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CHAPTER I 
 

 

INTRODUCTION 

Statement of Problem and Purpose of Study 

Rocks of the Atokan stage (Kansas Geological Survey Stratigraphic Nomenclature) have 

been under studied across much of the Midcontinent, but debate exists where to place the 

boundary between the Morrowan and Atokan, as well as the Atokan and Desmoinesian. Some 

geologists believe that parts of the lower Pennsylvanian upper Morrowan are, in reality, Atokan 

in age (Curtis and Ostergard, 1982). Clay mineralogy shows a dominance of illite in Morrowan 

shales and that uplift during Atokan time triggered a dominance of montmorillonite in Atokan 

shales in areas near the Wichita Mountains and Criner Hills (Weaver, 1958).  

The boundary between the Atoka and Desmoinesian is also debated and has not been 

satisfactorily identified in northwestern Oklahoma (Boler, 1959). Rough estimates put it ten (10) 

to thirty (30) feet below the Inola limestone (Mannhard and Busch, 1974), but the Inola 

Limestone is not a widespread, continuous bed across the Midcontinent Region (Midcontinent). 

Atokan strata have been found to contain Mississippian and Pennsylvanian foraminifera in the 

Arkoma Basin (Galloway and Ryniker, 1930). The key to delineating the Atokan is through 

biostratigraphy by using various microfossils including conodont assemblages and the 

foraminifera Fusulinella (Moore, 1948).  

The middle Pennsylvanian (Atokan) Thirteen Finger Limestone in west-central Kansas 

doesn‟t outcrop and must be studied through core analysis. The core from the Amoco Production 
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Company, Rebecca K. Bounds #1 well has a nearly complete section of the Atoka stage that has 

not been extensively studied. The core was studied in both hand sample and thin section to 

determine lithology and sampled for various geochemical analyses including X-ray fluorescence 

(XRF), X-ray diffraction (XRD), and Total Organic Carbon (TOC) to gather compositional data 

used to interpret the depositional setting. Microfossil abundances and vertical distributions were 

determined to aid in the interpretation of the depositional setting and biostratigraphic ages of the 

core. In addition, shales have in recent years proven their ability to trap recoverable hydrocarbons 

(Nelson, 2009) and the Thirteen Finger Limestone shows potential as a hydrocarbon resource 

(Davis, 1964). Lastly, work by Loucks (2009) found that nanoporosity in shale commonly occurs 

in grains of organic matter. Spectral gamma-ray values of uranium will be compared to metal 

concentrations from XRF and TOC values to see if wireline measurements can be a predictor of 

TOC and thus nanoporosity in shale. This work lays the groundwork for future studies of the 

Atokan in Kansas and the remaining areas that make up the Hugoton Embayment and Anadarko 

Basin. 

 

Location of Area of Study 

The Thirteen Finger Limestone described in this study is core from the Amoco 

Production, Rebecca K. Bounds #1 well located in Section 17, T.18S., R.42W., Greeley County, 

Kansas (Fig. 1). The well is located in western Kansas approximately 16 miles (19.3 km) west of 

Tribune, KS and 4 miles (6.3 km) east of the Colorado border. This well was drilled March 6, 

1988 and reached a total depth (TD) of 5,956 feet (1,815 m) on April 6. The well was 

continuously cored from a depth of 900 feet (274 m) to TD starting in the upper Cretaceous 

Greenhorn Limestone and stopping in the Arbuckle Group (Dean et al, 1995; Kansas Geological 

Survey, 2011). 
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Figure 1: Location of the Rebecca K. Bounds #1 well drilled in Section 17, T.18S., R.42W., Greeley County, Kansas (Modified from 

Prescott et al., 1954).
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In the Rebecca K. Bounds #1 well, the top of the Pennsylvanian is at a depth of 3525 feet, the 

base at 5222‟. The Atokan stage spans the interval from approximately 4900‟-5021‟. This core is 

in the care of the Kansas Geological Survey, who provided photographs and well log data, and 

allowed sampling and analysis of the interval of interest. 

 

Geologic Setting 

The Anadarko Basin stretches from south-central Oklahoma, into the Texas Panhandle, 

and northward into the Oklahoma Panhandle and western Kansas as the Hugoton Embayment 

(Fig. 2). Flooding from the southeast during the early Mississippian created stable shelf 

conditions through the late Mississippian forming thick, continuous carbonates across the 

Midcontinent (Eddleman, 1961)(Fig. 3). 

 During the later stages of the Mississippian, the area containing northwest Oklahoma, 

northeast Texas Panhandle, southeast Colorado, and southwest Kansas underwent epeirogenic 

upwarp while the Amarillo-Wichita and Cimarron arches became positive along a line of 

Precambrian folds to the southwest of the Anadarko Basin (Huffman, 1959). At the end of the 

Mississippian the Central Kansas Uplift, Las Animas Arch, and Sierra Grande Highland 

experienced a slight uplift that triggered the exposure of much of the Anadarko Shelf and 

Hugoton Embayment (Curtis and Ostergard, 1982)(Fig. 4). This exposure (Fig. 4) triggered 

aggressive stream incision followed by a regional subsidence which led to the formation of the 

early Pennsylvanian Morrow channel sandstones of the Stateline Trend in east-central Colorado 

and west-central Kansas (Bowen and Weimer, 2003)(Fig. 2). At the close of the Morrowan, 

continued subsidence and transgression inundated the Anadarko shelf and Hugoton Embayment 

and the sediments that became the Atokan Thirteen Finger Limestone were deposited (Curtis and 

Ostergard, 1982)(Fig. 5). 
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Figure 2: Map of the southern Midcontinent showing major tectonic features during the middle Pennsylvanian. The Stateline Trend of 

Colorado and Kansas is located approximately 4 miles west of the Rebecca K. Bounds #1 well. The location of the Rebecca K. Bounds #1 

well is shown in red (Modified from Huffman, 1959). 
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Figure 3: Paleogeographic map of North America during the Pennsylvanian (Modified from Wicander and Monroe, 1989) 
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Figure 4: Depositional setting at the end of the Morrowan stage and thickness of Morrowan rocks. The Stateline Trend in black produces 

oil out of Morrowan channel sandstones and will have ultimate recoverable reserves of about 110 MMBO (Jones and LeBlanc, 2004) 

Rebecca K. Bounds #1 well in red (Modified from Rascoe and Adler, 1983). 
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Figure 5: Depositional setting at the end of the Atokan stage and thickness of Atokan rocks in the Arkoma Basin. Rebecca K. Bounds #1 

well in red (Modified from Rascoe and Adler, 1983). 
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The Rebecca K. Bounds #1 well is located in the Hugoton Embayment (Bowen and 

Weimer, 2003)(Fig. 2). The Hugoton Embayment, formally part of the “Dodge City Basin” until 

renamed by Maher and Collins (1949), existed as a broad shallow equatorial sea (Wicander and 

Monroe, 1989) that connected the early Anadarko Basin to the early Denver Basin. In the 

Carboniferous, uplift of the Las Animas Arch separated the Hugoton Embayment from the 

Denver Basin to the west. The Central Kansas Uplift separated the Hugoton Embayment from the 

Salina and Sedgwick Basins to the east (Huffman, 1959). The Hugoton Embayment remained 

open to the Anadarko Shelf to the south. 

During the Pennsylvanian the Midcontinent of North America was dominated by epeiric 

seas (Fig. 3) that periodically inundated the craton developing cyclothems in response to eustasy 

(Heckel, 1986) and tectonism (Klein and Willard, 1989). Metal-rich marine black shales 

developed across the region. Fifteen of these marine black shales are found in a broad area of the 

Midcontinent USA covering 20,000 – 1,000,000 square kilometers (Coveney et al., 1991). Middle 

to upper Pennsylvanian strata of Kansas contain typical cyclothemic sequences composed of 

limestone, black core shale, gray shale, and coal (Heckel, 1986). Variance among cyclothemic 

deposits reflect decreased tectonic influence in the Midcontinent (Klein and Willard, 1989) 

although climate change may have affected cyclothem development as well (Cecil, 1990). 

 

Brief Description of the Thirteen Finger Limestone 

The Atokan is a middle Pennsylvanian stage below the Desmoinesian and above the 

Morrowan (Fig. 6). The Atoka Formation extends across western Oklahoma and into the Hugoton 

Embayment of southwestern Kansas and southeastern Colorado (Huffman, 1959). “Atokan” is the 

general subsurface name replacing the older term “Lampasas” (Cheney, 1940). The name comes  
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Figure 6: Geological time scale for the Carboniferous and generalized stratigraphy of the 

Stateline Trend of Colorado and Kansas. Nomenclature is that currently used by the 

Kansas Geological Survey (Modified from Moriarty, 1990) 
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from the type area near Atoka, Oklahoma (Branson, 1962) and was named in 1900 by J. A. Taff 

(Curtis and Ostergard, 1982). The type section for the Atoka Formation consists of 7,000 feet of 

dark shale with several sandstone tongues and lenses (Branson, 1962; Huffman, 1959). The 

thickest measured section of Atokan strata in the Anadarko Basin is in northern Beckham County 

(Huffman, 1959). In Colorado, Atokan lithologies become arkosic near the Sierra Grande Uplift. 

Atokan age sandstones transition to carbonates moving north from the Oklahoma Panhandle into 

Kansas. Near the southern margins of the Anadarko Basin, the Atokan is represented as a 

dolomite “wash” (Lyday, 1985). In the Arkoma Basin, thirteen gas-bearing sandstones are 

identified within the thick Atokan shale. In Arkansas, Atokan strata locally contain thin coal beds 

and carbonaceous streaks (Fort Smith Geological Society, 1960). 

G. L. Meholin is credited for naming the Thirteen Finger Limestone because it has up to 

thirteen “fingers” on wireline resistivity logs (Jordan, 1957). This name is commonly used in the 

Texas and Oklahoma Panhandle portions of the Anadarko Basin. In Kansas, the Thirteen Finger 

Limestone consists of eleven (11) to thirteen (13) thin limestones interbedded with shale (Clark, 

1987). In southwestern Clark County, Kansas, the limestone beds are light brown to gray, 

fossiliferous, finely crystalline to microcrystalline, and variably dolomitic, pyritic, or 

argillaceous. Shale units are gray to black, greasy in luster, micaceous, and fossiliferous 

(Mannhard and Busch, 1974). A hard coal with a greasy luster and underclay are found at the 

base (Curtis and Ostergard, 1982; Gibbons, 1964). 

Because the Thirteen Finger Limestone is notable for its abundance of continuous 

interfingering shale and carbonate and widespread distribution, it is an excellent local time-

stratigraphic datum (Swanson, 1979). It directly overlies the upper Morrowan shale and in turn is 

overlain by the Desmoinesian Cherokee Group. The Thirteen Finger Limestone is fourty-six (46) 

to seventy-four (74) feet thick in Texas County, Oklahoma and thickens into the Anadarko basin 
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(Curtis and Ostergard, 1982). The Thirteen Finger Limestone measures sixty (60) feet thick in 

southwestern Clark County, Kansas (Clark, 1987). 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 Most of the Pennsylvanian carbonates of the Rebecca K. Bounds #1 core were deposited 

in a shallow tropical sea with diverse marine biota including crinoids, bryozoans, brachiopods, 

bivalves, gastropods, corals, phylloid algae, borings and micritic rims and envelopes (Buijs et al., 

2004). The Atokan Stage is extensively studied in the Arkoma Basin of Arkansas and Oklahoma 

and the Anadarko Basin of Oklahoma and Texas Panhandle where hydrocarbon production is 

economical. Atokan lithologies in these two basins are vastly different. 

 In the Anadarko Basin, the Morrowan contact with the Thirteen Finger Limestone ranges 

from disconformable to gradational. The Thirteen Finger Limestone is generally seventy-five (75) 

to one-hundred (100) feet thick and consists of a cyclic sequence of thin marine limestone and 

shale similar to the conformably overlying lower Desmoinesian section (Rascoe and Adler, 

1983). 

 Worden (1961) examined pre-Desmoinesian rocks of the Amarillo-Hugoton area, a 

38,000 square mile area of southwestern Kansas, southeastern Colorado, northeastern New 

Mexico, and the panhandles of Oklahoma and Texas. In this region, the lower contact of the 

Atokan consists of thin basal glauconitic sandstones to conglomerates that are interpreted to be 

evidence of a post-Morrowan unconformity. Above, is dark gray to brown, siliceous, “tight” 

Thirteen Finger 
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Limestone that is interbedded with dark gray to black, carbonaceous, micaceous, silty shale 

(Barby, 1956). Maher (1946) described the Thirteen Finger Limestone as a cream-colored, 

glauconitic limestone and black, dense limestones interbedded with green and black shale.  

The Atokan becomes more sandy and shaly moving westward from southwestern Kansas 

into southeastern Colorado and becomes arkosic near the flanks of the Sierra Grande Uplift 

(Barby, 1956). It developes into an arkosic limestone-conglomerate interbedded with green, 

brown, and gray shales with lesser amounts of pink to brown “granite wash” near the top of the 

section along the north flank of the Amarillo Uplift (Worden, 1961). 

 In the deep Anadarko Basin, the Atokan consist of recycled detrital dolomites (Lyday, 

1985). In the Berlin Field of Beckham County, Oklahoma, the Atoka is a 15,000‟ deep, 

overpressured reservoir encompassing 41 square miles. The source of the sediment is from 

erosion of the Cambro-Ordovician Arbuckle Dolomite during the Amarillo-Wichita uplift. 

 The Atokan has not been studied in detail in the vicinity of the study area. It is often 

indistinguishable from Desmoinesian strata (Rascoe and Adler, 1983) and can only be separated 

using fossil data, such as the predominant Atokan fusulinid Fusulinella (Worden, 1961). The 

focus of most research an Pennsylvanian rocks in west-central Kansas, eastern Colorado, and the 

Oklahoma Panhandle has been on oil and gas producing Morrowan channel sandstones (Bowen 

and Weimer, 2003). 
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CHAPTER III 
 

 

METHODOLOGY 

 

Research on the Atokan Series in the Rebecca K. Bounds #1 core consisted of 8 

components: core description and sampling, x-ray fluorescence analysis, thin-section analysis, 

porosity and permeability measurements, organic carbon analysis, x-ray diffraction analysis, core 

digestion for biostratigraphy, and interpretation of all results. 

X-ray fluorescence measurements were taken on forty-eight (48) samples with an 

emphasis on the shales of the Thirteen Finger Limestone. Core pieces were placed in a Thermo 

Scientific Portable Test Stand and tested using a Thermo Scientific Niton XL3t XRF analyzer. 

The XRF analyzer was set to bulk mineral mode and set to an aperture of 8mm. Three standards, 

including the USGS SCo-1, NIST 2780, and Iron Post Coal, were reanalyzed every seven 

samples. These values were compared to determine instrument reliability and accuracy of the 

readings over time.  

Fourteen (14) carbonates and one (1) shale of the Thirteen Finger Limestone were 

sampled for thin sections. Samples were cut from core using a Target wet saw and polished with 

Buehler 600 grit silicon carbide powder on a 10” diameter Highland Park Manufacturing Co. 

polish wheel, followed by Buehler 1000 grit silicon carbide powder on a 1 ft³ glass plate. These 

samples were attached onto Ward‟s 27 x 46 mm, 1.2 mm thickness petrographic microscope  
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slides using Loctite 0151 Hysol epoxy-patch adhesive and allowed to cure for 24 hours. Further 

trimming was completed using a water-cooled model 137 Ingram thin section cut-off saw and a 

water-cooled model 400U Ingram thin-section grinder. Final polishing was completed with 

Buehler 1000 grit silicon carbide powder on a glass plate. Thin sections were analyzed using a 

Nikon OPTIPHOT-POL thin-section petrascope with a Nikon CFW 10x point-count eyepiece. 

 Four plugs from unfractured carbonates were taken from the core using a water-cooled 

model A5816 Wilton 15” variable speed drill press. A 1” Scorpion Engineering coring bit was 

used. Core Labs Instruments PORG-200 using nitrogen was calibrated and used to measure 

porosity of the plug samples. Core Labs Instruments PERG-200 using nitrogen was calibrated and 

used to measure permeability of the plugs. 

The core was sampled for total organic carbon (TOC) at each visibly noticeable change in 

lithofacies. Samples were prepared for TOC analysis by hand crushing using a porcelain mortar 

and pestle and by powdering in a Spex ball mill using porcelain bearings in a Spex SampleProp 

8003 alumina vial. 

Powdered samples weighing between 37.9 and 63.8 mg were measured using a Mettler 

Toledo XS205 DualRange scale, placed in Teflon blanks and run through a UIC Inc Coulometrics 

CM5130 Acidification Module using 2N perchloric acid to obtain the Total Inorganic Carbon 

(TIC) concentration. Duplicate samples were placed in ceramic blanks and run through a UIC 

TF55030A-1 Tube Furnace set at 950° C to measure the Total Carbon (TC) concentrations. 

Standards of pure calcite with 12% TC and TIC were used for calibration. CO2 liberated through 

both methods was quantified by coulometric titration. Organic Carbon concentrations were 

calculated from the difference between the TC and TIC concentrations. 

Six powdered samples that were left over from the TOC process were run through a 

Phillips PW 3200 X-ray Diffraction analyzer in a Phillips PW 3710 mpd control to measure the 
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bulk mineral composition of the Thirteen Finger limestone. These depths include 4877‟, 4947.5‟, 

4952‟, 4953‟, 4973‟, and 5023‟. Lithologies sampled included gray shale, black shale, 

carbonaceous black shale, and limestone. 

Conodont biostratigraphy was used to date the core. Core pieces were broken into <1 in³ 

pieces using a rock hammer and anvil. Crushed core was divided roughly into 500 gram sample 

batches and placed in 5 gallon buckets along with 6 liters of water and 550 mL of formic acid. 

Clay rich samples were further digested in 5 gallon buckets using hydrogen peroxide at 32% 

concentration. These processes were repeated until the core had been sufficiently broken down 

for analysis. Samples of unique core with recrystalized fractures and black shale were set aside 

and preserved for further analysis.  

Digested samples were sifted using a Tyler Standard 0.0165 in³ (425 μm) and U.S.A. 

Standard 0.0059 in³ (50 μm) sieve. Residues in the 425 μm and 50 μm sieves were kept separate 

and wrapped in paper towels, labeled, and placed in a 100 series model 116G Fisher Isotemp 

oven to dry for 24 hours. Large residues were stored in labeled plastic bags. Fine grained residues 

were left to soak in kerosene for 24 hours to separate the clay from the rest of the sample. After a 

final sift, the remaining samples were dried and placed in small manila envelopes, labeled, and 

picked for microfossils. Conodonts were identified using a Nikon paleoscope. Types and 

abundances were calculated to aid in the interpretation of the age and depositional environments. 
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CHAPTER IV 
 

 

CORE DESCRIPTION 

 

The Rebecca K. Bounds #1 well drilled by Amoco Production Company was cored from 

900‟ to 5956 „. It was determined that there is a discrepancy between core depth and logged 

depth. Core depths, with the exception of 5005 feet and lower, are approximately five (5) feet 

lower than logging depths. All core descriptions, core photographs, thin section photographs, and 

other depths specified are in core depth. All lithologic columns, gamma-ray logs, and plotted 

XRF data are in log depth. 

Analysis of the Rebecca K. Bounds #1 core (Fig. 7) began at 4825‟ in a gray shale from 

the Desmoinesian Marmaton group. The Marmaton consists of gray shale, a burrowed fine-

grained sandstone, the Little Osage core shale, a light gray dolomitic micrite, and a gray shale 

with a structureless zone (exposure surface) at the base at 4850.24‟. The Little Osage Shale at 

4842‟ is the dominant marker bed of the Marmaton as it contains more than 22 ppm uranium (Fig. 

7). 

 The Desmoinesian Cherokee Group stretches from an unconformity at 4850.25‟ to an 

exposure surface at 4939.7‟. Two major markers of the Cherokee include the Excello Shale at 

4876‟ and the Oakley Shale at 4884‟. These two shales are black, organic rich, and contain more 

than 20 ppm uranium. The Cherokee is composed of mostly dolomitized clay-rich mud- to 

wackestone. Shaly fossil hash zones (2” to 6” thick) occur in the carbonates. Examples include  
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Figure 7: Lithologic column of the Rebecca K. Bounds #1 core including gamma-ray and 

spectral gamma-ray curves for uranium. Note core depth (used in text) is approximately 

five (5) feet lower than log depth above 5000’. 
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4878.5‟, 4901.5‟, and 4919‟. A thin section at 4928‟ contains limestone with abundant peloids 

and open vertical fractures. 

The Atokan section extends from an exposure surface at 4939.7‟ to a basal coal at 

5017.5‟. It contains nine (9) significant dark gray to black shales (Figs. 8 and 9) with ten (10) 

interbedded mud- to wackestones, some dolomitized. Many of the carbonates are clay-rich and 

often contain shale-rich fossil hash zones that contain abundant brachiopods and crinoids. Good 

examples of these can be found at 4949.5‟ and 4961‟. Peloids are found in thin section at 4944‟. 

From 4987‟ to 4996‟ is a nodular limestone in a dark gray mud matrix. Near the base of the 

Atokan are three shales that transition from carbonized to coaly shale ending with a coal at the 

base. These units contain three (3) interbedded micrites. Limestones at 4946‟, 4956-4958‟, 4961‟, 

and 4965‟ contain open vertical fractures (Fig 10). Limestones at 4944‟, 4951‟, 4955‟, 4966‟, 

4970‟, 4973‟, and 5005‟ show numerous open and healed fractures in thin section (Fig 11). In 

thin section these fractures range between 6 μm to 18 μm wide. 

Below the Atokan is a Morrowan paleosol at 5017.5‟. Below this is a dark gray to black 

shale, sandstone and a dark shale that continues to the bottom of the core where analysis ended at  

5073‟. Detailed description of the core, including core and thin section photos, are in Appendix I. 
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Figure 8: Core photo for depth 4952’ showing a black shale with rare marine 

macroinvertebrates. TOC = 7.1% 
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Figure 9: Thin section photo for depth 4952’ showing eolian silt (A), silica replacement of 

bioclasts (B), and phosphate nodules (C) in a black shale matrix. 
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Figure 10: Core photo for depth 4955’ showing a highly fractured clay-rich micrite with 

abundant marine invertebrate fossils including crinoids. 
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Figure 11: Thin section photo for depth 4966’ showing bioclasts in a micrite matrix. 

The open (dark colored linear feature) and healed (light colored linear feature) 

factures are approximately 10 μm wide. 

 



25 
 

CHAPTER V 
 

 

BIOSTRATIGRAPHY 

Due to the interpreted basinal setting, numerous limestones and shales and their dark 

color; an initial hypothesis was that the Thirteen Finger Limestone of the Rebecca K. Bounds #1 

core would contain multiple condensed sections. Initially, the core was to be biostratigraphically 

constrained and then correlated to other “Atokan” sections. One major difficulty facing this 

project was acquiring adequate volume of core to complete a detailed micropaleontological study. 

Only a few samples of core representing the different lithofacies were allowed to be collected for 

destructive analysis. This limitation in sampling has contributed to the difficulty in establishing 

the precise location of time boundaries between the Morrowan, Atokan, and Desmoinesian using 

micropaleontological analysis.  

All of the collected shale and carbonate samples were processed. The shale samples were 

slow to disaggregate and the work is ongoing. As a result, biostratigraphic work was only 

completed on carbonate samples. The core samples that were dated are upper Atokan based on 

the co-occurrence of the conodonts Idiognathodus gibbus and Idiognathodus amplificus. More 

data is necessary before an interpretation of the depositional environment can be completed. 

Future biostratigraphic work includes complete digestion of all shale samples from the 

Rebecca K. Bounds #1 core. Once completed, biostratigraphic analysis of other cores in the area 

will commence and the results correlated to the Rebecca K. Bounds #1 well to interpret the 

depositional environments during Atokan time.  
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CHAPTER VI 
 

 

GEOCHEMICAL ANALYSIS 

Total Organic Carbon 

Total Organic Carbon (TOC) content is used to decipher the type of environment that 

existed during the time of deposition and a rock‟s potential to be a source for hydrocarbons. 

Three major controls determine TOC:  organic-rich sediment supply, high organic productivity, 

and preservation of organic matter. Preservation of organic matter is controlled by anoxia,  which 

occurs through the following three marine controls: restriction of lateral circulation in the deep-

water column, thermohaline stratification, and high levels of primary productivity and export of 

organic carbon from surface waters such that respiratory oxygen demand in lower levels of the 

water column exceeds renewal (Cruse and Lyons, 2004). 

Ronov (1958) determined that petroliferous shales of the Russian Platform have a mean 

TOC content of 1.37%, compared to 0.5% for carbonates. He states “These figures indicate an 

existence of a certain minimum of organic substance in the major sedimentary complexes below 

which the transformations of disseminated organic carbon cannot be conductive to the 

development of economic accumulations of petroleum. This critical level lies somewhere 

between the organic carbon averages for the petroliferous and the nonpetroliferous areas, that is, 

between 1.4 and 0.4 percent and it is probably closer to the first one of these two figures.” 

(Ronov, 1958). 
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The minimal percentage of TOC required for economical oil and gas production is 

debated. Some geochemists contend that 0.4 to 1% is sufficient, while others contend that 1 to 

1.5% is needed to compensate for recycled carbonized material (Hunt, 1976). Two samples from 

the Rebecca Bounds core, 4877‟ and 4947.5, contain notably carbonized shales and represent our 

highest TOC values, 17.0% and 20.3% respectively. Carbonized matter is unable to produce 

petroleum (Hunt 1976) and therefore must be accounted for in TOC evaluation. 

Ettensohn (1994) states, “dark marine shales that are organic-rich and have a total organic 

carbon content in excess of one percent … typically form source rocks in which kerogen types I 

and II predominate.”  Hunt (1976) warns that not all dark shales are organic rich; they may owe 

their color to more ferrous sulfides or other heavy metal sulfides or oxides. The Thirteen Finger 

Limestone contains abundant pyrite and so TOC must be measured. 

Twenty shale samples from the Thirteen Finger Limestone were tested for TOC. 

Measured values of TOC content vary from approximately 1% up to 20.2% (Figs. 12 and 13). 

The mean content was 6.16% for non-carbonized shales. These values are comparable to values 

from the Marcellus Shale that ranges from 0.6% to 11% in northeastern Pennsylvania (Laughrey 

et al. 2011). The Excello Shale, a Pennsylvanian (Desmoinesian) source rock, has TOC values of 

1 to 17% with an average of 10% (Ece, 1989). The Excello Shale measured 17.03% TOC in the 

Rebecca K. Bounds core. The shales of the Thirteen Finger Limestone are rich enough to produce 

hydrocarbons and evidence shows the viability of extracting natural gas out of shale (Nelson, 

2009). This is evident in Morton County, Kansas where there has been gas production from 

Atokan carbonates in the Pan American #1 Perkins well located at Sec. 28, T.31S., R.40W. in the 

Kinsler Field (Davis, 1964) 
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Figure 12: Lithologic column of the Rebecca K. Bounds #1 core including TOC, gamma-

ray, and spectral gamma-ray for uranium. 
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Figure 13: Weight percent total carbon (Ctotal), total inorganic carbon (Cinorg), and total 

organic carbon (Corg) for selected samples of the Rebecca K. Bounds #1 core. 
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X-Ray Fluorescence 

Along with organic carbon, trace metals can be used to interpret depositional 

environments. The Rebecca K. Bounds #1 core was sampled at forty-eight different depths using 

a Niton handheld x-ray fluorescence (XRF) device.  Using this data, changes in base metal 

concentration were determined. The concentration of thirty-five elements from magnesium to 

uranium was measured to ppm.  

Transition metals come from both detrital and authigenic sources (Cruse and Lyons, 

2004). Concentrations influenced by changes in water-column conditions are authigenic. 

Following the steps of Cruse and Lyons (2004) to compensate for detrital sources, the data has 

been normalized to aluminum. Van der Weijden (2002) showed that uncorrelated variables may 

cause spurious correlations when normalization is used. Comparing the reported and measured 

values for Al of the NIST 2780 and USGS SCo-1 standards, the reported values were 2.5 times 

and 2.1 times the values measured using the Niton XL3t XRF analyzer, respectively. Using Sr 

and Mn for carbonates (Fig 14)  and the transition metals for shale (Figs 15 and 16), it was 

determined that only the trends of the plots will be useful in confirming changes in 

paleoenvironments determined from microfossil and core analysis. Since the samples were not 

powdered, the only possible sources for contamination would be the coring and slabbing 

processes. 

The data was plotted verses depth and expressed in a metal/Al ratio and compared to the 

Post-Archean Average Shale (PAAS; Taylor and McClennan, 1985; Figs 15 and 16) which is 

indicated by a red line. This calculated standard is an approximate baseline for the continental 

(detrital) mean that generally follows oxic gray shales in the Midcontinent (Cruse and Lyons, 

2004) and is a good indicator of oxic (depleted) and anoxic (enriched) conditions. Analysis of the 
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Figure 14: Lithologic column, core descriptions, and core gamma-ray with XRF Sr plotted. 

Higher values in Sr and Mn correlate with carbonates. 
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Figure 15: Lithologic column, core descriptions, and core gamma-ray with XRF V/Al ratio 

plotted. Higher values in transition metals correlate with dark shales. Scale is logarithmic. 

Red line represents the PAAS standard (Taylor and McClennan, 1985). 
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Figure 16 Lithologic column, core descriptions, and core gamma-ray with XRF Ni/Al ratio 

plotted. Higher values in transition metals correlate with dark shales and anoxic conditions. 

Red line represents the PAAS standard (Taylor and McClennan, 1985). 
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data show a strong correlation between “enriched” values of V, Cu, Ni, Zn, and Zr with the dark 

gray to black shales of the Thirteen Finger Limestone. 

Analysis of the metal/Al ratio of Cu, Ni, and V show higher values in shale compared to 

the relatively low values in carbonates (Fig. 17). This is more obvious in transitional beds from 

shale to carbonate and vice versa. However, when these same values are compared for gray, dark 

gray and black shales, there is no apparent trend. In units transitioning from gray to black shale, 

the black shale does show higher values (Fig. 18), but this same relationship doesn‟t always apply 

to separate beds of gray and black shale (Fig. 17). This same trend exists with fossil abundance. 

Trace metal values increase as fossil content decreases within the same bed, but not between 

separate beds. Detailed plots of V, Ni, and Cu can be found in Appendix I, pages 132-146. 

Dark-gray to black shales of the Thirteen Finger Limestone are considered “hot”. 

Spectral gamma-ray values of uranium for some of these shales range from 20 ppm to 30 ppm. 

Thorium values range from 3 ppm to 9 ppm. X-ray fluorescence values for uranium are 

significantly higher than the spectral gamma-ray values (60 ppm to 372 ppm) while thorium 

values are below the level of detection (<15 ppm) for the Niton XL3t. Even though spectral 

gamma-ray values average values over several feet while XRF is averaging over 8 mm, the 

accuracy of the Niton XL3t XRF analyzer becomes questionable (Fig 19). 

 A study conducted at the University of California at Berkeley (Lin, 2009) sought to 

determine what factors could decrease the accuracy of the Niton XL3t by measuring samples 

from California and Chile and comparing those values to those measured by either inductively 

coupled plasma spectroscopy or plasma mass spectroscopy. It was determined that partical size, 

length of analysis, and soil chemistry had little or no effect on XRF, but organic matter and water 

had a significant effect on the accuracy of the Niton XL3t (Lin, 2009). Lin (2009) also noted that   
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Figure 17: V/Al ratio plotted against the lithologic column for core depths 4960’ to 

5000’. Note the lower values for carbonates compared to shales. Shale at 4980’ 

shows relative values in a shale that transitions from dark gray to black. But the 

dark gray shale at 4970’ has a higher ratio compared to the black shale at 4980’.
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Figure 18: V/Al ratio plotted against the lithologic column for core depths 4840’ to 

4880’. Note the increasing values in a shale that transitions from dark gray to black. 
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Figure 19:.Lithologic column, TOC, gamma-ray, and spectral gamma-ray for 

uranium plotted against XRF data for U. The apparent discrepancy between 

uranium values from spectral gamma-ray (max approximately 30 ppm) and XRF 

(max approximately 390 ppm) is obvious. Interestingly, though the absolute values 

for XRF were used, the plots of relative abundance of uranium determined by both 

methods are similar shape.
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increasing the length of analysis increases the accuracy of the readings, but not significantly. 

Eccles and Murphy (2005) came to the conclusion that analyzing powdered samples with the 

Niton XL3t produced more accurate results than analysis of crushed or whole rock samples. Since 

XRF analysis was completed using whole core samples and many of the shale samples are rich in 

organic matter (<20.2 wt% C), the accuracy of the measurements comes into question. 

According to Lin (2009), Eccles and Murphy (2005), the error should be no more than 

20%-50%. Analysis of the standards used in this project show that values of uranium detected by 

the Niton XL3t were on average 71 times and 52 time higher than the actual amounts of the NIST 

2780 and USGS SCo-1 standards respectively. This means that the exact values measured by the 

XRF analyzer are not useful, but the general pattern is still useful for finding peaks of 

concentrations. Comparing the XRF values with the spectral gamma-ray values for uranium, the 

XRF values are roughly 2 to 18 times higher than the spectral gamma-ray values in the black 

shales of the Thirteen Finger limestone. This means that we cannot use the uranium values 

acquired through XRF. XRF readings of NIST 2780 and USGS SCo-1 are located in Appendix II. 

Adams and Weaver (1958) studied Th/U ratios among sedimentary rocks and determined 

that continental rocks have values above seven, whereas marine rocks have values below seven. 

They determined that the reason for this was two-fold: a reducing environment fixes uranium to 

organic matter or clay causing an increasing the amount of uranium in the sediment, and oxic 

conditions leach uranium out of sediment causing a reduction in uranium (Adams and Weaver, 

1958). Thus, the more oxic the water or shallower and closer to the shoreline, the higher the Th/U 

ratio. Th/U values for the Thirteen Finger Limestone are below 1 with an average at 0.22 for the 

five “hottest” black shales (Fig 20).  
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Figure 20: Log gamma-ray, core gamma-ray, and spectral gamma-ray for U, K, and 

Th provided by the Kansas Geological Survey of the Rebecca K. Bounds #1 well. 

The column to the right showing the Th/U ratio for the Thirteen Finger Limestone is 

at or below 1. 
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X-ray diffractograms of selected samples show that Atokan strata are rich in silica. Clays 

include illite, kaolinite, and sericite.  Albite, muscovite, and biotite represent the influence of the 

eroding craton  on sediment supply. Calcite and dolomite were also detected in some shale 

samples. Thin sections from 4955‟ and 4966‟ contain sphaerosiderite, microcrystalline siderite 

nodules signifying an anoxic environment with little to no dissolved sulfides, but abundant iron 

and bicarbonate (Taylor and Curtis, 1995). XRD results are located in Appendix II, pages 125-

128.
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CHAPTER VII 
 

 

DISCUSSION 

Lithofacies 

The Pennsylvanian Thirteen Finger Limestone (Atokan) is comprised of thirteen (13) 

mudstones and wackestones interfingered by thirteen (13) dark gray to black shales. Black shales 

occur as two types: black shale with no apparent macrofossils and black shale with scattered 

marine macroinvertebrates. The carbonates are typically clay-rich and contain several shale fossil 

hash zones. A carbonate hardground is located at 4950‟. Flooding surfaces have been identified at 

4948.5‟ and 4963.7‟. A basal coal overlies an underclay at 5017.5‟. This surface is interpreted as 

the post-Morrowan unconformity. An exposure surface at 4939.7‟ represents the post-Atokan 

unconformity.  

 

Geochemical Trends 

TOC content for the shales of the Thirteen Finger Limestone measure between 0.76% and 

20.27%. Gray shale at 5023.25‟ measured at 0.76%. Dark gray shale measured 1.43% to 1.66%. 

Dark gray to black shale measured from 5.84% to 9.63%. A TOC value of 20.27% was measured 

in black shale at 4947.5. This bed appears to contain recycled carbonized material, such as coal, 

which is inert and will not produce economical volumes of hydrocarbons. Further analysis will 

verify and quantify the amount of carbonized matter that needs to be accounted for in estimating 
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economical potential. The Thirteen Finger Limestone contains sufficient organic matter to favor 

hydrocarbon production. The highest measured TOC values coincide with spectral gamma-ray 

uranium peaks (Fig. 21). This supports the hypothesis that uranium spectral gamma-ray 

measurements are a predictor of nanoporosity. Future work is necessary to explore this idea. 

During clastic deposition of the Atokan, organic productivity outpaced organic 

decomposition. This was triggered by high productivity and/or reduced decomposition. High 

productivity is often the result of upwelling of nutrient rich deep waters, however there is no 

evidence for deep water upwelling in the Hugoton Embayment during the Carboniferous. 

Decomposition of organic matter is directly influenced by dissolved oxygen and decreases under 

hypoxia and ceases under anoxic marine conditions.  

Trace metal analysis of the Thirteen Finger Limestone shows higher concentrations of V, 

Ni, Zn, and Cu in dark shales compared with carbonates, suggesting hypoxia to anoxic conditions 

during periods of clay deposition. Anoxia allowed the preservation of organic matter, leading to 

high TOC values (>1%). During times of carbonate buildup, the waters were oxic, leading to 

lower concentrations of V, Ni, Zn, and Cu. Little organic matter was preserved (<0.45%). 

Trace metal concentrations for gray, dark gray, and black shale varies. Shales of the 

Thirteen Finger Limestone generally have increasing concentrations of trace metals as color 

darkens and fossil abundance decreases. This is apparent in beds that transition from gray to black 

shale and beds where invertebrate fossil abundance varies. However, these relationships are not 

apparent when comparing separate beds of gray, dark gray, and black shale. This is likely the 

result of insufficient sampling frequency and the small size of the area scanned by the handheld 

XRF. 
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Figure 21: TOC in wt% plotted versus spectral gamma-ray uranium in ppm for shales of the Thirteen Finger Limestone. Higher TOC 

values correlate with higher uranium values.
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Reservoir Assessment 

The Atokan Thirteen Finger Limestone in the Rebecca K. Bounds #1 core is 83.5 feet 

thick and contains 58.3 feet of carbonate, 9 feet of which contains fractures evident in hand 

specimen; 18.2 feet of shale, almost entirely dark gray to black; 3 feet of coal; and 4 feet of 

missing core. Thin sections show numerous open and healed fractures in the carbonate. Healed 

fractures are cemented with calcite and pyrite, suggesting that these fractures are connected, and 

were the conduits for migration of basin fluids. 

Porosity and permeability were tested on four unfractured carbonates at 4954‟, 4962‟, 

4955‟, and 5005‟. Porosity measured between 0.54% and 1.23%. Permeability measured between 

0.1 md and 0.2 md. These measurements do not reflect overall formation porosity and 

permeability due to the inability to sample fractured rock. Nanoporosity was not measured. The 

abundance of healed fractures and silica, as measured by XRD and seen in thin section, may favor 

the creation of permeability through hydraulic fracturing. 

TOC values for non-carbonaceous shales vary from 0.76% to 9.63%, averaging 6.16%. 

These values are higher than the minimum for economical oil and gas production as calculated by 

Ronov (1958) and discussed by Hunt (1976). Based on mapping by Newell (1997), vitrinite 

reflectance values of Desmoinesian strata indicate thermal maturation in the early to late stages of 

oil generation (0.7 to 1.08) (Fig. 22). Thermal maturity in oil producing Morrowan strata in the 

Stateline Trend range from 0.65 to 0.7 (Burruss et al., 1990). This suggests that the Thirteen 

Finger Limestone is capable of generating hydrocarbons. 

Reconstructed Depositional System 

Lithological and geochemical data suggests that the Thirteen Finger Limestone reflects 

fluctuations of sea-level in a shallow marine environment. Exposure surfaces record times of 

lowstand. Fine-grained deposition of clay occurred during times of transgression. Black shale  
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Figure 22: Thermal maturation in Kansas and the Stateline Trend (Burruss et al., 1990) in eastern Colorado based of conodont coloration 

and vitrinite reflectance. Location of the Rebecca K. Bounds #1 well is in red (Modified from Newell, 1997).
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containing phosphate and high uranium concentrations (>20ppm) formed from sediments 

deposited in stratified, anoxic waters. Dark gray shale containing marine invertebrate fossils 

formed from sediments deposited in shallowing, hypoxic waters. These beds often transition to 

carbonate. In contrast, the upper contacts of carbonates with shale are sharp and indicative of 

flooding and rapid inundation. Th/U ratios of black shales are low (<1) suggests either deeper 

water anoxia resulting in uranium precipitation or a depositional setting far from any significant 

continental sediment source.  

Carbonates of the Thirteen Finger Limestone contain low concentrations of transition 

metals, scattered to abundant shallow marine invertebrate fossils including crinoids and 

brachiopods, and peloids indicative of a higher energy shallow marine enviromnet. These 

carbonates contain numerous hardgrounds. These carbonates were deposited in a shallow, oxic 

equatorial sea (Wicander and Monroe, 1989). Th/U ratios of carbonates of the Thirteen Finger 

Limestone are less than 0.5, suggesting that the input of continental sediments was minimal. 
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CHAPTER VIII 
 

CONCLUSIONS  

The Thirteen Finger Limestone is upper Atokan and contains a record of high frequency 

sea level fluctuations. It contains thirteen (13) shales that are predominantly dark gray. Medium 

to dark gray shales have TOC values from 0.76 to 5 wt% C, lower trace metals (Cu, Ni, V) that 

indicate oxic to hypoxic marine conditions, and abundant macro invertebrates including crinoids. 

Dark gray to black shales have higher TOC values from 5 to 20 wt% C, higher trace metals (Cu, 

Ni, V) that indicate hypoxic to anoxic marine conditions, and rare macroinvertebrates. 

The Thirteen Finger Limestone contains thirteen (13) carbonates that are predominantly 

mudstone to wackestone. Several of these carbonates contain numerous open and healed vertical 

fractures. Healed fractures are cemented with calcite, pyrite, and possibly dolomite. Several 

carbonates have undergone diagenetic dolomitization. These fractures have served as migration 

pathways for warm (<50° C), possibly basinal, fluids. XRD shows quartz as a major 

mineralogical constituent as evident as silica replacement of bioclasts in thin section.  

TOC values are well above the recommended minimum for economical oil and gas 

production of 0.9 wt% C (Ronov, 1958). The Thirteen Finger Limestone is located adjacent to the 

oil producing Stateline Trend (Morrowan) where vitrinite reflectance values measure 0.65 to 0.7 

(Burruss et al., 1990). Vitrinite reflectance values for the Desmoinesian of western Kansas 

measure 0.7 to 1.08 (Newell, 1997). Porosity and permeability are too low for oil generation and 

migration, but abundant silica increases the brittleness of the Thirteen Finger Limestone which 

enhances effectiveness of hydraulic fracturing to create permeability.  
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CHAPTER IX 
 

FUTURE WORK 

Due to the slow process of shale breakdown, further biostratigraphic work on Atokan 

shales in the Rebecca K. Bounds #1 core will develop depositional and paleoecological models 

for this area. The Kansas Geological Survey also has provided Oklahoma State University core 

from the nearby Pendleton/Schauf #1 well (Sec. 16, T.27S., R.26W.) in Gray County, Kansas. 

This core, along with others that Dr. Darwin Boardman is currently attempting to acquire will be 

examined to establish biostratigraphy and be correlated to the Rebecca K. Bounds #1 core. 

 Additional source rock evaluation will improve the understanding of the source potential 

of the Thirteen Finger Limestone. This work could include kerogen identification, calculating the 

carbonized organic matter content, and vitrinite reflectance. These will provide further 

understanding of the types of hydrocarbons to expect, productive TOC content, and thermal 

maturity. 

 Further high frequency sampling for TOC and trace metals will better constrain the 

changes in water chemistry during deposition. This information would expand the knowledge of 

Atokan sea level fluctuations and help establish possible causes. This is particularly useful as the 

Anadarko Atokan strata are much different than the well known siliciclastics that outcrop in the 

Arkoma Basin. 

 



49 
 

 

 

REFERENCES 
 

 

 

Adams, J. A. S., and Weaver, C. E., 1958, Thorium-to-Uranium Ratios as Indicators of 

Sedimentary Processes: Examples of Concept of Geochemical Facies: AAPG 

Bulletin, Vol. 42, no. 2, pp. 387-430. 

Adler, F. J., et al., 1971, Future petroleum provinces of the midcontinent, region 7, in I. 

H. Cram, ed., Future petroleum provinces of the Unived States – Their geology 

and potential: AAPG Memoir 15, Vol. 2, pp. 985-1123. 

Barby, B. G., 1956, Subsurface Geology of Pennsylvanian and Upper Mississippian of 

Beaver County, Oklahoma: Oklahoma City Geological Society Shale Shaker, Vol. 

6, no. 10, pp. 133-154. 

Boler, M. E., 1959, Pre-Desmoinesian isopach and paleogeographic study of 

northwestern Oklahoma: Oklahoma City Geological Society Shale Shaker, Vol. 9, 

no. 10, pp. 6-18. 

Bowen, D. W., and Weimer, P., 2003, Regional sequence stratigraphic setting and 

reservoir geology of Morrow incised-valley sandstones (lower Pennsylvanian), 

eastern Colorado and western Kansas: AAPG Bulletin, Vol. 87, pp. 781-815. 

Branson, C. C., 1962, Pennsylvanian System of the Mid-continent: AAPG Special 

Volumes, Vol. SP 23, pp. 431-460. 

Buijs, G. J. A., Golstein, R. H., Hasiotis, S. T., and Roberts, J. A., 2004, Preservation of 

Microborings as Fluid Inclusions: The Canadian Mineralogist, Vol. 42, pp. 1563-

1581.



50 
 

Burruss, R. C., Blakeney, B. A., Castle, R. A., and Kirkby, K. C., 1990, Petroleum Source 

Rock Potential and Thermal Maturation of the Mississippian “Harrison” and 

Spergen Formations and Pennsylvanian Morrow Formation and Marmaton 

Group, Southeastern Colorado in Morrow Sandstones of Southeast Colorado and 

Adjacent Areas: Rocky Mountain Association of Geologists, Denver, Colorado, pp. 

59-66.  

Cecil, C. B., 1990, Paleoclimate controls on stratigraphic repetition of chemical and 

siliciclastic rocks: Geology, Vol. 18, pp. 533-536. 

Cheney, M. G., 1940, Geology of north-central Texas: AAPG Bulletin, Vol. 24, no. 1, pp. 

65-118. 

Clark, S. L., 1987, Seismic Stratigraphy of Early Pennsylvanian Morrowan Sandstones, 

Minneola Complex, Ford and Clark Counties, Kansas: AAPG Bulletin, Vol. 71, no. 

11, pp. 1329-1341. 

Coveney, R. M., Jr., Watney, W. L., and Maples, C. G., 1991, Contrasting depositional 

models for Pennsylvanian black shale discerned from molybdenum abundances: 

Geology, Vol. 19, pp. 147-150. 

Cruse, A. M., and Lyons, T. W., 2004, Trace metal records of regional 
paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black 
shales: Chemical Geology, Vol. 206, no. 3-4, pp. 319-345. 

 
Curtis, B. F., and Ostergard, D., 1982, Subsurface Stratigraphy of the Morrow Formation 

in southeastern Texas County, Oklahoma: Oklahoma City Geological Society 
Shale Shaker Digest 20, Vol. 30-32, pp. 116-146. 

 
Davis, H. G., 1964, Kinsler Morrow Gas Field, Morton County, Kansas: Oklahoma City 

Geological Society Shale Shaker, Vol. 14, no. 8, pp. 2-20. 
 
Dean, W. E., Arthur, M. A., Sageman, B. B., and Lewan, M. D., 1995, Core descriptions 

and preliminary geochemical data for the Amoco Production Company Rebecca 
K. Bounds #1 Well, Greeley County, Kansas; USGS Open-File Report 95-209, pp. 
1-243. 

 
Eccles, D. R., and Murphy, E. E., 2005, Comparison of field-portable X-ray fluorescence 

analyzer and conventional geochemical analysis: EUG/AGS Geo-Note 2004-04 
(March 2005), pp. 1-16. 

 



51 
 

Ece, O. I., 1989, Organic Maturation and Paleoceanographic/Paleogegraphic Implications 
of the Desmoinesian Cyclothemic Excello Black Shale of the Midcontinent, USA: 
Oklahoma City Geological Society Shale Shaker Digest 12, Vol. 36-39, pp. 273-
287. 

 
Eddleman, M. W., 1961, Tectonics and geologic history of the Texas and Oklahoma 

panhandles, in Oil and gas fields of the Texas and Oklahoma panhandles: 
Amarillo, Texas, Panhandle Geological Society, pp. 61-68. 

 
Fort Smith Geological Society, 1960, A subsurface correlation of the gas-producing 

formations of northwest Arkansas: chart. 
 
Galloway, J. J., and Ryniker, C., Foraminifera from the Atoka Formation of Oklahoma: 

Oklahoma Geological Society Circular, Vol. 21, pp. 1-37. 
 
Gibbons, K. E., 1964, Pennsylvanian of the North Flank of the Anadarko Basin: Oklahoma 

City Geological Society Shale Shaker 4, Vols. 12-14, pp. 71-87. 
 
Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-

regressive depositional cycles along midcontinent outcrop belt, North America: 
Geology, Vol. 14, pp. 1676-1680. 

 
Huffman, G. G., 1959, Pre-Desmoinesian Isopachous and Paleogeologic Studies in 

central Mid-continent Region: AAPG Bulletin, Vol. 43, no. 11, pp. 2541-2574. 
 
Hunt, J. M., 1979, Petroleum Geochemistry and Geology, San Francisco, W. H. Freeman 

and Co., pp. 268-271. 
 
Jordan, L., 1957, Subsurface stratigraphic names of Oklahoma: Oklahoma Geological 

Survey Guidebook 6, pp. 220. 
 
Klein, G. D., and Willard, D. A., 1989, Origin of the Pennsylvanian coal-bearing 

cyclothems of North America: Geology, Vol. 17, pp. 152-155. 
 
Kansas Geological Survey, 2011, Specific Well—15-071-20493: KGS Oil and Gas Well 

Database, Accessed November 2011. 
<http://www.kgs.ku.edu/Magellan/Qualified/index.html> 

 
Laughrey, C.D., Ruble, T. E., Lemmens, H., Kostelnik, J., Butcher, A. R., Walker, G., and 

Knowles, W., 2011, Black Shale Diagenesis: Insights from Integrated High-
Definition Analysis of Post-Mature Marcellus Formation Rocks, Northeastern 
Pennsylvania: AAPG Search and Discovery Article #110150. 

 



52 
 

Lin, J., 2009, Performance of the Thermo Scientific Niton XRF Analyzer: The Effects of 
Particle Size, Length of Analysis, Water, Organic Matter, and Soil Chemistry, pp. 
1-36, Accessed October 2011. 
<http://nature.berkeley.edu/classes/es196/projects/2009final/LinJ_2009.pdf> 

 
Lyday, J. R., 1985, Atokan (Pennsylvanian) Berlin Field: Genesis of Recycled Detrial 

Dolomite Reservoir, Deep Anadarko Basin, Oklahoma: AAPG Bulletin, Vol. 69, no. 
11, pp. 1931-1949. 

 
Maher, J. C., 1946, Correlation of Paleozoic Rocks Across Las Animas Arch in Baca, Las 

Animas, and Otero Counties, Colorado: AAPG Bulletin, Vol. 37, pp. 913. 
 
Mannhard, G. W., and Busch, D. A., 1974, Stratigraphic trap accumulation in 

southwestern Kansas and northwestern Oklahoma: AAPG Bulletin, Vol. 58, pp. 
447-463. 

 
McLemore, V. T., and Frey, B. A., 2009, Appendix 8. Quality control and quality 

assurance report: New Mexico Bureau of Geology and Mineral Resources Open-
File Report: 523, pp. 357-421. 

 
Moore, R. C., 1948, Classification of Pennsylvanian rocks in Iowa, Kansas, Missouri, 

Nebraska, and northern Oklahoma: AAPG Bulletin, Vol. 32, no. 11, pp. 2011-
2040. 

 
Moriarty, B. J., 1990, Stockholm Northwest extension; effective integration of 

geochemical, geological, and seismic data in Morrow Sandstones of Southeast 
Colorado and Adjacent Areas: Rocky Mountain Association of Geologists, Denver, 
Colorado, pp. 143-152. 

 
National Institute of Standards & Technology Certificate of Analysis, 2003, Standard 

Reference Material 2780, Hard Rock Mine Waste. 

 
Nelson, P. H., 2009, Pore-throat sizes in sandstones, tight sandstones, and shales: AAPG 

Bulletin, Vol. 93, no. 3, pp. 329-340. 
 
Newell, K. D., 1997, Comparison of Maturation Data and Fluid-inclusion Homogenization 

Temperatures to Simple Thermal Models: Implications for Thermal History and 
Fluid Flow in the Midcontinent: Current Research in Earth Sciences, Kansas 
Geological Survey, Bulletin 240, part 2. 
http://www.kgs.ku.edu/Current/1997/newell/newell1.html (September 2011). 

 
Potts, P. J., Tindle, A. G., and Webb, P. C., 1992, Geochemical reference material 

compositions: rocks, minerals, sediments, soils, carbonates, refractories & ores 



53 
 

used in research & industry: Whittles Publishing, Latheronwheel, United 
Kingdom, pp. 1-317. 

 
Prescott, G.C., Jr., Branch, J.R., and Wilson, W.W., 1954, Geology and ground-water 

resources of Wichita and Greeley counties, Kansas: Kansas Geological Survey 
Bulletin 108, pp. 134. 

 
Rascoe Jr., B., and Adler, F. J., 1983, Permo-Carboniferous Hydrocarbon Accumulations, 

Mid-Continent, U.S.A.: AAPG Bulletin, Vol. 67, pp. 979-1001. 
 
Ronov, A. B., 1958, Organic carbon in sedimentary rocks (in relation to the presence of 

petroleum): Geokhimiya, Vol. 5, pp. 409-423. 
 
Smith, D. B., 1995, USGS Certificate of Analysis Cody Shale, SCo-1, Accessed November 

2011, <http://minerals.cr.usgs.gov/geo_chem_stand/codyshale.pdf>. 

Swanson, D. D., 1979, Deltaic deposits in the Pennsylvanian Upper Morrow Formation of 
the Anadarko Basin: Tulsa Geological Society Special Publication, no. 1, pp. 115-
168. 

 
Taylor, K. G., and Curtis, C. D., 1995, Stability and facies association of early diagenetic 

mineral assemblages: an example from a Jurassic ironstone-mudstone 
succession, UK: Journal of Sedimentary Petrology, Vol. 65, pp. 358-368. 

 
Taylor, S.R., and McClennan, S.M., 1985. The Continental Crust: Its Composition and 

Evolution; An Examination of the Geochemical Record Preserved in Sedimentary 
Rocks Geoscience texts. United Kingdom: Blackwell Science Publication: Oxford, 
United Kingdom. 

 
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A., 2006, Trace metals as 

paleoredox paleoproductivity proxies: An update: Chemical Geology, Vol. 232, 
pp. 12-32. 

 
Van der Weijen, C. H., 2002, Pitfalls of normalization of marine geochemical data using a 

common divisor: Marine Geology, Vol. 184, pp. 167-187. 
 
Weaver, C. E., 1958, Clay petrology of Upper Mississippian-Lower Pennsylvanian 

sediments of central United States: AAPG Bulletin, Vol. 42, pp. 272-309. 
 
Wicander, R., and Monroe, J. S., 1989, Historical Geology – Evolution of the Earth and 

Life through Time: St. Paul, Minnesota, West Publishing Company, pp. 578. 
 



54 
 

Worden, J. A., 1961, Pre-Desmoinesian Isopachous and Paleogeologic Studies of the 
Armarillo-Hugoton Area: Oklahoma City Geological Society Shale Shaker Digest 3, 
Vol. 9-11, pp. 285-309. 

 
Zurfluh, F. J., Hoffmann, B. A., Gnos, E., and Eggenberger, U., 2011, Evaluation of the 

utility of handheld XRF in meteoritics: X-Ray Spectrometry, Vol. 40, pp. 449-463. 



55 
 

APPPENDIX I 
 

DETAILED DESCRIPTION OF THE REBECCA K. BOUNDS CORE 

 

Core Description 

 

4825‟-4831.6‟ 

Dark Gray/Black shale with a gradational contact with underlying limestone. Sampled for XRF, 

TOC, and biostratigraphy. 

 

4831.6‟-4836.5‟ 

Upper gradational contact from shale to wackestone with a sharp lower contact. Contains three 

2”-4” clay-rich zones. 

 

4836.5‟-4843.7‟ 

Highly burrowed light- to medium-gray sandy shale with a sharp lower contact. 

 

4843.7‟-4844.2‟ 

Highly fissile black shale with a sharp lower contact. Sampled for XRF. 

 

4844.2‟-4845.25‟ 

Gray calcareous mudstone. Clay-rich marine fossil hash at upper contact grading into clean 

mudstone. Lower contact is sharp. 

 

4845.25‟-4846 

Crumbly black shale with a sharp lower contact. 

 

4846‟-4850‟ 

Medium-gray shale with flattened carbonate clasts with a clastic-like fabric showing possible soft 

sediment deformation. Lower section developes into a punky zone with a sharp eroded lower 

contact. Fusilinids and carbonized material throughout. 
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4850.5‟-4853‟ 

Brecciated limestone with a possible exposure surface at upper contact. Sharp lower contact. 

 

4853‟-4855.6 

Clay-rich limestone with shaly intervals and abundant marine invertebrates. Sharp lower contact.  

 

4855.6‟-4857‟ 

Medium-gray wackestone with sharp upper and lower contacts. 

 

4857‟-4860.25‟ 

Medium-gray shale. Marine invertebrates scarce or lacking near top becoming abundant at base. 

 

4860.25„-4860.65‟ 

Fissile black shale with scarce marine invertebrates and sharp upper and lower contacts. 

 

4860.65‟-4861‟ 

Medium-gray shale with abundant marine invertebrates. Sharp upper and lower contacts. 

 

4861‟-4865.3‟ 

Medium-gray mud- to wackestone becoming factured near base. Marine invertebrates common. 

Grads into a clay-rich marine hash at the base. Sharp upper and lower contacts. 

 

4865.3‟-4866.3‟ 

A dark-gray shale with sharp upper contact and a gradational lower contact. 

 

4866.3‟-4868‟ 

Transitions from a dark-gray calcareous shale to gray shaly limestone to light-gray limestone and 

back.  Marine invertebrate abundance high at the top, becoming scarce in the middle, then high 

near the base with a fossil hash found at the upper contact.  
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4868‟-4868.5‟ 

Medium- to dark-gray shale with a fossil hash at the base. Sharp upper and lower contacts. 

 

4868.5‟-4871‟ 

A fractured, dark-gray limestone that gradually becomes shaly near the base. Marine invertebrates 

are scattered throughout and become more abundant near the base where we have a fossil hash. 

Sharp upper and lower contacts. 

 

4871‟-4871.85‟ 

A black to dark gray shale with no apparent marine fossils. Sharp upper and lower contacts. 

Sampled for XRF. 

 

4871.85‟-4876‟ 

A black to dark gray shale with pyrite and scattered invertebrate fossils. Sharp upper and lower 

contacts. Sampled for XRF. 

 

4876‟-4877‟ 

A black shale with no apparent marine fossils. Sharp upper and lower contacts. Sampled for XRF. 

 

4877‟-4877.6‟ 

Gray limestone with a fossil hash zone representing a flooding surface with sharp upper lower 

contacts. Lower contact is erosional. Sampled for XRF, XRD, TOC, and biostratigraphy. 

 

4877.6‟-4879‟ 

A light-gray limestone with a shaly zone including carbonate clasts separated by a marine fossil 

hash. Sharp upper and lower contacts. 

 

4879‟-4882.6‟ 

Gray micrite with a zone of clastic-like appearance. Transitions from micrite to wackestone to 

micrite with a shale flux at the base. Sharp upper and lower contacts.  
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4882.6‟-4882.8‟ 

A thin dark-gray shale with sharp upper and lower contacts. 

 

4882.8‟-4885.6‟ 

A medium- to dark-gray mudstone/wackestone with a marine fossil hash in the middle of the 

section. Sharp lower and upper contacts. 

 

4885.6‟-4888‟ 

Dark-gray shaly limestone with scattered marine invertebrates at the top, becoming a medium-

gray limestone, a dark-gray to black shale marine fossil hash, and a dark gray limestone at the 

base. Sharp upper and lower contacts. 

 

4888-4889‟ 

Dark gray shale with medium (<0.5 cm) burrows at the top and scattered marine invertebrate 

fossils. Sharp upper and lower contacts. 

 

4889‟-4891.35‟ 

Light- to medium-gray, clay-rich limestone. Soft sediment deformation with banding disrupted by 

fluid escape is found at the top followed by parallel laminae  that are horizontal then become 

slightly angled (<10°). Large (>1 cm) burrows with carbonate clasts and soft sediment 

deformation near the base with an unconformable, sharp lower contact. 

 

4891.35‟-4891.9‟ 

Medium-gray limestone with sharp upper and lower contacts. 

 

4891.9‟-4894‟ 

Limestone that is dark-gray and clay-rich near the top and becomes cleaner near the base. 

Abundant marine invertebrates throughout. Sharp upper and lower contacts. Sampled for TOC 

and biostratigraphy. 

 

4894‟-4895.7‟ 

Dark gray to black shale with a sharp upper contact and a gradational contact with limestone 

below. Marine fossil hash at the bottom representing a flooding surface. 
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4895.7‟-4901.6‟ 

Light- to medium-gray micrite with transitional upper and lower contacts. Occasional marine 

invertebrates, including oncolites, that become more abundant near the base. Marine hash zone in 

the middle of the section. A thin section at 4896‟ was made of the micrite showing a fine mud 

matrix, occasional marine invertebrates, and pyrite. 

 

4901.6‟-4901.8‟ 

Shaly limestone with abundant marine invertebrates. Transitional upper and lower contacts. 

 

4901.8‟-4903‟ 

Medium-gray limestone with marine fossil hash zones in the middle and the base of the section. 

Transitional upper contact and sharp lower contact. Sampled for TOC and biostratigraphy. 

 

4903‟-4906.4‟ 

Dark-gray to black shale. Marine invertebrate fossils initially scattered near the top, becoming 

scarce in the middle, and becoming abundant with a fossil hash near the base representing a 

flooding surface. Sampled for XRF, TOC, and biostratigraphy. 

 

4906.4‟-4921.5‟ 

Gray wackestone turning to packstone rich in coral. Varies from mud- to wackestone. 

Hardground at 4912.75‟. Marine invertebrates mainly corals near the top, becoming rich in 

foraminifera. Lower half of this section is fractured and contains fossil hash zones. Base is rich in 

clay with a fossil hash zone at the contact with the next lower section. Thin sections were made 

from the wackestone at 4907‟ and the packstone at 4921‟. The thin section at 4907‟ shows zones 

of clay matrix, silica replacement of bioclasts, and calcite infilling of marine invertebrates. The 

thin section at 4921‟ shows silica replacement of bioclasts, calcite infilling of marine 

invertebrates, and clasts of shale. 

 

4921.5‟-4925.45‟ 

Black shale with sharp upper and lower contacts. Lacks normal marine invertebrate fauna. 

Possible pyritized burrows. Sampled for XRF. 

 

4925.45‟-4927.5‟ 

Light-gray limestone transitioning to a shaly hash at the upper and lower contacts. Upper contact 

is sharp while the lower contact is gradational. Sampled for XRF. 
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4927.5‟-4927.85‟ 

Dark gray shale rich in marine invertebrate fossils. Gradational upper contact. Lower contact is 

sharp and posiibly a flooding surface. 

 

4927.85‟-4930‟ 

Light- to medium-gray clay-rich limestone with shaly zones. Broken along bedding planes. Sharp 

upper and lower contacts. A thin section was made at 4928‟ showing scattered marine 

invertebrates, oncolites, healed and open fractures, and occasional dolomite in crystalline zones. 

 

4930‟-4930.5‟ 

Massive light gray limestone with sharp upper and transitional lower contacts. 

 

4930.5‟-4934.4‟ 

Calcareous gray shale transitioning to a limestone near the top and to a dark gray at the base. 

Shaly hash at the base grades into lower unit. Sampled for XRF. 

 

4934.4‟-4934.9‟ 

Gray limestone which grades into a shaly hash at both the top and bottom. Sharp lower contact. 

Samlped for XRF. 

 

4934.9‟-4936.7‟ 

Medium gray limestone with possible burrow or dissolution feature filled with grainy textured 

carbonate. Sharp upper contact and gradational lower contact into gray shale. No apparent 

invertebrate fauna. 

 

4936.7‟-4939.6‟ 

Medium-gray shale at the top becoming dark-gray half way down section. Marine invertebrate 

fauna is abundant and becomes scarce with the color change. Gradational upper contact. Sharp 

lower contact with a fossil hash. A possible sequence boundary with carbonized wood on the 

bedding plane.  
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4939.6‟-4943.2‟ 

Exposure surface at the top in a gray shale transitioning to a medium- to light-gray limestone with 

a few shaly zones and a sharp lower contact. 

 

4943.2‟-4945‟ 

Light- to medium-gray fractured limestone. Some fractures have been filled with pyrite. Upper 

and lower contacts are sharp. Sampled for TOC and biostratigraphy. A thin section was made at 

4944‟ that contain abundant marine invertebrates, oncolites, pyrite, and healed fractures. 

 

4945‟-4946.45‟ 

Medium- to dark-gray clay-rich limestone with scattered marine invertebrate fossils. Upper 

contact is sharp and lower contact is gradational to shale. 

 

4946.45‟-4946.65‟ 

Thin bedded dark gray shale with fossil hash. Upper and lower contacts are gradational. 

 

4946.65‟-4948.55‟ 

Black shale with no apparent marine invertebrates. Upper contact is gradational and lower contact 

is sharp. A dark gray shaly hash is found at the base. Sampled for XRF, XRD, TOC, and 

biostratigraphy. 

 

4948.55‟-4849.4‟ 

Medium gray limestone becoming shaly at the top and bottom. Marine invertebrates are 

abundant. Upper and lower contacts are sharp. Sampled for TOC and biostratigraphy. 

 

4949.4‟-4949.6‟ 

Dark gray shaly hash with a sharp upper contact and gradational lower contact into limestone. 

Marine invertebrates are abundant. Lower contact is erosional. 

 

4949.6‟-4950.5‟ 

Medium gray limestone with a burrowed hardground at the upper contact. Lower contact is 

gradational into shale. Sampled for TOC and biostratigraphy. 
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4950.5‟-4950.6‟ 

Thin dark gray fissile shale with gradational upper and lower contacts. 

 

4950.6‟-4951.5‟ 

Medium gray dolomitic limestone with gradational upper contact and sharp lower contact. Marine 

invertebrates are not apparent. Has been sampled for XRF, TOC, and biostratigraphy. Thin 

section made at 4951‟ shows occasional marine invertebrates with dolomite infill and a grainy 

dolomitic texture. 

 

4951.5‟-4951.7‟ 

Dark gray clay-rich limestone with thin laminations. Sharp upper and lower contacts. Sampled for 

TOC and biostratigraphy. 

 

4951.7‟-4953.25‟ 

Black shale with sharp upper and lower contacts. Top of section is a fine shaly hash. Sampled for 

XRF, XRD, TOC, and biostratigraphy. Thin section made at 4952‟ show unidentifiable silica 

replaced bioclasts, eolian silt, phosphate nodules, and phosphatic layering. 

 

4953.25‟-4954‟ 

A gray shale fossil hash is located at the top transitioning into a parallel laminated limestone 

followed by dipping laminations, possibly indicating currents. Upper and lower contacts are 

sharp. Sampled for TOC, XRD, and biostratigraphy. Thin section made at 4954‟ showing 

abundant marine invertebrates, pyrite, clay-rich zones, and crystalline carbonate zones. Porosity = 

0.88101 %, Permeability = 0.2 md. 

 

4954‟-4955.85‟ 

Medium- to dark-gray limestone with fossiliferous shaly intervals. Parallel laminations 

throughout. Sharp upper contact and quick grade to shale at the base. Sampled for TOC and 

biostratigraphy. Thin section made at 4955‟ shows a fine mud matrix, abundant marine 

invertebrates, abundant fossil fragments, sphaerosiderite, and occasional crystalline dolomite. 

Porosity = 0.54427, Permeability = 0.1 md. 

 

4955.85‟-4957.2‟ 

Fractured medium- to dark-gray limestone. Quick grade from shale to limestone at upper contact. 

Sharp lower contact with thin basal shale. Limestone becomes shaly and clay-rich near the base. 

Sampled for TOC and biostratigraphy. 
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4957.2‟-4958.5‟ 

Dark gray clay-rich limestone with healed and open fractures and scattered marine invertebrates. 

Healed fractures have been filled with calcite and shaly intervals are rich in marine invertebrates. 

Sharp upper and lower contacts. Sampled for TOC and biostratigraphy. 

 

4958.5‟-4959.9‟ 

Fractured medium- to dark-gray limestone with scattered marine invertebrates. Shaly interval in 

the middle of the section. Upper contact is sharp and lower contact grades into a dark gray shale. 

 

4959.9‟-4960.2‟ 

Dark gray fossil-rich shale transitioning to black shale with rare marine invertebrates. Upper 

contact is gradational and lower contact is sharp. 

 

4960.2‟-4961.75‟ 

Medium gray micrite with two fossiliferous shaly hash zones in the upper half of section. Lower 

half consists of open fractured micrite. Upper and lower contacts are sharp. Sampled for TOC and 

biostratigraphy. Thin section made at 4961‟ shows occasional marine invertebrates and a clay 

matrix with crystalline calcite fragments. Porosity = 0.539735%, Permeability = 0.1 md. 

 

4961.75‟-4962.4‟ 

Dark gray shaly micrite with rare marine invertebrates. Sharp upper and lower contacts. Sampled 

by XRF. 

 

4962.4‟-4962.65‟ 

Dark gray shale fossil hash zone. Sharp upper and lower contacts. Sampled for TOC and 

biostratigraphy.  

 

4962.65‟-4963.75‟ 

Dark gray to black shale with rare marine invertebrates. Upper and lower contacts are sharp. 

Sampled by XRF. 
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4963.75‟-4965.8‟ 

Medium gray fractured micrite with scattered marine fossils. Clay-rich interval in the middle of 

the section. Sharp upper and lower contacts. Sampled for TOC and biostratigraphy. 

 

4965.8‟-4967.75‟ 

Dark gray clay-rich limestone with a dark gray fossiliferous shaly zone at the top of the section 

and two more in the middle of the section. Lowest shaly interval consists of coaly black shale. 

Laminations start dipping in the lower half of the section. Thin section at 4966‟ shows muddy 

matrix, abundant marine invertebrates, abundant fossil fragments, spaerosiderite, silica 

replacement of bioclasts, and open and calcite-healed fractures. 

 

4967.75‟-4969‟ 

Dark gray micrite transitioning into a thinly laminated dark gray shale at the top where marine 

invertebrates are scattered. Upper and lower contacts are sharp. Sampled by XRF. 

 

4969‟-4970.2‟ 

Dark gray shale with scattered marine invertebrates. Upper and lower contacts are sharp. Sampled 

by XRF. 

 

4970.2‟-4970.35‟ 

Clay-rich oncolite limestone. Upper contact is sharp and lower contact grades into a dark gray 

shale. Sampled for TOC and biostratigraphy.  

 

4970.35‟-4972.95‟ 

Medium- to dark-gray dolomitic micrite with several shaly fossil zones. Upper and lower contacts 

quickly grade to dark gray shale. Sampled for XRF, TOC, and biostratigraphy. A thin section 

from 4970‟ shows a grainy texture of dolomite rhombohedra which contain pyrite, shale 

fragments, and open fractures. 

 

4972.95‟-4974‟ 

Medium- to dark-gray fractured limestone with abundant marine invertebrates. Fractures are 

healed with calcite. Upper and lower contacts grade into dark gray shales. The lower gradational 

contact into shale is more abrupt than the upper contact. Sampled for TOC, XRD, and 

biostratigraphy. Thin section at 4973‟ shows a mud matrix with abundant marine invertebrates, 

abundant fossil fragments, healed fractures, silica replaced bioclasts, and shale clasts. 
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4974‟-4975.4‟ 

Horizontally bedded dark gray shale with scattered marine invertebrates grading into a limestone 

at the base of the section. Lower section consists of horizontally bedded marine invertebrate 

fragments and carbonate clasts between 1 mm and 3mm in diameter. The upper contact is 

gradational and the lower contact is sharp. Sampled by XRF. 

 

4975.4‟-4977‟ 

Medium- to dark-gray wackestone with a clastic appearance with soft sediment deformation. 

There is no apparent bedding. Carbonate “clasts” are initially pebble size grading into sand size. 

Upper and lower contacts are sharp. 

 

4977‟-4977.75‟ 

Dark gray limestone grading into a dark gray shale in the middle of the interval and then back 

into limestone. Marine invertebrates are scattered but not abundant. Gravel size carbonate “clasts” 

are found in the shaly interval. Upper and lower contacts are sharp. 

 

4977.75‟-4978.3‟ 

A thin dark gray fossiliferous shale with sharp upper and lower contacts. 

 

4978.3‟-4980.6‟ 

A medium gray micrite with clay-rich intervals becoming more clay-rich near the base. The upper 

contact is sharp. Micrite transitions into shale with a gradational lower contact with the 

underlying shale. 

 

4980.6‟-4981.4‟ 

Dark gray to black shale with scatterd marine invertebrate fossils. The upper and lower contacts 

are gradational into micrite. 

 

4981.4‟-4982.65‟ 

Long transition from a fossiliferous dark gray shale at the top of the section to a light gray micrite 

with rare marine invertebrates at the base of the section. The upper contact is gradational and the 

lower contact is sharp. 
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4982.65‟-4984‟ 

Light gray micrite with rare marine invertebrates. Upper and lower contacts are sharp. 

 

4984‟-4985‟ 

Transitional from a dark gray shale with scattered marine invertebrates to a black shale with rare 

marine invertebrates. The upper and lower contacts are sharp. Sampled by XRF. 

 

4985‟-4985.5‟ 

Dipping dark gray shale with abundant marine invertebrates. The upper and lower contacts are 

sharp. Sampled by XRF. 

 

4985.5‟-4988.45‟ 

Medium- to dark-gray micrite with fossil-rich shaly and wacke zones. The upper contact is sharp 

and the lower contact grades into the underlying dark gray shale. 

 

4988.45‟-4989‟ 

Horizontally bedded dark gray shale with abundant marine invertebrates. The upper contact is 

gradational into the above micrite. The lower contact is sharp. 

 

4989‟-4993.4‟ 

Medium gray nodular limestone in a clay-rich matrix. Shaly matrix contains scattered marine 

invertebrates. The upper and lower contacts are sharp. Thin section at 4999‟ shows a transition 

from clean micrite to grainy calcite with rare marine invertebrates and pyrite. 

 

4993.4‟-4993.9‟ 

Dark gray shale with parallel laminations. Upper and lower contacts are sharp. 

 

4993.9‟-4994.25‟ 

Medium- to dark-gray wackestone with abundant marine invertebrates. Notable constituents 

include oncolites and gastropods. Upper and lower contacts are sharp. 
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4994.25‟-4994.5‟ 

Parallel laminated dark gray shale with abundant marine invertebrates. Upper and lower contacts 

are sharp. 

 

4994.5‟-4996‟ 

Dark gray nodular micrite in a dark gray fissile clay matrix. Shaly matrix contains scattered 

marine invertebrates. The upper and lower contacts are sharp. Sampled for TOC and 

biostratigraphy. 

 

4996‟-5006‟ 

Light olive green micrite with no apparent marine invertebrates with several zones of dark gray 

shale. Upper and lower contacts are both sharp. 

 

5004‟-5005.8‟ 

Dark gray clay-rich limestone that transitions into a nodular limestone near the base. Upper 

section is burrowed with shale filling the burrows. The upper and lower contacts are sharp. Thin 

section of 5005‟ show calcite mud matrix with abundant pyrite, extremely rare marine 

invertebrates, and healed fractures. Porosity = 1.2%, Permeability = 0.1 md. 

 

5005.8‟-5007‟ 

Dark gray shale rich in marine invertebrates that transitions into a black marine shale, into a coaly 

shale, back into a marine shale, and then back into a coaly shale. Upper and lower contacts are 

sharp. 

 

5007‟-5008.25‟ 

Dark gray nodular limestone transitioning into a parallel-laminated dark gray limestone with 

abundant marine invertebrates and clay. The lower half of the section transitions into a dark gray 

shale with 1-7 mm diameter carbonate clasts. Sharp upper and lower contacts. Sampled by XRF. 

 

5008.25‟-5009.25‟ 

Medium gray nodular limestone in gray clay-rich matrix. Upper and lower contacts are sharp. 

Sampled by XRF. 
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5009.25‟-5010.5‟ 

Dark gray shale with thin, wavy laminations and scattered marine invertebrates. The upper 

contact is sharp. The lower contact is gradational into the underlying, clay-rich micrite. 

 

5010.5‟-5012.5‟ 

Dark gray micrite with a high clay content. Upper contact is gradational from the above shale. 

The lower contact is sharp. A fault is located near the base of the section. The amount of 

displacement for this fault is uncertain. 

 

5012.5‟-5013.85‟ 

Gray shale with scattered marine invertebrates transitioning into a dark gray shale. A dark gray to 

black shaly hash seperates the gray shale from the dark gray shale. The upper and lower contacts 

are sharp. 

 

5013.85‟-5014.85‟ 

Dark gray to black carbonaceous shale at the top the quickly becomes a coal. Sulfide 

discoloration of the coal is found near the base. The upper and lower contacts are sharp. Sampled 

by XRF. 

 

5014.85‟-5015.5‟ 

Highly fractured light gray shale with sharp upper and lower contacts. 

 

5015.5‟-5017.2‟ 

Black coal with a sharp upper contact and a gradational lower contact. 

 

5017.2‟-5019.4‟ 

A transitional section starting with coal that grades into a paleosol and then light gray shale. A 

structureless zone is found near the base of the section. The upper contact is gradational from the 

above coal. The lower contact is sharp. The base of this section is believed to be the base of the 

Thirteen Finger Limestone in accordance with descriptions of the lower contact by Curtis and 

Ostergard (1982) and Gibbons (1964). 
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5019.4‟-5020.1‟ 

Light gray calcareous siltstone to silty micrite with no apparent marine invertebrates. Upper and 

lower contacts are sharp. 

 

5020.2‟-5022.75‟ 

Dark gray carbonized shale. Marine invertebrates are scarce at the top of the section and then 

entirely disappear by the middle of the section. Carbonized plant matter is present along bedding 

planes at the base of the section. The upper and lower contacts are sharp. Sampled for XRF, 

XRD, TOC, and biostratigraphy. 

 

5022.75‟-5024.4‟ 

Finely laminated silty shale with carbonaceous material along bedding planes. No marine 

invertebrates are evident in the rock. Upper and lower contacts are sharp. Sampled for XRF, 

TOC, and biostratigraphy. 

 

5024.4‟-5027‟ 

Light gray to yellow medium- to coarse-grained sandstone. Upper and lower contacts are sharp. 

 

5027‟-5027.7‟ 

Dark gray shale with no apparent marine invertebrates. Upper and lower contacts are sharp. 

 

5027.7‟- 

Light yellow coarse-grained sandstone with gravel size clay clasts and shaly intervals. 
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Figure 23: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 4820’ through 4840’.  
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Figure 24: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 4840’ through 4880’.  
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Figure 25: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 4880’ through 4920’.  
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Figure 26: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 4920’ through 4960’.  
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Figure 27: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 4960’ through 5000’.  
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Figure 28: Detailed Lithologic Column with gamma-ray and spectral gamma-ray for 

uranium for depths 5000’ through 5031’.  
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Photograph 1: Photo of the Rebecca K. Bounds #1 core for depths 4825’ to 4834’ taken by 

the Kansas Geological Survey. 
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Photograph 2: Photo of the Rebecca K. Bounds #1 core for depths 4834’ to 4843’ taken by 

the Kansas Geological Survey. 
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Photograph 3: Photo of the Rebecca K. Bounds #1 core for depths 4843’ to 4852’ taken by 

the Kansas Geological Survey. 
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Photograph 4: Photo of the Rebecca K. Bounds #1 core for depths 4852’ to 4861’ taken by 

the Kansas Geological Survey. 
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Photograph 5: Photo of the Rebecca K. Bounds #1 core for depths 4861’ to 4870’ taken by 

the Kansas Geological Survey. 
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Photograph 6: Photo of the Rebecca K. Bounds #1 core for depths 4870’ to 4879’ taken by 

the Kansas Geological Survey. 
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Photograph 7: Photo of the Rebecca K. Bounds #1 core for depths 4879’ to 4888’ taken by 

the Kansas Geological Survey. 
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Photograph 8: Photo of the Rebecca K. Bounds #1 core for depths 4888’ to 4897’ taken by 

the Kansas Geological Survey. 
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Photograph 9: Photo of the Rebecca K. Bounds #1 core for depths 4897’ to 4906’ taken by 

the Kansas Geological Survey. 
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Photograph 10: Photo of the Rebecca K. Bounds #1 core for depths 4906’ to 4915’ taken by 

the Kansas Geological Survey. 
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Photograph 11: Photo of the Rebecca K. Bounds #1 core for depths 4915’ to 4924’ taken by 

the Kansas Geological Survey. 
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Photograph 12: Photo of the Rebecca K. Bounds #1 core for depths 4924’ to 4933’ taken by 

the Kansas Geological Survey. 
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Photograph 13: Photo of the Rebecca K. Bounds #1 core for depths 4933’ to 4942’ taken by 

the Kansas Geological Survey. 
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Photograph 14: Photo of the Rebecca K. Bounds #1 core for depths 4942’ to 4951’ taken by 

the Kansas Geological Survey. 
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Photograph 15: Photo of the Rebecca K. Bounds #1 core for depths 4951’ to 4960’ taken by 

the Kansas Geological Survey. 
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Photograph 16: Photo of the Rebecca K. Bounds #1 core for depths 4960’ to 4969’ taken by 

the Kansas Geological Survey. 
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Photograph 17: Photo of the Rebecca K. Bounds #1 core for depths 4969’ to 4978’ taken by 

the Kansas Geological Survey. 
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Photograph 18: Photo of the Rebecca K. Bounds #1 core for depths 4978’ to 4987’ taken by 

the Kansas Geological Survey. 
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Photograph 19: Photo of the Rebecca K. Bounds #1 core for depths 4987’ to 4996’ taken by 

the Kansas Geological Survey. 
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Photograph 20: Photo of the Rebecca K. Bounds #1 core for depths 4996’ to 5006’ taken by 

the Kansas Geological Survey. 
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Photograph 21: Photo of the Rebecca K. Bounds #1 core for depths 5004’ to 5013’ taken by 

the Kansas Geological Survey. 
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Photograph 22: Photo of the Rebecca K. Bounds #1 core for depths 5013’ to 5022’ taken by 

the Kansas Geological Survey. 
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Photograph 23: Photo of the Rebecca K. Bounds #1 core for depths 5022’ to 5032’ taken by 

the Kansas Geological Survey. 
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Photograph 24: Photo of the Rebecca K. Bounds #1 core for depths 5032’ to 5046’ taken by 

the Kansas Geological Survey. 
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Photograph 25: Photo of the Rebecca K. Bounds #1 core for depths 5046’ to 5055’ taken by 

the Kansas Geological Survey. 
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Photograph 26: Photo of the Rebecca K. Bounds #1 core for depths 5055’ to 5064’ taken by 

the Kansas Geological Survey. 
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Photograph 27 Photo of the Rebecca K. Bounds #1 core for depths 5064’ to 5073’ taken by 

the Kansas Geological Survey. 
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Photograph 28: Collected core sample for depths 4828-4829’. 
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Photograph 29: Collected core sample for depths 4903.5-4904.5’. 
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Photograph 30: Collected core sample for depth 4923’. 
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Photograph 31: Collected core sample for depths 4933-34.3’. 
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Photograph 32: Collected core sample for depth 4944’. 
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Photograph 33: Collected core sample for depths 4947-4948’. 
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Photograph 34: Collected core sample for depth 4952’. 
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Photograph 35: Collected core sample for depths 4957.5-4958.5’. 
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Photograph 36: Collected core sample for depths 4973-4974’. 
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Photograph 37: Collected core sample for depths 4995-4996’. 
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Photograph 38: Collected core sample for depth 5023’. 
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Photograph 39: Thin section photos for depth 4921’ showing silica replacement of bioclasts 

in a fossiliferous micrite host.  
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Photograph 40: Thin section photo for depths 4928-4929’ showing peloides and healed 

fractures in microspar. Peloides are approximately 6 μm wide. Fractures are approximately 

2 μm wide. 
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Photograph 41: Thin section photos for depth 4944’ showing a bioclastic wackestone with 

peloides, pyrite, and a healed fracture that is approximately 18 μm wide. 
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Photograph 42: Thin section photos for depth 4951’ showing a punctate brachiopod with 

calcite cement infill in dolomite with pyrite. 
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Photograph 43: Thin section photo for depth 4952’ showing phosphate nodules and 

phosphatic layering within the black shale. Silt and silica replacement of bioclasts decreases 

with depth.  
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Photograph 44a: Thin section photo for depth 4955’ showing a microcrystalline siderite 

nodule. 
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Photograph 44b: Thin section photo for depth 4955’ showing texture of fossil hash with an 

open fracture approximately 18 μm wide. 
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Photograph 45a: Thin section photo for depth 4966’ showing healed and open fractures that 

are approximately 10 μm wide. 
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Photograph 45b: Thin section photo for depth 4966’ showing calcite and silica replacement 

of bioclasts in a micrite host. 
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Photograph 46: Thin section photos for depths 4970-4971’ showing fractured dolomitic 

microspar with pyrite and fractures averaging 9.5 μm. 
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Photograph 47a: Thin section photo for depths 4973-4974’ showing silica replacement of 

bioclasts in micrite host. 
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Photograph 47b: Thin section photo for depths 4973-74’ showing wackestone-packstone 

with healed fracture that is approximately 16 μm wide. 
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Photograph 48a: Thin section photo for depth 4999’ showing bioclasts replaced with calcite 

cement in a micrite matrix. 
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Photograph 48b: Thin section photo for depth 4999’ showing an apparent transition from 

coarse crystalline microspar to micrite. 
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Photograph 49a: Thin section photo for depths 5004.4-5005.5’ showing micrite with 

abundant pyrite and a healed fracture approximately 9.5 μm wide. 
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Photograph 49b: Thin section photo for depths 5004.4-5005.5’ showing micrite with 

abundant pyrite and an open fracture approximately 9.5 μm wide. 
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APPPENDIX II 
 

PRESENTATION OF DATA 

 

 
Figure 29: X-ray Diffraction measurements 4877’. 

 

 

 
Figure 30: X-ray Diffraction measurements of 4947.5’
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Figure 31: X-ray Diffraction measurements of 4952’. 

 

 

 

 
Figure 32: X-ray Diffraction measurements of 4953’. 
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Figure 33: X-ray Diffraction measurements of 4973’. 

 

 

 

 
Figure 34: X-ray Diffraction measurements of 5023’. 
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Figure 35: X-ray Diffraction clay measurements of 5023’.
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Figure 36: Porosity and Permeability measurements for select limestones of the Thirteen Finger Limestone. 
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Figure 37: X-ray Fluorescence measurements of NIST 2780 compared to certified measurements. 
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Figure 38: X-ray Fluorescence measurements of USGS SCo-1 compared to certified measurements. 
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Figure 39: V/Al ratio plotted against the lithologic column for core depths 4840’ to 

4880’. 
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Figure 40: V/Al ratio plotted against the lithologic column for core depths 4880’ to  

4920’. 
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Figure 41: V/Al ratio plotted against the lithologic column for core depths 4920’ to  

4960’.  
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Figure 42: V/Al ratio plotted against the lithologic column for core depths 4960’ to  

5000’. 
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Figure 43: V/Al ratio plotted against the lithologic column for core depths 5000’ to  

5031’. 
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Figure 44: Ni/Al ratio plotted against the lithologic column for core depths 4840’ to  

4880’. 
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Figure 45: Ni/Al ratio plotted against the lithologic column for core depths 4880’ to  

4920’. 
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Figure 46: Ni/Al ratio plotted against the lithologic column for core depths 4920’ to  

4960’. 
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Figure 47: Ni/Al ratio plotted against the lithologic column for core depths 4960’ to  

5000’. 
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Figure 48: Ni/Al ratio plotted against the lithologic column for core depths 5000’ to  

5031’. 
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Figure 49: Cu/Al ratio plotted against the lithologic column for core depths 4840’ to  

4880’. 
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Figure 50: Cu/Al ratio plotted against the lithologic column for core depths 4880’ to  

4920’. 
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Figure 51: Cu/Al ratio plotted against the lithologic column for core depths 4920’ to  

4960’. 
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Figure 52: Cu/Al ratio plotted against the lithologic column for core depths 4960’ to  

5000’. 
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Figure 53: Cu/Al ratio plotted against the lithologic column for core depths 5000’ to  

5031’. 
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DEPTH Ba Sn Cd Pd Ag Mo Nb Zr

4828.5 343.11 < LOD < LOD < LOD 82.65 < LOD 7.16 106.02

4844 229.73 < LOD < LOD < LOD 38.71 < LOD 8.34 110.61

4871 278.64 < LOD < LOD < LOD 58.57 6.98 5.24 100.81

4874 304.9 < LOD < LOD < LOD 101.32 < LOD 18.63 74.16

4874.4 266.64 < LOD < LOD < LOD 72.95 < LOD 6.49 91.61

4875.8 252.78 24.26 < LOD < LOD 61.58 < LOD 13.18 143.55

4876.7 264.18 < LOD < LOD < LOD 46.65 5.8 11.53 101.51

4877.5 217.66 < LOD < LOD < LOD 117.45 3.67 3.66 13.47

4894.6 276.41 < LOD < LOD < LOD 75.06 9.86 8.67 94.64

4903.8 421.24 < LOD < LOD < LOD 80.96 < LOD 18.6 159.99

4904.8 314.82 < LOD < LOD < LOD 62.97 < LOD 15.66 113.95

4905.6 300.43 < LOD < LOD < LOD 57.77 < LOD 9.41 116.99

4910.5 222.96 28.08 < LOD < LOD 113.41 3.05 3.57 4.81

4921.4 190.98 < LOD < LOD < LOD 97.46 < LOD 3.37 7.47

4921.8 314.94 < LOD < LOD < LOD 78.82 < LOD 16.72 134.15

4922.5 332.9 < LOD < LOD < LOD 74.78 < LOD 14.9 123.68

4923.9 334.24 < LOD < LOD < LOD 74 < LOD 14.4 115.51

4924.6 287.7 < LOD < LOD < LOD 55.84 < LOD 16.91 101.56

4925 269.44 < LOD < LOD < LOD 83.91 < LOD 19.89 80.94

4925.6 196.07 < LOD < LOD < LOD 110.08 15.04 5.23 11.48

4933.4 298.61 < LOD < LOD < LOD 76.94 < LOD 13.52 104.81

4934.5 173 < LOD < LOD < LOD 95.23 < LOD 2.61 8.15

4938 340.93 < LOD < LOD < LOD 88.76 < LOD 16.89 111.28

4938.6 411.02 < LOD < LOD < LOD 89.48 < LOD 8.86 113.31

4939.1 346.8 < LOD < LOD < LOD 86.5 < LOD 8.78 148.67

4939.8 262.9 < LOD < LOD < LOD 63.01 < LOD 9.38 92.02

4940.4 243.92 < LOD < LOD < LOD 111.84 2.88 3.64 16.85

4946.7 222.77 < LOD 12.48 < LOD 62.26 22.99 18.67 81.29

4947.4 210.9 < LOD 12.45 < LOD 47.42 58.47 6.99 71.97

4948.1 249.89 < LOD < LOD < LOD 74.5 14.32 8.67 84.13

4950.9 188.69 < LOD < LOD < LOD 111.27 < LOD 2.62 6.81

4952 < LOD < LOD 138.6 < LOD 53.36 275.55 6.82 67.62

4952.4 213.33 < LOD 88.08 < LOD 61.31 257.54 6 76.59

4953 242.74 < LOD 66.15 < LOD 62.93 87.95 5.46 80.07

4962 291.84 < LOD < LOD < LOD 54.24 < LOD 11.71 108.1

4963.3 318.82 < LOD < LOD < LOD 61.9 < LOD 12.23 124.32

4968.8 261.87 < LOD < LOD < LOD 126.45 < LOD 2.8 8.37

4969.7 198.53 < LOD 48.92 < LOD 41.55 63.67 4.88 88.59

4970.5 222.91 < LOD < LOD < LOD 92.8 < LOD 3.32 33.52

4975 209.5 < LOD 147.1 < LOD 52.87 108.32 5.41 87.22

4984.7 298.57 < LOD < LOD < LOD 49.32 < LOD 11.14 121

4985.4 208.17 < LOD < LOD < LOD 104.18 < LOD 6.05 20.66

5007.8 187.53 < LOD < LOD < LOD 108.89 20.42 4.15 6.73

5009 248.42 < LOD < LOD < LOD 133 30.68 5.33 8.43

5016.6 < LOD < LOD 22 4.57 < LOD 2.76 6.21 19.88

5020.4 72.98 < LOD < LOD < LOD 26.77 < LOD 11.53 50.35

5021 124.58 < LOD < LOD < LOD 39.24 < LOD 12.96 52.11

5021.5 352.02 < LOD < LOD < LOD 128.6 < LOD 16.69 159.9

5024.8 248.31 < LOD < LOD < LOD 41.46 < LOD 21.92 276.19  
Figure 54: X-ray Fluorescence measurements of the Rebecca K. Bounds #1 core. 

Values are in PPM. 
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DEPTH Sr U Th As Au Pb Br W

4828.5 123.23 189.13 < LOD 20.79 < LOD 7.08 < LOD < LOD

4844 128.39 218.9 < LOD 20.86 < LOD 17.8 < LOD < LOD

4871 86.48 184.59 < LOD 20.68 9.62 31.18 < LOD < LOD

4874 219.19 224.18 < LOD 21.96 < LOD 19.42 < LOD < LOD

4874.4 125.9 197.67 < LOD 21.51 < LOD 18.8 < LOD < LOD

4875.8 62.87 292.39 < LOD 22.31 < LOD 26.12 < LOD < LOD

4876.7 70.51 371.31 < LOD 26.42 < LOD 23.19 < LOD < LOD

4877.5 205.59 15.19 < LOD 15.93 < LOD 10.89 < LOD < LOD

4894.6 134.88 333.17 < LOD 16.55 27.21 44.71 < LOD < LOD

4903.8 134.51 219.89 < LOD 18.56 < LOD 19.83 < LOD < LOD

4904.8 112.31 241.87 < LOD 19.45 < LOD 13.45 < LOD < LOD

4905.6 86.74 212.24 < LOD 20.77 < LOD 18.73 < LOD < LOD

4910.5 349.15 < LOD < LOD 14.43 < LOD 12.7 < LOD < LOD

4921.4 428.66 < LOD < LOD 15.09 < LOD 9.32 < LOD < LOD

4921.8 98.83 245.19 < LOD 18.23 < LOD 14.9 < LOD < LOD

4922.5 111.6 213.79 < LOD 17.44 < LOD 19.32 < LOD < LOD

4923.9 116.46 205.93 < LOD 19.29 < LOD 18.9 < LOD < LOD

4924.6 92.81 297.16 < LOD 18.8 < LOD 24.76 < LOD < LOD

4925 127.02 255.83 < LOD 17.84 9.88 24.92 < LOD < LOD

4925.6 365.87 < LOD < LOD 19.43 < LOD 13.75 < LOD < LOD

4933.4 104.66 274.58 < LOD 19.47 < LOD 6.59 < LOD < LOD

4934.5 296.75 56.04 < LOD 15.29 < LOD 11.08 < LOD < LOD

4938 242.32 178.41 < LOD 19.04 < LOD 18.09 < LOD < LOD

4938.6 132.94 228.41 < LOD 27.9 < LOD 11.94 < LOD < LOD

4939.1 140.7 227.47 < LOD 21.27 < LOD 14.69 < LOD < LOD

4939.8 129.36 213.31 < LOD 16.79 < LOD 14.47 < LOD < LOD

4940.4 342.13 25.35 < LOD 14.43 < LOD 14.07 < LOD < LOD

4946.7 120.16 314.1 < LOD 21.66 < LOD 29.89 < LOD < LOD

4947.4 59.45 263.23 < LOD 14.75 26.1 49.03 < LOD < LOD

4948.1 94.86 228.97 < LOD 19.03 16.81 40.95 < LOD < LOD

4950.9 300.37 < LOD < LOD 14.74 < LOD 12.66 < LOD < LOD

4952 75.54 372.4 < LOD < LOD 35.08 40.18 < LOD < LOD

4952.4 68.46 232.44 < LOD 15.89 34.83 44.78 < LOD < LOD

4953 66.47 220.18 < LOD 17.1 32.8 45.36 < LOD < LOD

4962 110.41 224.69 < LOD 21.01 < LOD 19.97 < LOD < LOD

4963.3 117.38 260.75 < LOD 19.75 < LOD 21.06 < LOD < LOD

4968.8 428.24 19.32 < LOD 16.5 < LOD 12 < LOD < LOD

4969.7 100.38 299.89 < LOD 39.72 20.11 41.59 < LOD < LOD

4970.5 276.91 28.58 < LOD 17.41 < LOD 8.12 < LOD < LOD

4975 94.53 266.35 < LOD 15.36 35.54 51.84 < LOD < LOD

4984.7 115.46 344.59 < LOD 17.92 < LOD 22.32 < LOD < LOD

4985.4 233.41 58.88 < LOD 15.38 < LOD 10.66 < LOD < LOD

5007.8 335.61 88.77 < LOD 17.05 < LOD 10.85 < LOD < LOD

5009 418.63 < LOD < LOD 17.78 < LOD 10.32 < LOD < LOD

5016.6 30.91 25.77 < LOD 17.5 < LOD 8.86 < LOD < LOD

5020.4 121.31 60.67 < LOD 23.91 < LOD 44.78 < LOD < LOD

5021 152.94 45.69 < LOD 24.58 < LOD 63.04 < LOD < LOD

5021.5 138.81 63.4 < LOD 39.4 < LOD 379.6 < LOD < LOD

5024.8 210.01 121.01 < LOD 21.82 < LOD 22 < LOD < LOD  
Figure 55: X-ray Fluorescence measurements of the Rebecca K. Bounds #1 core. 

Values are in PPM. 
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DEPTH Zn Cu Ir Ni Co Fe Mn Cr

4828.5 20.77 30.15 < LOD 59.44 < LOD 31235.1 230.35 201.86

4844 43.95 39.31 < LOD < LOD < LOD 23373.82 128.86 147.7

4871 1388.9 64.64 < LOD 235.99 < LOD 33152.11 176.03 546.92

4874 202.01 58.89 < LOD 137.63 < LOD 35769.7 258.27 307.08

4874.4 553.38 55.44 < LOD 157.6 < LOD 30993 189.55 425

4875.8 73.28 65.06 < LOD 139.7 < LOD 30957.53 156.89 342.71

4876.7 146.95 38.48 < LOD 170.95 < LOD 30952.74 113.58 468.28

4877.5 < LOD < LOD < LOD < LOD < LOD 2336.36 344.84 < LOD

4894.6 274.13 62.81 < LOD 261.15 < LOD 32633.74 197.33 621.97

4903.8 77.25 27.98 < LOD 49.45 < LOD 37482.41 207.89 227.01

4904.8 51.09 18.61 < LOD 60.68 < LOD 30867.39 146.9 200.56

4905.6 65.5 26.77 < LOD 107.75 < LOD 31363.53 135.03 213.93

4910.5 < LOD < LOD < LOD < LOD < LOD 753.07 225.93 < LOD

4921.4 < LOD < LOD < LOD < LOD < LOD 4819.99 205.33 < LOD

4921.8 1451.74 42.32 < LOD 28.47 < LOD 27638.55 152.35 177.06

4922.5 15.37 23.3 < LOD 36.2 < LOD 26431.1 147.8 181.15

4923.9 56.52 26.41 < LOD 46.13 < LOD 27677.6 153.61 181.77

4924.6 158.57 30.96 < LOD 121.29 < LOD 25850.97 144.76 548.4

4925 718.56 38.38 < LOD 208.24 < LOD 33733.29 171.72 713.04

4925.6 < LOD < LOD < LOD < LOD < LOD 22935.94 278.11 < LOD

4933.4 101.15 24.15 < LOD 78.53 < LOD 30020.38 264.95 801.89

4934.5 < LOD < LOD < LOD < LOD < LOD 4232.88 816.02 < LOD

4938 17.11 832.33 < LOD 32.88 < LOD 41639.97 199.1 165.83

4938.6 21.91 < LOD < LOD 97.9 < LOD 28719.13 145.42 259.98

4939.1 < LOD 25.53 < LOD 79.22 < LOD 26547.4 146.81 171.48

4939.8 < LOD < LOD < LOD < LOD < LOD 12712.63 68.48 112.32

4940.4 < LOD < LOD < LOD < LOD < LOD 2517.54 373.37 < LOD

4946.7 1458.29 65.96 < LOD 278.86 < LOD 24043.01 175.74 547.94

4947.4 1037.79 66.32 < LOD 236.71 < LOD 25163.87 113.19 888.47

4948.1 673.99 64.87 < LOD 216.73 < LOD 29430.27 132.76 709.64

4950.9 < LOD < LOD < LOD < LOD < LOD 1069.75 378.6 < LOD

4952 2684.18 164.71 < LOD 528.2 < LOD 25261.13 < LOD 651.31

4952.4 2869.53 93.88 < LOD 230.95 < LOD 33149.14 126.49 572.44

4953 1750.59 89.86 < LOD 304.39 < LOD 34762.61 128.46 770.53

4962 19.64 30.68 < LOD 46.33 < LOD 27280.53 207.09 184.15

4963.3 31.23 46.22 < LOD 30.03 < LOD 27617.03 208.07 223.41

4968.8 < LOD < LOD < LOD < LOD < LOD 2409.79 258.89 < LOD

4969.7 2387.95 87.82 < LOD 525.24 < LOD 34860.01 153.07 386.22

4970.5 < LOD < LOD < LOD < LOD < LOD 12769.87 489.61 < LOD

4975 7617.96 148.07 < LOD 540.49 < LOD 31624.16 164.6 750.75

4984.7 47.84 24.61 < LOD 30.19 < LOD 23785.6 116.7 271.19

4985.4 < LOD < LOD < LOD < LOD < LOD 8931.68 633.06 51.74

5007.8 < LOD < LOD < LOD < LOD < LOD 4827.84 803.45 52.99

5009 < LOD < LOD < LOD < LOD < LOD 9889.89 922.75 < LOD

5016.6 249.42 < LOD < LOD < LOD < LOD 9374.86 < LOD 67.2

5020.4 < LOD 29.87 < LOD < LOD < LOD 71330.32 558.95 164.27

5021 < LOD 20.54 < LOD < LOD < LOD 73457.92 461.74 176.82

5021.5 21.29 < LOD < LOD 66.02 < LOD 121581.7 988.87 373.83

5024.8 20.77 15.42 < LOD < LOD < LOD 29507.9 229.44 232.26  
Figure 56: X-ray Fluorescence measurements of the Rebecca K. Bounds #1 core. 

Values are in PPM. 
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DEPTH V Ti Ca K Sb Al P Si

4828.5 177.4 2820.86 39418.45 24120.02 < LOD 61534.02 < LOD 228731.8

4844 171.72 3222.69 21257.08 28406.73 < LOD 74427.15 < LOD 224101

4871 442.77 2551.24 34322.16 21292.81 < LOD 51048.49 < LOD 198078.3

4874 294.78 2086.14 99727.65 14739.54 < LOD 41931.91 25037.77 170696.6

4874.4 242.7 2294.92 53469.54 18688.38 < LOD 44977.07 3679.68 206494.7

4875.8 198.93 4143.62 5095.49 29241.93 < LOD 80452.04 < LOD 235440.5

4876.7 379.08 3466.26 14395.6 28355.88 < LOD 67671.68 7146.02 207546.2

4877.5 < LOD 177.65 397899.2 1268.18 < LOD 4054.93 < LOD 19773.27

4894.6 445.88 2730.92 64673.63 18391.26 < LOD 49170.72 18171.33 164705

4903.8 251.79 3550.55 22198.16 25093.72 < LOD 74527.93 726.4 232275.3

4904.8 242.69 3613.83 10375.21 28821.56 < LOD 78894.41 881.07 218180.4

4905.6 234.85 3350.36 18290.15 28955.91 < LOD 76907.95 580.92 227291.1

4910.5 < LOD < LOD 429373.3 < LOD < LOD < LOD < LOD 4528.91

4921.4 < LOD 77.54 326320.8 289.94 < LOD 4227.21 < LOD 82199.59

4921.8 255.87 4144.49 10533.33 29591.15 < LOD 77930.94 1817.33 221973.2

4922.5 238.76 3693.22 17868.22 26923.59 < LOD 75381 < LOD 232727.8

4923.9 234.88 3467.24 21710.04 26638.35 < LOD 74978.88 < LOD 228365.3

4924.6 304.62 3430.85 11312.76 27031.45 < LOD 73050.25 3556.92 224517.3

4925 328.09 3019 28178.61 22627.37 < LOD 59781.12 1838.12 202357.8

4925.6 < LOD 310.35 327500.7 1871.63 < LOD 9897.95 < LOD 74512.22

4933.4 375.32 3029.4 27714.96 26201.61 < LOD 68744.44 1342.93 235268.5

4934.5 < LOD 121.64 296181.1 553.89 < LOD 4547.91 < LOD 111122.7

4938 220.47 2898.03 53848.5 22289.38 < LOD 67488.98 844.06 211128.2

4938.6 241.01 3133.57 21836.65 28156.02 < LOD 78591.54 < LOD 235217.8

4939.1 198.51 3053.91 41013.86 24375.13 < LOD 64979.09 < LOD 214646.5

4939.8 174 3402.97 45694.05 23800.74 < LOD 51108.94 1599.23 180398.9

4940.4 < LOD 278.42 352754 2274.5 < LOD 6547.53 < LOD 46624.43

4946.7 506.39 2369.07 41672.34 16576.94 < LOD 48208.39 15409.69 200977

4947.4 827.55 2230.9 6544.01 17759.96 < LOD 58015.72 1150.68 230368.8

4948.1 551.72 2483.59 29859.63 19076.36 < LOD 56244.83 4212.07 196500.1

4950.9 < LOD 87.33 399338 485.57 < LOD < LOD < LOD 19792.5

4952 < LOD 2378.73 14750.45 11635.75 < LOD 76866.84 8671.56 334635.3

4952.4 1722.54 1991.79 18495.05 14571.66 < LOD 38669.44 < LOD 221259.3

4953 1455.11 2153.78 18237.14 16381.39 < LOD 44333.36 736 195620.6

4962 202.5 3264.37 29304.35 27645.35 < LOD 70761.8 < LOD 209602

4963.3 239.25 3474.78 23964.33 28953.14 < LOD 78679.16 2167.41 225993.6

4968.8 < LOD 152.83 328275.5 873.53 < LOD < LOD < LOD 17114.43

4969.7 864.85 2247.39 33157.61 18983.16 < LOD 50783.21 1025.31 161525.8

4970.5 34.71 438.57 218379.8 2227.58 < LOD 6868.86 < LOD 90567.89

4975 1613.56 2247.23 30129.6 17459.46 < LOD 43209.76 4784.55 163054.3

4984.7 496.51 3697.85 12352.08 29769.34 < LOD 81967.34 977.99 226314.6

4985.4 52.27 486.12 298026.9 5133.3 < LOD 19587.93 < LOD 90388.56

5007.8 88.6 81.6 319807.4 775.34 < LOD < LOD < LOD 7301.52

5009 < LOD 143.56 405294.8 761.02 < LOD 4250.44 < LOD 10004.08

5016.6 259.85 414.36 5373.59 491.34 < LOD 8570.38 < LOD 17235.55

5020.4 126.65 1398.56 30720.5 4405.75 < LOD 29613.07 12337.29 65430.11

5021 120.03 1706.11 36730.75 4400.53 < LOD 25165.76 13218.69 59419.5

5021.5 250.51 3873.52 6616.42 10306.66 < LOD 68123.2 < LOD 99492.11

5024.8 311.58 6243.54 8651.52 9234.85 < LOD 98960.2 903.2 148398.2  
Figure 57: X-ray Fluorescence measurements of the Rebecca K. Bounds #1 core. 

Values are in PPM. 
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DEPTH Cl S Mg

4828.5 2417.74 3268.61 < LOD

4844 2856.93 3125.64 < LOD

4871 2190.92 17894.88 < LOD

4874 1341 12735.39 < LOD

4874.4 1811.6 13098.58 < LOD

4875.8 2462.04 9746.97 < LOD

4876.7 1709.6 14096.97 < LOD

4877.5 < LOD 2993.92 < LOD

4894.6 1954.44 22127.96 < LOD

4903.8 2216.5 27116.85 < LOD

4904.8 2767.23 13178.79 < LOD

4905.6 2206.09 8028.75 < LOD

4910.5 2515.92 848.65 < LOD

4921.4 5187.85 2927.25 < LOD

4921.8 2132.68 3485.73 < LOD

4922.5 2259.6 4240.46 < LOD

4923.9 1975.81 5284.47 < LOD

4924.6 2202.45 4801.85 < LOD

4925 3007.48 9447.7 < LOD

4925.6 < LOD 30184.03 < LOD

4933.4 2623.53 1584.31 < LOD

4934.5 < LOD 1177.57 < LOD

4938 2650.5 15431.18 < LOD

4938.6 2960.37 4504.38 < LOD

4939.1 2725.67 13838.57 < LOD

4939.8 5017.54 11273.99 < LOD

4940.4 911.02 2068.04 < LOD

4946.7 1854 20948.18 < LOD

4947.4 2361.04 15691.39 < LOD

4948.1 2647.33 20571.78 < LOD

4950.9 899.38 1990.05 < LOD

4952 433.91 33054.29 < LOD

4952.4 2288.19 32374.87 < LOD

4953 2588.6 26669.35 < LOD

4962 2153.66 11468.01 < LOD

4963.3 2166.69 12446.06 < LOD

4968.8 257516 1337.53 < LOD

4969.7 2282.44 37586.61 < LOD

4970.5 518.82 4962.84 35978.73

4975 2543.5 34802.05 < LOD

4984.7 2245.27 3993.13 < LOD

4985.4 < LOD 2480.57 < LOD

5007.8 286376.1 2267.03 < LOD

5009 10636.87 8515.98 < LOD

5016.6 5553.66 57828.66 < LOD

5020.4 2678.01 110951.5 < LOD

5021 2700.55 130990.4 < LOD

5021.5 5390.87 157121.9 < LOD

5024.8 2966.04 41747.7 < LOD  
Figure 58: X-ray Fluorescence measurements of the Rebecca K. Bounds #1 core. 

Values are in PPM.
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