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Abstract

Dark energy is the most important unsolved mystery in cosmology today. Galaxy

clustering provides one of the prime probes of dark energy. This work is focused on

developing robust analysis techniques for interpreting galaxy clustering data. These are

crucial for probing dark energy using galaxy clustering data.

First, we present a method to measure the effective distance to z = 0.35, DV (0.35)

from the overall shape of the spherically-averaged two-point correlation function (2PCF)

of the Sloan Digital Sky Survey Data Release 7 luminous red galaxy sample. We find

DV (0.35) = 1428+74
−73 Mpc without assuming a dark energy model or a flat Universe. We

find that the derived measurement of rs(zd)/DV (0.35) = 0.1143 ± 0.0030 (the ratio of

the sound horizon at the drag epoch to the effective distance to z = 0.35) has tighter

constraint and is more robust with respect to possible systematic effects. It is also nearly

uncorrelated to Ωmh2 which might be sensitive to systematic effects.

Then, we generalize the method to measure the Hubble parameter, H(z), and angu-

lar diameter distance, DA(z), from the two-dimensional 2PCF, and we find H(0.35) =

82.1+4.8
−4.9 km s−1 Mpc−1, DA(0.35) = 1048+60

−58 Mpc. We also find that the derived mea-

surements of {H(0.35) rs(zd), rs(zd)/DA(0.35)} = {13020±530(km/s), 0.1518±0.0062}

(with the correlation coefficient r = −0.0584) are nearly uncorrelated, have tighter

constraints and are more robust with respect to possible systematic effects. Combin-

ing our results with the cosmic microwave background and supernova data, we obtain

Ωk = −0.0004 ± 0.0070 and w = −0.996 ± 0.043 (assuming a constant dark energy

equation of state).

Our results represent the first measurements of H(z) and DA(z)from galaxy cluster-

ing data. Our work has significant implications for future surveys in establishing the

feasibility of measuring both H(z) and DA(z) from galaxy clustering data.

xi



Chapter 1 Introduction

The discovery that the expansion of the universe is accelerating was first made by

Riess et al. (1998) and Perlmutter et al. (1999), with supporting evidence for this obser-

vation strengthening over time. The cause for the observed acceleration is unknown, and

is usually referred to as “the dark energy problem”. Solving the mystery of the observed

cosmic acceleration is one of the most exciting challenges in cosmology today.

The cosmic large-scale structure from galaxy redshift surveys provides a powerful

probe of dark energy and the cosmological model that is highly complementary to the

cosmic microwave background (CMB) (Bennett et al., 2003), supernovae (SNe) (Riess et

al., 1998; Perlmutter et al., 1999), and weak lensing (Wittman et al., 2000; Bacon, Re-

fregier, & Ellis, 2000; Kaiser, Wilson, & Luppino, 2000; van Waerbeke et al., 2000). The

scope of galaxy redshift surveys has dramatically increased in the last decade. The PSCz

surveyed ∼ 15, 000 galaxies using the Infrared Astronomical Satellite (IRAS) (Saunders

et al., 2000), the 2dF Galaxy Redshift Survey (2dFGRS) obtained 221,414 galaxy red-

shifts (Colless et al., 2001, 2003), and the Sloan Digital Sky Survey (SDSS) has collected

930,000 galaxy spectra in the Seventh Data Release (DR7) (Abazajian et al., 2009). The

ongoing galaxy surveys will probe the Universe at higher redshifts; WiggleZ is surveying

240,000 emission-line galaxies at 0.5 < z < 1 over 1000 square degrees (Blake et al.,

2009), and BOSS is surveying 1.5 million luminous red galaxies (LRGs) at 0.1 < z < 0.7

over 10,000 square degrees (Eisenstein et al., 2011). The planned space mission Euclid

will survey over 60 million emission-line galaxies at 0.5 < z < 2 over 20,000 square

degrees (Cimatti et al., 2009; Wang et al., 2010).

Large-scale structure data from galaxy surveys can be analyzed using either the

power spectrum or the correlation function. Although these two methods are simple

Fourier transforms of one another, the analysis processes are quite different and the

results cannot be converted using Fourier transform directly because of the finite size of
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the survey volume. The SDSS data have been analyzed using both the power spectrum

method (see, e.g., Tegmark et al. (2004); Hutsi (2005); Padmanabhan et al. (2007); Blake

et al. (2007); Percival et al. (2007, 2010); Reid et al. (2009)), and the correlation function

method (see, e.g., Eisenstein et al. (2005); Okumura et al. (2008); Cabre & Gaztanaga

(2008); Martinez et al. (2009); Sanchez et al. (2009); Kazin et al. (2010a); Chuang, Wang,

& Hemantha (2010)). While previous work has focused on the spherically averaged two-

point correlation function (2PCF), or the radial projection of the two-dimensional two

point correlation function (2D 2PCF), we measure and analyze the full 2D 2PCF of

SDSS LRGs in this study.

The major features in the galaxy clustering at large scales (i.e., s > 40h−1Mpc) are

baryon acoustic oscillations (BAO), which were the acoustic oscillations in the photo-

baryon fluid while photons and baryons were tightly coupled through Compton scattering

of electrons before the last scattering of CMB photons. These oscillations froze at the

decoupling of CMB photons, and imprinted their signatures in both the CMB and matter

distribution. The scale of BAO corresponds to sound horizon at the drag epoch (∼150

Mpc), which is precisely measured using CMB data, thus it can be used as a standard

ruler. Although we are fitting the overall shape of the 2PCF instead of measuring the

scale of BAO only, the primary power of the constraints comes from BAO features.

Geometric constraints on dark energy are derived from the measurement of distances.

The comoving distance to an object at redshift z is given by:

r(z) = cH−1
0 |Ωk|−1/2sinn[|Ωk|1/2 Γ(z)], (1.1)

Γ(z) =
∫ z

0

dz′

E(z′)
, E(z) = H(z)/H0

where sinn(x) = sin(x), x, sinh(x) for Ωk < 0, Ωk = 0, and Ωk > 0 respectively; and the
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expansion rate the universe H(z) is given by

H2(z) ≡
(

ȧ

a

)2

(1.2)

= H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩXX(z)

]
,

where Ωm, Ωr, Ωk, and ΩX are the density fractions of matter, radiation, curvature, and

dark energy today, with Ωm + Ωr + Ωk + ΩX = 1, and the dark energy density function

X(z) is defined as

X(z) ≡ ρX(z)
ρX(0)

, (1.3)

where ρX(z) is the density of dark energy. Note that Ωr � Ωm, thus the Ωr term is

usually omitted in dark energy studies, since dark energy should only be important at

late times. The angular diameter distance is given by

DA(z) ≡ r(z)
1 + z

. (1.4)

The power of galaxy clustering as a dark energy probe lies in the fact that H(z)

and DA(z) can in principle be extracted simultaneously from data (Blake & Glazebrook,

2003; Seo & Eisenstein, 2003; Wang, 2006). This has not been achieved in the previous

work in the analysis of real data. Okumura et al. (2008) concluded that SDSS DR3 LRG

data were not sufficient for measuring H(z) and DA(z); they derived constraints on

cosmological parameters assuming that dark energy is a cosmological constant. Cabre &

Gaztanaga (2008) measured the linear redshift space distortion parameter β, galaxy bias,

and σ8 from SDSS DR6 LRGs. Gaztanaga, Cabre, & Hui (2009) obtained a measurement

of H(z) by measuring the peak of the 2PCF along the line of sight. However, Kazin et

al. (2010b) showed that the amplitude of the line-of-sight peak is consistent with sample

variance.

First, we present the method to obtain dark energy and cosmological model con-

straints from the spherical-averaged 2PCF, without assuming a dark energy model or

3



a flat Universe. We demonstrate the feasibility of extracting H(z) and DA(z) by scal-

ing the spherical-averaged 2PCF (which leads to highly correlated measurements). And

then, we obtain robust measurements of H(z) and DA(z) through scaling, using the 2D

correlation function measured from the same sample of SDSS DR7 LRGs (Eisenstein

et al., 2001). This sample is homogeneous and has the largest effective survey volume

to date for studying the quasi-linear regime (Eisenstein et al., 2005). In Chapter 2, we

introduce the galaxy sample used in our study. In Chapter 3, we describe the details of

our method that use the spherical-averaged 2PCF and present our results. In Chapter

4, we describe how we generalize the previous method and apply on the 2D 2PCF and

the results are presented as well. We show the dark energy and curvature constraints we

obtain in Chapter 5. We summarize and conclude in Chapter 6.
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Chapter 2 Data

In this chapter, we introduce the observed data and the mock catalogs we use.

2.1 Galaxy Sample from SDSS

The SDSS has observed one-quarter of the entire sky and performed a redshift survey

of galaxies, quasars and stars in five passbands u, g, r, i, and z with a 2.5m telescope

(Fukugita et al., 1996; Gunn et al., 1998, 2006). We use the public catalog, the NYU

Value-Added Galaxy Catalog (VAGC) (Blanton et al., 2005), derived from the SDSS II

final public data release, Data Release 7 (DR7) (Abazajian et al., 2009). We select our

LRG sample from the NYU VAGC with the flag primTarget bit mask set to 32. K-

corrections have been applied to the galaxies with a fiducial model (ΛCDM with Ωm = 0.3

and h = 1), and the selected galaxies are required to have rest-frame g-band absolute

magnitudes −23.2 < Mg < −21.2 (Blanton & Roweis, 2007). The same selection criteria

were used in previous papers (Zehavi et al., 2005; Eisenstein et al., 2005; Okumura et

al., 2008; Kazin et al., 2010a). The sample we use is referred to as “DR7full” in Kazin

et al. (2010a). Our sample includes 87000 LRGs in the redshift range 0.16-0.44. The

average weighted redshift is 0.33.

Spectra cannot be obtained for objects closer than 55 arcsec within a single spec-

troscopic tile due to the finite size of the fibers. To correct for these “collisions”, the

redshift of an object that failed to be measured would be assigned to be the same as

the nearest successfully observed one. Both fiber collision corrections and K-corrections

have been made in NYU-VAGC (Blanton et al., 2005). The collision corrections applied

here are different from what has been suggested in Zehavi et al. (2005). However, the

effect should be small since we are using relatively large scale which are less affected by

the collision corrections.

We construct the radial selection function as a cubic spline fit to the observed number

density histogram with the width ∆z = 0.01 (see Fig. 2.1). The NYU-VAGC provides
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Figure 2.1: The radial selection function of the LRG sample used in this study. The gray
bars are computed from the sample and the blue line is the cubic spline fit of these bar
values. We compute the radial selection function in the form of the number of galaxies
per unit redshift instead of the number density in comoving coordinate, so that we don’t
need to assume a fiducial model while generating the random catalog with the radial
selection function.

the description of the geometry and completeness of the survey in terms of spherical

polygons. Although the completeness of VAGC is determined based on the main galaxies

(Strauss et al., 2002), we adopt it as the angular selection function of our sample since

the main galaxies and LRGs should have similar angular selection functions (see the

appendix of Zehavi et al. 2005). We drop the regions with completeness below 60% to

avoid unobserved plates (Zehavi et al., 2005). The Southern Galactic Cap region is also

dropped.
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2.2 Mock Catalogs from LasDamas Simulation

Large Suite of Dark Matter Simulations (LasDamas) is a project to run a large

suite of cosmological N-body simulations that follow the evolution of dark matter in the

universe. The focus is to obtain adequate resolution in many large boxes, rather than a

single realization at high resolution. This will result in an enormous volume appropriate

for statistical studies of galaxies and halos.

The LasDamas simulations are designed to model the clustering of Sloan Digital Sky

Survey (SDSS) galaxies in a wide luminosity range, with the goal of assisting in the

modeling of galaxy clustering measurements. Specifically, the simulations are used to

construct detailed mock galaxy catalogs by placing artificial galaxies inside dark matter

halos using a Halo Occupation Distribution (Berlind and Weinberg , 2002) with param-

eters fit from the respective SDSS galaxy samples.
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Chapter 3 Measurements from Spherically Averaged Two-Point Cor-

relation Function

In this chapter, we describe the measurement of the spherically-averaged two-point

correlation function (1D 2PCF) from the observational data, construction of the theo-

retical prediction, and the likelihood analysis that leads to constraints on dark energy

and cosmological parameters.

3.1 Methodology

3.1.1 Measuring the Two-point Correlation Function

We calculate the comoving distances to every galaxy by assuming a fiducial model,

ΛCDM with Ωm = 0.25. We use the two-point correlation function estimator given by

Landy and Szalay (Landy & Szalay, 1993):

ξ(s) =
DD(s) − 2DR(s) + RR(s)

RR(s)
, (3.1)

where DD, DR, and RR represent the normalized data-data, data-random, and random-

random pair counts respectively in a distance range. The bin size we use in this study

is 5h−1Mpc. This estimator has minimal variance for a Poisson process. Random data

should be generated according to the radial and angular selection functions of the data.

One can reduce the shot noise due to random data by increasing the number of random

data. The number of random data we use is 10 times that of the real data. While

calculating the pair counts, we assign each data point a radial weight of 1/[1+n(z) ·Pw],

where n(z) is the radial selection function and Pw = 4 · 104 h−3Mpc3 as in Eisenstein et

al. (2005). The observed correlation function is shown in Fig. 3.1.
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Figure 3.1: The spherically-averaged two-point correlation function measured from the
SDSS DR7 data. The red triangles are the correlation function computed with the LRG
sample described in Chap. 2. The green circles are taken from Kazin et al. 2010a in
which the same fiducial model is used (ΛCDM with Ωm = 0.25) but the bin size they
use is 10h−1Mpc. Our result shows excellent agreement with that of Kazin et al. 2010a.
The black line is the average correlation function from LasDamas mock catalogs. The
error bars are the square roots of the diagonal elements of the covariance matrix we
have derived (see Sec. 3.1.3). The violet dashed line is the mean model from our MCMC
likelihood analysis (Ωmh2 = 0.105, Ωbh

2 = 0.0225, ns = 0.978, DV (0.35) = 1432Mpc).
Note that an MCMC analysis does not result in an accurate best fit model (Lewis &
Bridle, 2002).
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3.1.2 Theoretical Two-Point Correlation Function

We compute the linear power spectra at z = 0.33 by using CAMB (Lewis, Challinor,

& Lasenby, 2000). To include the effect of non-linear structure formation and peculiar

velocities on the BAOs, we calculate the dewiggled power spectrum

Pdw(k) = Plin(k) exp
(
− k2

2k2
?

)
+ Pnw(k)

[
1 − exp

(
− k2

2k2
?

)]
, (3.2)

where Plin(k) is the linear power spectrum, Pnw(k) is the no-wiggle or pure CDM power

spectrum calculated with the formula in Eisenstein & Hu (1998),

Pnw(k) = AknsT0(q), (3.3)

where A can be determined by matching Pnw(k) with Plin(k) at k ∼ 0 and

T0(q) =
L0

L0 + C0q2
,

L0(q) = ln(2e + 1.8q), (3.4)

C0(q) = 14.2 +
731

1 + 62.5q
,

where

q =
k

h Mpc−1

Θ2
2.7

Ωmh
, (3.5)

where Θ2.7 is the temperature of CMB divided by 2.7, and k? (in Eq. 3.2) is marginalized

over with a flat prior over the range of 0.09 to 0.131 We next use the Smith et al. (2003)

package, halofit, to compute the non-linear power spectrum:

rhalofit(k) ≡
Phalofit,nw(k)

Pnw(k)
(3.6)

Pnl(k) = Pdw(k)rhalofit(k), (3.7)

1Although k? can be computed by renormalization perturbation theory (Crocce & Scoccimarro, 2006;
Matsubara, 2007), doing so requires knowing the amplitude of the power spectrum, which is also marginal-
ized over in this study.
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where Phalofit,nw(k) is the power spectrum from applying halofit on the no-wiggle power

spectrum and Pnl(k) is the non-linear power spectrum. We compute the theoretical two-

point correlation function by Fourier transforming the non-linear power spectrum. We

show an example of the effect of applying dewiggle and halofit to the correlation function

in Fig. 3.2. Clearly, the damping of BAO is accurately described by the dewiggled linear

correlation function. Additional nonlinear effects are only important on very small scales.

The parameter set we use to compute the theoretical correlation function is {DV (z),

Ωmh2, Ωbh
2, ns, k?}, where Ωm and Ωb are the density fractions of matter and baryons,

ns is the power law index of the primordial matter power spectrum, h is the dimensionless

Hubble constant (H0 = 100h km s−1Mpc−1), and DV (z) is defined by

DV (z) ≡
[
(1 + z)2D2

A

cz

H(z)

] 1
3

, (3.8)

where H(z) and DA(z) are the Hubble parameter and the angular diameter distance at

the redshift, z. We set h = 0.7 while calculating the non-linear power spectra. The dark

energy and curvature dependence are absorbed by the effective distance, DV (z). Thus

we are able to extract constraints from data without assuming a dark energy model and

cosmic curvature.

3.1.3 Covariance Matrix

We use the mock catalogs from the LasDamas simulations2 (McBride et al., in prepa-

ration) to estimate the covariance matrix of the observed correlation function. LasDamas

provides mock catalogs matching SDSS main galaxy and LRG samples. We use the LRG

mock catalogs from the LasDamas gamma release with the same cuts as the SDSS LRG

volume-limited sample, −23.2 < Mg < −21.2 and 0.16 < z < 0.44. We have diluted the

mock catalogs to match the radial selection function of the observed data by randomly

selecting the mock galaxies according to the number density of the data sample. We cal-

2http://lss.phy.vanderbilt.edu/lasdamas/
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Figure 3.2: An example of the effect of applying dewiggle and halofit to the correla-
tion function. The black solid line is the linear correlation function without applying
dewiggle and halofit yet. The red dotted line is the dewiggled linear correlation function.
The green dashed line is the dewiggled correlation function including nonlinear effects
calculated using halofit. The damping of BAO is accurately described by the dewiggled
linear correlation function. Additional nonlinear effects are only important on very small
scales.
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culate the spherical-averaged correlation functions of the mock catalogs and construct

the covariance matrix as

Cij =
1

N − 1

N∑
k=1

(ξ̄i − ξk
i )(ξ̄j − ξk

j ), (3.9)

where N is the number of the mock catalogs, ξ̄m is the mean of the mth bin of the mock

correlation functions, and ξk
m is the value of mth bin of the kth mock correlation function.

The mock catalogs derived from N-body simulations require long computing times

and are very limited in availability. It is interesting to investigate whether there is

an easier, faster, and cheaper way to construct mock catalogs which could work as

well as those derived from N-body simulation. Towards this end, we have created 500

lognormal(LN) mock catalogs (Coles & Jones, 1991; Percival, Verde, & Peacock, 2004),

and computed the spherically-averaged correlation functions from these. The details

involved in creating LN mock catalogs are described in Appendix A. We compare the

correlation functions from the LasDamas mock catalogs and LN mock catalogs in Fig.

3.3; the error bars indicate the square roots of the diagonal elements of the covariance

matrixes. We also show the normalized covariance matrixes in Fig. 3.4 and 3.5. Clearly,

the results from the LasDamas mocks and our LN mocks are very similar to each other.

In particular, the input correlation function is accurately recovered by analyzing the

LN mock catalogs. Note that the LN mocks give larger errors on all scales, and on

scales smaller than ∼ 60h−1Mpc, the LN mock catalogs give much larger errors than the

LasDamas mock catalogs (see Fig. 3.6).

We use the covariance matrix computed from the LasDamas SDSS mock catalogs,

since these are more realistic than the lognormal mock catalogs, and give smaller errors

for the measured correlation function. It is interesting to note that in the absence of

mock catalogs derived from cosmological N-body simulations, lognormal catalogs can be

used for a conservative estimate of the covariance matrix of the correlation function.
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Figure 3.3: Spherical-averaged 2PCF of the mock catalogs. The black solid line is
computed from the LasDamas mock catalogs. The red dashed line is computed from our
lognormal mock catalogs. The error bars are the square roots of the diagonal elements
of the covariance matrixes. The green dotted line is the input 2PCF for our lognormal
mock catalogs.
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Figure 3.4: The normalized covariance matrix computed from 160 LasDamas mock cat-
alogs. We show the covariance among 40 bins from 0 < s < 200h−1Mpc with bin size
5h−1Mpc.
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Figure 3.5: The normalized covariance matrix computed from 500 lognormal mock
catalogs. We show the covariance among 40 bins between the scale range, 0 < s <
200h−1Mpc, with the bin size, 5h−1Mpc.
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Figure 3.6: Square roots of the diagonal elements of the covariance matrixes. The
black dashed line is computed from the LasDamas mock catalogs. The red solid line is
computed from lognormal mock catalogs we create. One can see that LN mock catalogs
have larger covariance at smaller scale and two lines are close at larger scale.
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3.1.4 Likelihood

The likelihood is taken to be proportional to exp(−χ2/2), and χ2 is given by

χ2 ≡
Nbins∑
i,j=1

[ξth(si) − ξobs(si)]C−1
ij [ξth(sj) − ξobs(sj)] (3.10)

where Nbins is the number of bins used, ξth is the theoretical correlation function of

a model, and ξobs is the observed correlation function. Note that ξth(si) depends on

{DV (z),Ωmh2, Ωbh
2, ns}.

In principle, we should recalculate the observed correlation function while computing

the χ2 for different models. However, since we don’t consider the entire scale range of

the correlation function (we only consider s = 40 − 120 h−1Mpc in this study), we

might include or exclude different data pairs for different models which would render χ2

values arbitrary. Therefore, instead of recalculating the observed correlation function, we

apply the inverse operation to the theoretical correlation function to move the parameter

dependence from the data to the model, thus preserving the number of galaxy pairs used

in the likelihood analysis.

Let us define T as the operator converting the measured correlation function from

the fiducial model to another model, i.e.,

ξobs(s) = T (ξfid
obs (s)). (3.11)

where ξfid
obs (s) is the observed correlation function assuming the fiducial model. This

allows us to rewrite χ2 as

χ2 ≡
Nbins∑
i,j=1

{
T−1 [ξth(si)] − ξfid

obs (si)
}

C−1
fid,ij ·

·
{

T−1 [ξth(sj)] − ξfid
obs (sj)

}
, (3.12)

where we have used Eqs.(3.9) and (3.11).
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To find the operator T , note that the fiducial model is only used in converting redshifts

into distances for the galaxies in our data sample. In the analysis of galaxy clustering, we

only need the separation of a galaxy pair, and not the absolute distances to the galaxies.

For a thin redshift shell, we can convert the separation of one pair of galaxies from the

fiducial model to another model by performing the scaling (see, e.g., Seo & Eisenstein

(2003))

s′ =

√√√√(s cos θ
Hfid(z)
H(z)

)2

+

(
s sin θ

DA(z)

Dfid
A (z)

)2

, (3.13)

where θ is the angle between the radial direction and the direction of the line connecting

the pair of galaxies.

Eisenstein et al. (2005) argued that we can use one rescaling parameter, DV (z), to

convert the observed correlation function from the fiducial model to another model as

long as the new model is not very different from the fiducial one, and the redshift range

of the sample is not large. Then the separation of one pair of galaxies is converted from

the fiducial model to another by

s′ =
DV (z)

Dfid
V (z)

s. (3.14)

In this section, we discuss methods with one and two rescaling parameters, and show that

these two methods are equivalent for spherically-averaged data when certain conditions

hold (see Sec. 3.1.4).

Using One Rescaling Parameter

From eq. (3.14), the observed correlation function with the different model can be written

as follows:

ξobs(s) = ξfid
obs

(
Dfid

V (zeff )
DV (zeff )

s

)
, (3.15)

where zeff is the effective redshift of the sample and DV (z) is defined by Eq.(3.8).

The effective redshift we use in this study is zeff = 0.31. Since the results are
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insensitive to zeff (see Sec. 3.3), we rescale our result to zeff = 0.35 for comparing with

previous work. Eq. (3.15) can be rewritten as

ξfid
obs (s) = T−1(ξobs(s)) = ξobs

(
DV (zeff )

Dfid
V (zeff )

s

)
. (3.16)

We can apply the same inverse rescaling operation to the theoretical correlation

function:

T−1(ξth(s)) = ξth

(
DV (zeff )

Dfid
V (zeff )

s

)
. (3.17)

χ2 can be calculated by substituting eq. (3.17) into eq. (3.12).

Using Two Rescaling Parameters

From eq. (3.13), we can convert the spherically-averaged correlation function from some

model to the fiducial model by

ξfid
obs (s) = T−1(ξobs(s))

=
∫ π

0
dθw(s, θ)×

ξobs


√√√√(s cos θ

Hfid(z)
H(z)

)2

+

(
s sin θ

DA(z)

Dfid
A (z)

)2
 , (3.18)

where the weighting function w(r, θ) is given by

w(s, θ) =
nDD(s, θ)∫ π

0 dθnDD(s, θ)
, (3.19)

where nDD(s, θ) is the number density of the data pairs. We define inverse operation,

T−1, directly since T is not necessary in our calculation. We now apply the inverse
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operation to the theoretical correlation function:

T−1(ξth(s)) =
∫ π

0
dθw(s, θ)×

ξth


√√√√[s cos θ

Hfid(z)
H(z)

]2

+

[
s sin θ

DA(z)

Dfid
A (z)

]2
 . (3.20)

χ2 can be calculated by substituting eq. (3.20) into eq. (3.12).

Equivalence of Using One and Two Rescaling Parameters for Spherically-

Averaged Data

We now show that using one and two rescaling parameters while calculating the spherically-

averaged correlation function are equivalent to first order in approximation. If the size

of the survey is much larger than the scales of interest, nDD(s, θ) would be proportional

to s sin θ. Hence

w(s, θ) ∼ s sin θ∫ π
0 s sin θdθ

=
sin θ

2
. (3.21)

Next, if the model is close to the fiducial model, we can just consider the first order

terms of DV /Dfid
V , Hfid/H, and DA/Dfid

A which can be written as following:

DV

Dfid
V

' 1 + δV ,
Hfid

H
' 1 + δr,

DA

Dfid
A

' 1 + δa, (3.22)

where |δV |, |δr|, |δa| � 1. From the definition of DV (see Eq.[3.8]), one can obtain a

simple relation, 3δV ' δr + 2δa. Let’s consider a power law correlation function:

ξth(s) = sp, (3.23)
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where p is a real number. Eq.(3.20) can be rewritten as

T−1(ξth(s))

'
∫ π

0
dθ

sin θ

2

(√
[s cos θ(1 + δr)]

2 + [s sin θ(1 + δa)]
2

)p

' sp

2

∫ π

0
dθ sin θ

[
cos2 θ(1 + 2δr) + sin2 θ(1 + 2δa)

] p
2

' sp

2

∫ π

0
dθ sin θ

[
1 + p(cos2 θδr + sin2 θδa)

]
= sp

[
1 + p

δr + 2δa

3

]
' sp(1 + pδV )

'

(
DV

Dfid
V

s

)p

= ξth

(
DV

Dfid
V

s

)
(3.24)

The proof can be generalized to any function which can be expressed as

ξth(s) = sp1 + sp2 + sp3 + ... (3.25)

where pi are real numbers.

To measure the spherically-averaged correlation function, we have shown that using

one rescaling parameter, DV , and two rescaling parameters, H and DA, are equivalent

as long as the scales of interest are relatively small compared to the survey length scale,

and the constraint on DV is tight enough. A similar statement can be made for the

spherically-averaged power spectrum analysis.

3.1.5 Markov Chain Monte-Carlo Likelihood Analysis

We use CosmoMC (Lewis & Bridle, 2002) in a Markov Chain Monte-Carlo likelihood

analysis. The main parameter space that we explore is {Ωmh2, Ωbh
2, ns, DV (zeff ),

k?} and the prior ranges are {(0.025, 0.3), (0.01859, 0.02657), (0.865, 1.059), (725, 1345),
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(0.09, 0.13)} respectively. The dependence on h, the curvature, and dark energy param-

eters are absorbed into DV (zeff ).

We marginalize over the amplitude of the correlation function; this is equivalent

to marginalizing over galaxy bias×σ8 × rβ , where σ8 is the matter power spectrum

normalization parameter and rβ is the linear ratio between the correlation function in

the redshift space and real space which can be derived from the linear redshift distortion

parameter (Kaiser, 1987). Since the LRG data alone cannot give tight constraints on

Ωbh
2 and ns, we apply flat priors (7σWMAP ) on them which are wide enough so that

CMB constraints will not be double counted. In other words, the effect from the wide

flat priors could be ignored when combining our final results with CMB data.

3.2 Results

In this section, we present the model independent measurements of the parameters

we explore, {DV (0.35), Ωmh2}, obtained by using the method described in previous

sections. Although, the effective redshift we use is 0.33, the average weighted redshift,

we rescale all our results to zeff = 0.35 for comparing with previous work easily by

DV (0.35) = DV (0.33)
DV,fid(0.35)
DV,fid(0.33)

= 1.054DV (0.33). (3.26)

We have checked that the results is insensitive to the effective redshift in Sec. 3.3. We

derive the model independent measurements of H and DA for comparison with 2D re-

sults.

We validate our method by applying it to the LasDamas mock catalogs, and find

that our measurements are consistent with the input parameters of the simulations.

3.2.1 Model Independent Constraints on DV (0.35)

Without assuming a dark energy model or a flat Universe, we find that DV (0.35)

= 1428+74
−73 Mpc and rs(zd)/DV (0.35) = 0.1143 ± 0.0030, where rs(zd) is the comoving
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mean σ lower upper
DV (0.35)(Mpc) 1428 74 1355 1502

Ωmh2 0.105 0.016 0.090 0.121
rs(zd)/DV (0.35) 0.1143 0.0033 0.1113 0.1173

A(0.35) 0.439 0.020 0.419 0.459

Table 3.1: Measured cosmological parameters with flat prior 0.01859 < Ωbh
2 < 0.02657

and 0.865 < ns < 1.059 (±7σWMAP7). The standard deviations and the marginalized
bounds (68%) are listed as well.

sound horizon at the drag epoch calculated with the eq. (6) in Eisenstein & Hu (1998).

Fig. 3.7 shows one and two-dimensional marginalized contours of the parameters,

{DV (0.35), Ωmh2, rs(zd)/DV (0.35), A(0.35)}, where

A(z) ≡ DV (z)

√
ΩmH2

0

cz
. (3.27)

The measurements and the covariance matrix are listed in Table 3.1 and 3.2. The best

fit model from the MCMC likelihood analysis has χ2 = 6.32 for 16 bins of data used (in

the scale range of 40 h−1Mpc< s < 120 h−1Mpc with the bin size = 5h−1Mpc), for a set

of 6 parameters (including the overall amplitude of the correlation function).

The scale range of the correlation function we have selected is s = 40− 120 h−1Mpc.

In this range, the scale dependence of the redshift distortion and galaxy bias is small.

We cut the tail of the correlation function at s = 120 h−1Mpc because the high tail

(large correlation at large scales) cannot be fitted to any conventional model, and could

be due to systematic error or sample variance (see further discussion in Sec. 3.3).

At this point, we assume the high tail is simply due to sample variance, and might

disappear when much larger data sets become available. Unlike previous analyses by

other groups, we apply very weak flat priors (±7σWMAP7) on Ωbh
2 and ns instead of

fixing them to the best fit values from CMB data.
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Figure 3.7: 2D marginalized contours (68% and 95% C.L.) for DV (0.35), Ωmh2, rs(zd)
/ DV (0.35), and A(0.35). The diagonal panels represent the marginalized probabilities.

DV (0.35) Ωmh2 rs(zd)/DV (0.35) A(0.35)
DV (0.35) 1 -0.7890 -0.5561 -0.1727

Ωmh2 -0.7890 1 0.0056 0.7305
rs(zd)/DV (0.35) -0.5561 00056 1 -0.6181

A(0.35) -0.1727 0.7305 -0.6181 1

Table 3.2: Normalized covariance matrix with flat prior 0.01859 < Ωbh
2 < 0.02657 and

0.865 < ns < 1.059 (±7σWMAP7).
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mean σ lower upper
H(0.35) (km s−1Mpc−1) 83 17 68 96

DA(0.35) (Mpc) 1089 93 1002 1182
Ωmh2 0.105 0.017 0.089 0.122

H(0.35) rs(zd) 13500 2700 11200 15500
rs(zd)/DA(0.35) 0.151 0.012 0.140 0.161

A(0.35) 0.432 0.026 0.408 0.457

Table 3.3: Measured cosmological parameters with flat prior 0.01859 < Ωbh
2 < 0.02657

and 0.865 < ns < 1.059 (±7σWMAP7). The standard deviations and the marginalized
bounds (68%) are listed as well.

3.2.2 Model independent measurements of H(0.35) and DA(0.35)

In this section, we apply the method with two scaling parameters described in sec

3.1.4 to measure H and DA. We obtain the model independent measurements, H(0.35) =

83+13
−15 km s−1Mpc−1 and DA(0.35) = 1089+93

−87 Mpc, from the LRG data alone (see

Table 3.3). Table 3.4 shows the normalized covariance matrix of {H(0.35), DA(0.35),

Ωmh2, H(0.35) rs(zd), rs(zd)/DA(0.35),A(0.35)}, and Fig. 3.8 shows the 2D marginalized

contours of this parameter set.

Although using two rescaling parameters on the spherically-averaged correlation func-

tion cannot give better constraints on the cosmological parameters, it gives the model

independent measurements of H and DA which cannot be derived directly from the mea-

surement of DV . These can be compared to our result for the two-dimensional two-point

correlation function in Chapter 4, H(0.35) = 82.1+4.8
−4.9 km s−1 Mpc−1 and DA(0.35) =

1048+60
−58 Mpc. Not surprisingly, information is lost in the spherical averaging of data.

3.2.3 Validation Using Mock Catalogs

In order to validate our method, we have applied it to the mean of the spherically-

averaged 2PCF of the LasDamas mock catalogs. Again, we apply the flat and wide

priors (±7σWMAP7) on Ωbh
2 and ns, centered on the input values of the simulation

(Ωbh
2 = 0.0196 and ns = 1).
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Figure 3.8: 2D marginalized contours for 68% and 95% for H(z = 0.35), DA(z = 0.35),
Ωmh2, H(0.35) rs(zd), rs(zd) / DA(0.35), and A(0.35). The diagonal panels represent
the marginalized probabilities.
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mean σ input value
DV (0.35)(Mpc) 1349 69 1356

Ωmh2 0.120 0.015 0.1225
rs(zd)/DV (0.35) 0.1205 0.0059 0.1175

A(0.35) 0.441 0.026 0.452

Table 3.5: The mean, standard deviation, and the 68% C.L. bounds of {DV (0.35), Ωmh2,
rs(zd)/DV (0.35), A(0.35)} from the LRGfull mock catalogs of the LasDamas simulations.
Our measurements are consistent with the input values within 1σ.

Table 3.5 shows our measurements of {DV (0.35), Ωmh2, rs(zd)/DV (0.35), A(0.35)}

from the LasDamas mock catalogs of the SDSS LRG sample. These are consistent with

the input parameters, establishing the validity of our method.

3.3 Systematic Tests

Table. 3.6 shows the systematic tests that we have done varying key assumptions

made in our analysis. These include the range of scales used to calculate the correla-

tion function, the nonlinear damping scale, an overall shift in the measured correlation

function due to a systematic error.

We vary the effective redshift (from zeff = 0.33 to zeff = 0.35) used to calculate the

theoretical model. We rescale the results to z = 0.35 for comparison and find that the

results are insensitive to the effective redshift.

We also test the sensitivity of our results to the nonlinear damping scale, k?. Although

k? can be predicted accurately in the real space (Crocce & Scoccimarro, 2006; Matsubara,

2007), in the redshift space, it would also depend on the redshift distortions which cannot

be well determined from the spherically-averaged correlation function. In table. 3.6, one

can tell that the results are not sensitive to k?.

In principle, the range of scales chosen for the analysis should be as large as possible,

in order to derive the tightest constraints. However, we do not use the small scales

(s < 40 h−1Mpc), where the scale dependence of redshift distortion and galaxy bias are

not negligible and cannot be accurately determined at present. According to Fig. 5 in
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Eisenstein et al. (2005), these effects are negligible at s > 40 h−1Mpc. We vary the

minimum scales used and find that the rs(zd)/DV (0.35) is insensitive to it but Ωmh2

is not. This is one of the reasons we recommend to use rs(zd)/DV (0.35) but not Ωmh2

from this paper.

On larger scales (s > 130 h−1Mpc), the observed correlation is significantly higher

than expected in conventional models of galaxy clustering. This high tail problem was

reported in previous work, see, e.g., Eisenstein et al. (2005), Hutsi (2005), and Sanchez

et al. (2009). They found that the observed correlation function could be fitted better

by lowering all the data points by a constant. In other words, they assumed a constant

shift from some systematic error. Although this systematic error is unknown, we could

minimize its effect by using smaller scale. The reason is that the correlation function

has larger value at smaller scale so that the results are less sensitive to the shift. We

choose s = 120h−1Mpc as our boundary for the large scale and show that the results

are insensitive to the constant shift by lowering down the data points of the observed

correlation function by 0.002. We find that Ωmh2 varies by 1σ and rs/DV (0.35) only

varies by 0.2σ. Therefore, our measurement of rs/DV (0.35) is robust to the systematic

shift. This is another reason we recommend the use of the measured rs(zd)/DV (0.35),

but not Ωmh2, from this paper.
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Chapter 4 Measurements from Two-Dimensional Two-Point Correla-

tion Function

In previous chapter, we presented the method to obtain dark energy and cosmolog-

ical model constraints from the spherically-averaged 2PCF, without assuming a dark

energy model or a flat Universe. We demonstrated the feasibility of extracting H(z)

and DA(z) by scaling the spherically-averaged 2PCF (which leads to highly correlated

measurements). In this chapter, we present the method to obtain measurements of H(z)

and DA(z) through using the two-dimensional two-point correlation function.

4.1 Methodology

4.1.1 Measuring the Two-Dimensional Two-Point Correlation Function

We convert the measured redshifts of galaxies to comoving distances by assuming

a fiducial model, ΛCDM with Ωm = 0.25. We use the two-point correlation function

estimator given by Landy & Szalay (1993):

ξ(σ, π) =
DD(σ, π) − 2DR(σ, π) + RR(σ, π)

RR(σ, π)
, (4.1)

where π is the separation along the light of sight (LOS), σ is the separation in the

plane of the sky, DD, DR, and RR represent the normalized data-data, data-random,

and random-random pair counts respectively in a distance range. The LOS is defined

as the direction from the observer to the center of a pair. The bin size we use in this

study is 10 h−1Mpc×10 h−1Mpc. While calculating the pair counts, we assign each data

point a radial weight of 1/[1 + n(z) ·Pw], where n(z) is the radial selection function and

Pw = 4 · 104 h−3Mpc3 as in Eisenstein et al. (2005).
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4.1.2 Theoretical Two-Dimensional Two-Point Correlation Function

In the linear regime (i.e., large scales) and adopting the small-angle approximation

(which is valid on scales of interest), the 2D correlation function in the redshift space

can be written as (Kaiser, 1987; Hamilton, 1992)

ξ?(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (4.2)

where s =
√

σ2 + π2, µ is the cosine of the angle between s = (σ, π) and the LOS, and

Pl are Legendre polynomials. The multipoles of ξ are defined as

ξ0(r) =
(

1 +
2β

3
+

β2

5

)
ξ(r), (4.3)

ξ2(r) =
(

4β

3
+

4β2

7

)
[ξ(r) − ξ̄(r)], (4.4)

ξ4(r) =
8β2

35

[
ξ(r) +

5
2
ξ̄(r) − 7

2
ξ(r)

]
, (4.5)

where ξ(r) is the correlation function obtained from Eq. 3.6, β is the redshift space

distortion parameter and

ξ̄(r) =
3
r3

∫ r

0
ξ(r′)r′2dr′, (4.6)

ξ(r) =
5
r5

∫ r

0
ξ(r′)r′4dr′. (4.7)

Next, we convolve the 2D correlation function with the distribution function of random

pairwise velocities, f(v), to obtain the final model ξ(σ, π) (Peebles, 1980)

ξ(σ, π) =
∫ ∞

−∞
ξ?

(
σ, π − v

H(z)a(z)

)
f(v)dv, (4.8)
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where the random motions are represented by an exponential form (Ratcliffe et al., 1998;

Landy, 2002)

f(v) =
1

σv

√
2

exp

(
−
√

2|v|
σv

)
, (4.9)

where σv is the pairwise peculiar velocity dispersion.

The parameter set we use to compute the theoretical correlation function is {H(z),

DA(z), β, Ωmh2, Ωbh
2, ns, σv, k?}, where Ωm and Ωb are the density fractions of matter

and baryons, ns is the power law index of the primordial matter power spectrum, and h

is the dimensionless Hubble constant (H0 = 100h km s−1Mpc−1). We set h = 0.7 while

calculating the non-linear power spectra. On the scales we use for comparison with

data, the theoretical correlation function only depends on cosmic curvature and dark

energy through parameters H(z) and DA(z), assuming that dark energy perturbations

are unimportant (valid in simplest dark energy models). Thus we are able to extract

constraints from data that are independent of a dark energy model and cosmic curvature.

Fig.4.1(a) shows the 2D 2PCF measured from SDSS LRGs compared with a the-

oretical model. The measured 2D 2PCF of the SDSS LRGs has been smoothed by a

Gaussian filter with rms variance of 2h−1Mpc to illustrate the comparison of data with

model in this figure, as the unsmoothed data are very noisy. Smoothing is not used in our

likelihood analysis to avoid possibly introducing systematic biases. Fig. 4.1(b) shows the

2D 2PCF measured from a single LasDamas SDSS LRG mock catalog for comparison.

The similarity between the data and the mock in the range of scales we used (indicated

by the shaded disk) is apparent.

Fig.4.2 shows the averaged 2D 2PCF measured from the LasDamas mock catalogs

compared with a theoretical model. The contour levels are apparent in the measured

2D 2PCF even though no smoothing is used; this is due to the reduction of shot noise

achieved by averaging over 160 mock catalogs. Clearly, our 2D theoretical model provides

a reasonable fit to data on intermediate (and quasi-linear) scales. The deviations on

smaller scales may be due to the simplicity of the peculiar velocity model we have used.
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We do not use the smaller scales (s < 40 h−1Mpc), where the scale dependence of redshift

distortion and galaxy bias are not negligible and cannot be accurately determined at

present. According to Fig. 5 in Eisenstein et al. (2005) and Fig. 4 in Blake et al.

(2011), these effects are negligible at s > 40 h−1Mpc. On large scales, data become very

noisy as sample variance dominates. For these reasons, we will only use the scale range

of s = 40−120 h−1Mpc in our analysis. We do not consider wide-angle effects, since they

have been shown to be small on the length scales of interest here (Samushia et al. , 2011).

Since including a larger range of scales gives more stringent constraints, our choice of

s = 40 − 120 h−1Mpc represents a conservative cut in data to reduce contamination by

systematic uncertainties.

4.1.3 Likelihood

The likelihood is taken to be proportional to exp(−χ2/2) (Press et al., 1992), with

χ2 given by

χ2 ≡
Nbins∑
i,j=1

[ξth(si) − ξobs(si)]C−1
ij [ξth(sj) − ξobs(sj)] (4.10)

where Nbins is the number of bins used, sm = (σm, πm), ξth is the theoretical correlation

function, and ξobs is the observed correlation function. Note that ξth(si) depends on

{H(z), DA(z), β,Ωmh2, Ωbh
2, ns, σv, k?}.

Again, let us define T as the operator converting the measured correlation function

from the fiducial model to another model, i.e.,

ξobs(s) = T (ξfid
obs (s)), (4.11)

where ξfid
obs (s) is the observed correlation function assuming the fiducial model. This
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Figure 4.2: The average two-dimensional two-point correlation function (2D 2PCF) mea-
sured from 160 LasDamas SDSS LRGfull mock catalogs (solid black contours), compared
to a theoretical model with the input parameters of the LasDamas simulations and
{β, σv, k?} are set to {0.35, 300km s−1, 0.11hMpc−1} (dashed red contours). The gray
area is the scale range considered (s = 40−120 h−1Mpc ) in this study. The thick dashed
blue circle denotes the baryon acoustic oscillation scale. The contour levels are apparent
in the 2D 2PCF measured from mock catalogs, even though no smoothing is used. The
contour levels are ξ = 0.5, 0.1, 0.025, 0.01, 0.005, 0. The ξ = 0 contours are denoted with
dotted lines for clarity.
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allows us to rewrite χ2 as

χ2 ≡
Nbins∑
i,j=1

{
T−1 [ξth(si)] − ξfid

obs (si)
}

C−1
fid,ij ·

·
{

T−1 [ξth(sj)] − ξfid
obs (sj)

}
, (4.12)

where we have used Eqs.(3.9) and (4.11).

To find the operator T , note that the fiducial model is only used in converting redshifts

into distances for the galaxies in our data sample. In the analysis of galaxy clustering, we

only need the separation of a galaxy pair, and not the absolute distances to the galaxies.

For a thin redshift shell, we can convert the separation of one pair of galaxies from the

fiducial model to another model by performing the scaling (see, e.g., Seo & Eisenstein

(2003))

(σ′, π′) =

(
DA(z)

Dfid
A (z)

σ,
Hfid(z)
H(z)

π

)
. (4.13)

Therefore, we can convert the measured 2D correlation function from some model to the

fiducial model as follows:

ξfid
obs (σ, π) = T−1(ξobs(σ, π))

= ξobs

(
DA(z)

Dfid
A (z)

σ,
Hfid(z)
H(z)

π

)
.

(4.14)

This mapping defines the operator T .

We now apply the inverse operation to the theoretical correlation function:

T−1(ξth(σ, π)) = ξth

(
DA(z)

Dfid
A (z)

σ,
Hfid(z)
H(z)

π

)
. (4.15)

χ2 can be calculated by substituting eq. (4.15) into eq. (4.12).
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4.1.4 Markov Chain Monte-Carlo Likelihood Analysis

We use CosmoMC in a Markov Chain Monte-Carlo likelihood analysis (Lewis & Bri-

dle, 2002). The parameter space that we explore spans the parameter set of {H(0.35),

DA(0.35), Ωmh2, β, Ωbh
2, ns, σv, k?}. Only {H(0.35), DA(0.35), Ωmh2} are well con-

strained using SDSS LRGs alone. We marginalize over the other parameters, {β, Ωbh
2,

ns, σv, k?}, with the flat priors, {(0.1, 0.6), (0.01859, 0.02657), (0.865, 1.059), (0, 500)km

s−1, (0.09, 0.13)hMpc−1}, where the flat priors of Ωbh
2 and ns are centered on the mea-

surements from WMAP7 and has width of ±7σWMAP (with σWMAP from Komatsu et

al. (2010)). These priors are wide enough to ensure that CMB constraints are not double

counted when our results are combined with CMB data (Chuang, Wang, & Hemantha,

2010). We also marginalize over the amplitude of the galaxy correlation function, effec-

tively marginalizing over a linear galaxy bias.

4.2 Results

We now present the model independent measurements of the parameters { H(0.35),

DA(0.35), Ωmh2}, obtained by using the method described in previous sections. We

also present the derived parameters including H(0.35) rs(zd), rs(zd)/DA(0.35), rs(zd) /

DV (0.35), and A(0.35), where

DV (z) ≡
[
(1 + z)2D2

A

cz

H(z)

] 1
3

(4.16)

We recommend using {H(0.35) rs(zd), rs(zd)/DA(0.35)} instead of {H(0.35), DA(0.35),

Ωmh2} because they are more robust measurements from this study (see Sec. 4.3 for

more detail). We apply our method to the 2D 2PCF of the LasDamas mock catalogs and

find that our measurements are consistent with the input parameters of the simulations.
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Figure 4.3: 2D marginalized contours (68% and 95% C.L.) for {H(0.35), DA(0.35),
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4.2.1 Constraints on H(0.35) and DA(0.35) Independent of a Dark Energy

Model

Fig. 4.3 shows one and two-dimensional marginalized contours of the parameters,

{H(0.35), DA(0.35), Ωmh2, H(0.35) rs(zd), rs(zd)/DA(0.35), rs(zd)/DV (0.35), A(0.35)},

derived in an MCMC likelihood analysis from the measured 2D 2PCF of the SDSS LRG

sample. Table 4.1 lists the mean, rms variance, and 68% confidence level limits of these

parameters. Table 4.2 gives the normalized covariance matrix for this parameter set.

These are independent of a dark energy model, and obtained without assuming a flat

Universe.

The constraints on {H(0.35), DA(0.35), Ωmh2}, {H(0.35) rs(zd), rs(zd)/DA(0.35)},

rs(zd)/DV (0.35), or A(0.35)}, as summarized in Tables 4.1 and 4.2, can be used to

combined with any other cosmological data set to constrain dark energy and the cosmo-

logical model. We recommend using only {H(0.35) rs(zd), rs(zd)/DA(0.35)} since they

have tighter constraints than {H(0.35), DA(0.35)} and are robust in the systematic tests

we have carried out (see Sec. 4.3). In addition, H(0.35) rs(zd) and rs(zd)/DA(0.35) are

basically independent to Ωmh2 which might not a robust measurement in this study (see

Sec. 4.3).

The bestfit model from the MCMC likelihood analysis has χ2 = 112 for 99 bins of data

used (in the scale range of 40h−1Mpc< s < 120 h−1Mpc for 10h−1Mpc × 10h−1Mpc

bins), for a set of 9 parameters (including the overall amplitude of the correlation func-

tion) and the χ2 per degree of freedom (χ2/d.o.f.) is 1.24.

4.2.2 Validation Using Mock Catalogs

In order to validate our method, we have applied it to the 2D 2PCF of 80 LasDamas

mock catalogs (which are indexed with 01a-40a and 01b-40b). Again, we apply the

flat and wide priors (±7σWMAP7) on Ωbh
2 and ns, centered on the input values of the

simulation (Ωbh
2 = 0.0196 and ns = 1).
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mean σ input value
H(0.35) 81.1 4.1 81.79
DA(0.35) 1008 56 1032.8

Ωmh2 0.121 0.013 0.1225
H(0.35) rs(zd) 13030 610 13030

rs(zd)/DA(0.35) 0.1606 0.0078 0.1543
rs(zd)/DV (0.35) 0.1205 0.0046 0.1175

A(0.35) 0.440 0.019 0.452

Table 4.3: The mean, standard deviation, and the 68% C.L. bounds of {H(0.35),
DA(0.35), Ωmh2, H(0.35) rs(zd), rs(zd)/DA(0.35), rs(zd)/DV (0.35), A(0.35)} from the
2D 2PCF of 80 LasDamas mock catalogs (which are indexed with 01a-40a and 01b-
40b). Our measurements are consistent with the input values within 1σ, where each σ
is computed from the 80 means measured from the 80 mock catalogs. The unit of H is
km s−1 Mpc−1. The unit of DA, DV , and rs(zd) is Mpc.

Table 4.3 shows the means and standard deviations of our measurements of {H(0.35),

DA(0.35), Ωmh2, H(0.35) rs(zd), rs(zd)/DA(0.35), rs(zd)/DV (0.35), A(0.35)} from the

LasDamas mock catalogs of the SDSS LRG sample. These are consistent with the input

parameters, establishing the validity of our method.

4.3 Systematic Tests

Table. 4.4 shows the systematic tests that we have carried out varying key assump-

tions made in our analysis. These include the range of scales used to calculate the

correlation function, the nonlinear damping factor, the bin size, and an overall shift in

the measured correlation function due to a systematic error.

First, we fix the nonlinear damping factor, k? = 0.11, and find the results are basically

the same. To speed up the computation, we fix k? for the rest of the tests.

In this study, we marginalize over β with a wide flat prior (0.1 to 0.6) since our

method is not sensitive to β. We test fixing the value of β to 0.35, which is close to the

measurement from previous work with similar data but using different method (Cabre &

Gaztanaga, 2008), and find that our measurements of H(0.35) rs(zd) and rs(zd)/DA(0.35)

change by less than 1% compared to that of marginalizing over β.
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We vary the range of the scale and find that H(0.35) rs(zd) and rs(zd)/DA(0.35) are

insensitive to it. However, Ωmh2 is sensitive to the minimum scale chosen which could

imply that the scale dependent bias or redshift distortion is distorting larger scale than

we have expected. Therefore, we do not recommend to use Ωmh2 from this study. In the

case of s = 40 − 130h−1Mpc, rs(zd)/DA(0.35) is different from the fiducial result with

about 2σ, which is likely due to systematic errors responsible for the anomalously high

tail in the spherically-averaged correlation function (see Fig. 3.1) on large scales.

We vary the bin size to 8h−1Mpc×8h−1Mpc and find χ2/d.o.f.= 1.72, which can

be explained by the increase in the noise level with the increased number of bins. The

number of the mock catalogs used to construct the covariance matrix is 160 and the

number of bins used with bin size = 8h−1Mpc×8h−1Mpc is 159. One can expect the

covariance matrix would be too noisy to give reasonable results.

We also show that the results are insensitive to the constant shift by lowering down

the data points of the observed correlation function by 0.001 and 0.002.
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Chapter 5 Constraints on owCDM Model

We now present the cosmological parameter constraints for the owCDM model (non-

flat Universe with a constant dark energy equation of state). Table. 5.1 also shows the

constraints from cosmological microwave background (WMAP7) and supernova (Union2

compilation) data and their combination with SDSS LRG data. To include the con-

straints from WMAP7 (Komatsu et al., 2010), we use the constraints on the CMB shift

parameters {R, la} and z∗ by Wang, Chuang, & Mukherjee (2011) (see Appendix B). To

calculate the constraints from Union2 SNe (Amanullah et al., 2010), we use the add-on

code for cosmoMC which can be download from the website of Union2 SNe1. For a given

model, one could obtain χ2 for each data set, i.e. χ2
CMB and χ2

SN
2. To include the

constraint we obtained from the spherical-averaged 2PCF, one should add the following

term to the χ2 with

χ2
LRG1D =

[
rs(zd)/DV (0.35) − 0.1143

0.0033

]2

. (5.1)

To include the constraints we obtained from the 2D 2PCF, one should add the following

term to the χ2 with

χ2
LRG2D = ∆LRG2D

 280900 −1919

−1919 0.00003844

∆LRG2D (5.2)

where

∆LRG2D =

 H(0.35)rs(zd) − 0.13020

rs(zd)/DA(0.35) − 0.1518

 (5.3)

Combining all three data sets, LRG(2D), CMB, and SNe, and assuming the owCDM

model, we find that Ωk = −0.0004± 0.0070 and w = −0.996± 0.043, which is consistent

1http://supernova.lbl.gov/Union/
2While computing χ2

SN , we use the covariance matrix with systematics to obtain more reliable con-
straints from SNe

47



Ω
k

w
−1.5 −1 −0.5

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Figure 5.1: 2D marginalized contours for 68% and 95% for w and Ωk (owCDM
model assumed) from WMAP7 (dashed blue), WMAP7+Union2 SN (dash-dotted red),
WMAP7+Union2 SN+LRG1D (dotted black), and WMAP7+Union2 SN+LRG2D (solid
green). The straight solid black lines indicate that w = −1 and Ωk = 0.

with ΛCDM model (in agreement with previous work, see e.g., Serra et al. 2009; Wang

2009; Mortonson, Hu, & Huterer 2010; Zhao & Zhang 2010). Fig. 5.1 compares the con-

straints on w and Ωk in the owCDM model. We can see that the addition of SDSS LRG

data significantly tightens the constraints on dark energy and cosmological parameters.
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Chapter 6 Conclusion

We have presented our first results for the model independent constraints on dark

energy from the spherically-averaged correlation function and the two-dimensional cor-

relation function of SDSS DR7 data, using an MCMC likelihood analysis. We find

DV (0.35) = 1428+74
−73 and rs(zd)/DV (0.35) = 0.1143 ± 0.0030 from the spherically-

averaged correlation function. By scaling the spherically-averaged correlation function,

we find the Hubble parameter H(0.35) = 83+13
−15 km s−1Mpc−1 and the angular diameter

distance DA(0.35) = 1089+93
−87 Mpc.

We then generalize the method and find H(0.35) = 82.1+4.8
−4.9 km s−1 Mpc−1, DA(0.35) =

1048+60
−58 Mpc from the two-dimensional correlation function. These are the first mea-

surements of H(z) and DA(z) from galaxy clustering data. Our galaxy clustering mea-

surements of H(0.35) rs(zd) and rs(zd)/DA(0.35) can be used to combine with CMB and

other cosmological data sets to probe dark energy.

We recommend using H(0.35) rs(zd) and rs(zd)/DA(0.35) measured from the SDSS

LRGs for combination with other data sets, since they are tight constraints (4%) that are

nearly uncorrelated, and robust with respect to tests of systematic uncertainties. This

is as expected, since H(0.35) rs(zd) and rs(zd)/DA(0.35) correspond to the preferential

redshift separation along the line of sight, and the preferential angular separation in

the transverse direction respectively; these in turn arise from the BAO in the radial

and transverse directions. The measurable preferential redshift and angular separations

should be uncorrelated since they are independent degrees of freedom. The presence of

the BAO (although only marginally visible in Fig.1) leads to tight and robust constraints

on H(0.35) rs(zd) and rs(zd)/DA(0.35). Since most of the constraining power in our

analysis comes from fitting the overall shape of the galaxy correlation function on quasi-

linear scales, and not from fitting the BAO peaks, we refer to our measurements as

galaxy clustering measurements.
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We have validated our method by applying it to the mock catalogs from LasDamas,

and finding consistency between our measurements and the input parameters of the

LasDamas simulations for samples (see Table 3.5 and 4.3).

Our work has significant implications for future surveys in establishing the feasibility

of measuring both H(z) and DA(z) from galaxy clustering data. In future work, we will

optimize our method, and apply it to new observational data as they become available,

and to simulated data of planned surveys to derive robust forecasts for dark energy

constraints.
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Chapter A LN Mock Catalogs
One convenient way to generate mock galaxy catalogs for calculating covariance ma-

trix is using lognormal random fields which can approximate the present-day non-linear
fluctuation field (Coles & Jones, 1991). We create 500 lognormal (LN) density fields
(Coles & Jones, 1991; Percival, Verde, & Peacock, 2004) on a 5123 grid with box length
4096 h−1Mpc. We then draw a random Poisson variable with mean given by the selection
functions and lognormal field to create the mock catalogs. We follow the steps described
in Percival, Verde, & Peacock (2004) except that we don’t cut the input power at 0.25
Nyquist frequency because it makes the restored correlation function deviate from the in-
put one. With a input correlation function, ξ(r), the Gaussian field correlation function
is obtained by

ξG(r) = ln[1 + ξ(r)], (A.1)

and this can be Fourier transformed to the power spectrum, PG(k). A Gaussian density
field δG(r) is generated on the grid with this power spectrum, and the corresponding
lognormal field is calculated by

δLN (r) = exp
[
δG(r) −

σ2
G

2

]
− 1, (A.2)

where 1+δLN (r) is the lognormal density field which is always positive by definition and
σ2

G is the variance of the Gaussian density field which can be calculated by

σ2
G =

Ngrid∑
i,j,l=1

PG

[
(k2

xi
+ k2

yj
+ k2

zl
)

1
2

]
, (A.3)

where Ngrid is the number of grid points, kmn = 2π
L

(
n − Ngrid

2

)
, L is the box length,

and m = x, y, or z. Then, the mock catalogs can be constructed by drawing the Poisson
random variables with the means given by this lognormal field and the selection function
of the galaxy survey.

To compute the correlation function of these mock catalogs, one should create the
random data on the same grid as well to cancel out the effect of the finite size of the
grid. The input correlation function in this study is the theoretical correlation function
with parameters (Ωm = 0.25, Ωb = 0.04, h = 0.7, ns = 1) which are the same as the
input parameters of the LasDamas simulations. We fix k? = 0.11 and the amplitude is
adjusted to fit the averaged correlation function from the LasDamas mock catalogs we
use. We are not fitting the observed correlation function because we want to find out is
whether the LN mock catalogs could behave as good as LasDamas mock catalogs while
estimating the covariance matrix.
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Chapter B CMB Distance Priors
Wang & Mukherjee (2007) showed that CMB shift parameters (la, R), together with

Ωbh
2, provide an efficient and intuitive summary of CMB data as far as dark energy

constraints are concerned. It is equivalent to replace Ωbh
2 with z∗, the redshift to the

photon-decoupling surface (Wang, 2009).
The CMB shift parameters are defined as (Wang & Mukherjee, 2007):

R ≡
√

ΩmH2
0 r(z∗), la ≡ πr(z∗)/rs(z∗), (B.1)

and z? is the redshift to the photon-decoupling surface given by the fitting formula(Hu
and Sugiyama, 1996):

z∗ = 1048
[
1 + 0.00124(Ωbh

2)−0.738
] [

1 + g1(Ωmh2)g2
]
, (B.2)

where

g1 =
0.0783 (Ωbh

2)−0.238

1 + 39.5 (Ωbh2)0.763
(B.3)

g2 =
0.560

1 + 21.1 (Ωbh2)1.81
(B.4)

The comoving sound horizon at redshift z is given by

rs(z) =
∫ t

0

cs dt′

a
= cH−1

0

∫ ∞

z
dz′

cs

E(z′)
,

= cH−1
0

∫ a

0

da′√
3(1 + Rb a′) a′4E2(z′)

, (B.5)

where a is the cosmic scale factor, a = 1/(1 + z), and a4E2(z) = Ωm(a + aeq) + Ωka
2 +

ΩXX(z)a4, with aeq = Ωrad/Ωm = 1/(1+zeq), and zeq = 2.5×104Ωmh2(TCMB/2.7K)−4.

The sound speed is cs = 1/
√

3(1 + Rb a), with Rb a = 3ρb/(4ργ), Rb = 31500 Ωbh
2

(TCMB/2.7K)−4. We take TCMB = 2.725.
The redshift of the drag epoch zd is well approximated by Eisenstein & Hu (1998)

zd =
1291(Ωmh2)0.251

1 + 0.659(Ωmh2)0.828

[
1 + b1(Ωbh

2)b2
]
, (B.6)

where

b1 = 0.313(Ωmh2)−0.419
[
1 + 0.607(Ωmh2)0.674

]
, (B.7)

b2 = 0.238(Ωmh2)0.223. (B.8)

There are only four independent parameters among these five and ns is marginalized
over in this study. Therefore, there are only three parameters left, {la, R, z∗}. CMB data
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are included in our analysis by adding the following term to the χ2 of a given model with
∆p1 = la(z∗) − 302.35, ∆p2 = R(z∗) − 1.728, and ∆p3 = z∗ − 1091.32:

χ2
CMB = ∆pi

[
Cov−1

CMB(pi, pj)
]
∆pj , (B.9)

where the inverse covariance matrix of (la, R, z∗) from WMAP7 (Komatsu et al., 2010)
is given by (Wang, Chuang, & Mukherjee, 2011):

Cov−1
CMB =

 1.85710 25.9289 −1.14325
25.9289 5963.26 −99.3185
−1.14325 −99.3185 2.94429

 (B.10)
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