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CHAPTER I 

INTRODUCTION 

Motivation for Research 

Discrete-event simulation is often characterized as a "What-If" tool, capable of 

giving detailed answers to questions of the form "What will be the effect on the system 

performance if this change is made?". It provides a framework to make detailed design 

decisions before the system becomes operational. Recently simulation has become 

increasingly attractive as today's faster computers, electronic data collection facilities and 

integrated databases allow relatively quick access to an enormous amount of data 

typically needed for complex simulation models. Thus, discrete event simulation is 

becoming one of the most important design and analysis tools for complex manu

facturing systems. However, discrete event simulation is not without its disadvantages. 

An elaborate model generation process and long execution times are some major issues 

that hinder widespread usage of discrete event simulation as a tool for system analysis 

and design. 

Traditionally, simulation has been used in an off-line mode to support "once per 

design" decisions. The choices made then are established for the life of the system. 

Execution times for complex simulation models are frequently measured in minutes or 

hours. If many alternative system configurations are evaluated or _search based 

optimization is pursued, total lead time to arrive at an optimal decision may run in weeks 

or months. Thus, discrete event simulation in an off-line mode is still a problem. 

1 
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Interest is growing in expanding the range of application of simulation, using it in 

a more on-line role to support regular and repetitive decision making throughout the 

operational life of a manufacturing system [Rogers 91]. This type of repetitive decision 

making can be regarded as being performed by a hypothetical manufacturing controller 

(management or production control department in reality) operating on the manu

facturing system. Figure 1 depicts a simplified framework for production control of a 

manufacturing system. 

Framework of On-line Simulation 
Support for Production Control 

Parameters 
Constraints On-line 

Environmental u ..... Simulation , 

Variables/Events 
Control Modeling 
options 

~ 
J Performance 

Production J of options 

Controller , 
- ... Control Action 

)'.JV '- ) "' V '- ' ( - Physical 

Data Process on 

Base State 
Variables 

Shop Floor 

~ 

Figure 1. On-line Simulation Support for Production Control 
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A management information system reports the values of internal state variables, 

external environmental variables, parameters, and constraints and other database 

information to the production controller. On the basis of this information the production 

controller controls the manufacturing system. Since the state ofthe system is constantly 

changing, the controller must take action in a reasonably short time. An extended lag in 

the control action can be devastating to the manufacturing system performance as the 

cun-ent solution may quickly become outdated. This requires quick evaluation of 

alternative system decisions to amve at an optimal system configuration or control 

scheme. However, in reality discrete event simulation takes long model execution time. 

This means that discrete event simulation can be a sound candidate for evaluating 

alternative real time control strategies, only if the simulation execution times of the 

V system models are considerably reduced. Reduction of the simulation time of 

manufactming system models is one of the primary motivations of this research. Over 

the last thirteen years researchers have tried several approaches to improve the compu

tational performance of discrete event simulation. Some of the distinct approaches 

include vectorization techniques by Chandak and Browne [Chandal< 1983], functional 

decomposition approach by Comfort [Comfort 1984], execution of independent trials on 

different processors by Biles et al. [Biles 1985], fast simulation approach by Chen et al. 

[Chen 90] which replaces the event calendar by recursive mathematical system equations, 

and distributed simulation. This research proposes to use distributed simulation, which 

takes advantage of parallel processing technology, to simulate a discrete event model on 

multiple processors. The distributed simulation paradigm utilizes the inherent 

parallelism in manufacturing systems to construct smaller "chunks" of the model that can 

be executed concun-ently on parallel processors. Thus, the simulation execution time is 

reduced by applying a number of processors to simultaneously execute the discrete event 

simulation model. 
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As the manufacturing system is reconfigured, the simulation analysis requires a 

quick and accurate corresponding change in the simulation model of the system. This 

process is usually repetitive and entails continuous model updating and maintenance. If 

the model is written in traditional programming languages, the updating process can be 

quite cumbersome. What is needed is a superior modeling paradigm which allows quick 

but structured changes to the model. The specification of a concurrent, object oriented 

paradigm is a secondary motivation for the research. The proposed research uses object 

oriented modeling concepts that allow very quick model changes based on the cones

ponding system reconfigurations [Beaumariage 90]. 

In retrospect, the proposed research addresses two fundamental issues, rapidly 

modifiable system models and fast discrete event simulation model execution schemes. 

It considers an object oriented modeling paradigm for quickly reconfigurable models and 

distributed processing for faster simulation model execution. 

Overview of the Dissertation 

The remainder of this dissertation is presented in ten chapters, and a bibliography. 

Chapter II provides a detailed description of the problem statement. Chapter III reviews 

the literature relevant to this research. This includes literature related to object oriented 

modeling of manufacturing systems, distributed simulation, concmTent object oriented 

programming, and processor synchronization mechanisms. Chapter IV presents the 

statement of research by outlining the research goals and objectives. Chapter V discusses 

the research methodology including research plan, performance measures and 

expeJimental scenarios. Chapter VI provides a brief overview of the object miented 

modeling environment created for the research experimentation. Chapter VII evaluates 

concurrent object oriented programming constructs for parallel discrete event simulation. 

Chapter VIII discusses the methodology for submode! creation, and Chapter IX presents 

the process of designing communication protocols. Chapter X focuses on the results of 



the simulation experiments. Chapter XI is the summary and conclusions chapter that 

summarizes the research effort and suggests directions for further research. The seven 

appendices provide supporting material including listings of computer programs and 

explanation for the choices and discrepancies in several areas. 

5 



CHAPTER II 

PROBLEM STATEMENT 

Introduction 

As explained in Chapter I the fundamental focus of this research is to take 

advantage of emerging technologies such as parallel processing and object oriented 

modeling, to create a simulation environment that fulfills two major requirements of an 

on-line simulation support system for the production control of manufacturing systems. 

This research will not only demonstrate the viability of the application of parallel 

processing for discrete event simulation, but also attempt to assess the efficiency aspects 

of parallel discrete event simulation. 

A clear and precise determination of the problem statement for this research 

involves understanding issues primarily from two areas. Firstly, the exact computational 

requirements of the simulation effort and secondly, the parallel implementation 

complexities of the computation. The determination of exact computational 

requirements involves understanding the properties of discrete systems, simulation 

specifications for discrete systems, nature of manufacturing systems, and the use of 

simulation for obtaining important performance measures of manufacturing systems. In 

the implementation area, use of object oriented modeling for representation of 

manufactming system models, concurrent object oriented programming constructs for 

taking advantage of concurrencies in the simulation applications, implementation 

complexities of parallel discrete event simulation, and communication requirements of 

distributed computing systems, are addressed in the following sections of this chapter. 

6 
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Simulation of Discrete Systems 

A system is defined as a collection of items from a circumscribed sector of reality 

that is the object of study or interest [Pritsker 79]. A model is a description of a system. " 

Models are used primarily for describing, designing, and analyzing real world systems. 

Abstract models represent the system in terms of mathematical-logical variables, 

equations and relationships. The state of a system is defined as the collection of 

variables necessary to describe a system at a particular time. The behavior of a system 

over time is described by a sequence of state transitions. When state transitions occur 

only at discrete points in time the system is said to be a discrete system. Simulation of 

discrete systems is typically known as discrete event simulation. The behavior of 

discrete systems such as manufacturing is a result of highly concurrent and independent, 

cooperative, or contentious activities of their components. Although the modeling and 

simulation principles can be equally effectively used for any type of discrete system, for 

the purpose of this research only manufacturing systems have been considered. 

In simulation modeling of a manufacturing system, it is necessary to develop an 

adequate formalism in which various concurrent activities and interactions of the manu

facturing system components can be expressed naturally. At the same time, the model 

must be executable as a concurrent computer program [Yonezawa 88]. This strategy v· 

improves the analysis efficiency as the concurrent paradigm provides close resemblance 

to the truly concmTent real world systems and concurrent execution enables faster 

solution. Object oriented languages offer a natural way for the modeling of systems, but 

these models are typically created for nonconcurrent execution. For example in 

Smalltalk-SO [Goldberg 89] the concurrency is emulated via instances of class "Process" 

and a single virtual machine processor. There are two main problems considered for the 

purpose of this research. Firstly, the inadequacy of many contemporary modeling 



techniques to naturally model the cooperative concurrent processes in a discrete system 

and, secondly, the nonparallel execution of discrete system models. 

Simulation in Manufacturing Context 

8 

A manufacturing enterprise is an excellent example of a system. It is a collection 

of interdependent elements (physical components, information components and control/ 

decision policies) that work together to achieve a set of common but continuously 

changing organizational goals. A wide range of alternative techniques is available for the 

design and analysis of manufacturing systems. The spectrum of alternatives ranges from 

analytical modeling to direct experimentation on the real system. Today's complex 

manufacturing systems are not easily describable in tenns of analytical models and direct 

expe1imentation on the real system is typically costly. This usually makes simulation the 

analysis tool of choice. Law [Law 86] has pointed out the following three fundamental 

reasons for the simulation of manufacturing systems: 

(1) Detennining resource requirements, such as number and type of machines, 

material handlers and support equipment, factory layout, location and sizes of 

the work-in-process buffers, manpower requirements, evaluation of capital 

investments, etc. 

(2) Performance evaluation, which typically includes throughput analysis, bottle

neck station analysis or makespan analysis. 

(3) Operational policy evaluation, which involves the comparative analysis of a 

number of policies or procedures designed to solve the same problem. These 

policies are generally in the area of production control or scheduling, WIP 

inventory levels, FMS cell control polices, etc. 

Simulation modeling of a discrete system requires conceptual frameworks or 

paradigms to guide the modeler in creating a valid representation of a system in the form 

of a model. A number of such paradigms or "world views" are available today. A 



survey paper [Derrick 89] describes thirteen different conceptual frameworks or 

paradigms. Of the four groups of discrete event simulation paradigms described in the 

paper, only two are useful from this research point of view. They are the classical or 

historical framework and the new emerging paradigms. 

9 

In the classical or "conventional" approach the process of model building involves 

the following steps: 

(1) Definition of the problem statement, context, symptoms, model purpose, etc. 

(2) Determination of system boundary, level of abstraction, state va1iables, 

internal model structures, experimental design, etc. 

(3) Model coding using typical general purpose languages such as GPSS and 

SLAM, then verification and validation. 

(4) Analysis of results and further experimentation. 

In this inherently top down approach, the system boundary, the level of 

abstraction, model coding and validation are directly derived from a specific problem and 

context. This may cause several difficulties in modifying, altering or changing 

simulation models of the same system to address a variety of problems or alternative 

configurations of the same system. 

A different approach to model building is to determine the level of abstraction, 

system boundary and validation even before the model building process begins. This 

arrangement requires a significant effort up front that pays off later because the model 

can be modified easily to solve multiple future problems or system reconfigurations. 

This approach typically uses an Object Oriented Paradigm to generate the system models, 

and hence it is called Object Oriented Modeling. 

Object Oriented Modeling 

The advent of object oriented programming (OOP), a paradigm in which all the 

program vruiables are represented as "objects", appears to be a significant advancement 
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towards the development of multiple use, general purpose models [Pratt 1991]. In OOP 

an object is a collection of private data (instance and class variables) and behaviors 

(methods). There are four key concepts in OOP languages: encapsulation, message 

passing, dynamic binding and inheritance. Encapsulation is the confinement of data in 

modules, typically the objects, and restriction of access only to the pre-defined methods. 

In OOP, procedure calls are typically known as messages. In response to a message, the 

object executes the requested method (if appropriate) and returns another message, if so 

desired. Since each procedure or method has to belong to an object, it is required to be 

referenced through the object. This means that the procedure to be invoked is object 

specific and hence determined not at compilation time, but at run time. This is known as 

dynamic binding. This behavior of method execution is significantly different from the 

familiar· "function calls" in conventional non-OOP languages. Inhe1itance allows the 

definition of a class of objects to be made by indicating that the new class is just like an 

existing class but different only in the specified way. The new classes inherit the 

complete behavior of their super classes along with the additional traits defined for them 

in their own methods. This process precludes the necessity of rewriting of code for new 

classes to emulate the behavior similar to existing classes. These four properties of OOP 

languages can be effectively utilized to create multiple use, general purpose models as 

explained below. 

The object oriented approach to modeling decomposes the system based on the 

concept of object. Instead of factoring the system based on the modules that denote 

functions, the system model is structured around objects cmTesponding to those that exist 

in reality. The modeling process in the object oriented par·adigm star·ts with the creation 

of objects or databases of objects in the manufacturing system under study. Typically the 

QOM approach uses bottom up model building [Pratt 1992]. That is, the objects at the 

lowest level in the hierarchical structures are defined first. These primary objects (called 

the modeling primitives) are then used to define other coupled objects in the system. 
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Thus the entire system model is created by using the primitives as building blocks. 

Unlike the conven-tional approach there are no supporting guidelines (such as problem 

statement) to arrive at an adequate level of abstraction or definition of primitives. In 

order to have maximum flexibility it is desired that the objects should be defined at their 

lowest possible level so that all the behaviors of potential interest are captured. For 

example, in manufacturing systems, physical entities such as machines could be 

described by using atoms and molecules as the primitive objects. However, such an 

extreme level of primitives may not offer any extra advantages and in fact may turn out 

to be a big problem in terms of memory and run time. Hence, the primitives are 

normally set at the level which captures the required ;'observable behavior". 

Furthermore, if for any reason it is required to break the primitive down one or more 

levels, the object oriented paradigm can still take care of such situations by appropriate 

modifications in the class hierarchy. The simulation and statistics collection logic is 

typically handled by specially created simulation and statistics collection classes. Even 

in the context of OOM a number of world views can be used to create the model 

simulator classes. 

With respect to simulation modeling there are several advantages of using the 

object oriented paradigm. Several researchers [Adiga 89] [Beaumariage 90] have 

enumerated these advantages in great depth. In general, OOP can create reusable 

models. Quick modifications and reusability of software code is further improved by 

class inheritance and by combining primitives to form coupled models. The readily 

available database of modeling primitives and coupled models is an added attracti9n. 

There are several important points to remember when dealing with object 

oriented programming. Reusability of code is meaningful only if the generated code is 

good. Errors in a reused portion of code can have disastrous effect on the simulation 

execution. Reusable models are not easy to create. There could be a number of model 

consistency problems if the previous modeling approach cannot accommodate the 



behavior of a new subsystem. Reusability almost forces the user not to look into the 

implementation details of a primitive and hence a badly designed primitive, though an 

irritant, cannot be easily rewritten as there may be a number of ties with other classes. 

12 

In typical object oriented languages like Smalltalk-80 [Goldberg 89] message 

passing has similar semantics to a procedure call, and the computation of the message is 

done sequentially. The entire Smalltalk-80 environment is based on the paradigm of 

virtual machine, which sequentially executes the queued processes [Lalonde 1991]. In 

order to describe a problem such as discrete event simulation that contains concurrency, a 

notion of process has been introduced. A process is created by sending a fork message to 

a block context. However, this decision eventually imposes upon the programmer the 

cumbersome task of modeling the problem in two different level modules: objects and 

processes. This impairs the description and understandability. If it is desired to take 

· advantage of the concurrency found in discrete event simulation the problem has to be 

modeled as a set of cooperating processes. Hence, discrete event simulation can be 

modeled more naturally if the objects are not only maintained as self contained modules 

but also as units of concurrent execution. This idea will be further explored in the 

following section. 

Concurrent Object Oriented Programming 

ConcmTent object oriented programming is a programming and modeling 

methodology in which a system is modeled as a collection of concurrently executable 

program modules, called objects, that interact with one another by sending messages. As 

Y onezawa et al. [Y onezawa 88] has pointed out, the motivation for the research on this 

metho-dology stems from the need to design powerful yet flexible computer softwai-e 

systems that satisfy the ever growing demand of computer systems to solve more 

complex problems and provide more sophisticated services required in today's 

information intensive society. He further adds that even though powerful and faster 
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hardware is being produced at a reasonable cost, a traditional use of this hardware will 

not create computer systems that are capable of satisfying such demands. What is 

required is the exploitation of parallelism by using a large number of computing agents 

created from multiple computers that make these computing agents work cooperatively. 

Exploitation of parallelism is very attractive, but it is not an easy task. The major 

difficulty arises from the fact that the modeling systems require a wider variety of 

interactions and a higher degree of concurrency among their system components. The 

central issue in exploitation of parallelism is what and whose activities should be can·ied 

out in parallel and how such concurrent activities should interact with one another. In 

designing software systems that exploit parallelism, it is required to find how the system 

model should be broken into components that can be activated in parallel and how to 

provide coordination between these components. The decomposition should be naturally 

modular. These natural modeling and modularity concepts fit exactly into the object 

oriented paradigm discussed in the previous section. Thus, object oriented, concurrent 

programming combines the concepts of objects and the exploitation of parallelism to 

create a paradigm that can be effectively used for representation and modeling of 

concmTent systems. 

In uniprocessor object oriented programming, a problem is modeled as a set of 

cooperating objects and is solved by exchanging messages among objects. In concmTent 

programming, a problem can modeled as a set of cooperating processes [Yokote 88]. 

Therefore, object oriented computing and concurrent programming have a very similar 

structure; objects correspond to the processes, and message passing corresponds to inter

process communication. A process is not necessarily a self-contained module. However, 

from the viewpoint of modular programming a process is created as a self-contained unit 

of concurrent execution. Thus, similar to object oriented programming, the object 

oriented concmTent programming paradigm treats everything as an object which is also a 

self contained process. In general, this arrangement adds to the overhead of process 
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scheduling, which can be minimized by detecting most of the static dependencies at 

compilation time. Thus, the object oriented concurrent programming paradigm unifies 

objects and processes. 

Parallel Discrete Event Simulation 

14 

Before discussing the issues related to parallel discrete event simulation, it is 

imperative to explain one major property of physical systems called the causality 

principle. In simple words, the causality principle states that the future cannot affect the 

past. All physical systems obey the causality principle. In a discrete system, if an event 

has some effect on another event then the former must always occur before the later; in 

other words, cause must precede the effect. Events having no direct or indirect 

relationships do not require such sequencing constraints and they need not occur in a 

prescribed order. The order in which the simulator processes the events must obey the 

causality principle. For example, if event A occurring at time 7 has some influence on 

event B occurring at time 15 then the simulator must process event A before event B. 

Thus, for the purpose of execution, it is important to maintain a proper sequence of 

events. In cases where the events are not processed by the simulator in a correct 

sequence, the causality principle gets violated and the simulation produces erroneous 

results. 

In uniprocessor application, causality is easily ensured by the ordering of events 

in increasing simulation time sequence and always following the rule that the event 

having the smallest occurence time is processed next. The simulation program 

repeatedly removes the next event from the event list and calls the procedure that models 

the changes induced by that event. This procedure updates the state variables to reflect 

the new change of state and schedules any new events as needed. This process is 

repeated until the event list is empty or an "end of simulation" event is processed. Thus, 

it is quite easy to satisfy the causality principle in uniprocessor implementation. On the 
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contrary, in parallel implementation it is much more difficult to avoid violation of the 

causality principle because many events are executed concurrently. Preservation of the 

causality principle is one of the root problems in a successful parallel implementation of 

a discrete event simulation program. 

Parallel Discrete Event Simulation (PDES) is the execution of discrete event 

simulation on a parallel processor. This requires partitioning of the simulation model 

into distinct units, which are executed on different processors. Thus, a global model of 

the system is partitioned into a collection of smaller local models. 

In a uniprocessor simulation program, time in the physical system is modeled by 

a global variable simulation time or clock. In parallel simulation, this single clock 

variable has to be replaced by a distributed clock and at the same time the partial 

ordering of the events imposed by causality in the physical syst~m should not be violated. 

Two approaches have been developed to satisfy the above requirement. In the first, a 

global clock is used to ensure that all the processes advance together in lock step, making 

it a time driven simulation. The global clock process waits until all the activities at the 

current time are completed. The clock is then advanced to the next time step. It is easy 

to see that this method guarantees that the causality principle is not violated, however, its 

usefulness is quite limited to situations in which a number of events have the same event 

times. Otherwise, most processes would lie idle while waiting for the simulation clock to 

advance. The second approach, referred to as event driven method, provides each logical 

process its own local clock. Each logical process is responsible for advancing its own 

clock as the simulation proceeds. The clocks in different processes are advanced at 

completely different rates, which eliminates the need for a process to wait for the 

processes to which it is not directly or indirectly related. Thus, this approach eliminates 

the problem associated with the time driven simulation. 

In the event driven approach, each process can receive a time stamp message or 

event from several other processes. To maintain the local causality, it is necessary to 



ensure that these messages are processed in increasing time stamp order. The local 

causality requires non-decreasing event order only within a process, but it does not 

constrain a collection of related processes to collectively process messages in non

decreasing event order. It allows any logical process to get ahead of another as long as 

the sequencing constraints within each process are not violated. 
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Adherence to local causality in each process is sufficient to ensure global 

causality if all interactions between processes are only through time stamp messages. 

This is because a violation in causality can only occur when an event A with time stamp 

TA has a direct effect on event B with time stamp TB,• where TA< T 8, but the simulator 

erroneously processes B before it processes A. In a simulation program, event A can 

affect event Bin two ways: 

1. Event A causes the creation of event B 

2. Event A modifies the state variables used by event B 

In the first case, event B cannot be processed before event A because event B is 

created only while executing event A. The second case suggests that events A and B 

should belong to the same process because the state variables are local to each process 

and cannot be accessed by other processes. If local causality is assured then it is again 

not possible for the events to be processed out of order. Therefore, adherence to local 

causality ensures that no causality is violated globally. It is important to note that the 

above statement is valid only if all the interactions between the processes are via event 

messages, and the processes do not have any shared global variables. 

Simultaneous satisfaction of the local causality constraints for all the processes 

which are advancing in simulation time at different rates lead to a problem called 

processor 'deadlock'. The deadlocking situation occurs when in order to maintain local 

causality, process A waits for process B which is waiting for process A itself. Thus both 

processes wait for each other indefinitely. Under these circumstances the two concerned 

processes are said to be deadlocked. As mentioned above, the concurrent satisfaction of 
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the local causality constraints for all the processes impose a deadlock problem. Deadlock 

situations should either be avoided, or detected and eliminated. In the literature, a 

number of researchers [Chandy 81] [Chandy 89b] [Renolds 82] have proposed a variety 

of alg01ithms to perform deadlock-free discrete event simulation. These techniques fall 

into three major categories [Chandrasekaran 87]: 

l] Avoid deadlock by generating "NULL" messages to distribute the simulated 

time across the neighboring processes determined a priori by the event 

dependencies. 

2] Allow the deadlock to occur, but provide a mechanism to detect and recover 

from deadlock situations. 

3] Avoid deadlock by allowing processes to process the events on any non-empty 

queue, regardless of the number of other input queues that are empty. This can 

lead to violation of local causality, so an additional rollback mechanism is 

provided to undo erroneous computations and return to some point before the 

causality constraint was violated, giving the process another chance to perform 

the computation correctly. 

As mentioned before, a number of schemes have been developed to deal with the 

problems involved in the implementation of parallel discrete event simulation. The exact 

details of some of them are considered in the literature review chapter. 

The above sections have provided a general introduction to various aspects of the 

problem domain. The next section attempts to describe the specific problem statement 

and outline the solution requirements. 

Problem Description 

This research is specifically focused at the demonstration of the viability of 

parallel processing for discrete event simulation of manufacturing systems. It is designed 

to obtain more insight into an efficient execution performance of PDES. As the 
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modeling of manufacturing systems is not the primary focus of this research, a relatively 

simple model of manufacturing system has been chosen for the purpose of this research. 

The exact specification of this model is described in Chapter V. As established earlier, 

quick reconfiguration and high reusability of modeling elements are some of the essential 

requirements of the simulation model. This concept of model reusability in object 

oriented modeling and simulation environments is well documented in the literature 

[Adiga 89] [Basnet 90]. In fact, several researchers [Adiga 89] [Pratt 91] have 

demonstrated the ability of the object oriented modeling paradigm to create rapidly 

modifiable and reusable simulation models. Therefore, an object miented paradigm is 

used for implementing the modeling and simulation environment. The choice of C++ is 

further justified as it is the only object oriented language currently available on the Intel 

iPSC/2 computer, a parallel processing computer at the Oklahoma State University. 

Details of C++ object oriented implementation of modeling and simulation environment 

are outlined in Chapter VI. 

The Intel iPSC/2 computer is a distributed memory MIMD (Multiple Instructions 

Multiple Data) machine in which the inter-processor communication is performed via 

message passing between the individual processors. Therefore, parallel discrete event 

simulation is achieved by dividing the simulation model of a manufacturing system into 

several submodels and allowing each processor to execute a single submodel. 

Figure 2 depicts a number of ways in which these submodels can be created for a 

particular manufacturing system. Each distinct way results in a single configuration of 

the submodels that collectively constitute the entire model. The flow of parts (work flow 

items) between the machines belonging to two different submodels creates 

communication messages between the processors. Thus, combined pa1t routings of a 

manufacturing system and thereby the manufacturing system network topology influence 

the communication pattern between the processors. Typically, all parts in a 

manufacturing system have their own independent process routings. By superimposing 
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all the part routings, a generalized routing network for the entire manufacturing system 

can be created. On the basis of this network, a specific network of submodels depicting 

their interprocessor communication patterns can be derived such that each node of the 

network represents a single submodel and the communication between two submodels is 

represented by an arc between the corresponding nodes of the network. This network of 

submodels is defined as a "submode! network". 

Manufacturing System Network 

#5 #8 / 

part#4 
-~-~---~-

1] Submode! Configuration# 1 : Four Submodels 

Generalized 
Routing 
Network 

2] Submode! Configuration # 2 : Three Submodels 

3] Submode! Configuration # 3 : Two Submodels 

4] Submode! Configuration# 4 : One Submode! 

Generalized 
Routing 
Network 

Generalized 
Routing 

-..--,__,.,__ Network 

5] Submode! Configuration # 5 : Five Submodels 

~::::;;-:~C=~~~ Generalized 
Routing 

--......--,~- Network 

Figure 2. Derivation of Five Submode! Configurations from a System Model 
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In implementing parallel discrete event simulation, each submode! of the 

submode! network is simulated by a single processor. This arrangement allows certain 

processors to go ahead of others in simulated time. That is, a processor may be executing 

a future event when an event in its past arrives from another processor. Under these 

circumstances the past event may execute differently because of the earlier execution of 

the future events. This situation allows the future to affect the past and therefore violates 

the causality principle. Unless special mechanisms typically known as "processor 

synchronization mechanisms" are provided to trap such inconsistencies, the simulation 

results would be erroneous. Hence, provision of a suitable processor synchronization 

mechanism is another problem that must be resolved for a successful implementation of a 

parallel discrete event simulation. 

Although communication synchronizes the two submode! simulation processes 

running on two distinct processors, it adds an unnecessary communication burden to 

these processors, thereby degrading their execution performance. The performance of a 

software application is generally measured in speedup and efficiency factors. Figure 3 

depicts the definitions of speedup and efficiency. 

execution time for uni-processor implementation of the problem 
Speed up = execution time for a parallel implementation 

speedup 
fficiency = number of processors used in the parallel implementation 

Figure 3. Speedup and Efficiency of the Parallel Implementation of DES 



The actual simulation execution load on each processor of the Intel iPSC/2 

computer is called the "computation load". As explained earlier, the parallelization of 

discrete event simulation also requires each processor to communicate with other 

processors. This is called the "communication load". A parallel application such as 

parallel discrete event simulation gives better execution performance if the total or 

combined communication and computation load on each processor is minimized. The 

communication load on the computer is drastically influenced by the way in which the 

submodels are created. Three major ways in which the submodels influence the 

communication between processors are: 
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1] Simulation of the movement of work flow items between the machines under 

different submodels of the manufacturing system requires that the 

corresponding work flow item objects are moved across the processors 

simulating the corresponding submodels. 

2] If the flow of the work flow item objects between processors becomes cyclic 

the simulation process can potentially deadlock. The only way to avoid or 

break a deadlock is to add a substantial amount of communication between 

processors. This communication is generally provided by deadlock detection 

and recovery algorithms [Bain 88]. 

3] If two submodels under different processors share a common resource such as 

a material handler, the causality constraints require the execution of an event on 

one processor to inquire about the status of the shared resource from the other 

processor. This introduces additional communication between the processors. 

The submodel creation is a key process that influences the communication 

patterns of the parallel discrete event simulation and hence the speed and the efficiency 

of an application. Therefore, the major problem at the submode! creation stage is to 

minimize the communication load while attempting to use as many processors as 

possible, i.e., to create as many submodels as possible. Since a modeler can obtain 
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several different configurations of the submodels from a single manufactming system 

model, the modeler has to choose the submode! configuration that gives the best 

execution performance. At one end of the spectrum, a uniprocessor application requires 

virtually no communication but shifts the entire computation load to a single processor, 

thereby producing suboptimal results in most cases. On the other end of the spectrum, if 

a laTge number of processors are used the communication overload can become 

overwhelming. Thus, either end of the spectrum only results in a suboptimal 

performance. As depicted in Figure 4 optimality exists somewhere in between. 

i 
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Computation vis Conm~nication Load 
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I -·- Con1Malia,al Load --a-- Comrunicalion Load -•- Tolal Load 

Figure 4. Optimality of the Total Load on each Processor in PDES 

Unanswered Questions 

The above explanation of the problems involved in object 01iented modeling and 

parallel implementation of discrete event simulation of manufacturing systems poses a 

number of unanswered questions. Among the unanswered questions are: 



1] What factors influence the efficiency of parallel discrete event simulation of 

manufacturing systems? 
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2] What impact do these factors have on a parallel implementation of the discrete 

event simulation of a manufacturing system? 

3] What constructs must an object oriented concurrent programming language 

provide to achieve process synchronization for a parallel application? 

4] How can deadlocking situations be avoided in parallel implementation of 

discrete event system simulations? 

5] Can a test be dev~loped to detect if a manufacturing system possesses the 

characteristics that can lead to a deadlock during parallel implementation of a 

discrete event simulation of that system? 

~6] How can the random number generation process be effectively handled so that 

it can result in identical simulation results regardless of uniprocessor or multi

processor implementation ? 

This research seeks to address these questions and gain insight into a 

methodology for answering them. Some of the above questions are discussed in the 

distributed simulation literature. Brief reviews of pertinent research articles are provided 

in the next chapter. 



CHAPTER III 

LITERATURE REVIEW 

Introduction 

This chapter contains a formal introduction of the literature related to object 

oriented modeling and parallel discrete event simulation (PDES) of manufacturing 

systems. This review consists of four major areas: concurrent object oriented 

programming, parallel processing and parallel computing architecture, parallel discrete 

event simulation, and processor synchronization mechanisms. There is an enormous 

amount of literature available in all of the above areas. The majority of research in the 

last two areas has been concentrated on the computer or communication system models. 

The similarity between the computer/communication systems and manufacturing systems 

validates the use of this research in the manufacturing systems context. 

Concurrent Object Oriented Programming ; 

The inclusion of concurrent object oriented programming aspects in the context 

of this research comes from the fact that concurrent OOP not only provides modeling 

constructs in terms of objects, but also takes advantage of the concurrencies in real 

systems to create models that can be implemented on parallel processing machines. The 

literature relevant to this research includes research efforts in the development of 

concmTent OOP languages such as "ABCUl" by Yonezawa et al. [Yonezawa 88], 

"ConcurrentSmalltalk" by Yokote et al. [Yokote 88], "POOL-T" by America [America 
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88], "Orient/84K" by Ishikawa et al. [Ishikawa 88], and "Actoi;" languages by Agha et al. 

[Agha 88a]. 

From a historical perspective, concurrent programming concepts first appearnd in 

the literature in 1977, when Kahn and McQueen [Kahn 77] developed the constructs of 

streams to capture functional systems. Brock and Ackerman [Brock 81] added the inter

stream ordering information in order to make the 'stream' model more suitable for 

concurrent computation. Pratt [Pratt 82] formalized the generalized theory of processes 

in terms of sets of partially ordered multisets (pomsets) of events. This generalized 

process model is compatible with the laws of concurrent processing formulated by 

Hewitt et al. [Hewitt 77]. Hoare [Hoare 78] proposed a language for concmTency called 

CSP, based on sequential processes. In CSP the communication between the processes is 

synchronous. Along similar lines, the actor model with the existence of a mail system 

was introduced to enable asynchronous communication between processes. The relevant 

concepts of the actor model are explored in the following brief summary of the research 

article by Agha et al. [Agha 88b]. 

The authors suggest that providing a mechanism for dealing with shared 

resources, dynamic reconfigurability, and inherent concurrency are the fundamental 

considerations in designing the actor language. An actor is a computational agent that 

carries out its actions in response to the incoming communication messages. Even 

though an actor is analogous to an abstract concept of an object, it is distinctly different 

from an object, in the sense that it also encompasses in itself the notion of process. 

Unlike the objects created in traditional OOP languages such as Simula [Birtwistle 79] 

and Smalltalk [Goldberg 89], an actor can transform its behavior dynamically without 

necessarily being constrained by the restrictions imposed by its membership to its class. 

In general, an actor can send a message to itself or other actors, create more actors, or 

specify a replacement behavior to pipeline its actions. All actors in a system carry out 

their actions concurrently. In response to a communication, an actor may send several 
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communications to other actors. The creation of new actors increases the amount of 

concurrency feasible in the system. In actuality, an actor is a tuple consisting of a mail 

address and a current behavior. The mail address is associated with a mail queue for 

incoming messages. The current behavior is specified in terms of local state functions. 

An actor system consists of actors along with a set of unprocessed tasks. A configuration 

is a snapshot of an actor system. A solution to the problem is obtained as the actor 

system starts at the initial configuration and proceeds through the intermediate 

configurations to end the processing at the final configuration. The number of actors in 

the system typically grows as the concurrency in the solution algorithm is dynamically 

exploited by the computing actors in the intermediate configurations. For example, the 

function evaluating the factorial of an integer can be implemented as a product of ranges 

that will be evaluated concurrently. The authors have presented the actor code for the 

implementation of a factorial algorithm in actor language, as depicted in Figure 5. 

(defFunction range-prod (lo hi) 
(if(= lo hi) 

(then lo) 
(else (kt ((mid(/(+ hi lo) 2))) 

(* (ran e- rod lo mid) ran e- rod ( + 1 mid) hi)))))) 

Figure 5. Actor Code for "range-prod" Function 

Each actor containing a range-prod function with 'lo' and 'hi' values, creates two 

more actors with the corresponding two new parameters as 'lo', '(hi+lo)/2' and '(hi+lo)/2', 

'hi' and waits for these two actors to send back their respective products. Each of these 

two actors, in turn, creates two more actors with corresponding 'lo' and 'hi' values. This 
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process of creating actors continues until the current actor has the same values in the 'hi' 

and 'lo' variables. This structure of the concurrent factorial computation is depicted in 

Figure 6. 

Concurrent Computation Structure 

Re uest 1 

Request 2 Request 3 

Request 4 Request 5 Request 6 Request 7 

Life span Reply 4 Reply 5 

of actor 2 
and actor 3 

Reply 2 

Reply 6 Reply 7 

Reply 3 

Re ly 1 

Life span 
of actor 1 

Figure 6. Concurrent Computation Structure of the Factorial Problem Execution 
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As the replies to its requests are obtained, the actor multiplies the two replies and 

creates a response message for its parent actor. As the computation progresses upwards 

in the hierarchy, the excess child actors are destroyed, eventually maintaining only a 

single actor containing the answer. 

In general, the ability of actors to create new actors (the customers) and distribute 

the work is well suited for fine-grain message passing parallel computers having 

thousands of small processors with low communication latency. The root compiler of the 

actor language 'Acore' provides the mechanisms for inter-processor communication and 

other memory management tasks. 'Acore' allows a number of actors under each 'worker' 

that executes the actor computation on a single processor. In this way, the actors can be 

easily distributed on the available processors of a parallel computer. 

In retrospect, the Concurrent Object Oriented language Actor provides for 

dynamic growth and reconfigurations of actors that exploit the parallelism in an open 

concmrent system in order to effectively implement it on a variety of parallel computers. 

Parallel Processing and Parallel Computer Architecture 

This section of the literature review provides a brief introduction to parallel pro

cessing and parallel architecture, specifically the architecture of the Intel hypercube 

computer. The majority of the following description is obtained from books by Aki [Aki 

89] and Bustard [Bustard 88]. 

In a typical personal computer, there is only one processing unit, the 

microprocessor chip. If a computer has more than one processing unit, it is called a 

parallel computer. The need for parallel computing arises from the fact that in many real 

time applications, the solution to a problem requires that an enonnous amount of com

putation be pe1formed in a very short period of time. The basic idea behind parallel 

processing is to divide the given problem into a number of distinct sub-problems that can 

be solved simultaneously, each on a different processor. The results are then combined 



to produce the answer to the original problem. This is a radical departure from the 

algorithmic model of computation, designed for sequential uniprocessor machines. 
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Over the last forty years uniprocessor computers have achieved a dramatic 

increase in computation speeds. The main reason for this dramatic increase was the 

availability of faster electronic hardware components. The computer hardware moved 

from relays, to vacuum tubes, to transistors, to integrated ciTcuit (I Cs) chips, to small and 

large scale integration (LSI) chips, and then to very large scale integration (VLSI) chips. 

Unfortunately, it is perceived that this trend may soon come to an end. The limiting 

factor is simply the law of physics that gives the speed of light in a vacuum. The only 

way around this problem is to use parallelism in the problem statement and 

simultaneously solve the sub-problems crafted out of the original problem. 

Any computer, sequential or parallel, operates by executing instructions on the 

supplied data. A stream of instructions (algorithm) tells the computer what to do at each 

step. A stream of data (the input to the algorithm) is affected by these instructions. 

Depending on the number of streams of data or instructions, four groups of computers 

are often defined [Aki 1989]. They are: 

1. Single Instruction Single Data Stream (SISD) : This computer does not 

exhibit any parallelism. A typical personal computer is a good example 

of this type. 

2. Multiple Instruction Single Data Stream (MISD) : The parallelism is 

achieved by letting the processors simultaneously do different things on 

the same data stream. Applications of this type include object 

classification problems. 

3. Single Instruction Multiple Data Stream (SIMD) : The parallelism is 

achieved by dividing the data into multiple streams that are processed 

simultaneously using the same instructions on multiple processors. 

Applications of this type include matrix multiplication problems. 



4. Multiple Instruction Multiple Data Stream (MIMD) : Computers of this 

type are the most general and most powerful of the four groups. They 

can handle parallelism via multiple data and/or multiple instruction 

streams. They can mimic the behavior of all the other groups. 
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MIMD machines are further classified as shared memory or distributed memory 

machines. The shared memory machines share a common memory, and synchronize 

thefr operations through this memory. The distributed memory machines have separate 

individual memory and therefore, they require direct processor communication for 

synchronization. 

MIMD computers allow the execution of asynchronous algorithms. 

Asynchronous algorithms are difficult to design, evaluate and implement. An 

asynchronous algorithm is a collection of processes, of which some or all are processed 

on different processors. The execution of an asynchronous algorithm starts with the 

creation of computational tasks, or processes, to be performed. Once a process is 

created, it must be executed on a processor. If a processor is available, the process is 

assigned to the processor that performs the computation specified by the process. 

Otherwise, the process is queued and waits for a processor to become free. When a 

processor completes execution of a process, it checks the process queue. If a process is 

waiting, it is selected for execution. This process creation and execution continues until 

all the processes are executed, or any process instructs the processor to stop the execution 

of the asynchronous algorithm. 

In evaluating a parallel algorithm for a given problem, it is typically compared to 

it's equivalent single processor implementation. A good indication of the quality of a 

parallel implementation is the speedup it produces. The speedup is defined as 

Speed up = 
execution time for uni-processor implementation of the problem 

execution time for a parallel implementation (1) 
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Another indicator of the quality of a parallel implementation is the utilization of 

each processor or it's efficiency. The efficiency is defined as 

Efficiency = number of processors used in the parallel implementation 
speedup 

(2) 

In controlling a parallel computer, a number of tasks must be managed. 

Typically, the operating system provides additional constructs that manage the memory, 

inter-processor communication, I/0 communication, etc. These tasks are highly 

dependent on the architecture of the parallel computer. Hence, the following paragraph 

describes Intel's iPSC/2 architecture, operating system and interconnection 

synchronization mechanism. 

Intel's iPSC/2 concurrent supercomputer is a cost effective solution for large scale 

applications. In an iPSC/2, a large number of processors or nodes work concurrently on 

parts of a single problem. An iPSC/2 system consists of computing nodes, I/0 nodes, 

peripherals, and a front end processor called the host. A node is a processor (Intel 80386 

chip) and memory combination. Each node runs the NX/2 operating system, uses 

message passing to communicate to other nodes, and can access both the host file system 

and the iPSC/2 concurrent file system. 

The front-end processor is called the System Resource Manager (SRM). The 

SRM runs the UNIX System V operating system, augmented with iPSC system 

extensions and TCP/IP networking software which links the remote work stations and the 

SRM. 

A typical iPSC system application has a host program that runs on the host and a 

node program that runs on a group of allocated nodes called a 'cube'. The host program 

runs under the UNIX operating system as one or more processes. It usually initializes the 



application, provides any necessary human interface, and loads the node program onto 

the nodes. Each node executes the node program. Typically a node program performs 

calculations, exchanges the synchronization messages with the other nodes, and sends 

data back to the host. . 
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The iPSC/2 system at Oklahoma State University has 32 CX nodes connected in 

the form of a hypercube of dimension 5 (25). Even though all the nodes in an iPSC 

system are not fully connected, a node can send a message directly to any other node in 

the network without affecting the processing of the nodes in the connecting path. This is 

achieved via Direct-Connect Module (DCM). The composition of each CX node is 

described in table 1 below. 

TABLE 1 

COMPOSITION OF INTEL IPSC/2 HYPERCUBE ex OR sx NODE 

Processor 1\1:emory Numeric Processing 

386 microprocessor 16 Mega bytes of memory 80387 or Waiteck SX processor 

The operating system of the iPSC/2 provides a number of user interface 

commands, such as, getcube, cubeinfo, re/cube, load, attachcube, etc., to let the user 

manipulate the resources available on the system. It also provides a variety of 

synchronous and asynchronous message passing calls. They are synchronous and 

asynchronous send and receive. 



Synchronous send and receive : (csendO / crecvO): A synchronous send means 

that the program executing the send waits until the send is complete. A synchronous 

receive means that the program executing the receive waits until the message arrives in 

the specified buffer. 
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Asynchronous send and receive: (isend() / irecvO): An asynchronous send means 

that the program executing the send does not wait until the send is complete. To make 

sure that a send is complete the msgwait() command is used. An asynchronous receive 

means that the program executing the receive initiates the receipt of a message, and when 

the information is required by the process, uses msgwait() to block further execution of 

the process until the receive is complete. 

Parallel Discrete Event Simulation 

One of the earliest publications in the area of distributed simulation included a 

case study by Chandy and Misra [Chandy 79]. This case study contains one of the 

pioneering efforts in the determination of requirements, constraints and program design 

of distributed simulation. Since then, researchers have provided a number of approaches 

to solve the distributed simulation problem. Chandy and Sherman [Chandy 89a] have 

proposed a unified framework called space-time for describing the discrete event 

simulation problem. This framework provides a foundation for the classification of the 

numerous research methods and helps identify new research directions in distributed 

simulation. They have explained the space-time framework with the help of a system 

containing two billiard balls in a friction free cylinder. Figure 7 shows the space-time 

rectangular representation of the system. The two identical balls, initially placed at 

opposite ends of the cylinder, travel towards each other with equal speed. The space

time region of interest is a rectangle where x goes from O to L (length of the cylinder) 

and t goes from Oto T (required simulation time). 
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The simulation of the system is a method of filling in the space-time rectangle. 

As seen in Figure 7, the two balls collide with each other and return back to collide with 

the end wall. The cylinder surface is assumed frictionless, and hence, the balls follow 

their back and forth linear motion indefinitely. As the simulation time is continuously 

increasing, the back and forth motion in space (i.e. along the x axis) results in a zig-zag 

motion in the space-time rectangle. 

Space-time rectangle 

T -- .. ----________ -_-_·::.~: __ _ 
I ----___ .. 

··--
--

t ·- --...... - --- ----
0 0 x----

-----------> Path of the left 
end ball 

- - ->- Path of the right 
end ball 

L 

Collision 
between ball 
and boundry 

Collision 
between 
balls 

Figure 7. Representation of the System in Space-Time Rectangle 

Figure 8 explains the four most prominent approaches to simulation. Figure 8 (a) 

is the Time Driven Simulation in which the program determines the behavior of the 

system at all times in an interval [O,T*] and then proceeds to evaluate the system 

behavior at T* +E for some arbitrarily small E (most continuous system simulations are 

performed in this manner). Figure 8(b) shows a different case where the time step Eis 

much larger than the earlier case. Typically Eis selected to be some important event in 
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the system (such as collision between balls). This is the Event List Approach to discrete 

event simulation. A distributed simulation is characterized by the paititioned space-time 

rectangle as depicted in Figure 8(c). Each processor evaluates or fills the inner details of 

its partition. In the conservative distributed simulation technique, for each partition in 

space, the program determines the behavior of the system at all times from Ti to Ti+Si as 

shown in Figure 8(d). Higher values of Si make the simulation run more efficiently. In 

. an optimistic distributed simulation the system behavior is estimated from T* to Ti+Si. 

If these estimates are found to be incorrect, they are corrected by a roll-back and 

recovery method. If all the estimates are shown to be correct for some interval T* +u, 

then the time is advanced to T* +u. Both distributed simulation methods use many 

processing agents that significantly reduce the time required to fill the space-time 

rectangle or the simulation execution time. 

The authors further explain that achieving a successful implementation of discrete 

event simulation involves a careful partitioning of the system space-time diagram. The 

space-time diagram contains a vertical line for each process in the system. The 

synchronizing messages passed between the processes are represented by horizontal 

arrows connecting the vertical processes. Typically, a collection of processes are run on 

each processor, which means that a tandem arrangement of processors paitition the 

space-time rectangle into vertical strips. Each strip contains a number of vertical lines, 

corresponding to the processes it contains. 

A number of researchers (such as Fujimoto [Fujimoto 89], Jones et al. [Jones 86], 

Nevison [Nevison 90], etc.) have devoted their attention to measuring the performance of 

several strategies for distributed simulation on a number of parallel processing 

computers. 

Comparisons of a number of distributed simulation strategies require the 

development of proper performance measures. Fujimoto [Fujimoto 89] has developed a 

number of performance measures to compare the deadlock avoidance and deadlock 
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detection and recovery techniques. He used speedup, "null" message ratio, and the 

deadlock ratio as his performance measures. He used a BBN Butterfly™ multiprocessor 

for the distributed simulation testbed. In the deadlock avoidance technique, when a 

process is blocked, it communicates its lookahead function value to its neighboring 

processes in order to avoid deadlock. In the deadlock detection and recovery technique, 

a global counter is maintained that holds the number of unblocked processes. In a 

deadlock situation the counter becomes zero. The recovery process locates the message 

with smallest time stamp in the system and restarts the corresponding blocked process. 

The author has performed an extensive empirical performance evaluation of distributed 

simulation programs and provided the following conclusions. 

1. The lookahead ability of logical processes plays a critical role in determining 

the efficiency of the deadlock detection and recovery algorithms. This is due 

to the fact that the processes must spend an extensive amount of time waiting if 

their lookahead ability is poor. 

2. Deadlock detection and recovery simulation for moderate to high messages 

containing different types of logical processes can be adversely affected by a 

small number of processes that exhibit poor lookahead capability. 

3. Networks containing inherently poor lookahead properties, e.g. prioritized 

queues, are ill suited for both algorithms. 

4. Distributed simulation, using deadlock avoidance or deadlock detection and 

recovery algorithms, is a viable approach to speeding up work loads containing 

a moderate to high degree of parallelism. 

5. In order to judge which performance enhancement approach will be most 

effective for a particular situation, the programmer must be intimately familiar 

with the simulation application. 
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Processor Synchronization Mechanisms 

In the parallel simulation literature, a considerable amount of research effort has 

been directed toward the development of time synchronization mechanisms. Developing 

a sound synchronization mechanism is vital to successful implementation, because the 

speedup factor is almost entirely dependent on the network communication load. To 

date, little empirical data is available for measuring the perfo1mance of specific 

implementations of these algorithms, even though a number of studies have been 

reported (for example: [Seethalakshmi 79] or [Reed 85]). A notable exception is the 

recent work on queueing network simulations by Reed, Malony, and McCredie [Reed 

90]. The performance of a specific implementation of a time synchronization algorithm 

is significantly dependent on the architecture of the parallel computer. The experiments 

involving iPSC/2 have not been explored in detail. From this perspective, a couple of 

references [Bain 88] and [Davis 90] lie close to the context of this research. The 

following paragraphs discuss two important research papers having network algorithm 

implementation on Intel iPSC/2. 

William Bain and David Scott [Bain 88] from Intel Science Computers have 

proposed a conservative deadlock avoidance algorithm. They explain the simple 

technique (suggested by [Chandy 81]) of feeding time synchronization information to all 

successors, when an event message is sent to one successor. This technique has a 

disadvantage of generating an enormous amount of message traffic. The demand driven 

technique requires a process to request time information from its predecessors before 

advancing its time. This approach minimizes message traffic. Using this approach, an 

algorithm can be developed to detect and avoid deadlocks in the network. 

The authors have outlined a general, deadlock free algorithm for demand driven 

synchronization. The algorithm guarantees small fixed size messages but it may require 



a number of requests for the exchange of time information to advance a process's time. 

A brief explanation of the algorithm is provided in the next paragraph. 

Notation: 

n : Number of processes ( one on each processor ) 

ti : Distributed clock time of process 'i' 

Pi : The predecessor process of process 'i' 

s, : The successor process of process 'i' 
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li lj]: The earliest time that an event can arrive from j1h predecessor of process 'i' 

When an event tm arrives at process 'q' at the head of the queue for channel T, the 

process updates the value oflJj] (also known as the channel time) to tm. Before the 

process can consume and process the contents of the message, it must assure that no 

message, with time less than tm, will arrive from any other predecessors. This is the 

essential constraint of time progressive synchronization. If all processor times exceed tm> 

i.e. for all values of j, lJj] is greater than or equal to tm, the event message is consumed 

immediately. Otherwise, the process requests the channel times from all processors 

having channel times less than 1m, by placing an entry with the predecessor 'id' and 

requested time ~n in the request queue. The predecessor replies in one of the following 

three ways: 

YES : Which indicates that the predecessor channel has reached the request time, 

and the new channel time is passed back as a reply. 

NO : WhiGh indicates that the predecessor channel has not reached the request 

time and another request must be made. 

RYES : ( a reflected 'yes'), which indicates that the channel has conditionally 

reached the requested time. The RYES answer is provided to detect the 

cycles within the connection graph and thereby avoid deadlock in time 

synchronization. 
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When a process receives a time request from one of its successors, it checks the 

process 'id' and request time to match any request already in the request queue. If an 

entry is encountered a RYES message is sent to the requesting successor, indicating that 

a cycle has been encountered. If the process has not reached the requested time, then it 

makes time requests to all of its predecessors with lower channel times than the requested 

times. In order to detect cycles in the connection graph, it places the originating 

processor 'id' in the time request message of its own process 'id'. 

Thus, this algorithm provides a time synchronization strategy for a parallel 

discrete event simulation running on a number of processors. As the authors have 

demonstrated, the algorithm can effectively handle deadlock situations, with RYES type 

messages. The paper is specifically important from this research point of view, because 

the algorithm has been implemented on an Intel iPSC/2 machine. 

Davis et al. [Davis 90] from Virginia Polytechnic Institute have proposed a 

conservative "null" message algorithm to carry out a discrete event simulation on an Intel 

iPSC/2. They have investigated the effects of network topologies on the speedup factor. 

The paper presents a method for creating a distributed event list and describes conditions 

under which the algorithm can be expected to efficiently provide significant speedup of a 

discrete event simulation. The distributed event list algorithm uses a method of 

interprocessor communication and synchronization based on the null message algorithm 

for dist1ibuted simulation proposed by Chandy and Misra [Chandy 81]. 

The authors have derived an ideal speedup calculation for a parallel imple

mentation of a discrete event simulation. They further state that under ideal conditions, 

(i.e. assuming zero communication load) the theoretical speedup is equal to N2• This 

means, for a sequential event list implementation, theoretically, superlinear speedup is 

possible. They further explain that this theoretical speedup is in general not attainable 

because of the communication overhead. 
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The basic experimentation in their research involves simulating 32 submodels, 

each on a single processor. Each submode! has 2 tandem M/M/1 queues with only about 

10% of the entities flowing out of the submode!. The remaining entities are terminated. 

The total input of entities constitutes entities created in each submode! and the entities 

arriving from the predecessor's submodels. The implementation involves 3 types of 

network configurations of submodels; viz. tandem, balanced feedforward, and 

unbalanced feedforward. The system is simulated on 2, 4, 8, 16, and 32 parallel 

processing nodes. 

From the above experimentation, the authors have concluded that: 

1. The theoretical speedup factor for parallel simulation using the event list 

algorithm is greater than N (the number of processors). 

2. The strategy of sending extra "stimulus" null messages, and the "Null" 

messages with a timeout between sends are only marginally effective. 

3. The attainable speedup is highly dependent on the absence of feedback loops 

in the logical system topology. 

4. The tightly coupled logical processes complicates the assignment problems. 

The knowledge base available in the field of parallel discrete event simulation 

(PDES) is narrowly focused on designing processor synchronization mechanisms for a 

number of deadlocking and non-deadlocking situations. Very few studies [Fujimoto 

1989] have comprehensively summarized the effect of pertinent factors on PDES. The 

proposed research attempts to provide insight into PDES by observing the effects of a 

number of factors that influence PDES. The literature review desc1ibed in this chapter 

provides the basic foundation in determining the factors that influence PDES and the 

effects of these factors on PDES. This research uses the RYES type message passing 

mechanism as a foundation for designing the processor synchronization schemes. The 

next chapter provides a detailed list of goals and objectives of the research. 



CHAPTER IV 

STATEMENT OF RESEARCH 

Research Goal· 

The motivation for this research effort is to explore the concepts, problems, and 

implementation design difficulties associated with the application of parallel processing 

technology for the simulation of discrete event systems. The primary goal of this 

research is to identify and quantify the factors that significantly influence an effective 

parallel implementation of simulations of object oriented models of manufacturing 

systems. Based on the knowledge and information obtained from the above 

investigation, a secondary goal of this research is to suggest specific guidelines for any 

such parallel implementations. 

Research Objectives 

To accomplish the goal, the following research objectives have been identified: 

OBJECTIVE 1 - Concurrent Object Oriented Modeling 

Evaluate the constructs of concurrent object oriented :programming languages 

and environments in the context of their applicability to :parallel discrete event 

simulation. Concurrent Object Oriented Languages provide the necessary constructs to 

concurrently execute programs on parallel architecture machines. Under this objective a 

number of constructs mentioned in the literature review will be studied to create an in

depth understanding of the concepts involved in process synchronization. 
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OBJECTIVE 2 - Submodel Creation Logic 

Develop strategies for creating submodels by logically clustering the simulation 

objects present in an Object Oriented model of a manufacturing system. These 

submodels will each be executable as an independent process running on a single 

processor. The external arrivals to the portion of the system emulated by the submode! 

are the communication messages between the corresponding processors. Therefore, the 

submodel creation will be based on (1) dependencies of the simulation object processes 

(2) communication overhead and (3) number of available processors. The attempt will 

be to break up the main model into as many submodels as the available number of 

processors, by considering the event dependencies that minimize the communication 

between processors. 

OBJECTIVE 3 - Communication Strategy Design 

Develop strategies for effectively achieving communication between Intel iPSC/2 

processor nodes. In the context of an event based simulation approach, the event 

scheduling logic will keep track of the communication messages the processor needs to 

receive before the next event is scheduled. On the basis of the generalized network 

topology of the manufacturing system, the event scheduling logic will be modified. This 

will require the development of several communication strategy designs, one for each 

network topology. 

OBJECTIVE 4 - Performance Analysis via PDES Implementation 

Create and implement several PDES models on the Intel iPSC/2 hypercube 

computer in order to carry out performance analysis of the PDES of the experimental 

manufacturing system. The performance analysis of the manufacturing system involves 

determination of the influences of the selected experimental design factors, i.e., network 



topology, system size, and number of available processors on the PDES performance 

measures, viz. speedup and efficiency. The performance measures will be collected 

under all the desired system configurations given in the experimental design. 

OBJECTIVE 5 - Methodology for Achieving a Successful PDES 
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Develop a comprehensive methodology for achieving PDES on a parallel 

computer with distributed memory architecture. On the basis of the investigation 

described in objective 4, develop a comprehensive methodology that takes into account 

the influences of each factor, the submodel creation strategies, and communication 

mechanism designs, for achieving a successful Parallel Discrete Event Simulation model. 

Research Scope and Limitations 

During the course of this research, the author has come across numerous 

innovative, intelligent, pertinent, and tangential research issues, that lie fairly outside the 

scope of this research. Typically, these issues are inclined towards the field of computer 

science. The author has neither the background nor the inclination to pursue these leads. 

For example, "The management of PDES of a system having a network with deadlocking 

topology" has been one of the most popular research topics in the literature. 

The primary assumption of this research is that a distributed memory parallel 

computer is employed for parallel discrete event system simulation. In a distributed 

memory computer, the communication between the processors is completely handled by 

messages passed across the processors. There is no global memory. The submode! 

creation strategies and communication mechanism designs are based entirely on this 

fundamental assumption. 

The scope of this research is limited to manufacturing systems. The 

manufacturing systems that are modeled as a part of the investigation are gross 

simplifications of the real world systems. For example, material handling, bounded 
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work-in-process buffers between machines, alternate product routings, machine tools, 

customer order arrivals, sophisticated system controllers, etc., are not included in the 

models under this investigation. Thus, this research is a preliminary analysis of the 

execution of PDES solely based on the generalized product routings in the manufacturing 

system. 

Another severe limitation of this research is that during a simulation the 

deadlocking situations are avoided either by careful selection of non-deadlocking product 

flow routings, or by capturing the deadlocking portions of the generalized routing 

network within a submode!. This arrangement keeps the deadlocking portion under the 

control of a single processor, thereby avoiding deadlocking situations during the parallel 

execution. 

This investigation is conducted on an Intel iPSC/2, a parallel processing machine 

with its 32 nodes connected in the form of a hypercube. Therefore, the nature of 

investigation is limited to those aspects which are compatible with the characteristics and 

structure of this particular parallel machine. 

Research Contributions 

The major contribution anticipated from this research is the conceptualization and 

validation of the methodology created to guide a user in obtaining Object Oriented 

Discrete Event Manufacturing System Simulation Models that can be executed on a 

parallel processing computer. For practitioners who model manufacturing systems, the 

development of this methodology offers significant rewards in the following two areas. 

First, by analyzing the manufacturing system topologies and the factors that influence the 

model execution performance of a parallel implementation, decisions regarding the 

appropriateness of parallel implementation, suitability of the number of processors, and 

submode! creation strategies, can be made a priori to the actual implementation. Second, 

the detailed processor communication design for a corresponding network topology, 



made available by this research, can be used as a basis for designing the required 

processor communication mechanisms. 

Other significant contributions anticipated from this research are: 

• Determination of the factors that have the potential to influence the 

execution performance of a parallel discrete event simulation of 

manufacturing systems. 
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• Demonstration of the viability of parallel implementation of discrete event 

simulation of manufacturing systems via a modified event scheduling 

technique. 

• Provision of empirical data for further research in the areas of parallel 

discrete event simulation of discrete event systems. 



CHAPTER V 

RESEARCH PLAN AND METHODOLOGY 

Research Plan 

In order to achieve the goals and objectives outlined in Chapter Four, this 

research is carried out in the phases detailed below. Phase I finalizes the performance 

measures, experimental conditions, experimental factors, and other design 

methodologies. Phase II proposes a manufacturing system model that can be used to 

implement the desired experimental conditions, or to set the levels of the experimental 

factors at the desired values. This model is expected to emulate any needed experimental 

condition, without undergoing a structural change. Phase III proposes verification of the 

basic simulation model and the statistics collection routines, by creating an equivalent 

model in the general purpose simulation language, SLAM II [Pritsker 86]. In this phase, 

a validation of the simulation model is not attempted, because the experimental 

manufacturing system, though realistic, is purely hypothetical. Phase IV attempts to 

implement and execute the discrete event simulation model of the manufactming system 

on a single node of the Intel iPSC/2. This yields the uniprocessor simulation execution 

time, which is used as a baseline for speedup calculations. Phase V establishes a number 

of design strategies used to achieve an effective split of the global model into smaller 

chunks, each executed on a single processor. Phase VI is devoted to designing a number 

of processor synchronization mechanisms to accomplish a distributed simulation of the 

desired discrete event simulation model. Phase VII achieves successful implementations 

of the designs proposed in both Phases V and VI. Phase VIII verifies that the parallel 
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discrete event simulation of the manufacturing system has been implemented 

successfully under all the experimental conditions. It provides the results and 

conclusions of the experiment. A design methodology which accomplishes parallel 

discrete event simulation is expected as one of the important outcomes of this phase. 

PHASE I - Finalize Experimentation Details 

Phase I finalizes the experimentation details such as performance measures and 

expe1i.mental design factors that will be used during parallel discrete event simulation 

expedmentation. The performance measures for parallel implementation of discrete 

event simulation is dedved by comparing it to its equivalent single processor 

implementation. A good indication of the quality of parallel implementation is its 

speedup. The speedup is defined as 
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execution time for uniprocessor implementation of the problem 
Speedup=------------------------

execution time for a parallel implementation 
(3) 

Another indicator of the quality of parallel implementation is the utilization of 

each processor or its efficiency. The efficiency is defined as 

Efficiency = number of processors used in the parallel implementation 
speedup 

(4) 

Of the above two performance measures, this research will consider speedup as 

the performance measure of primary importance. Measured efficiency is only used as a 

threshold limit below which the implementation performance is not desired. 

The goal of this experimentation is to investigate the effect of experimental 

factors on the performance of parallel discrete event simulation. Among several factors 
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that affect the performance of PDES, the size of the manufacturing system, the load 

(utilization of all machines) on the manufacturing system, the number of processors used 

for parallel implementation, and the communication protocol design are the prominent 

factors selected for experimentation. The former two are non-controllable factors 

because they are automatically decided by the manufacturing system being modeled. 

The latter two can be controlled by selecting their most suitable levels. These 

experiments will be repeated for a variety of submode! network topologies thereby 

observing the effects of experimental factors on different network topologies. 

The following network topologies are selected for the PDES experimentation. 

The Submode! Network Topologies 

1: Submodel Network with "Independent Clusters" of nodes. 

2: Submode! Network with "Tandem" arrangement of nodes. 

3: Submode! Network with "Fork" topology of nodes. 

4: Submode! Network with "Join" topology of nodes. 

5: Submode! Network with both "Join" and "Fork" topologies of nodes. 

In order to develop a preliminary understanding of the functional relationship of 

the above four factors with the performance measure, an experimental design is set up as 

described below; 

1. The Size of the Manufacturing System Model (2 Levels): 

Level-I: Small size with 32 machines and 32 parts. 

Level-2: Large size with 256 machines and 32 parts. 

2. The Load on the Manufacturing System (2 Levels): 

Level-I: Low load with average utilization of each machine around 0.4. 

Level-2: High load with average utilization of each machine around 0.8. 

3. The Number of Processors Used for PDES Implementation (6 Levels): 

Level-I: Uniprocessor implementation. 

Level-2: Two-processor implementation. 



Level-3: Four-processor implementation. 

Level-4: Eight-processor implementation. 

Level-5: Sixteen-processor implementation. 

Level-6: Thirty two-processor implementation. 

4. Communication Protocol (2 Levels): 

Level-1: "Forward" protocol. 

Level-2: "Forward+Backward" or "Demand Driven" protocol. 
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Each simulation is performed with a fixed simulation time interval and three 

replications of each combination of the levels of the factors. This leads to (2x2x6x2x3 = 

144 simulations) for each network topology. For a given network topology the 

interprocessor communication messages are frequently well balanced so that all the 

processors are allocated approximately the same amounts of both communication and 

execution load. Two levels of communication protocols differently affect the execution 

performance under unbalanced and infrequent communication messages. This obviously 

can not be tested by the above experimental design. A new experiment with a specific 

manufacturing system routing structure that produces infrequent communication 

messages is designed to handle this situation. 

PHASE II - The Manufacturing System Model 

The second phase deals with the modeling process. In this phase, a suitable 

manufacturing system is specified. An object oriented model of this manufacturing 

system is developed to take advantage of the modeling flexibility and reusability 

provided by the object oriented paradigm. More discussion on this new experiment is 

provided under "Selection of Manufacturing System" section. 



PHASE III - Verification of the PDES Environment 

In order to verify the simulation execution and statistics collection routines, an 

equivalent SLAM II system model is developed. Exactly matching statistics collection 

numbers can be obtained by substituting deterministic input values for the various 

disuibutions in the model. This verification is vital for testing the simulation logic, the 

part creation process, machine operations, and the accuracy of routing implementation. 

The demonstration of simulation logic verification is supplied in Chapter X. 

PHASE IV - Implementation of the Simulation Model on the iPSC/2 
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In this phase, the simulation model is executed on a single processor. This is an 

essential step to overcome the incompatibilities between the version of C++ used for the 

model development on a PC and AT &T's C++ version available on the Intel iPSC/2. 

Verification of a uniprocessor implementation is provided in Chapter X. 

PHASE V - Design Strategies for Submodel Creations 

In this phase, a design strategy that allows a global model fragmentation into 

smaller submodels is developed. Using this strategy a global model is divided into pieces 

of smaller submodels and each one is executed by a single processor node of the Intel 

iPSC/2. Event dependencies of the processes pe1iaining to a submodel, communication 

overhead of the processor network, volume of the inter-processor conummication, etc., 

are some of the important factors that influence the design strategy. 

PHASE VI - Design Strategies for the Synchronization Mechanisms 

In this phase, a strategy will be designed to establish proper synchronization 

among the iPSC/2 nodes. As explained before, each node is assigned a set of machine 

processes. During the simulation, the submodels communicate with each other via 

message passing. If the simulation process on a submodel has to wait for a message from 
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another submodel on a different node, the simulation logic should detect this condition 

and stop the simulation until the node receives the message. Typically, a variety of 

algorithm designs can be created for this detection, to halt the simulation execution on 

the node, and to take an appropriate action when the required message is received. Since 

the allocation of the processes to the nodes does not change dynamically, the 

communication patterns in the network can be determined a priori. This helps in 

tailoring a strategy to exactly satisfy the individual requirements of each node. 

PHASE VII - Implementation of Phases V and VI 

In this phase, the strategies prepared for the submodel creation and 

communication mechanism designs are implemented. The implementation of the designs 

developed in Phase V and Phase VI involves creation and testing of the simulation code. 

The verification of the multi-processor implementation of discrete event simulation of 

the target manufacturing system is provided in Chapter X. 

PHASE VIII - Implementation of the Experimentation 

In this phase, the simulation model of the manufacturing system is executed 

several times (each with different experimental conditions) to obtain the results for the 

entire experimentation. These results will be verified with those obtained from the 

corresponding uniprocessor implementation. This phase represents termination of the 

research activity and presentation of the results in the final format. 

Selection of the Manufacturing System 

A hypothetical manufacturing system having 'M' number of machines, and 

proces1,ing 'N' number of part types is selected for the purpose of experimentation. A 

generalized model of this system is shown in Figure 9. Depending on the routing 

specifications, each part can follow a distinct route through the system before converting 
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itself into a final product. There is an input buffer at each machine. Work flow 

generators, which serve the same purpose as 'Create' nodes in SLAM II, schedule arrivals 

of parts with a given interarrival distribution. Appropriate statistics, such as queue 
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Figure 9. A Generalized Manufacturing System Model used for Expe1imentation 

length, machine utilization, time-in-system, etc., are collected at the required locations in 

the system. This manufacturing system model can be used to emulate all five proposed 

submode! network topologies. The size of the model can be changed by simply 

specifying new input values for 'M', and 'N' and by specifying the desired routings. 

Thus, this manufacturing system model is simple but quite convenient for this research. 

AC++ object oriented simulation model of this generalized manufacturing system is 

provided in Chapter VI. 
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Selection of Submode! Network Topologies 

The purpose of this section is to describe the submode! network topologies selected for 

parallel discrete event simulation. Figure 10 depicts the five levels of submode! network 

topologies that are selected for the implementation. 

1] Network with "Independent" or "Disjoint" submode! nodes 

A submode! network topology that has no arcs or communication between any 

two submodels falls under this category. A simulation model of a cellular 

manufacturing system with completely separate product lines, can be sub-divided 

such that each product line becomes a single submode!. Under this scenario, the 

machines belonging to the same product line do not interact with the machines 

from the other product lines, and therefore require no communications between 

the submodels. Figure 11 depicts a 32 disjoint node network created in 

conjunction with a 32 processor simulation implementation. For small size 

models each node simulates a single machine whereas, for a large size model 

containing 256 machines, each node simulates an eight machine cluster that forms 

a single part routing. 

2] Network with "Tandem" arrangement of submode! nodes 

A submode! network topology that has a unidirectional tandem configuration of 

the submodels falls under this category. Figure 11 depicts a 32 node tandem 

network created in conjunction with a 32 processor simulation implementation. 

For small size models each node simulates a single machine whereas, for a large 

size model containing 256 machines, each node simulates 8 machines. To 

maintain balanced communication patterns for all nodes, tandem routing for each 

part has machines from two consecutive nodes. 
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Submode! Network Topologies 
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Figure 10. Types of Networks Considered for Experimentation 
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Figure 11. Thirty Two Node Network for "Clusters" and "Tandem" Topologies 
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3] Network with communications that form 'Fork' topology of submode! nodes 

A submode! network with some of the submode! nodes connected in such a way 

that each of these submodels has a single input communication and multiple (two) 

output communications, falls under this category. Figure 12 depicts a 32 node 

"Fork" network created in conjunction with a 32 processor simulation 

implementation. For small size models each node simulates a single machine 

whereas, for a large size model containing 256 machines, each node simulates 8 

machines. To maintain balanced communication patterns for all nodes, the fork 

network structure is derived by use of tandem routings for several parts, each 

extending from the root node over to a single forked branch. 

4] Network with communications that form 'Join' topology of submode! nodes 

A submode! network with some of the submode! nodes connected in such a way 

that each of these submodels has multiple input communications and a single 

output communication, falls under this category. Figure 12 depicts a 32 node 

"Join" network created in conjunction with a 32 processor simulation 

implementation. For small size models each node simulates a single machine 

whereas, for a large size model containing 256 machines, each node· simulates 8 

machines. To maintain balanced communication patterns for all nodes, the "Join" 

network structure is derived by use of tandem routings for several parts, each 

extending from a single joining branch over to the joined node. 

5] Network with both 'Join' and 'Fork' topology of submode! nodes 

A submode! network with some of the submode! nodes connected to form a 

"Join" topology and other submode! nodes connected to form a "Fork" topology 

falls under this category. Figure 12 depicts a 32 node tandem network created in 

conjunction with a 32 processor simulation implementation. For small size 

models each node simulates a single machine whereas, for a large size model 

containing 256 machines, each node simulates 8 machines. To maintain balanced 



communication patterns for all nodes, the "Fork+ Join" network structure is 

derived by use of two tandem routings each originating at the same node then 

forking out to two different nodes and then joining back at the next node. 
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Figure 12. Networks for "Join", "Fork" and "Fork+Join" Topologies 
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This completes the outline of the research plans and methodology. The following 

chapters contain the description of the experimentation environment, expe1imental results 

and conclusions. 



CHAPTER VI 

OBJECT ORIENTED REPRESENTATION 

Introduction 

This chapter describes an object oriented representation of the target 

manufacturing system selected for the experimentation. It also provides information 

about the simulation experimental set up in the next section. C++ is chosen to be the 

implementation language for object oriented representation of the manufacturing system. 

An object oriented model of the manufacturing system consists of a variety of classes of 

modeling primitives such as machine, work flow item, work flow generator, routing, etc., 

which are directly abstracted from their respective real world counterparts. The detailed 

object library described below also contains a variety of simulation support objects such 

as random number generator, simulation, statistics collection, etc., that provide the code 

for simulation ·execution, random variate generation, and statistics collection. These two 

types of objects together constitute a parallel discrete event simulation environment. 

C++ object class library code resides in 'cnode.c' file listed in the Appendix A. The 

following section briefly describes the C++ object class library. 

C++ Class Library 

The purpose of this section is to describe the C++ object class library for the 

parallel discrete event simulation environment. The object oriented model of the 

generalized manufacturing system described in an earlier chapter constitutes a number of 

classes dealing with the modeling primitives, the simulation logic, and the statistics 
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collection. Figure 13 depicts the important modeling objects, their instance vaiiables, 

and their class hierarchy in the simulation environment. A brief explanation of the 

important classes is given below: 

Modeling Environment Objects 

J Stat_Collection J 

I Min, Max, Mean, Std I 
N,SS,S 

I Random No I 

Item 

J Time Persistant I 
I Last clock I 

I I Node I 
Part Name 

Time Stamp 
I Pointer to Item I 

Pointer to I Node 

Ev~Row Item I 

Machine 
Machine Name 
Machine ID 

Processing Time Dist 
Distribution Parameters 

Input Queue 
Processing Part Pointer 

Input_ Q_Length 
lnput_Q_WaitingTime 

Utilization 
Clock_ptr 

Event Cal Ptr 

Work Flow Generator 
WFG Name 

WFG ID 
Arrival Time Dist 

Distribution Parameters 

Clock_ptr 
Event_Cal_Ptr 

Queue 

Queue Length 

Pointer to I Node 

Simulation 

Machine List 
Processor ID 

Work FlowGen. list 
Time in System 

No. of Machines 
No. of parts 

Part Routing Matrix 
RAND_NO 
Sim_Clock 

Event_O 

Figure 13. Modeling Objects of the Manufacturing System 
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Stat Collection: This class collects the observation based statistics and maintains 

the minimum, the maximum, the average, and the standai·d deviation of a data stream. 
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'min', 'n', 'max', mean', 'std' are some of the imp01iant instance variables defined for an 

instance of this class. Following are the important member functions of this class. 

'Collect(double x)': This member function collects the value of 'x' as a new 

observation of the data stream and calculates the minimum, maximum, 

cumulative sum and the cumulative sum of squares for the data stream. 

'print_result(char* statistics)': This function prints to the output file the statistics 

collection results that include, number of observations, the maximum, the 

minimum, the average, standard deviation along with the title provided by the 

character pointer 'statistics'. 

Time Persistent: This is a subclass of the II Statistics Collection II class. It collects 

time persistent va1iables such as utilization, and queue length. Besides the member func

tions inherited from its superclass, the Time Persistent class stores previously collected 

values in the instance variable 'last_clock', so that the time persistent statistics can be 

collected. This class ovenides the super class 'Collect(double x)'by 'Collect(double 

clock, double new_value)' member functions because the time persistence calculations 

require both the new observation and the observation collection time. 

Random No: This class generates both random variates and random numbers. It 

is designed to operate in multiple random number stream mode. That is, a different ran

dom number stream can be assigned to each stochastic process in the simulation. 'Ran

dom--'-No' class requires a seed, a distribution type, and appropriate parameters. After 

generating the random vaiiate the new seed value is sent back to the requesting object, 

such as the work flow generator or a machine. The requesting object will supply this 

new seed for the next random variate request. Following are the important member 

functions of this class. 

'next_seed(long seed)': This member function receives a seed value, uses Park 

and Miller [Pai·k 1988] random number generator algorithm, and returns the next 

seed. 
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'next(char D, double param[], long& seed)': This member function receives a 

distribution type, the distribution parameters, and a seed value. It uses 'next_seed' 

function to obtain a new seed value and generates the appropriate random variate 

specified by distribution type 'D' and parameter vector 'param[]'. 

Item: This class provides an abstract structure to both its subclasses. It offers 

'Part Name' and 'Time Stamp' as two instance va1iables to its subclasses 'Event' and 

'WFI'. Instances of 'Item' are queued by an instance of class 'Queue', thereby allowing 

the instances of its subclasses to be queued in an event calendar or machine input queues. 

I Node: This structure holds a pointer to the instance of class 'Item' and a pointer 

to an instance of the next entity queued in a 'Queue' object. Thus 'Queue' is made up of a 

linked list of the instances of structure 'I_Node'. 

Queue: . This class consists of a linked list of the instances of structure 'I_Node'. 

It queues instances of class 'Item' by using structure 'I_Node'. Following are the 

important member functions of this class. 

'ADD(Item *ani)': This member function receives an instance of class 'Item" and, 

adds it to the queue. It uses 'Time_Stamp' value to determine the queue discipline 

such that the lowest 'Time Stamp' value items are queued at the front of the 

queue. 

'REMOVE()': This function removes the first item from the front of the queue. 

Event: This class holds the attributes of events that are scheduled on the event 

calendar. It acquires its behavior from its superclass 'Item' through inheritance. 

WFI: This class holds the attributes of parts that move through the manufacturing 

system. Class 'WFI' also obtains its behavior from its superclass 'Item' through inheii

tance. It has additional instance variables, 'Start_ Time' that keeps track of the simulation 

entedng time of a work flow item, 'At_Step' which holds the routing step number, and 

'Serial' which stores the serial number. 
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Machine: This class models the behavior of a machine. Its instance variables are 

'Input_Queue' an instance of class 'Queue', 'P _Dist' that stores processing time 

distribution, 'P _Param[3]' which has the distribution parameters, 'Status' which maintains 

the status of the machine, and 'seed' that contains the current random number seed. A 

number of instance. variables such as 'I_Q_L' (input queue length), 'I_Q_ WT' (input 

queue waiting time), 'Util' (machine utilization), and 'Blk' (blocking) are provided for the 

statistics collection. Two instance variables, '*blocking_mc' ( containing the pointer to 

the machine blocking this machine) and '*BM' (containing a list of pointers to the 

machines that are blocked by this machine), help accomplish the blocking operations and 

unblocking of the machines. Following are the imp01tant member functions of this class. 

'accept(Item *awfi)': This function accepts a work flow item from the previous 

machine or a work flow generator. If the machine is idle the processing of the 

work flow item begins immediately. Otherwise, the work flow item is added to 

the input queue. 

'start_process()': This function removes a work flow item from the input queue 

and begins its processing. If this machine has been blocking some other machine, 

the processing at that machine is restarted by sending a 'restart_blocked_process' 

message. 

'end_process()': This function returns a processed work flow item that can be sent 

to the next processing machine in its routing. 

'block_process()': This function blocks the processing on the current machine if 

the input queue of the machine down stream is full. 

'restart_blocked_process()': This function restarts a blocked process by sending 

its processed pait to the blocking machine and accepting a new pait from the 

input queue. 



WFG: This class provides a behavior similar to a 'Create' node in SLAM II. It 

creates instances of class 'WFI' according to an ruTival distribution and enters them into 

the simulation. 
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Simulation: This class controls the entire simulation process. It also provides the 

messages that communicate to other instances of this class on different processors. It 

holds references to all the machines and work flow generators under its control. Its inst

ance variables supply routings, an event calendar, a random number generator and 

several statistics collection objects. It primes up the event calendar by sending an 

initialization message to all the work flow generators and then schedules the events on 

the event calendar. In multiple processor implementation, class 'Simulation' terminates a 

work flow item at the end of its routing, or sends it to the processor containing the next 

machine in its routing. Following are the important member functions of this class. 

'ReceiverSender()': This function identifies the predecessor and successor 

processors for the current processor. This member function is executed before 

the beginning of simulation so thatthe processor communication patterns are 

deter-mined a priori. 

'Perform()': This function performs the actual simulation. It contains the 

communication protocol for inter processor communication. It identifies when an 

event can be scheduled without violating the causality principle and then 

schedules the event using 'ScheduleAnEvent()' function . 

. 'ScheduleAnEvent()': This function removes an event from an event calendar and 

schedules it using either FinishUp(int machineNo)' or 'Arrival(int partNo) 

function. 

'FinishUp(int machineNo)': This function determines whether a work flow item 

can be moved to the next machine in its routing sequence. If it can be moved (i.e. 

when the next machine is not blocked) the work flow item is moved to the 

appropriate machine, else the previous machine is sent a 'block_process' message 
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to block the processing of the current work flow item. It the next machine is on a 

different processor, the work flow item is sent to that processor using 

'S endMessage( a wfi,AP[ next_mc])' message. 

'SendMessage(awfi,AP[next_mc])': This function creates a message from the 

work flow item description and sends it to the processor stored in 'AP[next_mc]'. 

'ReceiveMessage()': This function receives a message from a predecessor 

process-or and creates a work flow item object from it. This work flow item 

object is stored in an 'InputBuffer' and an event corresponding to the arrival of the 

work flow item is scheduled on the event calendar. 

Experimental Setup 

This section describes the experimental setup provided for conducting a variety of 

expedments on the Intel iPSC/2 hypercube. As mentioned in the third chapter, the 

hypercube computer consists of a SRM (System Resource Manager) and a set of nodes 

connected in the fonn of a hypercube. A typical application run on the hypercube 

consists of two programs, one which runs on the SRM machine and a second that runs on 

a selected set of nodes. The SRM program is typically known as a 'host' program, 

whereas the program running on a node is called the 'node' program. 

The host and node programs of this application reside respectively in 'chost.c' and 

'cnode.c' files. Compilation of these programs requires linking a number of library files 

and setting a number of compiler options which are listed in a file called 'makefile' 

provided in Appendix B. Figure 14 depicts the execution host program. As described in 

Figure 14, the host program reads a simulation model from 'modelxxx.des' input file, and 

the submode! allocation information from 'allocxx.tab' file. Upon reading these two files, 

the host program creates a number of input files named 'pdesxx.inp' for the node 

program. It also loads the node program onto the specified number of nodes. Each node 

program accesses its corresponding input file to obtain its assigned submode!. Each node 
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program then executes the assigned submode!, writes the output in 'pdesxx.out' files and 

the execution trace in 'pdesxx.tra' file. Finally these output files are assimilated in a 

single 'amxxxpxx.exp' file. The output of a node program contains the machine related 

statistics such as 'utilization', 'input queue waiting time', etc., and part related statistics 

such as 'time in system'. Each node program also records its submodel execution time 

and sends it to the host program which finds the maximum execution time and displays it 

on the screen. 

PDES Model Execution on 'n' nodes 

odelxxx.des 

000 

pdesn.out 

Input Files Output Files 

amxxxpxx.tra +-

pdesn.tra 

Trace Files 

f xxxpxx.ex9 

Figure 14. PDES Model Execution on "n" Hypercube Nodes 
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Shell script 'experiment' receives from the user the model file name, the allocation 

file name, and the host file name. Then it executes the host file and collects the output in 

'*.exp' file and the trace in '*.tra' file. 

In multiple processor implementation, several node programs simultaneously run 

on a number of processors. In order to obtain non-eIToneous simulation results a proper 

communication protocol must be provided in the node program. The communication 

protocols confirm that the causality principles are not violated and allow the simulation 

on each processor to safely proceed towards completion. The following two chapters 

first look at the communication protocol constructs provided in the concu1Tent object 

oriented programming languages and then supply the protocol design for the 

implementation of the parallel discrete event simulation on the Intel iPSC/2 hypercube 

computer. 



CHAPTER VII 

EVALUATION OF CONCURRENT OOP CONSTRUCTS 

Introduction 

In order to accomplish the first research objective, this chapter attempts to 

evaluate a number of concurrent object oriented programming constructs in the context 

of their applicability to parallel discrete event simulation. 

Evaluation of "ConcurrnetSmalltalk" Constructs 

A typical object oriented concurrent programming language provides a number of 

concurrent constructs, which can be used to model concurrent processes. For the purpose 

of illustration the constructs provided in "ConcurrentSmalltalk" [Yokote 88] are 

explained below. In "ConCLmentSmalltalk" there are two major constructs that activate 

and synchronize the objects: 

Construct 1 : (&) This asynchronous method call sends a message to the receiver 

object and the program proceeds to the next line without waiting 

for a reply message. 

Construct 2: (II) This construct specifies that the receiver object will return a 

reply and it will continue to execute. That is, after evaluation of 

this expression the sender and receiver objects are executed 

concurrently. 

To evaluate the effectiveness of these constructs, their execution is analyzed in 

the context of an example. A Producer-Consumer problem is selected for this purpose. 
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The development of an object oriented model of this problem in "ConcurrentSmalltalk" 

and its execution analysis is explained below. 

This example attempts to produce a concurrent object 01iented model of the 

simple producer-consumer system depicted in Figure 15. The system consists of a 

producer who produces items, a consumer who consumes these items and a bounded 

buffer between the producer and the consumer. This problem is modeled by defining 

three main classes of objects; a producer, a consumer and a bounded buffer. Each of 

these objects has an independent process which can be synchronized by the concurrent 

constructs discussed above. Figures 16, 17, and 18 on the following pages display the 

"ConcurrentSmalltalk" code of the system model. 

Producer-Consumer System 

Producer 

add Position •• item • • 
Bounded Buffer 

Consumer 

remove Position 

Figure 15. Bounded Buffer in a Producer-Consumer System 



Object atomic Subclass: #BoundedBuffer 

instanceVariableNames: 'buffer size max read write wait' 

classVariableNames:" 

pool Dictionaries: " 

category: 'Producer-Consumer' 

Bounded Buffer methodsFor: 'initializing' 

Setup: n 

buffer := Array new: n. 

max:= n. 

size:= 0. 

removingPosition := 1. 

addPosition := 1. 

BoundedBuffer methodsFor: 'accessing' 

deposit: anitem 
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wait notNil ifTrue: [ wait run&. wait:= nil]. " If somebody is waiting then release it and make wait= nil" 

size= max ifTrue: [wait:= thisContext sender receiver. A#full ]. "If buffer is full, make producer wait" 

II buffer at: add Position put: anitem. "Note the execution continues after replying with anitem. " 

size := size + 1. 

add Position := add Position\\ max+ 1. 

remove 

wait notNil ifTrue: [ wait run&. wait := nil ]. " If somebody is waiting then release it and make wait= nil " 

size= o ifTrue: [wait:= thisContext sender receiver. A#empty ]. "If buffer is empty, make consumer 

wait" 

II buffer at: removePosition. "Note the execution continues after replying with anitem." 

size := size - 1. 

removePosition := removePosition \\ max+ 1. 

BoundedBuffer class methods For: 'instance creation' 

new: max 

I newBuffer I 
newBuffer := super new. 

newBuffer setup: max. 

Anew Buffer 

Bounded Buffer class methodsFor: 'example' 

example 

"Bounded Buffer example." 

I buffer producer consumer J 

buffer := Bounded Buffer new: 10. 

producer := Producer new: buffer name: #PRODUCER. 

consumer := Consumer new: buffer name: #CONSUMER. 

producer forever&. 

consumer forever&. 

Figure 16. Program Code for Class BoundedBuffer 



Object Subclass: #Producer 

instanceVariableNames: 'buffer save myName' 

classVariableNames:" 

pool Dictionaries:" 

category: 'Producer-Consumer' 

Producer methodsFor: 'initializing' 

Set: aBuffer name: aName 

buffer := aBuffer. 

my Name := aName. 

Producer methodsFor: 'private' 

makeAnltem 

" This code generates items at an interval of time given by an interarrival distribution. " 

Producer methods For: 'accessing' 

deposit: anitem 

forever 

run 

I rv I 
rv := buffer deposit: anltem. 

rv = #full ifTrue: [save:= anltem A#full] 

ifFalse: [Aanltem] 

Irv I 

[true] while True: [ rv := self deposit: self makeAnltem "Generate an Item and deposit it into the 

bounded buffer" 

Irv I 

rv = #full ifTrue: [ A#full ]] " rv specifies if buffer is full or not; if full, the execution 

terminates " 

rv := self deposit: save. " Deposit the saved item first " 

rv = #full ifTrue: [ A#full] "rv specifies if buffer is full or not; if full, the execution terminates" 

ifFalse [ self forever] " if not full run forever " 

Producer class methodsFor: 'instance creation' 

new: buffer name: aName 

I newProducer I 

newProducer := self new. 

newProducer set: buffer name: aName. 

AnewProducer 

Figure 17. ProgramCode for Class Producer 
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Object Subclass: #Consumer 

instanceVariableNames: 'buffer myName' 
classVariableNames:" 

pool Dictionaries:" 

category: 'Producer-Consumer' 

Consumer methodsFor: 'initializing' 

Set: aBuffer name: aName 

buffer := aBuffer. 

myName := aName. 

Consumer methodsFor: 'private' 

consume: anltem 

" This code consumes items at an interval of time given by a consumption distribution. " 

Consumer methodsFor: 'accessing' 

remove 

I anltem I 
anltem := buffer remove. 

an Item = #empty ifTrue: ["#empty] "If the bounded buffer is not empty return the removed item" 

ifFalse: ["anltem] 

forever 

I anltem I 
[true] whileTrue: [ an Item := self remove. " Remove an item from the bounded buffer" 
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anltem = #empty ifTrue: ["#empty] "If the bounded buffer is empty stop execution" 

ifFalse: [self consume: anltem] " else, consume the item " 

run 

self forever " Restart the consumption process forever; restarted by the bounded buffer" 

Consumer class methodsFor: 'instance creation' 

new: buffer name: aName 

I newConsumer I 
newConsumer := self new. 

newConsumer set: buffer name: aName. 

"newConsumer 

Figure 18. Program Code for Class Consumer 

Class BoundedBuffer has two important methods defined; deposit: and remove. 

Method deposit: is executed when the Producer object sends a deposit: message to the 

BoundedBuffer class. During its execution, method deposit: first checks whether the 

bounded buffer is full. If it is full, Producer is kept waiting and #full is returned to 
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terminate the activities of the Producer. Otherwise, the item is stored in the bounded 

buffer, and size and addPosition variables are updated. The deposit: method also checks 

whether the customer object is waiting. If it is waiting, the activities of the consumer are 

restaited by sending a run message to it. Method remove tenninates the activities of the 

consumer object and makes the consumer wait, when the bounded buffer empties. 

The object code of Producer class is depicted in Figure 17. Method makeAnltem 

creates the items that are sent to the bounded buffer. Method forever is executed as 

follows: it produces new items by sending makeAnltem to itself, and then deposits these 

items into the bounded buffer by sending a deposit: message to the BoundedBuffer 

object. If the reply indicates that the bounded buffer is full, the execution of method 

forever is terminated by the BoundedBuffer object. When the Consumer object removes 

an item from the buffer, methodforever is restaited upon receiving a run message from 

the BoundedBuffer object. 

The object code of Consumer class is depicted in Figure 18. There are two 

important methods described for the Consumer object. Method consume: removes an 

item from the bounded buffer and delays it for the consumption time detennined from a 

consumption probability distribution. Method forever is executed as follows: it removes 

an item from the bounded buffer by sending a remove: message to the BoundedBuffer 

object. If the reply indicates that the bounded buffer is empty the activities of the 

consumer are terminated. Otherwise, the consumer consumes an item by sending 

message consume: to itself. When the Producer object adds an item to the buffer, 

method forever is restaited in response to a run message received from the 

BoundedBuffer object. 

The producer and consumer objects have their independent processes. Under 

normal circumstances (that is when the bounded buffer is neither completely full nor 

empty), both processes operate concurrently (on different processors if the program has 

been implemented on a parallel processing machine). The execution process of the 
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Producer object creates items and sends them to the buffer until the process is terminated 

when the bounded buffer becomes full. This process is restarted as soon as the 

Consumer object creates an empty space in the bounded buffer by removing an item. 

The execution process of the Consumer object consumes an item and terminates it from 

the system until the consumption process is stopped when the bounded buffer becomes 

empty. This process is restarted as soon as the Producer object makes the bounded buffer 

non-empty by depositing an item. These processes run forever until they are both 

terminated when the desired simulation ending time is reached. 

The following paragraphs explain the concurrent execution Producer-Consumer 

system. In this example, it is assumed that the bounded buffer can hold a maximum of 

three items. The producer takes five milliseconds to execute method makeAnltem, and 

the consumer takes 30 milliseconds to execute the consume: method. These times (in 

milliseconds) are respectively defined to be item production time and item consumption 

time. Table 2 depicts sample production and consumption times for eight items. 

TABLE 2 

PRODUCTION AND CONSUMPTION TIMES 

Item Production Time Consumption Time 
Number (msec) (msec) 

1 5 30 
2 5 5 
3 5 5 
4 5 5 
5 20 25 
6 5 5 
7 5 5 
8 5 5 



Refer to Figure 19 for a detailed explanation of the execution of the producer

consumer system model. As the simulation begins the consumer process checks the 

bounded buffer and finds it empty. This terminates the consumer process. 

Producer 
Process 

EXECUTION ANALYSIS IN DETAIL 

---- - - - - - - - - - - -------,-----,------;--;;_, - - - - - - - -~ 

I I I I 

®®©® 
Bounded,__~~~~--------~~~~~-----~ 

Buffer E NE 1 2 F NF E E E 1 2 F NE E E 
Status ,___-------~---~----------~ 

® ® ® ® ® © ® 

> 

Consumer 
Process 

y y' y' - - - -'t--r' _______ __.____.___,,__ ; ___ y ¥' y' y' ---> 

0 20 ms 40 ms 60 ms 80 ms 
--- Execution Time ~ 

--------> Message Passing Direction Bounded Buffer Status 
> Process is running F : Full E : Empty 

·-------- Process is terminated NF : Not Full NE : Not Empty 

Figure 19. Execution Analysis of the Producer-Consumer System Model 

The producer makes an item and puts it into the bounded buffer at time 5 msec. 
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The producer process continues as the bounded buffer is not full yet. As soon as the first 
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item enters the buffer, the consumer process is restarted. The consumer removes the item 

from the buffer and begins consuming it. Meanwhile, the producer makes three more 

items and loads them into the buffer to make it full at 20 milliseconds. At this time the 

producer process is tenninated. The producer process is restarted when the consumer 

picks up the second item at 35 milliseconds. Thus, the producer and consumer processes 

operate intennittently until the simulation is run for the desired period. 

Construct 1 provides a fork for concurrent execution of sender and receiver 

objects, where as construct 2 is useful in situations where the information requested by 

the sender is readily available but it also requires recalculation of the internal states. By 

acknowledging the reply to the request by sender object using construct 2, the receiver 

object can conctmently execute the updating internal states along with the sender object 

execution. This is unlike a normal function return call in C where the execution of the 

current function is automatically tenninated as soon as the return statement is executed. 

These two constructs along with several other synchronization methods such as, receive, 

receiveAnd:, receiveOr:, etc., form a complete set of concurrent consu·ucts that allow the 

user to take advantage of inherent concurrency in the problem domain. 

In conclusion, object oriented languages like ConcurrentSmalltalk provide highly 

efficient constructs that can exploit even extremely fine grain concmrency in the 

application domain without programming rigorous synchronization mechanisms. This 

analysis of ConcurrentSmalltalk constructs has been very useful in stimulating ideas for 

developing software communication protocol designs explained in Chapter IX. 



CHAPTER VIII 

SUBMODEL CREATION METHODOLOGY 

Introduction 

The purpose of this chapter is to develop a submode! creation methodology based 

on the analysis of parallel implementation programs for discrete event simulation. In 

order to achieve this objective, the next section provides a detailed description of the 

execution of discrete event simulation both in case of uniprocessor and multi-processor 

implementation. In the following section, a set of factors that influence the submode! 

creation process are identified, and a general strategy for submode! creation is specified. 

It is important to note that this strategy is highly influenced by the message passing 

architecture of Intel iPSC/2 hypercube and its applicability is limited to parallel 

implementation of discrete event simulation on distributed memory computers. 

Analysis of Parallel Discrete Event Simulation 

The purpose of this section is to analyze both uniprocessor and parallel 

implementation of discrete event simulation. It provides better understanding of the 

necessity of communication, contents of the messages, message passing and receiving 

mechanisms, etc. for a successful PDES implementation. An anangement of a typical 

PDES application is outlined below. 

Simulation program anangement for a uniprocessor simulation execution is 

explained in Figure 20 on the next page. The simulation program developed for the 

purpose of this research is similar to a general purpose uniprocessor discrete event 
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simulation framework developed by Mitrani [Mitrani 1982]. It consists of an event 

calendar which enqueues and schedules simulation events, and a number of functions or 

procedures that respectively hold event execution code for simulating their respective 

events. These events update system states, collect statistics, and schedule the new events 

onto the event calendar. With this arrangement of discrete event simulation program, the 

"causality" constraints [Chandy 1979] are maintained during the simulation execution. 

The event calendar acts as a single entity that accepts entire system wide events, and 

maintains proper ordering of the events. This arrangement results in an error free 

execution of the simulation. 
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Figure 20. Uniprocessor Discrete Event Simulation 
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For the purpose of this research, the PDES is achieved by breaking up the manu

facturing system model into a number of distinct submodels. Each submodel is then 

executed on a single processor. This arrangement of the simulation program for parallel 

implementation of discrete event simulation of manufactming systems is depicted in 

Figure 21. As depicted in Figure 21, the execution of a submode! on a single processor 

involves an event calendar that schedules events happening within the boundary of the 

submode!, and a set of procedures that contain the code for the events scheduled inside 

the current submodel. The submode! simulation logic also incorporates mechanisms for 

scheduling events arriving from the predecessor submodels, and the event code 

procedures for sending new events to the successor submodels. Thus, simulation 

execution of each submodel running on a single processor has its own event calendar 

which simulates the events within the boundary of the submode!, while the dependence 

of the events between the submodels is reflected by the transfer of event across the 

submodels. 

If the submodels are completely independent (i.e. the cause for the scheduling of 

an event always lies inside the submode!) there are no incoming and outgoing events or 

communications, and therefore this arrangement does satisfy the causality principle 

leading to a successful PDES implementation. However, in general all submodels are 

not independent. At least some of them are influenced by the events happening in some 

other submodels. The outcome of such events can modify the sequence of events in the 

dependent submodel. This can create situations which violate the causality principle and 

produce erroneous results. However, such situations can be avoided by providing proper 

synchronizing mechanisms between the respective submodels. 
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The purpose of this section is to develop a comprehensive methodology for 

creating submodels from a single manufacturing systems model. There are two major 

guiding principles for such a methodology. First, for an efficient parallel processing 

application the goal is to minimize the inter-processor communication. As the 

independent submodels do not require communication between their respective 

processors, independent submodels make PDES implementation very efficient. 

Secondly, in case of dependent submodels, specific topology of the submodel network 

can create 'deadlock' situations [Chandy 1981]. Even though there are several 

mechanisms currently available for deadlock detection and recovery, almost all of them 

provide only marginal speedups [Reed 1988]. And hence for the purpose of submodel 

creation, topologies that have a potential for 'deadlock' are avoided. Under these two 
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major guidelines submode! creation methodology for parallel discrete event simulation is 

specified below. 

The main focus in submode! creation is to achieve maximum speedup. From 

knowledge of parallel processing principles, it is evident that the speedup can be 

improved by using larger and larger number of processors (submodels), and also by 

minimizing the communication overload on the processors. The communication 

overload on each processor can be obtained in terms of the number of communication 

messages between the processors. The evaluation of this number requires definition of 

the following notation. 

Notation: 

m : Number of machines in the system 

n : Number of parts in the system 

p : Number of processors used for parallel implementation (p < m) 

ai : Average number of parts of part type 'i' flow during the simulation run 

Xi,j,k : Equals one if 'i'th part type moves from 'j'th to 'k'th machine, 

Othe1wise it equals zero 

S1 : Submodel '1'; a set of machines belonging to ·1·th submodel 

Tc : Average communication time for a single message 

Te : Average computation time for executing a single event 

CK : Number of communication messages received by machine "K" 

As each part moves from one machine to another machine in its routing, it 

generates messages between two machine processes thereby creating communication 

overhead. The communication overhead corresponding to each machine can be 

calculated as; 

m n 
Communication overhead for machine "K" = CK = I, I, ai · XijK (5) 

j=li=l 



For two machines belonging to a single submode!, these messages are the events 

scheduled on the event calendar and therefore do not produce communication overhead. 

Therefore the total communication overhead on a single processor can be obtained as; 

n 
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Communication overhead for submodel 'l' · = I,CK - I, I, I, ai · Xiik (6) 
KeS 1 keS 1 jeS1 i = 1 

The first term calculates the messages that would be sent from all the machine 

processes in the manufacturing system if each submodel contained only one machine 

process. In the second term machine j and k are such that they both belong to a single 

submodel S1. The second term subtracts the messages that would be sent inside the 

submodel. If it is assumed that each incoming message results in execution of a single 

event, then the main objective of the submodel creation process is; 

Subject to a number of constraints given below; 

1] p :s; m; beyond this value of 'p' the overhead associated with the 

synchronization becomes enormous. 

2] A void feedback loop structures in the submodel network because such 

situations lead to 'deadlock' during simulation execution. 

3] Balance the total communication plus the execution overload on each processor 

executing a single submodel. 

4] Take advantage of independent clusters of machines by assigning them to a 

single submodel thereby reducing the communication overload to zero. 
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5] Avoid "Join" topology of submode! network, because this topology requires 

the simulation event scheduling logic to wait for more event messages before it 

decides to proceed with the simulation execution. 

Evaluation of this type of optimization is not easy. A straightforward approach is 

to use the above guidelines to come up with alternative submode! configurations and then 

evaluate the objective function for each configuration. The configuration which gives 

the least value for the objective function is the desired submode! configuration among 

those considered. 

As submodels reside on different processors, synchronization between the 

submodels results in communication between the respective processors. Interprocessor 

communication can be achieved by a variety of communication strategies explained in 

Chapter III. The strategy used for the purpose of this research is explained in the 

following chapter. 



CHAPTER IX 

COMMUNICATION PROTOCOL DESIGN 

Introduction 

This chapter presents an overview of the communication protocol design process. 

For a general parallel processing application the communication protocols are designed 

by understanding the distribution of the problem computation over the processors, and 

the resulting communication requirements of each processor. As presented in Chapter 

III, for parallel discrete event simulation applications, a number communication 

protocols are available in the literature. A majority of protocols are proposed to 

effectively overcome 'deadlock' situations. But, from execution pe1formance perspective, 

the above protocols for a 'deadlock' situation still give very marginal improvements in 

speedup and therefore are yet not very efficient approaches [Reed 1988]. And therefore, 

while creating submodels, this research considers only non-deadlocking situations. In 

general, non-deadlocking situations may preclude the user from further dividing a 

submode! into smaller pieces. It may appear that this restricts the improvement in 

speedup, but one must keep in mind that if the submode! is further divided the 'deadlock' 

situation will add enormous amount of communication resulting in a net decline in 

speedup. 

Design of Communication Protocols 

The submode! creation strategies carefully produce submodels without any 

'deadlock' potential. And therefore, the communication protocols designed for the 
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purpose of this research are not required to handle the 'deadlock' situations. This not 

only simplifies the design process, but also provides highly efficient interprocessor 

communication. For the purpose of implementation, two distinct communication 

protocols have been designed, viz. forward and forward+backward. Before discussing 

these communication protocols, the communication requirements during parallel 

implementation of discrete event simulation must be established. The following example 

explains the inter-processor communication process. 

Figure 22 depicts a manufacturing system model divided into three submodels 

each containing two machines. There are two parts, Pl and P2 having two distinct 

routings as shown in Figure 22. 

Pl 

P2 

Manufacturing System Model 

(processor 2) 

submode! 3 
(processor 3) 

Figure 22. Manufacturing System Model Example 
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'·During the course of simulation, as part Pl finishes processing at machine M2, 

the.nexrinachine(M5) in its routing is not available on the cunent processor. Hence, the 

part Pl must travel to Processor 3 to simulate its operations on machine MS. This is 

achieved by sending a message containing part Pl to the submode! on processor 3. If 

these communication messages are sent and accepted without proper synchronization the 

simulation execution on processor 3 may violate the "Causality" p1inciple and may 

produce enoneous results. The proposed protocols provide logical constructs for proper 

synchronization of processors. A brief explanation of each protocol is presented below. 

Forward Protocol: This protocol is a collection of a number of constructs 

depicted in Figure 23. It consists of an input queue called 'InputBuffer' that enqueues the 

arriving parts, and an ainy called "ChannelTime" that holds the simulation clock times 

on the predecessor processors. 

ChannelTime 

Message w 

Message from the 
Predecessor 
Processor 

Event Calendar 

vent Time 

Event w 
InputBuffer 

Part w 

Figure 23. Processing of the Anival Message 
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As a message containing a part arrives from the predecessors it is stored in the 

message buffer of the processor. The communication protocol realizes this anival when 

statement "iprobe()" is executed. The arrived message is then received in the "Rsync" 

data structure and the corresponding part is recreated as an instance of class WFI (work 

flow item). This part is stored in the "InputBuffer" and the conesponding event is 

scheduled onto the event calendar. The arrived message also contains the simulation 

clock time on the predecessor processor. This information is used to update 

"ChannelTime" array. If the cunent simulation clock time is smaller than the minimum 

of the "ChannelTime" array the simulation is safely continued. If it is greater than or 

equal to the minimum of the 'ChannelTime" anay the simulation is suspended until a 

new message containing new channel time makes the minimum channel time greater than 

the simulation clock. This arrangement conserves the "Causality" principle. The exact 

algo1ithm for the forward protocol is depicted in Figure 24. 

Member function "perform" is responsible for the entire simulation execution. 

Function "ReceiverSender()" checks if the cunent processor has any predecessors or 

successors. If there are predecessors, then the simulation must synchronize with its 

predecessor by receiving messages, otherwise function "Simulate" (which operates 

without input synchronization messages) is invoked. Under the first case, 

"ReceiveMessages" function awaits to receive a synchronization message ( message type 

1). When such message is received the "UpdateChannelTime" function updates the 

conesponding channel time and the "ChannelTimeMin" variable. Variable 

"ChannelTimeMin" holds the time value up to which the cmTent simulation can safely 

proceed. When the "ChannelTimeMin" increases the simulation end time, no input 

messages are expected at the input and therefore the program uses the "Simulate" 

function to proceed with the simulation. Member function "Perform" schedules an event 

if the cmTent simulation clock time is less than "ChannelTimeMin", otherwise it waits for 

incoming synchronization messages. Function "SendMessage" creates a synchronization 
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message by using the part details and the current simulation clock time. It then sends the 

synchronization message to the designated processor and deletes the part object. 

void Simulation::Perform() 
{ReceiverSender(); 
if (receiver) 
{ ChannelTimeMin = O; 

ReceiveMessage(); 
while(Sim_End_Time > ChannelTimeMin) 

{ while(Sim_ Clock< ChannelTimeMin) 
{ScheduleAnEvent(); } //End while 

ReceiveMessage(); 
} // End of while Sim_End_Time 

} ; // End of if receiver 
Simulate(); 

} ; // End Perform 

void Simulation::SendMessage(WFI* new part, 
int node) 

{ // Create a Message from the received WFI 
WFimsg.id = new_part->ID; 
WFimsg.serial = new _part->Serial; 
WFimsg.step = new_part->At_Step; 
WFimsg.time = new _part->Time_Stamp; 
WFimsg.start_time = new_pmt->Start_Time; 
WFimsg.pid = my _node; 

csend(l,&WFimsg,sizeof(WFimsg),node,O); 
delete new _part; 

} ; // Send Message Ends 

void Simulation: :ReceiveMessage() 
{ crecv(l ,& WFimsg,sizeof(WFimsg) ); 
UpdateChannelTime(WFimsg.pid,WFimsg.time); 

// Add the arrived part to the inputBuffer 
WFI* new _part; 
new_part = new WFI(WFimsg.id,WFimsg.time, 
WFimsg.start_time,WFimsg.step,WFimsg.serial); 
InputBuffer.ADD(new_part) 

// Add the event to the event queue 
Event* new _event; 
new_event = new 
Event(PARTS+lOO,WFimsg.time); 
Event_Q.ADD(new _event); 
}; //End of Receive Message 
void Simulation::UpdateChanne!Time(int 
channel, double time) 
{int k; 
double min; 
ChannelTime[channel] = time; 
min= Sim_End_Time +100; 
for(k=O;k<receiver;k ++) 
{if (ChannelTime[Ch(k]] < min) 

{ min= ChannelTime[Ch[k)]; } ; // End of if 
} // End of for 

ChannelTimeMin = min; 
} ; // End of UpdateChannelTime 

Figure 24. C++ Code for "forward" Communication Protocol 

The simulation environment using Forward communication protocol waits for the 

incoming messages, and simulates the model until the "Causality" constraints are not 

violated (i.e. until the "Simulation Clock"< "ChannelTimeMin"). The simulation 

process then stops until a new input message is received. At the end of the simulation ( of 
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the submodel) the predecessor processors flag their successors that they should not 

expect any incoming communication. The simulation process uses the "simulate" 

function for the purpose of simulation after it receives the flags from all its predecessors. 

Forward+backward Protocol : This protocol contains all the "Forward" 

communication constructs plus a number of added member functions depicted in Figure 

25. In its forward portion it behaves identical to the communication using the "Forward" 

function. However, the backward portion is responsible for "Null" type messages 

[Chandy 1979] discussed in Chapter III. This demand driven backward portion of the 

protocol sends synchronization message to the bottleneck predecessor when the cmrent 

processor is waiting for an input communication message. When the predecessor sends 

back its simulation clock time the current processor updates the "ChannelTimeMin" and 

progresses its simulation up to this simulation time. When all the predecessors have 

completed the simulation of their respective submodels, the current processor uses the 

"simulate" function. This added module in the communication protocol is implemented 

by using the following functions depicted in Figure 25. 

Member function "Sync_RequestO" sends a synchronization request to the 

bottleneck predecessor. Using "iprobeO;' function it checks to see if a message is already 

waiting to be received in the communication buffer. If a message is present then it is 

received using "ReceiveMessage" function, otherwise by using "Find_R_Channel()" 

function the bottleckneck predecessor is identified, and a synchronization request 

message is sent to the bottleneck predecessor. The simulation processing halts until the 

bottleneck predecessor replies with its clock time. Since it is purely an asynchronous 

communication the count of number of messages ;eceived from the bottleneck 

predecessor is matched with the number of messages it has sent. If these two numbers do 

not match there are some messages in transit and therefore the channel time is not 

updated, and the simulation process waits until the transit message are received. 



int Simulation::Find R Channel() 
{int min_Ch,k; 
double min; 
min_Ch = O; 
min= Sim_End_Time +100; 
for(k=O;k<receiver;k++) 
{if (ChannelTime[Ch[k]] < min) 

{ min= ChannelTime[Ch[k]]; 
min_Ch = Ch[k]; 

}; //Endofminif 
} // End of for 
return min_Ch; 
}; //End ofFind_R_Channel 

void Simulation::Reply Sync Request() 
{int NID; 
if(iprobe(2)) 
{ crecv(2,&Rsync,sizeof(Rsync )); 
NID = Rsync.Nid; 
Ssync.Nid = my _node; 
Ssync.time = Sim_Clock; 
Ssync.Nms = SM[NID]; 
csend(3 ,&Ssync,sizeof(Ssync ),NID,O); 
} ; // End of if iprobe 

} ; // End of Reply _Sync_Request 

void Simulation::Sync Request() 
{int ch; 
long WT; 
WT = mclock(); 
while(l) 
{Reply _Sync_Request(); 
if (iprobe(l)) 
{ReceiveMessage(); 

break; 
} 

if (mclock()-WT > 10) 
{ch= Find_R_Channel(); 
if (ChannelTime[ch] < Sim_End_Time) 
{Rsync.Nid = my_node; 
csend(2,&Rsync ,sizeof(Rsync) ,ch,O); 
crecv(3 ,&Ssync,sizeof(Ssync)); 
if (Ssync.Nms == RM[Ssync.Nid]) 
{ UpdateChannelTime(Ssync.Nid, 

Ssync.time); 
} ; // End of if 

break; 
} ; // End of if Channel_ Time 

} ; // End of if mclock 
}; //End of while (1) 

}; //End of Sync_Request 

Figure 25. C++ Code for "forward+backward" Communication Protocol 

Function Reply _Sync_Request() replies to the synchronization request from a 

successor processor. It simply sends the current simulation clock time value, and the 

number of synchronization messages sent to the requesting processor, through the 

synchronization message. Function "Find_R_Channel" determines the bottleneck 

predecessors on which the simulation on the current processor is waiting for 

synchronization messages. 
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The simulation environment using Forward+backward communication protocol 

simulates the model until the "Causality" constraints are not violated (i.e. until the 

"Simulation Clock" < "ChannelTimeMin"). If there are no incoming messages available 

in the communication buffer, it synchronizes with the bottleneck predecessor so that it 
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can continue the simulation process. The major difference between the two protocols is 

the demand of communication by the successor to its bottleneck predecessor. If all the 

processors are balanced in terms of incoming communication messages and the 

frequency of communication is relatively high, then both strategies will give almost the 

same execution performance. Otherwise, the "Forward+backward" will perform better 

than the "Forward" protocol. This can be seen from the example depicted in Figure 26. 
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Figure 26. Execution Performance Comparison of Communication Protocols 



Figure 26 depicts a tandem arrangement of 'p' processors, each having a single 

simulation submodel. Each submode! communicates with the successor after every 'E' 

internal events. If it takes 'T' microseconds to execute an event, then the external 

communication is sent every 'E*T' microseconds. The graph in Figure 26 depicts the 

execution performance of both protocols. Since the "Forward" protocol does not have 

any "demand" mechanism, the execution of each processor incrementally staggers by 

"E*T", resulting in a net "p*E*T" extra execution time. On the contrary, 

"Forward+backwa:rd" protocol can demand a synchronization message from its 

bottleneck predecessor, thereby enabling each processor to obtain the simulation clock 

time from its predecessor. This leads to substantially high overlap of their execution. 

Ideally, (with instantaneous synchronization) it is "p*T" instead of "p*E*T", and 

therefore the speedup factor can be substantially improved by using 

"Forward+backward" communication protocol. An experimental comparison of these 

two communication protocols is provided in Chapter X. 
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CHAPTERX 

EXPERIMENTATION RESULTS 

Introduction 

This chapter presents the experimentation setup and the experimental results. The 

experimentation is accomplished by implementing the methodology outlined in Chapter 

V within the object oriented framework described in Chapter VI. 

Verification of the Simulation Environment 

This section presents the process of verification of the PDES environment 

designed for the experimentation. The verification process involves simulating a 

manufacturing system by using both the SLAM II simulation environment and the newly 

developed parallel discrete event simulation (PDES) environment. The SLAM II 

simulation output is then compared to the output obtained from the PDES environment. 

Verification of the PDES environment is primarily focused on the accuracy of event 

scheduling logic, statistics collection, and simulation results. In order to get an exact 

match between the two simulation results, the stochastic variables in the model such as 

arrival distributions, processing time distributions, etc., are specified to be deterministic 

constants. The manufacturing system depicted in Figure 27 is selected for verification of 

the PDES environment. This system has 5 machines and 3 part routings. The routings 

are deterministic and the parts do not require material handling for the movement 

between the machines. The arrival rates of the parts and the processing times at the 

machines are deterministic. This system is modeled using both SLAM II and the PDES 
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environment. Both the PDES and the SLAM II models for this manufacturing system 

are outlined in Appendix C. Appendix C also provides the output results obtained from 

the simulations of these models. 

Manufacturing System for Verification 

/ 

/ 
/ 

~-0-----0-----
5 Machines 
3 Parts 
3 Routings 

-----> Routing 1 
········> Routing 2 
- - ~ Routing 3 

Figure 27. Manufacturing System Example for Environment Verification 

Table 3 on the next page exhibits queue length, utilization, and waiting time 

statistics for all machines and time in system statistics for each part in the system. Queue 

length, utilization, and time in system figures for both environments have a very close 

match except for the minor differences in the last digit due to rounding off by the SLAM 

II environment. The difference in the waiting time statistics is attributed to the 

difference in the statistics collection mechanisms for the two environments. These 



differences are explained in Appendix C. This proves the correctness of the PDES 

environment designed for parallel discrete event simulation of manufacturing systems. 

TABLE 3 

VERIFICATION OF THE PDES ENVIRONMENT 

System Statistics SLAM II PDES 
Element Simulator 

Machine 0 Utilization 1.000 1.000 
Q Length Avg. 10.526 10.526 
Q Length Std 5.783 5.782 

Wait Time Avg. 22.452 23.307 

Machine 1 Utilization 1.000 1.000 
Q Length Avg. 6.686 6.685 
Q Length Std 3.889 3.888 

Wait Time Avg. 19.713 20.000 

Machine 2 Utilization 0.950 0.950 
Q Length Avg. 3.15 3.149 
Q Length Std 1.894 1.894 

Wait Time Avg. 10.185 10.333 

Machine 3 Utilization 0.651 0.650 
Q Length Avg. 0.020 0.020 
Q Length Std 0.140 0.139 

Wait Time Avg. 0.143 0.142 

Machine 4 Utilization 0.910 0.910 
Q Length Avg. 10.399 10.399 
Q Length Std 6.975 6.974 

Wait Time Avg. 28.958 29.500 

Part Type 0 Time in Sys. Avg. 50.6 50.600 
Time in Sys. Std. 22.2 22.154 
Time in Sys. Max 81.0 81.000 
Time in Sys. Min. 23.0 23.000 

Part Type 1 Time in Sys. Avg. 50.0 50.000 
Time in Sys. Std. 26.9 26.879 
Time in Sys. Max 16;0 16.000 
Time in Sys. Min. 84.0 84.000 

Part Type 2 Time in Sys. Avg. 55.3 55.333 
Time in Sys. Std. 23.4 23.352 
Time in Sys. Max 30.0 30.000 
Time in Sys. Min. 76.0 76.000 
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Experimentation Setup 

The experimental design described in Chapter V specifies several simulation 

experiments. Table 4 describes a list of experiments and then cmresponding experiment 

IDs used throughout the remainder of this dissertation. The first five experiments are 

designed to simulate five submode! network topologies of the submode! network. The 

sixth experiment, E6 is specifically designed to reveal the differences between the two 

communication protocols that are not evident in earlier experiments. In each of the 

above six experiments there are two levels of "Manufacturing System Size", 

"Communication Protocol", and "Manufacturing System Load" and six levels of the 

"Number of Processors" factor. Three simulation experiment replications are pe1formed 

for each combination of factors. This results in one hundred and forty four simulations 

under each experiment. Each simulation input file further requires a new set of 

manufacturing system description parameters and random number seeds. This enormous 

amount of information is created by executing input file creation programs supplied in 

Appendix E. 

TABLE4 
' 

EXPERIMENTATION IDENTIFICATION 

ID Network Protocols Size Processors Load Reps # of Sim 
Topolo2:v (#s) (#s) (#s) (#s) (#s) Runs 

El Clusters F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
E2 Tandem F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
E3 Fork F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
E4 Join F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
ES Fork+Join F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
E6 Tandem F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144 
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Input files creation programs generate twelve input files that are executed by 

using two levels of conununication protocols. The input files specify the machines, 

parts, routings, arrival rate parameters, processing time parameters, and multiple random 

number seeds. Each experiment (144 simulations) is performed by executing the 

"mruns" shell script through "MRUNS" conunand. Figure 28 depicts the sequence of 

shell script execution. The "MRUNS" conunand processes the "mruns" shell script in the 

background. This enables the user to logout after "MRUNS" is executed. "mruns" script 

creates an "outputfile" output file which contains 144 execution time observations, each 

corresponding to a simulation run. Shell script "mruns" executes "12MODELS" file to 

create 12 input files. It then repeatedly executes "EXP" script to perform simulations for 

both large and small manufacturing systems on 1, 2, 4, 8, 16, and 32 processors. "EXP" 

script executes "exp32" and "exp256" scripts to accomplish small and large system size 

simulations respectively. Script "exp32" copies "model032.des" input file to the 

"model.des" file and the appropriate allocation file to "alloc.tab" file. It then executes 

"chost" program to accomplish the simulation as explained by the experimental setup in 

Chapter VI. Script "MAKEexp" uses "spades" and "COP" scripts to delete the unwanted 

"pdes. *" files and generate the final "*.exp" output file which contains the model, the 

input, and the output information. Appendix F supplies all the shell scripts used during 

the process of experimentation. 

Experimentation Results 

This section provides the results of the six experiments depicted in Table 4. The 

first five of the above experiments have relatively high frequency of interprocessor 

conununication. The interprocessor conununication is designed to be infrequent for the 

last experiment in order to illustrate the differences between the two conununication 

protocols. Frequency of conununication is a result of the ratio of the number of events 

that lead to interprocessor conununication, to the total number of events scheduled by the 
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event calendar. Therefore, the frequency of communication can be modified by varying 

the routing structure or the arrival distribution parameters. 

Shell Script Execution 

MRUNS 

Figure 28. Shell Script Execution Sequence 

The exact description of each experiment, its experimental factors and the levels 

of each experimental factor is provided in Chapter V. Simulation execution time and 

speedup are the primary pe1formance measures used for the analysis of parallel discrete 

event simulation. Analysis of each experiment consists of presentation of the output in a 

table similar to the design of experiments table, conducting the analysis of variance test 

(ANOV A) on the experimental data, and the interpretation of the behavior of the 

performance variable within the scope of the experiment. The SAS output of the 
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ANOVA for all experiments are provided in Appendix G. Headings L, S, P of the first 

three columns of each table displaying results of an experiment correspond to the three 

factors in the experimental design, viz. Manufacturing System Load, Manufacturing 

System Size, and Number of Processors used for the implementation. Manufacturing 

System Load levels O and 1 correspond to low load and high load respectively. 

Manufacturing System Size levels O and 1 respectively correspond to small size and large 

size. Number of processors levels 0, 1, 2, 3, 4, and 5 correspond to 1, 2, 4, 8, 16, and 32 

processors respectively. 

In order to understand the relationship of the factors affecting simulation 

execution, an approximate mathematical model of the simulation execution process has 

been developed. This model neglects communication delays and attempts to explain the 

behavior of the execution time of the PDES application over all combinations of the 

levels of experimental factors. Following is a brief description of this model. 

Notation: 

N : Number of events scheduled during entire simulation 

n : Average queue length of the event calendar 

Te : Time for executing a single event 

Ts : Time for pe1forming a single comparison on the event calendar 

Ti : Time for simulation startup and finish 

T : Execution time per processor 

For single processor calculation, the main execution time components are, the 

time for simulation startup and finish, and the time for event execution and event 

queueing during the entire simulation. Placing a newly scheduled event at an appropriate 

place on an event calendar with average length 'n' requires "n/2" average comparisons. 

This leads to the following equation for total simulation execution time for single 

processor application. 



T = Ti + N (Te+ ~-Ts) 
2 
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(8) 

For "p" processors, there are "N/p" number of events scheduled on each processor, 

the average event calendar length becomes "n/p", and the startup and finish time also 

becomes "Ti/p". This leads to the following Equation for total simulation execution time 

for "p" processor application. 

Ti N n 
T = - + - ( Te + - · Ts) 

p p 2·p 

Therefore the expected speedup is; 

Speedup = 
Ti + N ( Te + ~·Ts) 

2 
Ti N n 
- + - ( Te + - · Ts) 
p p 2·p 

Equation (10) can be simplified as; 

Speedup = 

Where "X" is defined as; 

X= 

p 
1 

1-X(l--) 
p 

N·n·Ts 

2·(Ti + N (Te+ E_,Ts)) 
2 

And the efficiency becomes; 

Efficiency = 1 
1 

1 - X ( 1 - -) 
p 

(9) 

(10) 

(11) 

(12) 

(13) 

Equations (10) - (13) will be used for providing the explanation for the behavior of 

speedup and efficiency for all the following experiments. 
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Submodel Network Topology - Independent Clusters (El) 

This experiment consists of the simulation of a manufactming system with 

independent "Clusters" of machines. Table 5 is an "Analysis of Variance" (ANOVA) 

summary table that furnishes the variance analysis of the important factors and their 

interactions. Factor communication protocol is not found to be significant because the 

"independent cluster" topology of processors does not require interprocessor 

communication during execution of the simulation. System load, system size, number of 

processors used for simulation, and their higher order interactions are found to be 

significant. System load and system size directly alter the computational requirements of 

a PDES application. They alter the number of events executed during the simulation, i.e. 

the value of "N" in Equation 9. It is evident from Equation 9 that the number of 

processors used for PDES application "p" is also a significant factor. This explains the 

influences of these factors on the execution time of a PDES application. The higher 

order interactions can also be explained by referring to Equation 9. 

TABLE5 

CLUSTER TOPOLOGY (El) - ANOV A SUMMARY 

Factor df OSL* a= 0.01 
Commu. Protocol (C) 1 0.1874 Do not Reject 

System Load (L) 1 0;0001 Reject 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.000!1 Reject 
(LX S) 1 0.0001 Reject 
(LXp) 5 0.0001 Reject 
(S Xp) 5 < 0.0001 Reject 

(LXSXp) 5 0.0001 Reject 

* OSL - Obseived Significance Level 
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Before explaining the higher order interactions it is important to note that, if the 

output is dependent on multiplication or division of two independent variables, then their 

interaction is significant as the simple effect (the difference in response between two 

levels of a factor at a combination of levels of other factors) will be always dependent on 

the value of the other variable. System load influences the number of events scheduled 

during simulation, "N". System size influences both the event calendar length "n" and 

the value of "N". The number of processors used for PDES implementation is defined to 

be "p" by the above notation. This explains why factor "number of processors" (p) has 

interaction with system load (L) and system size (S) as depicted in Table 5. Similarly the 

third term in Equation 9 involves multiplication of three variables which depend on the 

factors (p ), (L), (S) resulting in a three way interaction among them. 

As the factor communication protocol is not significant, the "Table of Means" can 

be obtained by averaging over all (two) levels of the communication protocol. This 

results in Table 6 as the "Table of Means" with 24 means out of 144 observations. The 

execution times depicted in these tables are the result of 3 replications of each 

combination of the significant experimental factors averaged over two levels of 

communication protocoL The simulation execution times in Table 6 are expressed in 

milliseconds. 

Table 6 depicts the speedup and efficiency values for each combination of the 

three significant factors. The effect of changing the number of processors on the speedup 

value at each combination of system load and size is explained by Figures 29 and 30. 

Figure 29 depicts a graph of speedup against the number of processors used for parallel 

implementation. An inspection of these figures yields the following observations: 

1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 11. Variable "p" in the numerator of the speedup equation 

makes speedup increase as more processors are used for parallel implementation. 
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TABLE 6 

CLUSTER TOPOLOGY (El) - TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 

L s p Mean (msec) Mean Mean L s p Mean(msec) Mean Mean 

0 0 1 98590 1.00 100.00% 1 0 1 120916 1.00 100.00% 

0 0 2 42159 2.34 116.93% 1 0 2 49771 2.43 121.47% 

0 0 4 19562 5.04 126.00% 1 0 4 22526 5.37 134.20% 

0 0 8 10096 9.77 122.07% 1 0 8 11250 10.75 134.35% 

0 0 16 6531 15.10 94.35% 1 0 16 7042 17.17 107.32% 

0 0 32 5451 18.09 56.52% 1 0 32 5664 21.35 66.71% 

0 1 1 809752 1.00 100.00% 1 1 1 1267016 1.00 100.00% 

0 1 2 305914 2.65 132.35% 1 1 2 435794 2.91 145.37% 

0 1 4 127792 6.34 158.41 % 1 1 4 168310 7.53 188.20% 

0 1 8 58093 13.94 174.24% 1 1 8 72268 17.53 219.15% 

0 1 16 29538 27.41 171.34% 1 1 16 34777 36.43 227.70% 

0 1 32 18115 44.70 139.69% 1 1 32 20170 62.82 196.30% 

Sub-Model Network : Cluster Topology 
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Figure 29. Speedup Curves for "Cluster" Topology (El) 
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Sub-Model Network : Cluster Topology 

250.00% 

200.00% 

ti' 150.00% 

Iii ·u 
ffi 100.00% 

50.00% 

0 4 8 12 16 20 24 28 32 

No of Processors 

I - LL, ss - LL, LS -------- HL, ss -----0---- HL, LS I 

Figure 30. Efficiency Curves for "Cluster" Topology (El) 

2] The higher the system load the better the speedup. This can be explained by 

Equations 11 and 12. Higher system load increases "N" thereby increasing the 

value of "X" in Equation 12. It is clear from Equation 11 that an increase in "X" 

would result in greater speedup. 

3] The higher the system size, the better the speedup. This can also be explained by 

Equations 11 and 12. Higher system size increases both "n" and "N" thereby 

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in 

"X" would result in higher speedup. 

4] High system load and large system size case gives highest speedup. 

6] Low system load and small system size case gives lowest speedup. 

7] As the number of processors is increased, at first the efficiency curves climb, but 

beyond 8 processors they slowly decline. 
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It is imp01iant to note that the above Equations (8 to 13) are gross approximations 

for obtaining PDES execution performance measures and therefore would not accurately 

predict the performance measures in each case. They are used to explain the dominant 

relationships between the experimental factors. 

Submode! Network Topology -Tandem (E2) 

This experiment consists of simulations of a manufacturing system with 

"Tandem" network of submodels. Table 7 is an ANOV A summary table that furnishes 

the variance analysis of the important factors and their interactions. 

TABLE 7 

TANDEM TOPOLOGY (E2)-ANOVA SUMMARY 

Factor df OSL a= 0.01 
Commu. Protocol (C) 1 0.0293 Do not Reject 

System Load (L) 1 0.0001 Reject 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.0001 Reject 
(L XS) 1 0.0001 Reject 
(L Xp) 5 0.0001 Reject 
(S X p) 5 < 0.0001 Reject 

(L XS X p) 5 0.0001 Reject 

System load, system size, number of processors used for simulation, and their 

higher order interactions are found to be significant. The explanation for the significance 

of these factors and their interactions is identical to the explanation provided for 

experiment El. However, a major difference between experiments El and E2 is that 
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experiment E2 involves interprocessor communication during simulation execution and 

therefore communication protocols have a potential to be a statistically significant factor. 

In fact at a= 0.05 it becomes significant. Low communication frequency can very easily 

make communication protocol a significant factor. In the next paragraph Equations (14)

(16) are developed for explaining the influence of communication load on the parallel 

implementation of the simulation. 

The interprocessor communication during simulation execution causes an 

additional delay in the execution process. If "Tc" is the time required for a single 

communication, each processor transacts "C" communications during simulation 

execution, and "Tw" is the total waiting time for communication during the simulation, 

then the speedup and efficiency Equations (4) and (5) should be modified as shown below; 

Speedup = 

Where Y is defined as; 

p 

1-X(l-_!_)+Y·p 
p 

y = 
Tc·C + Tw 

n 
Ti + N ( Te + - ·Ts) 

2 

and the efficiency becomes; 

Efficiency = 
1 

1 
1-X(l- -) +Y·p 

p 

(14) 

(15) 

(16) 

In experiment E2, as factor communication protocol is not significant, the "Table 

of Means" can be obtained by averaging over all (two) levels of the communication 

protocol. This results in Table 8 as the "Table of Means" with 24 means out of 144 

observations. 
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TABLE 8 

TANDEM TOPOLOGY (E2) - TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 
L s p Mean Mean Mean L s p Mean Mean Mean 

0 0 1 149145 1.00 100.00% 1 0 1 187711.8 1.00 100.00% 

0 0 2 68540.67 2.18 108.80% 1 0 2 82499.83 2.28 113.76% 

0 0 4 34672.17 4.30 107.54% 1 0 4 40594.33 4.62 115.60% 

0 0 8 19520.5 7.64 95.51% 1 0 8 21925.17 8.56 107.02% 

0 0 16 12869.67 11.59 72.43% 1 0 16 13467.5 13.94 87.11% 

0 0 32 10524 14.17 44.29% 1 0 32 11057.5 16.98 53.05% 
0 1 1 1445868 1.00 100.00% 1 1 1 2302272 1.00 100.00% 
0 1 2 569338.8 2.54 126.98% 1 1 2 827256.2 2.78 139.15% 
0 1 4 247882.8 5.83 145.82% 1 1 4 330412.2 6.97 174.20% 

0 1 8 116340.5 12.43 155.35% 1 1 8 146349.7 15.73 196.64% 

0 1 16 60395 23.94 149.63% 1 1 16 73186.33 31.46 196.61 % 

0 1 32 34986.67 41.33 129.14% 1 1 32 40706.5 56.56 176.74% 

Table 8 depicts the speedup and efficiency values for each combination of the 

three significant factors. Equations 14, 15, and 16 are used for explaining the behavior 

of speedup and efficiency curves. As the interprocessor frequency is relatively high, 

total waiting time '"'Tw"" for communication is minimal. Thus, for "Tandem" topology 

the value of "Y" becomes very small as compared to the rest of the terms in the 

denominator and therefore the term "Y*p" can be omitted from the denominator. The 

effect of changing the number of processors on the speedup and efficiency values at each 

combination of the system load and the system size is explained by Figures 31 and 32. 

An inspection of these figures yields the following observations. 

1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 14. The "p" in the numerator makes speedup increase as 

the number of processors are increased. 
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Sub-Model Network : Tandem Topology 
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Figure 31. Speedup Curves for "Tandem" Topology (E2) 

Sub-Model Network : Tandem Topology 

4 8 12 16 20 24 28 32 

No of Processors 

I - LL, ss - LL, LS --II- HL, ss - HL, LS I 

Figure 32. Efficiency Curves for "Tandem" Topology (E2) 
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2] The higher the system load, the better the speedup. This can be explained by 

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in 

the Equation 12. It is clear from Equation 14 that an increase in "X" would result 

in higher speedup. 

3] The higher the system size, the better the speedup. This can be explained by 

Equations 11 and 12. Higher system size increases both "n" and "N" thereby 

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in 

"X" would result in higher speedup. 

4] High system load and large system size case gives highest speedups: 

6] Low system load and small system size case gives lowest speedups. 

7] As the number of processors is increased, at first the efficiency curves climb but 

beyond 8 processors they slowly decline. 

Submode! Network Topology - Fork (E3) 

This experiment consists of the simulation of a manufacturing system with "Fork" 

network of submodels. Table 9 is an ANOV A summary table that furnishes the variance 

analysis of the important factors and their interactions. In this experimentation, factors· 

system load, system size, number of processors used for simulation, and their higher 

order interactions are found to be significant. The explanation for the significance of 

these factors and their interactions is identical to the explanation provided for experiment 

El. A major difference between experiments El and E3, is that experiment E3 involves 

interprocessor communication during simulation execution, and therefore factor 

communication protocol has a potential to be a statistically significant factor. However, 

as the frequency of communication is relatively high throughout the experimentation it 

does not become a significant factor. Low communication can very easily cause 

communication protocol to be a significant factor. 
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As factor communication protocol is not significant, the "Table of Means" for 

experiment E3 can be obtained by averaging over all (two) levels of the communication 

protocol. This results in Table 10 as the "Table of Means" with 24 means out of 144 

observations. 

TABLE9 

FORK TOPOLOGY (E3) - ANOVA SUMMARY 

Factor df OSL a= 0.01 
Commu. Protocol (C) 1 0.0544 Do not Reject 

System Load (L) 1 0.0001 Reiect 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.0001 Reiect 
(LX S) 1 0.0001 Reject 
(LXp) 5 0.0001 Reject 
(S Xp) 5 < 0.0001 Reject 

(LXSXp) 5 0.0001 Reiect 

Table 10 depicts the speedup and efficiency values for each combination of the 

three significant factors. Equations 14, 15, and 16 are used for explaining the behavior 

of speedup and efficiency curves. As the interprocessor frequency is relatively high, 

total waiting time "Tw" for communication is minimal. Thus, for "Fork" topology value 

of "Y" becomes very small as compared to the rest of the terms in the denominator and 

therefore term "Y*p" can be omitted from the denominator. The effect of changing the 

number of processors on the speedup and efficiency values at each combination of 

system load and size are explained by Figures 33 and 34. An inspection of these figures 

yields the following observations. 
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1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 14. The "p" in the numerator makes speedup increase as 

the number of processors is increased. 

2] The higher the system load, the better the speedup. This can be explained by 

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in 

Equation 12. It is clear from Equation 14 that an increase in "X" would result in 

higher speedups. 

3] The higher the system size, the better the speedup. This can also be explained by 

Equations 11 and 12. Higher system size increases both "n" and "N" thereby 

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in 

"X" would result in higher speedups. 

TABLE 10 

FORK TOPOLOGY (E3) - TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 

s p Mean Mean Mean L s p Mean Mean Mean 

0 1 147805.5 1.00 100.00% 1 0 1 184953.8 1.00 100.00% 

0 2 71544.5 2.07 103.30% 1 0 2 85019.83 2.18 108.77% 

0 4 35703.33 4.14 103.50% 1 0 4 41431.17 4.46 111.60% 

0 8 23029.83 6.42 80.23% 1 0 8 25939.33 7.13 89.13% 

0 16 17716.17 8.34 52.14% 1 0 16 19727 9.38 58.60% 

0 32 16993.5 8.70 27.18% 1 0 32 18506.33 9.99 31.23% 

1 1 1372184 1.00 100.00% 1 1 1 2178261 1.00 100.00% 

1 2 562948.2 2.44 121.87% 1 1 2 802924.2 2.71 135.65% 

1 4 249852.5 5.49 137.30% 1 1 4 327408.3 6.65 166.33% 

1 8 136602 10.05 125.56% 1 1 8 169148.7 12.88 160.97% 

1 16 94564 14.51 90.69% 1 1 16 112975.8 19.28 120.50% 

1 32 81648.5 16.81 52.52% 1 1 32 95488:67 22.81 71.29% 
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Sub-Model Network : Fork Topology 
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Figure 33. Speedup Curves for "Fork" Topology (E3) 

Sub-Model Network : Fork Topology 
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Figure 34. Efficiency Curves for "Fork" Topology (E3) 



4] High system load and large system size case gives highest speedups. 

6] Low system load and small system size case gives lowest speedups. 
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7] As the number of processors is increased, at first the efficiency curves climb but 

beyond 4 processors they slowly start falling. 

8] For 32 and 16 processor implementations the speedup values are substantially 

lower than the corresponding speedups for experiments El and E2. 

Submode! Network Topology - Join (E4) 

This experiment consists of the simulation of a manufacturing system with "Join" 

network of submodels. Table 11 is an ANOV A summary table that furnishes the 

variance analysis of the important factors and their interactions. In this experimentation 

factors system load, system size, number of processors used for simulation, and their 

higher order interactions are found to be significant. The explanation for the significance 

of these factors and their interactions is identical to the explanation provided for 

experiment E3. A major difference between experiments E3 and E4, is that unlike E3 in 

experiment E4 each processor must wait for a message from all its predecessor 

processors for synchronization during the simulation execution, and therefore an 

unbalanced communication between the predecessors can given far better perfonnance 

by "forward+backward" protocol. This would result in the communication protocol 

being a statistically significant factor. However, as the communication patterns are well 

balanced in this case, both protocols perform equally well and communication protocol is 

not a significant factor. 

As factor communication protocol is not significant, the "Table of Means" for 

experiment E4 can be obtained by averaging over all (two) levels of the communication 

protocol. This results in Table 12 as the "Table of Means" with 24 means out of 144 

observations. Table 12 depicts the speedup and efficiency values for each combination 

of the three significant factors. Equations 14, 15, and 16 are used for explaining the 
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behavior of speedup and efficiency curves. As the interprocessor frequency is relatively 

high, the total waiting time "Tw" for communication is minimal. Thus, for "Join" 

topology the value of "Y" becomes very small as compared to the rest of the terms in the 

denominator and therefore the term "Y.p" can be omitted from the denominator. 

TABLE 11 

JOIN TOPOLOGY (E4) - ANOVA SUMMARY 

Factor df OSL a= 0.01 

Commu. Protocol (C) 1 0.2148 Do not Reject 
System Load (L) 1 0.0001 Reject 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.0001 Reject 
(LX S) 1 0.0001 Reject 
(LXp) 5 0.0001 Reject 
(S Xp) 5 < 0.0001 Reject 

(LXSXp) 5 0.0001 Reject 

The effect of changing the number of processors on the speedup and efficiency 

values at each combination of system load and size are explained by Figures 35 and 36. 

An inspection of these Figures yield the following observations. 

1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 14. The "p" in the numerator makes speedup increase as 

the number of processors is increased. 
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TABLE 12 

JOIN TOPOLOGY (E4) - TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 

L s p Mean Mean Mean L s p Mean Mean Mean 

0 0 1 147769 1.00 100.00% 1 0 1 183770.8 1.00 100.00% 

0 0 2 71129 2.08 103.87% 1 0 2 84720.5 2.17 108.46% 

0 0 4 35427.17 4.17 104.28% 1 0 4 41132.17 4.47 111.70% 

0 0 8 22361 6.61 82.60% 1 0 8 25001.33 7.35 91.88% 

0 0 16 18462.33 8.00 50.02% 1 0 16 19951.83 9.21 57.57% 

0 0 32 17211.67 8.59 26.83% 1 0 32 18436.83 9.97 31.15% 

0 1 1 1367297 1.00 100.00% 1 1 1 2159951 1.00 100.00% 

0 1 2 560468.3 2.44 121.98% 1 1 2 797642 2.71 135.40% 

0 1 4 250259.7 5.46 136.59% 1 1 4 326478.7 6.62 165.40% 

0 1 8 136733.8 10.00 125.00% 1 1 8 168557.8 12.81 160.18% 

0 1 16 94812.17 14.42 90.13% 1 1 16 112704.3 19.16 119.78% 

0 1 32 82066.83 16.66 . 52.06% 1 1 32 95771.33 22.55 70.48% 
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Figure 35. Speedup Curves for "Join" Topology (E4) 
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Figure 36. Efficiency Curves for "Join" Topology (E4) 
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2] The higher the system load, the better the speedup. This can be explained by 

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in 

Equation 12. It is clear from Equation 14 that an increase in "X" would result in 

higher speedups. 

3] The higher the system size, the better the speedup. This can also be explained by 

Equations 11 and 12. Higher system size increases both "n" and "N" thereby 

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in 

"X" would result in higher speedup. 

4] High system load and large system size case gives highest speedups. 

6] Low system load and small system size case gives lowest speedups. 

7] As the number of processors is increased, at first the efficiency curves climb but 

beyond 4 processors they slowly decline. 
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Submodel Network Topology - Fork + Join (E5) 

This experiment consists of the simulation of a manufacturing system with "Fork 

and Join" network of submodels. Table 13 is an ANOVA summary table that furnishes 

the variance analysis of the important factors and their interactions. In this 

experimentation factors communication protocol, system load, system size, number of 

processors used for simulation, and their higher order interactions are found to be 

significant. A major difference between the results of this experiment and the earlier 

experiments, is that in this experiment communication protocol and its interaction with 

the number of processors are also found to be statistically significant. In experiment E5 

at higher values of number of processors (8, 16, 32) each processor has multiple input 

and output channels. Under this situation "forward+backward" protocol unnecessarily 

creates null messages that increase the communication load on the processors, thereby 

increasing the simulation execution time. Although "forward" protocol involves waiting 

for the incoming messages, this protocol gives better performance as the communication 

between the processors is balanced and frequent. 

TABLE 13 

FORK+JOIN TOPOLOGY (E5) - ANOVA SUMMARY 

Factor df OSL a= 0.01 
Commu. Protocol (C) 1 0.0001 Reject 

Svstem Load (L) 1 0.0001 Reject 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.0001 Reject 
(C Xp) 5 0.0001 Reject 
(LXp) 5 0.0001 Reject 
(LXp) 5 0.0001- Reject 
(S Xp) 5 < 0.0001 Reject 

(L XS X p) 5 0.0001 Reject 
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TABLE14 

FORK+JOIN TOPOLOGY (E5) FOR FORWARD COMMU. PROTOCOL (C=O) 
TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 

s p Mean Mean Mean L s p Mean Mean Mean 

0 1 193723.7 1.00 100.00% 1 0 1 245363 1.00 100.00% 

0 2 93354 2.08 103.76% 1 0 2 112156 2.19 109.38% 

0 4 60938.33 3.18 79.48% 1 0 4 69399.67 3.54 88.39% 

0 8 36815.67 5.26 65.77% 1 0 8 41912.33 5.85 73.18% 

0 16 28437 6.81 42.58% 1 0 16 31518 7.78 48.66% 

0 32 27299.67 7.10 22.18% 1 0 32 30602.67 8.02 25.06% 

1 1 2011063 1.00 100.00% 1 1 1 5261728 1.00 100.00% 

1 2 809519 2.48 124.21% 1 1 2 1750748 3.01 150.27% 
1 4 373600.3 5.38 134.57% 1 1 4 761613 6.91 172.72% 

1 8 204211.3 9.85 123.10% 1 1 8 328556 16.01 200.18% 

1 16 146683.3 13.71 85.69% 1 1 16 184715.3 28.49 178.04% 
1 32 134101.3 15.00 46.86% 1 1 32 158424.7 33.21 103.79% 

TABLE 15 

F+J TOPOLOGY (E5) FOR DEMAND DRIVEN COMMU. PROTOCOL (C=l) 
TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 

s p Mean Mean Mean L s p Mean Mean Mean 

0 1 194938.3 1.00 100.00% 1 0 1 246259.3 1.00 100.00% 

0 2 93924.67 2.08 103.77% 1 0 2 113443.3 2.17 108.54% 

0 4 147321.7 1.32 33.08% 1 0 4 151990.3 1.62 40.51% 

0 8 69844 2.79 34.89% 1 0 8 72341.67 3.40 42.55% 

0 16 28736.67 6.78 42.40% 1 0 16 31778.33 7.75 48.43% 

0 32 56310.33 3.46 10.82% 1 0 32 43296.33 5.69 17.77% 
1 1 2005755 1.00 100.00% 1 1 1 5281959 1.00 100.00% 
1 2 809628.3 2.48 123.87% 1 1 2 1766641 2.99 149.49% 

1 4 461254.3 4.35 108.71% 1 1 4 846732 6.24 155.95% 
1 8 202595.3 9.90 123.75% 1 1 8 354349.3 14.91 186.33% 

1 16 147065.7 13.64 85.24% 1 1 16 185463 28.48 178.00% 

1 32 134343.3 14.93 46.66% 1 1 32 159262.7 33.17 103.64% 
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As factor communication protocol is significant, in the "Table of Means" for 

experiment E5, the execution time means are not averaged over all (two) levels of the 

communication protocol. This results in Table 14 and 15 as the "Table of Means", each 

with 24 means out of 144 observations. 

Tables 13 and 14 depict the speedup and efficiency values for "forward" and 

"forward+backward" communication protocol at each combination of the other three 

significant factors. Equations 14, 15, and 16 are used for explaining the behavior of 

speedup and efficiency curves. As the interprocessor frequency is relatively high, total 

waiting time "Tw" for communication is minimal but "forward+backward" protocol 

produces excessive null messages thereby increasing "C', and eventually the value of 

"Y". Thus, for "Fork+Join" topology the term "Y*p" dominates the rest of the terms in 

the denominator. This gives consistently lower speedups for "forward+backward" 

protocol. The interaction between the processors can be further explained by the product 

"Y*p" term which determines the execution time for multiprocessor implementation. 

The effects of changing the number of processors on the speedup and efficiency values at 

each combination of system load and size are depicted by Figures 37 and 38 for the 

"forward" protocol and Figures 39 and 40 for the "forward+backward" protocol. 

Inspection of these figures yield the following observations. 

1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 14. The "p" in the numerator makes speedup increase as 

the number of processors is increased. For "forward+backward" protocol the two 

curves with factor manufacturing system size at its lower level, the speedup 

decreases when the number of processors is increased from 2 to 4. This can be 

explained as follows. At two processors the topology of the submode! network is 

"Tandem", but as the number of processors is increased from 2 to 4 the processor 

network becomes a real "Fork+Join" topology network. This along with 

excessive null messages from the "forward+backward" protocol give a dip in the 
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Sub-Model Network: Fork+ Join Topology 
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Figure 37. Speedup Curves for "Fork+Join" Topology Using "forward" Protocol (E5) 
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Figure 38. Speedup Curves for "Fork+Join" Topology using "f+b" Protocol (E5) 
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Sub-Model Network: Fork+ Join Topology 
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Figure 39. Efficiency Curves for "Fork+Join" Topology Using "forward" Protocol (E5) 
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perfonnance at 4 processors. At 32 processors the computation load on each 

processor is extremely small causing even more frequent null message requests 

and thereby resulting in performance degradation. 

2] The higher the system load, the better the speedup because the curves with high 

system load are higher than the corresponding low system load curves. This can 

be explained by Equations 14 and 15. Higher system load increases "N" thereby 

increasing "X" in Equation 12. It is clear from Equation 14 that an increase in 

"X" would result in higher speedups. 

3] The higher the system size, the better the speedup because the curves with high 

system size are higher than the corresponding low system size curves. This can 

also be explained by Equations 11 and 12. Higher system size increases both "n" 

and "N" thereby increasing "X" in Equation 12. It is clear from Equation 11 that 

an increase in "X" would result in higher speedup. 

4] High system load and large system size case gives highest speedup. 

5] Low system load and small system size case gives lowest speedup. 

6] The effect of a change in system load at large system size is higher than that at 

small system size. This explains the statistically significant interaction of the two 

factors, system size and system load. 

7] As the number of processors is increased, at first the efficiency curves climb but 

for large size beyond 8 processors and for small size beyond 2 processors they 

slowly decline. 

Comparison of Communication Protocols (E6) 

This experiment consists of the simulation of a manufacturing system with 

"Tandem" network of submodels. Table 16 is an ANOVA summary table that furnishes 

the variance analysis of the important factors and their interactions. In this 

experimentation, factors communication protocol, system load, system size, number of 
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processors used for simulation, and their higher order interactions are found to be 

significant. A major difference between the results of this experiment and the earlier 

tandem experiment, is that in this experiment communication protocol and its two and 

tlu·ee way interactions with "P" and system load are also found to be statistically 

significant. In experiment E6 the frequency of message passing between processors is 

designed to be low. Unlike the "forward" protocol, the "forward+backward" protocol has 

mechanisms for creating additional null messages (synchronization demand messages) 

that can synchronize each processor thereby reducing the waiting for incoming messages. 

Once the synchronization is received the processor is free to continue simulation 

execution until the simulation time reaches the channel time acquired from the 

predecessors. The explanation for the significance of other factors and their interactions 

is identical to the respective explanations for the earlier "Tandem" expe1iment, E2. In 

experiment E6 at higher values of number of processors (8, 16, 32) and small 

manufactming system size the computational load per processor is very low, therefore 

even null message synchronization of "forward+backward" protocol gives only a 

marginal improvement. On the contrary, at large size of manufacturing system the 

computational load per processor is relatively high leading to a superior performance by 

"forward+backward" protocol. 

As the factor communication protocol is significant, the execution times in "Table 

of Means" for experiment E6 are not averaged over all (two) levels of the communication 

protocol. This results in Tables 17 and 18 as the "Table of Means", each with 24 means 

out of 144 observations. Table 17 depicts the speedup and efficiency values for forward 

communication protocol at each combination of the other three significant factors. 

Equations 14, 15, and 16 are used for explaining the behavior of speedup and efficiency 

curves. As the interprocessor frequency is extremely low, the total waiting time for 

communication "Tw" is high but "forward+backward" protocol produces null messages 

to reduce "Tw", thereby reducing the value of "Y". Therefore "forward+backward" 
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protocol gives consistently higher speedups. At small system size this effect is offset by 

the fact that for eight or more processors the computational load per processor is very 

small and reduction in "Tw" is accompanied by the increase in the number of 

synchronization messages "C" thereby nullifying the increase in the value of "Y". 

TABLE 16 

TANDEM TOPOLOGY (E6)-ANOVA SUMMARY 

Factor df OSL a= 0.01 
Commu. Protocol (C) 1 0.0001 Reject 

System Load (L) 1 0.005 Reject 
System Size (S) 1 < 0.0001 Reject 

# of Processors (p) 5 < 0.0001 Reject 
(CX S) 1 0.0001 Reject 
(C X p) 5 0.0002 Reject 
(L X p) 5 0.0001 Reject 
(S X p) 5 < 0.0001 Reject 

(CXSXp) 5 0.0084 Reject 
(L XS X p) 5 0.0003 Reject 

The effects of changing the number of processors on the speedup and efficiency 

values at each combination of system load and size are explained by Figures 41 and 42 

for the "forward" protocol and Figures 43 and 44 for the "forward+backward" protocol. 

Inspection of these figures yield the following observations. 

1] The speedup increases as the number of processors is increased. This is explained 

by observing Equation 14. The "p" in the numerator makes speedup increase as 

the number of processors are increased. 
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TABLE 17 

TANDEM TOPOLOGY (E6) FOR FORWARD COMMU. PROTOCOL (C=O) 
TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 
s p Mean Mean Mean L s p Mean Mean Mean 

0 1 87058 1.00 100.00% 1 0 1 98753 1.00 100.00% 
0 2 64766.67 1.34 67.21% 1 0 2 70061.33 1.41 70.48% 
0 4 54604.33 1.59 39.86% 1 0 4 57354.33 1.72 43.05% 
0 8 49969.67 1.74 21.78% 1 0 8 51620.33 1.91 23.91 % 
0 16 48221 1.81 11.28% 1 0 16 49583 1.99 12.45% 
0 32 47802.67 1.82 5.69% 1 0 32 48606.67 2.03 6.35% 
1 1 592112 1.00 100.00% 1 1 1 804181.7 1.00 100.00% 
1 2 410277 1.44 72.16% 1 1 2 468147 1.72 85.89% 
1 4 333667.7 1.77 44.36% 1 1 4 332026.7 2.42 60.55% 
1 8 294681.3 2.01 25.12% 1 1 8 270306 2.98 37.19% 
1 16 278209.3 2.13 13.30% 1 1 16 243706 3.30 20.62% 
1 32 270490 2.19 6.84% 1 1 32 231189.7 3.48 10.87% 

TABLE 18 

TANDEM TOPOLOGY (E6) FOR DEMAND DRIVEN COMMU. PROTOCOL (C=l) 
TABLE OF MEANS 

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency 
L s p Mean Mean Mean L s p Mean Mean Mean 

0 0 1 87497 1.00 100.00% 1 0 1 99598.33 1.00 100.00% 
0 0 2 46179.67 1.89 94.74% 1 0 2 50341.67 1.98 98.92% 

0 0 4 29353.33 2.98 74.52% 1 0 4 30799.67 3.23 80.84% 

0 0 8 22987 3.81 47.58% 1 0 8 23478.33 4.24 53.03% 
0 0 16 23699.67 3.69 23.07% 1 0 16 24814.33 4.01 25.09% 
0 0 32 30403.33 2.88 8.99% 1 0 32 35031.67 2.84 8.88% 
0 1 1 597482.7 1.00 100.00% 1 1 1 810984 1.00 100.00% 

0 1 2 266302.3 2.24 112.18% 1 1 2 329383.7 2.46 123.11 % 

0 1 4 139866 4.27 106.80% 1 1 4 160353.7 5.06 126.44% 

0 1 8 86272.33 6.93 86.57% 1 1 8 94832 8.55 106.90% 

0 1 16 65832 9.08 56.72% 1 1 16 69412.33 11.68 73.02% 

0 1 32 60654.67 9.85 30.78% 1 1 32 64449.33 12.58 39.32% 
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Sub-Model Network : Tandem Topology 
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Figure 41. Speedup Curves for "Tandem" Topology Using "forward" Protocol (E6) 
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Figure 42. Speedup Curves for "Tandem" Topology Using "f+b" Protocol (E6) 
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Sub-Model Network : Tanem Topology 
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Figure 43. Efficiency Curves for "Tandem" Topology Using "forward" Protocol (E6) 
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2] The higher the system load, the better the speedup because the curves with high 

system load are higher than the corresponding low system load curves. The 

explanation for this is identical to that of the earlier "Tandem" experiment (E2). 

3] The higher the system size, the better the speedup because the curves with high 

system size are higher than the corresponding low system size curves. The 

explanation for this is identical to that of the earlier "Tandem" experiment (E2). 

4] High system load and large system size case gives highest speedup. 

5] Low system load and small system size case gives lowest speedup. 

6] The effect of a change in system load at large system size is higher than that at 

small system size. This explains the statistically significant interaction of the two 

factors, system size and system load. 

7] For "forward+backward" protocol, as the number of processors is increased, at 

first the efficiency curves climb but for large size beyond 4 processors and for 

small size beyond 2 processors they slowly decline. On the contrary, all 

efficiency curves for "forward" strategy result in a monotonically decreasing 

curve. 

Summary of Experimentation Results 

Detailed observations of each experiment has been provided in the above six 

sections. This section attempts to summarize the entire research experimentation 

involving the above experiments. It not only identifies a common behavior among the 

topologies, but also provides conclusions about the relative performance of the 

experimental submode! network topologies. The commonalties in execution 

performance of several topologies are provided in the next paragraph. The paragraph 

following it describes the differences in the execution pe1f ormance. 

Among all topologies, the speedup generally improved as the number of 

processors is increased. However, the efficiency figures initially improve (going beyond 
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100%) and then constantly decline. The encouraging fact is that for large systems over a 

significant range for number of processors, super linear speedups ( efficiency > 100%) 

have been obtained. Execution of the event calendar being a searching type application, 

the execution time is proportional to (N) the average event calendar length. In these 

parallel implementations the superlinear speedups are observed because of two reasons, 

viz. the new discrete event simulation algorithm which substantially reduces the original 

event calendar length, and the availability of a number of processors. The new discrete 

event simulation alg01ithm saves the extra searches through the event calendar, thereby 

providing a major reduction in the computation. In other words, by using the new 

simulation algorithm a system can be simulated on a single processor as a collection of 

processes (each corresponding to a.single submode!) and a sublinear speedup can be 

achieved. The second sublinear component of speedup is a result of using more than one 

processor to simulate these processes. As in the case of the cmTent experimentation, 

when both the sublinear speedup components are combined they give a net superlinear 

speedup as a product of two sublinear speedup components. Both of these sublinear 

speedup components depend very heavily on the synchronization requirements between 

all the system submodels. And therefore, as the processor assignment approaches one 

machine process on each processor (or one machine per submode!) the perfonnance 

improvement is very marginal. Further, as each process essentially is a single thread of 

computation, below this ratio, (i.e., the ratio of logical processes to the number of 

processors, ratio< 1) it is almost impractical to further distribute the computation as 

logical dependencies between vaiiables require extensive synchronization. This makes 

the above scheme almost impractical. A ratio of 8 (where most of the efficiency curves 

for small system peaked) is typically favored. The sixth expe1iment establishes the 

necessity of "forwai·d+backward" or "demand driven" protocol. As the frequency of the 

communication is also dependent on the nature of the manufacturing system in tenns of 

its routing structure, for a general system frequent interprocessor synchronization is not 
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guaranteed. Therefore, despite either insignificant improvement or even slight decline in 

performance when used with frequent and balanced synchronization requirements, 

"forward+backward" communication is preferred for a general case. 

One of the major aspects of the comparative analysis of five topologies is the 

inherent communication requirements of each topology. "Independent Clusters" 

topology requires no interprocessor communication and produces the best results. In 

"Tandem" topology, as a processor requires communication only from its single 

predecessor, it is only affected by the frequency of communication. It therefore comes 

second in pe1formance. "Fork" is similar to "Tandem" in the sense that the input 

communication still comes from a single source, but this source has to provide 

communication to a number of processors and therefore the individual frequency of 

communication between the source and its predecessor gets several fold smaller than the 

"Tandem" topology. This is reflected in the loss of speedup (from 56.56 to 22.81). 

Besides frequent synchronization, the "Join" topology also requires balanced 

communication from the various incoming channels and the problem only gets worse for 

a large number of incoming channels. "Fork+Join" topology is a very general topology. 

Because of its structural features, it has much larger computational requirements than the 

other manufacturing system models. Therefore a true comparison between this topology 

and others is not attempted. The main motivation in experimenting with "Fork+Join" 

topology was to see if this type of system poses any additional problems in 

implementation and analysis. Under the experimental conditions "Fork+Join" gives 

almost linear speedups with large size system. In general "Fork+Join" topology should 

be expected to perform somewhere in between its "Fork" and "Join" components. 

In conclusion, the research experimentation results and a thorough analysis of the 

research findings are provided in this chapter. The next chapter provides general 

guidelines for accomplishing an efficient PDES, and outlines future research directions. 



CHAPTER XI 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Introduction 

This chapter presents concluding thoughts about this research effort. It includes a 

summary of the research in light of the proposed objectives, contributions to the body of 

knowledge in parallel discrete event simulation, and recommendations for additional 

reseaTch or new research directions. 

Research Summary 

The goal of this research was to analyze the factors that significantly influence an 

effective parallel implementation of the simulation of object oriented models of 

,manufacturing systems. To accomplish this goal five research objectives, each 

addressing a different aspect of the problem, were established. The sections below 

review the accomplishments in each of these objectives. 

Concurrent Object Oriented Modeling 

The first research objective was the evaluation of concurrent object oriented 

modeling constructs for parallel discrete event simulation. The entirety of Chapter VII 

dealt with this objective. In this chapter it was established that the concurrent object 

oriented programming constructs provide very powe1ful means for creating concurrently 

executable instructions. Being object oriented, they create encapsulated objects that have 

the properties of distributed systems. These properties provide the logical separation of 
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two objects for their concurrent evaluation. Concurrent object oriented programming 

constrncts provide an automatic synchronization of the processes without using 

semaphores or other types of synchronization procedures. The user is relieved from the 

mundane task of coping with the synchronization among processors. However, it is 

important to note that the user must have a very clear understanding of "which construct 

to use?" and "where?". That is the user must be aware of the types of inherent 

conCLmencies in the programming application such as simulation and must appropriately 

use the available concurrent construct. 

The above summary has accomplished the objective of the evaluation of 

concurrent object miented programming constructs for its applicability to the parallel 

discrete event simulation. 

Submodel Creation Logic 

The second objective was the formulation of the submodel creation logic. 

Chapter VIII is solely devoted to accomplishing this objective. In the context of this 

research, several guiding principles were used for specifying the submodel creation logic 

and the optimization function. Firstly, an efficient parallel processing application 

minimizes the interprocessor communication. Secondly, in case of dependent 

submodels, previous research [Reed 1988] has shown that even though there are several 

mechanisms cmTently available for deadlock detection and recovery, almost all of them 

provide only marginal speedups. And hence for the purpose of submodel creation, 

topologies that have a potential for 'deadlock' are avoided. Thirdly, it is also important to 

note that the speedup can be improved by using more and more processors. Based on 

these three principles the procedure for developing submodel creation logic or allocation 

of the machine processes to the processors was derived. 

Using the procedure described above, the objective of formulating the submodel 

creation logic was accomplished. 



132 

Communication Strategy Design 

The third objective was the design of a communication strategy for the 

interprocessor communication between Intel iPSC/2 hypercube nodes. Chapter IX is 

solely devoted to accomplishing this objective. As the submodel creation strategies 

carefully produce submodels without any 'deadlock' potential, the communication 

protocols designed for the purpose of this research are not required to handle the 

'deadlock' situations. This not only simplifies the design process, but also provides 

highly efficient interprocessor communication. For the purpose of implementation, two 

distinct communication protocols were designed, viz. forward and forward+backward. 

The key for developing the communication protocols is to develop the communication 

requirements for parallel execution of discrete event simulation. For complex 

dependencies among the events on different processors (such as blocking machines 

where the parts arrive to the blocked machine from another processor, or the 

communication patterns with a potential for "deadlock", etc.) a suitable protocol must be 

tailored for the required use. By abstracting the event dependencies, a researcher can 

develop generalized concurrent object oriented programming constructs that can create a 

general communication protocol. 

Using the procedure described above, the objective of designing a communication 

protocol for the parallel implementation was accomplished. 

Performance Analysis via PDES Implementation 

The fourth objective was the analysis of the performance of parallel discrete event 

simulation application. Chapter Xis solely devoted to accomplishing this objective. The 

experimental design described in Chapter V specified a total of six simulation 

experiments. The first five experiments were designed to simulate five submode! 

network topologies of the submodel network. The sixth experiment was specifically 
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designed to reveal the differences between the two communication protocols that are not 

evident in earlier experiments. In each of the above six experiments there were two 

levels of "Manufacturing System Size", "Communication Protocol", "Manufacturing 

System Load", and six levels of the "Number of Processors" factor. Three simulation 

experiment replications were performed for each combination of factors. An 

approximate mathematical model of the execution process was also developed. This 

model was used to explain the behavior of the performance of the simulation applications 

over several combinations of the experimental factors. Specific conclusions of these 

experiments are provided in Chapter X. These conclusions also helped in developing the 

methodology for an efficient parallel discrete event simulation. 

Using the procedure described above, the objective of analyzing the perfmmance 

of parallel discrete event simulation application was accomplished. 

Methodology for Achieving a Successful PDES 

The fifth objective was the creation of a methodology for an efficient parallel 

discrete event simulation of a manufacturing system. This methodology is supplied in 

the next paragraph. 

A typical manufacturing system simulation eff mt requires the evaluation of 

multiple scenarios or control policies and the selection of the best scenario or control 

policy among the prespecified set. For obtaining sound statistical confidence in the 

simulation results each scenario is further replicated several times. That is, for "S" 

scenarios and "r" replications there are a total of "S*r" simulations required for 

identifying the best control policy among the available set. If the experimental design of 

such a study consists of "F" factors each with "L" levels, then there would be a total of 

"F*L" possible scenarios and "F*L*r" simulations. 

One of the simplest ways of achieving faster evaluation of the total set of 

expe1imentation scenarios is to create a batch file or host program that distributes these 
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"F*L*r" simulations on "F*L*r" nodes or processors of the parallel processing computer; 

each processor executing a single simulation. This arrangement takes advantage of very 

coarse grain concmTency in the parallel simulation application and quickly results in a 

speedup of "F*L*r". In this arrangement the internal complexities of event dependencies 

do not affect the performance of parallel simulation application because each simulation 

execution is still a uniprocessor application. 

To take advantage of finer grain concurrency in the simulation application, 

execution of each simulation is further distributed on multiple processors by dividing the 

simulation model into submodels and executing each submode! on a single processor. 

And since execution of each model is further distributed this ruTangement further 

improves speedups. If by using "p" processors we can make a single simulation run "S" 

times faster, a net speedup of "F*L*r*S" can be achieved by using a total of "F*L*r*p" 

processors. However, it is important to note that maintenance of the "causality" 

constraints of each submode! add massive communication overhead which depends on 

the complexity of the event dependencies among the submodels and therefore the 

resultant speedup depends on dependency or topology of the interprocessor 

communication patterns. These patterns are highly influenced by the submodel creation 

process. Chapter VIII provides a submodel creating methodology that can help the user 

in properly allocating the machine processes to the submodels. Complex dependencies 

of the events between submodels requires highly sophisticated communication protocols 

that can add excessive communication. The "forward" and "forward+backward" 

communication protocols provided in Chapter IX can be used as a model for developing 

more complex protocols. Specifically the user should avoid the communications having 

a potential of "deadlock" or feedback communication patterns. 

Typical manufacturing systems such as cellular, tandem lines, flow lines, flexible 

manufacturing systems, job shop systems, etc., can be effectively simulated by using 

their inherent routing topology. For a cellular manufacturing system, each cell can be 
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considered as a submode! and therefore can result in a disjoint submodel network of 

independent clusters of machines. As explained in Chapter X, this an-angement can 

result in superlinear speedup. A "tandem" line can be simulated by using a "tandem" 

network of submodels, a flow line can be crafted as a "Tandem" submode!, or "Fork" or 

Join" or a combination of the two topologies. The key here is to create as many 

submodels as possible until the interprocessor communication between submodels 

becomes overwhelming. 

Research Contributions 

As explained in the first chapter, widespread use of discrete event simulation as 

an analysis tool is hindered because of enormous computational requirements of a 

simulation effort. This research therefore focused on achieving faster execution of 

simulation models by using multiple processors. There are very few published results 

available in this area. One of the major intended contributions of this research was to 

create empirical data for parallel discrete event simulation of manufacturing systems. 

The vehicle used to demonsu·ate the parallel implementation was an object oriented 

modeling environment on Intel iPSC/2 hypercube parallel processor. 

The completion of the research objectives as documented in the previous section 

makes the following contributions to the area of advanced simulation modeling of 

manufacturing systems within Industrial Engineering: 

1] Determination of the factors that have the potential to influence the execution 

perfo1mance of a parallel discrete event simulation of manufacturing systems. 

2] Demonstration of the viability of parallel implementation of discrete event 

simulation of manufacturing systems via a modified event scheduling 

technique. 

3] Specification of a submode! creation methodology. 



4] Development of a mathematical function for analyzing the parallel 

implementation of discrete event simulation of manufacturing systems. 

5] Development of a design methodology for interprocessor communication 

protocols. 

6] Development of a comprehensive methodology achieving an efficient 

implementation of a parallel discrete event simulation of manufacturing 

systems. 
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7] Provision of empirical data for further research in the areas of parallel discrete 

event simulation of discrete event systems. 

Recommendations for Future Research 

As a result of the research conducted in this study, the following recom

mendations are made for additional research in this area. 

Parallel Processing Architectures 

The findings for this research are valid for parallel implementations on distributed 

memory message passing architectures such as the Intel iPSC/2 hypercube. Similar 

methodologies for an efficient implementation on other parallel architectures can be 

developed. 

Concurrent Object Oriented Programming Constructs 

While accomplishing the first objective, this research realized the importance of 

concurrent object oriented constructs. Currently these constructs cannot be readily used 

as an integral part of simulation objects. Complex dependencies of simulation objects 

can be abstracted to create abstract concurrent discrete event simulation objects which 

have synchronization mechanisms built in. Then the user can create the manufacturing 

system objects as subclasses of these abstract concurrent objects. These concmTent 

objects would be similar to the "Actor" [Agha 88] objects described in Chapter IL 
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Submodel Creation Logic 

While accomplishing the second objective, a submodel creation methodology and 

the objective function for selecting the optimal process allocation arrangement was 

developed. This methodology is designed for simplistic interprocessor communication 

requirements. A detailed objective function can be developed for more complex 

communication patterns created by the complex event dependencies. This methodology 

can also be formulated as a linear programming optimization problem that can be solved 

to obtain the best submodel designs or process allocation airangement. 

Design of Communication Protocols 

Researchers in the computer science area have taken some major sb:ides in this 

problem specific domain. Most researchers devote their attention to developing 

algorithms that can withstand "deadlock" situations. More research is needed in 

understanding the event dependencies involved in typical manufacturing operations such 

as hierarchical control, material handling, blocking and balking, machine breakdowns 

and repair, etc. 
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