ANALYSIS OF CONTINUOUS BENT BEAMS LOADED OUT OF

THE PLANE BY THE SIX MOMENT EQUATIONS

Ву

PERVEZ DINSHAW PATEL

Bachelor of Science University of Bombay 1954

Bachelor of Engineering (Civil) Sardar Vallabhai University 1958

Submitted to the Faculty of the Graduate School of
the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
May, 1962

STATE UNIVERSITY LIBRARY NOV 8 1962

ANALYSIS OF CONTINUOUS BENT BEAMS LOADED OUT OF THE PLANE BY THE SIX MOMENT EQUATIONS

Thesis Approved:

Thesis Mariser

Thesis Mariser

Thesis Mac Alpin

Thesis Mac Alpin

Dean of the Graduate School

PREFACE

The author wishes to acknowledge and express his indebtedness and gratitude to the following persons.

To Profssor Jan J. Tuma, Head of the School of Civil Engineering and his major adviser, not only for his sincere guidance and keen interest throughout the preparation of this thesis, but also for his invaluable instruction, friendship and encouragement during his entire graduate program.

To the Faculty of the School of Civil Engineering for their invaluable instruction.

To Professor R. L. Flanders for checking the manuscript.

To Messrs. J. T. Oden and R. K. Munshi for their sincere guidance, zealous interest and most of all, for their friendship and encouragement during his graduate study.

To Mr. P. Kavasji, Freany M. Cama and Banoo N. Patel, all of Bombay, India, and Professor Jan J. Tuma for their noble help in securing assistance from the various trust institutions of the author's community.

And to S. R. Bomanjee Trust Fund, Parsi Public School Society, R. D. Sethna Charities, A. B. Dubash and R. A. Dubash Charity Fund, P. N. Kerawalla Charity Fund, M. S. Marzban Fund, the Kashinath Trust and the Foreign Education Committee of the Parsi Punchayet for their scholarships. Their combined assistance made this graduate study possible.

To Miss Dhan P. Kavasji for her encouragement.

Finally to his parents, Mr. and Mrs. Dinshaw D. Patel for their understanding, assistance and encouragement throughout the author's undergraduate and graduate study.

In addition, appreciation is due to Miss Eloise Dreessen for her painstaking effort in typing the manuscript, to Mr. P. F. Pyeatt who prepared most of the figures and to Mrs. Elizabeth Ellis of Stillwater, Oklahoma, and Mr. William P. Johnson, Jr. of Tulsa, Oklahoma, for their friendship and constant encouragement.

P.D.P.

TABLE OF CONTENTS

Chapter		Pag
I. I	INTRODUCTION	1
	 General	2
II. S	STATICS OF BASIC STRUCTURE	
	1. Basic Structure No. 1 2. Basic Structure No. 2	19
III. D	DEFORMATION OF BASIC STRUCTURE	28
	 Basic Structure No. 1 Basic Structure No. 2 Basic Structure No. 3 	
IV. C	COMPATIBILITY EQUATIONS	41
	 Derivation	46
V. N	NUMERICAL APPLICATION	50
	1. Outline for Numerical Proced 2. Numerical Example	
VI. S	SUMMARY AND CONCLUSIONS	77
BIBLIOGR	RAPHY	79
APPENDIX	X	80
	Part A	81 84

LIST OF TABLES

Table		Page
1-1	Transformation Matrix for Span \overline{ij}	9
1-2	Transformation Matrix for Span jk	9
1-3	Transformation Matrix for Span mn	11
3-1	Partial Derivatives; Basic Structure No. 1	31
3-2	Angular Flexibilities; Basic Structure No. 1	3 2
3-3	Angular Carry Over Flexibilities and Load Functions; Basic Structure No. 1	33
3-4	Partial Derivatives; Basic Structure No. 2	3 6
3- 5	Angular Flexibilities, Carry Over Flexibilities and Load Functions; Basic Structure No. 2	37
5 - 1	Transformation Matrix for Span ij	5 3
5 - 2	Transformation Matrix for Span $\overline{j}k$	5 3
5 -3	Transformation Matrix for Span $\overline{k1}$	5 3
5-4	Transformation Matrix for Span \overline{lm}	5 3
5-5	Transformation Matrix for Span mn	5 3
56	Transformation Matrix for Span ni	5 3
5-7	Flexibilities and Carry Over Flexibilities for Constant Section; Basic Structure No. 1	55
5 - 8	Carry Over Procedure	73
5-9	Support Moments	74

LIST OF FIGURES

Figure		Page
1-1	Continuous Bent Beam	2
1-2a	Even Span Continuous Bent Beam - End Supports Fixed	4
1-2b	Odd Span Continuous Bent Beam - End Supports Fixed	4
1-3a	Even Span Continuous Bent Beam - End Supports Simply Supported	5
1-3b	Odd Span Continuous Bent Beam - End Supports Simply Supported	. 5
1-4a	Basic Structure No. 1	. 6
1-4b	Basic Structure No. 2	6
1-4c	Basic Structure No. 3	7
1-5	Basic Structure No. 1	. 8
1-6	Basic Structure No. 2	10
1-7	Basic Structure No. 3	12
2-1	Basic Structure No. 1	. 13
2-2a; 2-2b	Free-Body Diagrams	16
2 -3	Basic Structure No. 2	. 20
2-4	Free-Body Diagram	21
2+5	Basic Structure No. 3	. 24
2-6	Free-Body Diagram	25
4-1	Continuous Bent Beam	42
4-2	Continuous Bent Beam	. 42
4-3	Carry Over Pattern	. 49

LIST OF FIGURES (Continued)

k.	Figure		Page
	5-1	Hexagonal Beam	52
	5-2	Hexagonal Beam	52
	5 -3	Basic Structures	54
	5-4	Basic Structure ijk	56
	5 - 5	Basic Structure klm	61
è.	5-6	Basic Structure mni	62
	5-7	Shear Force, Torsion and Bending Moment Diagrams	76

NOMENCLATURE

	i, j, k .	٠	٠	•	٠	٠	٠	•	٠	٠	•		Letters designating supports of span.
	ω	•	*	•	•	•	٠	٠	•	•	•	٠	Angle between basic axis and principle axis of span.
. ($\odot \cdots$	•	٠	•	•	•	٠	•	•	•		4	Force acting up.
	• • • •	٠	٠	٠	٠	5	•	e	4		ø	٠	Force acting down.
	Σ^{p}	•	• .	æ		٠	ņ	•	٠	٠	٠	•	Resultant of loads
	x, x, u,	u	,	v,	ν	, 1	ę	٠	9	٠	۰	•	Cross section ordinates.
	d _j , d _k		•	٠	d		٠	6	9		٠	•	Length of spans.
	x _j , y _j , x _j	k'	у	ι*	٠	٠	٠	٠	٠	•	٠	•	Coordinates of supports.
	M _{ix} , M _{kx}	۰	٠	٠	ø	•	•	•	9	•	•	9	Support moments about the principal axis of the spans.
	M _{ix} , M _{kx} .	6	٠	g	•	•		•	٠	•	•		Support moments about basic axis.
	SM _{ix}	٠	٠	•	٠	٠			٠	•	•	•	Static moment of loads at i about the X-axis.
	sm _y ,	0	٠	•	•	ę	•	•	•	¢	•	٠	Static moment of loads at a section in a span.
	F _{ikxx}	6				*	ø	•	•	٠	•	٠	Angular flexibility at i along the X -axis.
	G _{ikxx}	g	v	¢ .		•	۰	٥	P	٠	•	٠	Angular carry over flexibility at k along the X-axis.
	ikxx		•	ě	•	٠	٠	٠	Þ	•	•	•	Angular load function at i along the X-axis.
-	m	•	4	٠		9	9	•	•	o.	٠	٠	Starting moment at i about the X-axis.
	r _{ikxx}		•		٠	•	٠	٠	•	•	•		Carry over value from m to mkx.
	R _{iz}	٥	٠	۰	ů		٠	o	٠	٠	e	٠	Reaction at the support i parallel to Z-axis.
	Ŭ	٠		٠	•	•	٠		9	٠	٠		Strain Energy

λ	•	• .	•	•	•	•	•	٠	•	•	•	•	•	Elemental Angular Flexibility.
EI	•	•.	•	•	•	•		•	•	•	•	•		Flexural Rigidity.
GJ	•	•	•	. •	•	•	•	•	•	•	•	•	٠	Torsional Rigidity.
BM(k)	•	٠	•	•	•,	٠	•	•	•	•	•	•	•	Bending moment of loads at the section with support k as origin.
\sum	•		•		•	•	•	•	٠	٠	•	٠	•	Summation.
2				1										Riret partial

CHAPTER I

INTRODUCTION

1-1 General

This thesis presents the analysis of planar continuous bent beams, loaded out of the plane, by the six moment equations.

A carry over moment procedure of solving the six moment equations is introduced. The carry over moment method was developed by Tuma from the three moment equation and applied to the analysis of continuous beams (1), continuous trusses (2) and extended to numerous other problems in the plane. The analysis of beams and frames by means of this method was reported by Tuma in his lectures (3). The historical background of the problem investigated in this thesis has been discussed by Childress (4) and is not repeated here. The material presented in this thesis closely follows Tuma's lectures and reference to the lecture notes is made (3).

The analysis is based on the assumption of elastic deformations.

The deformations due to bending and torsion are considered only and the deformations due to shear are considered small and are consequently neglected.

The symbols used in this thesis are rearranged under the heading of nomenclature at the beginning of the thesis. The signs of geometric quantities, loads, moments, forces and deformations are recorded in the appendix. The appendix material dealing with transformation matrices

was prepared on the basis of Tuma's lectures dealing with transformation matrices (3).

A list of a selected bibliography is presented at the end.

1-2 Statement of the Problem

A continuous bent member im lying in the plane XY is acted upon by loads perpendicular to this plane. A system of reference axes XYZ is selected (Fig. 1-1), the co-ordinates being measured parallel to these axes and denoted by x, y, z, respectively.

Figure 1-1
Continuous Bent Beam

The supports are designated as i, j, k, l, m and the span lengths are d_j , d_k , d_l , d_m . The slope of each span measured from a line parallel to the X-axis is represented by the symbol ω and the corresponding subscript as shown in Fig. 1-1. The exterior ends i, m are fixed and the interior supports are assumed to have spherical hinges. The foundation

ļ

under these supports is considered to be rigid and no displacement of supports is introduced.

The continuous bent beam shown in Fig. 1-1 has four reactive moments and five reactive forces. For the analysis of this beam, three equations of static equilibrium are available and six deformation conditions are essential. In general, for a continuous bent beam having the end supports fixed, and the number of spans equal to n, the number of reactive elements is (n+5), three of which can be obtained from statics and (n+2) deformation conditions are necessary. If the exterior ends of this beam are simply supported, the moments at the ends are equal to zero and the number of reactive elements decreases to (n+1). In other words, a continuous bent beam with the end supports fixed is statically indeterminate to (n+2) degree, and that with the exterior ends simply supported is statically indeterminate to (n-2) degree. The degree of indeterminacy indicates the number of redundants which can be selected to the convenience of the analyst.

Basically, two systems of redundants are possible:

- (i) the case where moments acting at supports are selected as the redundants.
- (ii) the case where forces acting at supports are chosen as the redundants.

In this thesis, the support moments are taken as redundants. Two main types of continuous bent beams are considered:

- (a) The fixed-end continuous bent beam having even and odd number of spans. (Fig. 1-2a,b)
- (b) The continuous bent beam with simply-supported ends having even and odd number of spans. (Fig. 1-3a,b)

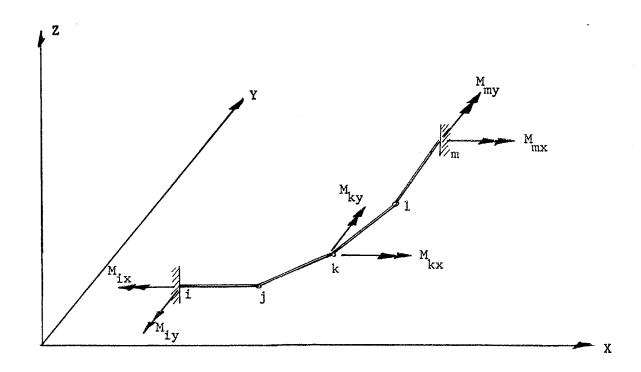
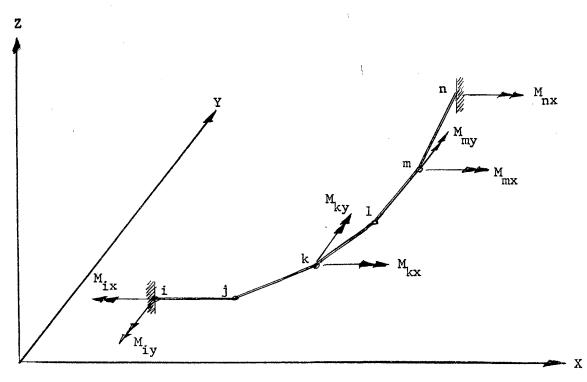



Figure 1-2a

Even span continuous bent beam - end supports fixed.

Odd span continuous bent beam - end supports fixed.

Figure 1-2b

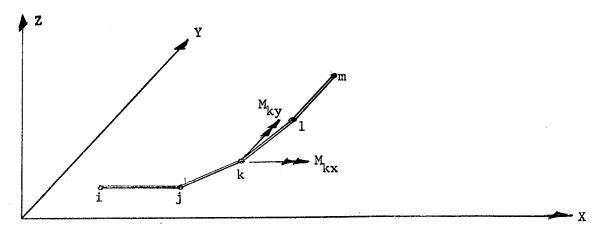
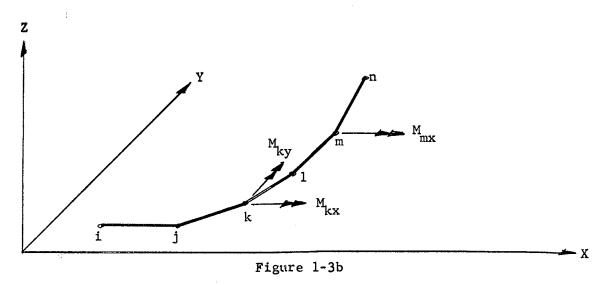



Figure 1-3a

Even span continuous bent beam - end supports simply-supported.

Odd span continuous bent beam - end supports simply supported.

After selecting the moments as redundants as shown in Fig. (1-2a,b) and (1-3a,b), it is observed that three types of basic structures may be introduced.

- (1) A two span continuous bent bar ijk simply supported at the exterior and the intermediate supports (Fig. 1-4a)
- (2) A single span bar \overline{mn} , simply supported at one end and fixed at the other end (Fig. 1-4b)

(3) A single span bar \overline{mn} , simply supported at both ends (Fig. 1-4c)

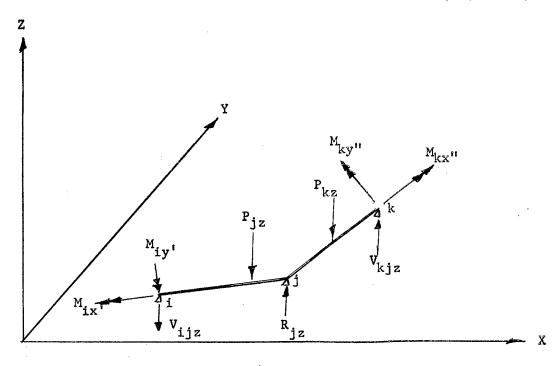


Figure 1-4a

Basic Structure No. 1

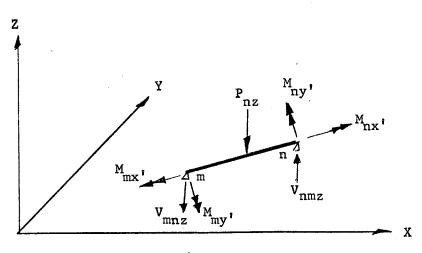


Figure 1-4b

Basic Structure No. 2

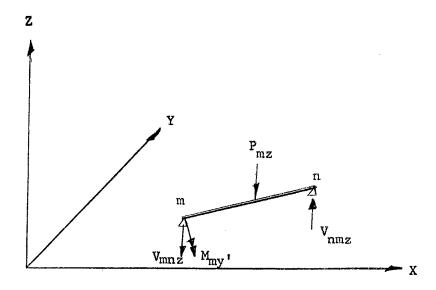
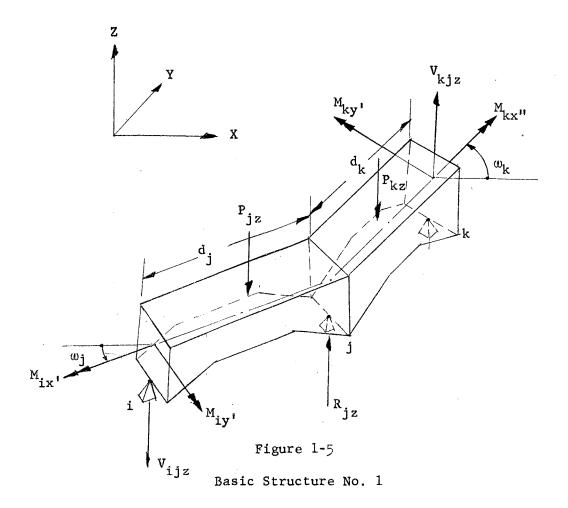


Figure 1-4c
Basic Structure No. 3

If the moments acting at the end of these bars are applied as unit moments, angular flexibititics may be derived and the compatibility equation may be expressed in terms of these angular flexibilities, load functions and the redundant moments. From this discussion, the necessity of studying four primary phases in the analysis of the problem becomes evident.


- (a) Geometry of basic structure.
- (b) Statics of basic structure.
- (c) Deformation of basic structure.
- (d) Compatibility Equations.

The geometry of the basic structure is discussed in this chapter and the next three topics mentioned above are treated in the subsequent chapters.

1-3 Geometry of the Problem.

(a) Basic Structure No. 1

The two span basic structure ijk, lying in the plane XY and acted upon by loads perpendicular to this plane, is shown in Fig. 1-5. The bar rests on simple supports at i, j and k. The end moments and shears are also shown. As the structure is loaded perpendicular to its own plane, only the vertical shear V_z exists and the moment in the vertical direction, M_z , is zero.

The lengths of the members ij and jk are designated as d_j and d_k respectively. The slope of each member with reference to a line parallel to the X-axis is denoted by ω_j and ω_k respectively. The cross-section of the members varies along the length of the members.

Each span is related to its own co-ordinate system

- (i) X'Y'Z' for member ij with origin at i
- (ii) X''Y''Z'' for member jk with origin at j

These particular co-ordinate systems can be related to the basic system of axes XYZ by making use of the Transformation Matrices shown in Tables 1-1 and 1-2.

	x'	Y'
х	α _{jx}	^α jy
Y	β _{jx}	β _{jy}

Ta	b1	e	1	-1

Transformation Matrix for span ij

	X"	Åμ
Х	α _{kx}	α _{ky}
Y	β _{kx}	β _{ky}

Table 1-2

 $\begin{array}{c} Transformat \underline{ion} \ Matrix \\ for \ span \ \underline{jk} \end{array}$

The above Transformation Matrices are special cases of the Transformation Matrix derived for the case of a general space structure in the Appendix (Table No. 5). The " α " and the " β " terms appearing in the above tables are functions of the angles ω_i and ω_k respectively.

The Transformation Matrix provides for a systematic transformation of geometric quantities, moments, forces, slopes, elastic weights, etc. from one co-ordinate system to another. Thus it is seen that in having the Transformation Matrix, the analyst has a powerful tool in dealing

with problems in space structures.

(b) Basic Structure No. 2

In this case, a single span \overline{mn} with end "m" simply supported and end "n" fixed is considered. The basic structure lies in the plane XY and is loaded perpendicular to this plane (Fig. 1-6). The end moments and shears are shown. The member has a non-uniform cross-section, and its length is denoted by d_n . The principal axes of the member may be denoted by X'Y'Z' with origin at m, and the slope of the member with a line parallel to the X axes of the basic system is designated as w_n .

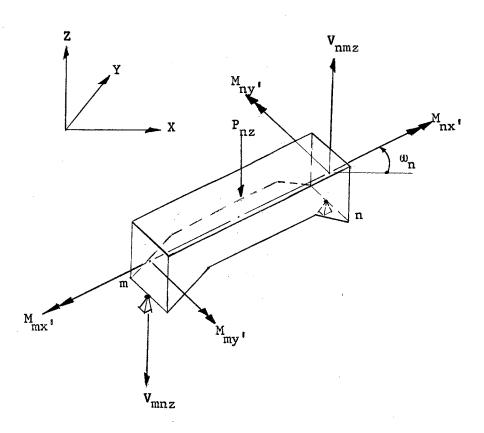


Figure 1-6
Basic Structure No. 2

The transformation angle is thus $\boldsymbol{\omega}_n$ and the Transformation Matrix for the member is shown in Table 1-3.

	x'	Y¹
х	$\alpha_{\mathbf{n}\mathbf{x}}$	$\alpha_{\mathbf{n}\mathbf{y}}$
Y	θ_{nx}	β _{ny}

It is to be noted that the structure can be in stable equilibrium only if the end moments about the torsional axis of the span, M_{mx} , and M_{nx} , are equal.

(c) Basic Structure No. 3

A single span \overline{mn} with both ends simply-supported is considered. The basic structure is in the plane XY and is loaded out of the plane. The member has a length d_n and a cross-section varying along the length (Fig. 1-7).

The principal axes of the member may be designated as $X^{\dagger}Y^{\dagger}$ and as in the case of the basic structure No. 2, ω_n represents the angle between a line parallel to the X-axis of the basic system and the X^{\dagger} axis and therefore the transformation angle. Thus the Transformation Matrix for this basic structure is the same as that shown in Table 1-3.

Since the end "n" is simply-supported, the end moments at n are equal to zero, and as such, the end moment at m in the X' direction will

also be zero to maintain equilibrium.

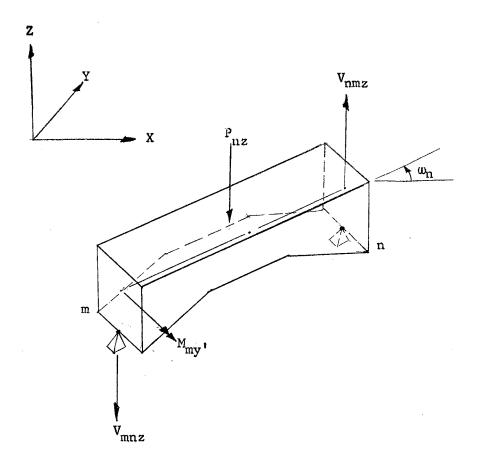
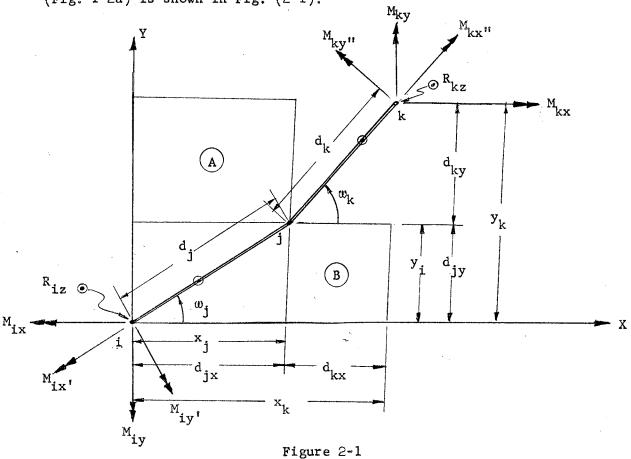


Figure 1-7
Basic Structure No. 3

CHAPTER II


STATICS OF BASIC STRUCTURE

The statics of the basic structures, described in the last chapter, is now studied.

2-1 Statics of Basic Structure No. 1

The basic structure ijk, removed from the continuous bent beam im

(Fig. 1-2a) is shown in Fig. (2-1).

Basic Structure No. 1

The applied end moments at i and k about the principal axis of the member ij and jk are M_{ix}, M_{iy}, and M_{kx}, M_{ky} respectively. M_{ix}, M_{iy} and M_{kx}, M_{ky} represent their transferred values about the basic system of reference XYZ.

Since the structure is in equilibrium under the action of the resultant of loads $\sum_{z=1}^{\infty} P_{z}$ assumed to act up, support reactions and basic end moments, the summation of moments at i about the X and Y axis is equal to zero.

Thus,

$$\sum_{i=\mathbf{X}} \mathbf{M}_{\mathbf{X}} [@i] = 0$$

$$-M_{ix} + M_{kx} + SM_{ix} + R_{iz} \cdot y_i + R_{kz} \cdot y_k = 0$$
 (2-1a)

$$\sum_{\mathbf{v}} [@i] = 0$$

$$-M_{iy} + M_{ky} - SM_{iy} - R_{jz} x_{j} - R_{kz} x_{k} = 0$$
 (2-1b)

where SM and SM denote the static moments of loads at i about the X and Y axis respectively.

Rearranging equations (2-la) and (2-lb)

$$R_{\mathbf{j}\mathbf{z}(y_{\mathbf{j}})^{+R}k\mathbf{z}(y_{\mathbf{k}})} = M_{\mathbf{i}\mathbf{x}^{-M}k\mathbf{x}^{-SM}\mathbf{i}\mathbf{x}}$$

$$R_{jz(-x_{i})}^{+R_{kz(-x_{k})}} = M_{iy}^{-M_{ky}+SM}_{iy}$$

Solving simultaneously,

$$R_{jz} = \frac{(M_{ix} - M_{kx} - SM_{ix})(-x_k) - (M_{iy} - M_{ky} + SM_{iy})(y_k)}{x_j y_k - x_k y_j}$$
(2-2a)

$$R_{kz} = \frac{(M_{ix} - M_{kx} - SM_{ix})(x_{j}) + (M_{iy} - M_{ky} + SM_{iy})(y_{j})}{x_{j}y_{k} - x_{k}y_{j}}$$
(2-2b)

$$C = d_{jx}d_{ky}-d_{kx}d_{jy}$$
 (2-2c)

$$R_{jz} = -\frac{(M_{ix} - M_{kx} - SM_{ix})(d_{jx} + d_{kx}) + (M_{iy} - M_{ky} + SM_{iy})(d_{jy} + d_{ky})}{C}$$
(2-3a)

$$R_{kz} = \frac{(M_{ix} - M_{kx} SM_{ix})d_{jx} + (M_{iy} - M_{ky} + SM_{iy})d_{jy}}{C}$$
(2-3b)

Utilizing the third condition of static equilibrium in summing up the forces in the Z direction,

$$R_{iz}+R_{jz}+R_{kz}+\sum_{z}P_{z}=0$$

$$R_{iz} = -R_{jz} - R_{kz} - \sum_{z} P_{z}$$

Substituting the values of $R_{\mbox{\scriptsize jz}}$ and $R_{\mbox{\scriptsize kz}}$ from Eq. (2-3a,b) and simplifying,

$$R_{iz} = (M_{ix} - M_{kx} - SM_{ix}) \frac{d_{kx}}{C} + (M_{iy} - M_{ky} + SM_{iy}) \frac{d_{ky}}{C} - \sum_{z} P_{z}$$
 (2-3c)

To develop the expressions for the moments at a section in spans \overline{ij} and \overline{jk} of the basic structure, the free body diagrams shown in Fig. (2-2a) and (2-2b) are considered.

Figure 2-2a

Figure 2-2b

Free-body diagrams.

Summing the moments at the section about the principal axes $X^{\dagger}Y^{\dagger}$ (Fig. 2-2a),

$$\sum_{\mathbf{x}'} \mathbf{M}_{\mathbf{x}'} = 0$$

$$M_{\mathbf{x}^{(i)}} = 0$$

$$\mathbf{M}_{\mathbf{x}^{i}} = \mathbf{M}_{\mathbf{i}\mathbf{x}^{i}} \tag{2-4a}$$

where $M_{x^{\dagger}}^{(i)}$ denotes the twisting moment about the X*-axis at the section in the span \overline{ij} .

$$\sum_{\mathbf{y}} \mathbf{y}^{(1)} = 0$$

$$-M_{iy}' + R_{iz}u' + M_{y}' - SM_{y}' = 0$$

assuming that the resultant of loads between the support i and the section acts down.

Thus,

$$M_{y'}^{(i)} = M_{iy'} - R_{iz} \cdot u' + SM_{y'}$$
 (2-4b)

where $M_{y^1}^{(i)}$ and SM_{y^1} represent the bending moment and the static moment due to loads alone, respectively, about the Y'-axis, at the section in the span \overline{ij} .

Similarly, considering the other free body (Fig. 2-2b)

$$\sum_{\mathbf{M}_{\mathbf{X''}}}^{(\mathbf{k})} = 0$$

$$M_{x''}^{(k)} - M_{kx''} = 0$$

$$M_{\mathbf{x''}}^{(\mathbf{k})} = M_{\mathbf{k}\mathbf{x''}}^{(\mathbf{k})} \tag{2-5a}$$

Also

$$\sum_{i} M_{y''}^{(k)} = 0$$

$$-M_{y''}^{(k)} + M_{ky''}^{-R} R_{kz} \cdot u'' + SM_{y''} = 0$$

$$M_{y''}^{(k)} = M_{ky''}^{-R} R_{kz} \cdot u' + SM_{y''}$$
 (2-5b)

where $\mathbf{M}_{x''}^{(k)}$, $\mathbf{M}_{y''}^{(k)}$ and $\mathbf{SM}_{y''}$ have similar meanings as explained for the previous free body.

Equations (2-4a,b) and (2-5a,b) are expressed in terms of moments about the principal axes of members \overline{ij} and \overline{jk} . Using Tables 1-1 and 1-2 and Equations (2-3b,c), the above expressions can be put down in terms of basic end moments.

Thus

$$M_{x'}^{(i)} = M_{ix}\alpha_{jx} + M_{iy}\beta_{jx}$$
 (2-6a)

$$M_{x''}^{(k)} = M_{kx} \cdot \alpha_{kx} + M_{ky} \cdot \beta_{kx}$$
 (2-6b)

$$M_{y'}^{(i)} = M_{ix} \cdot \alpha_{jy} + M_{iy} \cdot \beta_{jy} - \left[(M_{ix} - M_{kx} - SM_{ix}) \frac{d_{kx}}{C} + (M_{iy} - M_{ky} + SM_{iy}) \frac{d_{ky}}{C} + \sum_{z} \right] (u')$$

$$+ \left[+ SM_{x}^{(i)} \cdot \alpha_{jy} + SM_{y}^{(i)} \cdot \beta_{jy} \right]$$

$$= M_{ix} \cdot \alpha_{jy} + M_{iy} \cdot \beta_{jy} - \left[(M_{ix} - M_{kx}) d_{kx} + (M_{iy} - M_{ky}) d_{ky} \right] \left(\frac{u^{i}}{C} \right) + BM_{y}^{(i)}$$
(2-6c)

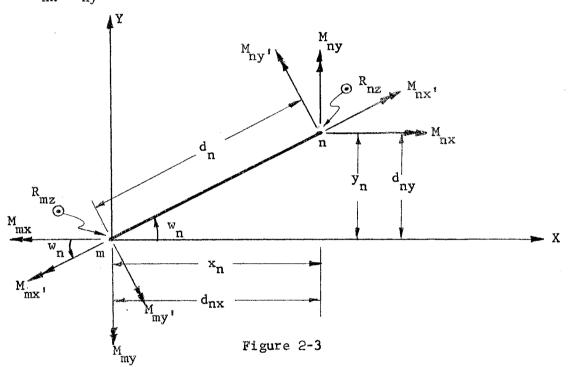
$$\mathbf{M}_{\mathbf{y''}}^{(k)} = \mathbf{M}_{\mathbf{k}\mathbf{x}} \cdot \alpha_{\mathbf{k}\mathbf{y}} + \mathbf{M}_{\mathbf{k}\mathbf{y}} \cdot \beta_{\mathbf{k}\mathbf{y}} - \left[\mathbf{M}_{\mathbf{i}\mathbf{x}} - \mathbf{M}_{\mathbf{k}\mathbf{x}} - \mathbf{S}\mathbf{M}_{\mathbf{i}\mathbf{x}} \right] + \mathbf{M}_{\mathbf{i}\mathbf{y}} - \mathbf{M}_{\mathbf{k}\mathbf{y}} + \mathbf{S}\mathbf{M}_{\mathbf{i}\mathbf{y}} - \mathbf{M}_{\mathbf{k}\mathbf{y}} + \mathbf{M}_{\mathbf{k}\mathbf{y}} - \mathbf{M}_{\mathbf{k}\mathbf{$$

$$+ \mathtt{SM}_{\mathtt{x}}^{(\mathtt{k})} \alpha_{\mathtt{k}\mathtt{y}} + \mathtt{SM}_{\mathtt{y}}^{(\mathtt{k})} \beta_{\mathtt{k}\mathtt{y}}$$

$$= M_{kx} \cdot \alpha_{ky} + M_{ky} \cdot \beta_{,y} - \left[(M_{ix} - M_{kx}) d_{jx} + (M_{iy} - M_{ky}) d_{jy} \right] \left(\frac{u'}{C} \right) + BM_{y}$$
 (2-6d)

where $\text{BM}_{y}^{(i)}$ and $\text{BM}_{y}^{(k)}$ represent the bending moments at the section considered, in \overline{ij} and \overline{jk} respectively, due to loads alone.

$$BM_{\mathbf{j}}^{(k)} = SM_{\mathbf{x}}^{(k)} \cdot \alpha_{\mathbf{j}y} + SM_{\mathbf{y}}^{(i)} \cdot \beta_{\mathbf{j}y} + \left[SM_{\mathbf{i}x} \cdot d_{\mathbf{k}x} - SM_{\mathbf{i}y} \cdot d_{\mathbf{k}y} + \sum_{\mathbf{z}} P_{\mathbf{z}}\right] \left(\frac{\mathbf{u}^{\mathbf{i}}}{\mathbf{C}}\right)$$
(2-7a)


$$BM_{\mathbf{y}}^{(\mathbf{k})} = SM_{\mathbf{x}}^{(\mathbf{k})} \cdot \alpha_{\mathbf{j}\mathbf{y}} + SM_{\mathbf{y}}^{(\mathbf{k})} \cdot \beta_{\mathbf{j}\mathbf{y}} + \left[SM_{\mathbf{i}\mathbf{x}} \cdot d_{\mathbf{j}\mathbf{x}} - SM_{\mathbf{i}\mathbf{y}} d_{\mathbf{j}\mathbf{y}}\right] \cdot \left(\frac{\mathbf{v}^{\mathbf{i}}}{\mathbf{C}}\right)$$
(2-7b)

2-2 Statics of Basic Structure No. 2.

The basic structure mn, isolated from the continuous bent beam in

(Fig. 1-2b) is shown in Fig. 2-3. This basic structure with end m simply supported and end n fixed is statically indeterminate to first degree and the end moment M_{nx} will be the selected unknown.

The structure is acted upon by the resultant of loads $\sum_{z} P_{z}$ acting up and the ends moments M_{mx} , M_{my} , and M_{nx} , M_{ny} , about the principle axis of the member at supports m and n respectively. The transferred values of these end moments about the basic system XYZ are denoted by M_{mx} , M_{my} and M_{nx} , M_{ny} respectively.

Basic Structure No. 2

Since

$$\sum_{\mathbf{X}} \mathbf{M}_{\mathbf{X}} = 0$$

$$-M_{mx}+M_{nx}+SM_{mx}+R_{nz}\cdot d_{ny} = 0$$

where SM denotes the static moment of loads at m about the X-axis.

Solving for R_{nz},

$$R_{nz} = \frac{\frac{M_{mx} - M_{nx} - SM_{mx}}{nx}}{d_{ny}}$$
 (2-8a)

As the sum of forces in the Z-direction is zero,

$$R_{mz}+R_{nz}+\sum_{z}P_{z}=0$$

$$R_{mz} = -R_{nz} - \sum_{z} P_{z}$$

$$= -\frac{M_{mx} - M_{nx} - SM_{nx}}{d_{ny}} - \sum_{z} P_{z}$$
(2-8b)

To calculate moments at a section in mn, the free body diagram (Fig. 2-4) is considered.

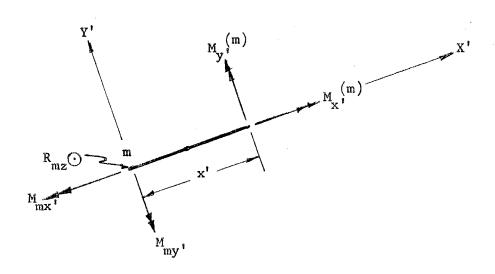


Figure 2-4

Free-body diagram.

Denoting by $M_x^{(m)}$ and $M_y^{(m)}$ the twisting moment and the bending moment respectively at the section considered, with reference to the support m,

since

$$\sum_{m=1}^{\infty} M_{m}(m) = 0$$

$$M_{\mathbf{x}}^{(m)} - M_{\mathbf{m}\mathbf{x}}^{*} = 0$$

$$M_{\mathbf{x'}}^{(m)} = M_{m\mathbf{x'}}$$

Also

$$\sum_{\mathbf{M}} \mathbf{y}' = 0$$

$$M_{y'}^{(m)} - M_{my'} + R_{mz} \cdot x' - SM_{y'}^{(m)} = 0$$

assuming that the resultant of the loads between support m and the section acts down.

Thus,

$$M_{y'}^{(m)} = M_{my'} - R_{mz} \cdot x' + SM_{y'}^{(m)}$$
 (2-9b)

where $SM_{y}^{(m)}$ denotes the static moment due to loads at the section.

Using Eq. (2-8b) and transformation Table 1-3, Eq. (2-9a) and (2-9b) are expressed in terms of the basic end moments.

$$M_{x}^{(m)} = M_{mx} \cdot \alpha_{nx} + M_{my} \cdot \beta_{nx}$$
 (2-10a)

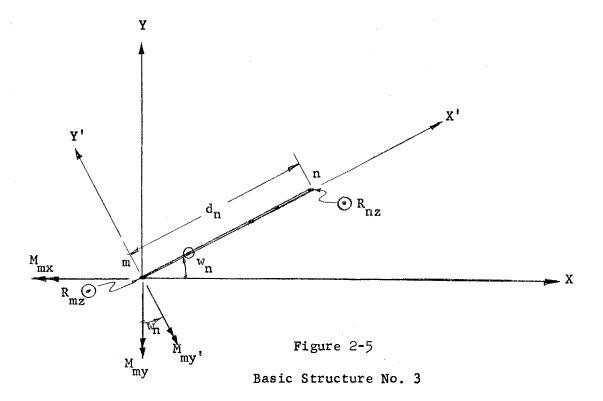
$$M_{y'}^{(m)} = M_{mx} \cdot \alpha_{ny} + M_{my} \cdot \beta_{ny} + \left[\frac{M_{mx} - M_{nx} - SM_{mx}}{d_{ny}} + \sum_{z} \right] \cdot (x')$$

$$+ SM_{x}^{(m)} \cdot \alpha_{ny} + SM_{y}^{(m)} \cdot \beta_{ny}$$
(2-10b)

Denoting

37

$$BM_{y}^{(m)} = \left[\sum_{z} \frac{SM_{mx}}{d_{ny}}\right] \cdot x' + SM_{x}^{(m)} \cdot \alpha_{ny} + SM_{y}^{(m)} \cdot \beta_{ny}$$
(2-10c)


as the bending moment at the section due to loads alone, Eq. (2-10b) can be rewritten as

$$M_{y'}^{(m)} = M_{mx} \cdot \alpha_{my} + M_{my} \cdot \beta_{my} + (M_{mx} - M_{nx}) \cdot \frac{x'}{d_{ny}} + BM_{y}^{(m)}$$
(2-10d)

2-3 Statics of Basic Structure No. 3.

The single span mn removed from the continuous bent beam in (Fig. 1-3b) is shown in Fig. 2-5. Since the basic structure is unable to resist any twisting moment as pointed out in discussing its geometry, it can be in equilibrium only under the action of:

- (i) the resultant of loads $\sum P_z$, assumed to act up.
- (ii) the end moment at m, M_{my} , about the Y'-axis.
- (iii) the vertical reactions, R_{mz} and R_{nz} .

The basic end moments ${\tt M}_{mx}$ and ${\tt M}_{my}$ denote the transferred values of the end moment ${\tt M}_{my}$ '.

Since

$$\sum_{\mathbf{M}} \mathbf{M}_{\mathbf{g}(\mathbf{m})} = 0$$

$$R_{nz} \cdot d_n + M_{my} + SM_{my} = 0$$

where SM $_{\rm my}{}^{\rm i}$ denotes the static moment about the Y $^{\rm i}$ -axis at m due to loads. Solving for R $_{\rm nz}$,

$$R_{nz} = -\frac{\frac{M_{my} + SM_{my}}{my}}{\frac{d_{n}}{d_{n}}}$$
 (2-11a)

$$\sum \mathbf{F_z} = 0$$

$$R_{mz} + R_{nz} + \sum_{z} P_{z} = 0$$

Utilizing Eq. (2-11a) and transposing,

$$R_{mz} = \frac{M_{my} + SM_{my}}{d_{n}} - \sum_{z} P_{z}$$
 (2-11b)

To calculate moments at a section in \overline{mn} , the free-body diagram shown in Fig. 2-6 is considered.

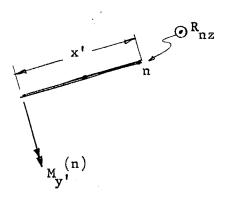


Figure 2-6

Free-body diagram

Since the end n is simply supported, only the bending moment, $\mathbf{M}_{\mathbf{y}}^{(n)}$ at the section exists.

$$\sum_{y'} M_{y'} = 0$$

$$M_{y^{i}}^{(n)} + R_{nz} \cdot x^{i} - SM_{y^{i}}^{(n)} = 0$$

assuming that the resultant of loads between support n and the section acts down.

$$M_{\mathbf{y'}}^{(n)} = -R_{nz} \cdot \mathbf{x'} + SM_{\mathbf{y'}}^{(n)}$$
 (2-12a)

where SM_y refers to the static moment at the section due to loads. Substituting for R_{nz} from Eq. (2-11a),

$$M_{\mathbf{y}'}^{(n)} = \left[\frac{M_{\mathbf{y}'} + SM_{\mathbf{y}'}}{d_{\mathbf{n}}}\right] \cdot \mathbf{x}' + SM_{\mathbf{y}'}^{(n)}$$
(2-12b)

Eq. (2-12b) is in terms of moments about the principal axis of the span \overline{mn} . Using transformation Table 1-3, it may be expressed in terms of moments related to the basic system XYZ.

$$M_{\mathbf{y}}^{(n)} = (M_{\mathbf{m}\mathbf{x}} \cdot \alpha_{\mathbf{n}\mathbf{y}} + M_{\mathbf{n}\mathbf{y}} \cdot \beta_{\mathbf{n}\mathbf{y}} + SM_{\mathbf{m}\mathbf{x}} \cdot \alpha_{\mathbf{n}\mathbf{y}} + SM_{\mathbf{m}\mathbf{y}} \cdot \beta_{\mathbf{n}\mathbf{y}}) \cdot \frac{\mathbf{x}^{\mathsf{f}}}{\mathbf{d}_{\mathbf{n}}}$$

$$+SM_{\mathbf{x}}^{(n)} \cdot \alpha_{\mathbf{n}\mathbf{y}} + SM_{\mathbf{y}}^{(n)} \cdot \beta_{\mathbf{n}\mathbf{y}}$$
(2-12c)

Denoting

$$BM_{y}^{(n)} = \left(SM_{mx} \cdot \alpha_{ny} + SM_{my} \cdot \beta_{ny}\right) \cdot \frac{x^{1}}{n} + SM_{x}^{(n)} \cdot \alpha_{ny} + SM_{y}^{(n)} \cdot \beta_{ny}$$
(2-13)

as the bending moment at the section due to loads alone,

Eq. (2-12c) can be rewritten as

$$M_{y'}^{(n)} = (M_{mx} \cdot \alpha_{ny} + M_{my} \cdot \beta_{ny}) \frac{x'}{d_n} + BM_{y'}^{(n)}$$
(2-14)

CHAPTER III

DEFORMATION OF BASIC STRUCTURE

The analytical expressions for the angular functions of the basic structures discussed earlier are now derived. These angular functions can be obtained by using several methods of analysis such as the Area-Moment method, the Elastic-Weights method, the String Polygon method, the Virtual Work method and the Castigliano's method. In the following derivation, the Castigliano's method is used.

3-1 Basic Structure No. 1.

The basic structure \overline{ijk} (Fig. 2-1) has four applied end moments M_{ix} , M_{iy} and M_{kx} , M_{ky} at its external supports i and k respectively. Thus, from Castigliano's theorm, it is possible to obtain four equations of end slopes in terms of the angular functions and these end moments. The following angular functions can be expected at the support k.

- (1) The angular flexibility $\mathbf{F}_{\mathbf{kixx}}$
- (2) The angular flexibility F_{kiyy}
- (3) The angular flexibility $F_{kixy} (=F_{kiyx})$
- (4) The carry-over angular flexibility G_{ikxx}
- (5) The carry-over angular flexibility G_{ikyy}
- (6) The carry-over angular flexibility Gikyx
- (7) The carry-over angular flexibility G_{ikxy}

- (8) The angular load function Tkixx
- (9) The angular load function Tkiyy

For constant cross-sections of elemental lengths in spans ij and jk, the elemental angular flexibilities are:

$$\lambda_{\mathbf{x}^{\dagger}} = \frac{d_{\mathbf{x}^{\dagger}}}{GJ_{\mathbf{x}^{\dagger}}}$$

$$\lambda_{\mathbf{y}^{\dagger}} = \frac{d_{\mathbf{y}^{\dagger}}}{EI_{\mathbf{y}^{\dagger}}}$$

$$\lambda_{\mathbf{y}^{\dagger}} = \frac{d_{\mathbf{y}^{\dagger}}}{EI_{\mathbf{y}^{\dagger}}}$$

$$\lambda_{\mathbf{y}^{\dagger}} = \frac{d_{\mathbf{y}^{\dagger}}}{EI_{\mathbf{y}^{\dagger}}}$$

The strain energy of the basic structure ijk is :

 $U_{ijk} = U_{ijx}^{\dagger + U_{ijy}^{\dagger} + U_{jkx}^{\dagger + U_{jky}^{\dagger}}}$

$$= \frac{1}{2} \left[\int_{\mathbf{i}}^{\mathbf{j}} \left[M_{\mathbf{x}'}^{(\mathbf{i})} \right]^{2} \cdot \lambda_{\mathbf{x}'} + \int_{\mathbf{i}}^{\mathbf{j}} \left[M_{\mathbf{y}'}^{(\mathbf{i})} \right]^{2} \cdot \lambda_{\mathbf{y}'} + \int_{\mathbf{k}}^{\mathbf{j}} \left[M_{\mathbf{x}''}^{(\mathbf{k})} \right]^{2} \cdot \lambda_{\mathbf{x}''} + \int_{\mathbf{k}}^{\mathbf{j}} \left[M_{\mathbf{y}''}^{(\mathbf{k})} \right]^{2} \cdot \lambda_{\mathbf{y}''} \right]$$

$$(3-2)$$

Partial differentiation of Eq. (3-2) with respect to M_{kx} , M_{ky} , M_{ix} and M_{iy} gives four deformation equations such as

$$\frac{\delta U_{ijk}}{\delta M_{kx}} = \int_{i}^{j} \left[M_{x'}^{(i)} \right] \frac{\delta M_{x'}^{(i)}}{\delta M_{kx}} \cdot \lambda_{x'} + \int_{i}^{j} \left[M_{y'}^{(i)} \right] \frac{\delta M_{y'}^{(i)}}{\delta M_{kx}} \cdot \lambda_{y'} + \int_{k}^{j} \left[M_{y''}^{(k)} \right] \frac{\delta M_{y''}^{(k)}}{\delta M_{kx}} \cdot \lambda_{y''} + \int_{k}^{j} \left[M_{y''}^{(k)} \right] \frac{\delta M_{y''}^{(k)}}{\delta M_{kx}} \cdot \lambda_{y''}$$

$$+ \int_{k}^{j} \left[M_{x''}^{(k)} \right] \frac{\delta M_{x''}^{(k)}}{\delta M_{kx}} \cdot \lambda_{x''} + \int_{k}^{j} \left[M_{y''}^{(k)} \right] \frac{\delta M_{y''}}{\delta M_{kx}} \cdot \lambda_{y''}$$

$$(3-3)$$

with correspondingly similar expressions for
$$\frac{\delta U_{\mbox{ijk}}}{\delta M_{\mbox{ky}}}$$
, $\frac{\delta U_{\mbox{ijk}}}{\delta M_{\mbox{ix}}}$ and $\frac{\delta U_{\mbox{ijk}}}{\delta M_{\mbox{iy}}}$.

Substituting in Eq. (3-3), the values of the moments at a section in spans \overline{ij} and \overline{jk} from Eq. (2-6a,b,c,d) and applying unit moments at ends i and k, the analytical expressions for the angular functions at the support k as denoted earlier and the counterpart expressions at the support i may be developed. This is done, and along with the load functions, recorded in Tables 3-2 and 3-3. Table 3-1 contains a list of the first partials required to obtain these angular functions.

Utilizing these angular functions (F's, G's, and τ 's), the deformation equations (Eq. 3-3) are now expressed as:

$$\frac{\delta U_{ijk}}{\delta M_{kx}} = \frac{M_{ix}^{G} ikxx + M_{kx}^{F} kixx}{+ \tau_{kixx}} + \tau_{kixx}$$

$$M_{iy}^{G} ikyx + M_{ky}^{F} kiyx$$
(3-4a)

$$\frac{\delta U_{ijk}}{\delta M_{ky}} = \frac{M_{ix}G_{ikxy} + M_{ky}F_{kixy}}{M_{iy}G_{ikyy} + M_{ky}F_{kiyy}} + \tau_{kiyy}$$
(3-4b)

Partial Derivatives Basic Structure No. 1					
First Partials	First Partial Values				
$\frac{\delta^{M}_{x^{1}}}{\delta^{M}_{ix}}$	°j×				
δM _y , δM _{i×}	$\alpha_{jy}^{-u^{i}} \cdot \frac{d_{kx}}{c}$				
$\frac{\delta M_{x''}}{\delta M_{ix}}$, $\frac{\delta M_{x'}}{\delta M_{kx}}$	0				
δ ^M y" δ ^M ix	-v'. dix C				
δ ^M χ' δ ^M iy	β _{j×}				
δ ^M y · δ ^M iy	⁸ jy ^{-u¹, d} ky				
$\frac{\delta^{M}_{x''}}{\delta^{M}_{iy}}; \frac{\delta^{M}_{x'}}{\delta^{M}_{ky}}$	0				
6 ^M y" 6 ^M iy	-v¹. d₁y C				
δ ^M y ' δ ^M kx	u'. dkx C				
δ ^M χ,, δ ^M kx	^α kx				
δ ^M y", δ ^M kx	α _{ky} +v'. <mark>d</mark> jx C				
8 ^M y 1 8M _{ky}	u'. dky C				
δ ^M y" δ ^M ky	β _{ky} +v'. d <u>iy</u>				

Table 3-1

Fikxx	^{8U} ijk ^{8M} ix	M _{ix} =+1.0; M _{iy} =M _{kx} =M _{ky} =Loads=0	$\int_{\mathbf{i}}^{\mathbf{j}} \alpha_{\mathbf{j}\mathbf{x}}^{2} \cdot \lambda_{\mathbf{x}^{i}} + \int_{\mathbf{i}}^{\mathbf{j}} (\alpha_{\mathbf{j}\mathbf{y}}^{-\mathbf{d}_{\mathbf{k}\mathbf{x}}} \cdot \frac{\mathbf{u}^{i}}{\mathbf{c}})^{2} \cdot \lambda_{\mathbf{y}^{i}} + \int_{\mathbf{k}}^{\mathbf{j}} (-\mathbf{d}_{\mathbf{j}\mathbf{x}} \cdot \frac{\mathbf{v}^{i}}{\mathbf{c}})^{2} \cdot \lambda_{\mathbf{y}^{i}}$
F _{ikyy}	δυ _{ijk} δΜ _{iy}	M _{iy} =+1.0;M _{ix} =M _{kx} =M _{ky} =Loads=0	$\int_{\mathbf{i}}^{\mathbf{j}} \mathbf{g}_{\mathbf{j}\mathbf{x}}^{2} \cdot \lambda_{\mathbf{x}'} + \int_{\mathbf{i}}^{\mathbf{j}} (\mathbf{g}_{\mathbf{j}\mathbf{y}} - \mathbf{d}_{\mathbf{k}\mathbf{y}} \cdot \frac{\mathbf{u'}}{\mathbf{C}})^{2} \cdot \lambda_{\mathbf{y}'} + \int_{\mathbf{k}}^{\mathbf{j}} (-\mathbf{d}_{\mathbf{j}\mathbf{y}} \cdot \frac{\mathbf{v'}}{\mathbf{C}})^{2} \cdot \lambda_{\mathbf{y}''}$
F _{ikyx}	5U _{1jk} 5M _{ix}	M _{iy} =+1.0;M _{ix} =M _{kx} =M _{ky} =Loads=0	$\int_{i}^{j} \alpha_{jx} \cdot \beta_{jx} \cdot \lambda_{x} \cdot + \int_{i}^{j} (\alpha_{jy} - d_{kx} \cdot \frac{u'}{C}) (\beta_{ky} - d_{ky} \cdot \frac{u'}{C}) \lambda_{y} \cdot + \int_{k}^{j} (-d_{jx} \cdot \frac{v'}{C}) (-d_{jy} \cdot \frac{v'}{C}) \lambda_{y} \cdot $
F _{ikxy}	6U _{ijk}	M _{ix} =+1.0;M _{iy} =M _{kx} =M _{ky} =Loads=0	I ajx bjx x I i (ajy akx c) (bky aky c) xy T k (-ajx c) (-ajy c) xy
F _{kixx}	No.	M _{kx} =+1.0;M _{ix} =M _{kx} =M _{ky} =Loads=0	$\int_{k}^{j} \alpha_{kx}^{2} \cdot \lambda_{x''} + \int_{k}^{j} (\alpha_{ky} + d_{jx} \cdot \frac{v'}{C})^{2} \cdot \lambda_{y''} + \int_{i}^{j} (d_{kx} \cdot \frac{u'}{C})^{2} \cdot \lambda_{y'}$
F _{kiyy}	SM _{ky}	M _{ky} =+1.0;M _{ix} =M _{iy} =M _{ky} =Loads=0	$\int_{k}^{j} \beta_{kx}^{2} \cdot \lambda_{x''} + \int_{k}^{j} (\beta_{ky} + d_{jy} \cdot \frac{v'}{c})^{2} \cdot \lambda_{y''} + \int_{i}^{j} (d_{ky} \cdot \frac{u'}{c})^{2} \cdot \lambda_{y'}$
F _{kiÿx}	δU _{ijk} δM _{kx}	M _{ky} =+1.0;M _{ix} =M _{iy} =M _{kx} =Loads=0	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
F _{kixy}	δυ _{ijk} δΜ _{ky}	M _{kx} =+1.0;M _{ix} =M _{iy} =M _{ky} =Loads=0	$\int_{k}^{j} \alpha_{kx} \cdot \beta_{kx} \cdot \lambda_{x'''} + \int_{k}^{j} (\alpha_{ky} + d_{jx} \cdot \frac{v'}{c}) (\beta_{ky} + d_{jy} \cdot \frac{v'}{c}) \lambda_{y''} + \int_{i}^{j} (d_{kx} \cdot \frac{u'}{c}) (d_{ky} \cdot \frac{u'}{c}) \lambda_{y'}$

	3 5		
G _{ikxx}	6U _{11k} 6H _{kx}	H _{ix} =+1.0;H _{iy} =H _{kx} =H _{ky} =Loads=0	6 ¹ / 2 2'\ 2'\ 36 ¹ / 22 \\ 2'\ 3
G _{kixx}	8U _{11k} \$M _{1×}	H _{KX} =+1.0;H _{1y} =H _{KX} =H _{Ky} =Loads=0	$\int_{1}^{1} (\alpha_{jy} - d_{kx} \cdot \frac{u^{*}}{c}) (d_{kx} \cdot \frac{u^{*}}{c})_{\lambda y^{*}} + \int_{k}^{1} (\alpha_{ky} + d_{jx} \cdot \frac{v^{*}}{c}) (-d_{jx} \cdot \frac{v^{*}}{c})_{\lambda y^{*}}$
G _{£kyy}	^{8U} 11k ^{8M} ky	M _{iy} =+1.0;M _{ix} =M _{kx} =M _{ky} =Loads=0	$\int_{1}^{1} (\beta_{jy}^{-d_{ky}} \cdot \frac{u'}{C}) (d_{ky} \cdot \frac{u'}{C}) \lambda_{y}^{i} + \int_{k}^{1} (\beta_{ky}^{-d_{jy}} \cdot \frac{v'}{C}) (-d_{jy}^{-v} \cdot \frac{v'}{C}) \lambda_{y}^{i}$
c _{kiyy}	δυ _{11k} δΜ _{1y}	M _{ky} =+1.0;M _{1x} =M _{kx} =M _{ky} =Loads=0	J' (bla ka c) gra c yaka c yaka J' (bra ala c) ya
G _{1kxy}	δυ _{11k} δΜ _{ky}	M _{ix} =+1.0;M _{xx} =M _{ky} =M _{ix} =Loads=0	$\int_{1}^{1} (\beta_{jy} - d_{ky} \cdot \frac{u'}{C}) (d_{kx} \cdot \frac{u'}{C}) \lambda_{yi} + \int_{k}^{3} (\alpha_{ky} + d_{jx} \cdot \frac{v'}{C}) (-d_{jy} \cdot \frac{v'}{C}) \cdot \lambda_{yi}$
G _{kiyx}	δυ _{1jk} δΜ _{ix}	M _{ky} =+1.0;M _{1x} =M _{1y} =M _{kx} =Loada=0	J ₁ (Pjy "ky c /\"kx c /\yı' J _k (\"ky "jx c /\" ''jy c /\'\y"
G _{ikyx}	8U11k 8Mkx	M _{1y} =+1,0;M _{1x} =M _{kx} =M _{ky} =Loads=0	$\int_{1}^{1} (\alpha_{jy}^{-d_{kx}} \cdot \frac{u^{i}}{C}) (d_{ky} \cdot \frac{u^{i}}{C})_{\lambda_{y}} + \int_{k}^{1} (\beta_{ky}^{-d_{jy}} \cdot \frac{v^{i}}{C}) (-d_{jx} \cdot \frac{v^{i}}{C})_{\lambda_{y}}$
G _{kixy}	6 ^M iy	M _{kx} =+1.0;M _{ix} =M _{iy} =M _{ky} =Loads=0	1 1 with love to weak a way, I'k washe line a will a way.
^T ikxx	6U _{1jk}	^M ix ^{=M} iy ^{=M} kx ^{=M} ky ^{=O}	$\int_{1}^{1} B M_{y}^{(1)} (\alpha_{jy}^{-d_{kx}, \frac{u^{1}}{C}}) \cdot \lambda_{y}^{-1} + \int_{k}^{1} B M_{y}^{(k)} (-d_{jx}, \frac{v^{1}}{C}) \cdot \lambda_{y}^{-1}$
[†] 1kyy	δυ _{11k} δΜ _{1y}	H _{ix} -H _{iy} -M _{kx} -M _{ky} -O	$\int_{1}^{1} BH_{y}^{(1)}(\beta_{1y} - d_{ky} \cdot \frac{u^{1}}{c}) \cdot \lambda_{y^{1}} + \int_{k}^{1} BH_{y}^{(k)}(-d_{1y} \cdot \frac{v^{1}}{c}) \lambda_{y^{1}}$
T _{kixx}	^{6U} 1jk ^{6M} kx	M _{ix} =M _{iy} =M _{kx} =M _{ky} =O	$\int_{1}^{1} BM_{y}^{(1)}(d_{kx}, \frac{u^{1}}{C}) \cdot \lambda_{y}, + \int_{k}^{1} BM_{y}^{(k)}(\alpha_{ky} + d_{kx}, \frac{v^{*}}{C}) \cdot \lambda_{y},$
^T kiyy	6U _{11k}	M _{ix} =M _{iy} =M _{kx} =M _{ky} =O	$\int_{1}^{1} \mathrm{BM}_{y}^{(1)}(\mathrm{d}_{ky}, \frac{\mathrm{u}^{i}}{\mathrm{c}}) \cdot \lambda_{y} + \int_{k}^{1} \mathrm{BM}_{y}^{(k)}(\beta_{ky} + \mathrm{d}_{ky}, \frac{\mathrm{v}^{i}}{\mathrm{c}}) \cdot \lambda_{y} = 0$
	ļ		<u> </u>

Table 3-3

$$\frac{\delta U_{ijk}}{\delta M_{ix}} = \frac{M_{ix}F_{ikxx} + M_{kx}G_{kixx}}{M_{iy}F_{ikyx} + M_{ky}G_{kiyx}} + \tau_{ikxx}$$
(3-4c)

$$\frac{\delta U_{ijk}}{\delta M_{iy}} = \begin{pmatrix} M_{ix}F_{ikxy} + M_{kx}G_{kixy} \\ & + \tau_{ikyy} \\ M_{iy}F_{ikyy} + M_{ky}G_{kiyy} \end{pmatrix}$$
(3-4d)

3-2 Basic Structure No. 2.

The basic structure \overline{mn} (Fig. 2-3) has four end moments M_{mx} , M_{my} and M_{nx} , M_{ny} at supports m and n respectively. As M_{ny} can be obtained from statics, only three deformation equations, two at support m and one at support n need to be derived. They are expressed, as before, in terms of the angular functions and the end moments M_{mx} , M_{my} and M_{nx} .

The following angular functions are expected.

- (a) At support m in the x direction
 - (i) The angular flexibility F mnxx
 - (ii) The angular flexibility F_{mnyx}
 - (iii) The carry-over flexibility $\mathbf{G}_{\mathrm{nmxx}}$
 - (iv) The angular load function $\tau_{mn \times x}$
- (b) At support m in the y direction.
 - (i) The angular flexibility F mnyv
 - (ii) The angular flexibility $F_{mnxy} (=F_{mnyx})$
 - (iii) The angular carry-over flexibility Gmmxy
 - (iv) The angular load function τ_{mnyy}
- (c) At support n in the x direction
 - (i) The angular flexibility F_{nmxx}

- (ii) The angular carry-over value G_{mnxx} (= G_{nmxx})
- (iii) The angular carry-over value $G_{ ext{mnyx}}$ (= $G_{ ext{nmxy}}$)
- (iv) The angular load function $au_{ ext{nmxx}}$

The strain energy of the basic structure mn is:

$$U_{mn} = U_{mnx} + U_{mny}$$

$$= \frac{1}{2} \int_{\mathbf{m}}^{\mathbf{n}} \left[\mathbf{M}_{\mathbf{x}'}^{(\mathbf{m})} \right]^{2} \cdot \lambda_{\mathbf{x}'} + \frac{1}{2} \int_{\mathbf{m}}^{\mathbf{n}} \left[\mathbf{M}_{\mathbf{y}'}^{(\mathbf{m})} \right]^{2} \cdot \lambda_{\mathbf{y}'}$$
(3-5)

where $\lambda_{x'}$ and $\lambda_{y'}$ have similar meanings as explained before (Eq. 3-2).

Partial differentiation of Eq. (3-5) with respect to M $_{
m mx}$, M and M $_{
m nx}$ gives three deformation conditions

$$\frac{\delta U_{mn}}{\delta M_{mx}} = \int_{m}^{n} \left[M_{x}^{(m)} \right] \left[\frac{\delta M_{x}^{(m)}}{\delta M_{mx}} \right] \cdot \lambda_{x} + \int_{m}^{n} \left[M_{y}^{(m)} \right] \left[\frac{\delta M_{y}^{(m)}}{\delta M_{mx}} \right] \cdot \lambda_{y}, \tag{3-6a}$$

$$\frac{\delta U_{mn}}{\delta M_{mx}} = \int_{m}^{n} \left[M_{x'}^{(m)} \right] \left[\frac{\delta M_{x'}^{(m)}}{\delta M_{my}} \right] \cdot \lambda_{x'} + \int_{m}^{n} \left[M_{y'}^{(m)} \right] \left[\frac{\delta M_{y'}^{(m)}}{\delta M_{my}} \right] \cdot \lambda_{y'}$$
(3-6b)

$$\frac{\delta U_{mn}}{\delta M_{nx}} = \int_{m}^{n} \left[M_{x}^{(m)} \right] \left[\frac{\delta M_{x}^{(m)}}{\delta M_{nx}} \right] \cdot \lambda_{x} + \int_{m}^{n} \left[M_{x}^{(m)} \right] \left[\frac{\delta M_{x}^{(m)}}{\delta M_{nx}} \right] \cdot \lambda_{y}$$
(3-6c)

Substituting from Eq. (2-10a,d), the values of the moments at a section in span \overline{mn} , in Eq. (3-6a,b,c) and applying appropriate unit

moments at m and n, analytical expressions for angular functions as denoted earlier are obtained. These expressions (F's, G's and τ 's) are presented in Table 3-5 and a list of the first partials required for deriving them are recorded in Table 3-4.

Partial Derivati	Partial Derivatives		
·	Basic Structure No. 2		
First Partials	First Partial Values		
$\frac{\delta^{M}_{x}}{\delta^{M}_{mx}}$	α _{nx}		
δ ^M y · δ ^M mx	$(\alpha_{\text{ny}} + \frac{x^3}{d_{\text{ny}}})$		
δ ^M _x , δ ^M _{mx}	β _{nx}		
δ ^M y ^t δ ^M my	β _{ny}		
$\frac{\delta^{M}_{y^{t}}}{\delta^{M}_{nx}}$	- x' dny		

Table 3-4

In terms of these angular functions and the moments M $_{mx},\ M_{my}$ and M $_{nx},$ the deformation equations are:

$$\frac{\delta U_{mn}}{\delta M_{mx}} = \frac{{}^{M}_{mx} F_{mnxx} + {}^{M}_{nx} G_{nmxx}}{+ \tau_{mnxx}}$$

$$= + \tau_{mnxx}$$

$$\frac{M}{my} F_{mnyx}$$
(3-7a)

P _{mnxx}	6U _{mn} 6M _{mx}	M_=1.0; M_=M_=Loads=0	$\int_{m}^{n} \alpha_{nx}^{2} \cdot \lambda_{x^{1}} + \int_{m}^{n} (\alpha_{ny} + \frac{x^{1}}{d_{ny}})^{2} \cdot \lambda_{y^{1}}$
P _{mnyx}	δU _{mn} δM _{mx}	M_=1.0;M_=M_=Loads=0 my	$\int_{m}^{n} \alpha_{nx} \cdot \beta_{nx} \cdot \lambda_{x} + \int_{m}^{n} (\alpha_{ny} + \frac{x!}{d_{ny}}) \cdot \beta_{ny} \cdot \lambda_{y}$
F _{mnxy}	δυ _{mn} δΜ _{my}	M =1.0;M =M =Loads=0 mx nx =1.0;M = M =1.0	J _m "nx "nx x' J _m '"ny d _{ny} ' "ny 'y'
Fmnyy	6U _{mn} 6M _{my}	M _{my} =1.0;M _{mx} =M _{nx} =Loads=0	$\int_{m}^{n} \theta_{nx}^{2} \cdot \lambda_{x}^{1} + \int_{m}^{n} \theta_{ny}^{2} \cdot \lambda_{y}^{1}$
F пшкк	8U _{mn} 6M _{n×}	M _{nx} =1.0;M _{mx} =M _{my} =Loads=0	$\int_{\mathfrak{m}}^{\mathfrak{n}} \left(-\frac{\mathfrak{x}^{\mathfrak{i}}}{d_{\mathfrak{n}\mathfrak{y}}}\right)^{2} \cdot \lambda_{\mathfrak{y}^{\mathfrak{i}}}$
G _{ranx} x	8U _{mn} 8M _{mx}	M =1.0;M =M =Loads=0	$\int_{m}^{n} (\alpha_{ny} + \frac{x^{i}}{d_{ny}}) (-\frac{x^{i}}{d_{ny}}) \cdot \lambda_{y^{i}}$
G _{mn××}	6U _{mn} 6M _{nx}	M =1.0; M =M =Loads=0	J _m 'ny a _{ny} a _{ny} y
G _{mnyx}	6U _{mn} 6M _{nx}	M _{my} =1.0; M _{mx} =M _{nx} =Loads=0	$f^n(\cdot, \cdot) \left(\begin{array}{c} x^1 \\ \cdot \end{array} \right)$
G _{nmxy}	8U _{mn} 8H _{my}	M _{nx} =1,0;M _{mx} =M _{my} =Loads=0	$\int_{m}^{n} (\beta_{ny})(-\frac{\kappa'}{d_{ny}}) \cdot \lambda_{y},$
T _{mn×x}	δυ _{mn} δΜ _{m×}	M =M =M =0 nx =my = nx =0	$\int_{\mathfrak{m}}^{n} BM_{y}^{(\mathfrak{m})} \cdot (\alpha_{ny} + \frac{x!}{d_{ny}}) \cdot \lambda_{y},$
[†] mnyy	6U _{mn}	M =M =M *O mx my nx*	$\int_{\mathfrak{m}}^{n} BM_{y}^{(\mathfrak{m})} \cdot (\beta_{ny}) \cdot \lambda_{y},$
T _{rimxx}	6U _{mn} 6M _{n×}	M =M =M =0 mx my nx	$\int_{\mathfrak{m}}^{n} BM_{y}^{(\mathfrak{m})} \cdot (-\frac{\kappa'}{d}_{ny}) \cdot \lambda_{y'}$

Table 3-5

$$\frac{\delta U_{mn}}{\delta M_{my}} = \frac{M_{mx}F_{mnxy} + M_{nx}G_{nmxy}}{M_{my}F_{mnyy}} + \tau_{mnyy}$$
(3-7b)

$$\frac{\delta U_{mn}}{\delta M_{nx}} = \frac{M_{mx}G_{mnxx} + M_{nx}F_{nmxx}}{+ T_{nmxx}}$$

$$M_{my}G_{mnyx}$$
(3-7c)

3-3 Basic Structure No. 3.

In this case, the basic structure \overline{mn} has two end moments \underline{M}_{mx} and \underline{M}_{my} at support m. The moment \underline{M}_{my} can be obtained from statics and as such, only one equation of slope at m along the X-direction is required to be derived. As done in previous cases, it is expressed in terms of angular functions and the end moments \underline{M}_{mx} , \underline{M}_{my} . Since there cannot be any moments at end support n, being the simply-supported end of a continuous structure \overline{in} (Fig. 1-3b), the expected angular functions at end m along the X-axis are:

- (i) The angular flexibility F_{mnxx}
- (ii) The angular flexibility \mathbf{F}_{mnyx}
- (iii) The angular load function τ_{mnxx}

The strain energy (of bending) of the basic structure is:

$$\mathbf{u}_{\mathbf{mny'}} = \frac{1}{2} \int_{\mathbf{m}}^{\mathbf{n}} \left[\mathbf{M}_{\mathbf{y'}}^{(\mathbf{n})} \right]^{2} \cdot \lambda_{\mathbf{y'}}$$
 (3-8)

where λ_y has been explained before (Eq. 3-2). By Castigliano's theorm, the deformation equation at m along the X-axis is

$$\frac{\delta U_{mn}}{\delta M_{x}} = \int_{m}^{n} \left[M_{y}^{(n)} \right] \left[\frac{\delta M_{y}^{(n)}}{\delta M_{mx}} \right] \cdot \lambda_{y}, \qquad (3-9a)$$

Substituting for $M_{y_i}^{(n)}$ from Eq. (2-14)

$$\frac{\delta U_{mn}}{\delta M_{mx}} = \int_{m}^{n} \left[\left(M_{mx} \cdot \alpha_{ny} + M_{my} \cdot \beta_{ny} \right) \left(\frac{x'}{d_n} \right) + \beta M_{y}^{(n)} \right] (\alpha_{ny} \cdot \frac{x'}{d_n}) \cdot \lambda_{y'}$$
(3-9b)

Eq. (3-9) is rewritten as

$$\frac{\delta U_{mn}}{\delta M_{mx}} = M_{mx} \int_{m}^{n} \alpha_{ny}^{2} \cdot \left(\frac{x!}{d_{ny}}\right)^{2} \cdot \lambda_{y!} + M_{my} \int_{m}^{n} \alpha_{ny} \cdot \beta_{ny} \cdot \left(\frac{x!}{d_{ny}}\right)^{2} \cdot \lambda_{y!}$$

$$+ \int_{m}^{n} \beta M_{y}^{(n)} \cdot \alpha_{ny} \cdot (\frac{x'}{d_{ny}}) \cdot \lambda_{y'}$$
 (3-9c)

From Eq. (3-9c), it is apparent that the expressions in the integrals are the three angular functions stated before.

Thus

$$\frac{\delta U_{mn}}{\delta M_{mx}} = M_{mx} \cdot F_{mnxx} + M_{my} \cdot F_{mnyx} + \tau_{mnxx}$$
 (3-10)

where

$$F_{\text{mnxx}} = \int_{m}^{n} \alpha_{\text{ny}}^{2} \cdot \left(\frac{x^{\dagger}}{d_{\text{ny}}}\right)^{2} \cdot \lambda_{y^{\dagger}}$$

$$F_{mnyx} = \int_{m}^{n} \alpha_{ny} \cdot \beta_{ny} \cdot \left(\frac{x'}{d_{ny}}\right)^{2} \cdot \lambda_{y'}$$
(3-11)

$$\tau_{\text{mnxx}} = \int_{m}^{n} BM_{y}^{(n)} \cdot \alpha_{ny} \cdot (\frac{x!}{d_{ny}}) \cdot \lambda_{y}!$$

CHAPTER IV

COMPATIBILITY EQUATIONS

The compatibility equations of deformation over several supports of a continuous bent beam are derived. For a planar continuous bent beam subjected to out of plane loading, the condition of consistent deformations over a support would result in a compatibility equation. As such, there will be as many compatibility equations as there are redundant support moments.

Such a set of compatibility equations is put in a matrix form.

Carry over moment equations are derived from these compatibility equations. A neat and efficient carry over procedure is evolved, which can be used to solve for the redundant moments, as is illustrated algebraically and in the numerical example (Chap. V).

4-1 Derivation.

Consider the odd span continuous bent beams

- (i) gn with end g simply supported and end n fixed (Fig. 4-1).
- (ii) gp with end g fixed and end p simply supported (Fig. 4-2).

The isolated portion \overline{ikm} of these two structures can be separated into two basic structures \overline{ijk} and \overline{klm} , of the type classified earlier as basic structure No. 1. Consider the continuous support k. Using Castigliano's theorm, the first partial of the strain energy U_{ikm} with respect to the redundant moments M_{kx} and M_{ky} must vanish. In other words,

the summation of all slopes at k along the X-axis and the Y-axis must each be equal to zero.

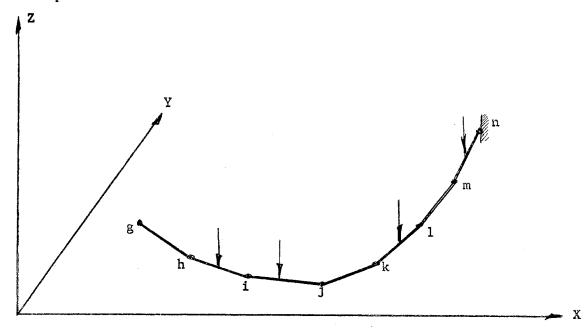


Figure 4-1

Continuous Bent Beam.

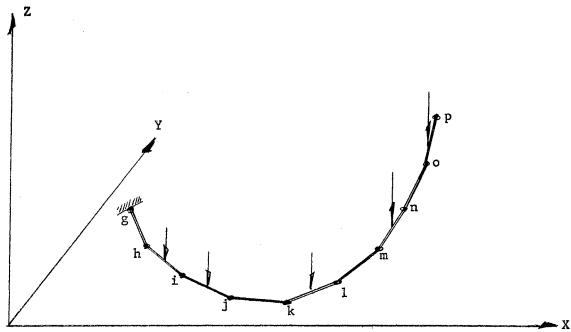


Figure 4-2

Continuous Bent Beam.

Thus

$$\frac{\delta U_{ikm}}{\delta M_{kx}} = \frac{\delta U_{ikm}}{\delta M_{ky}} = 0 \tag{4-1}$$

Using the deformation equations (3-4a,b) derived earlier for basic structures ijk and adopting similar notation of symbols for basic structure klm, equations (4-1) are expressed as:

$$M_{ix}G_{ikxx} + M_{kx} \sum_{kxx} + M_{mx}G_{mkxx} + \sum_{txx} = 0$$

$$M_{iy}G_{ikyx} + M_{kx} \sum_{kxx} + M_{my}G_{mkyx}$$

$$(4-2a)$$

where

$$\sum_{k=1}^{\infty} \mathbf{F}_{k} = \mathbf{F}_{k} + \mathbf{F}_{k} = \mathbf{F}_{k} = \mathbf{F}_{k} + \mathbf{F}_{k}$$

$$\sum_{k=1}^{\infty} \mathbf{F}_{k} = \mathbf{F}_{k} + \mathbf{F}_{k} = \mathbf{F}_{k}$$

$$\sum_{k=1}^{\infty} \mathbf{F}_{k} = \mathbf{F}$$

Exactly similar six-moment compatibility equations apply to the support i of the continuous structure \overline{gp} (Fig. 4-2). As the end moments M_{gx} and M_{gy} for the continuous bent beam gn are zero, Eq. (4-2a) and (4-2b) may be applied to the support i with this modification (Fig. 4-1).

Next, consider the isolated portion kmm of the continuous structure \overline{gn} . This can be separated into two parts, basic structure (No. 1) \overline{klm}

and basic structure (No. 2) \overline{mn} . At the support m, since M and M are the redundant moments.

$$\frac{\delta U_{kmn}}{\delta M_{mx}} = \frac{\delta U_{kmn}}{\delta M_{my}} = 0 \tag{4-4}$$

From Eq. (3-4a,b) and (3-7a,b), the deformation conditions at m for basic structures $\overline{\text{klm}}$ and $\overline{\text{mn}}$, Eq. (4-3) can be expressed as

$$M_{kx}G_{kmxx} + M_{mx} \sum_{mxx} + M_{nx}G_{nmxx} + \sum_{mxx} = 0$$

$$M_{ky}G_{kmyx} + M_{my} \sum_{mxx} F_{myx}$$

$$(4-5a)$$

$$M_{kx}G_{kmxy} + M_{my} \sum_{mxy} F_{mxy} + M_{nx}G_{nmxy} + \sum_{myy} F_{myy} = 0$$

$$M_{ky}G_{kmyy} + M_{my} \sum_{myy} F_{myy}$$

$$(4-5b)$$

where

$$\sum_{mxx} \mathbf{F}_{mxx} = \mathbf{F}_{mkxx} + \mathbf{F}_{mnxx}; \qquad \sum_{mxy} \mathbf{F}_{myx} = \mathbf{F}_{mkyx} + \mathbf{F}_{mnyx}$$

$$\sum_{mxy} \mathbf{F}_{mxy} = \mathbf{F}_{mkxy} + \mathbf{F}_{mnxy}; \qquad \sum_{mxy} \mathbf{F}_{myy} = \mathbf{F}_{mkyy} + \mathbf{F}_{mnyy}$$

$$\sum_{mxx} \mathbf{F}_{mxx} = \mathbf{F}_{mkxx} + \mathbf{F}_{mnxx}; \qquad \sum_{mxy} \mathbf{F}_{myy} = \mathbf{F}_{mkyy} + \mathbf{F}_{mnyy}$$

$$\sum_{mxx} \mathbf{F}_{mxx} = \mathbf{F}_{mkxx} + \mathbf{F}_{mnxx}; \qquad \sum_{mxy} \mathbf{F}_{mxy} = \mathbf{F}_{mkyy} + \mathbf{F}_{mnyy}$$

Eq. (4-5a,b) are the compatibility equations for the support m of the continuous structure gn (Fig. 4-1).

Finally, the isolated portion mop of the continuous bent beam \overline{gp} (Fig. 4-2) is considered. This can be separated into two parts, basic structure (No. 1) \overline{mno} and basic structure (No. 3) \overline{op} . At the support o, since M_{ox} is the only redundant moment,

$$\frac{\delta U_{\text{mop}}}{\delta M_{\text{ox}}} = 0 \tag{4-7}$$

Using the deformation equations along the X direction derived earlier (Eq. 3-4a,b, 3-10), the compatibility equation (Eq. 4-7) is expressed as

$$\frac{M_{\text{mx}}G_{\text{moxx}} + M_{\text{ox}}\Sigma F_{\text{oxx}}}{+ \Sigma \tau_{\text{oxx}} = 0}$$

$$\frac{M_{\text{my}}G_{\text{moyx}} + M_{\text{oy}}\Sigma F_{\text{opyx}}}{+ M_{\text{oy}}\Sigma F_{\text{opyx}}}$$
(4-8)

where

$$\sum_{v} F_{\text{oxx}} = F_{\text{omxx}} + F_{\text{opxx}}$$

$$\sum_{v} F_{\text{oyx}} = F_{\text{omyx}} + F_{\text{opyx}}$$

$$\sum_{v} T_{\text{oxx}} = T_{\text{omxx}} + T_{\text{opxx}}$$
(4-9)

Since M is statically determinate, the three-moment compatibility equation in its final form is

$$\frac{M_{\text{mx}} \cdot G_{\text{moxx}} + M_{\text{ox}} \cdot \Sigma F_{\text{oxx}}}{+ \Sigma \tau_{\text{oxx}}^{*} = 0}$$

$$\frac{M_{\text{my}} \cdot G_{\text{moyx}}}{+ \Sigma \tau_{\text{oxx}}^{*}} = 0$$
(4-10)

denoting

$$\Sigma \tau_{\text{oxx}}^* = \Sigma \tau_{\text{oxx}} + M_{\text{oy}} \Sigma F_{\text{oyx}}$$
 (4-11)

It would be monotonous to derive compatibility equations for every support in the continuous structures \overline{gn} and \overline{gp} when the procedure of their derivation is similar to those obtained in Eq. (4-2), (4-5), and (4-10).

Instead, it is desirable to put these compatibility equations in matrix forms. The above treatment is general, and continuous bent beams having any number of spans can be analyzed similarly.

4-2 Matrix Forms.

(a) In the continuous structure \overline{gn} (Fig. 4-1), there are seven redundant support moments. Thus there are seven compatibility equations. The redundant matrix can be expressed as shown:

(b) There are nine redundant moments in the continuous bent beam \overline{gp} (Fig. 4-2). As such there will be nine compatibility equations. The redundant matrix is:

ΣF.	T-120						Mgy	9	^T giyy
y ixx	LF 1yx	G _{kixx}	G _{kiyx}	•	•	w	M _{ix}		ΣΤ _{ixx}
уу ^Σ Е	ΣF _{іуу}	G _{kixy}	G _{kiyy}	- ,	•	•	Miy		Στίγγ
G _{ikxx}	G _{ikyx}	$\Sigma^{\mathbf{F}}_{\mathbf{k} \mathbf{x} \mathbf{x}}$	^{ΣF} kyx	G _{mkxx}	G _{mkyx}	•	Mkx		Στ _{kxx}
G _{Ikxy}	G _{ikyy}	^{ΣF} kxy	ΣF _{kyy}	G _{mkxy}	Gmkyy	•	M _{ky}	= -	Στ _{kyy}
		G _{km××}	G _{kmyx}	$\Sigma^{\mathbf{F}}_{\mathbf{m} \mathbf{x} \mathbf{x}}$	ΣF _{myx}	Gomxx	M mx		$\Sigma \tau_{\mathbf{m} \mathbf{x} \mathbf{x}}$
•	.	G _{kmxy}	G _{kmyy}	∑F _{mxy}	ΣF _{myy}	G _{omxy}	M my		$\Sigma au_{\mathbf{myy}}$
	•	=		G _{moxx}	Gmovx	ΣF _{OKK}	M		Στ*
	G _{ikxx}	G _{ikxx} G _{ikyx} G _{ikxy} G _{ikyy}	$egin{array}{lll} G_{ikxx} & G_{ikyx} & \Sigma F_{kxx} \\ G_{ikxy} & G_{ikyy} & \Sigma F_{kxy} \\ & - & - & G_{kmxx} \end{array}$	G _{ikxy} G _{ikyy} ΣF _{kxy} ΣF _{kyy} G _{kmxx} G _{kmyx}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4-3 Carry-Over Form.

The compatibility equations derived for the continuous support k

(Eq. 4-2a,b) can be expressed in a neat carry over form by solving for the redundant moments.

Denoting

$$\begin{split} \mathbf{r}_{\mathbf{i}\mathbf{k}\mathbf{x}\mathbf{x}} &= -\frac{G_{\mathbf{i}\mathbf{k}\mathbf{x}\mathbf{x}}}{\Sigma F_{\mathbf{k}\mathbf{x}\mathbf{x}}} & \mathbf{r}_{\mathbf{m}\mathbf{k}\mathbf{x}\mathbf{x}} &= -\frac{G_{\mathbf{m}\mathbf{k}\mathbf{x}\mathbf{x}}}{\Sigma F_{\mathbf{k}\mathbf{x}\mathbf{x}}} \\ \mathbf{r}_{\mathbf{i}\mathbf{k}\mathbf{y}\mathbf{x}} &= -\frac{G_{\mathbf{i}\mathbf{k}\mathbf{y}\mathbf{x}}}{\Sigma F_{\mathbf{k}\mathbf{x}\mathbf{x}}} & \mathbf{r}_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{x}} &= -\frac{G_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{x}}}{\Sigma F_{\mathbf{k}\mathbf{x}\mathbf{x}}} \\ \mathbf{r}_{\mathbf{k}\mathbf{k}\mathbf{y}\mathbf{x}} &= -\frac{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} & \mathbf{r}_{\mathbf{k}\mathbf{k}\mathbf{x}\mathbf{y}} &= -\frac{G_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} \\ \mathbf{r}_{\mathbf{i}\mathbf{k}\mathbf{y}\mathbf{y}} &= -\frac{G_{\mathbf{i}\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} & \mathbf{r}_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{y}} &= -\frac{G_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} \\ \mathbf{r}_{\mathbf{k}\mathbf{x}} &= -\frac{G_{\mathbf{i}\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} & \mathbf{r}_{\mathbf{m}\mathbf{k}\mathbf{y}} &= -\frac{G_{\mathbf{m}\mathbf{k}\mathbf{y}\mathbf{y}}}{\Sigma F_{\mathbf{k}\mathbf{y}\mathbf{y}}} \end{split}$$

where the r-values represent the carry over values and the m-values are the starting moments, the carry-over forms of the compatibility equations (Eq. 4-2) are:

$$M_{kx} = M_{kx} + \frac{r_{ikxx} \cdot M_{ix} + r_{mkxx} \cdot M_{kx}}{r_{ikyx} \cdot M_{iy} + r_{mkyx} \cdot M_{ky}} + r_{kkyx} \cdot M_{ky}$$
(4-13a)

$$M_{ky} = m_{ky} + \frac{r_{ikxy} \cdot M_{ix} + r_{mkxy} \cdot M_{kx}}{r_{ikyy} \cdot M_{iy} + r_{mkyy} \cdot M_{ky}} + r_{kkxy} \cdot M_{kx}$$
(4-13b)

Carry-over forms of any set of compatibility equations may be obtained in a similar way.

From the carry over moment equations (Eq. 4-13a,b), and similar carry over forms of other compatibility equations, it is possible to establish a carry over pattern between the starting moments with the help of the carry over values. A carry over pattern for the isolated portion ikm of the continuous structure gp (Fig. 4-2) is illustrated in Fig. 4-3.

The beauty of denoting the subscripts as they are given to the $F,\ G,\ \tau \ \text{and}\ r \ \text{values}\ is\ \text{self-evident}\ on\ \text{studying}\ the\ carry\ over\ pattern.$ Thus $r_{mkyx} \ \text{denotes}\ the\ carry\ over\ value\ of\ the\ starting\ moment\ m_{my}\ to\ the\ starting\ moment\ m_{kx}.$

Figure 4-3

Carry Over Pattern

CHAPTER V

NUMERICAL APPLICATION

The application of the compatibility equations derived in the last chapter to a numerical example is illustrated. A systematic procedure for analysis is outlined in the first part of the chapter. The numerical example is then analyzed following the outline procedure in the second part of the chapter.

5-1 Outline for Numerical Procedure

(a) Transformation Matrices.

A reference system is selected and the transformation matrix for each span is established.

(b) Basic Structures.

After selecting the support moments as the unknowns, the continuous structure is isolated into appropriate basic structures.

- (c) Angular Flexibilities and Carry Over Flexibilities.
- The flexibility values (F's and G's) for the basic structures are calculated (Table 5-7).
 - (d) Angular Load Functions.

For the given loading, the angular load functions are computed (Table 3-3).

(e) Compatibility Equations.

The compatibility equations, in terms of these F, G, and τ

values and the redundant support moments are now obtained. The solution of this set of simultaneous equations can be achieved by several methods.

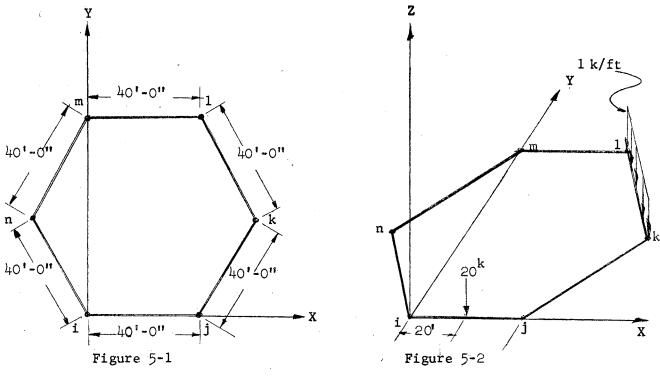
- (i) by the carry over procedure derived earlier.
- (ii) by synthetic elimination.
- (iii) by inverting the flexibility matrix on an electronic computer, if one is available or by Choleski's scheme.

The method, best suited to the example to be analysed, may be used.

(f) Shear Force, Twisting Moment and Bending Moment Diagrams

After obtaining the redundant support moments, the shear force,

twisting moment and the bending moment diagrams are drawn, by considering
the statics of the basic structures.


5-2 Numerical Example

A planar hexagonal beam ijklmn, of uniform square section is considered (Fig. 5-1). Each span is forty feet long and rests on simple supports. The structure is acted upon by loads perpendicular to the planar beam (Fig. 5-2). Unless stated otherwise, all values given are in units of feet, kips or kip-feet.

It is assumed that the Poisson's Ratio of the material of the structure is equal to 0.25, so that its flexural and torsional rigidity are equal.

Thus,

$$GJ_{x'} = EI_{y'} = GJ_{x''} = EI_{y''} = EI$$

Hexagonal Beam

(a) Transformation Matrices

The transformation matrix for each span is calculated. As the selected reference system XYZ coincides with the principle axes of the span \overline{ij} , the transformation angle w_j for the span \overline{ij} is equal to zero. Proceeding in a counter-clockwise direction on the structure from i to n, the subsequent transformation angles are:

$$w_k = 60^{\circ}$$
 $w_n = 240^{\circ}$ $w_1 = 120^{\circ}$ $w_i = 300^{\circ}$ $w_m = 180^{\circ}$

The transformation matrices for the particular spans are shown in the following tables.

	x'	Υ'
X	$\alpha_{jx} = +1.000$	α jy = 0.000
Y	8 = 0.000	g _{jy} = +1.000

	х"	Υ ⁱⁱ
х	$\alpha_{\mathbf{k}\mathbf{x}} = +0.500$	$\alpha_{\mathbf{k}\mathbf{y}} = -0.866$
Y	8 _{kx} = +0.866	8 _{ky} = +0.500

Table 5-1

Transformation Matrix for Span \overline{ij} .

Table 5-2

 $\begin{array}{ccc} \text{Transformation Matrix} \\ \text{for Span } \overline{jk} \end{array}$

	X'	Υ'
X	$\alpha_{1x} = -0.500$	$\alpha_{1y} = -0.866$
 Y	8 _{1x} = +0.866	$\beta_{1y} = -0.500$

t :	X''	Āu
Х	$\alpha_{\rm mx} = -1.000$	$\alpha_{\rm my} = 0.000$
Y	8 _{mx} = 0.000	β _{my} = -1.000

Table 5-3

 $\begin{array}{c} \text{Transformation Matrix} \\ \text{for Span } \overline{kl} \, . \end{array}$

Table 5-4

 $\begin{array}{c} \text{Transformation } \underline{\text{Matrix}} \\ \text{for Span } \overline{\text{lm}} \end{array}$

	X	Y'
х	$\alpha_{nx} = -0.500$	$\alpha_{\rm ny} = +0.866$
Y	8 _{nx} = -0.866	@ _{ny} = -0.500

	X ¹¹	Υ ¹¹
х	$\alpha_{ix} = +0.500$	$\alpha_{iy} = +0.866$
Y	β _{ix} = -0.866	8 _{iy} = +0.500

Table 5-5

 $\begin{array}{ccc} Transformation & Matrix\\ for & Span & \overline{mn} \end{array}$

Table 5-6

Transformation Matrix for Span ni

(b) Basic Structures

As the structure is a closed even span bent beam continuous over the supports, it is isolated into three basic structures, of the type classified earlier as basic structure No. 1 (Fig. 5-3). The redundant moments, acting at supports i, k and m are shown.

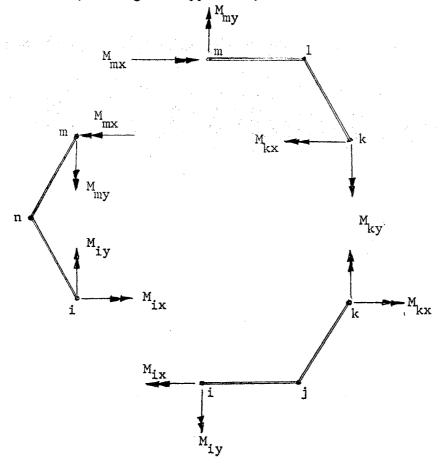


Figure 5-3
Basic Structures

(c) Angular Felxibilities and Carry Over Flexibilities

The angular flexibilities and the carry over flexibilities recorded in Tables 3-2 and 3-3 are for a non-uniform section. By integrating over the correct limits, they are simplified to apply to the case of a basic structure having a constant cross-section (Table 5-7).

Flexibility and Carry Over Flexibilities for Constant Section

Basic Structure No. 1

*ikes	$\frac{\alpha_{j_{x}}^{2} \cdot d_{j}}{\omega_{x}} + \frac{\alpha_{j_{y}}^{2} \cdot d_{j}}{EI_{y}} - \frac{\alpha_{j_{y}} \cdot d_{k_{x}} \cdot d_{j}^{2}}{cEI_{y}} + \frac{d_{k_{x}}^{2} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y}} + \frac{d_{j_{x}}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{y}}$
Fikyy	$\frac{\beta_{jx} \cdot d_{j}}{GJ_{x'}} + \frac{\beta_{jy}^{2} \cdot d_{j}}{EI_{y'}} - \frac{\beta_{jy} \cdot d_{ky} \cdot d_{j}^{2}}{CEI_{y'}} + \frac{d_{ky}^{2} \cdot d_{j}^{3}}{3c^{2}EI_{y'}} + \frac{d_{jy}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{y''}}$
Pikxy = Pikyx	$\frac{\alpha_{j\mathbf{x}}\cdot\beta_{j\mathbf{x}}\cdot\mathbf{d}_{j}}{GJ_{\mathbf{x}}} + \frac{\alpha_{j\mathbf{y}}\cdot\beta_{j\mathbf{y}}\cdot\mathbf{d}_{j}}{EI_{\mathbf{y}}} - \frac{(\alpha_{j\mathbf{y}}\cdot\mathbf{d}_{k\mathbf{y}}+\beta_{j\mathbf{y}}\cdot\mathbf{d}_{k\mathbf{x}})\mathbf{d}_{j}^{2}}{2C\cdot EI_{\mathbf{y}}} - \frac{\mathbf{d}_{k\mathbf{x}}\cdot\mathbf{d}_{k\mathbf{y}}\cdot\mathbf{d}_{j}^{3}}{3C^{2}\cdot EI_{\mathbf{y}}} + \frac{\mathbf{d}_{j\mathbf{x}}\cdot\mathbf{d}_{j\mathbf{y}}\cdot\mathbf{d}_{k}^{3}}{3C^{2}\cdot EI_{\mathbf{y}}}$
F _{kixx}	$\frac{\alpha_{kx}^{2} \cdot d_{k}}{GJ_{x''}} + \frac{\alpha_{ky}^{2} \cdot d_{k}}{EI_{y''}} + \frac{\alpha_{ky} \cdot d_{1x} \cdot d_{k}^{2}}{CEI_{y''}} + \frac{d_{1x}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{x''}} + \frac{d_{kx}^{2} \cdot d_{1}^{3}}{3c^{2} \cdot EI_{x''}}$
kiyy	$\frac{\beta_{kx}^{2} \cdot d_{k}}{GJ_{x''}} + \frac{\beta_{ky}^{2} \cdot d_{k}}{EI_{y''}} + \frac{\beta_{ky} \cdot d_{jy} \cdot d_{k}^{2}}{CEI_{y''}} + \frac{d_{jy}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{y''}} + \frac{d_{ky}^{2} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y'}}$
F _{kixy} = F _{kiyx}	$\frac{\alpha_{kx} \cdot \beta_{kx} \cdot d_{k}}{GJ_{x'}} + \frac{\alpha_{ky} \cdot \beta_{ky} \cdot d_{k}}{EI_{y''}} + \frac{(\alpha_{ky} \cdot d_{1y} + \beta_{ky} \cdot d_{1x})d_{k}^{2}}{3C^{2}EI_{y''}} + \frac{d_{1x} \cdot d_{1y} \cdot d_{k}^{3}}{3C^{2}EI_{y''}} + \frac{d_{kx} \cdot d_{ky} \cdot d_{1}^{3}}{3C^{2}EI_{y''}}$
Gikex = Gkixx	$\frac{\alpha_{jy} \cdot d_{kx} \cdot d_{j}^{2}}{2CEI_{y}!} - \frac{d_{kx}^{2} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y}!} - \frac{\alpha_{ky} \cdot d_{jx} \cdot d_{k}^{2}}{2CEI_{y}!!} - \frac{d_{jx}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{y}!!}$
Gikyy = Gkiyy	$\frac{\beta_{1y} \cdot d_{ky} \cdot d_{1}^{2}}{2CEI_{y}!} - \frac{d_{ky}^{2} \cdot d_{1}^{3}}{3C^{2} \cdot EI_{y}!} - \frac{\beta_{ky} \cdot d_{1y} \cdot d_{k}^{2}}{2CEI_{y}!!} - \frac{d_{1y}^{2} \cdot d_{k}^{3}}{3C^{2} \cdot EI_{y}!!}$
Gikxy = Gkiyx	$\frac{\beta_{1y} \cdot d_{kx} \cdot d_{1}^{2}}{2CEI_{y^{1}}} - \frac{d_{kx} \cdot d_{ky} \cdot d_{1}^{3}}{3C^{2} \cdot EI_{y^{1}}} - \frac{\alpha_{ky} \cdot d_{1y} \cdot d_{k}^{2}}{2CEI_{y^{11}}} - \frac{d_{1x} \cdot d_{1y} \cdot d_{k}^{3}}{3C^{2} \cdot EI_{y^{11}}}$
G _{ikyx} = G _{kixy}	$\frac{\alpha_{jy} \cdot d_{ky} \cdot d_{j}^{2}}{2CEI_{y^{1}}} - \frac{d_{kx} \cdot d_{ky} \cdot d_{j}^{3}}{3C^{2} \cdot EI_{y^{1}}} - \frac{\beta_{ky} \cdot d_{jx} \cdot d_{k}^{2}}{2CEI_{y^{11}}} - \frac{d_{jx} \cdot d_{jy} \cdot d_{k}^{3}}{3C^{2} \cdot EI_{y^{11}}}$

Table 5-7

The expressions in Table 5-7 are completely general for any basic structure No. 1 of uniform cross-section. The transformation matrix for each span determines the values of the geometric quantities in these expressions.

Basic Structure ijk

The angular flexibilities and the carry over flexibilities are calculated by using Table 5-7 for the basic structure ijk (Fig. 5-4).

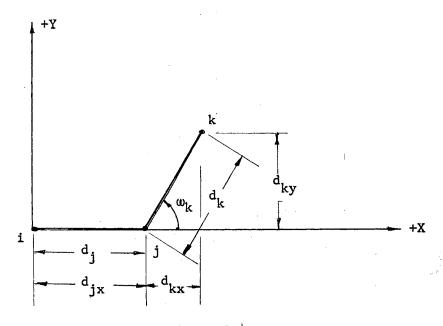


Figure 5-4

Basic Structure ijk

$$d_1 = d_k = 40^{1}-0^{11}$$

From the transformation matrix for the spans ij and jk (Tables 5-1, 5-2)

$$\alpha_{jx} = \beta_{jy} = +1.000$$

$$\alpha_{jy} = \beta_{jx} = 0.000$$

$$\alpha_{\mathbf{k}\mathbf{x}} = \beta_{\mathbf{k}\mathbf{y}} = +0.500$$

$$\alpha_{ky} = -8_{kx} = -0.866$$

$$\begin{aligned} \mathbf{d_{jx}} &= (40.000)(+1.000) = +40.000 \\ \mathbf{d_{jy}} &= (40.000)(0.000) = 0.000 \\ \mathbf{d_{kx}} &= (40.000)(+0.500) = +20.000 \\ \mathbf{d_{ky}} &= (40.000)(+0.866) = +34.640 \\ \mathbf{C} &= \mathbf{d_{jx}} \cdot \mathbf{d_{ky}} - \mathbf{d_{kx}} \cdot \mathbf{d_{jy}} & (\mathbf{Eq. 2-2c}) \\ &= (+40.000)(+34.640) \\ &= +1385.600 \end{aligned}$$

F values:

(i)
$$F_{ikxx} = \alpha_{jx}^{2} \cdot \frac{d_{j}}{GJ_{x'}} + \frac{d_{kx} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y'}} + \frac{d_{jx}^{2} \cdot d_{k}^{3}}{3c^{2} \cdot EI_{y''}}$$

$$= + \frac{62.25}{EI}$$

(ii)
$$F_{ikyy} = \beta_{jy}^{2} \cdot \frac{d_{j}}{EI_{y'}} - \frac{\beta_{jy} \cdot d_{ky} \cdot d_{j}^{2}}{C \cdot EI_{y'}} + \frac{d_{ky}^{2} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y''}}$$
$$= + \frac{13.33}{EI}$$

(iii)
$$F_{ikxy} = F_{kixy} = -\frac{\beta_{jy} \cdot d_{kx} \cdot d_{j}^{2}}{2CEI_{y'}} + \frac{d_{kx} \cdot d_{ky} \cdot d_{j}^{3}}{3c^{2} \cdot EI_{y'}}$$
$$= -\frac{3.85}{EI}$$

(iv)
$$F_{kixx} = \frac{\alpha_{kx}^2 \cdot d_k}{GJ_{x''}} + \frac{\alpha_{ky}^2 \cdot d_k}{EI_{y''}} + \frac{\alpha_{ky} \cdot d_{jx} \cdot d_k^2}{C \cdot EI_{y''}} + \frac{d_{jx}^2 \cdot d_k^3}{3C^2 \cdot EI_{y''}} + \frac{d_{kx}^2 \cdot d_j^3}{3C^2 \cdot EI_{y''}}$$

$$= + \frac{22.22}{EI}$$

(v)
$$F_{kiyy} = \frac{\beta_{kx}^2 \cdot d_k}{GJ_{x''}} + \frac{\beta_{ky}^2 \cdot d_k}{EI_{y''}} + \frac{d_{ky}^2 \cdot d_j^3}{3C^2 \cdot EI_{y'}}$$

$$= + \frac{53.32}{EI}$$

(vi)
$$F_{kiyx} = F_{kixy} = \frac{\alpha_{kx} \cdot \beta_{kx} \cdot d_k}{GJ_{x''}} + \frac{\alpha_{ky} \cdot \beta_{ky} \cdot d_k}{EI_{y''}} + \frac{\beta_{ky} \cdot d_{jx} \cdot d_k^2}{2CEI_{y''}} + \frac{d_{kx} \cdot d_{ky} \cdot d_j^3}{3C^2EI_{y'}}$$
$$= + \frac{19.28}{EI}$$

G values:

(i)
$$G_{ikxx} = G_{kixx} = -\frac{d_{kx}^2 \cdot d_i^2}{3c^2 \cdot EI_{y'}} - \frac{\alpha_{ky} \cdot d_{ix} \cdot d_k^2}{2 \cdot CEI_{y''}} - \frac{d_{ix}^2 \cdot d_k^3}{3c^2 \cdot EI_{y''}}$$

$$= -\frac{2.22}{EI}$$

(ii)
$$G_{ikyy} = G_{kiyy} = \frac{g_{jy} \cdot d_{ky} \cdot d_{j}^{2}}{2CEI_{y'}} - \frac{d_{ky}^{2} \cdot d_{j}^{3}}{3C^{2} \cdot EI_{y'}}$$

$$= + \frac{6.67}{EI}$$

(iii)
$$G_{ikxy} = G_{kiyx} = \frac{\beta_{jy} \cdot d_{kx} \cdot d_{j}^{2}}{2CEI_{y'}} - \frac{d_{kx} \cdot d_{ky} \cdot d_{j}^{3}}{3C^{2} \cdot EI_{y'}}$$

$$= + \frac{3.85}{EI}$$

(iv)
$$G_{ikyx} = G_{kixy} = -\frac{d_{kx} \cdot d_{ky} \cdot d_{j}^{3}}{3C^{2}EI_{y'}} - \frac{g_{ky} \cdot d_{jx} \cdot d_{k}^{2}}{2CEI_{y''}}$$

$$= -\frac{19.28}{EI}$$

Basic Structure klm

The basic structure \overline{klm} with the origin of coordinates at k is shown in Fig. 5-5.

$$d_{1} = d_{m} = 40^{\circ} - 0^{\circ}$$
From Tables (5-3, 5-4)
$$\alpha_{1x} = \beta_{1y} = -0.500$$

$$\alpha_{1y} = -\beta_{1x} = -0.866$$

$$\alpha_{mx} = \beta_{my} = -1.000$$

$$\alpha_{my} = \beta_{mx} = 0.000$$

$$d_{1x} = (40.000)(-0.500) = -20.000$$

$$d_{1y} = (40.000)(+0.866) = +34.640$$

$$d_{mx} = (40.000)(-1.000) = -40.000$$

$$d_{my} = (40.000)(0.000) = 0.000$$

$$C = d_{1x} \cdot d_{my} - d_{mx} \cdot d_{1y}$$

$$= -(-40.000)(+34.640)$$

F values:

= +1385.600

(i)
$$F_{kmxx} = \frac{\alpha_{1x}^2 \cdot d_1}{GJ_{x'}} + \frac{\alpha_{1y} \cdot d_1}{EI_{y'}} - \frac{\alpha_{1y} \cdot d_{mx} \cdot d_1^2}{CEI_{y'}} + \frac{d_{mx}^2 \cdot d_1^3}{3c^2 \cdot EI_{y'}} + \frac{d_{1x}^2 \cdot d_m^3}{3c^2 \cdot EI_{y''}}$$

$$= + \frac{22.22}{EI}$$

(ii)
$$F_{kmyy} = \frac{8_{1x}^2 \cdot d_1}{GJ_{x'}} + \frac{8_{1y}^2 \cdot d_1}{EI_{y'}} + \frac{d_{1y}^2 \cdot d_m}{3c^2 \cdot EI_{y''}}$$

$$= + \frac{53.32}{EI}$$

(iii)
$$F_{kmxy} = F_{kmyx} = \frac{\alpha_{1x} \cdot \beta_{1x} \cdot d_{1}}{GJ_{x'}} + \frac{\alpha_{1y} \cdot \beta_{1y} \cdot d_{1}}{EI_{y'}} - \frac{\beta_{1y} \cdot d_{x} \cdot d_{1}^{2}}{2CEI_{y'}} + \frac{d_{1x} \cdot d_{1y} \cdot d_{x}^{3}}{3C^{2} \cdot EI_{y''}}$$
$$= -\frac{19.28}{EI}$$

(iv)
$$F_{\text{mkxx}} = \frac{\alpha_{\text{mx}}^2 \cdot d_{\text{m}}}{GJ_{\text{x''}}} + \frac{d_{1\text{x}}^2 \cdot d_{\text{m}}^3}{3c^2 \cdot EI_{\text{y''}}} + \frac{d_{\text{mx}}^2 \cdot d_{1}^3}{3c^2 \cdot EI_{\text{y'}}}$$

$$= + \frac{62.25}{EI}$$

(v)
$$F_{mkyy} = \frac{\beta_{mx}^2 \cdot d_m}{GJ_{x''}} + \frac{\beta_{my}^2 \cdot d_m}{EI_{y''}} + \frac{\beta_{my} \cdot d_{1y} \cdot d_m^2}{CEI_{y''}} + \frac{d_{1y}^2 \cdot d_m^3}{3c^2 \cdot EI_{y''}} + \frac{d_{my}^2 \cdot d_1^3}{3c^2 EI_{y''}}$$

$$= + \frac{13.33}{EI}$$

(vi)
$$F_{mkxy} = F_{mkyx} = \frac{\theta_{my} \cdot d_{1x} \cdot d_{m}^{2}}{2CEI_{y''}} + \frac{d_{1x} \cdot d_{1y} \cdot d_{m}^{3}}{3C^{2} \cdot EI_{y''}}$$

$$= + \frac{3.85}{EI}$$

G values:

(i)
$$G_{kmxx} = G_{mkxx} = \frac{\alpha_{1y} \cdot d_{mx} \cdot d_{1}^{2}}{2CEI_{y'}} - \frac{d_{mx}^{2} \cdot d_{1}^{3}}{3c^{2} \cdot EI_{y'}} - \frac{d_{1x}^{2} \cdot d_{m}^{3}}{3c^{2} \cdot EI_{y''}}$$

$$= -\frac{2.22}{EI}$$

(ii)
$$G_{kmyy} = G_{mkyy} = -\frac{8_{my} \cdot d_{1y} \cdot d_{m}^{2}}{2CEI_{y''}} - \frac{d_{1y}^{2} \cdot d_{m}^{3}}{3C^{2} \cdot EI_{y''}}$$

$$= +\frac{6.67}{EI}$$

(iii)
$$G_{kmxy} = G_{mkyx} = \frac{8_{1y} \cdot d_{mx} \cdot d_{1}^{3}}{2CEI_{y'}} - \frac{d_{1x} \cdot d_{1y} \cdot d_{m}^{3}}{3C^{2} \cdot EI_{y''}}$$

$$= + \frac{19.28}{EI}$$

(iv)
$$G_{kmyx} = G_{mkxy} = -\frac{\beta_{my} \cdot d_{1x} \cdot d_{m}^{2}}{2CEI_{y''}} - \frac{d_{1x} \cdot d_{1y} \cdot d_{m}^{3}}{3C^{2} \cdot EI_{y''}}$$

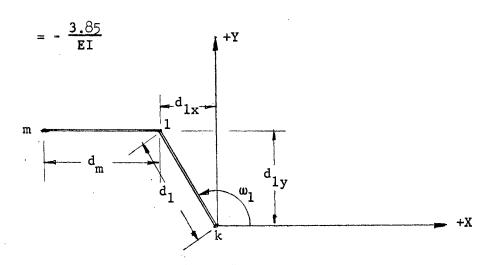


Figure 5-5

Basic Structure klm

Basic Structure mni

The basic structure mni with the origin of co-ordinates at m is shown in Fig. 5-6.

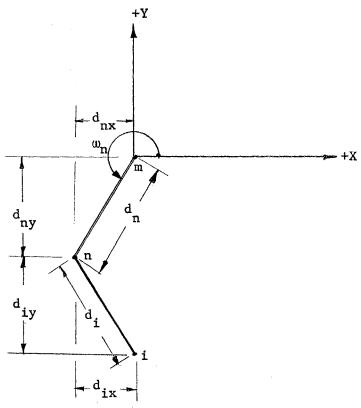


Figure 5-6

Basic Structure mni

$$d_n = d_i = 40^{\circ}-0^{\circ}$$

From Tables 5-5 and 5-6

$$\alpha_{nx} = \beta_{ny} = -0.500$$
 $\alpha_{ny} = -\beta_{nx} = +0.866$
 $\alpha_{ix} = \beta_{iy} = +0.500$
 $\alpha_{iy} = -\beta_{ix} = +0.866$
 $d_{nx} = (40.00)(-0.500) = -20.000$
 $d_{ny} = (40.000)(-0.866) = -34.640$

$$d_{ix} = (40.000)(+0.500) = +20.000$$

$$d_{iy} = (40.000)(-0.866) = -34.640$$

$$C = d_{nx} \cdot d_{iy} - d_{ix} \cdot d_{iy}$$

$$= (-20.000)(-34.640) - (+20.000)(-34.640)$$

$$= +1385.600$$

F values:

(i)
$$F_{\text{mixx}} = \frac{\alpha_{\text{nx}}^2 \cdot d_{\text{n}}}{GJ_{\text{x'}}} + \frac{\alpha_{\text{ny}}^2 \cdot d_{\text{n}}}{EI_{\text{y'}}} - \frac{\alpha_{\text{ny}} \cdot d_{\text{ix}} \cdot d_{\text{n}}^2}{CEI_{\text{y'}}} - \frac{d_{\text{ix}}^2 \cdot d_{\text{n}}^3}{3c^2 EI_{\text{y'}}} + \frac{d_{\text{nx}}^2 \cdot d_{\text{i}}^3}{3c^2 EI_{\text{y''}}}$$

$$= + \frac{28.88}{EI}$$

(ii)
$$F_{\text{miyy}} = \frac{\beta_{\text{nx}}^2 \cdot d_{\text{n}}}{GJ_{\text{x}}} + \frac{\beta_{\text{ny}}^2 \cdot d_{\text{n}}}{EI_{\text{y}}} - \frac{\beta_{\text{ny}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^2}{CEI_{\text{y}}} + \frac{d_{\text{iy}}^2 d_{\text{n}}^3}{3C^2 \cdot EI_{\text{y}}} + \frac{d_{\text{ny}}^2 \cdot d_{\text{i}}^3}{3C^2 \cdot EI_{\text{y}}}$$

$$= + \frac{46.67}{EI}$$

(iii)
$$F_{\text{mixy}} = F_{\text{miyx}} = \frac{\alpha_{\text{nx}} \cdot \beta_{\text{nx}} \cdot d_{\text{n}}}{GJ_{\text{x'}}} + \frac{\alpha_{\text{ny}} \cdot \beta_{\text{ny}} \cdot d_{\text{n}}}{EI_{\text{y'}}} - \frac{(\alpha_{\text{ny}} \cdot d_{\text{iy}} + \beta_{\text{ny}} \cdot d_{\text{ix}}) \cdot d_{\text{n}}^{2}}{2CEI_{\text{y'}}}$$
$$+ \frac{d_{\text{ix}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^{3}}{3C^{2}EI_{\text{y'}}} + \frac{d_{\text{nx}} \cdot d_{\text{ny}} \cdot d_{\text{i}}^{3}}{3C^{2}EI_{\text{y''}}}$$
$$= + \frac{23.08}{EI}$$

(iv)
$$F_{imxx} = \frac{\alpha_{ix}^2 \cdot d_i}{GJ_{x''}} + \frac{\alpha_{iy}^2 \cdot d_i}{EI_{y''}} + \frac{\alpha_{iy} \cdot d_{nx} \cdot d_i^2}{CEI_{y''}} + \frac{d_{nx}^2 \cdot d_i^3}{3c^2 \cdot EI_{y''}} + \frac{d_{ix}^2 \cdot d_n^3}{3c^2 \cdot EI_{y'}}$$

$$= + \frac{28.88}{EI}$$

(v)
$$F_{imyy} = \frac{\alpha_{iy}^2 \cdot d_i}{GJ_{x''}} + \frac{\beta_{iy}^2 \cdot d_i}{EI_{y''}} + \frac{\beta_{iy} \cdot d_{ny} \cdot d_i^2}{CEI_{y''}} + \frac{d_{ny}^2 \cdot d_i^3}{3C^2 EI_{y''}} + \frac{d_{iy}^2 \cdot d_n^3}{3C^2 \cdot EI_{y'}}$$

$$= + \frac{46.67}{EI}$$

(vi)
$$F_{imxy} = F_{imyx} = \frac{\alpha_{ix} \cdot \beta_{ix} \cdot d_{i}}{GJ_{x''}} + \frac{\alpha_{iy} \cdot \beta_{iy} \cdot d_{i}}{EI_{y''}} + \frac{(\beta_{iy} \cdot d_{nx} + \alpha_{iy} \cdot d_{ny})d_{i}^{2}}{EI_{y''}}$$
$$+ \frac{d_{nx} \cdot d_{ny} \cdot d_{i}^{3}}{EI_{y''}} + \frac{d_{ix} \cdot d_{iy} \cdot d_{n}^{3}}{EI_{y'}}$$
$$= -\frac{23.08}{EI}$$

G values:

(i)
$$G_{\text{mixx}} = G_{\text{imxx}} = \frac{\alpha_{\text{ny}} \cdot d_{\text{ix}} \cdot d_{\text{n}}^2}{2CEI_{y'}} - \frac{d_{\text{ix}}^2 \cdot d_{\text{n}}^3}{3c^2 \cdot EI_{y'}} - \frac{\alpha_{\text{iy}} \cdot d_{\text{nx}} \cdot d_{\text{i}}^2}{2CEI_{y''}} - \frac{d_{\text{nx}}^2 \cdot d_{\text{i}}^3}{3c^2 \cdot EI_{y''}}$$

$$= + \frac{31.12}{EI}$$

(ii)
$$G_{\text{miyy}} = G_{\text{imyy}} = \frac{\theta_{\text{ny}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^2}{2\text{CEI}_{\text{y'}}} - \frac{d_{\text{iy}}^2 \cdot d_{\text{n}}^3}{3\text{C}^2 \cdot \text{EI}_{\text{y'}}} - \frac{\theta_{\text{iy}} \cdot d_{\text{ny}} \cdot d_{\text{i}}^2}{2\text{CEI}_{\text{y''}}} - \frac{d_{\text{ny}}^2 \cdot d_{\text{i}}^3}{3\text{C}^2 \cdot \text{EI}_{\text{y''}}}$$

$$= -\frac{6.67}{\text{EI}}$$

(iii)
$$G_{\text{miyx}} = G_{\text{imxy}} = \frac{\alpha_{\text{ny}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^2}{2CEI_{y'}} - \frac{d_{\text{ix}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^3}{3c^2 \cdot EI_{y'}} - \frac{\beta_{\text{iy}} \cdot d_{\text{nx}} \cdot d_{\text{i}}^3}{2CEI_{y''}}$$
$$- \frac{d_{\text{nx}} \cdot d_{\text{ny}} \cdot d_{\text{i}}^3}{3c^2 \cdot EI_{y''}}$$

$$= -\frac{11.56}{EI}$$

(iv)
$$G_{\text{mixy}} = G_{\text{imyx}} = \frac{\beta_{\text{ny}} \cdot d_{\text{ix}} \cdot d_{\text{n}}^2}{2\text{CEI}_{\text{y'}}} - \frac{d_{\text{ix}} \cdot d_{\text{iy}} \cdot d_{\text{n}}^3}{3\text{C}^2 \cdot \text{EI}_{\text{y'}}} - \frac{\alpha_{\text{iy}} \cdot d_{\text{ny}} \cdot d_{\text{i}}^2}{2\text{CEI}_{\text{y''}}}$$

$$- \frac{d_{\text{nx}} \cdot d_{\text{ny}} \cdot d_{\text{i}}^3}{3\text{C}^2 \cdot \text{EI}_{\text{y''}}}$$

$$= + \frac{11.56}{\text{EI}}$$

(d) Angular Load Functions

For the given loads, the angular load functions (τ values) are expressed algebraically in terms of the end slopes of a simply supported beam loaded in the plane.

Basic Structure ijk

A concentrated load of P = 20 kips acts at the center of the span ij. (Fig. 5-2)

(5-1)

From Tables 3-1 and 3-3.

(i)
$$\tau_{ikyy} = \int_{0}^{dj} BM_{y}^{(i)} \frac{\delta M_{y}^{(i)}}{\delta M_{iy}} \cdot \lambda_{y},$$

$$= \int_{0}^{\frac{dj}{2}} (-\frac{P}{2} \cdot u')(\beta_{jy} - \frac{u' \cdot d_{ky}}{C}) \cdot \frac{d_{x}}{EI}$$

$$+ \int_{\frac{dj}{2}}^{dj} (\frac{P}{2} \cdot u' - \frac{P}{2} \cdot d_{j})(\beta_{jy} - \frac{u' \cdot d_{ky}}{C}) \cdot \frac{d_{x}}{EI}$$

On integrating and simplifying.

$$\tau_{ikyy} = -\frac{P \cdot d_{i}^{2}}{16EI} (2 \cdot \beta_{jy} - 1)$$
Since $\beta_{jy} = +1.000$ (Table 5-1)
$$\tau_{ikyy} = -\frac{P \cdot d_{i}^{2}}{16EI} = \tau_{ijy}'$$
(5-1)

Thus τ_{ikyy} is equal to the end slope at i of a simply supported span ij loaded by the concentrated load P.

(ii)
$$\tau_{ikxx} = \int_{0}^{d_{j}} BM_{y}^{(i)} \cdot \frac{\delta M_{y}^{(i)}}{\delta M_{ix}} \cdot \lambda_{y}$$

$$= \int_{0}^{\frac{d_{j}}{2}} (-\frac{P}{2} \cdot u^{i})(\alpha_{jy} - \frac{u^{i} \cdot d_{kx}}{C}) \cdot \frac{d_{x}^{i}}{EI}$$

$$+ \int_{\frac{d_{j}}{2}}^{d_{j}} (\frac{P}{2} \cdot u^{i} - \frac{P}{2} \cdot d_{j})(\alpha_{jy} - \frac{u^{i} \cdot d_{kx}}{C}) \cdot \frac{d_{x}^{i}}{EI}$$

Integrating and simplifying

$$\tau_{ikxx} = \left[\frac{d_{kx}}{d_{ky}}\right] \frac{P \cdot d_{j}^{2}}{16EI}$$

From Fig. 5-4 and Table 5-2

$$\tau_{ikxx} = -\left[\frac{\alpha_{kx}}{\beta_{kx}}\right] \tau_{ijy'}$$

$$(iii) \quad \tau_{kiyy} = \int_{0}^{d_{j}} BM_{y}^{(i)} \frac{\delta M_{y'}^{(i)}}{\delta M_{ky}} \cdot \lambda_{y'}$$

$$= \int_{0}^{d_{j}} (-\frac{P}{2} \cdot u') (\frac{u' \cdot d_{ky}}{C}) \cdot \frac{d_{x'}}{EI} +$$

$$+ \int_{d_{j}}^{d_{j}} (\frac{P}{2} \cdot u' - \frac{P}{2} \cdot d_{j}) (\frac{u' \cdot d_{ky}}{C}) \cdot \frac{d_{x'}}{EI}$$

Integration and simplification gives

$$\tau_{kiyy} = -\frac{P \cdot d_i^2}{16EI} = \tau_{ijy}, \qquad (5-3)$$

(iv)
$$\tau_{kixx} = \int_{0}^{d_{j}} BM_{y}^{(i)} \cdot \frac{\delta M_{y'}^{(i)}}{\delta M_{kx}} \cdot \lambda_{y'}$$

$$= \int_{0}^{\frac{d_{j}}{2}} (-\frac{P}{2} \cdot u') (\frac{u' \cdot d_{kx}}{C}) \frac{d_{x'}}{EI} +$$

$$+ \int_{\frac{d_{j}}{2}}^{d_{j}} (\frac{P}{2} \cdot u' - \frac{P}{2} \cdot d_{j}) (\frac{u' \cdot d_{kx}}{C}) \cdot \frac{d_{x'}}{EI}$$

$$= -\left[\frac{d_{kx}}{d_{ky}}\right] \frac{P \cdot d_{j}^{2}}{16EI}$$

$$= +\left[\frac{\sigma'_{kx}}{\theta_{ly}}\right] \tau_{ijy'} \qquad (5-4)$$

Substituting the numerical values in Eq. 5-1, 5-2, 5-3, and 5-4,

$$\tau_{ikyy} = \tau_{kiyy} = -\frac{2000}{EI}$$

$$\tau_{ikxx} = -\tau_{kixx} = +\frac{1155}{EI}$$

Basic Structure klm

A uniformly distributed load of w=1 kip per foot acts on the span $\frac{1}{k}$.

From Tables 3-1 and 3-3.

(i)
$$\tau_{\text{kmyy}} = \int_{0}^{d_1} BM_{y}^{(k)} \cdot \frac{\delta M_{y}^{(k)}}{\delta M_{ky}} \cdot \lambda_{y'}$$

$$= \int_{0}^{d_1} (-\frac{wd_1}{2} \cdot u' + \frac{w \cdot u'^2}{2})(\beta_{1y} - \frac{u' \cdot d_{my}}{C}) \frac{d_{x'}}{EI}$$

Integrating and simplifying,

$$\tau_{kmyy} = \beta_{1y}(-\frac{2}{2^{14}} \cdot \frac{wd_{1}^{3}}{EI})$$
As $\beta_{1y} = -0.500$ (Table 5-3)
$$\tau_{kmyy} = +\frac{wd_{1}^{3}}{2^{14}EI} = -\tau_{k1y},$$
(5-5)
$$(ii) \quad \tau_{kmxx} = \int_{0}^{d_{1}} BM_{y}^{(k)} \cdot \frac{\delta M_{x}^{(k)}}{\delta M_{kx}} \cdot \lambda_{y},$$

$$= \int_{0}^{d_{1}} (-\frac{w \cdot d_{1}}{2} \cdot u' + \frac{w \cdot u'^{2}}{2})(\alpha_{1y} - \frac{u' \cdot d_{mx}}{C}) \frac{d_{x}'}{EI}$$

On integrating and simplifying

$$\tau_{\text{kmxx}} = \frac{\text{wd}_1^3}{24\text{EI}} \left(- 2\alpha_{1y} - \frac{2}{3} \right)$$

Since
$$\alpha_{1y} = -0.866$$

$$\tau_{\text{kmxx}} = +\frac{0.500}{0.866} \cdot \frac{\text{wd}_1^3}{24\text{EI}} = -\left[\frac{\alpha_{1x}}{8_{1x}}\right] \frac{\text{wd}_1^3}{24\text{EI}}$$

$$\tau_{\rm kmxx} = \left[\frac{\alpha_{\rm lx}}{\theta_{\rm lx}}\right] \tau_{\rm kly} \tag{5-6}$$

(iii)
$$\tau_{\text{mkyy}} = \int_{0}^{d_1} BM_y^{(k)} \cdot \frac{\delta M_y^{(k)}}{\delta M_{\text{my}}} \cdot \lambda_y^{*}$$

$$= \int_{0}^{d_1} \left(-\frac{wd_1}{2} \cdot u' + \frac{w \cdot u'^2}{2}\right) \left(\frac{u' \cdot d_{\text{my}}}{C}\right) \cdot \frac{d_x'}{EI}$$

Since $d_{my} = 0$

$$\tau_{\text{mkyy}} = 0 \tag{5-7}$$

(iv)
$$\tau_{\text{mkxx}} = \int_{0}^{d_1} BM_y^{(k)} \cdot \frac{\delta M_y^{(k)}}{\delta M_{\text{mx}}} \cdot \lambda_y$$

$$= \int_{0}^{d_1} \left(-\frac{wd_1}{2} \cdot u' + \frac{w \cdot u'^2}{2}\right) \left(\frac{u' \cdot d_{\text{mx}}}{C}\right) \cdot \frac{d_x'}{EI}$$

Integrating,

$$\tau_{\text{mkxx}} = + \left[\frac{1}{\beta_{1x}}\right] \frac{\text{wd}_1^3}{24\text{EI}}$$

$$= -\left[\frac{1}{\beta_{1x}}\right] \tau_{kly'} \tag{5-8}$$

Substituting the numerical values in Eq. 5-5, 5-6, 5-7 and 5-8

$$\tau_{\text{kmyy}} = + \frac{2667}{\text{EI}}$$
 ; $\tau_{\text{kmxx}} = + \frac{1538}{\text{EI}}$

$$\tau_{\text{mkyy}} = 0$$
 ; $\tau_{\text{mkxx}} = +\frac{3076}{\text{EI}}$

Basic Structure mni

As there are no loads on the spans mn and ni,

$$\tau_{\text{miyy}} = \tau_{\text{mixx}} = \tau_{\text{imyy}} = \tau_{\text{imxx}} = 0$$

Summation of Flexibilities (F-values) at the supports k, m and i

$$\sum \mathbf{F}_{\mathbf{k}\mathbf{x}\mathbf{x}} = + \frac{\mu \mu \cdot \mu \mu}{\mathbf{E}\mathbf{I}} \qquad \qquad ; \qquad \sum \mathbf{F}_{\mathbf{m}\mathbf{x}\mathbf{y}} = \sum \mathbf{F}_{\mathbf{m}\mathbf{y}\mathbf{x}} = + \frac{26.93}{\mathbf{E}\mathbf{I}}$$

$$\sum \mathbf{F_{kyy}} = + \frac{106.64}{EI}$$
 ; $\sum \mathbf{F_{ixx}} = + \frac{91.13}{EI}$

$$\sum \mathbf{F}_{\mathbf{k}\mathbf{x}\mathbf{y}} = \sum \mathbf{F}_{\mathbf{k}\mathbf{y}\mathbf{x}} = 0 \qquad \qquad ; \qquad \sum \mathbf{F}_{\mathbf{i}\mathbf{y}\mathbf{y}} = +\frac{60.00}{EI}$$

$$\sum \mathbf{F}_{\mathbf{m}\mathbf{x}\mathbf{x}} = +\frac{91.13}{EI} \qquad \qquad ; \qquad \sum \mathbf{F}_{\mathbf{i}\mathbf{x}\mathbf{y}} = \sum \mathbf{F}_{\mathbf{i}\mathbf{y}\mathbf{x}} = -$$

$$\sum_{\mathbf{F}_{mxx}} = + \frac{91.13}{EI} \qquad \qquad ; \qquad \sum_{\mathbf{F}_{ixy}} = \sum_{\mathbf{F}_{iyx}} = - \frac{26.93}{EI}$$

$$\sum_{\mathbf{F}_{\mathbf{myy}}} = + \frac{60.00}{\mathbf{EI}}$$
;

Summation of Load Functions (T-values) at the supports k, m and i

$$\sum_{\mathbf{T_{kxx}}} = + \frac{383}{EI}$$

$$\sum_{\mathbf{T_{kyy}}} = + \frac{667}{EI}$$

$$\sum_{\mathbf{T_{ixx}}} = + \frac{1155}{GI}$$

$$\sum_{\mathbf{T_{iyy}}} = -\frac{2000}{EI}$$

(e) Compatibility Equations

The six moment compatibility equations are arranged in a matrix form.

The six moment equations are solved by synthetic elimination and by the carry over procedure derived earlier (Eq. 4-13a,b).

It is found that the carry-over procedure (Table 5-8) converges very slowly and consumes considerable labor and time as compared to the solution by synthetic elimination. In fact, this is apparent from observing that some of the carry over values vary from 0.25 to 0.50. As such, it turns out that the carry over solution is not an ideal solution for the analysis of a polygonal frame-work of continuous bent beams as treated

Carry Over Procedure

•	•	*	- •ty !	• • • • • • • • • • • • • • • • • • • •	*
Tikes + + 0.04995	*him * + 0.03436	Fabres * + 0.04995	Filtry 0.05254	*	Fakery 0.06254
fiess 0.36149	Fhorm * + 0.03436	False 0.34140	Tiery * + 0.11116	Phayy * - 0.11116	faiyy . + 0.11116
rikey . + 0.03610	Palsy * + 0.32133	Fakay * + 0.03610	Files * + 0,43384	Phine 0.04234	Eabys * - 0.43384
Floory * + 0.19266	Thony * - 0.32133	Falsy * - 0.19366	- Fage 0.12685	Phaye * + 0.04234	Falys - + 0.13665
filey * + 8.44883	Chary * 0.00000	Tomacy * + 0.64683	* ilys * + 0.20551	Vhbys * 6.0000	Famps 0.29551
-12.67620	- 0.61036	-33.75937	+33.33333	- 6.25468	6.00000
+11.52049	+ 1.66628		+ 6.50404	- 1.21871	+15.15221
+11.17235	+17.28304	- 5.05337	+39.83741	- 1.49143	+ 4.42832
+ 2.48379	- 8.49482	+ 5.78626	+ 2.17657	• 1.22656	+19.58033
+13.11043	+ 0.45443	- 4.47705	+ 5.88435	+ 0.47338	+ 1.52506
+ 0.49263	0.00000	- 0.69263	+ 1.29642	-11.44366	+ 1.25643
+ 1.39871	- 0.78987	-15.00932	+ 1.04582	- 0.57073	+ 7,09570
+ 3.44526	+ 5.38097	- 1.57334	+13.40316	+ 0.77569	+ 1.57674
+ 1.55963	+ 5-33480	- 3.63380	+ 1.34690	- 0.76904	+12.29473
+11.11644	+ 0.55527	- 3.79615	+ 4.96939	- 0.40130	+ 2.14169
+ 3.07453	+ 0.44971	- 9.00329	+ 1.73457	+ 0.12502	+ 4,04094
+ 1.19093	+ 3.51014	- 1.02433	f 8.09066	- 0.50600	+ 0.89938
+ 0.89813	+ 3.07168	+ 2.09227	+ 0.78704	- 0.44277	+ 7.08201
+ 6.50358	+ 0.31786	+ 2.17309	+ 3.85617	- 0.22922	+ 1.22600
+ 1.00723	+ 0.26434	- 5-29219	+ 1.01959	- 0.19105	+ 1.37529
+ 1.37790	+ 1.02291	- 0.59146	+ 4.66280	- 0.29161	+ 0.51831
+ 0.19020	0.00000	+ 0,19020	+ 0.50055	- 4.50293	+ 0.50033
+ 0.58607	+ 2.02381	+ 1.36530	+ 0.51358	- 0.28594	+ 4.62015
+ 3.96140	+ 0.19767	- 1.35277	+ 1.77799	0.14301	+ 0.76320
+ 1.19155	- 0.1746)	- 3.49975	+ 0.67426	- 0.12634	+ 1.57080
+ 1.02435	+ 1.50365	- 0.43971	+ 3.46638	- 0.21679	+ 0.38523
+ 0.34493	- 1.17971	- 0.80356	+ 0.30227	- 0.17006	+ 2.71923
+ 2.56081	+ 0.12791	- 0.87449	+ 1.14937	- 0.09244	+ 0.49337
+ 0,72258	. 0.10369	- 2.11596	+ 0.40766	- 0.07639	+ 0.94971
+ 0.54944	+ 0.40663	- 0.23585	+ 1.85930	- 0.11620	+ 0.20468
+ 0.20927	- 0.71573	- 0.48752	+ 0.18339	.0.10318	+ 1.64976
+ 1.48129	+ 0.07399	- 0.58585	+ 0.66483	- 0.05347	+ 0.28539
+ 0.44709	+ 0.06539	- 1.30922	+ 0.25223	- 0.04726	+ 0.58762
+ 0.32815	+ 0.44177	- p.14086	+ 1.11047	- 0.06949	
+ 9.12640	- 0.43230	+ 0.29446	+ 0.11077		+ 0.17344
+ 0.90164	+ 0.04504	• 0.30790	+ 0.40468	- 0.06212	+ 0.99645
+ 0.06752	0.00000	- 0.06752	+ 0.17770	- 0.03255	+ 0.17370
+ 9.17686	- 0.04049	- 0.81074	+ 0.15260	- 1.59852 - 0.02927	+ 0.17770
+ 0.24993	+ 0.36693	- 0.10720	+ 0.84575		+ 0.36883
+ 0.10329	- 9.35325	- 0.24062		- 0.05289	+ 0.09401
+ 0.69760	+ 0.03484	- 0.23022	+ 0.09051 + 0.31310	- 0.03092	+ 0.81424
+ 0,20013	- 0.02927	- 0.58604	+ 0.11290	+ 0.02518	+ 0.13440
+ 0.15263	+ 0.22608	- 0.06351	+ 0.51650	- 0.02116 - 0.03230	+ 0.26303
+ 0.05769	- 0.19733	- 0.13441	+ 0.05056		+ 0.05741
+ 0.42045		- 0.14350	March 1997 March 1997 Control of the	- 0.02844	+ 0.43484
+ 0.11730	+ 0.02100	- 0.34350	+ 0.18871	- 0.01518	+ 0.08100
+ 0.09026	+ 0.13231		+ 0.06616	• 0.01240	+ 0.154)7
+ 0.03414	The second secon	- 0.03874	+ 0.02991	- 0.01910	+ 9.03395
+ 0.34170	- 0.11675	- 0.07953		- 0.01603	+ 0.26912
+ 0.06657	+ 0.01207	- 0.00253	† 0.10848	+ 0.00876	+ 0.04657
	- 0.01001	- 0.20080	+ 0.03868	- 0.00725	+ 0.09013
+ 0.05528	+ 0.08116	- 0.02371	+ 0.10707	+ 0.01169	+ 0.02079
+ 0.01998	. + 0.06432	- 0.04654	+ 0.01751	- 0.00985	+ 0.15748
1 9.14113	+ 0.00704	+ 0.04911	+ 0.06455	- 0.00519	+ 0.02771
+ 0.04076	- 0.00596	- 0.11937	+ 0.03300	- 0.00432	1 0.05376
1 0.04240	+ 0.04501	- 0.01740	† 0.10360	- 0.00660	+ 0.01174
+ 9.91162	- 0.04044	- 0.01754	. + 0.01036	- 0.00583	+ 0.09321
141.09915	- 9.40051	-72.89049	†73.40109	-10-12727	150.73374

Table 5-8

in this example. The results obtained by these methods are recorded in Table 5-9.

Support Moments	Carry-Over Procedure	Synthetic Elimination
M ix	+ 41.09915	+ 41.16508
M ₁ y	+ 73.40109	+ 73.40010
M _{kx}	- 0.40051	- 0.50143
M _{ky}	- 18.12727	- 18.10955
M mx	- 72.894049	- 72.98405
Mmy	. + 50 .733 74	+ 51.02418

Table 5-9

Support Moments

(f) Shear Force, Twisting Moment and Bending Moment Diagrams

The known support moments are now applied on the basic structures (Fig. 5-3), and the support reactions are computed from their statics.

The basic support moments at i, k and m are transformed to the principal axis of the spans. The shear force, twisting moment and the bending moment about the principal axes of the spans are shown on the unfolded structure (Fig. 5-7).

Basic Structure ijk

$$\sum_{\mathbf{P_z}} = -20.00000$$

$$R_{\mathbf{iz}} = +12.88720$$

$$R_{\mathbf{jz}} = +5.91478$$

$$R_{\mathbf{kz}} = +1.19802$$

$$M_{\mathbf{ijx'}} = M_{\mathbf{jix'}} = +41.09915$$

$$M_{\mathbf{kjx''}} = M_{\mathbf{jkx''}} = -15.89837$$

$$M_{\mathbf{ijy'}} = -42.08691$$

$$M_{\mathbf{jky''}} = -56.63760$$

$$M_{\mathbf{kjy''}} = -8.71680$$

Basic structure klm

$$\sum_{\mathbf{r}} \mathbf{r}_{\mathbf{z}} = -40.00000$$

$$R_{\mathbf{k}z} = +17.90773$$

$$R_{\mathbf{1}z} = +24.86043$$

$$R_{\mathbf{m}z} = -2.76785$$

$$M_{\mathbf{k}\mathbf{1}x'} = M_{\mathbf{1}\mathbf{k}x'} = -15.49797$$

$$M_{\mathbf{m}\mathbf{1}x''} = M_{\mathbf{1}\mathbf{m}x''} = +72.89049$$

$$M_{\mathbf{k}\mathbf{1}y'} = +9.41047$$

$$M_{\mathbf{1}\mathbf{k}y'} = +93.11727$$

$$M_{\mathbf{1}\mathbf{m}y''} = +59.98067$$

$$M_{\mathbf{m}\mathbf{1}y''} = -50.73374$$

Basic Structure mni

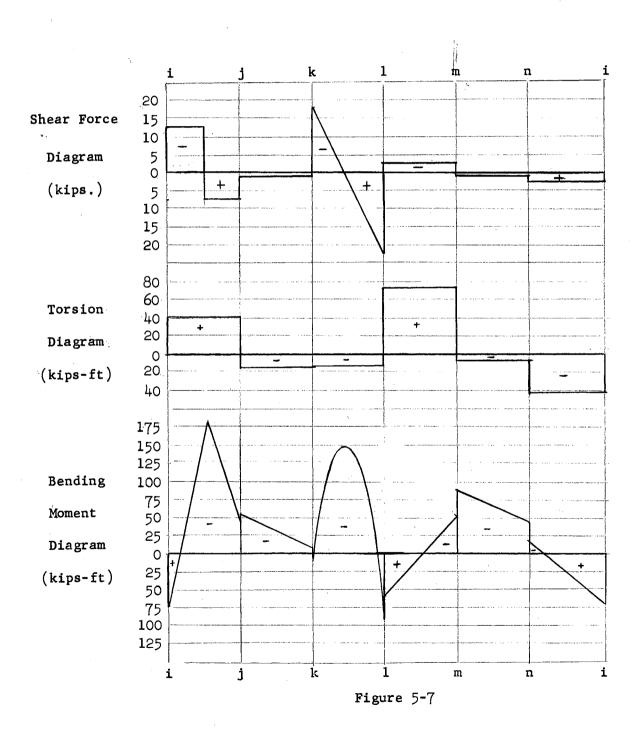
$$\sum_{\mathbf{r}} \mathbf{P}_{\mathbf{z}} = 0.00000$$

$$R_{\mathbf{mz}} = -1.07866$$

$$R_{\mathbf{nz}} = -1.13336$$

$$R_{\mathbf{iz}} = +2.21202$$

$$M_{\mathbf{mnx'}} = M_{\mathbf{nmx'}} = -7.49108$$


$$M_{\mathbf{inx''}} = M_{\mathbf{nix''}} = -43.01577$$

$$M_{\mathbf{mny'}} = -88.49053$$

$$M_{\mathbf{nmy'}} = -45.34413$$

$$M_{\mathbf{niy''}} = -16.19813$$

$$M_{\mathbf{iny''}} = +72.29240$$

CHAPTER VI

SUMMARY AND CONCLUSIONS

6-1 Summary

The application of the six-moment equations to the analysis of planar continuous bent beams loaded laterally is presented in this thesis. The study is an extension of the analysis of continuous beams loaded in the plane by the three moment equation.

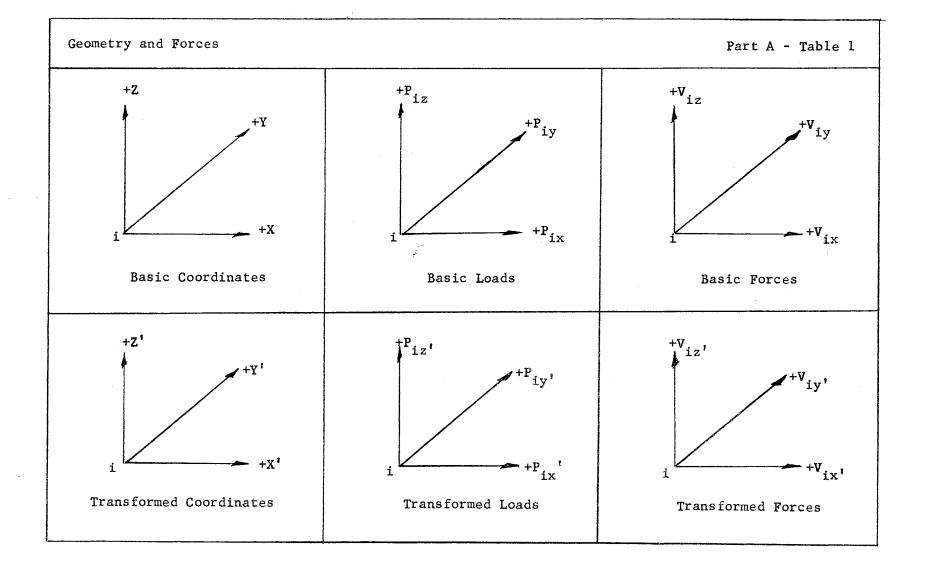
The continuous structure is isolated into appropriate basic structures, and the support moments, about the basic system of reference XYZ, are selected to be the unknowns. This is essential as the compatibility of deformations over a continuous support can only be achieved along a common reference axis. From the statics of the basic structures, the moments at a section are obtained and are expressed in terms of the selected unknowns by the transformation matrix. Angular constants of the basic structures are introduced and the deformation equations, in terms of these constants and the redundant moments are obtained by the Castigliano's method. Finally, by comparing the deformations over a continuous support, the six moment compatibility equations are obtained. The compatibility equations over the (n-1) support of an odd span continuous bent beam having n supports are also derived. A carry over solution of the six moment equations is demonstrated. The procedure for the analysis of the problem is outlined and a numerical example is included.

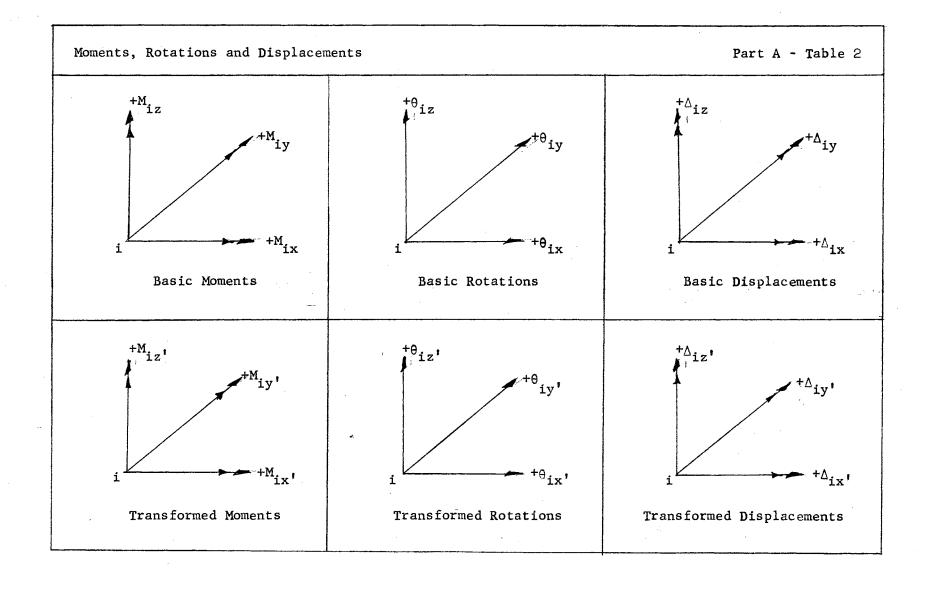
6-2 Conclusions

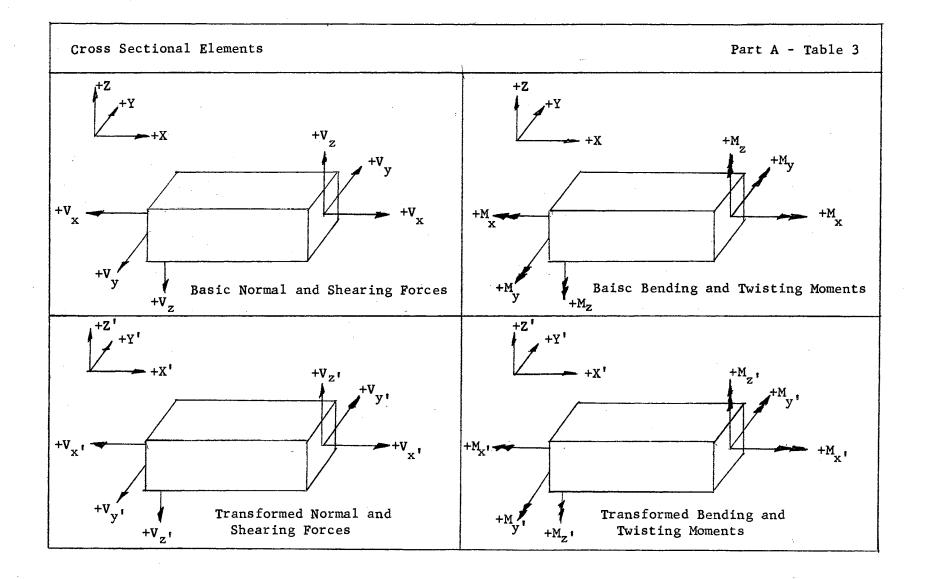
The compatibility equations provide an adequate method in the analysis of planar continuous bent beams loaded laterally. However, it is observed, that, for the analysis of closed polygonal frame-works of continuous bent beams as considered in the numerical application, the carry over procedure is not an ideal method for solving the six moment equations. The convergency of the starting values is slow and the labor involved is more than solving by other methods such as Gauss's elimination, matrix inversion by a computer, and by Choleski's method.

The convergency of the carry over procedure is expected to improve in case of continuous bent beams, not as acutely inclined as analysed in the numerical example. The feasibility of applying the carry over procedure to such problems may then be considered. The study may be extended to continuous bent beams, not in one plane.

A SELECTED BIBLIOGRAPHY

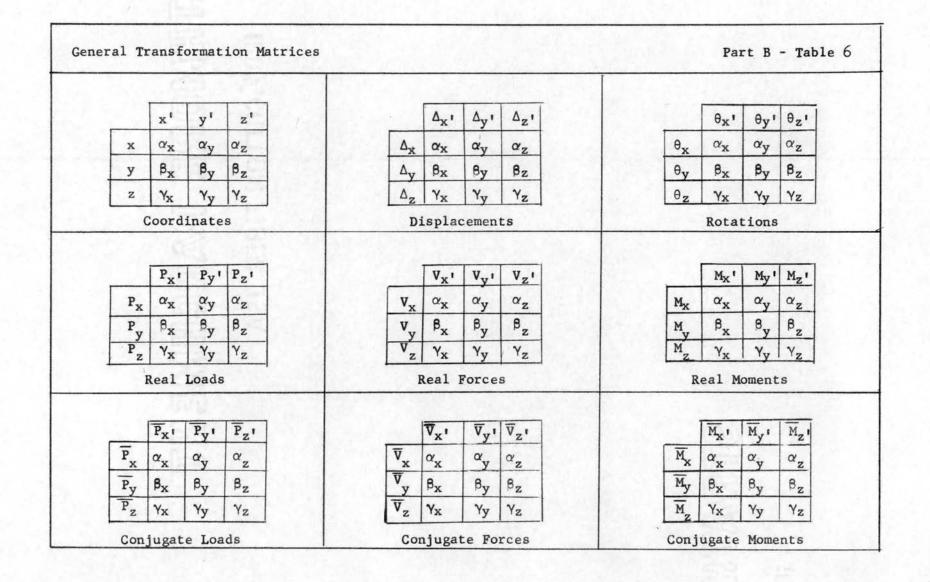

- 1. Tuma, Jan J. "Analysis of Continuous Beams by Carry Over Moments,"


 Journal of Structural Division, Proceedings, A.S.C.E., Vol. 84,
 No. 1762, September 1958.
- Tuma, Jan J. "Analysis of Continuous Trusses by Carry Over Moments," <u>Journal of Structural Division, Proceedings, A.S.C.E.</u>, Vol. 85, No. 2314, December 1959.
- 3. Tuma, Jan J. "Continuous Bent Members in Space," <u>Lecture Notes</u>, C.E. 5B4, Space Structures, Oklahoma State University, Summer 1961.
- 4. Childress, William H. "Analysis of Continuous Bent Members Loaded Out of Plane by the Carry Over Joint Moment Method," M.S. Thesis, Oklahoma State University, Spring 1962.
- 5. Tsui, Edward Y. "Analysis of Haunched Octagonal Girder Space Frames," <u>Journal of Structural Division</u>, <u>Proceedings</u>, <u>A.S.C.E.</u>, January 1959.
- 6. Michalos, James. <u>Theory of Structural Analysis and Design</u>, New York: Ronald Press Co., 1958.


APPENDIX

In the first part, the signs of geometric quantities, loads, moments, and deformation are shown. Both the external and cross-sectional elements are considered.

Several tables showing the application of the transformation matrix as discussed by Tuma (3) are presented in the second part of the appendix. The tables apply to the case of a general space structure (Table 5). For the planar problem treated in this thesis, w_2 and w_3 are zero so that the **Z**-terms vanish from the general transformation matrix.



Transformation of Coordinates		Part B - Table 4
$\begin{array}{c} Y_1 \\ w_1 \\ x_1 \\ y \\ w_1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	z_3 y_2 y_3 z_2 z_3 z_3 z_2 z_3 z_3 z_2 z_3 z_3 z_3 z_3 z_3 z_2 z_3
Rotation ^(t) 1	Rotation w ₂	Rotation ^w 3
$x = x_1^{\cos \omega_1} - y_1^{\sin \omega_1}$	$x_1 = x_2 \cos \omega_2 + z_2 \sin \omega_2$	x ₂ = x ₃
$y = x_1 \sin w_1 + y_1 \cos w_1$	$y_1 = y_2$	$y_2 = y_3 \cos w_3 - z_3 \sin w_3$
$z = z_1$	$z_1 = -x_2 \sin^{\omega}_2 + z_2 \cos^{\omega}_2$	$z_2 = y_3^{\cos \omega_3} + z_3^{\cos \omega_3}$
$x_1 = x\cos\omega_1 + y\sin\omega_1$	$x_2 = s_1 \cos w_2 = z_1 \sin w_2$	$x_3 = x_2$
$y_1 = -x\sin\omega_1 + y\cos\omega_1$	$y_2 = y_1$	$y_3 = y_2 \cos w_3 + z_2 \sin w_3$
z ₁ = z	$\mathbf{z}_2 = \mathbf{x}_1 \sin \mathbf{w}_2 + \mathbf{z}_1 \cos \mathbf{w}_2$	$z_3 = -y_2 \sin^{\omega}_3 + z_2 \cos^{\omega}_3$

		Part B -
$\alpha_{x} = \cos \omega_{1} \cos \omega_{2}$	$\beta_{x} = \sin^{\omega_{1}} \cos^{\omega_{2}}$	$\gamma_{x} = -\sin \omega_{2}$
$\alpha_{y} = -\sin \omega_{1} \cos \omega_{3}$	$\beta_y = \cos \omega_1 \cos \omega_3$	$y_y = \cos w_2 \sin w_3$
+ cosw ₁ sinw ₂ sinw ₃	+ sinw ₁ sinw ₂ sinw ₃	
$\alpha_z = \sin^{\omega_1}\sin^{\omega_3}$	$\beta_z = -\cos\omega_1 \sin\omega_3$	$\gamma_z = \cos \omega_2 \cos \omega_3$
+ cosw ₁ sinw ₂ cosw ₃	+ sinw ₁ sinw ₂ cosw ₃	
$X = X^{\dagger} \alpha_{x} + Y^{\dagger} \alpha_{y} + Z^{\dagger} \alpha_{z}$	X' Y' Z'	$X' = X\alpha_{x} + Y\beta_{x} + Z\gamma_{y}$
$Y = X^{\dagger} \beta_{x} + Y^{\dagger} \beta_{y} + Z \beta_{z}$	$X \qquad \alpha_{x} \qquad \alpha_{y} \qquad \alpha_{z}$	$Y' = X\alpha_y + Y\beta_y + Z\gamma_y$
$z = X^{\dagger} \gamma_{x} + Y^{\dagger} \gamma_{y} + z^{\dagger} \gamma_{z}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Z' = X\alpha_z + Y\beta_z + Z\gamma_z$
	$\begin{bmatrix} z & \gamma_x & \gamma_y & \gamma_z \end{bmatrix}$	
	Transformation Matrix	

VITA

Pervez D. Patel

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS OF CONTINUOUS BENT BEAMS LOADED OUT OF THE PLANE BY

THE SIX MOMENT EQUATIONS

Major Field: Civil Engineering

Biographical:

Personal Data: Born in Bombay, India, November 21, 1935, the son of Dinshaw and Dhan Patel.

Education: Graduated from Bhesania High School, Bombay, India in May 1950. Entered University of Bombay in June 1950. Received the degree of the Bachelor of Science (Major field - Physics/Math) from the University of Bombay, India, in June 1954. Received the degree of Bachelor of Engineering (Civil) from the Sardar Vallablai University, Gujrat, India, in June 1958. Completed the requirements for the Master of Science degree in May 1962.

Professional Experience: Junior Surveyor, Bombay Port Trust. Site Engineer, Stellar Construction Company. Civil Engineer, Western India Construction Company.