
APPLICATION OF PARALLEL PROCESSING FOR

OBJECT ORIENTED DISCRETE EVENT

SIMULATION OF MANUFACTURING

SYSTEMS

By

HEMANT C. BHUSKUTE

Bachelor of Engineering
University of Bombay

Bombay, India
1986

Master of Manufacturing Systems Engineering
Oklahoma State University

Stillwater, Oklahoma
1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

DOCTOR OF PHILOSOPHY
May, 1993

COPYRIGHT

by

Hemant Bhuskute

May, 1993

OKLAHOMA STATE UNIVERSITY

APPLICATION OF PARALLEL PROCESSING FOR

OBJECT ORIENTED DISCRETE EVENT

SIMULATION OF MANUFACTURING

SYSTEMS

Thesis Approved:

. Thesis Advis;

f:~ -£ LC24.c--

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to all those who have helped dming my

doctoral studies. First and the most of all I would like to thank the chainnan of my

doctoral committee, Dr. Joe Mize for the time and effort that he has invested in my

research and education. He has been a true friend and a great motivator. I would also

like to thank each of the members of my doctoral committee for their impact on my

education and research. Dr. Kenneth Case provided an example of an excellent educator,

specifically his exceptional teaching style. Dr. Karnath and Dr. Schuermann have

provided numerous invaluable suggestions especially at the research proposal stage. Dr.

Teague installed the C++ compiler onto the Intel iPSC/2 Hypercube and supplied the

specific instructions for using the compiler.

I would also like to thank my parents, Mr. Chandrashekhar and Mrs. Shailaja

Bhuskute. Their ever present support and encouragement has been a source of strength.

Thank you for instilling in me a solid foundation of moral strength and an everlasting

quest for knowledge. I would also like to thank my aunt and uncle Deepak and Rohini

Phadke for their emotional support and guidance during my early years in the United

States.

Among friends and colleagues, I would like to thank my former roommates

Ashok Ramchand and San jay Srinivasan, my best friend David Sebert, and the friends in

the CIM Center Manoj Duse and Jagannath Gharpure for their wonderful friendship. I

would like to extend my special appreciation to my former boss Millett O'Connell and his

wife Heidi for their hospitality and friendship.

lll

For assistance in accomplishing this research, I would like to extend my sincere

appreciation to the organizations providing funding for my graduate study. The AT&T

Foundation and Oklahoma Center for the Advancement of Science and Technology

(OCAST) provided significant financial and equipment support for the CIM Center

where much of this work was performed. The IE&M department provided support for

all the five years of graduate study in the form of research and teaching assistantships.

iv

TABLE OF CONTENTS

I. INTRODUCTION.. 1

Motivation for Research.. 1
Overview of the Dissertation 4

IL PROBLEM STATEMENT... 6

Introduction... 6
Simulation of Discrete Systems... 7
Simulation in Manufacturing Context.. 8
Object Oriented Modeling... 9
Concurrent Object Oriented Programming 12
Parallel Discrete Event Simulation 14
Problem Description.. 17
Unanswered Questions.. 22

III. LITERATURE REVIEW... 24

Introduction... 24
Concurrent Object Oriented Programming 24
Parallel Processing and Parallel Computer Architecture 28
Parallel Discrete Event Simulation.. 33
Processor Synchronization Mechanisms.. 38

IV. STATEMENT OF RESEARCH... 42

Research Goal... 42
Research Objectives... 42
Research Scope and Limitations ... '........... 44
Research Contributions 45

V. RESEARCH METHODOLOGY.. 47

Research Plan.. 47
Selection of The Manufacturing System.. 52
Selection of Submode! Network Topologies...................................... 54

V

Chapter Page

VI. OBJECT ORIENTED REPRESENTATION.. 58

Introduction... 58
C++ Class Library... 58
Experimental Setup... 64

VII. EVALUATION OF CONCURRENT OOP CONSTRUCTS 67

Introduction... 67
· Evaluation of ConcurrentSmalltalk Constrticts 67

VIII. SUBMODEL CREATION METHODOLOGY... . 76

Introduction... 76
Analysis of Parallel Discrete EventSimulation.................................. 76
Submodel Creation Methodology.. 79

IX. COMMUNICATION PROTOCOL DESIGN... 83

Introduction... 83
Design of Communication Protocols 83

X. EXPERIMENTATION RESULTS... 92

Introduction... 92
Simulation Verification... 92
Experimentation Setup.. 95
Experimentation Results.. 96
Submodel Network Topology - Independent Clusters (El)................ 100
Submodel Network Topology - Tandem (E2).................................... 104
Submodel Network Topology - Fork (E3) ... 108
Submodel Network Topology - Join (E4) .. 112
Submodel Network Topology - Fork+ Join (ES).............................. 116
Comparison of Communication Protocols (E6) 121
Summary of Experimental Results.. 127

XI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 130

Introduction... 130
Research Summary.. 130
Research Contributions... 135
Recommendations for Future Research 136

vi

Chapter Page

BIBLIOGRAPHY.. 138

APPENDIXES*

APPENDIX A - C++ CODE FOR PARALLEL DISCRETE EVENT
SIMULATION ENVIRONMENT

APPENDIX B - SIMULATION INPUT, OUTPUT, TRACE, MODEL,
AND ALLOCATION TABLE FILES

APPENDIX C - VERIFICATION OF SIMULATION ENVIRONMENT
USING SLAM II

APPENDIX D - VERIFICATION OF PARALLEL IMPLEMENTATION
OF THE SIMULATION ENVIRONMENT

APPENDIX E - C++ CODE FOR INPUT FILE CREATION
PROGRAMS

APPENDIX F - SIMULATION EXPERIMENTATION AND OTHER
UNIX SHELL SCRIPT FILES

APPENDIX G - ANALYSIS OF VARIANCE OF EXPERIMENT AL
DATA

* Available in the School of Industrial Engineering and Management Library
at Oklahoma State University.

vii

LIST OF TABLES

Table Page

1. Composition of Intel iPSC/2 Hypercube Cx or Sx Node......................... 32

2. Production and Consumption Times.. 73

3. Verification of the PD ES Environment 94

4. Experimentation Identification.. 95

5. Cluster Topology (El) ANOV A Summary.. 100

6. Cluster Topology (El) Table of Means... 102

7. Tandem Topology (E2) ANOV A Summary.. 104

8. Tandem Topology (E2) Table of Means.. 106

9 Fork Topology (E3) ANOV A Summary... 109

10. Fork Topology (E3) Table of Means... 110

11. Join Topology (E4) ANOV A Summary.. 113

12. Join Topology (E4) Table of Means .. 114

13. Fork+Join Topology (E5) ANOVA Summary ... 116

14. Fork+Join Topology (E5) for Forward Communication Protocol (C=O)
Table of Means 117

15. Fork+Join Topology (E5} for F+B Communication Protocol (C=l)
Table of Means 117

16. Tandem Topology (E6) ANOVA Summary.. 123

17. Tandem Topology (E6) for Forward Communication Protocol (C=O)
Table of Means.. 124

18. Tandem Topology (E6) for F+B Communication Protocol (C=l)
Table of Means.. 124

viii

LIST OF FIGURES

Figure

1. On-line Simulation Support for Production Control

2. Derivation of Five Submode! Configurations from a System Model..

3. Speedup and Efficiency of the Parallel Implementation of PDES

4 Optimality of the Total Load on Each Processor in PDES

5. Actor Code for "range-prod" Function······················:····

6. Concurrent Computation Structure of the Factorial Problem Execution ...

7. Representation of the System in Space-Time Rectangle

8 Space-Time Rectangle for Different PDES Techniques

9. A Generalized Manufacturing System Model used for Experimentation ..

10. Types of Networks Considered for Experimentation

11. Thirty Two Node Network for "Clusters" and "Tandem" Topologies

12 N t k f "J . " "F k" d "F k+J . "T 1 . . e wor s or om , or an or om opo og1es

13. Modeling Objects of the Manufacturing System

14. PDES Model Execution on "n" Hypercube Nodes

15. Bounded Buffer in a Producer-Consumer System

16. Program Code for Class BoundedBuffer .. .

17. · Program Code for Class Producer .. .

18. Program Code for Class Consumer .. .

19. Execution Analysis of the Producer-Consumer System Model

20. Uniprocessor Discrete Event Simulation .. .

21. Submode! Simulation Executi@n Logic .. .

lX

Page

2

19

20

22

26

27

34

36

53

55

55

57

59

65

68

69

70

71

74

77

79

Figure Page

22. Manufacturing System Model Example... 84

23. Processing of the Arrival Message.. 85

24. C++ Code for "forward" Communication Protocol.................................. 87

25. C++ Code for "forward+backward" Communication Protocol................. 89

26. Execution Performance Comparison of Communication Protocols.......... 90

27. Manufacturing System Example for Environment Verification 93

28. Shell Script Execution Sequence... 97

29. Speedup Curves for "Cluster" Topology (El).. 102

30. Efficiency Curves for "Cluster" Topology (El)....................................... 103

31. Speedup Curves for "Tandem" Topology (E2) .. 107

32. Efficiency Curves for "Tandem" Topology (E2) 107

33. Speedup Curves for "Fork" Topology (E3) 111

34. Efficiency Curves for "Fork" Topology (E3)... 111

35. Speedup Curves for "Join" Topology (E4) .. 114

36. Efficiency Curves for "Join" Topology (E4).. 115

37. Speedup Curves for "F+J" Topology Using "forward" Protocol (E5) 119

38. Speedup Curves for "Fork+Join" Topology Using "f+b" Protocol (E5) ... 119

39. Efficiency Curves for "F+J" Topology Using "forward" Protocol (E5).... 120

40. Efficiency Curves for "F+J" Topology Using "f+b" Protocol (E5) 120

41. Speedup Curves for "Tandem" Topology Using "forward" Protocol (E6) 125

42. Speedup Curves for "Tandem" Topology Using "f+b" Protocol (E6) 125

43. Efficiency Curves for "Tandem" Topology Using
"forward" Protocol (E6) ... 126

44. Efficiency Curves for "Tandem" Topology Using "f+b" Protocol (E6).... 126

X

CHAPTER I

INTRODUCTION

Motivation for Research

Discrete-event simulation is often characterized as a "What-If" tool, capable of

giving detailed answers to questions of the form "What will be the effect on the system

performance if this change is made?". It provides a framework to make detailed design

decisions before the system becomes operational. Recently simulation has become

increasingly attractive as today's faster computers, electronic data collection facilities and

integrated databases allow relatively quick access to an enormous amount of data

typically needed for complex simulation models. Thus, discrete event simulation is

becoming one of the most important design and analysis tools for complex manu

facturing systems. However, discrete event simulation is not without its disadvantages.

An elaborate model generation process and long execution times are some major issues

that hinder widespread usage of discrete event simulation as a tool for system analysis

and design.

Traditionally, simulation has been used in an off-line mode to support "once per

design" decisions. The choices made then are established for the life of the system.

Execution times for complex simulation models are frequently measured in minutes or

hours. If many alternative system configurations are evaluated or _search based

optimization is pursued, total lead time to arrive at an optimal decision may run in weeks

or months. Thus, discrete event simulation in an off-line mode is still a problem.

1

2

Interest is growing in expanding the range of application of simulation, using it in

a more on-line role to support regular and repetitive decision making throughout the

operational life of a manufacturing system [Rogers 91]. This type of repetitive decision

making can be regarded as being performed by a hypothetical manufacturing controller

(management or production control department in reality) operating on the manu

facturing system. Figure 1 depicts a simplified framework for production control of a

manufacturing system.

Framework of On-line Simulation
Support for Production Control

Parameters
Constraints On-line

Environmental u Simulation ,

Variables/Events
Control Modeling
options

~
J Performance

Production J of options

Controller ,
- ... Control Action

)'.JV '-) "' V '- ' (- Physical

Data Process on

Base State
Variables

Shop Floor

~

Figure 1. On-line Simulation Support for Production Control

3

A management information system reports the values of internal state variables,

external environmental variables, parameters, and constraints and other database

information to the production controller. On the basis of this information the production

controller controls the manufacturing system. Since the state ofthe system is constantly

changing, the controller must take action in a reasonably short time. An extended lag in

the control action can be devastating to the manufacturing system performance as the

cun-ent solution may quickly become outdated. This requires quick evaluation of

alternative system decisions to amve at an optimal system configuration or control

scheme. However, in reality discrete event simulation takes long model execution time.

This means that discrete event simulation can be a sound candidate for evaluating

alternative real time control strategies, only if the simulation execution times of the

V system models are considerably reduced. Reduction of the simulation time of

manufactming system models is one of the primary motivations of this research. Over

the last thirteen years researchers have tried several approaches to improve the compu

tational performance of discrete event simulation. Some of the distinct approaches

include vectorization techniques by Chandak and Browne [Chandal< 1983], functional

decomposition approach by Comfort [Comfort 1984], execution of independent trials on

different processors by Biles et al. [Biles 1985], fast simulation approach by Chen et al.

[Chen 90] which replaces the event calendar by recursive mathematical system equations,

and distributed simulation. This research proposes to use distributed simulation, which

takes advantage of parallel processing technology, to simulate a discrete event model on

multiple processors. The distributed simulation paradigm utilizes the inherent

parallelism in manufacturing systems to construct smaller "chunks" of the model that can

be executed concun-ently on parallel processors. Thus, the simulation execution time is

reduced by applying a number of processors to simultaneously execute the discrete event

simulation model.

4

As the manufacturing system is reconfigured, the simulation analysis requires a

quick and accurate corresponding change in the simulation model of the system. This

process is usually repetitive and entails continuous model updating and maintenance. If

the model is written in traditional programming languages, the updating process can be

quite cumbersome. What is needed is a superior modeling paradigm which allows quick

but structured changes to the model. The specification of a concurrent, object oriented

paradigm is a secondary motivation for the research. The proposed research uses object

oriented modeling concepts that allow very quick model changes based on the cones

ponding system reconfigurations [Beaumariage 90].

In retrospect, the proposed research addresses two fundamental issues, rapidly

modifiable system models and fast discrete event simulation model execution schemes.

It considers an object oriented modeling paradigm for quickly reconfigurable models and

distributed processing for faster simulation model execution.

Overview of the Dissertation

The remainder of this dissertation is presented in ten chapters, and a bibliography.

Chapter II provides a detailed description of the problem statement. Chapter III reviews

the literature relevant to this research. This includes literature related to object oriented

modeling of manufacturing systems, distributed simulation, concmTent object oriented

programming, and processor synchronization mechanisms. Chapter IV presents the

statement of research by outlining the research goals and objectives. Chapter V discusses

the research methodology including research plan, performance measures and

expeJimental scenarios. Chapter VI provides a brief overview of the object miented

modeling environment created for the research experimentation. Chapter VII evaluates

concurrent object oriented programming constructs for parallel discrete event simulation.

Chapter VIII discusses the methodology for submode! creation, and Chapter IX presents

the process of designing communication protocols. Chapter X focuses on the results of

the simulation experiments. Chapter XI is the summary and conclusions chapter that

summarizes the research effort and suggests directions for further research. The seven

appendices provide supporting material including listings of computer programs and

explanation for the choices and discrepancies in several areas.

5

CHAPTER II

PROBLEM STATEMENT

Introduction

As explained in Chapter I the fundamental focus of this research is to take

advantage of emerging technologies such as parallel processing and object oriented

modeling, to create a simulation environment that fulfills two major requirements of an

on-line simulation support system for the production control of manufacturing systems.

This research will not only demonstrate the viability of the application of parallel

processing for discrete event simulation, but also attempt to assess the efficiency aspects

of parallel discrete event simulation.

A clear and precise determination of the problem statement for this research

involves understanding issues primarily from two areas. Firstly, the exact computational

requirements of the simulation effort and secondly, the parallel implementation

complexities of the computation. The determination of exact computational

requirements involves understanding the properties of discrete systems, simulation

specifications for discrete systems, nature of manufacturing systems, and the use of

simulation for obtaining important performance measures of manufacturing systems. In

the implementation area, use of object oriented modeling for representation of

manufactming system models, concurrent object oriented programming constructs for

taking advantage of concurrencies in the simulation applications, implementation

complexities of parallel discrete event simulation, and communication requirements of

distributed computing systems, are addressed in the following sections of this chapter.

6

7

Simulation of Discrete Systems

A system is defined as a collection of items from a circumscribed sector of reality

that is the object of study or interest [Pritsker 79]. A model is a description of a system. "

Models are used primarily for describing, designing, and analyzing real world systems.

Abstract models represent the system in terms of mathematical-logical variables,

equations and relationships. The state of a system is defined as the collection of

variables necessary to describe a system at a particular time. The behavior of a system

over time is described by a sequence of state transitions. When state transitions occur

only at discrete points in time the system is said to be a discrete system. Simulation of

discrete systems is typically known as discrete event simulation. The behavior of

discrete systems such as manufacturing is a result of highly concurrent and independent,

cooperative, or contentious activities of their components. Although the modeling and

simulation principles can be equally effectively used for any type of discrete system, for

the purpose of this research only manufacturing systems have been considered.

In simulation modeling of a manufacturing system, it is necessary to develop an

adequate formalism in which various concurrent activities and interactions of the manu

facturing system components can be expressed naturally. At the same time, the model

must be executable as a concurrent computer program [Yonezawa 88]. This strategy v·

improves the analysis efficiency as the concurrent paradigm provides close resemblance

to the truly concmTent real world systems and concurrent execution enables faster

solution. Object oriented languages offer a natural way for the modeling of systems, but

these models are typically created for nonconcurrent execution. For example in

Smalltalk-SO [Goldberg 89] the concurrency is emulated via instances of class "Process"

and a single virtual machine processor. There are two main problems considered for the

purpose of this research. Firstly, the inadequacy of many contemporary modeling

techniques to naturally model the cooperative concurrent processes in a discrete system

and, secondly, the nonparallel execution of discrete system models.

Simulation in Manufacturing Context

8

A manufacturing enterprise is an excellent example of a system. It is a collection

of interdependent elements (physical components, information components and control/

decision policies) that work together to achieve a set of common but continuously

changing organizational goals. A wide range of alternative techniques is available for the

design and analysis of manufacturing systems. The spectrum of alternatives ranges from

analytical modeling to direct experimentation on the real system. Today's complex

manufacturing systems are not easily describable in tenns of analytical models and direct

expe1imentation on the real system is typically costly. This usually makes simulation the

analysis tool of choice. Law [Law 86] has pointed out the following three fundamental

reasons for the simulation of manufacturing systems:

(1) Detennining resource requirements, such as number and type of machines,

material handlers and support equipment, factory layout, location and sizes of

the work-in-process buffers, manpower requirements, evaluation of capital

investments, etc.

(2) Performance evaluation, which typically includes throughput analysis, bottle

neck station analysis or makespan analysis.

(3) Operational policy evaluation, which involves the comparative analysis of a

number of policies or procedures designed to solve the same problem. These

policies are generally in the area of production control or scheduling, WIP

inventory levels, FMS cell control polices, etc.

Simulation modeling of a discrete system requires conceptual frameworks or

paradigms to guide the modeler in creating a valid representation of a system in the form

of a model. A number of such paradigms or "world views" are available today. A

survey paper [Derrick 89] describes thirteen different conceptual frameworks or

paradigms. Of the four groups of discrete event simulation paradigms described in the

paper, only two are useful from this research point of view. They are the classical or

historical framework and the new emerging paradigms.

9

In the classical or "conventional" approach the process of model building involves

the following steps:

(1) Definition of the problem statement, context, symptoms, model purpose, etc.

(2) Determination of system boundary, level of abstraction, state va1iables,

internal model structures, experimental design, etc.

(3) Model coding using typical general purpose languages such as GPSS and

SLAM, then verification and validation.

(4) Analysis of results and further experimentation.

In this inherently top down approach, the system boundary, the level of

abstraction, model coding and validation are directly derived from a specific problem and

context. This may cause several difficulties in modifying, altering or changing

simulation models of the same system to address a variety of problems or alternative

configurations of the same system.

A different approach to model building is to determine the level of abstraction,

system boundary and validation even before the model building process begins. This

arrangement requires a significant effort up front that pays off later because the model

can be modified easily to solve multiple future problems or system reconfigurations.

This approach typically uses an Object Oriented Paradigm to generate the system models,

and hence it is called Object Oriented Modeling.

Object Oriented Modeling

The advent of object oriented programming (OOP), a paradigm in which all the

program vruiables are represented as "objects", appears to be a significant advancement

10

towards the development of multiple use, general purpose models [Pratt 1991]. In OOP

an object is a collection of private data (instance and class variables) and behaviors

(methods). There are four key concepts in OOP languages: encapsulation, message

passing, dynamic binding and inheritance. Encapsulation is the confinement of data in

modules, typically the objects, and restriction of access only to the pre-defined methods.

In OOP, procedure calls are typically known as messages. In response to a message, the

object executes the requested method (if appropriate) and returns another message, if so

desired. Since each procedure or method has to belong to an object, it is required to be

referenced through the object. This means that the procedure to be invoked is object

specific and hence determined not at compilation time, but at run time. This is known as

dynamic binding. This behavior of method execution is significantly different from the

familiar· "function calls" in conventional non-OOP languages. Inhe1itance allows the

definition of a class of objects to be made by indicating that the new class is just like an

existing class but different only in the specified way. The new classes inherit the

complete behavior of their super classes along with the additional traits defined for them

in their own methods. This process precludes the necessity of rewriting of code for new

classes to emulate the behavior similar to existing classes. These four properties of OOP

languages can be effectively utilized to create multiple use, general purpose models as

explained below.

The object oriented approach to modeling decomposes the system based on the

concept of object. Instead of factoring the system based on the modules that denote

functions, the system model is structured around objects cmTesponding to those that exist

in reality. The modeling process in the object oriented par·adigm star·ts with the creation

of objects or databases of objects in the manufacturing system under study. Typically the

QOM approach uses bottom up model building [Pratt 1992]. That is, the objects at the

lowest level in the hierarchical structures are defined first. These primary objects (called

the modeling primitives) are then used to define other coupled objects in the system.

11

Thus the entire system model is created by using the primitives as building blocks.

Unlike the conven-tional approach there are no supporting guidelines (such as problem

statement) to arrive at an adequate level of abstraction or definition of primitives. In

order to have maximum flexibility it is desired that the objects should be defined at their

lowest possible level so that all the behaviors of potential interest are captured. For

example, in manufacturing systems, physical entities such as machines could be

described by using atoms and molecules as the primitive objects. However, such an

extreme level of primitives may not offer any extra advantages and in fact may turn out

to be a big problem in terms of memory and run time. Hence, the primitives are

normally set at the level which captures the required ;'observable behavior".

Furthermore, if for any reason it is required to break the primitive down one or more

levels, the object oriented paradigm can still take care of such situations by appropriate

modifications in the class hierarchy. The simulation and statistics collection logic is

typically handled by specially created simulation and statistics collection classes. Even

in the context of OOM a number of world views can be used to create the model

simulator classes.

With respect to simulation modeling there are several advantages of using the

object oriented paradigm. Several researchers [Adiga 89] [Beaumariage 90] have

enumerated these advantages in great depth. In general, OOP can create reusable

models. Quick modifications and reusability of software code is further improved by

class inheritance and by combining primitives to form coupled models. The readily

available database of modeling primitives and coupled models is an added attracti9n.

There are several important points to remember when dealing with object

oriented programming. Reusability of code is meaningful only if the generated code is

good. Errors in a reused portion of code can have disastrous effect on the simulation

execution. Reusable models are not easy to create. There could be a number of model

consistency problems if the previous modeling approach cannot accommodate the

behavior of a new subsystem. Reusability almost forces the user not to look into the

implementation details of a primitive and hence a badly designed primitive, though an

irritant, cannot be easily rewritten as there may be a number of ties with other classes.

12

In typical object oriented languages like Smalltalk-80 [Goldberg 89] message

passing has similar semantics to a procedure call, and the computation of the message is

done sequentially. The entire Smalltalk-80 environment is based on the paradigm of

virtual machine, which sequentially executes the queued processes [Lalonde 1991]. In

order to describe a problem such as discrete event simulation that contains concurrency, a

notion of process has been introduced. A process is created by sending a fork message to

a block context. However, this decision eventually imposes upon the programmer the

cumbersome task of modeling the problem in two different level modules: objects and

processes. This impairs the description and understandability. If it is desired to take

· advantage of the concurrency found in discrete event simulation the problem has to be

modeled as a set of cooperating processes. Hence, discrete event simulation can be

modeled more naturally if the objects are not only maintained as self contained modules

but also as units of concurrent execution. This idea will be further explored in the

following section.

Concurrent Object Oriented Programming

ConcmTent object oriented programming is a programming and modeling

methodology in which a system is modeled as a collection of concurrently executable

program modules, called objects, that interact with one another by sending messages. As

Y onezawa et al. [Y onezawa 88] has pointed out, the motivation for the research on this

metho-dology stems from the need to design powerful yet flexible computer softwai-e

systems that satisfy the ever growing demand of computer systems to solve more

complex problems and provide more sophisticated services required in today's

information intensive society. He further adds that even though powerful and faster

13

hardware is being produced at a reasonable cost, a traditional use of this hardware will

not create computer systems that are capable of satisfying such demands. What is

required is the exploitation of parallelism by using a large number of computing agents

created from multiple computers that make these computing agents work cooperatively.

Exploitation of parallelism is very attractive, but it is not an easy task. The major

difficulty arises from the fact that the modeling systems require a wider variety of

interactions and a higher degree of concurrency among their system components. The

central issue in exploitation of parallelism is what and whose activities should be can·ied

out in parallel and how such concurrent activities should interact with one another. In

designing software systems that exploit parallelism, it is required to find how the system

model should be broken into components that can be activated in parallel and how to

provide coordination between these components. The decomposition should be naturally

modular. These natural modeling and modularity concepts fit exactly into the object

oriented paradigm discussed in the previous section. Thus, object oriented, concurrent

programming combines the concepts of objects and the exploitation of parallelism to

create a paradigm that can be effectively used for representation and modeling of

concmTent systems.

In uniprocessor object oriented programming, a problem is modeled as a set of

cooperating objects and is solved by exchanging messages among objects. In concmTent

programming, a problem can modeled as a set of cooperating processes [Yokote 88].

Therefore, object oriented computing and concurrent programming have a very similar

structure; objects correspond to the processes, and message passing corresponds to inter

process communication. A process is not necessarily a self-contained module. However,

from the viewpoint of modular programming a process is created as a self-contained unit

of concurrent execution. Thus, similar to object oriented programming, the object

oriented concmTent programming paradigm treats everything as an object which is also a

self contained process. In general, this arrangement adds to the overhead of process

"-··

scheduling, which can be minimized by detecting most of the static dependencies at

compilation time. Thus, the object oriented concurrent programming paradigm unifies

objects and processes.

Parallel Discrete Event Simulation

14

Before discussing the issues related to parallel discrete event simulation, it is

imperative to explain one major property of physical systems called the causality

principle. In simple words, the causality principle states that the future cannot affect the

past. All physical systems obey the causality principle. In a discrete system, if an event

has some effect on another event then the former must always occur before the later; in

other words, cause must precede the effect. Events having no direct or indirect

relationships do not require such sequencing constraints and they need not occur in a

prescribed order. The order in which the simulator processes the events must obey the

causality principle. For example, if event A occurring at time 7 has some influence on

event B occurring at time 15 then the simulator must process event A before event B.

Thus, for the purpose of execution, it is important to maintain a proper sequence of

events. In cases where the events are not processed by the simulator in a correct

sequence, the causality principle gets violated and the simulation produces erroneous

results.

In uniprocessor application, causality is easily ensured by the ordering of events

in increasing simulation time sequence and always following the rule that the event

having the smallest occurence time is processed next. The simulation program

repeatedly removes the next event from the event list and calls the procedure that models

the changes induced by that event. This procedure updates the state variables to reflect

the new change of state and schedules any new events as needed. This process is

repeated until the event list is empty or an "end of simulation" event is processed. Thus,

it is quite easy to satisfy the causality principle in uniprocessor implementation. On the

15

contrary, in parallel implementation it is much more difficult to avoid violation of the

causality principle because many events are executed concurrently. Preservation of the

causality principle is one of the root problems in a successful parallel implementation of

a discrete event simulation program.

Parallel Discrete Event Simulation (PDES) is the execution of discrete event

simulation on a parallel processor. This requires partitioning of the simulation model

into distinct units, which are executed on different processors. Thus, a global model of

the system is partitioned into a collection of smaller local models.

In a uniprocessor simulation program, time in the physical system is modeled by

a global variable simulation time or clock. In parallel simulation, this single clock

variable has to be replaced by a distributed clock and at the same time the partial

ordering of the events imposed by causality in the physical syst~m should not be violated.

Two approaches have been developed to satisfy the above requirement. In the first, a

global clock is used to ensure that all the processes advance together in lock step, making

it a time driven simulation. The global clock process waits until all the activities at the

current time are completed. The clock is then advanced to the next time step. It is easy

to see that this method guarantees that the causality principle is not violated, however, its

usefulness is quite limited to situations in which a number of events have the same event

times. Otherwise, most processes would lie idle while waiting for the simulation clock to

advance. The second approach, referred to as event driven method, provides each logical

process its own local clock. Each logical process is responsible for advancing its own

clock as the simulation proceeds. The clocks in different processes are advanced at

completely different rates, which eliminates the need for a process to wait for the

processes to which it is not directly or indirectly related. Thus, this approach eliminates

the problem associated with the time driven simulation.

In the event driven approach, each process can receive a time stamp message or

event from several other processes. To maintain the local causality, it is necessary to

ensure that these messages are processed in increasing time stamp order. The local

causality requires non-decreasing event order only within a process, but it does not

constrain a collection of related processes to collectively process messages in non

decreasing event order. It allows any logical process to get ahead of another as long as

the sequencing constraints within each process are not violated.

16

Adherence to local causality in each process is sufficient to ensure global

causality if all interactions between processes are only through time stamp messages.

This is because a violation in causality can only occur when an event A with time stamp

TA has a direct effect on event B with time stamp TB,• where TA< T 8, but the simulator

erroneously processes B before it processes A. In a simulation program, event A can

affect event Bin two ways:

1. Event A causes the creation of event B

2. Event A modifies the state variables used by event B

In the first case, event B cannot be processed before event A because event B is

created only while executing event A. The second case suggests that events A and B

should belong to the same process because the state variables are local to each process

and cannot be accessed by other processes. If local causality is assured then it is again

not possible for the events to be processed out of order. Therefore, adherence to local

causality ensures that no causality is violated globally. It is important to note that the

above statement is valid only if all the interactions between the processes are via event

messages, and the processes do not have any shared global variables.

Simultaneous satisfaction of the local causality constraints for all the processes

which are advancing in simulation time at different rates lead to a problem called

processor 'deadlock'. The deadlocking situation occurs when in order to maintain local

causality, process A waits for process B which is waiting for process A itself. Thus both

processes wait for each other indefinitely. Under these circumstances the two concerned

processes are said to be deadlocked. As mentioned above, the concurrent satisfaction of

17

the local causality constraints for all the processes impose a deadlock problem. Deadlock

situations should either be avoided, or detected and eliminated. In the literature, a

number of researchers [Chandy 81] [Chandy 89b] [Renolds 82] have proposed a variety

of alg01ithms to perform deadlock-free discrete event simulation. These techniques fall

into three major categories [Chandrasekaran 87]:

l] Avoid deadlock by generating "NULL" messages to distribute the simulated

time across the neighboring processes determined a priori by the event

dependencies.

2] Allow the deadlock to occur, but provide a mechanism to detect and recover

from deadlock situations.

3] Avoid deadlock by allowing processes to process the events on any non-empty

queue, regardless of the number of other input queues that are empty. This can

lead to violation of local causality, so an additional rollback mechanism is

provided to undo erroneous computations and return to some point before the

causality constraint was violated, giving the process another chance to perform

the computation correctly.

As mentioned before, a number of schemes have been developed to deal with the

problems involved in the implementation of parallel discrete event simulation. The exact

details of some of them are considered in the literature review chapter.

The above sections have provided a general introduction to various aspects of the

problem domain. The next section attempts to describe the specific problem statement

and outline the solution requirements.

Problem Description

This research is specifically focused at the demonstration of the viability of

parallel processing for discrete event simulation of manufacturing systems. It is designed

to obtain more insight into an efficient execution performance of PDES. As the

18

modeling of manufacturing systems is not the primary focus of this research, a relatively

simple model of manufacturing system has been chosen for the purpose of this research.

The exact specification of this model is described in Chapter V. As established earlier,

quick reconfiguration and high reusability of modeling elements are some of the essential

requirements of the simulation model. This concept of model reusability in object

oriented modeling and simulation environments is well documented in the literature

[Adiga 89] [Basnet 90]. In fact, several researchers [Adiga 89] [Pratt 91] have

demonstrated the ability of the object oriented modeling paradigm to create rapidly

modifiable and reusable simulation models. Therefore, an object miented paradigm is

used for implementing the modeling and simulation environment. The choice of C++ is

further justified as it is the only object oriented language currently available on the Intel

iPSC/2 computer, a parallel processing computer at the Oklahoma State University.

Details of C++ object oriented implementation of modeling and simulation environment

are outlined in Chapter VI.

The Intel iPSC/2 computer is a distributed memory MIMD (Multiple Instructions

Multiple Data) machine in which the inter-processor communication is performed via

message passing between the individual processors. Therefore, parallel discrete event

simulation is achieved by dividing the simulation model of a manufacturing system into

several submodels and allowing each processor to execute a single submodel.

Figure 2 depicts a number of ways in which these submodels can be created for a

particular manufacturing system. Each distinct way results in a single configuration of

the submodels that collectively constitute the entire model. The flow of parts (work flow

items) between the machines belonging to two different submodels creates

communication messages between the processors. Thus, combined pa1t routings of a

manufacturing system and thereby the manufacturing system network topology influence

the communication pattern between the processors. Typically, all parts in a

manufacturing system have their own independent process routings. By superimposing

19

all the part routings, a generalized routing network for the entire manufacturing system

can be created. On the basis of this network, a specific network of submodels depicting

their interprocessor communication patterns can be derived such that each node of the

network represents a single submodel and the communication between two submodels is

represented by an arc between the corresponding nodes of the network. This network of

submodels is defined as a "submode! network".

Manufacturing System Network

#5 #8 /

part#4
-~-~---~-

1] Submode! Configuration# 1 : Four Submodels

Generalized
Routing
Network

2] Submode! Configuration # 2 : Three Submodels

3] Submode! Configuration # 3 : Two Submodels

4] Submode! Configuration# 4 : One Submode!

Generalized
Routing
Network

Generalized
Routing

-..--,__,.,__ Network

5] Submode! Configuration # 5 : Five Submodels

~::::;;-:~C=~~~ Generalized
Routing

--......--,~- Network

Figure 2. Derivation of Five Submode! Configurations from a System Model

20

In implementing parallel discrete event simulation, each submode! of the

submode! network is simulated by a single processor. This arrangement allows certain

processors to go ahead of others in simulated time. That is, a processor may be executing

a future event when an event in its past arrives from another processor. Under these

circumstances the past event may execute differently because of the earlier execution of

the future events. This situation allows the future to affect the past and therefore violates

the causality principle. Unless special mechanisms typically known as "processor

synchronization mechanisms" are provided to trap such inconsistencies, the simulation

results would be erroneous. Hence, provision of a suitable processor synchronization

mechanism is another problem that must be resolved for a successful implementation of a

parallel discrete event simulation.

Although communication synchronizes the two submode! simulation processes

running on two distinct processors, it adds an unnecessary communication burden to

these processors, thereby degrading their execution performance. The performance of a

software application is generally measured in speedup and efficiency factors. Figure 3

depicts the definitions of speedup and efficiency.

execution time for uni-processor implementation of the problem
Speed up = execution time for a parallel implementation

speedup
fficiency = number of processors used in the parallel implementation

Figure 3. Speedup and Efficiency of the Parallel Implementation of DES

The actual simulation execution load on each processor of the Intel iPSC/2

computer is called the "computation load". As explained earlier, the parallelization of

discrete event simulation also requires each processor to communicate with other

processors. This is called the "communication load". A parallel application such as

parallel discrete event simulation gives better execution performance if the total or

combined communication and computation load on each processor is minimized. The

communication load on the computer is drastically influenced by the way in which the

submodels are created. Three major ways in which the submodels influence the

communication between processors are:

21

1] Simulation of the movement of work flow items between the machines under

different submodels of the manufacturing system requires that the

corresponding work flow item objects are moved across the processors

simulating the corresponding submodels.

2] If the flow of the work flow item objects between processors becomes cyclic

the simulation process can potentially deadlock. The only way to avoid or

break a deadlock is to add a substantial amount of communication between

processors. This communication is generally provided by deadlock detection

and recovery algorithms [Bain 88].

3] If two submodels under different processors share a common resource such as

a material handler, the causality constraints require the execution of an event on

one processor to inquire about the status of the shared resource from the other

processor. This introduces additional communication between the processors.

The submodel creation is a key process that influences the communication

patterns of the parallel discrete event simulation and hence the speed and the efficiency

of an application. Therefore, the major problem at the submode! creation stage is to

minimize the communication load while attempting to use as many processors as

possible, i.e., to create as many submodels as possible. Since a modeler can obtain

22

several different configurations of the submodels from a single manufactming system

model, the modeler has to choose the submode! configuration that gives the best

execution performance. At one end of the spectrum, a uniprocessor application requires

virtually no communication but shifts the entire computation load to a single processor,

thereby producing suboptimal results in most cases. On the other end of the spectrum, if

a laTge number of processors are used the communication overload can become

overwhelming. Thus, either end of the spectrum only results in a suboptimal

performance. As depicted in Figure 4 optimality exists somewhere in between.

i

300 l
250 ..

.5 200
~

= 1 •so ..
Z. 100

l
.J 50

Computation vis Conm~nication Load

#ol Processors

I -·- Con1Malia,al Load --a-- Comrunicalion Load -•- Tolal Load

Figure 4. Optimality of the Total Load on each Processor in PDES

Unanswered Questions

The above explanation of the problems involved in object 01iented modeling and

parallel implementation of discrete event simulation of manufacturing systems poses a

number of unanswered questions. Among the unanswered questions are:

1] What factors influence the efficiency of parallel discrete event simulation of

manufacturing systems?

23

2] What impact do these factors have on a parallel implementation of the discrete

event simulation of a manufacturing system?

3] What constructs must an object oriented concurrent programming language

provide to achieve process synchronization for a parallel application?

4] How can deadlocking situations be avoided in parallel implementation of

discrete event system simulations?

5] Can a test be dev~loped to detect if a manufacturing system possesses the

characteristics that can lead to a deadlock during parallel implementation of a

discrete event simulation of that system?

~6] How can the random number generation process be effectively handled so that

it can result in identical simulation results regardless of uniprocessor or multi

processor implementation ?

This research seeks to address these questions and gain insight into a

methodology for answering them. Some of the above questions are discussed in the

distributed simulation literature. Brief reviews of pertinent research articles are provided

in the next chapter.

CHAPTER III

LITERATURE REVIEW

Introduction

This chapter contains a formal introduction of the literature related to object

oriented modeling and parallel discrete event simulation (PDES) of manufacturing

systems. This review consists of four major areas: concurrent object oriented

programming, parallel processing and parallel computing architecture, parallel discrete

event simulation, and processor synchronization mechanisms. There is an enormous

amount of literature available in all of the above areas. The majority of research in the

last two areas has been concentrated on the computer or communication system models.

The similarity between the computer/communication systems and manufacturing systems

validates the use of this research in the manufacturing systems context.

Concurrent Object Oriented Programming ;

The inclusion of concurrent object oriented programming aspects in the context

of this research comes from the fact that concurrent OOP not only provides modeling

constructs in terms of objects, but also takes advantage of the concurrencies in real

systems to create models that can be implemented on parallel processing machines. The

literature relevant to this research includes research efforts in the development of

concmTent OOP languages such as "ABCUl" by Yonezawa et al. [Yonezawa 88],

"ConcurrentSmalltalk" by Yokote et al. [Yokote 88], "POOL-T" by America [America

24

25

88], "Orient/84K" by Ishikawa et al. [Ishikawa 88], and "Actoi;" languages by Agha et al.

[Agha 88a].

From a historical perspective, concurrent programming concepts first appearnd in

the literature in 1977, when Kahn and McQueen [Kahn 77] developed the constructs of

streams to capture functional systems. Brock and Ackerman [Brock 81] added the inter

stream ordering information in order to make the 'stream' model more suitable for

concurrent computation. Pratt [Pratt 82] formalized the generalized theory of processes

in terms of sets of partially ordered multisets (pomsets) of events. This generalized

process model is compatible with the laws of concurrent processing formulated by

Hewitt et al. [Hewitt 77]. Hoare [Hoare 78] proposed a language for concmTency called

CSP, based on sequential processes. In CSP the communication between the processes is

synchronous. Along similar lines, the actor model with the existence of a mail system

was introduced to enable asynchronous communication between processes. The relevant

concepts of the actor model are explored in the following brief summary of the research

article by Agha et al. [Agha 88b].

The authors suggest that providing a mechanism for dealing with shared

resources, dynamic reconfigurability, and inherent concurrency are the fundamental

considerations in designing the actor language. An actor is a computational agent that

carries out its actions in response to the incoming communication messages. Even

though an actor is analogous to an abstract concept of an object, it is distinctly different

from an object, in the sense that it also encompasses in itself the notion of process.

Unlike the objects created in traditional OOP languages such as Simula [Birtwistle 79]

and Smalltalk [Goldberg 89], an actor can transform its behavior dynamically without

necessarily being constrained by the restrictions imposed by its membership to its class.

In general, an actor can send a message to itself or other actors, create more actors, or

specify a replacement behavior to pipeline its actions. All actors in a system carry out

their actions concurrently. In response to a communication, an actor may send several

26

communications to other actors. The creation of new actors increases the amount of

concurrency feasible in the system. In actuality, an actor is a tuple consisting of a mail

address and a current behavior. The mail address is associated with a mail queue for

incoming messages. The current behavior is specified in terms of local state functions.

An actor system consists of actors along with a set of unprocessed tasks. A configuration

is a snapshot of an actor system. A solution to the problem is obtained as the actor

system starts at the initial configuration and proceeds through the intermediate

configurations to end the processing at the final configuration. The number of actors in

the system typically grows as the concurrency in the solution algorithm is dynamically

exploited by the computing actors in the intermediate configurations. For example, the

function evaluating the factorial of an integer can be implemented as a product of ranges

that will be evaluated concurrently. The authors have presented the actor code for the

implementation of a factorial algorithm in actor language, as depicted in Figure 5.

(defFunction range-prod (lo hi)
(if(= lo hi)

(then lo)
(else (kt ((mid(/(+ hi lo) 2)))

(* (ran e- rod lo mid) ran e- rod (+ 1 mid) hi))))))

Figure 5. Actor Code for "range-prod" Function

Each actor containing a range-prod function with 'lo' and 'hi' values, creates two

more actors with the corresponding two new parameters as 'lo', '(hi+lo)/2' and '(hi+lo)/2',

'hi' and waits for these two actors to send back their respective products. Each of these

two actors, in turn, creates two more actors with corresponding 'lo' and 'hi' values. This

27

process of creating actors continues until the current actor has the same values in the 'hi'

and 'lo' variables. This structure of the concurrent factorial computation is depicted in

Figure 6.

Concurrent Computation Structure

Re uest 1

Request 2 Request 3

Request 4 Request 5 Request 6 Request 7

Life span Reply 4 Reply 5

of actor 2
and actor 3

Reply 2

Reply 6 Reply 7

Reply 3

Re ly 1

Life span
of actor 1

Figure 6. Concurrent Computation Structure of the Factorial Problem Execution

28

As the replies to its requests are obtained, the actor multiplies the two replies and

creates a response message for its parent actor. As the computation progresses upwards

in the hierarchy, the excess child actors are destroyed, eventually maintaining only a

single actor containing the answer.

In general, the ability of actors to create new actors (the customers) and distribute

the work is well suited for fine-grain message passing parallel computers having

thousands of small processors with low communication latency. The root compiler of the

actor language 'Acore' provides the mechanisms for inter-processor communication and

other memory management tasks. 'Acore' allows a number of actors under each 'worker'

that executes the actor computation on a single processor. In this way, the actors can be

easily distributed on the available processors of a parallel computer.

In retrospect, the Concurrent Object Oriented language Actor provides for

dynamic growth and reconfigurations of actors that exploit the parallelism in an open

concmrent system in order to effectively implement it on a variety of parallel computers.

Parallel Processing and Parallel Computer Architecture

This section of the literature review provides a brief introduction to parallel pro

cessing and parallel architecture, specifically the architecture of the Intel hypercube

computer. The majority of the following description is obtained from books by Aki [Aki

89] and Bustard [Bustard 88].

In a typical personal computer, there is only one processing unit, the

microprocessor chip. If a computer has more than one processing unit, it is called a

parallel computer. The need for parallel computing arises from the fact that in many real

time applications, the solution to a problem requires that an enonnous amount of com

putation be pe1formed in a very short period of time. The basic idea behind parallel

processing is to divide the given problem into a number of distinct sub-problems that can

be solved simultaneously, each on a different processor. The results are then combined

to produce the answer to the original problem. This is a radical departure from the

algorithmic model of computation, designed for sequential uniprocessor machines.

29

Over the last forty years uniprocessor computers have achieved a dramatic

increase in computation speeds. The main reason for this dramatic increase was the

availability of faster electronic hardware components. The computer hardware moved

from relays, to vacuum tubes, to transistors, to integrated ciTcuit (I Cs) chips, to small and

large scale integration (LSI) chips, and then to very large scale integration (VLSI) chips.

Unfortunately, it is perceived that this trend may soon come to an end. The limiting

factor is simply the law of physics that gives the speed of light in a vacuum. The only

way around this problem is to use parallelism in the problem statement and

simultaneously solve the sub-problems crafted out of the original problem.

Any computer, sequential or parallel, operates by executing instructions on the

supplied data. A stream of instructions (algorithm) tells the computer what to do at each

step. A stream of data (the input to the algorithm) is affected by these instructions.

Depending on the number of streams of data or instructions, four groups of computers

are often defined [Aki 1989]. They are:

1. Single Instruction Single Data Stream (SISD) : This computer does not

exhibit any parallelism. A typical personal computer is a good example

of this type.

2. Multiple Instruction Single Data Stream (MISD) : The parallelism is

achieved by letting the processors simultaneously do different things on

the same data stream. Applications of this type include object

classification problems.

3. Single Instruction Multiple Data Stream (SIMD) : The parallelism is

achieved by dividing the data into multiple streams that are processed

simultaneously using the same instructions on multiple processors.

Applications of this type include matrix multiplication problems.

4. Multiple Instruction Multiple Data Stream (MIMD) : Computers of this

type are the most general and most powerful of the four groups. They

can handle parallelism via multiple data and/or multiple instruction

streams. They can mimic the behavior of all the other groups.

30

MIMD machines are further classified as shared memory or distributed memory

machines. The shared memory machines share a common memory, and synchronize

thefr operations through this memory. The distributed memory machines have separate

individual memory and therefore, they require direct processor communication for

synchronization.

MIMD computers allow the execution of asynchronous algorithms.

Asynchronous algorithms are difficult to design, evaluate and implement. An

asynchronous algorithm is a collection of processes, of which some or all are processed

on different processors. The execution of an asynchronous algorithm starts with the

creation of computational tasks, or processes, to be performed. Once a process is

created, it must be executed on a processor. If a processor is available, the process is

assigned to the processor that performs the computation specified by the process.

Otherwise, the process is queued and waits for a processor to become free. When a

processor completes execution of a process, it checks the process queue. If a process is

waiting, it is selected for execution. This process creation and execution continues until

all the processes are executed, or any process instructs the processor to stop the execution

of the asynchronous algorithm.

In evaluating a parallel algorithm for a given problem, it is typically compared to

it's equivalent single processor implementation. A good indication of the quality of a

parallel implementation is the speedup it produces. The speedup is defined as

Speed up =
execution time for uni-processor implementation of the problem

execution time for a parallel implementation (1)

31

Another indicator of the quality of a parallel implementation is the utilization of

each processor or it's efficiency. The efficiency is defined as

Efficiency = number of processors used in the parallel implementation
speedup

(2)

In controlling a parallel computer, a number of tasks must be managed.

Typically, the operating system provides additional constructs that manage the memory,

inter-processor communication, I/0 communication, etc. These tasks are highly

dependent on the architecture of the parallel computer. Hence, the following paragraph

describes Intel's iPSC/2 architecture, operating system and interconnection

synchronization mechanism.

Intel's iPSC/2 concurrent supercomputer is a cost effective solution for large scale

applications. In an iPSC/2, a large number of processors or nodes work concurrently on

parts of a single problem. An iPSC/2 system consists of computing nodes, I/0 nodes,

peripherals, and a front end processor called the host. A node is a processor (Intel 80386

chip) and memory combination. Each node runs the NX/2 operating system, uses

message passing to communicate to other nodes, and can access both the host file system

and the iPSC/2 concurrent file system.

The front-end processor is called the System Resource Manager (SRM). The

SRM runs the UNIX System V operating system, augmented with iPSC system

extensions and TCP/IP networking software which links the remote work stations and the

SRM.

A typical iPSC system application has a host program that runs on the host and a

node program that runs on a group of allocated nodes called a 'cube'. The host program

runs under the UNIX operating system as one or more processes. It usually initializes the

application, provides any necessary human interface, and loads the node program onto

the nodes. Each node executes the node program. Typically a node program performs

calculations, exchanges the synchronization messages with the other nodes, and sends

data back to the host. .

32

The iPSC/2 system at Oklahoma State University has 32 CX nodes connected in

the form of a hypercube of dimension 5 (25). Even though all the nodes in an iPSC

system are not fully connected, a node can send a message directly to any other node in

the network without affecting the processing of the nodes in the connecting path. This is

achieved via Direct-Connect Module (DCM). The composition of each CX node is

described in table 1 below.

TABLE 1

COMPOSITION OF INTEL IPSC/2 HYPERCUBE ex OR sx NODE

Processor 1\1:emory Numeric Processing

386 microprocessor 16 Mega bytes of memory 80387 or Waiteck SX processor

The operating system of the iPSC/2 provides a number of user interface

commands, such as, getcube, cubeinfo, re/cube, load, attachcube, etc., to let the user

manipulate the resources available on the system. It also provides a variety of

synchronous and asynchronous message passing calls. They are synchronous and

asynchronous send and receive.

Synchronous send and receive : (csendO / crecvO): A synchronous send means

that the program executing the send waits until the send is complete. A synchronous

receive means that the program executing the receive waits until the message arrives in

the specified buffer.

33

Asynchronous send and receive: (isend() / irecvO): An asynchronous send means

that the program executing the send does not wait until the send is complete. To make

sure that a send is complete the msgwait() command is used. An asynchronous receive

means that the program executing the receive initiates the receipt of a message, and when

the information is required by the process, uses msgwait() to block further execution of

the process until the receive is complete.

Parallel Discrete Event Simulation

One of the earliest publications in the area of distributed simulation included a

case study by Chandy and Misra [Chandy 79]. This case study contains one of the

pioneering efforts in the determination of requirements, constraints and program design

of distributed simulation. Since then, researchers have provided a number of approaches

to solve the distributed simulation problem. Chandy and Sherman [Chandy 89a] have

proposed a unified framework called space-time for describing the discrete event

simulation problem. This framework provides a foundation for the classification of the

numerous research methods and helps identify new research directions in distributed

simulation. They have explained the space-time framework with the help of a system

containing two billiard balls in a friction free cylinder. Figure 7 shows the space-time

rectangular representation of the system. The two identical balls, initially placed at

opposite ends of the cylinder, travel towards each other with equal speed. The space

time region of interest is a rectangle where x goes from O to L (length of the cylinder)

and t goes from Oto T (required simulation time).

34

The simulation of the system is a method of filling in the space-time rectangle.

As seen in Figure 7, the two balls collide with each other and return back to collide with

the end wall. The cylinder surface is assumed frictionless, and hence, the balls follow

their back and forth linear motion indefinitely. As the simulation time is continuously

increasing, the back and forth motion in space (i.e. along the x axis) results in a zig-zag

motion in the space-time rectangle.

Space-time rectangle

T -- .. ----________ -_-_·::.~: __ _
I ----___ ..

··--
--

t ·- --...... - --- ----
0 0 x----

-----------> Path of the left
end ball

- - ->- Path of the right
end ball

L

Collision
between ball
and boundry

Collision
between
balls

Figure 7. Representation of the System in Space-Time Rectangle

Figure 8 explains the four most prominent approaches to simulation. Figure 8 (a)

is the Time Driven Simulation in which the program determines the behavior of the

system at all times in an interval [O,T*] and then proceeds to evaluate the system

behavior at T* +E for some arbitrarily small E (most continuous system simulations are

performed in this manner). Figure 8(b) shows a different case where the time step Eis

much larger than the earlier case. Typically Eis selected to be some important event in

35

the system (such as collision between balls). This is the Event List Approach to discrete

event simulation. A distributed simulation is characterized by the paititioned space-time

rectangle as depicted in Figure 8(c). Each processor evaluates or fills the inner details of

its partition. In the conservative distributed simulation technique, for each partition in

space, the program determines the behavior of the system at all times from Ti to Ti+Si as

shown in Figure 8(d). Higher values of Si make the simulation run more efficiently. In

. an optimistic distributed simulation the system behavior is estimated from T* to Ti+Si.

If these estimates are found to be incorrect, they are corrected by a roll-back and

recovery method. If all the estimates are shown to be correct for some interval T* +u,

then the time is advanced to T* +u. Both distributed simulation methods use many

processing agents that significantly reduce the time required to fill the space-time

rectangle or the simulation execution time.

The authors further explain that achieving a successful implementation of discrete

event simulation involves a careful partitioning of the system space-time diagram. The

space-time diagram contains a vertical line for each process in the system. The

synchronizing messages passed between the processes are represented by horizontal

arrows connecting the vertical processes. Typically, a collection of processes are run on

each processor, which means that a tandem arrangement of processors paitition the

space-time rectangle into vertical strips. Each strip contains a number of vertical lines,

corresponding to the processes it contains.

A number of researchers (such as Fujimoto [Fujimoto 89], Jones et al. [Jones 86],

Nevison [Nevison 90], etc.) have devoted their attention to measuring the performance of

several strategies for distributed simulation on a number of parallel processing

computers.

Comparisons of a number of distributed simulation strategies require the

development of proper performance measures. Fujimoto [Fujimoto 89] has developed a

number of performance measures to compare the deadlock avoidance and deadlock

Time-Driven
(Serial)

T.---------~

I
t

0 o=====~~~~L
X >

8 (a)

Conservative
(Parallel)

T .------.-------.----,---,
P1 P2 P3 P4

0 X > L

* T+E

r*

I
t

Event-List
(Serial) T~--~--~---,

* ~'<T'<"'<""~~~~~~C'<"TIT+E

~~~~~~~~~r* 

X > L 

8 (b) 

Optimistic 
(Parallel) 

T .---.----r----.----, 

i 
t 

P1 

T1+S1 

P2 

1------< T2+S2 
0 0 0 f------l 
0 0 0 0 0 0 0 

P3 P4 

T3+S3 

o o o o o o o 1-0 -o -o -;o T4+S4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
T~u 

~~~~~~~~, 

00
X > L

8 (c)
Pn = nth Processor

8 (d)

~ Region filled at the current step CJ Unfilled Region

~ Region filled previously ~ Estimated Behavior

Figure 8. Space-Time Rectangle for Different PDES Techniques

36

37

detection and recovery techniques. He used speedup, "null" message ratio, and the

deadlock ratio as his performance measures. He used a BBN Butterfly™ multiprocessor

for the distributed simulation testbed. In the deadlock avoidance technique, when a

process is blocked, it communicates its lookahead function value to its neighboring

processes in order to avoid deadlock. In the deadlock detection and recovery technique,

a global counter is maintained that holds the number of unblocked processes. In a

deadlock situation the counter becomes zero. The recovery process locates the message

with smallest time stamp in the system and restarts the corresponding blocked process.

The author has performed an extensive empirical performance evaluation of distributed

simulation programs and provided the following conclusions.

1. The lookahead ability of logical processes plays a critical role in determining

the efficiency of the deadlock detection and recovery algorithms. This is due

to the fact that the processes must spend an extensive amount of time waiting if

their lookahead ability is poor.

2. Deadlock detection and recovery simulation for moderate to high messages

containing different types of logical processes can be adversely affected by a

small number of processes that exhibit poor lookahead capability.

3. Networks containing inherently poor lookahead properties, e.g. prioritized

queues, are ill suited for both algorithms.

4. Distributed simulation, using deadlock avoidance or deadlock detection and

recovery algorithms, is a viable approach to speeding up work loads containing

a moderate to high degree of parallelism.

5. In order to judge which performance enhancement approach will be most

effective for a particular situation, the programmer must be intimately familiar

with the simulation application.

38

Processor Synchronization Mechanisms

In the parallel simulation literature, a considerable amount of research effort has

been directed toward the development of time synchronization mechanisms. Developing

a sound synchronization mechanism is vital to successful implementation, because the

speedup factor is almost entirely dependent on the network communication load. To

date, little empirical data is available for measuring the perfo1mance of specific

implementations of these algorithms, even though a number of studies have been

reported (for example: [Seethalakshmi 79] or [Reed 85]). A notable exception is the

recent work on queueing network simulations by Reed, Malony, and McCredie [Reed

90]. The performance of a specific implementation of a time synchronization algorithm

is significantly dependent on the architecture of the parallel computer. The experiments

involving iPSC/2 have not been explored in detail. From this perspective, a couple of

references [Bain 88] and [Davis 90] lie close to the context of this research. The

following paragraphs discuss two important research papers having network algorithm

implementation on Intel iPSC/2.

William Bain and David Scott [Bain 88] from Intel Science Computers have

proposed a conservative deadlock avoidance algorithm. They explain the simple

technique (suggested by [Chandy 81]) of feeding time synchronization information to all

successors, when an event message is sent to one successor. This technique has a

disadvantage of generating an enormous amount of message traffic. The demand driven

technique requires a process to request time information from its predecessors before

advancing its time. This approach minimizes message traffic. Using this approach, an

algorithm can be developed to detect and avoid deadlocks in the network.

The authors have outlined a general, deadlock free algorithm for demand driven

synchronization. The algorithm guarantees small fixed size messages but it may require

a number of requests for the exchange of time information to advance a process's time.

A brief explanation of the algorithm is provided in the next paragraph.

Notation:

n : Number of processes (one on each processor)

ti : Distributed clock time of process 'i'

Pi : The predecessor process of process 'i'

s, : The successor process of process 'i'

39

li lj]: The earliest time that an event can arrive from j1h predecessor of process 'i'

When an event tm arrives at process 'q' at the head of the queue for channel T, the

process updates the value oflJj] (also known as the channel time) to tm. Before the

process can consume and process the contents of the message, it must assure that no

message, with time less than tm, will arrive from any other predecessors. This is the

essential constraint of time progressive synchronization. If all processor times exceed tm>

i.e. for all values of j, lJj] is greater than or equal to tm, the event message is consumed

immediately. Otherwise, the process requests the channel times from all processors

having channel times less than 1m, by placing an entry with the predecessor 'id' and

requested time ~n in the request queue. The predecessor replies in one of the following

three ways:

YES : Which indicates that the predecessor channel has reached the request time,

and the new channel time is passed back as a reply.

NO : WhiGh indicates that the predecessor channel has not reached the request

time and another request must be made.

RYES : (a reflected 'yes'), which indicates that the channel has conditionally

reached the requested time. The RYES answer is provided to detect the

cycles within the connection graph and thereby avoid deadlock in time

synchronization.

40

When a process receives a time request from one of its successors, it checks the

process 'id' and request time to match any request already in the request queue. If an

entry is encountered a RYES message is sent to the requesting successor, indicating that

a cycle has been encountered. If the process has not reached the requested time, then it

makes time requests to all of its predecessors with lower channel times than the requested

times. In order to detect cycles in the connection graph, it places the originating

processor 'id' in the time request message of its own process 'id'.

Thus, this algorithm provides a time synchronization strategy for a parallel

discrete event simulation running on a number of processors. As the authors have

demonstrated, the algorithm can effectively handle deadlock situations, with RYES type

messages. The paper is specifically important from this research point of view, because

the algorithm has been implemented on an Intel iPSC/2 machine.

Davis et al. [Davis 90] from Virginia Polytechnic Institute have proposed a

conservative "null" message algorithm to carry out a discrete event simulation on an Intel

iPSC/2. They have investigated the effects of network topologies on the speedup factor.

The paper presents a method for creating a distributed event list and describes conditions

under which the algorithm can be expected to efficiently provide significant speedup of a

discrete event simulation. The distributed event list algorithm uses a method of

interprocessor communication and synchronization based on the null message algorithm

for dist1ibuted simulation proposed by Chandy and Misra [Chandy 81].

The authors have derived an ideal speedup calculation for a parallel imple

mentation of a discrete event simulation. They further state that under ideal conditions,

(i.e. assuming zero communication load) the theoretical speedup is equal to N2• This

means, for a sequential event list implementation, theoretically, superlinear speedup is

possible. They further explain that this theoretical speedup is in general not attainable

because of the communication overhead.

41

The basic experimentation in their research involves simulating 32 submodels,

each on a single processor. Each submode! has 2 tandem M/M/1 queues with only about

10% of the entities flowing out of the submode!. The remaining entities are terminated.

The total input of entities constitutes entities created in each submode! and the entities

arriving from the predecessor's submodels. The implementation involves 3 types of

network configurations of submodels; viz. tandem, balanced feedforward, and

unbalanced feedforward. The system is simulated on 2, 4, 8, 16, and 32 parallel

processing nodes.

From the above experimentation, the authors have concluded that:

1. The theoretical speedup factor for parallel simulation using the event list

algorithm is greater than N (the number of processors).

2. The strategy of sending extra "stimulus" null messages, and the "Null"

messages with a timeout between sends are only marginally effective.

3. The attainable speedup is highly dependent on the absence of feedback loops

in the logical system topology.

4. The tightly coupled logical processes complicates the assignment problems.

The knowledge base available in the field of parallel discrete event simulation

(PDES) is narrowly focused on designing processor synchronization mechanisms for a

number of deadlocking and non-deadlocking situations. Very few studies [Fujimoto

1989] have comprehensively summarized the effect of pertinent factors on PDES. The

proposed research attempts to provide insight into PDES by observing the effects of a

number of factors that influence PDES. The literature review desc1ibed in this chapter

provides the basic foundation in determining the factors that influence PDES and the

effects of these factors on PDES. This research uses the RYES type message passing

mechanism as a foundation for designing the processor synchronization schemes. The

next chapter provides a detailed list of goals and objectives of the research.

CHAPTER IV

STATEMENT OF RESEARCH

Research Goal·

The motivation for this research effort is to explore the concepts, problems, and

implementation design difficulties associated with the application of parallel processing

technology for the simulation of discrete event systems. The primary goal of this

research is to identify and quantify the factors that significantly influence an effective

parallel implementation of simulations of object oriented models of manufacturing

systems. Based on the knowledge and information obtained from the above

investigation, a secondary goal of this research is to suggest specific guidelines for any

such parallel implementations.

Research Objectives

To accomplish the goal, the following research objectives have been identified:

OBJECTIVE 1 - Concurrent Object Oriented Modeling

Evaluate the constructs of concurrent object oriented :programming languages

and environments in the context of their applicability to :parallel discrete event

simulation. Concurrent Object Oriented Languages provide the necessary constructs to

concurrently execute programs on parallel architecture machines. Under this objective a

number of constructs mentioned in the literature review will be studied to create an in

depth understanding of the concepts involved in process synchronization.

42

V

43

OBJECTIVE 2 - Submodel Creation Logic

Develop strategies for creating submodels by logically clustering the simulation

objects present in an Object Oriented model of a manufacturing system. These

submodels will each be executable as an independent process running on a single

processor. The external arrivals to the portion of the system emulated by the submode!

are the communication messages between the corresponding processors. Therefore, the

submodel creation will be based on (1) dependencies of the simulation object processes

(2) communication overhead and (3) number of available processors. The attempt will

be to break up the main model into as many submodels as the available number of

processors, by considering the event dependencies that minimize the communication

between processors.

OBJECTIVE 3 - Communication Strategy Design

Develop strategies for effectively achieving communication between Intel iPSC/2

processor nodes. In the context of an event based simulation approach, the event

scheduling logic will keep track of the communication messages the processor needs to

receive before the next event is scheduled. On the basis of the generalized network

topology of the manufacturing system, the event scheduling logic will be modified. This

will require the development of several communication strategy designs, one for each

network topology.

OBJECTIVE 4 - Performance Analysis via PDES Implementation

Create and implement several PDES models on the Intel iPSC/2 hypercube

computer in order to carry out performance analysis of the PDES of the experimental

manufacturing system. The performance analysis of the manufacturing system involves

determination of the influences of the selected experimental design factors, i.e., network

topology, system size, and number of available processors on the PDES performance

measures, viz. speedup and efficiency. The performance measures will be collected

under all the desired system configurations given in the experimental design.

OBJECTIVE 5 - Methodology for Achieving a Successful PDES

44

Develop a comprehensive methodology for achieving PDES on a parallel

computer with distributed memory architecture. On the basis of the investigation

described in objective 4, develop a comprehensive methodology that takes into account

the influences of each factor, the submodel creation strategies, and communication

mechanism designs, for achieving a successful Parallel Discrete Event Simulation model.

Research Scope and Limitations

During the course of this research, the author has come across numerous

innovative, intelligent, pertinent, and tangential research issues, that lie fairly outside the

scope of this research. Typically, these issues are inclined towards the field of computer

science. The author has neither the background nor the inclination to pursue these leads.

For example, "The management of PDES of a system having a network with deadlocking

topology" has been one of the most popular research topics in the literature.

The primary assumption of this research is that a distributed memory parallel

computer is employed for parallel discrete event system simulation. In a distributed

memory computer, the communication between the processors is completely handled by

messages passed across the processors. There is no global memory. The submode!

creation strategies and communication mechanism designs are based entirely on this

fundamental assumption.

The scope of this research is limited to manufacturing systems. The

manufacturing systems that are modeled as a part of the investigation are gross

simplifications of the real world systems. For example, material handling, bounded

45

work-in-process buffers between machines, alternate product routings, machine tools,

customer order arrivals, sophisticated system controllers, etc., are not included in the

models under this investigation. Thus, this research is a preliminary analysis of the

execution of PDES solely based on the generalized product routings in the manufacturing

system.

Another severe limitation of this research is that during a simulation the

deadlocking situations are avoided either by careful selection of non-deadlocking product

flow routings, or by capturing the deadlocking portions of the generalized routing

network within a submode!. This arrangement keeps the deadlocking portion under the

control of a single processor, thereby avoiding deadlocking situations during the parallel

execution.

This investigation is conducted on an Intel iPSC/2, a parallel processing machine

with its 32 nodes connected in the form of a hypercube. Therefore, the nature of

investigation is limited to those aspects which are compatible with the characteristics and

structure of this particular parallel machine.

Research Contributions

The major contribution anticipated from this research is the conceptualization and

validation of the methodology created to guide a user in obtaining Object Oriented

Discrete Event Manufacturing System Simulation Models that can be executed on a

parallel processing computer. For practitioners who model manufacturing systems, the

development of this methodology offers significant rewards in the following two areas.

First, by analyzing the manufacturing system topologies and the factors that influence the

model execution performance of a parallel implementation, decisions regarding the

appropriateness of parallel implementation, suitability of the number of processors, and

submode! creation strategies, can be made a priori to the actual implementation. Second,

the detailed processor communication design for a corresponding network topology,

made available by this research, can be used as a basis for designing the required

processor communication mechanisms.

Other significant contributions anticipated from this research are:

• Determination of the factors that have the potential to influence the

execution performance of a parallel discrete event simulation of

manufacturing systems.

46

• Demonstration of the viability of parallel implementation of discrete event

simulation of manufacturing systems via a modified event scheduling

technique.

• Provision of empirical data for further research in the areas of parallel

discrete event simulation of discrete event systems.

CHAPTER V

RESEARCH PLAN AND METHODOLOGY

Research Plan

In order to achieve the goals and objectives outlined in Chapter Four, this

research is carried out in the phases detailed below. Phase I finalizes the performance

measures, experimental conditions, experimental factors, and other design

methodologies. Phase II proposes a manufacturing system model that can be used to

implement the desired experimental conditions, or to set the levels of the experimental

factors at the desired values. This model is expected to emulate any needed experimental

condition, without undergoing a structural change. Phase III proposes verification of the

basic simulation model and the statistics collection routines, by creating an equivalent

model in the general purpose simulation language, SLAM II [Pritsker 86]. In this phase,

a validation of the simulation model is not attempted, because the experimental

manufacturing system, though realistic, is purely hypothetical. Phase IV attempts to

implement and execute the discrete event simulation model of the manufactming system

on a single node of the Intel iPSC/2. This yields the uniprocessor simulation execution

time, which is used as a baseline for speedup calculations. Phase V establishes a number

of design strategies used to achieve an effective split of the global model into smaller

chunks, each executed on a single processor. Phase VI is devoted to designing a number

of processor synchronization mechanisms to accomplish a distributed simulation of the

desired discrete event simulation model. Phase VII achieves successful implementations

of the designs proposed in both Phases V and VI. Phase VIII verifies that the parallel

47

discrete event simulation of the manufacturing system has been implemented

successfully under all the experimental conditions. It provides the results and

conclusions of the experiment. A design methodology which accomplishes parallel

discrete event simulation is expected as one of the important outcomes of this phase.

PHASE I - Finalize Experimentation Details

Phase I finalizes the experimentation details such as performance measures and

expe1i.mental design factors that will be used during parallel discrete event simulation

expedmentation. The performance measures for parallel implementation of discrete

event simulation is dedved by comparing it to its equivalent single processor

implementation. A good indication of the quality of parallel implementation is its

speedup. The speedup is defined as

48

execution time for uniprocessor implementation of the problem
Speedup=------------------------

execution time for a parallel implementation
(3)

Another indicator of the quality of parallel implementation is the utilization of

each processor or its efficiency. The efficiency is defined as

Efficiency = number of processors used in the parallel implementation
speedup

(4)

Of the above two performance measures, this research will consider speedup as

the performance measure of primary importance. Measured efficiency is only used as a

threshold limit below which the implementation performance is not desired.

The goal of this experimentation is to investigate the effect of experimental

factors on the performance of parallel discrete event simulation. Among several factors

49

that affect the performance of PDES, the size of the manufacturing system, the load

(utilization of all machines) on the manufacturing system, the number of processors used

for parallel implementation, and the communication protocol design are the prominent

factors selected for experimentation. The former two are non-controllable factors

because they are automatically decided by the manufacturing system being modeled.

The latter two can be controlled by selecting their most suitable levels. These

experiments will be repeated for a variety of submode! network topologies thereby

observing the effects of experimental factors on different network topologies.

The following network topologies are selected for the PDES experimentation.

The Submode! Network Topologies

1: Submodel Network with "Independent Clusters" of nodes.

2: Submode! Network with "Tandem" arrangement of nodes.

3: Submode! Network with "Fork" topology of nodes.

4: Submode! Network with "Join" topology of nodes.

5: Submode! Network with both "Join" and "Fork" topologies of nodes.

In order to develop a preliminary understanding of the functional relationship of

the above four factors with the performance measure, an experimental design is set up as

described below;

1. The Size of the Manufacturing System Model (2 Levels):

Level-I: Small size with 32 machines and 32 parts.

Level-2: Large size with 256 machines and 32 parts.

2. The Load on the Manufacturing System (2 Levels):

Level-I: Low load with average utilization of each machine around 0.4.

Level-2: High load with average utilization of each machine around 0.8.

3. The Number of Processors Used for PDES Implementation (6 Levels):

Level-I: Uniprocessor implementation.

Level-2: Two-processor implementation.

Level-3: Four-processor implementation.

Level-4: Eight-processor implementation.

Level-5: Sixteen-processor implementation.

Level-6: Thirty two-processor implementation.

4. Communication Protocol (2 Levels):

Level-1: "Forward" protocol.

Level-2: "Forward+Backward" or "Demand Driven" protocol.

50

Each simulation is performed with a fixed simulation time interval and three

replications of each combination of the levels of the factors. This leads to (2x2x6x2x3 =

144 simulations) for each network topology. For a given network topology the

interprocessor communication messages are frequently well balanced so that all the

processors are allocated approximately the same amounts of both communication and

execution load. Two levels of communication protocols differently affect the execution

performance under unbalanced and infrequent communication messages. This obviously

can not be tested by the above experimental design. A new experiment with a specific

manufacturing system routing structure that produces infrequent communication

messages is designed to handle this situation.

PHASE II - The Manufacturing System Model

The second phase deals with the modeling process. In this phase, a suitable

manufacturing system is specified. An object oriented model of this manufacturing

system is developed to take advantage of the modeling flexibility and reusability

provided by the object oriented paradigm. More discussion on this new experiment is

provided under "Selection of Manufacturing System" section.

PHASE III - Verification of the PDES Environment

In order to verify the simulation execution and statistics collection routines, an

equivalent SLAM II system model is developed. Exactly matching statistics collection

numbers can be obtained by substituting deterministic input values for the various

disuibutions in the model. This verification is vital for testing the simulation logic, the

part creation process, machine operations, and the accuracy of routing implementation.

The demonstration of simulation logic verification is supplied in Chapter X.

PHASE IV - Implementation of the Simulation Model on the iPSC/2

51

In this phase, the simulation model is executed on a single processor. This is an

essential step to overcome the incompatibilities between the version of C++ used for the

model development on a PC and AT &T's C++ version available on the Intel iPSC/2.

Verification of a uniprocessor implementation is provided in Chapter X.

PHASE V - Design Strategies for Submodel Creations

In this phase, a design strategy that allows a global model fragmentation into

smaller submodels is developed. Using this strategy a global model is divided into pieces

of smaller submodels and each one is executed by a single processor node of the Intel

iPSC/2. Event dependencies of the processes pe1iaining to a submodel, communication

overhead of the processor network, volume of the inter-processor conummication, etc.,

are some of the important factors that influence the design strategy.

PHASE VI - Design Strategies for the Synchronization Mechanisms

In this phase, a strategy will be designed to establish proper synchronization

among the iPSC/2 nodes. As explained before, each node is assigned a set of machine

processes. During the simulation, the submodels communicate with each other via

message passing. If the simulation process on a submodel has to wait for a message from

52

another submodel on a different node, the simulation logic should detect this condition

and stop the simulation until the node receives the message. Typically, a variety of

algorithm designs can be created for this detection, to halt the simulation execution on

the node, and to take an appropriate action when the required message is received. Since

the allocation of the processes to the nodes does not change dynamically, the

communication patterns in the network can be determined a priori. This helps in

tailoring a strategy to exactly satisfy the individual requirements of each node.

PHASE VII - Implementation of Phases V and VI

In this phase, the strategies prepared for the submodel creation and

communication mechanism designs are implemented. The implementation of the designs

developed in Phase V and Phase VI involves creation and testing of the simulation code.

The verification of the multi-processor implementation of discrete event simulation of

the target manufacturing system is provided in Chapter X.

PHASE VIII - Implementation of the Experimentation

In this phase, the simulation model of the manufacturing system is executed

several times (each with different experimental conditions) to obtain the results for the

entire experimentation. These results will be verified with those obtained from the

corresponding uniprocessor implementation. This phase represents termination of the

research activity and presentation of the results in the final format.

Selection of the Manufacturing System

A hypothetical manufacturing system having 'M' number of machines, and

proces1,ing 'N' number of part types is selected for the purpose of experimentation. A

generalized model of this system is shown in Figure 9. Depending on the routing

specifications, each part can follow a distinct route through the system before converting

53

itself into a final product. There is an input buffer at each machine. Work flow

generators, which serve the same purpose as 'Create' nodes in SLAM II, schedule arrivals

of parts with a given interarrival distribution. Appropriate statistics, such as queue

MANUFACTURING SYSTEM

Plant

&1 I r=,,,,I ! fF Machine 1 ··--> Wf Machine 2 __
-~ %-· . ······:-· ··- ·..l,..

~--.. ~ _ :... Part-1 11!!!!!!!1/
~·---_··.Ji. Part-2 llllil!ll!fflJi.~::Hj . j ltfl . I
~ --> Part-3 Wlliillll---->-rnfi:~ Machine 3 --·>-tm Machine 41--·- ->-
~ ... - --·> Part-4 ffl!m!!II-... 0 •. 0

~ 0 -~ O •• 0

0

0

~

p':"_'j;"N llill]jjijl!IL, o ', o

-· ·~ 11:i::1MachineM-11---~~ 1::::1:::11 Machine M~--- _.-,,

----·-->

I .
Part Routing

Machine
Input buffer

ffl!m!!II Parts

~ Work Flow
~ Generator

Figure 9. A Generalized Manufacturing System Model used for Expe1imentation

length, machine utilization, time-in-system, etc., are collected at the required locations in

the system. This manufacturing system model can be used to emulate all five proposed

submode! network topologies. The size of the model can be changed by simply

specifying new input values for 'M', and 'N' and by specifying the desired routings.

Thus, this manufacturing system model is simple but quite convenient for this research.

AC++ object oriented simulation model of this generalized manufacturing system is

provided in Chapter VI.

54

Selection of Submode! Network Topologies

The purpose of this section is to describe the submode! network topologies selected for

parallel discrete event simulation. Figure 10 depicts the five levels of submode! network

topologies that are selected for the implementation.

1] Network with "Independent" or "Disjoint" submode! nodes

A submode! network topology that has no arcs or communication between any

two submodels falls under this category. A simulation model of a cellular

manufacturing system with completely separate product lines, can be sub-divided

such that each product line becomes a single submode!. Under this scenario, the

machines belonging to the same product line do not interact with the machines

from the other product lines, and therefore require no communications between

the submodels. Figure 11 depicts a 32 disjoint node network created in

conjunction with a 32 processor simulation implementation. For small size

models each node simulates a single machine whereas, for a large size model

containing 256 machines, each node simulates an eight machine cluster that forms

a single part routing.

2] Network with "Tandem" arrangement of submode! nodes

A submode! network topology that has a unidirectional tandem configuration of

the submodels falls under this category. Figure 11 depicts a 32 node tandem

network created in conjunction with a 32 processor simulation implementation.

For small size models each node simulates a single machine whereas, for a large

size model containing 256 machines, each node simulates 8 machines. To

maintain balanced communication patterns for all nodes, tandem routing for each

part has machines from two consecutive nodes.

55

Submode! Network Topologies

1. Independent Nodes/ Submodels 3. Fork Network

ee .,,~-~--e· .. ~·-:·-. ·Node3 Node5 ·s
• Nodes-·

~~
~~

-- ···e .,i. Node4 -~ .
', Node7 ~-,>

~

2. Tandem Network

-~ l ·--~~ -~~~
~~9---~6

~-- ~~

4. Join Network

~-~~
·--~-~~---!'~

~~.~· ·er ~- ~
1··~

5. Join and Fork Network

Figure 10. Types of Networks Considered for Experimentation

CLUSTER TOPOLOGY

CD 0 0 © 0 © 0 ©

® @) @ @ @) @ @) @

@ @ ® @) ® @ @ @

@ @ ® @ ® @ ® @

TANDEM TOPOLOGY

Figure 11. Thirty Two Node Network for "Clusters" and "Tandem" Topologies

56

3] Network with communications that form 'Fork' topology of submode! nodes

A submode! network with some of the submode! nodes connected in such a way

that each of these submodels has a single input communication and multiple (two)

output communications, falls under this category. Figure 12 depicts a 32 node

"Fork" network created in conjunction with a 32 processor simulation

implementation. For small size models each node simulates a single machine

whereas, for a large size model containing 256 machines, each node simulates 8

machines. To maintain balanced communication patterns for all nodes, the fork

network structure is derived by use of tandem routings for several parts, each

extending from the root node over to a single forked branch.

4] Network with communications that form 'Join' topology of submode! nodes

A submode! network with some of the submode! nodes connected in such a way

that each of these submodels has multiple input communications and a single

output communication, falls under this category. Figure 12 depicts a 32 node

"Join" network created in conjunction with a 32 processor simulation

implementation. For small size models each node simulates a single machine

whereas, for a large size model containing 256 machines, each node· simulates 8

machines. To maintain balanced communication patterns for all nodes, the "Join"

network structure is derived by use of tandem routings for several parts, each

extending from a single joining branch over to the joined node.

5] Network with both 'Join' and 'Fork' topology of submode! nodes

A submode! network with some of the submode! nodes connected to form a

"Join" topology and other submode! nodes connected to form a "Fork" topology

falls under this category. Figure 12 depicts a 32 node tandem network created in

conjunction with a 32 processor simulation implementation. For small size

models each node simulates a single machine whereas, for a large size model

containing 256 machines, each node simulates 8 machines. To maintain balanced

communication patterns for all nodes, the "Fork+ Join" network structure is

derived by use of two tandem routings each originating at the same node then

forking out to two different nodes and then joining back at the next node.

FORK TOPOLOGY

@

<il? <if
/T® @)

1 ~ .le" 2
@@

/T@ @~

3 1 Cip 4

@

JOIN TOPOLOGY FORK+ JOIN TOPOLOGY

Figure 12. Networks for "Join", "Fork" and "Fork+Join" Topologies

57

This completes the outline of the research plans and methodology. The following

chapters contain the description of the experimentation environment, expe1imental results

and conclusions.

CHAPTER VI

OBJECT ORIENTED REPRESENTATION

Introduction

This chapter describes an object oriented representation of the target

manufacturing system selected for the experimentation. It also provides information

about the simulation experimental set up in the next section. C++ is chosen to be the

implementation language for object oriented representation of the manufacturing system.

An object oriented model of the manufacturing system consists of a variety of classes of

modeling primitives such as machine, work flow item, work flow generator, routing, etc.,

which are directly abstracted from their respective real world counterparts. The detailed

object library described below also contains a variety of simulation support objects such

as random number generator, simulation, statistics collection, etc., that provide the code

for simulation ·execution, random variate generation, and statistics collection. These two

types of objects together constitute a parallel discrete event simulation environment.

C++ object class library code resides in 'cnode.c' file listed in the Appendix A. The

following section briefly describes the C++ object class library.

C++ Class Library

The purpose of this section is to describe the C++ object class library for the

parallel discrete event simulation environment. The object oriented model of the

generalized manufacturing system described in an earlier chapter constitutes a number of

classes dealing with the modeling primitives, the simulation logic, and the statistics

58

collection. Figure 13 depicts the important modeling objects, their instance vaiiables,

and their class hierarchy in the simulation environment. A brief explanation of the

important classes is given below:

Modeling Environment Objects

J Stat_Collection J

I Min, Max, Mean, Std I
N,SS,S

I Random No I

Item

J Time Persistant I
I Last clock I

I I Node I
Part Name

Time Stamp
I Pointer to Item I

Pointer to I Node

Ev~Row Item I

Machine
Machine Name
Machine ID

Processing Time Dist
Distribution Parameters

Input Queue
Processing Part Pointer

Input_ Q_Length
lnput_Q_WaitingTime

Utilization
Clock_ptr

Event Cal Ptr

Work Flow Generator
WFG Name

WFG ID
Arrival Time Dist

Distribution Parameters

Clock_ptr
Event_Cal_Ptr

Queue

Queue Length

Pointer to I Node

Simulation

Machine List
Processor ID

Work FlowGen. list
Time in System

No. of Machines
No. of parts

Part Routing Matrix
RAND_NO
Sim_Clock

Event_O

Figure 13. Modeling Objects of the Manufacturing System

59

Stat Collection: This class collects the observation based statistics and maintains

the minimum, the maximum, the average, and the standai·d deviation of a data stream.

60

'min', 'n', 'max', mean', 'std' are some of the imp01iant instance variables defined for an

instance of this class. Following are the important member functions of this class.

'Collect(double x)': This member function collects the value of 'x' as a new

observation of the data stream and calculates the minimum, maximum,

cumulative sum and the cumulative sum of squares for the data stream.

'print_result(char* statistics)': This function prints to the output file the statistics

collection results that include, number of observations, the maximum, the

minimum, the average, standard deviation along with the title provided by the

character pointer 'statistics'.

Time Persistent: This is a subclass of the II Statistics Collection II class. It collects

time persistent va1iables such as utilization, and queue length. Besides the member func

tions inherited from its superclass, the Time Persistent class stores previously collected

values in the instance variable 'last_clock', so that the time persistent statistics can be

collected. This class ovenides the super class 'Collect(double x)'by 'Collect(double

clock, double new_value)' member functions because the time persistence calculations

require both the new observation and the observation collection time.

Random No: This class generates both random variates and random numbers. It

is designed to operate in multiple random number stream mode. That is, a different ran

dom number stream can be assigned to each stochastic process in the simulation. 'Ran

dom--'-No' class requires a seed, a distribution type, and appropriate parameters. After

generating the random vaiiate the new seed value is sent back to the requesting object,

such as the work flow generator or a machine. The requesting object will supply this

new seed for the next random variate request. Following are the important member

functions of this class.

'next_seed(long seed)': This member function receives a seed value, uses Park

and Miller [Pai·k 1988] random number generator algorithm, and returns the next

seed.

61

'next(char D, double param[], long& seed)': This member function receives a

distribution type, the distribution parameters, and a seed value. It uses 'next_seed'

function to obtain a new seed value and generates the appropriate random variate

specified by distribution type 'D' and parameter vector 'param[]'.

Item: This class provides an abstract structure to both its subclasses. It offers

'Part Name' and 'Time Stamp' as two instance va1iables to its subclasses 'Event' and

'WFI'. Instances of 'Item' are queued by an instance of class 'Queue', thereby allowing

the instances of its subclasses to be queued in an event calendar or machine input queues.

I Node: This structure holds a pointer to the instance of class 'Item' and a pointer

to an instance of the next entity queued in a 'Queue' object. Thus 'Queue' is made up of a

linked list of the instances of structure 'I_Node'.

Queue: . This class consists of a linked list of the instances of structure 'I_Node'.

It queues instances of class 'Item' by using structure 'I_Node'. Following are the

important member functions of this class.

'ADD(Item *ani)': This member function receives an instance of class 'Item" and,

adds it to the queue. It uses 'Time_Stamp' value to determine the queue discipline

such that the lowest 'Time Stamp' value items are queued at the front of the

queue.

'REMOVE()': This function removes the first item from the front of the queue.

Event: This class holds the attributes of events that are scheduled on the event

calendar. It acquires its behavior from its superclass 'Item' through inheritance.

WFI: This class holds the attributes of parts that move through the manufacturing

system. Class 'WFI' also obtains its behavior from its superclass 'Item' through inheii

tance. It has additional instance variables, 'Start_ Time' that keeps track of the simulation

entedng time of a work flow item, 'At_Step' which holds the routing step number, and

'Serial' which stores the serial number.

62

Machine: This class models the behavior of a machine. Its instance variables are

'Input_Queue' an instance of class 'Queue', 'P _Dist' that stores processing time

distribution, 'P _Param[3]' which has the distribution parameters, 'Status' which maintains

the status of the machine, and 'seed' that contains the current random number seed. A

number of instance. variables such as 'I_Q_L' (input queue length), 'I_Q_ WT' (input

queue waiting time), 'Util' (machine utilization), and 'Blk' (blocking) are provided for the

statistics collection. Two instance variables, '*blocking_mc' (containing the pointer to

the machine blocking this machine) and '*BM' (containing a list of pointers to the

machines that are blocked by this machine), help accomplish the blocking operations and

unblocking of the machines. Following are the imp01tant member functions of this class.

'accept(Item *awfi)': This function accepts a work flow item from the previous

machine or a work flow generator. If the machine is idle the processing of the

work flow item begins immediately. Otherwise, the work flow item is added to

the input queue.

'start_process()': This function removes a work flow item from the input queue

and begins its processing. If this machine has been blocking some other machine,

the processing at that machine is restarted by sending a 'restart_blocked_process'

message.

'end_process()': This function returns a processed work flow item that can be sent

to the next processing machine in its routing.

'block_process()': This function blocks the processing on the current machine if

the input queue of the machine down stream is full.

'restart_blocked_process()': This function restarts a blocked process by sending

its processed pait to the blocking machine and accepting a new pait from the

input queue.

WFG: This class provides a behavior similar to a 'Create' node in SLAM II. It

creates instances of class 'WFI' according to an ruTival distribution and enters them into

the simulation.

63

Simulation: This class controls the entire simulation process. It also provides the

messages that communicate to other instances of this class on different processors. It

holds references to all the machines and work flow generators under its control. Its inst

ance variables supply routings, an event calendar, a random number generator and

several statistics collection objects. It primes up the event calendar by sending an

initialization message to all the work flow generators and then schedules the events on

the event calendar. In multiple processor implementation, class 'Simulation' terminates a

work flow item at the end of its routing, or sends it to the processor containing the next

machine in its routing. Following are the important member functions of this class.

'ReceiverSender()': This function identifies the predecessor and successor

processors for the current processor. This member function is executed before

the beginning of simulation so thatthe processor communication patterns are

deter-mined a priori.

'Perform()': This function performs the actual simulation. It contains the

communication protocol for inter processor communication. It identifies when an

event can be scheduled without violating the causality principle and then

schedules the event using 'ScheduleAnEvent()' function .

. 'ScheduleAnEvent()': This function removes an event from an event calendar and

schedules it using either FinishUp(int machineNo)' or 'Arrival(int partNo)

function.

'FinishUp(int machineNo)': This function determines whether a work flow item

can be moved to the next machine in its routing sequence. If it can be moved (i.e.

when the next machine is not blocked) the work flow item is moved to the

appropriate machine, else the previous machine is sent a 'block_process' message

64

to block the processing of the current work flow item. It the next machine is on a

different processor, the work flow item is sent to that processor using

'S endMessage(a wfi,AP[next_mc])' message.

'SendMessage(awfi,AP[next_mc])': This function creates a message from the

work flow item description and sends it to the processor stored in 'AP[next_mc]'.

'ReceiveMessage()': This function receives a message from a predecessor

process-or and creates a work flow item object from it. This work flow item

object is stored in an 'InputBuffer' and an event corresponding to the arrival of the

work flow item is scheduled on the event calendar.

Experimental Setup

This section describes the experimental setup provided for conducting a variety of

expedments on the Intel iPSC/2 hypercube. As mentioned in the third chapter, the

hypercube computer consists of a SRM (System Resource Manager) and a set of nodes

connected in the fonn of a hypercube. A typical application run on the hypercube

consists of two programs, one which runs on the SRM machine and a second that runs on

a selected set of nodes. The SRM program is typically known as a 'host' program,

whereas the program running on a node is called the 'node' program.

The host and node programs of this application reside respectively in 'chost.c' and

'cnode.c' files. Compilation of these programs requires linking a number of library files

and setting a number of compiler options which are listed in a file called 'makefile'

provided in Appendix B. Figure 14 depicts the execution host program. As described in

Figure 14, the host program reads a simulation model from 'modelxxx.des' input file, and

the submode! allocation information from 'allocxx.tab' file. Upon reading these two files,

the host program creates a number of input files named 'pdesxx.inp' for the node

program. It also loads the node program onto the specified number of nodes. Each node

program accesses its corresponding input file to obtain its assigned submode!. Each node

65

program then executes the assigned submode!, writes the output in 'pdesxx.out' files and

the execution trace in 'pdesxx.tra' file. Finally these output files are assimilated in a

single 'amxxxpxx.exp' file. The output of a node program contains the machine related

statistics such as 'utilization', 'input queue waiting time', etc., and part related statistics

such as 'time in system'. Each node program also records its submodel execution time

and sends it to the host program which finds the maximum execution time and displays it

on the screen.

PDES Model Execution on 'n' nodes

odelxxx.des

000

pdesn.out

Input Files Output Files

amxxxpxx.tra +-

pdesn.tra

Trace Files

f xxxpxx.ex9

Figure 14. PDES Model Execution on "n" Hypercube Nodes

66

Shell script 'experiment' receives from the user the model file name, the allocation

file name, and the host file name. Then it executes the host file and collects the output in

'*.exp' file and the trace in '*.tra' file.

In multiple processor implementation, several node programs simultaneously run

on a number of processors. In order to obtain non-eIToneous simulation results a proper

communication protocol must be provided in the node program. The communication

protocols confirm that the causality principles are not violated and allow the simulation

on each processor to safely proceed towards completion. The following two chapters

first look at the communication protocol constructs provided in the concu1Tent object

oriented programming languages and then supply the protocol design for the

implementation of the parallel discrete event simulation on the Intel iPSC/2 hypercube

computer.

CHAPTER VII

EVALUATION OF CONCURRENT OOP CONSTRUCTS

Introduction

In order to accomplish the first research objective, this chapter attempts to

evaluate a number of concurrent object oriented programming constructs in the context

of their applicability to parallel discrete event simulation.

Evaluation of "ConcurrnetSmalltalk" Constructs

A typical object oriented concurrent programming language provides a number of

concurrent constructs, which can be used to model concurrent processes. For the purpose

of illustration the constructs provided in "ConcurrentSmalltalk" [Yokote 88] are

explained below. In "ConCLmentSmalltalk" there are two major constructs that activate

and synchronize the objects:

Construct 1 : (&) This asynchronous method call sends a message to the receiver

object and the program proceeds to the next line without waiting

for a reply message.

Construct 2: (II) This construct specifies that the receiver object will return a

reply and it will continue to execute. That is, after evaluation of

this expression the sender and receiver objects are executed

concurrently.

To evaluate the effectiveness of these constructs, their execution is analyzed in

the context of an example. A Producer-Consumer problem is selected for this purpose.

67

68

The development of an object oriented model of this problem in "ConcurrentSmalltalk"

and its execution analysis is explained below.

This example attempts to produce a concurrent object 01iented model of the

simple producer-consumer system depicted in Figure 15. The system consists of a

producer who produces items, a consumer who consumes these items and a bounded

buffer between the producer and the consumer. This problem is modeled by defining

three main classes of objects; a producer, a consumer and a bounded buffer. Each of

these objects has an independent process which can be synchronized by the concurrent

constructs discussed above. Figures 16, 17, and 18 on the following pages display the

"ConcurrentSmalltalk" code of the system model.

Producer-Consumer System

Producer

add Position •• item • •
Bounded Buffer

Consumer

remove Position

Figure 15. Bounded Buffer in a Producer-Consumer System

Object atomic Subclass: #BoundedBuffer

instanceVariableNames: 'buffer size max read write wait'

classVariableNames:"

pool Dictionaries: "

category: 'Producer-Consumer'

Bounded Buffer methodsFor: 'initializing'

Setup: n

buffer := Array new: n.

max:= n.

size:= 0.

removingPosition := 1.

addPosition := 1.

BoundedBuffer methodsFor: 'accessing'

deposit: anitem

69

wait notNil ifTrue: [wait run&. wait:= nil]. " If somebody is waiting then release it and make wait= nil"

size= max ifTrue: [wait:= thisContext sender receiver. A#full]. "If buffer is full, make producer wait"

II buffer at: add Position put: anitem. "Note the execution continues after replying with anitem. "

size := size + 1.

add Position := add Position\\ max+ 1.

remove

wait notNil ifTrue: [wait run&. wait := nil]. " If somebody is waiting then release it and make wait= nil "

size= o ifTrue: [wait:= thisContext sender receiver. A#empty]. "If buffer is empty, make consumer

wait"

II buffer at: removePosition. "Note the execution continues after replying with anitem."

size := size - 1.

removePosition := removePosition \\ max+ 1.

BoundedBuffer class methods For: 'instance creation'

new: max

I newBuffer I
newBuffer := super new.

newBuffer setup: max.

Anew Buffer

Bounded Buffer class methodsFor: 'example'

example

"Bounded Buffer example."

I buffer producer consumer J

buffer := Bounded Buffer new: 10.

producer := Producer new: buffer name: #PRODUCER.

consumer := Consumer new: buffer name: #CONSUMER.

producer forever&.

consumer forever&.

Figure 16. Program Code for Class BoundedBuffer

Object Subclass: #Producer

instanceVariableNames: 'buffer save myName'

classVariableNames:"

pool Dictionaries:"

category: 'Producer-Consumer'

Producer methodsFor: 'initializing'

Set: aBuffer name: aName

buffer := aBuffer.

my Name := aName.

Producer methodsFor: 'private'

makeAnltem

" This code generates items at an interval of time given by an interarrival distribution. "

Producer methods For: 'accessing'

deposit: anitem

forever

run

I rv I
rv := buffer deposit: anltem.

rv = #full ifTrue: [save:= anltem A#full]

ifFalse: [Aanltem]

Irv I

[true] while True: [rv := self deposit: self makeAnltem "Generate an Item and deposit it into the

bounded buffer"

Irv I

rv = #full ifTrue: [A#full]] " rv specifies if buffer is full or not; if full, the execution

terminates "

rv := self deposit: save. " Deposit the saved item first "

rv = #full ifTrue: [A#full] "rv specifies if buffer is full or not; if full, the execution terminates"

ifFalse [self forever] " if not full run forever "

Producer class methodsFor: 'instance creation'

new: buffer name: aName

I newProducer I

newProducer := self new.

newProducer set: buffer name: aName.

AnewProducer

Figure 17. ProgramCode for Class Producer

70

Object Subclass: #Consumer

instanceVariableNames: 'buffer myName'
classVariableNames:"

pool Dictionaries:"

category: 'Producer-Consumer'

Consumer methodsFor: 'initializing'

Set: aBuffer name: aName

buffer := aBuffer.

myName := aName.

Consumer methodsFor: 'private'

consume: anltem

" This code consumes items at an interval of time given by a consumption distribution. "

Consumer methodsFor: 'accessing'

remove

I anltem I
anltem := buffer remove.

an Item = #empty ifTrue: ["#empty] "If the bounded buffer is not empty return the removed item"

ifFalse: ["anltem]

forever

I anltem I
[true] whileTrue: [an Item := self remove. " Remove an item from the bounded buffer"

71

anltem = #empty ifTrue: ["#empty] "If the bounded buffer is empty stop execution"

ifFalse: [self consume: anltem] " else, consume the item "

run

self forever " Restart the consumption process forever; restarted by the bounded buffer"

Consumer class methodsFor: 'instance creation'

new: buffer name: aName

I newConsumer I
newConsumer := self new.

newConsumer set: buffer name: aName.

"newConsumer

Figure 18. Program Code for Class Consumer

Class BoundedBuffer has two important methods defined; deposit: and remove.

Method deposit: is executed when the Producer object sends a deposit: message to the

BoundedBuffer class. During its execution, method deposit: first checks whether the

bounded buffer is full. If it is full, Producer is kept waiting and #full is returned to

72

terminate the activities of the Producer. Otherwise, the item is stored in the bounded

buffer, and size and addPosition variables are updated. The deposit: method also checks

whether the customer object is waiting. If it is waiting, the activities of the consumer are

restaited by sending a run message to it. Method remove tenninates the activities of the

consumer object and makes the consumer wait, when the bounded buffer empties.

The object code of Producer class is depicted in Figure 17. Method makeAnltem

creates the items that are sent to the bounded buffer. Method forever is executed as

follows: it produces new items by sending makeAnltem to itself, and then deposits these

items into the bounded buffer by sending a deposit: message to the BoundedBuffer

object. If the reply indicates that the bounded buffer is full, the execution of method

forever is terminated by the BoundedBuffer object. When the Consumer object removes

an item from the buffer, methodforever is restaited upon receiving a run message from

the BoundedBuffer object.

The object code of Consumer class is depicted in Figure 18. There are two

important methods described for the Consumer object. Method consume: removes an

item from the bounded buffer and delays it for the consumption time detennined from a

consumption probability distribution. Method forever is executed as follows: it removes

an item from the bounded buffer by sending a remove: message to the BoundedBuffer

object. If the reply indicates that the bounded buffer is empty the activities of the

consumer are terminated. Otherwise, the consumer consumes an item by sending

message consume: to itself. When the Producer object adds an item to the buffer,

method forever is restaited in response to a run message received from the

BoundedBuffer object.

The producer and consumer objects have their independent processes. Under

normal circumstances (that is when the bounded buffer is neither completely full nor

empty), both processes operate concurrently (on different processors if the program has

been implemented on a parallel processing machine). The execution process of the

73

Producer object creates items and sends them to the buffer until the process is terminated

when the bounded buffer becomes full. This process is restarted as soon as the

Consumer object creates an empty space in the bounded buffer by removing an item.

The execution process of the Consumer object consumes an item and terminates it from

the system until the consumption process is stopped when the bounded buffer becomes

empty. This process is restarted as soon as the Producer object makes the bounded buffer

non-empty by depositing an item. These processes run forever until they are both

terminated when the desired simulation ending time is reached.

The following paragraphs explain the concurrent execution Producer-Consumer

system. In this example, it is assumed that the bounded buffer can hold a maximum of

three items. The producer takes five milliseconds to execute method makeAnltem, and

the consumer takes 30 milliseconds to execute the consume: method. These times (in

milliseconds) are respectively defined to be item production time and item consumption

time. Table 2 depicts sample production and consumption times for eight items.

TABLE 2

PRODUCTION AND CONSUMPTION TIMES

Item Production Time Consumption Time
Number (msec) (msec)

1 5 30
2 5 5
3 5 5
4 5 5
5 20 25
6 5 5
7 5 5
8 5 5

Refer to Figure 19 for a detailed explanation of the execution of the producer

consumer system model. As the simulation begins the consumer process checks the

bounded buffer and finds it empty. This terminates the consumer process.

Producer
Process

EXECUTION ANALYSIS IN DETAIL

---- - - - - - - - - - - -------,-----,------;--;;_, - - - - - - - -~

I I I I

®®©®
Bounded,__~~~~--------~~~~~-----~

Buffer E NE 1 2 F NF E E E 1 2 F NE E E
Status ,___-------~---~----------~

® ® ® ® ® © ®

>

Consumer
Process

y y' y' - - - -'t--r' _______ __.____.___,,__ ; ___ y ¥' y' y' --->

0 20 ms 40 ms 60 ms 80 ms
--- Execution Time ~

--------> Message Passing Direction Bounded Buffer Status
> Process is running F : Full E : Empty

·-------- Process is terminated NF : Not Full NE : Not Empty

Figure 19. Execution Analysis of the Producer-Consumer System Model

The producer makes an item and puts it into the bounded buffer at time 5 msec.

74

The producer process continues as the bounded buffer is not full yet. As soon as the first

75

item enters the buffer, the consumer process is restarted. The consumer removes the item

from the buffer and begins consuming it. Meanwhile, the producer makes three more

items and loads them into the buffer to make it full at 20 milliseconds. At this time the

producer process is tenninated. The producer process is restarted when the consumer

picks up the second item at 35 milliseconds. Thus, the producer and consumer processes

operate intennittently until the simulation is run for the desired period.

Construct 1 provides a fork for concurrent execution of sender and receiver

objects, where as construct 2 is useful in situations where the information requested by

the sender is readily available but it also requires recalculation of the internal states. By

acknowledging the reply to the request by sender object using construct 2, the receiver

object can conctmently execute the updating internal states along with the sender object

execution. This is unlike a normal function return call in C where the execution of the

current function is automatically tenninated as soon as the return statement is executed.

These two constructs along with several other synchronization methods such as, receive,

receiveAnd:, receiveOr:, etc., form a complete set of concurrent consu·ucts that allow the

user to take advantage of inherent concurrency in the problem domain.

In conclusion, object oriented languages like ConcurrentSmalltalk provide highly

efficient constructs that can exploit even extremely fine grain concmrency in the

application domain without programming rigorous synchronization mechanisms. This

analysis of ConcurrentSmalltalk constructs has been very useful in stimulating ideas for

developing software communication protocol designs explained in Chapter IX.

CHAPTER VIII

SUBMODEL CREATION METHODOLOGY

Introduction

The purpose of this chapter is to develop a submode! creation methodology based

on the analysis of parallel implementation programs for discrete event simulation. In

order to achieve this objective, the next section provides a detailed description of the

execution of discrete event simulation both in case of uniprocessor and multi-processor

implementation. In the following section, a set of factors that influence the submode!

creation process are identified, and a general strategy for submode! creation is specified.

It is important to note that this strategy is highly influenced by the message passing

architecture of Intel iPSC/2 hypercube and its applicability is limited to parallel

implementation of discrete event simulation on distributed memory computers.

Analysis of Parallel Discrete Event Simulation

The purpose of this section is to analyze both uniprocessor and parallel

implementation of discrete event simulation. It provides better understanding of the

necessity of communication, contents of the messages, message passing and receiving

mechanisms, etc. for a successful PDES implementation. An anangement of a typical

PDES application is outlined below.

Simulation program anangement for a uniprocessor simulation execution is

explained in Figure 20 on the next page. The simulation program developed for the

purpose of this research is similar to a general purpose uniprocessor discrete event

76

77

simulation framework developed by Mitrani [Mitrani 1982]. It consists of an event

calendar which enqueues and schedules simulation events, and a number of functions or

procedures that respectively hold event execution code for simulating their respective

events. These events update system states, collect statistics, and schedule the new events

onto the event calendar. With this arrangement of discrete event simulation program, the

"causality" constraints [Chandy 1979] are maintained during the simulation execution.

The event calendar acts as a single entity that accepts entire system wide events, and

maintains proper ordering of the events. This arrangement results in an error free

execution of the simulation.

Simulation
Event Calendar

Initialization
Procedure (~rogram Code

Eventk

Event 1

Event 2 Simulation

0 Execution

Event i
Cycle

0 ~
Event n

~

Model Simulation
Execution on a Single

Processor

Figure 20. Uniprocessor Discrete Event Simulation

Event 1
Execution

Code

Event g
Execution

Code

78

For the purpose of this research, the PDES is achieved by breaking up the manu

facturing system model into a number of distinct submodels. Each submodel is then

executed on a single processor. This arrangement of the simulation program for parallel

implementation of discrete event simulation of manufactming systems is depicted in

Figure 21. As depicted in Figure 21, the execution of a submode! on a single processor

involves an event calendar that schedules events happening within the boundary of the

submode!, and a set of procedures that contain the code for the events scheduled inside

the current submodel. The submode! simulation logic also incorporates mechanisms for

scheduling events arriving from the predecessor submodels, and the event code

procedures for sending new events to the successor submodels. Thus, simulation

execution of each submodel running on a single processor has its own event calendar

which simulates the events within the boundary of the submode!, while the dependence

of the events between the submodels is reflected by the transfer of event across the

submodels.

If the submodels are completely independent (i.e. the cause for the scheduling of

an event always lies inside the submode!) there are no incoming and outgoing events or

communications, and therefore this arrangement does satisfy the causality principle

leading to a successful PDES implementation. However, in general all submodels are

not independent. At least some of them are influenced by the events happening in some

other submodels. The outcome of such events can modify the sequence of events in the

dependent submodel. This can create situations which violate the causality principle and

produce erroneous results. However, such situations can be avoided by providing proper

synchronizing mechanisms between the respective submodels.

Eventk

(
Event 2 j

Simulation
Event Calendar

Event 1 I
-----~-Program Code

Simulation Event 1
0 Execution Execution

I Event i I C J Code Event! ye e O

I E•:'.,n I~ n'::C"::;;., ./ ·-r Eventh C~--~

~- --\~

~ Submode! Simulation Event x
· · ~ Execution on each

Events from the
Predecessor
Submode!

Processor Events sent to the

Figure 21. Submode! Simulation Execution Logic

Submode! Creation Methodology

Successor
Submode!

79

The purpose of this section is to develop a comprehensive methodology for

creating submodels from a single manufacturing systems model. There are two major

guiding principles for such a methodology. First, for an efficient parallel processing

application the goal is to minimize the inter-processor communication. As the

independent submodels do not require communication between their respective

processors, independent submodels make PDES implementation very efficient.

Secondly, in case of dependent submodels, specific topology of the submodel network

can create 'deadlock' situations [Chandy 1981]. Even though there are several

mechanisms currently available for deadlock detection and recovery, almost all of them

provide only marginal speedups [Reed 1988]. And hence for the purpose of submodel

creation, topologies that have a potential for 'deadlock' are avoided. Under these two

80

major guidelines submode! creation methodology for parallel discrete event simulation is

specified below.

The main focus in submode! creation is to achieve maximum speedup. From

knowledge of parallel processing principles, it is evident that the speedup can be

improved by using larger and larger number of processors (submodels), and also by

minimizing the communication overload on the processors. The communication

overload on each processor can be obtained in terms of the number of communication

messages between the processors. The evaluation of this number requires definition of

the following notation.

Notation:

m : Number of machines in the system

n : Number of parts in the system

p : Number of processors used for parallel implementation (p < m)

ai : Average number of parts of part type 'i' flow during the simulation run

Xi,j,k : Equals one if 'i'th part type moves from 'j'th to 'k'th machine,

Othe1wise it equals zero

S1 : Submodel '1'; a set of machines belonging to ·1·th submodel

Tc : Average communication time for a single message

Te : Average computation time for executing a single event

CK : Number of communication messages received by machine "K"

As each part moves from one machine to another machine in its routing, it

generates messages between two machine processes thereby creating communication

overhead. The communication overhead corresponding to each machine can be

calculated as;

m n
Communication overhead for machine "K" = CK = I, I, ai · XijK (5)

j=li=l

For two machines belonging to a single submode!, these messages are the events

scheduled on the event calendar and therefore do not produce communication overhead.

Therefore the total communication overhead on a single processor can be obtained as;

n

81

Communication overhead for submodel 'l' · = I,CK - I, I, I, ai · Xiik (6)
KeS 1 keS 1 jeS1 i = 1

The first term calculates the messages that would be sent from all the machine

processes in the manufacturing system if each submodel contained only one machine

process. In the second term machine j and k are such that they both belong to a single

submodel S1. The second term subtracts the messages that would be sent inside the

submodel. If it is assumed that each incoming message results in execution of a single

event, then the main objective of the submodel creation process is;

Subject to a number of constraints given below;

1] p :s; m; beyond this value of 'p' the overhead associated with the

synchronization becomes enormous.

2] A void feedback loop structures in the submodel network because such

situations lead to 'deadlock' during simulation execution.

3] Balance the total communication plus the execution overload on each processor

executing a single submodel.

4] Take advantage of independent clusters of machines by assigning them to a

single submodel thereby reducing the communication overload to zero.

82

5] Avoid "Join" topology of submode! network, because this topology requires

the simulation event scheduling logic to wait for more event messages before it

decides to proceed with the simulation execution.

Evaluation of this type of optimization is not easy. A straightforward approach is

to use the above guidelines to come up with alternative submode! configurations and then

evaluate the objective function for each configuration. The configuration which gives

the least value for the objective function is the desired submode! configuration among

those considered.

As submodels reside on different processors, synchronization between the

submodels results in communication between the respective processors. Interprocessor

communication can be achieved by a variety of communication strategies explained in

Chapter III. The strategy used for the purpose of this research is explained in the

following chapter.

CHAPTER IX

COMMUNICATION PROTOCOL DESIGN

Introduction

This chapter presents an overview of the communication protocol design process.

For a general parallel processing application the communication protocols are designed

by understanding the distribution of the problem computation over the processors, and

the resulting communication requirements of each processor. As presented in Chapter

III, for parallel discrete event simulation applications, a number communication

protocols are available in the literature. A majority of protocols are proposed to

effectively overcome 'deadlock' situations. But, from execution pe1formance perspective,

the above protocols for a 'deadlock' situation still give very marginal improvements in

speedup and therefore are yet not very efficient approaches [Reed 1988]. And therefore,

while creating submodels, this research considers only non-deadlocking situations. In

general, non-deadlocking situations may preclude the user from further dividing a

submode! into smaller pieces. It may appear that this restricts the improvement in

speedup, but one must keep in mind that if the submode! is further divided the 'deadlock'

situation will add enormous amount of communication resulting in a net decline in

speedup.

Design of Communication Protocols

The submode! creation strategies carefully produce submodels without any

'deadlock' potential. And therefore, the communication protocols designed for the

83

84

purpose of this research are not required to handle the 'deadlock' situations. This not

only simplifies the design process, but also provides highly efficient interprocessor

communication. For the purpose of implementation, two distinct communication

protocols have been designed, viz. forward and forward+backward. Before discussing

these communication protocols, the communication requirements during parallel

implementation of discrete event simulation must be established. The following example

explains the inter-processor communication process.

Figure 22 depicts a manufacturing system model divided into three submodels

each containing two machines. There are two parts, Pl and P2 having two distinct

routings as shown in Figure 22.

Pl

P2

Manufacturing System Model

(processor 2)

submode! 3
(processor 3)

Figure 22. Manufacturing System Model Example

85

'·During the course of simulation, as part Pl finishes processing at machine M2,

the.nexrinachine(M5) in its routing is not available on the cunent processor. Hence, the

part Pl must travel to Processor 3 to simulate its operations on machine MS. This is

achieved by sending a message containing part Pl to the submode! on processor 3. If

these communication messages are sent and accepted without proper synchronization the

simulation execution on processor 3 may violate the "Causality" p1inciple and may

produce enoneous results. The proposed protocols provide logical constructs for proper

synchronization of processors. A brief explanation of each protocol is presented below.

Forward Protocol: This protocol is a collection of a number of constructs

depicted in Figure 23. It consists of an input queue called 'InputBuffer' that enqueues the

arriving parts, and an ainy called "ChannelTime" that holds the simulation clock times

on the predecessor processors.

ChannelTime

Message w

Message from the
Predecessor
Processor

Event Calendar

vent Time

Event w
InputBuffer

Part w

Figure 23. Processing of the Anival Message

86

As a message containing a part arrives from the predecessors it is stored in the

message buffer of the processor. The communication protocol realizes this anival when

statement "iprobe()" is executed. The arrived message is then received in the "Rsync"

data structure and the corresponding part is recreated as an instance of class WFI (work

flow item). This part is stored in the "InputBuffer" and the conesponding event is

scheduled onto the event calendar. The arrived message also contains the simulation

clock time on the predecessor processor. This information is used to update

"ChannelTime" array. If the cunent simulation clock time is smaller than the minimum

of the "ChannelTime" array the simulation is safely continued. If it is greater than or

equal to the minimum of the 'ChannelTime" anay the simulation is suspended until a

new message containing new channel time makes the minimum channel time greater than

the simulation clock. This arrangement conserves the "Causality" principle. The exact

algo1ithm for the forward protocol is depicted in Figure 24.

Member function "perform" is responsible for the entire simulation execution.

Function "ReceiverSender()" checks if the cunent processor has any predecessors or

successors. If there are predecessors, then the simulation must synchronize with its

predecessor by receiving messages, otherwise function "Simulate" (which operates

without input synchronization messages) is invoked. Under the first case,

"ReceiveMessages" function awaits to receive a synchronization message (message type

1). When such message is received the "UpdateChannelTime" function updates the

conesponding channel time and the "ChannelTimeMin" variable. Variable

"ChannelTimeMin" holds the time value up to which the cmTent simulation can safely

proceed. When the "ChannelTimeMin" increases the simulation end time, no input

messages are expected at the input and therefore the program uses the "Simulate"

function to proceed with the simulation. Member function "Perform" schedules an event

if the cmTent simulation clock time is less than "ChannelTimeMin", otherwise it waits for

incoming synchronization messages. Function "SendMessage" creates a synchronization

87

message by using the part details and the current simulation clock time. It then sends the

synchronization message to the designated processor and deletes the part object.

void Simulation::Perform()
{ReceiverSender();
if (receiver)
{ ChannelTimeMin = O;

ReceiveMessage();
while(Sim_End_Time > ChannelTimeMin)

{ while(Sim_ Clock< ChannelTimeMin)
{ScheduleAnEvent(); } //End while

ReceiveMessage();
} // End of while Sim_End_Time

} ; // End of if receiver
Simulate();

} ; // End Perform

void Simulation::SendMessage(WFI* new part,
int node)

{ // Create a Message from the received WFI
WFimsg.id = new_part->ID;
WFimsg.serial = new _part->Serial;
WFimsg.step = new_part->At_Step;
WFimsg.time = new _part->Time_Stamp;
WFimsg.start_time = new_pmt->Start_Time;
WFimsg.pid = my _node;

csend(l,&WFimsg,sizeof(WFimsg),node,O);
delete new _part;

} ; // Send Message Ends

void Simulation: :ReceiveMessage()
{ crecv(l ,& WFimsg,sizeof(WFimsg));
UpdateChannelTime(WFimsg.pid,WFimsg.time);

// Add the arrived part to the inputBuffer
WFI* new _part;
new_part = new WFI(WFimsg.id,WFimsg.time,
WFimsg.start_time,WFimsg.step,WFimsg.serial);
InputBuffer.ADD(new_part)

// Add the event to the event queue
Event* new _event;
new_event = new
Event(PARTS+lOO,WFimsg.time);
Event_Q.ADD(new _event);
}; //End of Receive Message
void Simulation::UpdateChanne!Time(int
channel, double time)
{int k;
double min;
ChannelTime[channel] = time;
min= Sim_End_Time +100;
for(k=O;k<receiver;k ++)
{if (ChannelTime[Ch(k]] < min)

{ min= ChannelTime[Ch[k)]; } ; // End of if
} // End of for

ChannelTimeMin = min;
} ; // End of UpdateChannelTime

Figure 24. C++ Code for "forward" Communication Protocol

The simulation environment using Forward communication protocol waits for the

incoming messages, and simulates the model until the "Causality" constraints are not

violated (i.e. until the "Simulation Clock"< "ChannelTimeMin"). The simulation

process then stops until a new input message is received. At the end of the simulation (of

88

the submodel) the predecessor processors flag their successors that they should not

expect any incoming communication. The simulation process uses the "simulate"

function for the purpose of simulation after it receives the flags from all its predecessors.

Forward+backward Protocol : This protocol contains all the "Forward"

communication constructs plus a number of added member functions depicted in Figure

25. In its forward portion it behaves identical to the communication using the "Forward"

function. However, the backward portion is responsible for "Null" type messages

[Chandy 1979] discussed in Chapter III. This demand driven backward portion of the

protocol sends synchronization message to the bottleneck predecessor when the cmrent

processor is waiting for an input communication message. When the predecessor sends

back its simulation clock time the current processor updates the "ChannelTimeMin" and

progresses its simulation up to this simulation time. When all the predecessors have

completed the simulation of their respective submodels, the current processor uses the

"simulate" function. This added module in the communication protocol is implemented

by using the following functions depicted in Figure 25.

Member function "Sync_RequestO" sends a synchronization request to the

bottleneck predecessor. Using "iprobeO;' function it checks to see if a message is already

waiting to be received in the communication buffer. If a message is present then it is

received using "ReceiveMessage" function, otherwise by using "Find_R_Channel()"

function the bottleckneck predecessor is identified, and a synchronization request

message is sent to the bottleneck predecessor. The simulation processing halts until the

bottleneck predecessor replies with its clock time. Since it is purely an asynchronous

communication the count of number of messages ;eceived from the bottleneck

predecessor is matched with the number of messages it has sent. If these two numbers do

not match there are some messages in transit and therefore the channel time is not

updated, and the simulation process waits until the transit message are received.

int Simulation::Find R Channel()
{int min_Ch,k;
double min;
min_Ch = O;
min= Sim_End_Time +100;
for(k=O;k<receiver;k++)
{if (ChannelTime[Ch[k]] < min)

{ min= ChannelTime[Ch[k]];
min_Ch = Ch[k];

}; //Endofminif
} // End of for
return min_Ch;
}; //End ofFind_R_Channel

void Simulation::Reply Sync Request()
{int NID;
if(iprobe(2))
{ crecv(2,&Rsync,sizeof(Rsync));
NID = Rsync.Nid;
Ssync.Nid = my _node;
Ssync.time = Sim_Clock;
Ssync.Nms = SM[NID];
csend(3 ,&Ssync,sizeof(Ssync),NID,O);
} ; // End of if iprobe

} ; // End of Reply _Sync_Request

void Simulation::Sync Request()
{int ch;
long WT;
WT = mclock();
while(l)
{Reply _Sync_Request();
if (iprobe(l))
{ReceiveMessage();

break;
}

if (mclock()-WT > 10)
{ch= Find_R_Channel();
if (ChannelTime[ch] < Sim_End_Time)
{Rsync.Nid = my_node;
csend(2,&Rsync ,sizeof(Rsync) ,ch,O);
crecv(3 ,&Ssync,sizeof(Ssync));
if (Ssync.Nms == RM[Ssync.Nid])
{ UpdateChannelTime(Ssync.Nid,

Ssync.time);
} ; // End of if

break;
} ; // End of if Channel_ Time

} ; // End of if mclock
}; //End of while (1)

}; //End of Sync_Request

Figure 25. C++ Code for "forward+backward" Communication Protocol

Function Reply _Sync_Request() replies to the synchronization request from a

successor processor. It simply sends the current simulation clock time value, and the

number of synchronization messages sent to the requesting processor, through the

synchronization message. Function "Find_R_Channel" determines the bottleneck

predecessors on which the simulation on the current processor is waiting for

synchronization messages.

89

The simulation environment using Forward+backward communication protocol

simulates the model until the "Causality" constraints are not violated (i.e. until the

"Simulation Clock" < "ChannelTimeMin"). If there are no incoming messages available

in the communication buffer, it synchronizes with the bottleneck predecessor so that it

90

can continue the simulation process. The major difference between the two protocols is

the demand of communication by the successor to its bottleneck predecessor. If all the

processors are balanced in terms of incoming communication messages and the

frequency of communication is relatively high, then both strategies will give almost the

same execution performance. Otherwise, the "Forward+backward" will perform better

than the "Forward" protocol. This can be seen from the example depicted in Figure 26.

F
0
R
w
A

Tandem Arrangement of Processors

~----------- Total Execution Time------~

1----------------------····-·--·-··········-----···-·-·---·
2 ·····--········------·---------------------------------
3 ····----···················---------------·----------------

R .. .P ____________________________ Total_Lag_:=;:_p:':E:':T ________________________________ _

D

B
+
F
0

p =4; E=4

1-i---
2 ---
3 ·-····---------------------·····--····-················

R Total Lag = p*T
w .. .P ----------------~-,..----------------------------------
A
R
D

-------Total Execution Time

T 2T 5T lOT 16T

Time in micro-seconds

Figure 26. Execution Performance Comparison of Communication Protocols

Figure 26 depicts a tandem arrangement of 'p' processors, each having a single

simulation submodel. Each submode! communicates with the successor after every 'E'

internal events. If it takes 'T' microseconds to execute an event, then the external

communication is sent every 'E*T' microseconds. The graph in Figure 26 depicts the

execution performance of both protocols. Since the "Forward" protocol does not have

any "demand" mechanism, the execution of each processor incrementally staggers by

"E*T", resulting in a net "p*E*T" extra execution time. On the contrary,

"Forward+backwa:rd" protocol can demand a synchronization message from its

bottleneck predecessor, thereby enabling each processor to obtain the simulation clock

time from its predecessor. This leads to substantially high overlap of their execution.

Ideally, (with instantaneous synchronization) it is "p*T" instead of "p*E*T", and

therefore the speedup factor can be substantially improved by using

"Forward+backward" communication protocol. An experimental comparison of these

two communication protocols is provided in Chapter X.

91

CHAPTERX

EXPERIMENTATION RESULTS

Introduction

This chapter presents the experimentation setup and the experimental results. The

experimentation is accomplished by implementing the methodology outlined in Chapter

V within the object oriented framework described in Chapter VI.

Verification of the Simulation Environment

This section presents the process of verification of the PDES environment

designed for the experimentation. The verification process involves simulating a

manufacturing system by using both the SLAM II simulation environment and the newly

developed parallel discrete event simulation (PDES) environment. The SLAM II

simulation output is then compared to the output obtained from the PDES environment.

Verification of the PDES environment is primarily focused on the accuracy of event

scheduling logic, statistics collection, and simulation results. In order to get an exact

match between the two simulation results, the stochastic variables in the model such as

arrival distributions, processing time distributions, etc., are specified to be deterministic

constants. The manufacturing system depicted in Figure 27 is selected for verification of

the PDES environment. This system has 5 machines and 3 part routings. The routings

are deterministic and the parts do not require material handling for the movement

between the machines. The arrival rates of the parts and the processing times at the

machines are deterministic. This system is modeled using both SLAM II and the PDES

92

93

environment. Both the PDES and the SLAM II models for this manufacturing system

are outlined in Appendix C. Appendix C also provides the output results obtained from

the simulations of these models.

Manufacturing System for Verification

/

/
/

~-0-----0-----
5 Machines
3 Parts
3 Routings

-----> Routing 1
········> Routing 2
- - ~ Routing 3

Figure 27. Manufacturing System Example for Environment Verification

Table 3 on the next page exhibits queue length, utilization, and waiting time

statistics for all machines and time in system statistics for each part in the system. Queue

length, utilization, and time in system figures for both environments have a very close

match except for the minor differences in the last digit due to rounding off by the SLAM

II environment. The difference in the waiting time statistics is attributed to the

difference in the statistics collection mechanisms for the two environments. These

differences are explained in Appendix C. This proves the correctness of the PDES

environment designed for parallel discrete event simulation of manufacturing systems.

TABLE 3

VERIFICATION OF THE PDES ENVIRONMENT

System Statistics SLAM II PDES
Element Simulator

Machine 0 Utilization 1.000 1.000
Q Length Avg. 10.526 10.526
Q Length Std 5.783 5.782

Wait Time Avg. 22.452 23.307

Machine 1 Utilization 1.000 1.000
Q Length Avg. 6.686 6.685
Q Length Std 3.889 3.888

Wait Time Avg. 19.713 20.000

Machine 2 Utilization 0.950 0.950
Q Length Avg. 3.15 3.149
Q Length Std 1.894 1.894

Wait Time Avg. 10.185 10.333

Machine 3 Utilization 0.651 0.650
Q Length Avg. 0.020 0.020
Q Length Std 0.140 0.139

Wait Time Avg. 0.143 0.142

Machine 4 Utilization 0.910 0.910
Q Length Avg. 10.399 10.399
Q Length Std 6.975 6.974

Wait Time Avg. 28.958 29.500

Part Type 0 Time in Sys. Avg. 50.6 50.600
Time in Sys. Std. 22.2 22.154
Time in Sys. Max 81.0 81.000
Time in Sys. Min. 23.0 23.000

Part Type 1 Time in Sys. Avg. 50.0 50.000
Time in Sys. Std. 26.9 26.879
Time in Sys. Max 16;0 16.000
Time in Sys. Min. 84.0 84.000

Part Type 2 Time in Sys. Avg. 55.3 55.333
Time in Sys. Std. 23.4 23.352
Time in Sys. Max 30.0 30.000
Time in Sys. Min. 76.0 76.000

94

95

Experimentation Setup

The experimental design described in Chapter V specifies several simulation

experiments. Table 4 describes a list of experiments and then cmresponding experiment

IDs used throughout the remainder of this dissertation. The first five experiments are

designed to simulate five submode! network topologies of the submode! network. The

sixth experiment, E6 is specifically designed to reveal the differences between the two

communication protocols that are not evident in earlier experiments. In each of the

above six experiments there are two levels of "Manufacturing System Size",

"Communication Protocol", and "Manufacturing System Load" and six levels of the

"Number of Processors" factor. Three simulation experiment replications are pe1formed

for each combination of factors. This results in one hundred and forty four simulations

under each experiment. Each simulation input file further requires a new set of

manufacturing system description parameters and random number seeds. This enormous

amount of information is created by executing input file creation programs supplied in

Appendix E.

TABLE4
'

EXPERIMENTATION IDENTIFICATION

ID Network Protocols Size Processors Load Reps # of Sim
Topolo2:v (#s) (#s) (#s) (#s) (#s) Runs

El Clusters F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144
E2 Tandem F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144
E3 Fork F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144
E4 Join F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144
ES Fork+Join F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144
E6 Tandem F, B+F (2) S, L (2) 1, .. ,32 (6) L, H (2) 3 144

96

Input files creation programs generate twelve input files that are executed by

using two levels of conununication protocols. The input files specify the machines,

parts, routings, arrival rate parameters, processing time parameters, and multiple random

number seeds. Each experiment (144 simulations) is performed by executing the

"mruns" shell script through "MRUNS" conunand. Figure 28 depicts the sequence of

shell script execution. The "MRUNS" conunand processes the "mruns" shell script in the

background. This enables the user to logout after "MRUNS" is executed. "mruns" script

creates an "outputfile" output file which contains 144 execution time observations, each

corresponding to a simulation run. Shell script "mruns" executes "12MODELS" file to

create 12 input files. It then repeatedly executes "EXP" script to perform simulations for

both large and small manufacturing systems on 1, 2, 4, 8, 16, and 32 processors. "EXP"

script executes "exp32" and "exp256" scripts to accomplish small and large system size

simulations respectively. Script "exp32" copies "model032.des" input file to the

"model.des" file and the appropriate allocation file to "alloc.tab" file. It then executes

"chost" program to accomplish the simulation as explained by the experimental setup in

Chapter VI. Script "MAKEexp" uses "spades" and "COP" scripts to delete the unwanted

"pdes. *" files and generate the final "*.exp" output file which contains the model, the

input, and the output information. Appendix F supplies all the shell scripts used during

the process of experimentation.

Experimentation Results

This section provides the results of the six experiments depicted in Table 4. The

first five of the above experiments have relatively high frequency of interprocessor

conununication. The interprocessor conununication is designed to be infrequent for the

last experiment in order to illustrate the differences between the two conununication

protocols. Frequency of conununication is a result of the ratio of the number of events

that lead to interprocessor conununication, to the total number of events scheduled by the

97

event calendar. Therefore, the frequency of communication can be modified by varying

the routing structure or the arrival distribution parameters.

Shell Script Execution

MRUNS

Figure 28. Shell Script Execution Sequence

The exact description of each experiment, its experimental factors and the levels

of each experimental factor is provided in Chapter V. Simulation execution time and

speedup are the primary pe1formance measures used for the analysis of parallel discrete

event simulation. Analysis of each experiment consists of presentation of the output in a

table similar to the design of experiments table, conducting the analysis of variance test

(ANOV A) on the experimental data, and the interpretation of the behavior of the

performance variable within the scope of the experiment. The SAS output of the

98

ANOVA for all experiments are provided in Appendix G. Headings L, S, P of the first

three columns of each table displaying results of an experiment correspond to the three

factors in the experimental design, viz. Manufacturing System Load, Manufacturing

System Size, and Number of Processors used for the implementation. Manufacturing

System Load levels O and 1 correspond to low load and high load respectively.

Manufacturing System Size levels O and 1 respectively correspond to small size and large

size. Number of processors levels 0, 1, 2, 3, 4, and 5 correspond to 1, 2, 4, 8, 16, and 32

processors respectively.

In order to understand the relationship of the factors affecting simulation

execution, an approximate mathematical model of the simulation execution process has

been developed. This model neglects communication delays and attempts to explain the

behavior of the execution time of the PDES application over all combinations of the

levels of experimental factors. Following is a brief description of this model.

Notation:

N : Number of events scheduled during entire simulation

n : Average queue length of the event calendar

Te : Time for executing a single event

Ts : Time for pe1forming a single comparison on the event calendar

Ti : Time for simulation startup and finish

T : Execution time per processor

For single processor calculation, the main execution time components are, the

time for simulation startup and finish, and the time for event execution and event

queueing during the entire simulation. Placing a newly scheduled event at an appropriate

place on an event calendar with average length 'n' requires "n/2" average comparisons.

This leads to the following equation for total simulation execution time for single

processor application.

T = Ti + N (Te+ ~-Ts)
2

99

(8)

For "p" processors, there are "N/p" number of events scheduled on each processor,

the average event calendar length becomes "n/p", and the startup and finish time also

becomes "Ti/p". This leads to the following Equation for total simulation execution time

for "p" processor application.

Ti N n
T = - + - (Te + - · Ts)

p p 2·p

Therefore the expected speedup is;

Speedup =
Ti + N (Te + ~·Ts)

2
Ti N n
- + - (Te + - · Ts)
p p 2·p

Equation (10) can be simplified as;

Speedup =

Where "X" is defined as;

X=

p
1

1-X(l--)
p

N·n·Ts

2·(Ti + N (Te+ E_,Ts))
2

And the efficiency becomes;

Efficiency = 1
1

1 - X (1 - -)
p

(9)

(10)

(11)

(12)

(13)

Equations (10) - (13) will be used for providing the explanation for the behavior of

speedup and efficiency for all the following experiments.

100

Submodel Network Topology - Independent Clusters (El)

This experiment consists of the simulation of a manufactming system with

independent "Clusters" of machines. Table 5 is an "Analysis of Variance" (ANOVA)

summary table that furnishes the variance analysis of the important factors and their

interactions. Factor communication protocol is not found to be significant because the

"independent cluster" topology of processors does not require interprocessor

communication during execution of the simulation. System load, system size, number of

processors used for simulation, and their higher order interactions are found to be

significant. System load and system size directly alter the computational requirements of

a PDES application. They alter the number of events executed during the simulation, i.e.

the value of "N" in Equation 9. It is evident from Equation 9 that the number of

processors used for PDES application "p" is also a significant factor. This explains the

influences of these factors on the execution time of a PDES application. The higher

order interactions can also be explained by referring to Equation 9.

TABLE5

CLUSTER TOPOLOGY (El) - ANOV A SUMMARY

Factor df OSL* a= 0.01
Commu. Protocol (C) 1 0.1874 Do not Reject

System Load (L) 1 0;0001 Reject
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.000!1 Reject
(LX S) 1 0.0001 Reject
(LXp) 5 0.0001 Reject
(S Xp) 5 < 0.0001 Reject

(LXSXp) 5 0.0001 Reject

* OSL - Obseived Significance Level

101

Before explaining the higher order interactions it is important to note that, if the

output is dependent on multiplication or division of two independent variables, then their

interaction is significant as the simple effect (the difference in response between two

levels of a factor at a combination of levels of other factors) will be always dependent on

the value of the other variable. System load influences the number of events scheduled

during simulation, "N". System size influences both the event calendar length "n" and

the value of "N". The number of processors used for PDES implementation is defined to

be "p" by the above notation. This explains why factor "number of processors" (p) has

interaction with system load (L) and system size (S) as depicted in Table 5. Similarly the

third term in Equation 9 involves multiplication of three variables which depend on the

factors (p), (L), (S) resulting in a three way interaction among them.

As the factor communication protocol is not significant, the "Table of Means" can

be obtained by averaging over all (two) levels of the communication protocol. This

results in Table 6 as the "Table of Means" with 24 means out of 144 observations. The

execution times depicted in these tables are the result of 3 replications of each

combination of the significant experimental factors averaged over two levels of

communication protocoL The simulation execution times in Table 6 are expressed in

milliseconds.

Table 6 depicts the speedup and efficiency values for each combination of the

three significant factors. The effect of changing the number of processors on the speedup

value at each combination of system load and size is explained by Figures 29 and 30.

Figure 29 depicts a graph of speedup against the number of processors used for parallel

implementation. An inspection of these figures yields the following observations:

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 11. Variable "p" in the numerator of the speedup equation

makes speedup increase as more processors are used for parallel implementation.

102

TABLE 6

CLUSTER TOPOLOGY (El) - TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency

L s p Mean (msec) Mean Mean L s p Mean(msec) Mean Mean

0 0 1 98590 1.00 100.00% 1 0 1 120916 1.00 100.00%

0 0 2 42159 2.34 116.93% 1 0 2 49771 2.43 121.47%

0 0 4 19562 5.04 126.00% 1 0 4 22526 5.37 134.20%

0 0 8 10096 9.77 122.07% 1 0 8 11250 10.75 134.35%

0 0 16 6531 15.10 94.35% 1 0 16 7042 17.17 107.32%

0 0 32 5451 18.09 56.52% 1 0 32 5664 21.35 66.71%

0 1 1 809752 1.00 100.00% 1 1 1 1267016 1.00 100.00%

0 1 2 305914 2.65 132.35% 1 1 2 435794 2.91 145.37%

0 1 4 127792 6.34 158.41 % 1 1 4 168310 7.53 188.20%

0 1 8 58093 13.94 174.24% 1 1 8 72268 17.53 219.15%

0 1 16 29538 27.41 171.34% 1 1 16 34777 36.43 227.70%

0 1 32 18115 44.70 139.69% 1 1 32 20170 62.82 196.30%

Sub-Model Network : Cluster Topology

70.00

60.00

50.00

g, 40.00
'O
Ql
Ql ft 30.00

20.00

10.00

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I ~ LL, ss - LL, LS ---- HL, ss --0-- HL, LS I

Figure 29. Speedup Curves for "Cluster" Topology (El)

103

Sub-Model Network : Cluster Topology

250.00%

200.00%

ti' 150.00%

Iii ·u
ffi 100.00%

50.00%

0 4 8 12 16 20 24 28 32

No of Processors

I - LL, ss - LL, LS -------- HL, ss -----0---- HL, LS I

Figure 30. Efficiency Curves for "Cluster" Topology (El)

2] The higher the system load the better the speedup. This can be explained by

Equations 11 and 12. Higher system load increases "N" thereby increasing the

value of "X" in Equation 12. It is clear from Equation 11 that an increase in "X"

would result in greater speedup.

3] The higher the system size, the better the speedup. This can also be explained by

Equations 11 and 12. Higher system size increases both "n" and "N" thereby

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in

"X" would result in higher speedup.

4] High system load and large system size case gives highest speedup.

6] Low system load and small system size case gives lowest speedup.

7] As the number of processors is increased, at first the efficiency curves climb, but

beyond 8 processors they slowly decline.

104

It is imp01iant to note that the above Equations (8 to 13) are gross approximations

for obtaining PDES execution performance measures and therefore would not accurately

predict the performance measures in each case. They are used to explain the dominant

relationships between the experimental factors.

Submode! Network Topology -Tandem (E2)

This experiment consists of simulations of a manufacturing system with

"Tandem" network of submodels. Table 7 is an ANOV A summary table that furnishes

the variance analysis of the important factors and their interactions.

TABLE 7

TANDEM TOPOLOGY (E2)-ANOVA SUMMARY

Factor df OSL a= 0.01
Commu. Protocol (C) 1 0.0293 Do not Reject

System Load (L) 1 0.0001 Reject
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.0001 Reject
(L XS) 1 0.0001 Reject
(L Xp) 5 0.0001 Reject
(S X p) 5 < 0.0001 Reject

(L XS X p) 5 0.0001 Reject

System load, system size, number of processors used for simulation, and their

higher order interactions are found to be significant. The explanation for the significance

of these factors and their interactions is identical to the explanation provided for

experiment El. However, a major difference between experiments El and E2 is that

105

experiment E2 involves interprocessor communication during simulation execution and

therefore communication protocols have a potential to be a statistically significant factor.

In fact at a= 0.05 it becomes significant. Low communication frequency can very easily

make communication protocol a significant factor. In the next paragraph Equations (14)

(16) are developed for explaining the influence of communication load on the parallel

implementation of the simulation.

The interprocessor communication during simulation execution causes an

additional delay in the execution process. If "Tc" is the time required for a single

communication, each processor transacts "C" communications during simulation

execution, and "Tw" is the total waiting time for communication during the simulation,

then the speedup and efficiency Equations (4) and (5) should be modified as shown below;

Speedup =

Where Y is defined as;

p

1-X(l-_!_)+Y·p
p

y =
Tc·C + Tw

n
Ti + N (Te + - ·Ts)

2

and the efficiency becomes;

Efficiency =
1

1
1-X(l- -) +Y·p

p

(14)

(15)

(16)

In experiment E2, as factor communication protocol is not significant, the "Table

of Means" can be obtained by averaging over all (two) levels of the communication

protocol. This results in Table 8 as the "Table of Means" with 24 means out of 144

observations.

106

TABLE 8

TANDEM TOPOLOGY (E2) - TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency
L s p Mean Mean Mean L s p Mean Mean Mean

0 0 1 149145 1.00 100.00% 1 0 1 187711.8 1.00 100.00%

0 0 2 68540.67 2.18 108.80% 1 0 2 82499.83 2.28 113.76%

0 0 4 34672.17 4.30 107.54% 1 0 4 40594.33 4.62 115.60%

0 0 8 19520.5 7.64 95.51% 1 0 8 21925.17 8.56 107.02%

0 0 16 12869.67 11.59 72.43% 1 0 16 13467.5 13.94 87.11%

0 0 32 10524 14.17 44.29% 1 0 32 11057.5 16.98 53.05%
0 1 1 1445868 1.00 100.00% 1 1 1 2302272 1.00 100.00%
0 1 2 569338.8 2.54 126.98% 1 1 2 827256.2 2.78 139.15%
0 1 4 247882.8 5.83 145.82% 1 1 4 330412.2 6.97 174.20%

0 1 8 116340.5 12.43 155.35% 1 1 8 146349.7 15.73 196.64%

0 1 16 60395 23.94 149.63% 1 1 16 73186.33 31.46 196.61 %

0 1 32 34986.67 41.33 129.14% 1 1 32 40706.5 56.56 176.74%

Table 8 depicts the speedup and efficiency values for each combination of the

three significant factors. Equations 14, 15, and 16 are used for explaining the behavior

of speedup and efficiency curves. As the interprocessor frequency is relatively high,

total waiting time '"'Tw"" for communication is minimal. Thus, for "Tandem" topology

the value of "Y" becomes very small as compared to the rest of the terms in the

denominator and therefore the term "Y*p" can be omitted from the denominator. The

effect of changing the number of processors on the speedup and efficiency values at each

combination of the system load and the system size is explained by Figures 31 and 32.

An inspection of these figures yields the following observations.

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 14. The "p" in the numerator makes speedup increase as

the number of processors are increased.

60.00

50.00

40.00
a.
::>

al 30.00
(1)
a.
(/)

20.00

10.00

0.00

0

200.00%

180.00%

160.00%

140.00%

ti' 120.00%

5i .0 100.00%

in 80.00%

60.00%

40.00%

20.00%

0

107

Sub-Model Network : Tandem Topology

4 8 12 16 20 24 28 32

No of Processors

1--LL,SS --t:i--LL,LS --HL,SS -HL,LS I

Figure 31. Speedup Curves for "Tandem" Topology (E2)

Sub-Model Network : Tandem Topology

4 8 12 16 20 24 28 32

No of Processors

I - LL, ss - LL, LS --II- HL, ss - HL, LS I

Figure 32. Efficiency Curves for "Tandem" Topology (E2)

108

2] The higher the system load, the better the speedup. This can be explained by

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in

the Equation 12. It is clear from Equation 14 that an increase in "X" would result

in higher speedup.

3] The higher the system size, the better the speedup. This can be explained by

Equations 11 and 12. Higher system size increases both "n" and "N" thereby

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in

"X" would result in higher speedup.

4] High system load and large system size case gives highest speedups:

6] Low system load and small system size case gives lowest speedups.

7] As the number of processors is increased, at first the efficiency curves climb but

beyond 8 processors they slowly decline.

Submode! Network Topology - Fork (E3)

This experiment consists of the simulation of a manufacturing system with "Fork"

network of submodels. Table 9 is an ANOV A summary table that furnishes the variance

analysis of the important factors and their interactions. In this experimentation, factors·

system load, system size, number of processors used for simulation, and their higher

order interactions are found to be significant. The explanation for the significance of

these factors and their interactions is identical to the explanation provided for experiment

El. A major difference between experiments El and E3, is that experiment E3 involves

interprocessor communication during simulation execution, and therefore factor

communication protocol has a potential to be a statistically significant factor. However,

as the frequency of communication is relatively high throughout the experimentation it

does not become a significant factor. Low communication can very easily cause

communication protocol to be a significant factor.

109

As factor communication protocol is not significant, the "Table of Means" for

experiment E3 can be obtained by averaging over all (two) levels of the communication

protocol. This results in Table 10 as the "Table of Means" with 24 means out of 144

observations.

TABLE9

FORK TOPOLOGY (E3) - ANOVA SUMMARY

Factor df OSL a= 0.01
Commu. Protocol (C) 1 0.0544 Do not Reject

System Load (L) 1 0.0001 Reiect
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.0001 Reiect
(LX S) 1 0.0001 Reject
(LXp) 5 0.0001 Reject
(S Xp) 5 < 0.0001 Reject

(LXSXp) 5 0.0001 Reiect

Table 10 depicts the speedup and efficiency values for each combination of the

three significant factors. Equations 14, 15, and 16 are used for explaining the behavior

of speedup and efficiency curves. As the interprocessor frequency is relatively high,

total waiting time "Tw" for communication is minimal. Thus, for "Fork" topology value

of "Y" becomes very small as compared to the rest of the terms in the denominator and

therefore term "Y*p" can be omitted from the denominator. The effect of changing the

number of processors on the speedup and efficiency values at each combination of

system load and size are explained by Figures 33 and 34. An inspection of these figures

yields the following observations.

L

0

0

0

0

0

0

0

0

0

0

0

0

110

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 14. The "p" in the numerator makes speedup increase as

the number of processors is increased.

2] The higher the system load, the better the speedup. This can be explained by

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in

Equation 12. It is clear from Equation 14 that an increase in "X" would result in

higher speedups.

3] The higher the system size, the better the speedup. This can also be explained by

Equations 11 and 12. Higher system size increases both "n" and "N" thereby

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in

"X" would result in higher speedups.

TABLE 10

FORK TOPOLOGY (E3) - TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency

s p Mean Mean Mean L s p Mean Mean Mean

0 1 147805.5 1.00 100.00% 1 0 1 184953.8 1.00 100.00%

0 2 71544.5 2.07 103.30% 1 0 2 85019.83 2.18 108.77%

0 4 35703.33 4.14 103.50% 1 0 4 41431.17 4.46 111.60%

0 8 23029.83 6.42 80.23% 1 0 8 25939.33 7.13 89.13%

0 16 17716.17 8.34 52.14% 1 0 16 19727 9.38 58.60%

0 32 16993.5 8.70 27.18% 1 0 32 18506.33 9.99 31.23%

1 1 1372184 1.00 100.00% 1 1 1 2178261 1.00 100.00%

1 2 562948.2 2.44 121.87% 1 1 2 802924.2 2.71 135.65%

1 4 249852.5 5.49 137.30% 1 1 4 327408.3 6.65 166.33%

1 8 136602 10.05 125.56% 1 1 8 169148.7 12.88 160.97%

1 16 94564 14.51 90.69% 1 1 16 112975.8 19.28 120.50%

1 32 81648.5 16.81 52.52% 1 1 32 95488:67 22.81 71.29%

25.00

20.00

a. 15.00
=>

1l a.
en 10.00

5.00

0

180.00%

160.00%

140.00%

120.00%
>,
u 100.00% C:
QI

"ij
80.00% :E

w

60.00%

40.00%

20.00%

0.00%

0

111

Sub-Model Network : Fork Topology

4 8 12 16 20 24 28 32

No of Processors

I --LL, ss -Ill-- LL, LS --- HL, ss - HL. LS I

Figure 33. Speedup Curves for "Fork" Topology (E3)

Sub-Model Network : Fork Topology

4 8 12 16 20 24 28 32

No of Processors

1-LL,SS -----0--LL,LS ---HL,SS ---0-HL,LS 1

Figure 34. Efficiency Curves for "Fork" Topology (E3)

4] High system load and large system size case gives highest speedups.

6] Low system load and small system size case gives lowest speedups.

112

7] As the number of processors is increased, at first the efficiency curves climb but

beyond 4 processors they slowly start falling.

8] For 32 and 16 processor implementations the speedup values are substantially

lower than the corresponding speedups for experiments El and E2.

Submode! Network Topology - Join (E4)

This experiment consists of the simulation of a manufacturing system with "Join"

network of submodels. Table 11 is an ANOV A summary table that furnishes the

variance analysis of the important factors and their interactions. In this experimentation

factors system load, system size, number of processors used for simulation, and their

higher order interactions are found to be significant. The explanation for the significance

of these factors and their interactions is identical to the explanation provided for

experiment E3. A major difference between experiments E3 and E4, is that unlike E3 in

experiment E4 each processor must wait for a message from all its predecessor

processors for synchronization during the simulation execution, and therefore an

unbalanced communication between the predecessors can given far better perfonnance

by "forward+backward" protocol. This would result in the communication protocol

being a statistically significant factor. However, as the communication patterns are well

balanced in this case, both protocols perform equally well and communication protocol is

not a significant factor.

As factor communication protocol is not significant, the "Table of Means" for

experiment E4 can be obtained by averaging over all (two) levels of the communication

protocol. This results in Table 12 as the "Table of Means" with 24 means out of 144

observations. Table 12 depicts the speedup and efficiency values for each combination

of the three significant factors. Equations 14, 15, and 16 are used for explaining the

113

behavior of speedup and efficiency curves. As the interprocessor frequency is relatively

high, the total waiting time "Tw" for communication is minimal. Thus, for "Join"

topology the value of "Y" becomes very small as compared to the rest of the terms in the

denominator and therefore the term "Y.p" can be omitted from the denominator.

TABLE 11

JOIN TOPOLOGY (E4) - ANOVA SUMMARY

Factor df OSL a= 0.01

Commu. Protocol (C) 1 0.2148 Do not Reject
System Load (L) 1 0.0001 Reject
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.0001 Reject
(LX S) 1 0.0001 Reject
(LXp) 5 0.0001 Reject
(S Xp) 5 < 0.0001 Reject

(LXSXp) 5 0.0001 Reject

The effect of changing the number of processors on the speedup and efficiency

values at each combination of system load and size are explained by Figures 35 and 36.

An inspection of these Figures yield the following observations.

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 14. The "p" in the numerator makes speedup increase as

the number of processors is increased.

114

TABLE 12

JOIN TOPOLOGY (E4) - TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency

L s p Mean Mean Mean L s p Mean Mean Mean

0 0 1 147769 1.00 100.00% 1 0 1 183770.8 1.00 100.00%

0 0 2 71129 2.08 103.87% 1 0 2 84720.5 2.17 108.46%

0 0 4 35427.17 4.17 104.28% 1 0 4 41132.17 4.47 111.70%

0 0 8 22361 6.61 82.60% 1 0 8 25001.33 7.35 91.88%

0 0 16 18462.33 8.00 50.02% 1 0 16 19951.83 9.21 57.57%

0 0 32 17211.67 8.59 26.83% 1 0 32 18436.83 9.97 31.15%

0 1 1 1367297 1.00 100.00% 1 1 1 2159951 1.00 100.00%

0 1 2 560468.3 2.44 121.98% 1 1 2 797642 2.71 135.40%

0 1 4 250259.7 5.46 136.59% 1 1 4 326478.7 6.62 165.40%

0 1 8 136733.8 10.00 125.00% 1 1 8 168557.8 12.81 160.18%

0 1 16 94812.17 14.42 90.13% 1 1 16 112704.3 19.16 119.78%

0 1 32 82066.83 16.66 . 52.06% 1 1 32 95771.33 22.55 70.48%

Sub-Model Network : Join Topology

25.00

20.00

a. 15.00
:::>
't)
Q)
Q)
a.
en 1 o.oo

5.00

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I --- LL, ss - LL, LS ------- HL, ss - HL, LS 1

Figure 35. Speedup Curves for "Join" Topology (E4)

180.00%

160.00%

140.00%

120.00%

Sub-Model Network: Join Topology

115

>,

g 100.00%
(II

·c:; ffi 80.00%

60.00%

40.00%

20.00%

0 4 8 12 16 20 24

No of Processors

I --- LL, ss - LL, LS --------- HL, ss -- HL, LS I

Figure 36. Efficiency Curves for "Join" Topology (E4)

28 32

2] The higher the system load, the better the speedup. This can be explained by

Equations 14 and 15. Higher system load increases "N" thereby increasing "X" in

Equation 12. It is clear from Equation 14 that an increase in "X" would result in

higher speedups.

3] The higher the system size, the better the speedup. This can also be explained by

Equations 11 and 12. Higher system size increases both "n" and "N" thereby

increasing "X" in Equation 12. It is clear from Equation 11 that an increase in

"X" would result in higher speedup.

4] High system load and large system size case gives highest speedups.

6] Low system load and small system size case gives lowest speedups.

7] As the number of processors is increased, at first the efficiency curves climb but

beyond 4 processors they slowly decline.

116

Submodel Network Topology - Fork + Join (E5)

This experiment consists of the simulation of a manufacturing system with "Fork

and Join" network of submodels. Table 13 is an ANOVA summary table that furnishes

the variance analysis of the important factors and their interactions. In this

experimentation factors communication protocol, system load, system size, number of

processors used for simulation, and their higher order interactions are found to be

significant. A major difference between the results of this experiment and the earlier

experiments, is that in this experiment communication protocol and its interaction with

the number of processors are also found to be statistically significant. In experiment E5

at higher values of number of processors (8, 16, 32) each processor has multiple input

and output channels. Under this situation "forward+backward" protocol unnecessarily

creates null messages that increase the communication load on the processors, thereby

increasing the simulation execution time. Although "forward" protocol involves waiting

for the incoming messages, this protocol gives better performance as the communication

between the processors is balanced and frequent.

TABLE 13

FORK+JOIN TOPOLOGY (E5) - ANOVA SUMMARY

Factor df OSL a= 0.01
Commu. Protocol (C) 1 0.0001 Reject

Svstem Load (L) 1 0.0001 Reject
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.0001 Reject
(C Xp) 5 0.0001 Reject
(LXp) 5 0.0001 Reject
(LXp) 5 0.0001- Reject
(S Xp) 5 < 0.0001 Reject

(L XS X p) 5 0.0001 Reject

L

0

0

0

0

0
0

0

0

0

0

0

0

L

0

0

0

0

0

0

0

0
0
0

0

0

117

TABLE14

FORK+JOIN TOPOLOGY (E5) FOR FORWARD COMMU. PROTOCOL (C=O)
TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency

s p Mean Mean Mean L s p Mean Mean Mean

0 1 193723.7 1.00 100.00% 1 0 1 245363 1.00 100.00%

0 2 93354 2.08 103.76% 1 0 2 112156 2.19 109.38%

0 4 60938.33 3.18 79.48% 1 0 4 69399.67 3.54 88.39%

0 8 36815.67 5.26 65.77% 1 0 8 41912.33 5.85 73.18%

0 16 28437 6.81 42.58% 1 0 16 31518 7.78 48.66%

0 32 27299.67 7.10 22.18% 1 0 32 30602.67 8.02 25.06%

1 1 2011063 1.00 100.00% 1 1 1 5261728 1.00 100.00%

1 2 809519 2.48 124.21% 1 1 2 1750748 3.01 150.27%
1 4 373600.3 5.38 134.57% 1 1 4 761613 6.91 172.72%

1 8 204211.3 9.85 123.10% 1 1 8 328556 16.01 200.18%

1 16 146683.3 13.71 85.69% 1 1 16 184715.3 28.49 178.04%
1 32 134101.3 15.00 46.86% 1 1 32 158424.7 33.21 103.79%

TABLE 15

F+J TOPOLOGY (E5) FOR DEMAND DRIVEN COMMU. PROTOCOL (C=l)
TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency

s p Mean Mean Mean L s p Mean Mean Mean

0 1 194938.3 1.00 100.00% 1 0 1 246259.3 1.00 100.00%

0 2 93924.67 2.08 103.77% 1 0 2 113443.3 2.17 108.54%

0 4 147321.7 1.32 33.08% 1 0 4 151990.3 1.62 40.51%

0 8 69844 2.79 34.89% 1 0 8 72341.67 3.40 42.55%

0 16 28736.67 6.78 42.40% 1 0 16 31778.33 7.75 48.43%

0 32 56310.33 3.46 10.82% 1 0 32 43296.33 5.69 17.77%
1 1 2005755 1.00 100.00% 1 1 1 5281959 1.00 100.00%
1 2 809628.3 2.48 123.87% 1 1 2 1766641 2.99 149.49%

1 4 461254.3 4.35 108.71% 1 1 4 846732 6.24 155.95%
1 8 202595.3 9.90 123.75% 1 1 8 354349.3 14.91 186.33%

1 16 147065.7 13.64 85.24% 1 1 16 185463 28.48 178.00%

1 32 134343.3 14.93 46.66% 1 1 32 159262.7 33.17 103.64%

118

As factor communication protocol is significant, in the "Table of Means" for

experiment E5, the execution time means are not averaged over all (two) levels of the

communication protocol. This results in Table 14 and 15 as the "Table of Means", each

with 24 means out of 144 observations.

Tables 13 and 14 depict the speedup and efficiency values for "forward" and

"forward+backward" communication protocol at each combination of the other three

significant factors. Equations 14, 15, and 16 are used for explaining the behavior of

speedup and efficiency curves. As the interprocessor frequency is relatively high, total

waiting time "Tw" for communication is minimal but "forward+backward" protocol

produces excessive null messages thereby increasing "C', and eventually the value of

"Y". Thus, for "Fork+Join" topology the term "Y*p" dominates the rest of the terms in

the denominator. This gives consistently lower speedups for "forward+backward"

protocol. The interaction between the processors can be further explained by the product

"Y*p" term which determines the execution time for multiprocessor implementation.

The effects of changing the number of processors on the speedup and efficiency values at

each combination of system load and size are depicted by Figures 37 and 38 for the

"forward" protocol and Figures 39 and 40 for the "forward+backward" protocol.

Inspection of these figures yield the following observations.

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 14. The "p" in the numerator makes speedup increase as

the number of processors is increased. For "forward+backward" protocol the two

curves with factor manufacturing system size at its lower level, the speedup

decreases when the number of processors is increased from 2 to 4. This can be

explained as follows. At two processors the topology of the submode! network is

"Tandem", but as the number of processors is increased from 2 to 4 the processor

network becomes a real "Fork+Join" topology network. This along with

excessive null messages from the "forward+backward" protocol give a dip in the

119

Sub-Model Network: Fork+ Join Topology

35.00

30.00

25.00

c..
=> 20.00
"C
Cl)

~ 15.00
en

10.00

5.00

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I --- CF, LL, ss -ifr-- CF, LL, LS --- CF, HL, ss - CF, HL, LS I

Figure 37. Speedup Curves for "Fork+Join" Topology Using "forward" Protocol (E5)

Sub-Model Network : Fork+ Join Topology

35.00

30.00

25.00

c..
::::> 20.00

' "C
Cl)

~ 15.00
en

10.00

5.00

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I -- co: LL, ss - CD, LL, LS --- CD, HL, ss -- CD, HL, LS

Figure 38. Speedup Curves for "Fork+Join" Topology using "f+b" Protocol (E5)

250.00%

200.00%

150.00%

100.00%
Efficiency

50.00%

0.00%

0 4

I --+-- CF,LL,SS

120

Sub-Model Network: Fork+ Join Topology

6 12 16 20 24 26 32

No of Processors

~CF,U.,LS ---+-- CF, HL, SS ----0----- CF, HL, LS

Figure 39. Efficiency Curves for "Fork+Join" Topology Using "forward" Protocol (E5)

200.00%

180.00%

160.00%

140.00%

~ 120.00%
C:

-~ 100.00%
iE
w 80.00%

60.00%

40.00%

20.00%

0

Sub-Model Network : Fork+ Join Topology

4 8 12 16 20 24 28 32

No of Processors

I - CD, LL, ss ---,:e-- CD, LL, LS - CD, HL, ss -El-- CD, HL, LS

Figure 40. Efficiency Curves for "Fork+Join" Topology Using "f+b" Protocol (E5)

121

perfonnance at 4 processors. At 32 processors the computation load on each

processor is extremely small causing even more frequent null message requests

and thereby resulting in performance degradation.

2] The higher the system load, the better the speedup because the curves with high

system load are higher than the corresponding low system load curves. This can

be explained by Equations 14 and 15. Higher system load increases "N" thereby

increasing "X" in Equation 12. It is clear from Equation 14 that an increase in

"X" would result in higher speedups.

3] The higher the system size, the better the speedup because the curves with high

system size are higher than the corresponding low system size curves. This can

also be explained by Equations 11 and 12. Higher system size increases both "n"

and "N" thereby increasing "X" in Equation 12. It is clear from Equation 11 that

an increase in "X" would result in higher speedup.

4] High system load and large system size case gives highest speedup.

5] Low system load and small system size case gives lowest speedup.

6] The effect of a change in system load at large system size is higher than that at

small system size. This explains the statistically significant interaction of the two

factors, system size and system load.

7] As the number of processors is increased, at first the efficiency curves climb but

for large size beyond 8 processors and for small size beyond 2 processors they

slowly decline.

Comparison of Communication Protocols (E6)

This experiment consists of the simulation of a manufacturing system with

"Tandem" network of submodels. Table 16 is an ANOVA summary table that furnishes

the variance analysis of the important factors and their interactions. In this

experimentation, factors communication protocol, system load, system size, number of

122

processors used for simulation, and their higher order interactions are found to be

significant. A major difference between the results of this experiment and the earlier

tandem experiment, is that in this experiment communication protocol and its two and

tlu·ee way interactions with "P" and system load are also found to be statistically

significant. In experiment E6 the frequency of message passing between processors is

designed to be low. Unlike the "forward" protocol, the "forward+backward" protocol has

mechanisms for creating additional null messages (synchronization demand messages)

that can synchronize each processor thereby reducing the waiting for incoming messages.

Once the synchronization is received the processor is free to continue simulation

execution until the simulation time reaches the channel time acquired from the

predecessors. The explanation for the significance of other factors and their interactions

is identical to the respective explanations for the earlier "Tandem" expe1iment, E2. In

experiment E6 at higher values of number of processors (8, 16, 32) and small

manufactming system size the computational load per processor is very low, therefore

even null message synchronization of "forward+backward" protocol gives only a

marginal improvement. On the contrary, at large size of manufacturing system the

computational load per processor is relatively high leading to a superior performance by

"forward+backward" protocol.

As the factor communication protocol is significant, the execution times in "Table

of Means" for experiment E6 are not averaged over all (two) levels of the communication

protocol. This results in Tables 17 and 18 as the "Table of Means", each with 24 means

out of 144 observations. Table 17 depicts the speedup and efficiency values for forward

communication protocol at each combination of the other three significant factors.

Equations 14, 15, and 16 are used for explaining the behavior of speedup and efficiency

curves. As the interprocessor frequency is extremely low, the total waiting time for

communication "Tw" is high but "forward+backward" protocol produces null messages

to reduce "Tw", thereby reducing the value of "Y". Therefore "forward+backward"

123

protocol gives consistently higher speedups. At small system size this effect is offset by

the fact that for eight or more processors the computational load per processor is very

small and reduction in "Tw" is accompanied by the increase in the number of

synchronization messages "C" thereby nullifying the increase in the value of "Y".

TABLE 16

TANDEM TOPOLOGY (E6)-ANOVA SUMMARY

Factor df OSL a= 0.01
Commu. Protocol (C) 1 0.0001 Reject

System Load (L) 1 0.005 Reject
System Size (S) 1 < 0.0001 Reject

of Processors (p) 5 < 0.0001 Reject
(CX S) 1 0.0001 Reject
(C X p) 5 0.0002 Reject
(L X p) 5 0.0001 Reject
(S X p) 5 < 0.0001 Reject

(CXSXp) 5 0.0084 Reject
(L XS X p) 5 0.0003 Reject

The effects of changing the number of processors on the speedup and efficiency

values at each combination of system load and size are explained by Figures 41 and 42

for the "forward" protocol and Figures 43 and 44 for the "forward+backward" protocol.

Inspection of these figures yield the following observations.

1] The speedup increases as the number of processors is increased. This is explained

by observing Equation 14. The "p" in the numerator makes speedup increase as

the number of processors are increased.

L

0

0

0

0

0

0

0

0

0

0

0

0

124

TABLE 17

TANDEM TOPOLOGY (E6) FOR FORWARD COMMU. PROTOCOL (C=O)
TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency
s p Mean Mean Mean L s p Mean Mean Mean

0 1 87058 1.00 100.00% 1 0 1 98753 1.00 100.00%
0 2 64766.67 1.34 67.21% 1 0 2 70061.33 1.41 70.48%
0 4 54604.33 1.59 39.86% 1 0 4 57354.33 1.72 43.05%
0 8 49969.67 1.74 21.78% 1 0 8 51620.33 1.91 23.91 %
0 16 48221 1.81 11.28% 1 0 16 49583 1.99 12.45%
0 32 47802.67 1.82 5.69% 1 0 32 48606.67 2.03 6.35%
1 1 592112 1.00 100.00% 1 1 1 804181.7 1.00 100.00%
1 2 410277 1.44 72.16% 1 1 2 468147 1.72 85.89%
1 4 333667.7 1.77 44.36% 1 1 4 332026.7 2.42 60.55%
1 8 294681.3 2.01 25.12% 1 1 8 270306 2.98 37.19%
1 16 278209.3 2.13 13.30% 1 1 16 243706 3.30 20.62%
1 32 270490 2.19 6.84% 1 1 32 231189.7 3.48 10.87%

TABLE 18

TANDEM TOPOLOGY (E6) FOR DEMAND DRIVEN COMMU. PROTOCOL (C=l)
TABLE OF MEANS

Exe. Time Speed Up Efficiency Exe. Time Speed Up Efficiency
L s p Mean Mean Mean L s p Mean Mean Mean

0 0 1 87497 1.00 100.00% 1 0 1 99598.33 1.00 100.00%
0 0 2 46179.67 1.89 94.74% 1 0 2 50341.67 1.98 98.92%

0 0 4 29353.33 2.98 74.52% 1 0 4 30799.67 3.23 80.84%

0 0 8 22987 3.81 47.58% 1 0 8 23478.33 4.24 53.03%
0 0 16 23699.67 3.69 23.07% 1 0 16 24814.33 4.01 25.09%
0 0 32 30403.33 2.88 8.99% 1 0 32 35031.67 2.84 8.88%
0 1 1 597482.7 1.00 100.00% 1 1 1 810984 1.00 100.00%

0 1 2 266302.3 2.24 112.18% 1 1 2 329383.7 2.46 123.11 %

0 1 4 139866 4.27 106.80% 1 1 4 160353.7 5.06 126.44%

0 1 8 86272.33 6.93 86.57% 1 1 8 94832 8.55 106.90%

0 1 16 65832 9.08 56.72% 1 1 16 69412.33 11.68 73.02%

0 1 32 60654.67 9.85 30.78% 1 1 32 64449.33 12.58 39.32%

125

Sub-Model Network : Tandem Topology

3.50

3.00

2.50

Q.
::::, 2.00
"C
Cl)

8_ 1.50
en

1.00

0.50

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I - CF, LL, ss ----a,-- CF, LL, LS - CF, HL, ss --0- CF, HL, LS

Figure 41. Speedup Curves for "Tandem" Topology Using "forward" Protocol (E6)

Sub-Model Network: Tandem Topology

14.00

12.00

10.00

Q.
::::, 8.00
"C
Cl)
Cl)

6.00 a.
en

4.00

2.00

0.00

0 4 8 12 16 20 24 28 32

No of Processors

I --- CD, LL, ss -II-- CD, LL, LS - CD, HL, ss --0- CD, HL, LS t

Figure 42. Speedup Curves for "Tandem" Topology Using "f+b" Protocol (E6)

126

Sub-Model Network : Tanem Topology

100.00%

90.00%

80.00%

70.00%

ti' 60.00%
C:
Cl) 50.00%
~ w 40.00%

30.00%

20.00%

10.00%

0.00%

0 4 8 12 16 20 24 28 32

No of Processors

I - CF, LL, ss - CF, LL, LS --- CF, HL, ss - CF, HL, LS I

Figure 43. Efficiency Curves for "Tandem" Topology Using "forward" Protocol (E6)

Sub-Model Network : Tamdem Topology

140.00%

120.00%

100.00%

ti' 80.00%
C:
Cl)

·u
!i: 60.00% w

40.00%

20.00%

0.00%

0 4 8 12 16 20 24 28 32

No of .Processors

I - CD, LL, ss -$-- co, LL, LS --- co, HL, ss --0-- CD, HL, LS I

Figure 44. Efficiency Curves for "Tandem" Topology Using "f+b" Protocol (E6)

127

2] The higher the system load, the better the speedup because the curves with high

system load are higher than the corresponding low system load curves. The

explanation for this is identical to that of the earlier "Tandem" experiment (E2).

3] The higher the system size, the better the speedup because the curves with high

system size are higher than the corresponding low system size curves. The

explanation for this is identical to that of the earlier "Tandem" experiment (E2).

4] High system load and large system size case gives highest speedup.

5] Low system load and small system size case gives lowest speedup.

6] The effect of a change in system load at large system size is higher than that at

small system size. This explains the statistically significant interaction of the two

factors, system size and system load.

7] For "forward+backward" protocol, as the number of processors is increased, at

first the efficiency curves climb but for large size beyond 4 processors and for

small size beyond 2 processors they slowly decline. On the contrary, all

efficiency curves for "forward" strategy result in a monotonically decreasing

curve.

Summary of Experimentation Results

Detailed observations of each experiment has been provided in the above six

sections. This section attempts to summarize the entire research experimentation

involving the above experiments. It not only identifies a common behavior among the

topologies, but also provides conclusions about the relative performance of the

experimental submode! network topologies. The commonalties in execution

performance of several topologies are provided in the next paragraph. The paragraph

following it describes the differences in the execution pe1f ormance.

Among all topologies, the speedup generally improved as the number of

processors is increased. However, the efficiency figures initially improve (going beyond

128

100%) and then constantly decline. The encouraging fact is that for large systems over a

significant range for number of processors, super linear speedups (efficiency > 100%)

have been obtained. Execution of the event calendar being a searching type application,

the execution time is proportional to (N) the average event calendar length. In these

parallel implementations the superlinear speedups are observed because of two reasons,

viz. the new discrete event simulation algorithm which substantially reduces the original

event calendar length, and the availability of a number of processors. The new discrete

event simulation alg01ithm saves the extra searches through the event calendar, thereby

providing a major reduction in the computation. In other words, by using the new

simulation algorithm a system can be simulated on a single processor as a collection of

processes (each corresponding to a.single submode!) and a sublinear speedup can be

achieved. The second sublinear component of speedup is a result of using more than one

processor to simulate these processes. As in the case of the cmTent experimentation,

when both the sublinear speedup components are combined they give a net superlinear

speedup as a product of two sublinear speedup components. Both of these sublinear

speedup components depend very heavily on the synchronization requirements between

all the system submodels. And therefore, as the processor assignment approaches one

machine process on each processor (or one machine per submode!) the perfonnance

improvement is very marginal. Further, as each process essentially is a single thread of

computation, below this ratio, (i.e., the ratio of logical processes to the number of

processors, ratio< 1) it is almost impractical to further distribute the computation as

logical dependencies between vaiiables require extensive synchronization. This makes

the above scheme almost impractical. A ratio of 8 (where most of the efficiency curves

for small system peaked) is typically favored. The sixth expe1iment establishes the

necessity of "forwai·d+backward" or "demand driven" protocol. As the frequency of the

communication is also dependent on the nature of the manufacturing system in tenns of

its routing structure, for a general system frequent interprocessor synchronization is not

129

guaranteed. Therefore, despite either insignificant improvement or even slight decline in

performance when used with frequent and balanced synchronization requirements,

"forward+backward" communication is preferred for a general case.

One of the major aspects of the comparative analysis of five topologies is the

inherent communication requirements of each topology. "Independent Clusters"

topology requires no interprocessor communication and produces the best results. In

"Tandem" topology, as a processor requires communication only from its single

predecessor, it is only affected by the frequency of communication. It therefore comes

second in pe1formance. "Fork" is similar to "Tandem" in the sense that the input

communication still comes from a single source, but this source has to provide

communication to a number of processors and therefore the individual frequency of

communication between the source and its predecessor gets several fold smaller than the

"Tandem" topology. This is reflected in the loss of speedup (from 56.56 to 22.81).

Besides frequent synchronization, the "Join" topology also requires balanced

communication from the various incoming channels and the problem only gets worse for

a large number of incoming channels. "Fork+Join" topology is a very general topology.

Because of its structural features, it has much larger computational requirements than the

other manufacturing system models. Therefore a true comparison between this topology

and others is not attempted. The main motivation in experimenting with "Fork+Join"

topology was to see if this type of system poses any additional problems in

implementation and analysis. Under the experimental conditions "Fork+Join" gives

almost linear speedups with large size system. In general "Fork+Join" topology should

be expected to perform somewhere in between its "Fork" and "Join" components.

In conclusion, the research experimentation results and a thorough analysis of the

research findings are provided in this chapter. The next chapter provides general

guidelines for accomplishing an efficient PDES, and outlines future research directions.

CHAPTER XI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Introduction

This chapter presents concluding thoughts about this research effort. It includes a

summary of the research in light of the proposed objectives, contributions to the body of

knowledge in parallel discrete event simulation, and recommendations for additional

reseaTch or new research directions.

Research Summary

The goal of this research was to analyze the factors that significantly influence an

effective parallel implementation of the simulation of object oriented models of

,manufacturing systems. To accomplish this goal five research objectives, each

addressing a different aspect of the problem, were established. The sections below

review the accomplishments in each of these objectives.

Concurrent Object Oriented Modeling

The first research objective was the evaluation of concurrent object oriented

modeling constructs for parallel discrete event simulation. The entirety of Chapter VII

dealt with this objective. In this chapter it was established that the concurrent object

oriented programming constructs provide very powe1ful means for creating concurrently

executable instructions. Being object oriented, they create encapsulated objects that have

the properties of distributed systems. These properties provide the logical separation of

130

131

two objects for their concurrent evaluation. Concurrent object oriented programming

constrncts provide an automatic synchronization of the processes without using

semaphores or other types of synchronization procedures. The user is relieved from the

mundane task of coping with the synchronization among processors. However, it is

important to note that the user must have a very clear understanding of "which construct

to use?" and "where?". That is the user must be aware of the types of inherent

conCLmencies in the programming application such as simulation and must appropriately

use the available concurrent construct.

The above summary has accomplished the objective of the evaluation of

concurrent object miented programming constructs for its applicability to the parallel

discrete event simulation.

Submodel Creation Logic

The second objective was the formulation of the submodel creation logic.

Chapter VIII is solely devoted to accomplishing this objective. In the context of this

research, several guiding principles were used for specifying the submodel creation logic

and the optimization function. Firstly, an efficient parallel processing application

minimizes the interprocessor communication. Secondly, in case of dependent

submodels, previous research [Reed 1988] has shown that even though there are several

mechanisms cmTently available for deadlock detection and recovery, almost all of them

provide only marginal speedups. And hence for the purpose of submodel creation,

topologies that have a potential for 'deadlock' are avoided. Thirdly, it is also important to

note that the speedup can be improved by using more and more processors. Based on

these three principles the procedure for developing submodel creation logic or allocation

of the machine processes to the processors was derived.

Using the procedure described above, the objective of formulating the submodel

creation logic was accomplished.

132

Communication Strategy Design

The third objective was the design of a communication strategy for the

interprocessor communication between Intel iPSC/2 hypercube nodes. Chapter IX is

solely devoted to accomplishing this objective. As the submodel creation strategies

carefully produce submodels without any 'deadlock' potential, the communication

protocols designed for the purpose of this research are not required to handle the

'deadlock' situations. This not only simplifies the design process, but also provides

highly efficient interprocessor communication. For the purpose of implementation, two

distinct communication protocols were designed, viz. forward and forward+backward.

The key for developing the communication protocols is to develop the communication

requirements for parallel execution of discrete event simulation. For complex

dependencies among the events on different processors (such as blocking machines

where the parts arrive to the blocked machine from another processor, or the

communication patterns with a potential for "deadlock", etc.) a suitable protocol must be

tailored for the required use. By abstracting the event dependencies, a researcher can

develop generalized concurrent object oriented programming constructs that can create a

general communication protocol.

Using the procedure described above, the objective of designing a communication

protocol for the parallel implementation was accomplished.

Performance Analysis via PDES Implementation

The fourth objective was the analysis of the performance of parallel discrete event

simulation application. Chapter Xis solely devoted to accomplishing this objective. The

experimental design described in Chapter V specified a total of six simulation

experiments. The first five experiments were designed to simulate five submode!

network topologies of the submodel network. The sixth experiment was specifically

133

designed to reveal the differences between the two communication protocols that are not

evident in earlier experiments. In each of the above six experiments there were two

levels of "Manufacturing System Size", "Communication Protocol", "Manufacturing

System Load", and six levels of the "Number of Processors" factor. Three simulation

experiment replications were performed for each combination of factors. An

approximate mathematical model of the execution process was also developed. This

model was used to explain the behavior of the performance of the simulation applications

over several combinations of the experimental factors. Specific conclusions of these

experiments are provided in Chapter X. These conclusions also helped in developing the

methodology for an efficient parallel discrete event simulation.

Using the procedure described above, the objective of analyzing the perfmmance

of parallel discrete event simulation application was accomplished.

Methodology for Achieving a Successful PDES

The fifth objective was the creation of a methodology for an efficient parallel

discrete event simulation of a manufacturing system. This methodology is supplied in

the next paragraph.

A typical manufacturing system simulation eff mt requires the evaluation of

multiple scenarios or control policies and the selection of the best scenario or control

policy among the prespecified set. For obtaining sound statistical confidence in the

simulation results each scenario is further replicated several times. That is, for "S"

scenarios and "r" replications there are a total of "S*r" simulations required for

identifying the best control policy among the available set. If the experimental design of

such a study consists of "F" factors each with "L" levels, then there would be a total of

"F*L" possible scenarios and "F*L*r" simulations.

One of the simplest ways of achieving faster evaluation of the total set of

expe1imentation scenarios is to create a batch file or host program that distributes these

134

"F*L*r" simulations on "F*L*r" nodes or processors of the parallel processing computer;

each processor executing a single simulation. This arrangement takes advantage of very

coarse grain concmTency in the parallel simulation application and quickly results in a

speedup of "F*L*r". In this arrangement the internal complexities of event dependencies

do not affect the performance of parallel simulation application because each simulation

execution is still a uniprocessor application.

To take advantage of finer grain concurrency in the simulation application,

execution of each simulation is further distributed on multiple processors by dividing the

simulation model into submodels and executing each submode! on a single processor.

And since execution of each model is further distributed this ruTangement further

improves speedups. If by using "p" processors we can make a single simulation run "S"

times faster, a net speedup of "F*L*r*S" can be achieved by using a total of "F*L*r*p"

processors. However, it is important to note that maintenance of the "causality"

constraints of each submode! add massive communication overhead which depends on

the complexity of the event dependencies among the submodels and therefore the

resultant speedup depends on dependency or topology of the interprocessor

communication patterns. These patterns are highly influenced by the submodel creation

process. Chapter VIII provides a submodel creating methodology that can help the user

in properly allocating the machine processes to the submodels. Complex dependencies

of the events between submodels requires highly sophisticated communication protocols

that can add excessive communication. The "forward" and "forward+backward"

communication protocols provided in Chapter IX can be used as a model for developing

more complex protocols. Specifically the user should avoid the communications having

a potential of "deadlock" or feedback communication patterns.

Typical manufacturing systems such as cellular, tandem lines, flow lines, flexible

manufacturing systems, job shop systems, etc., can be effectively simulated by using

their inherent routing topology. For a cellular manufacturing system, each cell can be

135

considered as a submode! and therefore can result in a disjoint submodel network of

independent clusters of machines. As explained in Chapter X, this an-angement can

result in superlinear speedup. A "tandem" line can be simulated by using a "tandem"

network of submodels, a flow line can be crafted as a "Tandem" submode!, or "Fork" or

Join" or a combination of the two topologies. The key here is to create as many

submodels as possible until the interprocessor communication between submodels

becomes overwhelming.

Research Contributions

As explained in the first chapter, widespread use of discrete event simulation as

an analysis tool is hindered because of enormous computational requirements of a

simulation effort. This research therefore focused on achieving faster execution of

simulation models by using multiple processors. There are very few published results

available in this area. One of the major intended contributions of this research was to

create empirical data for parallel discrete event simulation of manufacturing systems.

The vehicle used to demonsu·ate the parallel implementation was an object oriented

modeling environment on Intel iPSC/2 hypercube parallel processor.

The completion of the research objectives as documented in the previous section

makes the following contributions to the area of advanced simulation modeling of

manufacturing systems within Industrial Engineering:

1] Determination of the factors that have the potential to influence the execution

perfo1mance of a parallel discrete event simulation of manufacturing systems.

2] Demonstration of the viability of parallel implementation of discrete event

simulation of manufacturing systems via a modified event scheduling

technique.

3] Specification of a submode! creation methodology.

4] Development of a mathematical function for analyzing the parallel

implementation of discrete event simulation of manufacturing systems.

5] Development of a design methodology for interprocessor communication

protocols.

6] Development of a comprehensive methodology achieving an efficient

implementation of a parallel discrete event simulation of manufacturing

systems.

136

7] Provision of empirical data for further research in the areas of parallel discrete

event simulation of discrete event systems.

Recommendations for Future Research

As a result of the research conducted in this study, the following recom

mendations are made for additional research in this area.

Parallel Processing Architectures

The findings for this research are valid for parallel implementations on distributed

memory message passing architectures such as the Intel iPSC/2 hypercube. Similar

methodologies for an efficient implementation on other parallel architectures can be

developed.

Concurrent Object Oriented Programming Constructs

While accomplishing the first objective, this research realized the importance of

concurrent object oriented constructs. Currently these constructs cannot be readily used

as an integral part of simulation objects. Complex dependencies of simulation objects

can be abstracted to create abstract concurrent discrete event simulation objects which

have synchronization mechanisms built in. Then the user can create the manufacturing

system objects as subclasses of these abstract concurrent objects. These concmTent

objects would be similar to the "Actor" [Agha 88] objects described in Chapter IL

137

Submodel Creation Logic

While accomplishing the second objective, a submodel creation methodology and

the objective function for selecting the optimal process allocation arrangement was

developed. This methodology is designed for simplistic interprocessor communication

requirements. A detailed objective function can be developed for more complex

communication patterns created by the complex event dependencies. This methodology

can also be formulated as a linear programming optimization problem that can be solved

to obtain the best submodel designs or process allocation airangement.

Design of Communication Protocols

Researchers in the computer science area have taken some major sb:ides in this

problem specific domain. Most researchers devote their attention to developing

algorithms that can withstand "deadlock" situations. More research is needed in

understanding the event dependencies involved in typical manufacturing operations such

as hierarchical control, material handling, blocking and balking, machine breakdowns

and repair, etc.

BIBLIOGRAPHY

Adiga, S. (1989), "Software Modeling of Manufacturing Systems: A Case for an Object
Oriented Programming Approach," Analysis, Modeling, and Design of Modern
Production Systems, A. Kusiak and W.E. Wilhelm, Eds., J.C. Baltzer A.G., Basel,
Switzerland.

Agha, G. and C. Hewitt (1988a), "Actors: A Conceptual Foundation for Concunent
Object Oriented Programming," Research Directions in Object Oriented
Programming, MIT Press, Cambridge, MA.

Agha, G. and C. Hewitt (1988b), "Concurrent Programming Using Actors," Object
Oriented Concurrent Programming, MIT Press, Cambridge, MA.

America, P. (1988), "POOL-T: A Parallel Object Oriented Language," Object Oriented
Concurrent Programming, MIT Press, Cambridge, MA.

Aki, S. (1989), The Design and Analysis of Parallel Algorithms, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Bain, L.W. and D.S. Scott (1988), "An Algorithm for Time Synclu·onization in
Distributed Discrete Event Simulation," Proceedings of the SCS Multiconference on
Distributed Simulation, B. Unger and D. Jefferson Eds., SCS, San Diego, CA, 30-
33.

Basnet, C., P. Fanington, D. Pratt, M. Karnath, C. Karacal, and T. Beaurnariage (1990),
"Experiences in Developing an Object-Oriented Modeling Environment for
Manufacturing Systems," 1990 Winter Simulation Conference Proceedings, 0.
Balci, R. Sadowski, and R. Nance, Eds., IEEE, Piscataway, NJ, 477-481.

Beaurnariage T. (1990), "Investigation of an Object Oriented Modeling Environment for
the Generation of Simulation Models," Ph.D. Thesis, Depaitrnent of Industrial
Engineering and Management, Oklahoma State University, Stillwater, OK.

Biles, W. (1985), "Statistical Considerations in Simulation on a Network of
Microcomputers," Winter Simulation Conference Proceedings, IEEE, Piscataway,
NJ, 388-393.

Biltwistle, G.M. (1979), Discrete Event Modeling on Simula, Springer-Verlag New York
Inc., New York, NY.

138

139

Brock, J.D. and W.B. Ackerman (1981), "Scenarios: A Model of Non-dete1minate
Computation," Formalization of Programming Concepts, Springer-Verlag, 252-259.

Bustard, D., J.Welder, and J. Welsh (1988), Concurrent Program Structures, Prentice
Hall, Inc., Englewood Cliffs, NJ.

Chandak, A. and J.C. Browne (1983), "Vectorization of Discrete Event Simulation,"
InProceedings of the 1983 International Conference on Parallel Processing, 359-
361.

Chandrasekaran, U. and S. Sheppard (1987), "Discrete Event Distributed Simulation - A
Survey," In Proceedings of the SCS Multiconference on Methodology and
Validation, 0. Balci Eds., SCS, San Diego, CA, 19, 1, 32-37.

Chandy, K.M. and J. Misra (1979), "Distributed Simulation: A Case Study of Design
and Simulation of Distributed Programs," IEEE Transactions on Software
Engineering, SE-5, 5, 440-452.

Chandy, K.M. and J. Misra (1981), "Asynchronous Distributed Simulation via a
Sequence of Parallel Computations," Communications of the ACM, 24, 4, 198-206.

Chandy, K.M. and R. Sherman (1989a), "Space Time and Simulation," Proceedings of
the SCS Multiconference on Distributed Simulation, B. Unger and R. Fujimoto Eds.,
SCS, San Diego, CA, 21, 2, 53-57.

Chandy, K.M. and R. Sherman (1989b), "The Conditional Event Approach to Distributed
Simulation," Proceedings of the SCS Multiconference on Distributed Simulation, B.
Unger and R. Fujimoto Eds., SCS, San Diego, CA, 21, 2, 93-99.

Chen L. and C. Chen (1990), "A Fast Simulation Approach for Tandem Queueing
Systems," 1990 Winter Simulation Conference Proceeding, 0. Balci. R.P.
Sadowaski, and R.E. Nance Eds., WSC, IEEE, Piscataway, NJ, 539-546.

Comfort, J.C. (1984), "The Simulation of a Master Slave Event Set Processor,"
Simulation, 42, 3, 117-124.

Davis IV, N.J., D. Mannix, W.H. Shaw, and T.C. Hartrum (1990), "Distributed Discrete
Event Simulation Using Null Message Algorithm on Hypercube Architectures,"
Journal of Parallel and Distributed Computing, 8, 349-357.

Derrick J.E., 0. Balci, and R.E. Nance (1989), "A Comparison of Selected Conceptual
Frameworks for Simulation Modeling," 1989 Winter Simulation Conference
Proceeding, E.A. MacNair, K.J. Musselman, and P. Heidelberger Eds., WSC, IEEE,
Piscataway, NJ, 711-718.

140

Fujimoto, R.M. (1989), "Performance Measurements of Distributed Simulation
Strategies," Transactions of The Society of Computer Simulation, O.A. Palusinski
and P. Luker Eds., SCS, San Diego, CA, 6, 2, 89-132.

Goldberg, A., and D. Robson (1989), Smalltalk 80: The Language, Addison-Wesley,
Reading, M.A.

Hewitt, C.E. and H. Backer (1977), "Laws for Communicating Parallel Processes,"
Proceedings of 1977 !PIP Congress, 987-992.

Hoare, C.A.R. (1978), "Communicating Sequencial Processes," Communications of the
ACM, 21, 8, 666-677.

Ishikawa, Y. and Tokoro M. (1988), "Orient84/k: An Object Oriented Concunent
Programming Language for Knowledge Representation," Object Oriented
Concurrent Programming, MIT Press, Cambridge, MA.

Jones, D.W. (1986), "An Empirical Comparison of Pri01i.ty-Queue and Event-Set
Implementations," Communications of the ACM, 29, 4, 300-311.

Kahn, K. and D. MacQueen (1977), "Coroutine and Networks of Parallel Processes,"
Information Processing 77: Proceedings of IFIP, Academic Press, 993-998.

Law, A.M. (1986), "An Introduction to Simulation: A Powerful Tool for Analyzing
Complex Manufacturing Systems," Industrial Engineering 18, 5, 46-63.

Lalonde, W.R. and J.Pugh (1991),Inside Smalltalk: Volume II, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

McCarthy, J. (1959), "Recursive Functions of Symbolic Expressions and their
Computation by Machine," Memo 8, MIT.

Mitrani, I. (1982), Simulation Techniques for Discrete Event System, Cambridge
University Press, Cambridge, UK.

Nevison C. (1990), "Parallel Simulation of Manufactmi.ng Systems: Structural Factors,"
Proceedings of the SCS Multiconference on Distributed Simulation, D. Nicol Eds.,
SCS, San Diego, California, 22, 2, 17-22.

Park, S.K. and K.W. Miller (1988), "Random Number G~nerators: Good Ones are Hard
to Find," Communications of the ACM, 31, 10,1192-1201.

Pratt, V.R. (1982), "On the Composition of Processes," Proceedings of the 9th Annual
Conference on Principles of Programming Languages 1982.

Pratt, D.B., P.A. Farrington, C.B. Basnet, H.C. Bhuskute, M. Karnath, J.H. Mize (1991),
"A Framework for Highly Reusable Simulation Modeling: Separating Physical,

141

Information, and Control Elements," In Proceedings of the 24th Annual Simulation
Symposium, A.H. Rutan (Ed.), IEEE Computer Society Press, 254-261.

Pratt, D.B. (1992), "Development of a Methodology for Hybrid Metamodeling of
Hierarchical Manufacturing System Within a Simulation Framework," Ph.D. Thesis,
Department of Industrial Engineering and Management, Oklahoma State
University,Stillwater, OK.

Pritsker, A.A.B. (1979), "Compilation of Definitions of Simulation,"SIMULATION,
33,1,61-63.

Pritsker, A.A.B. (1986), Introduction to Simulation and SLAM II, Third Edition, Halsted
Press, New York, NY.

Reed, D.A. (1985), "Parallel Discrete Event Simulation: A Case Study," 18th Annual
Simulation Symposium, IEEE Computer Society Press, 95-107.

Reed, D.A. and A. Maloney (1988), "Parallel Discrete Event Simulation: The Chandy
Misra Approach,"In Proceedings of SCS Multiconference on Distributed Simulation,
B. Unger and D. Jefferson Eds.,SCS, San Diego, CA, 8,13.

Reynolds, P.F. (1982), "A Shared Resource Algorithm for Distributed Simulation,"
Proceedings of the 9th Annual Symposium on Computer Architecture, Austin, TX, 9,
3, 259-266.

Rogers, P. and M.T. Flanagan (1991), "On-Line Simulation For Real-Time Scheduling
Of Manufacturing Systems," Industrial Engineering, 23, 12, 37-40.

Seethalakshmi, M. (1990), "A Study and Analysis of Perf01mance of Distributed
Simulation," M.S. Thesis, University of Texas at Austin, Austin, TX.

Yokote, Y. and M.Tokoro (1988), "Concurrent Programming in ConcurrentSmalltalk,"
Object Oriented Concurrent Programming, MIT Press, Cambridge, MA.

Yonezawa, A. , E. Shibayama, T. Takada, and Y. Honda. (1988), "Modeling and
Programming in Object Oriented Concurrent Language ABCL/1," Object Oriented
Concurrent Programming, MIT Press, Cambridge, MA.

VITA

Hemant C. Bhuskute

Candidate for the Degree of

Doctor of Philosophy

Thesis: APPLICATION OF PARALLEL PROCESSING FOR OBJECT ORIENTED
DISCRETE EVENT SIMULATION OF MANUFACTURING SYSTEMS

Major Field: Industrial Engineering and Management

Biographical:
Personal Data: Born in Pune, India, September 29, 1964, the son of

Chandrashekhar S. and Shailaja C. Bhuskute.

Education: Graduated from Ramnarayan Ruia Junior College, Bombay in May
1982; received Bachelor of Science Degree in Electrical Engineering from
Bombay University in May 1986; received Master of Manufacturing
Systems Engineering Degree from Oklahoma State University in July,
1989; completed the requirements for the Doctor of Philosophy degree at
Oklahoma State University in May 1993.

Professional Experience: Manufacturing Systems Engineer, Fabricut Inc., from
May 1988 to January 1989; Teaching Assistant, School oflndustrial
Engineering and Management, Oklahoma State University, from August
1989 to May 1990; Research Associate, School of Industiial Engineering
and Management, Oklahoma State University, from June 1990 to present.

