Xi()-u) R(Xi<)-p).

Maximizing this expression, we obtain:

A

b=X,, (14)
and:
V=T, (15)
and so:
L) = (20 | 5, | P e (i)

Using this, we find:

N o L (w) _|3 s |-zn 6
3 1(q) | " Tl | (e)
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The next chapter will be devoted to investigating the moments
of the distributions of these three criteria so that they can be used

for the testing of the three null hypotheses.



CHAPTER III
MOMENTS OF THE DISTRIBUTIONS OF THE TEST CRITERIA

We are now ready to investigate the distributions of the three
test criteria developed in the last section, but first we should review
a fundamental multivariate distribution.

Let /’\; represent the variance-covariance matrix computed from

a sample of n items from a p-variate normal population, that is:

1
nvs= .:r: (xi-x) (Xi-X)

where the Xi are independent and normally distributed with mean p and
N
variance-covariance matrix V. The distribution of nV was first derived

by Wishart (1928), and now bears his name. It is given by:

| ‘/; I%(H-P-2) oxp _“'é‘ TI‘(V-l v)] d\/} (17)

o 2p(n-1) _ fp(p-1) | 7] #(n-1) %_—I'*B(n_izl
i=1

where Tr(V-l V) represents the trace of the matrix (V-1 V).

From (17), we have:

N %(n'P"z) _l A A
IVI exp [-—é— Tr(V Va av

10
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3(n-1)  #(n-1)p 4p(p-1)
= v SR P ﬁ r[%(n-i)] (28)

i=1

= W.

th
Then the kX~ moment of this distribution can be obtained as:

1(n-p-2+2k)
A 1 ~}2\0-p -1 A A
M (V) = = |v| exp [-% Tr(V v):] av

1 F(n+2k-1)  3p(n+2k-1) ip(p-1) »p
-1 |V | o . Trl I_‘[%(mek-iﬂ
i=

k 2| Bl 4k

vl le 2

= = ' (19)
P . ‘
i=1 B

With these results, we are now ready to find an expression for

th A
the h— moment of the first criterion given by (6). Now, V0 can be

1
A ~
written as Vo + VO where:

1 A
6~ =ntz n(t) V(t), and

Since the n(t) V(t) are independently distributed according to
the Wishart distribution (17), and since the sum of two Wishart variates
!

is also a Wishart variate, then under H , the distribution of 60 is

given by:
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2(n-k-p-1) oxp E;_Tr(V'l 90,] , (20)
2%p(n-k) It1;1-11(19-1) i.fE I’E(n_kﬂ-iﬂ

Also, the means of samples of size n(t) from p-variate normal

Vo

populations are independently distributed as Gaussian variates. Further-

more, the distribution of these means is independent of that of the

AN

variance-covariance matrices. Since Vo represents the sample variance-

11
covariance matrix of i&t), ﬁb also is distributed as a Wishart variate.

Now, since ﬁb is the sum of two Wishart variates, it also has

a Wishart distribution. Consequently from (17) and (19), the nil

1 n(t

moment of can be written as:

|v|% Q%mp ‘Er‘ ‘ rl:n l+m:| (21)
- B

2 t)

A
VO

A

But VO is a function of Q(t) and

%n(t)

, and so, the m moment of

can also be written as:

Yo

t)

3(n' "’ -p-2)

ew -2 V@, + 5| T I'\}(t)

= Tl- a(t) d}'c(t). (22)

t

v
o}

Since (22) represents the product of (k+1) independent integrals of the

form of (18), we find, using (19), that the integral given by (22) is
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t
-%n( ) skp(p-1)+2kp 2k
(t) v e 2

- TE

o . (t)

Following the argument given by Wilks (1932), in (22) we replace n

by n(t)(l+h), n by n(1l+h), and m by -h/(1+h), and then multiply by:

lnm (v gk

io(p-1)+p T (%) :|
1 E];|_1[;;n -1)

k
In
t=1

Now the integral given by (22) represents the nEE moment of A . There-
fore, performing the same operations on (23) gives the solution to (22),

and so we get for M. (xl):

%phn

k
Tr n('c)

t=1 n

r %l' (2k)

i=1 - i=1
) 1] I—\Ex(l-l-h)-ﬂ
2 2
e |

| —

Using this same approach, let us now investigate the moments

of the distribution of A2 given by (10).

"~

Now, V, = % % n(t) V(t), and this is the same expression as

1

that for Go . Therefore, the distribution of nﬁé is the Wishart



1h
distribution given by (20). With this information, we can use equation

1,(%)

ﬁa , and then following the

(19) to find the general moment for

argument outlined in steps (21 through (24), we find that Mh(xe) can

be written as:

(+) = —
k phn
I [_n :l " r—i—n(t) l+h€l (25)
t ' 2 25
NS T =e
i=1 n -1
I -2
Finally, let us find the moments of the distribution of K3
given by (16). Now, let:
2/n ~ A l-1
L3 = (x3) = (J,Va v, (26)

)
From the above discussion, we know that n@é and nV, are both
distributed as Wishart variates, and so L3 is distributed as the ratio
of two Wishart variables. Again following the argument outlined in the

derivation of M, (M), we have that:

dlnsns

We now have general expressions for the moments of the distri-

butions of the three test criteria. In the next chapter, we shall

investigate the distributions of these criteria.



CHAPTER IV
DISTRIBUTIONS OF THE TEST CRITERIA

To investigate the distributions of the statistical test cri-
teria developed in CHAPTER IT, we shall make use of a theorem concern-
ing Beta distributions due to John W. Tukey and S. S. Wilks (1946).

We sahll adopt Tukey's notation. ILet:

(y)h =y (y¢1) (y+2) ... (y+h-1), - (28)
and then:
[(yem) = ), (), (29)

and if r is a positive integer:

[M(y+rh) = ), [ty) = =78 'Fr yri-1 P(y) (30)

With this notation, Tukey and Wilks showed that if the moments of the

distribution of a statistical test criterion can be written in the

a - Gi +j€] N
a - D. +:£]
L h

vhere a = 2/n or 2/(n-1), and G, and D; are real numbers, then the test

form:

s

[ 1| 1

(31)

= =

r

i=1

criterion is distributed as the product of r independent beta variates.

15



16
We shall now show that the hzh moment of the distribution of

a power of a beta variate can be written in a form which is a special

case of (31).

If y is distributed as a beta variate, that is:

g = Llres)  r-1 (981 gy
M) M(s)

then its hJEH moment can be written in the form:
Mo(y) s — . (32)

If z = yv, that is, if z is a beta variate raised to a power,
than its u-EE moment is obtained from (32) by setting h = v u. There-

fore, we can write:

u
(r) -”— ELL"__}_J
M, () = — “‘)’ - == T = : (33)
rfs -ﬁ- r+s+j-1
J=1 v u

If we let 1/a = (r+s)/v, Gy =1+ (s-i+1)/v, and D, =1- (i-1)/v, then
we see that (33) is a special case of (31).
ntl

With this background, we are ready to consider the moment

of Kl given by (2k)., 1If % n(t) is an integer for all t, we can then

use (28), (29), and (30) to obtain:

1=

[\ o
—_
N
B
Ce
r=
T '
XN
=] B
o
Li
I
[
[ |
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and:
30(8) 1,(%)
n(t) (1m)-1 ) n(t) n(t) _14p501 ()4
o 12 =1 o (t) 2 .

h

Using these two expressions, (24) can now be written as:

k P -é—n(t)

v () - '”‘ -ﬂ- alt) s405-1 -ﬁ-
bl (%)

1
t=1} i=1 J=l h i=1 TI. n-i+2 -_E]h
'——l n

—————— s

(34)

For a fixed value of i and t, (34) is in the form of (33) as we wished.

Using the same argument as used with M, (kl), we find that

R4

Mh (ke) can be written as:

e 1 (t)
k P sn P
M (r) = T TE T['E_“l?_gi_l Tl . (35)

T

t=1 J= n nl i=1 ?n-E-k-wej-E] .
J=l n h

S L —

Again, this expression is in the same form as (33) as desired.

Finally, we shall consider Mh (L3). Using (29), we find that:

- EAEEL
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Substituting these expressions into (27), we obtain:

(36)

For a given value of p, this expression is in the same form as (31).
Now, since M, (13) can be written in the form of (31), Ly is

distributed as the product of p independent beta variates according to

the theorem given at the beginning of this chapter. However, since
N o (1)

M (Kl) and M (Kg) are both expressible in the form of (33) if n

is an even integer for all t, then Aq and Ay are each distributed as

the product of p independent beta variates each of which is raised to

a power. Wilks (1946) and Kendall (1952) both give expressions for

the exact distribution of 13 for k = 2 and k = 3. However, the general

problem still defies solution, as does the problem of obtaining the

2

bution of L, for k = 3 is any indication, the general solution will not

3

be of practical use since the building of tables from these expressions

exact distributions for Kl and A,. If the expression for the distri-

will be an extremely difficult and time consuming task. This is anal-
ogous to certain univariate test criteria such as the one for the
testing of the homogeneity of sample variances obtained from univariate
normal populations. In that particular case, a Chi Square approximation
to the distribution was obtained because of the complexity of the exact

distribution.

Therefore, although we know the form of the exact distributions
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of our three test criteria, it would seem that their complexity would
indicate that for practical use, approximations to these distributions
should be sought. The next chapter is devoted to consideration of pro-

cedureé for 6btaining useful approximations.



CHAPTER V
APPROXIMATE DISTRIBUTIONS OF THE TEST CRITERIA

Box (1949) has said, "Although in many cases, the exact distri=-
bution (of a test criterion) cannot be obtained in a form which is of
practical use, it is usually possible to obtain the moments, and these
may be used to obtain approximations". This chapter will be devoted
to the finding of useful approximations using the moments derived in

CHAPTER III.

Simple Chi Square Approximation

In a paper published in 1938, Wilks proved that if a population
is distributed such that "optimum" estimates of the parameters exist,
then when the null hypothesis is true, and when the sample size is large,
-2 In A where A is a maximum likelihood test criterion, is distributed
as a Chi Square variate except for terms of order n‘% where n is the
size of the sample. The degrees of freedom of this distribution are
the number of parameters of the population less the number of parameters
specified by the hypothesis. Maximum likelihood estimates satisfy the
"optimum" conditions required of the estimates, and so this theorem is
applicable to our three test criteria.

For A, -2 1In Al is approximately distributed as Chi Square.

1

To determine the degrees of freedom, we must remember that there are

20
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p means for each of the k populations or a total of kp means to be
estimated. In addition, there are ip(p+l) distinct variances and
covariances for each population yielding a total of kp + Skp(p+l) or
%kp(p+3) parameters associated with our likelihood function. Of these,
p + 3p(p+l) or 3p(p+3) are specified by the hypothesis, and so the
desired degrees of freedom for our Chi Square approximation are
$kp(p+3)  4p(p+3) or Sp(p+3)(k-1).

Turning now to XQ, -2 1n XZ is approximately distributed as
Chi Square with kp(p+l) + kp - kp - 3p(p+l) or ip(p+1)(k-1) degrees of
freedom.

Finally, -2 In Ag = -2(3n) 1n Ly = -n In Lg is approximately
distributed as Chi Square with kp + $p(p+l) - p - 2p(p+l) or p(k-1)
degrees of freedom.

The validity or closeness of this approximation is difficult
to judge, however, we do have one guideline. In using this approxima-
tion for the distribution of these same test criteria in the case of
one p-variate normal distribution, Wilks (1946) found that when k and p
are 2 or 3, the Chi Square approximate probability level differed from
the exact probability in the third decimal place for n greater than 60.
This was also true for p = 4 or 5 in testing the third hypothesis.
Since Wilks' distributions are similar to those in this problem, it
would seem reasonable to have some confidence in this approximation for
n at least 60 if the number of variables and populations is not too

large.
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Modified Chi Sqguare Approximation

With a very complex mathematical derivation, Box (1949)
demonstrated that modification of the simple Chi Square approximation
given in the preceding section produced a closer approximation to the
exact distribution of maximum likelihood test criteria. This modifi-
cation consists of multiplication of the simple approximation -2 1n A,
by a factor cl. Because of the length and complexity of Box's deri-
vation, only the method of finding C will be given here.

In order to find C, it is necessary to first introduce the

quantity:
1
er o
A= —— (37)
vi £
where:
r = An integer specifying a particular Ar,
r
o - (-1)" k r+l r+ 2 s r+l-s
= 2(zel)(z42) > 2D B,
S=1 s + 1
and.: B=vV -pV,
p = An arbitrary constant = 1,
v = Average degrees of freedom, that is (n-k)/k,

J

Q  is o, with p = 1,

D =AS Vg

° 1 1
Ay = Boyy [‘E(B““P):I - Ba E‘EB] ;

Bs+l is a Bernoulli polynomial and B is a Bernoulli number,
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k
s=-1
1 = S
7s = K t
s L |
f = degrees of freedom of the simple Chi Square approximation,

n, n(t), and k are as previously defined,

and:
A1) 2 (8) 5.

Box further gives the first 3 values of Ag which are:

g A

0 "%P:

1 +p(p+l),

2 -p(2p2 + 3p - 1)/16,

and the first 2 values of a& which are:

r %
1 -k(3D,p + 2D,)/3,
2
2 -k(3le3 + lmes + 2D3)/6.

In the computation of A,., we need a; which is the correspond-
ing value of i, with p = 1 and therefore B = O.

In his derivation, Box further showed that if A2 = 0, setting
C =1+ A would give the first cumulant of -(2 1n A)/C to agree with
that of the exact distribution to order v=2. Further, if A, = Aie,
setting C = (l—Al)'l would give the same order of approximation. As a
matter of fact, for large v, if A2 - A.l2 2 0, the first cumulant of the

Pearson type VI curve (F distribution) agrees with that of the exact

distribution to order v'2, if A2 - A12 = 0, the agreement is with the
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Pearson type III curve (Chi Square distribution), and finally, if
A2 - A12 £ 0, the agreement is with the Pearson type I curve. There-
fore, if A2 - A12 2 0, then C = (J.-A:L)_l would give a chl square approxi-

mation sufficient to produce agreement of their first cumulants to order
of approximately v-2,

Let us now derive this scale factor C for each of our test
K;riteria. We shall first examine Xa. The degrees of freedom associ-

ated with -2 1n A, are £ = 3p(p+Ll)(k-1), and so substituting into

equation (37), we get:

= (2p° + 3p -1) % 1 _ 1
“ 6 (p+1)(k-1) t=1 n(t)—l n-k

£>
1

. 5 —_

(p-1)(pt+2) k 1 ) 1

2 (k-1) tfl [;(t;_#:] [:n-é]
p—

Therefore, A2 - Al2 can be written as:

k ) 72 ® 6 (p- l)(p+l)2(p+2) 73 _ (2p® + 3p- l)
T+l 36 (p+1)2 v2

where the 7y were defined earlier. As can be seen, A 5 = O when p = 1,

and so will not be zero in multivariate situations. A2 is positive

for p 2 1 except when p = k = 2 and the n(t) are equal for all t. In
that case, A2 - A12 is almost exactly zero. In a;l other cases, A - Al2
is positive, and so by the argument given earlier, we choose C = (l-Al)"'l

that is:
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c‘l=(1-A1)=1-(292+3p_1) K e )
s ol o o, T ax |, 9

and so the quantity:

(202 + 3p-1) Z 1 1 | 2|ma
3(prl)(k-1) | ¢ alt) n-k

by —

is distributed approximately as chi square with 2p(p+1)(k-1) degrees
of freedom.

For M, we have f = $p(p+3)(k-1), and so:

(2p2 + 3p-1) 1 1
A = 5 —— -
6(p+3)(k-1) % n(t)_y n-k |,

and:

_ (p-1)(r2) |: ] [ ]
%2 6(k-1) () n-k

Again, A2 = O wvhen p = 1 and is otherwise positive. By the same argu-
ment as used with Ay, A5 - Ala 2 0, and so we choose C = (l-A,l)'l

Therefore, the quantity:

(2 & 2p:L) —— In & (39)
3(p+3)(k-1) E ) 1 ] ] 1

is distributed approximately as chi square with 2p(p+3)(k-1) degrees of

freedom.

Finally, considering A 3 we find that:

A = (202 + 3p-1)
* 61:(; 11)) I: ne 5 1 n-k
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and:

A = (et (pe2) | , s N
2 6k P ., ok

By the same argument utilized earlier, we choose C = (1 - Al)'l and so

the quantity:

n (2p2 + 3p-1) 5 1 LT (o)
6k (3-1) . g | oE 3

is distributed approximately as chi square with p(k-1) degrees of freedom.

F _Approximation

In the same paper referred to earlier, Box (1949) also showed

that if A, - A% is positive, and if:

g = — 2 (41)
Ay = Ay
and if:
f
= (k2)
1-4, - f/fl

then -(2 1n K)/b is distributed approximately as F with f and fl degrees
of freedom. Because of the complexity of the expressions for -(2 1n X)/b
for our three test criteria, we shall not write them out in their gen-
eral form, but shall illustrate their use with an example later in this

paper.

Summary

In this chapter we have demonstrated methods for obtaining chi
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square and F approximations to the distributions of our three test cri-
teria using methods originally developed by Wilks (1946) and Box (1949).
Although the computations necessary to use these approximations are
tedious, they do allow us to make use of these test criteria to test a
general range of hypotheses. Unfortunately we do not know how close
these approximations are to the exact distribution. From results given
by Wilks (1946) and Box (1949 ) with test criteria having similar distri-
butions, we can gain some confidence in these approximations for n(t)
large enough, say greater than 60 and for p and k not large. The real
determination as to the validity of these approximations must await
solution to the problem of finding a workable expression for their exact
distribution. However, an approach possible today would be to.perform
an empirical study and compute the probability levels given by each of
these approximations. This would necessitate sampling from known multi-
variate normal populations letting the sizes of the sample, the number
of variates in each distribution, the distribution parameters, and the
number of distributions vary. It should then be possible to evaluate
those values of the three quantities (sample size, number of variates,
and number of distributions) for which the three approximate distribu-
tions yield probability levels which agree and those for which the pro-
bability values disagree. One could then try to solve the exact distri-
bution for those quantities producing disagreement among the.probability
levels yielded by the three approximations,‘and thereby determine which
of these three approximations is closgst to the exact distributions.
Such a study should follow this one. '

We have now developed the theory necessary for the testing of
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the three null hypotheses outlined in CHAPTER I. The remainder of this
study shall be devoted to an example utilizing the theory outlined in

these first 5 chapters.



CHAPTER VI

A STUDY OF ELECTROCARDIOGRAPHIC MEASUREMENTS

IN ACUTE MYOCARDIAIL INFARCTION

This chapter will be devoted to an illustration of the applica-
tion of the previously developed test criteria and their approximate
distribﬁtions. The particular problem to be discussed is one from clini-
cal medicine, and is concerned with electrocardiographic parameters in
patients experiencing an acute myocardial infarction. With the advent
of high speed computing techniques, several workers have studied the
electrocardiogram in various illnesses. For example, Rikli, et al.
(1961) and Ev;ﬁé (1962) reported differences in electrocardiographic
measurements existing between normal and hypertensive persons; Cady,
et al. (1961) reported results of an investigation of left ventricular
hypertrophy; Caceres, et al. (1962) and Pipberger (1962) discussed the
general problem of estimating electrocardiographic parameters using
electronic computers; and Cady, et al. (1962) presented methods for the
mass screening of electrocardiograms.

In recent years, there has been much interest in the determina-
tion of those factors related to prognosis in patients experiencing an
acute myocardial infarction. Several large series of patients have been
studied in an attempt to solve this problem, but thus far these studies
have limited themselves to clinical parameters and electrocardiographic

29
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diagnoses. It is the purpose of this study to investigate the standard

clinical electrocardiographic measurements to determine whether one or
more of these might be an important prognostic factor. The results of
these other studies are summarized in a recent article by Hughes, et al.
(1963).

The data for this study were obtained by reviciring records of
all patients with a diagnosis of acute myocardial infarction admitted to
the University of Oklahoma Medical Center (including the University,
Veterans Administration, and Wesley Hospitals) between January, 1953 and
January, 1963. The criteria necessary for inclusion of a patient in this
study were characteristic QRST electrocardiographic changes, or autopsy
demonstration of an acute infarction. It was also necessary that they
have a readable electrocardiogram available. Using these criteria, it
was possible to obtain 370 patients for the study.

The electrocardiograms used herein were taken by heart station
personnel of the hospitals in the routine manner, and the measurements
of interest were obtained from the paper reproductions of these electro-
cardiograms by manual measurement techniques. In every case, the electro-
cardiogram obtained at the time of admission was used.

In addition to the electrocardiogram, other information was ob-
tained from each patient's record. These are listed in Table 1. Table
2 contains the particular electrocardiographic measurements obtained.

A coﬁplete report of a linear discriminant analysis performed
on the "clinical measurements" is given by Hughes, et al. (1963). In
this report, it was determined that age was one of the most important

determinants of mortality following an acute myocardial infarction since
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TABLE 1

CLINICAL MEASUREMENTS
Age
Sex
History of Previous Myocardial Infarction
History of Angina Pectoris
History of Diabetes Mellitus
History of Hypertensive Cardiovascular Disease
Systolic and Diastolic Blood Pressure
Pulse
Temperature
Presence of Pulmonary Infarction
Presence of Congestive Heart Failure
Presence of Shock
White Blood Cell Count
Erythrocyte Sedimentation Rate

Serum Glutamic Oxalacetic Transaminase
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TABIE 2

ELECTROCARDIOGRAPHIC VARIABILES
Longest PR Interval of Leads I, AVF, V4R, or VI
Longest QRS Interval of Leads I, AVF, V4R, or VI
Longest QT Interval of lLeads I, AVF, V4R, or VI
Ventricular Rate
Maximum P Duration of Leads i, AVF, VLR, or VI
Maximum P Height of Leads I, AVF, V4R, or VI
Mean QRS Axis
Duration of Q or QS.Deflect£on In Region of Infarction
Depth of Q or QS Deflection In Region of Infarction
Maximum Amplitude of R in.Vk, V5, or V6
Intrinsicoid Deflection in V4 or V5

Maximum ST Segment Displacement In Region of Infarction
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the mortality rate increased with increasing age especially over 65 years.
Therefore, in this study, all patients were placed into one of the follow-
ing 4 groups, namely (1) patients under 65 who survived their acute in-
farction (i.e. lived for six weeks after the onset of their symptoms ),

(2) patients over 65 who survived, (3) patients under 65 who did not
survive, and (k) patients over 65 who did not survive. By use of this
classification, it should be possible to determine those electrocardio-
graphic measurements which will differ between surviving and dying pa-
tients and at the same time account for differences between those over
and under 65 years of age. Therefore, this study is concerned with 4

populations each consisting of the 12 variables listed in Table 2.

Preliminary Sample Information

The sample sizes obtained are givén by the following: (a) for
population 1 (surviving patients under 65), 176; (b) for population 2
(surviving patients over 65), 84; (c) for population 3 (dying patients
under 65), 46; and (d) for population 4 (dying patients over 65), 6k.

Table 3 contains the means for each of the 12 variables in the
4 samples. It was assumed that the distributions of these variables
could be described by multivariate normal distributions.

Tables 4, 5, 6 and T give the variance-covariance matrices for
each of the 4 samples. In our previous notation, these matrices are
ﬁ(l), 9(2), 9(3), and 6(4) respectively. 60 and Ga are shown in Tables
8 and 9, respectively.

A1l of the tables give the values expressed in the original

measurement units which are listed in Table 3.
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TABLE 3

AVERAGE VALUES FOR ALL SAMPLES

Sample

Living | Livingl Dead | Dead A1l

Under Over | Under| Over Groups

Variable 65 65 65 | 65 | Combined
xl : Longest PR Interval (sec.) .15 .15 .13 .13 J4T
X, : Longest QRS Interval (sec.) .09 .09 .10 .10 .095
X3 : Longest QT Interval (sec.) .37 .37 .34 .35 .360
X), : Ventricular Rate (beats) 80.00 | 79.60 | 97.50 | 90.10 | 83.880
x5 : Maximum P Duration (sec.) .07 .06 .06 .05 .060
Xg : Meximum P Height (mm.) .89 97| 1.01 .81 .910
X7 : Mean QRS Axis (degrees) 22.20| 1.80|20.40( 11.90 {15.600
Xg : Maximum Q Duration (sec.) .06 .07 .08 .06 .060
x9 : Maximum Q Depth (mm.) 6.90| 7.30] 9.60] T7.50| T.430
X)o¢ Meximum R Amplitude (mm. ) 10.90 { 11.40 | 8.50{. 8.40 | 10.280
X17: Intrinsicoid Deflection (sec.) .04 .0L .05 Ok .042
xl2: ST Segment Displacement (mm.) 1.23| 1.44 | 2.16] 2.08 | 1.543
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Statistical Analysis

The purpose of this study is to determine whether any differ-
ences exist among the four populations with respect to the twelve elec-
trocardiographic measurements under consideration. Therefore, we shall
first test Hl: the four populations have equal mean vectors and equal
variance-covariance matrices. The formula for the test criterion, hl,
for this hypothesis is given by equation (6). To calculate it, we need

the following values:

V(1) - 3.0810903 (10711,
72| < 5584317 (20719),
73] < 1.ous013 (107T),
'Q(h) = 1.8851860 (10'8),
Qé I = 1.0802156 (10‘8),
and:
V| = 1.300m26 (1079).
Using logarithms, we find that:
22 n(t) 1n l%(t)| = - 3761.93945, (¥2)
in 1In '?a = - 3393.5776k, (43)
and:
in 1 |¥ | = - 3359.06802. (1)
Therefore, from (42) and (44):
In Ay = -3761.93945 + 3359.06892

- 4L02.87053.

With the value of 1n hl, we are now ready to make use of the approximate

distribution theory developed in CHAPTER V for this test criterion.
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To use the simple chi square approximation we need:
-2 1n Kl = 805.74106.
The degrees of freedom associated with this value are 3 p(p+3)(k-1) =

1(6)(15)(3) = 270. Making use of the equation:

Chi Square = %(X+'Jéd-l)2 (k5)
vhere X is the standard normal deviate for the appropriate probability
level and d is the degrees of freedom, we find that the tabulated value
of the chi square variate for 270 degrees of freedom at the .05 prob- |
ability level is 309.13163, and at the .0l probability level, it is
326.30672. Since the computed value exceeds this, we reject the hypothe-
sis of no difference among the four populations of the mean vectors and
variance-covariance matrices.

Now, to obtain the modified chi square approximation, we make
use of equation (39). Substituting into the equation, we get as our

statistic:

(-1.87824) 1n A
756 .68754 .

[[(323/135)(.05311) - 2| 1nn .

Again, this value exceeds the tabulated chi square value for 270 degrees
of freedom at the .0l probability level, and so, our conclusion to re-
ject the null hypothesis remains unaltered.

To obtain the statistic approximately distributed as an "F"

variable, we must first compute f. and b given by equations (40) and

1
(41). Substituting, we find that:
£ = 272/.00383 = 71018.277,

and:



37

b= 270 . = 289.4915.
.936L7 - (270/71018.277)

Therefore, the test statistic -(2 1n kl)/b is equal to 2.78329. The.
tabulated "F" values for 270 and » degrees of freedom are 1.17 and 1.25
for the .05 and .0l probability levels respectively. Since 2.78 is
greater than 1.25, we again conclude that the null hypothesis is to be
rejected, so all three of the approximations, simple chi square, modified
chi square and F, yield the same conclusion.

Rejection of Hl does not yield information as to whether the
existing difference is among the mean vectors, the variance-covariance
matrices, or both. It is, therefore, imperative to attempt to obtain

such information if possible. The next logical step would be to test

H2: the four populations have equal variance-covariance matrices irre-

spective of the means. If this hypothesis is not rejected, we then know
that any differences must involve only the means; however, if it is
rejected, then we will know only that the variance-covariance matrices
are not equal but we will have no information about the means. To my
knowledge, there is no good solution to the multivariate problem of
testing for differences among mean vectors given that the variance-co-
variance matrices are unequal.

Therefore, let us use the approximations derived in CHAPTER 5
to test Hp. The test criterion, A,, is given by equation (10), and
using the calculations given in (42) and (43), we obtain:

In Ay = - 3761.93945 + 3393.57T764
= - 368.36181.

1l

Turning now to the approximate distributions, -2 1n Ay = 736.72362 is
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distributed approximately as chi square with 2p (p+1)(k-1) = 234 degrees
of freedom under H2. Again making use of equation (hS), we find the
tabulated chi square values for 234 degrees of freedom and probability
levels of .05 and .0l to be 270.99680 and 286.47802 respectively.

To obtain the modified chi square statistic, it is necessary
to use equation (38) to obtain:

[}323/117)(.05311) -2] I1nh,=-1.85338 1n Xy

682. 71441,

Finally for the "F" approximation, we need:

£, = 236/ .0654k = 3606.357,
and:
b = 234 = 271.52156.
92667 - (234/3606.357)
Therefore:

(- 21n xe)/b = 2.71331.
The tabulated "F" values for 234 and « degrees of freedom at the .05 and
.0l probability levels are 1.1T7 and 1.25 respectively.

As with Hl’ the conclusions yielded by use of the three approxi-
mations are the same, namely, to reject the hypothesis of equality of the
four population variance-covariance matrices.

As was pointed out earlier, it is not possible to adequately
test for equality of the four mean vectors; however, if we visually
compare the sample values given in Table 3, we see that the only size-
able differences occur in the variables Xh (ventricular rate), XT (mean
QRS axis), xg (maximum depth of Q), X0 (maximum amplitude of R), and

X5 (maximum ST segment displacement). Considering X), it seems that
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the two samples from dying patients had faster ventricular rates than
the two living groups. There does not seem to be a relationship with
age. This difference is probably a reflection of shock since no pa-
tients in our group who developed shock survived. All of these people
had rapid pulses (i.e. over 100), and so would tend to increase the
average. The difference in mean QRS axis seems to represent an age
related rather than a mortality related phenomenon. This tendency to-
wards a leftward shift of the QRS axis with increasing age has been re-
ported by Hiss (1960), and is probably of no significance in mortality
prediction. The depth of the Q wave is a very gross measure of the size
of the ;nfarcted area of the myocardium. In this study, there is an
apparent tendency for the dying patients to have a deeper @ wave than
those who survived. Whether differences of this magnitude are of clini-
cal importance is debatable since the depth of the Q wave is influenced
by many factors including electrode placement, and spatial orientation
of the heart in the chest. These same comments are also applicable to
the ST segment displacement since it is also a gross measure of the
size of the infarcted area. It appearé that there is a smaller R ampli-
tude in the dying group as compared to the survivors. This also may be
due to the influence of the patients in shock.

Let us now consider the variances of the twelve variables in
the four samples. Here, we see large differences occurring between the
dying and living groups in all variables except possibly the QT interval.
This is also apparently true of the covariances as well. In every case
except for the R wave amplitude, the dying groups are more variable than

the living. This finding is compatible with an increased incidence of
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other cardiac defects (as for example, conduction and rhythm abnormalities)
in the dying group. One would of course, anticipate that the incidence
of death would increase with the presence of other cardiac abnormalities.
However, this finding is also compatible with the possibility that many
of the patients who died had measurements near the extremes of the
"normal ranges" and that a combination of several "borderline" measure-
ments might indicate a poor prognosis. Also, these findings could merely
represent sampling errors in that the dying samples might not truly re-
present the populations from which they were obtained and therefore,
these variance estimates are too high. Finally, it may be that patients
who do not survive may be more electrocardiographically variable than
those who do survive, and therefore, this higher inter-patient variation
may be a reflection of a higher intra-patient variability. A second
larger study aimed specifically at answering these questions should be
performed before a final decision is made.

In summary, application of the statistical theory for the test-
ing of three null hypotheses concerning the mean vectors and variance-
covariance matrices of four multivariate populations of electrocardio-
graphic measurements resulted in rejection of the hypotheses of equality
of both the mean vectors and variance-covariance matrices and of equality
of the variance-covariance matrices irrespective of the means. Examina-
tion of these matrices revealed that, in general, the dying groups were
more variable in all of the measurements except the QT interval.

Possible explanations for this were discussed, but the most likely ex-
planation is that these differences reflect an increased incidence of

cardiac complications such as arrythmias and conduction abnormalities
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in the dying patients. However, further studies involving more patients

will be necessary before a definite answer can be given.
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TABLE 4

VARIANCE-COVARIANCE MATRIX

Sample 1: Living, Under 65
X X, x3 X), X5 X¢
Xl .000961 | .0000k5 .0000kk -.107475 .000155 | .001392
X2 .000257 .000027 .030610 .000035 | .000283
X3 .003040 -.382277 .000040 |-.000413
Xh 300.9182 -.033675 | .938600
X5 .000296 | .000192
X .248200
%7
Xg
X
9
X
10
Xll
X
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TABLE 4 - Continued

Semple 1: Living, Under 65

X7 *g X9 10 X1 X2
Xy -.091680}] .000129 -.000272] -.007733| .000005 .000987
X, -.028150 |- .000092 -.013890 00746k} 000045 003779
Xy .383380 |-.000125 -.039141 .036841| .000001 | -.000376
Xh 25.1290 .0L0866 20.7817 |-20.0596 .024205 2.1992
x5 .082490 | .000189 .003498 009294 { - .000001 .002873
X6 2.2822 |-.000761 .193900| -.136000]-.000498 .002100
X 2738.5408 345475 | 83.9833 |-27.7436 .059946 | 8.3549
X8- .002621 .288145] -.060189| .0000OL 01722k
X, 101.3470 [-18.1576 .001102 | 6.5151
X0 148.8965 .030839 | -1.0585
X, .000163 .000071
X5 1.7654
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TABLE 5

VARTANCE-COVARTANCE MATRIX

Sample 2: ILiving, Over 65
xl x2 x3 xh X5 X6

xl .003306 | .000072 - .00004k ~.307585] .000809 .014882
x2 .000233 .000068 -.031621] -.000025 | -.000157
x3 .003937 -.692452] .000110 | -.005589
XLL L67.7136 -.107015 .104200
x5 .000596 .006187
X 389800

6 369
X

T
X8
X

9
XlO
X

11
X

12
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TABLE 5 - Continued

Sample 2: Living, Over 65
X, Xg x9 X Xy X1n
X, -.167537( .000248 .0183k1 -.076727 .000026 -.015148
X, -.046335) .000049 -.021176 .001885 000041 .000786
X5 - .L07826] -.000145 -.008299| -.0152T70 .000005 -.00901k
X), | 17h.0580 | .090983 33.4909 |[-13.5888 .014082 3.9545
X5 -.036560] - .000235 -.0595k4}  -.020555 .000021 -.002177
X, -.102100{ .002111 -.024600| -1.0376 .000793 -.094100
X7 2798 .1590 .2k7023 -27.6965 55.5556 .0Th211 -1.4005
Xg .003323 299576 -.072913 001614 .017525
x9 111.8856 |-18.6237 .005306 4.1510
ch 61.2180 .0342k9 -.890300
X1 000130 .000711
X 2.2890
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TABLE 6

VARIANCE-COVARIANCE MATRIX

Sample 3: Dying, Under 65
X X, X3 XLL XS X6

Xl .004020 | -.000341 | -.000334 .184816 .000512 | .011T722
X, .000645 | -.000060 -.046376 -.000036 }-.003935
x3 .003026 -1.0468 .000126 | -.00001T
X), 725.8982 -.123531 | .383800
x5 .000478 | .005373
X6 .367800
X

7
Xg
X

9
X

10

Xll
X
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TABLE 6 - Continued

Semple 3: Dying, Under 65

XT X8 X9 10 Xll X:L2
Xy 1.5315 000450 .132541]  -.065130|-.000035 .031520
X, -.307101} .000242 .008724 -.026367| .000189 .001472
X3 -.271110] -.000088 -.086000 .026666 |-.000589 -.022177
X, |-270.241k .1934k4k4 | 69.3950 | -2.1990 | .461196 | L4.k928
Xs .555797| - .000179 .030338] -.030956 |-.000013 .014856
X¢ 20.9830 .002933 1.0985 -.670800]| .009587 .303400
XT hook.2513 .856666 64.8406 | -92.7681 .156961 | 52.9396
Xg 004150 525777l -.165777 |-.001566 .00k222
x9 135.5768 {-29.5198 |-.190k09 2.4754
XlO ho.1217 .0k8268 | -2.7430
X149 007366 .015396
X L4.9k37




L8

TABLE T

VARTANCE-COVARTANCE MATRIX

SN \ON OON _qN O\N \nN

P
l_l

L
[\Y]

Sample 4: Dying, Over 65
Xl Xé x3 Xﬁ xs X6

Xl 004851 .000026 .000243 -.000679| .001178 .020338
X2 ;ooo631 -.000098 -.012532 .000056 | -.000T706
X3 .003865 -.556054| .000420 .003019

xh 597.3712 -.008757 | 1.082k
.0010k5 .00987k4
430800
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TABIE 7 - Continued

Sample 4: Dying, Over 65
X7 Xg % *10 11 %12
X -.511357| -.00003k -.073101f -.027543 .000065 -.002001
X, -.129026 | -.000088 -.042439| -.018891 | -.000010 .001213
X3 -.606670| .000002 -.003461} .013800 } -.000088 .019717
xh -1.4355 .000987 419399} -.070519 | -.000600 - .0Lk0256L
X5 -.103485| .000309 .063149} -.006112 .000068 .003876
Xe -7.1832 -.001328 .553300] -.430100 .001113 .076200
x7 3495.8534 -.331610 | -95.3485 |62.0913 317337 | -11.3221
Xg .002320 .258305| -.0k7362 | -.000093 .006L45k4
X9 73.0024 |-7.5769 -.027379 . TTOL00
%10 41.3615 .039981 | -5.2319
Xll .0000k1 -.009993
12 5.4393
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TABLE 8

VARTANCE-COVARIANCE MATRIX

N
All Samples Pooled And Adjusted For Grand Mean (Vo)

X, X, X3 X, X5 X
X .002675 | -.000090 .000167 -.201762 .000595 | .009100
X, .000421 | -.000083 .062103 -.000031 {-.00046T
X, .003523 -.673325 .000195 |-.000979
X, 521.4965 -.096556 | .798000
x5 .000566 | .004035
X .331L400
X?
Xg
%
10
1
X

=
no
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TABLE 8 - Continued

A1l Samples Pooled And Adjusted For Grand Mean (Vo)

X Xg X X4 X, X,
X, .039097| .000003 022135 -.012272| .000009 | -.058530
X, -.983600( .000021 -.010332| -.01k261| .000061 006419
x3 -.072389 |-.000156 -.0k354L .042088| - .000102 -.00796k
x,+ 3.6862 .129085 42,9710 |-28.8832 .051436 6.3838
x5 .125432] .000049 -.00019k .00Lk396] .000016 .000065
X6 2.1600 .000069 .374000{ -.415700| .0O1TOL .030800
X, 3262.3470 .035169 | 25.0516 | -3.9598 .070287 | 6.8841
Xg .002937 .320178| -.079566|~-.0001Tk 016457
X 9 103.6011 |-19.1231 .022540 4.9710
X0 51.9087 .03k225 | -2.8191
X1 .001101 .000957
X 3.1839

12
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TABLE 9

VARTANCE-COVARIANCE MATRTX

A11 Samples Pooled (\/}a)

X

X

X

X

X

1 2 3 L 5 6

X, | -002599 - .0000kT 000090 .149kos5 | .000558 | .009012
X, .000391 | =-.000043 032704 | -.000007 | -.000508
Xé .003439 -.616379 | .00016k4 | -.001048
Xu 480.1972 -.076k4T2 . 750500
X5 .000539 .003935
X .327700
XT

Xg

X9

10

X1

X

=
o
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TABLE 9 - Continued

A1l Samples Pooled (Vé)

X

X

X

X
10

X

X

-
o

T 8 9 11 12
X, -.04lk19k| .000029 .027kok .0228L45} .000012 -.002681
X, -.090986] .000001 -.013895| -.008868] .000056 .00L4433
x3 -.059762] .000129 -.037528 .03091L{ -.000095 -.00kT720
Xu -1.7757 . 10473k 38.0102 |-21.4602 .041351 L.0807
X5 .103160{ .000059 .0014k1} -.000292{ .000011 .001712
X6 2.2662 .00027h .345300f -.433600{ .001503 .030500
x7 3193.7945 .0k6063 25.0485 -2.6L77 066270 7.5130
X8 .00291L .316168| -.073679]-.000188 .015079
Xy 102.8632 |-18.394k .024923 L. 7097
X0 50.3845 034640 -2.3809
X1q .108781 .0006LT
X 3.0382
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