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CHAPTER I

INTRODUCTION

l1-1 General

This thesis presents the analysis cof planar continuous bent beams,
loaded out of the‘plane, by the six moment équatioﬁsg

A carry éver moment procedure of sélving‘fhe six moment equations
is introduced. The carry over moment méthod was dé#eloped by Tumé from
the three moment equation and applied to the analysis éf continuous
beams (l)scontinuoﬁs trussesv(é) and extended to numerous other problems
in the plane. The analysis of beams and frames by means of this method
was reported by Tuma in his lectures (3). The historical background of
the problem investigated in this thesis has been diséﬁsséd by Childress
(4) and is not repeated here. The material presented in this thesis
' closely follows Tuma's lectures and reference to the lecture notes is
made (3).

The analysis is based on the assumption of elastic deformations.
The deformafions>due to bending and teorsion are considered only and the
deformations due to shear are considered small and are consequently
neglected.

The symbols used in this thesis are rearranged under the heading
of nomenclature at the beginning of the thesis. The signs of gesmetric
quantities, loads, moments, forces and deformations are r;corded in the

appendix. The appendix material dealing with transformation matrices

1



was prepared on the basis of Tuma's lectures dealing with transformation

matrices (3).

A list of a selected bibliography is presented at the end,

1-2 Statement of the Problem

A continuous bent member im lying in the plane XY is acted upon by
loads perpendicular to this plane. A system of reference axes XYZ is
selected (Fig. 1-1), the co-ordinates being measured parallel to these

axes and denoted by x, y, z, respectively.

%+z

4‘+x

Figure 1-1

Continuous Bent Beam

The supports are designated as i, j, k, 1, m and the span lengths

are d., d d
]

e 990 dm° The slope of each span measured from a line parallel
to the X-axis is represented by the symbol ®w and the corresponding sub-
script as shown in Fig. l-1. The exterior ends i, m are fixed and the

interior supports are assumed to have spherical hinges. The foundation



under these supports is considered to be rigid and no displacement of
supports is introduced.

The continuous bent beam shown in Fig. 1l-1 has four reactive mo-
ments and five reactive forces. For the analysis of this beam, three
equations of static equilibrium are available and six deformation con-
ditions are essential. In general, for a continuous bent beam having
the end supports fixed, and the number of spans equal to n, the number
of reactive elements is (n+5), three of which can be obtained from stat-
ics and (n+2) deformation conditions are necessary, If the exterior
ends of this beam are simply supported, the moments at the ends are
equal to zero and the number of reactive elements decreases to (n+l).
In other words, a continuous bent beam with the end supports fixed
is statically indeterminate to (n+2) degree, and that with the exterior
ends simply supported is statically indeterminate to (n-2) degree.

The degree of indeterminacy indicates the number of redundants which
can be selected to the convenience of the analyst.

Basically, two systems of redundants are possible:

(i) the case where moments acting at supports are selected as the

redundants,

(ii) the case where forces acting at supports are chosen as the

redundants.
In this thesis, the support moments are taken as redundants, Two main
types of continuous bent beams are considered:

(a) The fixed-end continuous bent beam having even and odd number

of spans. (Fig. 1-2a,b)

(b) The continuous bent beam with simply-supported ends having

even and odd number of spans. (Fig. l-3a,b)



Figure 1-2a

Even span continuous bent beam - end supports fixed.

Figure 1-2b

0dd span continuous bent beam - end supports fixed.



p v

el Y
Figure 1-3a
Even span continuous bent beam -~ end supports
simply~-supported.
Z
}
s X

Figure 1-3b
0dd span ccntinuous bent beam - end supports simply
supported.

After selecting the moments as redundants as shown in Fig. (l-2a,b)
and (1-3a,b), it is observed that three types of basic structures may be
introduced.

(1) A two span continuous bent bar EEE simply supported at the

exterior and the intermediate supports (Fig. 1-ha)

(2) A single span bar mn, simply supported at one end and fixed

at the other end (Fig. 1-k4b)



(3) A single span bar mn, simply supported at both ends (Fig. 1-kc)

Figure l-ka

Basic Structure No. 1

Z
4
M
Y P ny'
nz '
\ /Mnx'
n
M, T
mx m .
l\# Vamz
v M,
mnz my
- X

Figure 1-kb

Basic Structure No, 2



Figure 1l-kc

Basic Structure No. 3

If the moments acting at the end of these bars are applied as unit
momenfs, angular flexibititics may be derived and the compatibility
equation may be expressed in terms of these angular flexibilities, load
functions and the redundant moments. From this discussion, the necessity
of studying four primary phasés in the analysis of the problem becomes
evident.

(a) Geometry of basic structure.

(b) Statics of basic structure,

(c) Deformation of basic structure.

(d) Compatibility Equationms,

The geometry of the basic structure is discussed in this chapter
and the next three topics mentioned above are treated in the subsequent

chapters.



1-3 Geometry of the Problem.

(a) Basic Structure No. 1

The two span basic structure IEE, lying in the plane XY and acted
upon by loads perpendicular to this plane, is shown in Fig. 1-5. The
bar rests on simple supports at i, j and k. The end moments and shears
are also shown. As the structure is loaded perpendicular to its own
plane, only the vertical shear Vz exists and the moment in the vertical

direction, Mz’ is zero,

ix!

Figure 1-5

Basic Structure No. 1



k

respectively. The slope of each member with reference to a line parallel

The lengths of the members I} and EE are designated as dj and d

to the X-axis is denoted by wj and wk respectively. The cross-section
of the members varies along the length of the members.

Each span is related to its own co-ordinate system

(1) Xx'y'z' for memberﬂzg.with origin at i

(ii) x"y"z" for member-gi‘with origin at j

These particular co-ordinate systems can be related to the basic

system of axes XYZ by making use of the Transformation Matrices shown

in Tables 1-1 and 1-2.

X! Y' ) Xll : Y"
X cvjx Q’jy | X s Q'ky
| Y Bjx Bjy | ¥ Brx Bky
Table 1-1 Table 1-2
Transformatigp Matrix . Transformation Matrix
for span ij for span jk

The above Transformation Matrices are special cases of the Trans?
formation Matrix derived for the case of a general space structure in
the Appendix (Table No. 5). The "o" and the "8" terms appearing in the
above tables are functions of the angles wj and Wy respectively.

The Transformation Matrix provides for a systematic transformation
of geometric quantities, moments, forces, slopes, elastic weights, etc.
from one co-ordinate system to another. Thus it is seen that in having

the Transformation Matrix, the analyst has a powerful tool in dealing
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with problems in space structures,

(b) Basic Structure No, 2

In this case, a single span mm with end "m" simply supported and
end "n'" fixed is considered. The basic structure lies in the plane XY
and is loaded perpendiéular to this plane (Fig. 1-6). The end moments
and shears are shown. The member has a non-uniform cross-section, and
its length is denoted by dn. The principal axes of the member may be
denoted by X'Y'2' with origin at m, and the slope of the member with

a line parallel to the X axes of the basic system is designated as @ -

an z

Figure 1-6

Basic Structure No. 2
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The transformation angle is thus wn and the Transformation Matrix

for the member is shown in Table 1-3,

X f Y 1
X a,nx any
Table 1-3

Transformation Matrix
for span mn
It is to be noted that the structure can be in stable equilibrium
only if the end moments about the torsional axis of the span, th. and

th. are equal.

(¢) Basic Structure No. 3

A single span mn with both ends simply-supported is considered.
The basic structure is in the plane XY and is loaded out of the plane.
The member has a length dn and a cross-section varying along the length
(Fig. 1-7).
p The principal axes of the member may be designated as X'Y' and as
in the case of the basic structure No, 2, mn represents the angle between
a line parallel to the X-axis of the basic system and the X' axis and
therefore the transformation angle. Thus the Transformation Matrix for
this basic structure is the same as that shown in Table 1-3,

Since the end "n" is simply-supported, the end moments at n are

equal to zero, and as such, the end moment at m in the X' direction will



also be zero to maintain equilibrium,

an z

Figure 1-7

Basic Structure No. 3



CHAPTER II

STATICS OF BASIC STRUCTURE

The statics of the basic structures, described in the last chapter,

is now studied.

2~1 Statics of Basic Structure No, 1

The basic structure ijk, removed from the comtinucus bent beam im

(Fig. 1-2a) is shown in Fig, (2-1).

4t

Mky
Mk L
Mky " ! X
4?:;C)sz
; kax

<:> k

d

dky
W
. _ Vi
J
y[ ‘.y

Figure 2-1

Basic Structure No. 1

13
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The applied end moments at i and k about the principal axis of the

member ij and jk are Mix" Miy' and ka", Mky" respectively., M,

M
ix’?

1y
and ka, Mky represent their transferred values about the basic system
of reference XYZ.

Since the structure is in equilibrium under the action of the re-
sultant of loads E?Z assumed to act up, support reactions and basic end
moments, the summation of moments at i about the X and Y axis is equal

to zero.

Thus,

ny [@i] = 0

*Mix+ka+SMix+RjZ-yj+sz-yk = 0 (2-1a)

My [@l] = O

-Miy+Mky~ bMiy-Rj e 0 (2-1b)

where SMix and SMiy denote the static moments of loads at i about the X
and Y axis respectively.

Rearranging equations (2-la) and (2-1b)

Rjz(yj)+sz(yk) = MM My
Rg2(-x,) Pz (x,) T My My My

Solving simultaneously,



R - (Mix-kabSMix)(_xk)‘(Miy-Mky+SMiy)(yk) oo
jz xjyk-xkyj (2-2a)

_ (MixukamSMix)(xj)+(M1y"Mky+SMiy)(yi)
Rz = g (2-2b)
7k

Since XV K = d, (d, +d )-(djx+dkx)

d,
i jx* 73y ky iy

= djx“dky"dkx.djy

Area (A-B) = ¢ (Fig. 2-1)

c=4d (2-2¢)

-d .
jxdky kdey

. =“(Mix-MKX«SMiX)(cljx+dkx)+(r/11y-1~41w+SMiy)(cljy+dky)

I C (2-3a)

(Mix“ka SMix)djx+(MiykaV+SMiy)de
sz = C (2-3b)

Utilizing the third condition of static equilibrium in summing up

the forces in the Z direction,
Riz+Rjz+sz€Z?z =0

Riz = ~Rjzuszw§?z



from Eq. (2-3a,b) and

Substituting the values of R, and R
A jz kz

simplifying,

d d
- M - _kx -} ky pone
Riz - (Mix ka SMix) C +(M:i‘.y Mky+SMiy) C E?z (2-3¢)
To develop the expressions for the moments at a section in spans f{
and jﬁ of the basic structure, the free body diagrams shown in Fig. (2-2a)

and (2-2b) are considered.

R. vi Z‘k
iz @ .
ZL_ !//»' ® kz
A//i » //u
M. ////,/ \\\\&‘
k k
Miy' Mxl(t ) Mylg )
Figure 2-2a Figure 2-2b

Free-body diagrams,

Summing the moments at the section about the principal axes X'Y'

(Fig. 2-2a),



L7

ngl) =0

w (M oy (e-ka)
X i

where ngl) denctes the twisting moment about the X'-axis at the section

in the span ij.

- Vi (i)- L
Miy'+Rizu M&, SM& 0

assuming that the resultant of loads between the support i and the

section acts down.

Thus,

w (8 Ly r Lutesa (2-Lb)
y 1y” 1z ¥

where M&Sl) and SM&, represent the bending moment and the static moment

due to loads alone, respectively, about the Y'-axis, at the section in

the spanEIE.

‘Similarly, considering the other free body (Fig. 2-2b)



F=
(9]

) = o

y (K)

ol 'kau =0

k . 3 .
 § ) Mo (e-5a)
Also
Eh Sk) =0

Y

(k) . N _
MonH Ry cut S, = 0

(k)

Mo = Mky"-RkZ°u'+SMy" (2-5b)
where Mkﬁk), Myak) and SMy" have similar meanings as explained for the

previous free body.

Equations (2-l4a,b) and (2-5a,b) are expressed in terms of moments
about the principal axes of membets ij and jk. Using Tables 1-1 and 1-2
and Equationms (2-3b,c), the above expressions can be put down in terms

of basic end moments,

Thus
M (1) | M, o, +M, B (2-6a)
x' ix"jx  iyMix
(k) _ y e ey - -6
Mew 7 = ka dkx4Mky ka (2-6b)



19

1

, d
(1) _ kx } _ky .
My' - Mix mjy+Miy Bjy (MlX ka SMix) (Miy Mky+SMiy) * ?z](u )

+,

a(1) (i)
| FOM gyt Bjy]

= Mo JY 1y Bjy [(Mlx ka kx (Mly Mky)dh ](c ;+BM§ 1) (2-6¢)

i>¢

d d
(k_) _ o - - . ] iX - __ixl L
Mow " = My r"‘ky"ﬂMkyﬁBky’ KMix Mex SMix C (Miy Mky+SMiy) C J(J )

+SM( )

(k)
+S Mx a/ky

Bky

(k) (2-64)

It

Mex %y My B, y” [ 1M ) Jx 1y'Mky Jy](—“) oYy

where BMél) and BMék) represent the bending moments at the section con-

sidered, in {3 and EE respectively, due to loads alone,

(k) _ (), oy(i) ey )
BMj = SM_ ajy.smy @jy+[smix Ay SMly dky+ P (C ) (2~7a)

(k) _ aplk) (k) . oA 5.
By = s, s ep, +[ » djx-SMiydjy] &) (2-7b)

2-2 Statics of Basic Structure No. 2.

The basic structure mn, isolated from the continuous bent beam in



[0
<

(Fig. 1-2b) is shown in Fig. 2-3. This basic structure with end m simply
supported and end n fixed is statically indeterminate to first degree
and the end moment th will be the selected unknown.

The structure is acted upon by the resultant of loads \?Z acting up
and the ends moments M ;, M ;, and M__,, M, about the principle axis

mx wy nx ny

of the member at supports m and n respectively. The transferrved values
of these end moments about the basic system XYZ are denoted by Mmxﬂ Mmy

and Mﬁx’ Mhy respectively.

AY

R
mz
o n

Y
=

.
ngz:m
— e
M
mx e |
Figure 2-3
Basic Structure No. 2
Since
>_Mx =0
~ *[en]
M +M +85M +R -d = 0
mg n¥ MK nz ny

where Sme denotes the static moment of loads at m about the X-axis.



Solving for an,

mx-Mnxw Sme
R, = 3 (2~8a)

As the sum of forces in the Z-direction is zeruo,

R __+R ¥>P, = ()
mz nz/,z

=
]

-R ..,>p
mz nzZ /, a2

MmX“MnXH SMHX .
= - {E?z (2-8b)
ny

To calculate moments at a section in mm, the free body diagram

(Fig. 2-4) is comsidered.

Y'

y (m)///////,/vr
M

T

M
my

Figure 2-k4

Free-body diagram,



Denoting by Migm) and Mygm) the twisting moment and the bending
moment respectively at the section considered, with reference to the
support m,

since

Migm) = Mok (2-9a)
Also
ZM, =0

Y [@n]

Mygm)"M R ox'-SM (“m) =0

assuming that the resultant of the loads between support m and the section
acts down,

Thus,
m m -
M S ) = M ,“Rmz°X'+SMyg ) (2-9b)
where SM&gm) denotes the static moment due to loads at the section.

Using Eq. (2-8b) and transformation Table 1-3, Eq. (2-9a) and (2-9b)

are expressed in terms of the basic end moments.



(m) — L[] .
Mot 7 = My anx+Mmy Brax (2-10a)
(m) . Mo Y~ Sy ' ;
My =M o +M B+ ’ + )P |« (x")
y mX ny my ‘ny d z
ny .
sl ™ Ly +SM(m)~5 (2-10b)
x ny y ny
Denoting

SM .

mx
d
ny

]ex' +SM}({m) ’“ny+SMy ‘B (2-10c)

[

as the bending moment at the section due to loads alone, Eq. (2-10b) can

be rewritten as

1]
w (™ Cw g o eg (M )eEn s Bn(™) (2-10d)
y mx Wy my "my mx nx dny y i

2-3 Statics of Basic Structure No. 3.

The single span mn removed from the continuous bent beam in (Fig.
1-3b) is shown in Fig. 2~5, Since the basic structure is unable to
resist any twisting moment as pointed out in discussing its geometry, it
can be in equilibrium only under the actio;‘af:

(i) the resultant of loads E?z’ assumed to act up.

(1i) the end moment at m, Mmy' about the Y'-axis.

(iii) the vertical reactions, R__ and R__.
mz nz
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Y
A
Xl
Yl
n
/dn ®an
me m i
-t o X
Rmz
“h ‘
. Figure 2-5
My
my Basic Structure No. 3

The basic end moments Mﬁx and Mhy denote the transferred values of

the end moment M ',
my

Since

;My[@m] " °

R__-d +M ,4SM , = O
nz n my mny

where SMm , denstes the static moment about the Y'~axis at m due to loads.

Solving for an,

Mm ¥ +S Mm t
= SO Y -
R, 3 (2-11a)

n-
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)F, =0
2z

R 4R +)P =20
mz nz z

Utilizing Eq. (2-1la) and transposing,

M oHSM :
R, = “_X“E;“"X“ - E?z (2-11b)

To calculate moments at a section in mn, the free-body diagram

shown in Fig. 2-6 is considered.

x"t ;@an
— o

M Sn)
y

Figure 2-6

Free-body diagram

Since the end n is simply supported, only the bending moment,‘Mysn)

at the section exists,
'§%§gn) =0

M Sn)+R x'=SM Sn) =0
y nz y



assuming that the resultant of loads between support n and the section

acts down,

M gn) = =R 'X"+SM Sn) (2"'123)
y nz y
where SMygn) refers to the static moment at the section due to lovads,

Substituting for R from Eq., (2-1la),

M +SM :
w () [ e R ]-x'+SM (n) (2-12b)
: . y
n
Eq. (2-12b) is in terms of moments about the principal axis of the

span ™m. Using transformation Table 1-3, it may be expressed in terms

‘of moments related to the basic system XYZ.

Thus,

(n) x'
M, ' = (M .o +M _-B_+SM .o _+SM .B )'71_
y mx ny ny "‘ny mX ~ny my “ny n

(n) (n) .
+8M, @ny+SM§ Pry (2-12¢)

Denoting

(n) _ : ca ).EL o™, (nl, .
BM, = (s “ny+SMﬁy Bny) o +SM “ny*SM§ Bay (2-13)

as the bending moment at the section due to loads alone,

Eq. {2-12¢) can be rewritten as
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(2-11)



CHAPTER III
DEFORMATION OF BASIC STRUCTURE

The analytical expressions for the angular functions of the basic
strﬁctures discussed earlier are now derived. These angular functions
can be obtained byvusing several methods of analysis such as the Area-
Moment méthod, the Elastic-Weights method, the String Polygon method,
the Virtual Work method and the Castigliano's method. 1In the following

derivation, the Castigliano's method is used.

3-1 Basic Structure No, 1.

The basic structure ijk (Fig. 2~1) has four applied end moments

M Miy and ka, Mky at its external supports i and k respectively.

ix?

Thus, from Castigliano's theorm, it is possible to obtain four equations
of end slopes in terms of the angular functions and these end moments.
The following angular functions can be expected at the support k.

(1) The angular flexibility Flixx

(2) The angular flexibility Friyy

(3) The angular flexibility Fkixy (=Fkiyx)

(4) The carry-over angular flexibility G, kxx

(5) The carry-over angular flexibility Gikyy

(6) The carry-over angular flexibility Gikyx

(7) The carry-over angular flexibility Gikxy

28



(8) The angular load function Tixx

(9) The;?ngular load function Teiyy &

For constant créss-seétions of elemental lengtﬁs in spans I} and‘?ﬁ,

the elemental angular flexibilities are:

d 1 d t
Aoy = 2.3 - - A
X GJX' y EIyl
(3-1)
d d
A = x A n = -1'1"
’F GJx" : y EIy"

The strain energy of the basic structure ijk is :

Uik = Uagnr Vs gy 00ty

B 3
I [ngi)]g.lx'*, f [Mygi)]rz.xy'f f [Mx'('k)f.xx"f
1 1 k

N

f (58T, (5-2)

-yl

Partial differentiation of Eq. (3-2) with respect to ka, Mky’

Mix and Miy gives four deformation equations such as
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o f TR j_ TR,

§M SMgn ”

j
oM
f k):”'éka ] Pt 4 [ y'('k)W[ska ] Agn (3-3)

s Lik and EEEiE .
5Mky 5Mix 6Miy

with correspondingly similar expressions for

Substituting in Eq. (3-3), the values of the moments at a section
in spans IE and Ei-from Eq. (2-6a,b,c,d) and applying unit moments at
ends i and k, the analytical expressions for the angular functions at
the support k as denoted earlier and the counterpart expressions at the
support i may be developed. This is done, and along with the load‘func-
tions, recorded in Tables 3-2 and 3-3. Table 3-1 contains a list of the
first partials required to obtain these angular functions.

Utilizing these angular functions (F's, G's, and t's), the defor-

i
mation equations (Eq. 3-3) are now expressed as:

SUi‘k Mix ikxx ka kixx
e + oy (3-La)
5ka kixx _
Minikyx * MkyFkiyx
su. ... MixCitxy * MeyTrixy
ijk
= + T . (BQMb)
éMky’ - kiyy

Minikyy ¥ MkyFkiYY



Partial Derivatives

Basic Structure Ne, 1

First Partials

First Partial Values

6Mx|
oM

ix

6M]!|
6Mix

6Mxn 5Mx|

) My

M
8 v

'GMix

M.y 8M ,

1y~ My

Table 3-1

ey

i



Angular Flexibilities

Basic Structure No.
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fkak‘ll Ru‘* (ﬂky jxc)knf(dkxc)hl

kiyy

Hkyﬁl .O3M =M, =Hk_y=1.oadsl=0

] ] 1.2 i v 2
2 - L . .-—-u -

kiyx

kixy

%yﬂi-l 0. ix 1 -uthmdsﬂo

HGEE

Hkx=+l LO3M ix:niyaukyd.oadsao
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Angular Carry-Over Flexibilities and Load Functions .A ) ' - Basic stt/ucture_ No, 1

ov,, o -
dim Ei:k H’.xﬂ'*l ‘o.'"!.y-,"kx-‘uky'l'“d".'o_ j C ) ‘ .
: : : ; .ot af 3
LR - — , L(ajy-dh-a-)(dn..c—,-)xywj; (o *d4°G )( “dy o
ik (‘ =+} ,0iM, = = =Loade=0 . '
Cotne | WMy, My My MMy =Londo= : . :
G M 1w =104 =¥, = -Loadnl:-0‘ . .
tlyy | W | T HyHyy=Load |y SaT ' '
‘ - ‘ ~d o Boy(d By : Ly g, 2
‘ ; wl]k ) -’: (Bj)' dky. c )(dky c ),ky‘+’fk (.Bk¥+djy T X 'djy c )lyu
leyy OH!.y Hk y=+1.0;Htx=‘Hkx=Hky-]pgdg.o f . o .
| Vg Lo
. ’Gikxy 6Hk v Htxﬂi' '°|}‘£kx=llky=ﬂix=;0§d8=0 ; X . ) -
E e e f (Byy 0y 2N (a2 +f;(cr‘ v, 2y (-d, )
’ Uy 4 1 j_ydkyc L A Ky Jx'C Jy°C /Ay
Ytk |y aer.om toadsmo | N ‘ LR _
Cieayx [T K= 1x " '"kx"°° 8= . o
Y4 L v ,
Cua || Tt | Moy Oy Mgty lendesd | e
: ; ‘ . . o ‘ RAIVE [
- ﬁ"u; - SRR f (arjy hox °C )(dk, c h .+j; (Biy*dyy'C Mdy, TNy
1 Gty | &y H=t1:03 Hix My y=M, ~Loads=0 ) . v C
r 89y 4 oM =M =0 R jdnﬁ(i)(‘ ; 4215 . jnu(k)'_w -
1kxx oMy Hyy= i.y M Hky L . A y ajy ﬂu;'c Ayt L y ( J"'c, )'Ayu
T Qutlk . o w0 : . ‘ ijH(i)( - N .!‘—). +fjn (k)(-d . ,‘.’L) v
lkyy | &M,y 1x My M uk)' : 1 ¥ 5_”: Yy'C A"y'_ : Hy (84yC Agn
M =M, =M =0 - IJBH(")( -"-;-'-)1 va (k) - d‘ ¥’— )
Teixx | WM ’ MMy ™M Hky - S N e dx'c 'A,uf}; .M, (u5’+ G )'Ayu
ey JETE T S B R Y S IRy
Tkiyy M= 1y "kx "ky o L oy dkx ¢t xy.fj; My Bky+dky c -Ay"
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Table 3-3 -
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8u, . MixFikxx + Michkixx
—t1K

8M, = ' T Tikxx (3-k4¢)
Minikyx * Mkkaiyx

50, 1 Mo Fiky + MxCuixy

T | + o, (3=kd)

aMiy ikyy

Minikyy * Mkkaiyy

3-2 Basic Structure No. 2,

The basic structure mn (Fig. 2-3) has four end moments Mo Mmy

and M, M at supports m and n respectively. As M _ can be obtained

nx’ “ny ny
from statics, only three deformation equations, two at support m and one
at support n need to be derived, They are expressed, as before, in terms
of the angular functions and the end moments M , M and M ..

‘ mx’ “my nx
The following angular functions are expected.
(a) At support m in the x direction

(1) The angular flexibility Fosx

w(1i) The angular flexibility anyx

(iii) Thg carry-over flexibility G

(iv) The angular load function T
‘ mnxx

(b) At support m in the y direction,
(1) The angular flexibility anyy

(ii) The angular flexibility anxy (sznyx)

(ii1) The angular carry-over flexibility Gmmxy

(iv) The angular load function T
mnyy

(c) At support n in the x direction

(i) The angular flexibility F oxx
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(ii) The angular carry-over value G

mNXxX ' - nmxx
(11i) The angular carry-over value Gmmyx (=Gnmxy)

(iv) The angular load function T omxx

The strain energy of the basic structure mn is:

mn Umnx my

n n

[Tt [ 3T, 55

m m

i

where Ay and Ay' have similar meanings as explained before (Eq. 3-2).

Partial differentiation of Eq. (3-5) with respect to Moo Mﬁy and

gives three deformation conditions

u - PN R
B [ @ [ TR ey, e

? (m) (m)
w=-f T f T e
8U 5 6M '
5M:: f[ (m)][ Ay +f[ (m):l[ Ayt (3-6¢)

Substituting from Eq. (2-10a,d), the values of the moments at a

section in span mn, in Eq. (3-6a,b,c) and applying appropriate unit

5
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moments at m and n, analytical expressions for angular functions as

denoted earlier are obtained.

These expressions (F's, G's and +'s) are

presented in Table 3-5 and a list of the first partials required for

deriving them are recorded in Table 3-k,

Partial Derivatives

Basic Structure No. 2

First Partials

First Partial Values

Table 3-L4

th, the deformation equations are:

M F
mx’ mnxx

M _G
nxX nmxx

F
my mnyx

‘TANXX

In terms of these anpgular functions and the moments th,

M
my

and

(3-7a)
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‘Angular Flexibilitie_s. Carry-Over Plexibilities and Load Functions Basic Structure No, 2

. , : 1 n
' I C M w1,0;M = = N .

F M Ml ity M, yoLoads=0 ] a2 lx!"‘ (o, ayt d ) Ayt

™ : v m ny

u .1 o;M -H -!.oadaao

] , - ‘j; O Pox Vxt ((r +d )any y'
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. mx my nx

. §U ’
—on =1,0;M =M = = . 8 2. 2,
¥ m Hmy I.O,me an Loads=0 -[m By Axt"'j; Bny Xyl

» » 8U . ) ' .
F _— Mnx=1.0;me=Hmy=Loads=0 _ . j (- —-—) Ayt

T
6. 8 M =1.0;M mMy—Loads:O.

o [ '
(o + E=)(-2=)
jm ny dny d“y y

—_— C W M mﬂl.O;anmefLoads-—;Ov
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. E - n | N
. ; e : *j;(s,,,)(- ﬁn—yhy.
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mnxx" R m - an"—'%yanni‘o j BH(m) (a +T) Ayt

8U n
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e My =M =0 - SN G ey B
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Table 3-5
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M F + M G
GUmn mx mnxy nx nmxy
ﬁMm = + Tmnyy ( 3- 7b )
Y M F
my mnyy
éUmn Mﬁxcmnxx * thanxx
> - T B L4
8M * Tamxx (3-7¢)
M G
my mnyx

3-3 Basic Structure No, 3.

In this case, .the basic structure mn has two end moments th and

Mhy at support m., The moment‘Mmy can be obtained from statics and as
such, only one equation of slope at m along the X-direction %s required
to be derived. As done in previous cases, it is expressed iﬁ terms of
angular functions and the end momeqts me, Mﬁy' Since there cannot be
any moments at end support n, being the simply~-supported end of a con-
tinuous structure in (Fig. 1-3b), the expected angular functions at end
m along the X-axis are: |
(1) The angular flexibility Fooxx
(ii) The angular flexibility anyx
- (1ii) The ang;lar load function T

mnxx

The strain energy (of bending) of the basic structure is:

[, v

where kyg has been-explained before (Eq. 3-2). By Castigliano's theorm,

the deformation equation at m along the X-axis is



n
(n)
8U §M
mn (o) 2y 3
oM ‘J;[My' ][eme Jag (3-92)
Substituting for Mygn) from Eq. (2-1k)

n
U
oo _ ESRPCY) Xy, -
B —f[(MmX B y)(d )+BM ](afny- dn) Ayt (3-9b)

m

Eq. (3-9) is rewritten as

n
85U 1 2
mn 2 ,x
= M o . ( )\ ' +M _.._) At
5,me mx jm- ny dn ny ny dny y

fBMn f—)-x v (3-9¢)

From Eq. (3-9c), it is apparent that the expressions in the integrals
are the three angular functions stated before.

Thus

mn
M Mox  Fonxx ¥ Mhy°anyx * Tonxx (3-10)



where

F
MNXX

F
mysx

T
mnxx

Lo

(3-11)
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i CHAPTER 1V
COMPATIBILITY EQUATIONS

The.ééﬁpatﬁﬁility equations_of deformation over several supports of
‘a continuous beﬂt beam are derived _ For a planar‘continuous bent beam
subjected. ﬂo out of plane loading, the condition of conslstent deforma-
j
tions over a support would’ result in a compatibility equa;ion As such;
there will be as many compatibility equations as there are redundant-
~.support moments .-
Such a set of compatibility equations 1is put in a matrix form.
Carry over‘moment equations are derived from>thesexcompatibility‘equa-
tions° A neat and efficient'carry over procedure is evolved, which can

be uSed to . solve for the redundant moments, as is illustrated .algebra-

ically and in the numerical example (Chap. V).

4-1 Derivation,

Consider the odd span continuous bent beams

(1) En'with end g simply supported and end n fixed (Fig. k-1).
(ii) gp with end g fixed and end P simplp suppor_ted'(vFig° h-é)u
The isolated portion.iﬁﬁ of these two structures can be separated
into two basic structures 1Jk and klm, of the type cla531f1ed earlier as
basic‘structure No. 1.: Conslder the continuous support k. U51ng
Castigliano“s theorm, the first partial of the‘strain energy U, = with
respect to the redﬁndant/noments ka and Mky must vanish. In other words,

51
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the summation of all slopes at k along the X-axis and the Y-axis must

each be equal to zero.

Z
}
Y
g
h
i
e X
Figure L4-1

Continuous Bent Beam.

Z

e, X

Figure L4-2

Continuous Bent Beam,
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Thus

8Uikm  8Yikm

My My

= 0 (4-1)

Using the deformation equations (3-4a,b) derived earlier for basic struc-
tures 1jk and adopting similar notation of symbols for basic structure

klm, equations (4-1) are expressed as:

Mlx 1kxx Ikx Ekax * memkxx

i = O (4-2a)
iy ikyx ka } kyx MmyGﬁkyx
Mlx ikxy ka S'kxy MﬁxGmkxy ,
+ =0 L-2b
- .Ekkyy | (-2b)
M. G, + F + M G ' '
iy ikyy ex / kyy " my mkyy
where
}?kxx = Fkixx * F'kmxx; E?kyx = Fkiyx * kayx
Fkxy = Fkixy * kaxy; }Fkyy = Fkiyy * kayy (4=3)
5} =T, + T 5 T = T, ., + 7
/. kxx kixx kmxx Z,kyy kiyy kmyy

Exactly similar six-moment compatibility equations apply to the
support i of the continuous structurelgﬁ (Fig. 4-2). As the end moments
ng and ng for the continuous bent beam gn are zero, Eq. (4-~2a) and (k4-2b)
may be applied to the support i with this modification (Fig. 4-1).

Next, consider the isolated portion kmm of the continuous structure

gn., This can be separated into two parts, basic structure (No.1l) kim
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and basic structure (No. 2) mn. At the support m, since M oo and Mhy are

~ the redundant moments,

50U §U
kmn kmn )

o = W = 0 (L-k)
™mx my

From Eq. (3-L4a,b) and (3-7a,b), the deformation conditions at m for

basic structures klm and mn, Eq. (4=3) can be expressed as

kakaxx * Mﬁx E?mxx * MnxGnmxx —
Z’r = 0 (4-5a)

— mXX
Mkkamyx * Mﬁy szyx

T

kakaxy * Mﬁy mey * M:nxGnmxy
=0 4-5b
. Z'rmyy (4-5b)
G + M EF '
My Cimyy * Ty LCmyy
where
EF = F + F H }} = F + F
mXX mkxx MNXX myx mkyx mnyx
ZF = F +F ZF = F +F (4-6)
mxy mkxy mnxy myy mkyy mnyy
E}mxx ® Tmkxx © Tmoxx’ }}myy - kayy * Tmnyy

Eq. (h~5a,b) are the compatibility equations for the support m of the
continuous structure gn (Fig. h-l).‘

Finally, the isolated portion mop of the continuous bent beam gp
(Fig. 4-2) is considered. This can be separated into two parts, basic
structure (No. 1) mno and basic structure (No. 3) op. At the support o,

since MOx is the only redundant moment,
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mop -
S 0X

Using the deformationlequations along the X direction derived earlier

(Eq. 3-4a,b, 3-10), the compatibility equation (Eq. L4-7) is expressed as

meGmoxx * MOXTJF OXX

4% =0 (4-8)

OXX

M'mmeoyx +vMoyr‘Fopyx

where

ZF = F + F

OXX OmXX OPXX

E?oyx = Fomyx * Fopyx . (4-9)
Ekoxx = Tomxx * Topxx

Since MBy is statically determinate, the three-moment compatibility

equation in its final form is

MG + M SF
mMX MOXX ox < oxx
* - -
+ ZT9XX =0 (4-10)
denoting
* = -
Xﬁgxx = TToxx * Mbnyoyx (4-11)

It would be monotonous to derive compatibility equations for every
support in the continuous structures gn and gp when the procedure of their

derivation is similar to those obtained in Eq. (4-2), (4-5), and (4-10).



Instead, it is desirable to put these compatibility equations in matrix

forms, The above treatment is general, and continuous bent beams having

any number of spans can be analyzed similarly,

4~2 Matrix Forms,

(a) In the continuous structure gn (Fig. L-1), there are seven

redundant support moments,

Thus there are seven compatibility equations.

The redundant matrix can be expressed as shown:

ZFixx TFIYX kixx
zF ¥F,

Gikxx Gikyx ZFkxx

Gikxy Gikyy “Fkxy
" B kaxx
B N kaxy

Gkiyx
Gkiyy
ZFkyx

SF
kyy

kmyx

kayy

mkxx
Gmkxy

Emex

G
mnxx

Gmkyx

Gmkyy

Z'me:«:

F
z myy

G
mnyx

(b) There are nine redundant moments

gp (Fig. 4-2). As such there will be nine

redundant matrix is:

- 1 Mix ( xTixxfw
- M } Wk 3
iy PTiyy
h ka ETkxx
- T
Mky z kyy
Gnmxx me Emex
Gnmxy Mmy E“'myy
M T
nmxx__ L_nx n L_. nmxx ]

in the continuous bent beam

compatibility equations. The



ngyx igxx

¥
glyy “igxy

Ggiyx z:F:lxx

e
slyy ZFixy

igyx
igyy
iyx

1yy

'Gikyx

ikyy

Gkixx

Gkixy

szxy
kmxx

kmxy

kiyx
kiyy

EFkyx

kyy"

kmyx

kmyy

mkxx

mkxy

SF

XX

mxy. -

Gmoxx

mkyy
myx

nyy

Gmbyx

mkyx

M
gy

ix .

1y
Mex
"y

[$2:4

my -

Tgixx
 giyy
xTixxv
“Tiyy

E‘Tkxx.

ETkyy

mxXx

*Tmyy

bX
L. OXX
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4-3 Carry-Over Form.

The compatibility equations derived for the continuous support k
(Eq. 4-2a,b) can be expressed in a neat carry over form by solving for

the redundant moments.

Denoting

I 1 | L L Dwlax
ikxx ?Fkxx _ mkxx XFkxx
. - . EiEZE r . Gmk X
ikyx EFkxx mkyx EFkxx
EFRZX EFkxz

Txkyx = ~ ¥F “kkxy T T SF
yx T kxx S22 by kyy

(k-12)

lexz Gmkxz

rikx s SF rmkx i F
Y ~ kyy y kyy

ikyy Gk
rlk = = ?_,F rmk =7 —T-F-—H
vy kyy vy Fleyy
n, = - EThxx Ty
X EFkxx mky EFkyy

where the r-values represent the carry over values and the m-values are
the starting moments, the carry-over forms of the compatibility equations

(Eq. 4-2) are:

r M, . +r .

ikxx Tix mhkxx ka

Mex = Mex * . M o+ *'rkkyx'Mky (h-13a)
ikyx iy mkyx Mky

rikxy'Mix*‘rmkxy'ka N

it

My = Ty ¥ (4-13b)

e M e Tiksy M
ikyy iy mkyy Mky
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Carry-over forms of any set of compatibility equations may be
obtained in a similar way.

From the carry over moment equations (Eq. 4-13a,b), and similar carry
over forms of other compatibility equa;ions, it is possible to establish
a carry over pattern between the starting moments with the help of the
carry over values. A carry over pattern for the isolated portion ikm of
the continuous structure gp (Fig. 4-2) is illustrated in Fig. 4-3.

The beau;onf denoting the subscripts as they are given to the
F, G, 7 and r values is self-evident on studying the carry over pattern.

Thus r denotes the carry over value of the starting moment mmy to the

kyx

starting moment m e

Lic K kmxx "'bex

{ > - — —_—
Ty .
¢gxx - 22 kixx Remenx @ Tomun
e - ———

A

Ziiwy

wwr
)cKKKY'
Ammny

/
Zgivy v ieyy R ‘
AL AR : - >
Tegyy @ . Ry @ - rmieyy @

Figure 4-3

Carry Over Pattern



CHAPTER V
NUMERICAL APPLICATION

The application of the compatibility equations derived in the last
chapter to a numerical example is illustrated. A systematic procedure
for analysis is outlined in the first part of the chapter. The numeri-
cal example is then analyzed following the outline procedure in the

second part of‘the chapter.

5-1 Qutline for Numerical Procedure

(a) Transformation Matrices.
A reference system is éelected and the transformation matrix
for each span is.established.
(b) Basic Structures.
After selecting the support moments as the unknowns, the
continucus structure is isolated into appropriate basic structures.
(c) lAngular Flexibilities and Carry Over Flexibilities.
The flexibility values (F's and G's) for the basic structures
are calculated (Table 5-7).
(d) Angular Load Functions.
For the given loading, the angular load functions are computed
(Table 3-3).
(e) Compatibility Equations,.

The compatibility equations, in terms of these F, G, and 7
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values and the redundant support moments are now obtained, The solution
of this set 6f simultaneous equations can be achieved by several methods.
(i) by the carry over procedure derived earlier.
(ii) by synthetic elimination.
(1ii) by inverting the flexibility matrix on an electronic
computer, if one is available or by Choleski's scheme,

The method, best suited to the example to be analysed, may be

used.
(f) Shear Force, Twisting Moment and Bending Moment Diagrams

After obtaining the redundant suppoft moments, the shear force,

twisting moment and the bending moment diagrams are drawn, by considering

the statics of the basic structures,

5-2 Numerical Example

A planar hexagonal beam EEEIEE: of uniform square section is con-
sidered (Fig. 5-1). Each span is forty feet iong and rests on simple
supports; The structure is acted upon by loads perpendicular to the
planar beam (Fig. 5-2), Unless stated otherwise, all values given are
in units of feet, kips or kip-feet.

It is assumed that the Poisson’s Ratio of the material of the
structure is equal to 0.25, so that its flexural and torsional figidity
are equal,

Thus,

GJX' = EIya = GJ}(" = EIy“ = EI



mf=— 400" ‘—hx | ' 8

hol_. " ‘ holuoll

{

40" -0" \

l 4

\/i ’-r—-}-l-O"'O" _»’J\< ‘ %201 ‘7/ /j
Figure 5~1 y Figufe 5=2

Hexagonal Beam

(a) Transformation Matrices

The transformation matrix for each span is calculated. As the
/

sdlected reference system XYZ,coiﬁcides with the principle axes of the
span I}; the transformation angle wj for the span I} is equal to zero.

Proceeding in a counter-clockwise direction on the structure from i to

n, the subsequent transformation angles are:

w = 60° ‘w_ = 2ho°
k n ,
w, = 120° m, = 300°
1 i
W = 180°
m

The transformation matrices for the particular spans are shown in

the following tables.

2R



Xl Yl
o, = +1.000 . = 0,000
JX o Jy
a, = 0,000 8, = +1.000
I r.BJ}’
Table 5-1
Transformatiog_Matrix
for Span ij.
X' Y’
@), = =0.500 | oy = -0.866
Biy = +0.866 Bly = -0.,500
Table 5-3

Transformation Matrix

x" "
ey = +0.500 ey = -0.866
Brx = +0.866 Bky = +0.500
Table 5«2
Transformation Matrix
for Span jk
X" Y
oy =“--=1sOOO Uy = 0.000
Bux = 0.000 Bmy = -1,000
Table 5-4

Transformation Matrix

for Span kI, for Span Im
XV Y' X" Yl.l
o, = =0.500 Yoy = +0.866 @, = +0.500 Uy = +0.866
By = -0.866 any = -0.500 Bix = -0.866 @iy = +0.500
Table 5-=5 Table 5-6

Transformation Matrix
for Span mn

TransformatiqgﬁMatrix
for Span ni




(b) Basic Structures
As the structure is a closed even span bent beam continuous
over the supports, it is isolated into three basic structures, of the
type classified earlier as basic structure No. 1 (Fig. 5-3). The re-

dundant moments, acting at supports 1, k and m are shown.

nx

M
X . m

M
my
n
Mky
M,
1 i
——tp— M, o
i ix k (ka

vMiy
Figure 5-3

Basic Structures

(c) Angular Felxibilities and Carry Over Flexibilities
The angular flexibilities and the carry over flexibilities
recorded in TableS~3-2 and 3-3 are for a non-uniform section. By inte-
grating over the correct limits, they are simplified to apply to the

case of a basic structure having a constant cross-section (Table 5-7).



Plexibility and Carry Over Flexibilities for Constant Section

Basic Structure No, 1

Oyuyx * Cixy

3! m?'.'!'l‘ ml,n : ue_“,"

o 2-0 : o 2-! o, +d .d . 2 3 | L
"t e .g_,.._.l ; c::;. ' % n,. " % :::,.
2. .s' _.Ilbil_.'l_ dka
tkyy ' scan, :n::2 Bl
5 G ,3 Byxdy _.I.r_'...lx__l 3 (orgy dyt® ‘_'B.ikr_.l_ _1__.1:_
oy * akyx [ EL, ; B"‘“,' 3¢ B, c®. BL,
; __":“ks _ M aydied’ | _u_‘r_ Gl
kixx By CELyu wa “ELy ch EL,
p Y ._“lsr__‘k E\sr_u_i _u.."L ;‘.u__L
ktyy oy EL,, CEL. 32 L, 3 u’.
S J!_“n;‘! (o h"’g ‘jn"k dedyy "u‘_‘u"
kixy = “kiyx N,- ) 3c? 2 ﬂcall,.. 302!1,1
TR . I iy 2.
- e | ;‘“—1- : “‘—‘—*—‘"—ac.;;..- - —'—,c;,,,:_
G = ---1"-—--1—---»1--ﬂ ‘k s SH Eh_dﬂ - » 2.“3
tyy = Cetyy Wyt &y, R ety
D By ity fL"a_.L o _n 4yt
.th! lyx 80!1,- ll, 2CBI u II,
aia‘;.ﬁt PR : E ﬁ d | . El "|s'd'k - dlx-dl !‘ﬁE

Table 5-T

55



56

The expressions in Table 5-7 are completely general for any
basic structure No. 1 of uniform cross-section. The transformation
matrix for each span determines the values of the geometric quantities

in these expressions,

R )

Basic Structure ijk
The angular flexibilities and the carry over flexibilities are

calculated by using Table 5-7 for the basic structure EE% (Fig. 5-4).

.
d “ky

%/k _i, ‘

: -—+

i : X

X

+Y

b

Figure 5-4

Basic Structure 1jk
- - 1 At
dj = dk = L4O'-0

From the transformation matrix for the spans Ig-and—gz (Tables 5-1,

5-2)

. =R, = +1,000
Yx = Piy |

. = R, = 0.000
5y = Pix
Uy = Bry = +0.500
aky = -ka = -0.866



djx = (40,000)(+1.000) = +40.000
djy = (40.000)(0.000) = 0,000
d., = (40.000)(+0.500) = +20.000
dky = (40.000)(+0.866) = +3L4.640
cC = djx-dky - dkx-djy (Eq. 2-2c¢)
= (+40.000)(+34.640)
= +1385.600
F values:
‘ 3 2 .3
. o dj d -dj djx ~dy
(1) F i = Yx " 6J M- -
x' 3C7-EI_, 3cC ‘Ely"
-4 62.25
EI
2 2 .3
d, ood +d,” 4, ".d
(ii) F., .=1p, 2. == - Py Ty + Y ]
ikyy jy EIy. C-EIy. 3C2-EI |
_ 4 13.33
B EI
2 3
.. ﬁjy‘dkx'dj dkx'dky' i
(111) Fippo = Fuiny =~ ~ 0T z
y' 3C +EI_.
_ _ 3.8
- EI
2 2 2 2 .3 2 .3
] e Y% %%y Y Oy it Yix e Yk Yy
(1v) Fiiew = 65 * TEI * T COEL * T3 T3
. x“ y” . y" 3C 'EI " 3C 'EI 1
y y
, 22.22

EI



(V) Fkiyy =

(vi) Fkiyx

i}

G values:

(1) Gippx =

it

(ii) Gikyy

(iii) Cirxy =

58

, 3.85
EI

2 2 2 .3
Bex "% Py "k Yy 94
GJ EI 2
x" y" 3C°.EI_,
+ 53.32
EI
2 ]
B S e Y S e G AR S S = S S
kixy Gun . EIy." 2CE Iy" 3C2E1y '
, 19.28
EI
2 .2 2 2 .3
. . dkx:'dj Qky'djx'dk ) djx dk
kixx 3C2~E1y, 2.CEI_,, BCE'EI 1
_2.22
EI
2 2 .3
: «d, -d, d .d
G - Piv Yy %4 . kY "1
kiyy . ECEIy, 3C2-EI '
, 6.67
EI
2 3
. _ Byt Gty Yy
kiyx © 2CEI, 302-E1y.
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3 2
d . .d, -d, .
(1) Gy = Gyp =~ B
ikyx kixy BCEEI'. 2CEI "
y
19,28

EI

Basic Structure klm
The basic structure klm with the origin of coordinates at k is

shown in Fig. 5-5.

d; = d_ = ho'-o"
m

L=
From Tables (5-3, 5-14)
oy = Bly = «0,500

o, = By, = ~0.866

y
% = By = -1.,000
o =B8__ = 0,000
my mx
d; = (40.000)(-0.500) = =20.000
4, = (40.000)(+0.866) = +34.640
d . = (40.000)(~1,000) = -40,000
= (40.000)(0.000) = 0.000
my
cC = dlxvdmy ~,dmx~d1y
= ~(~40.000)(+34.640)
= +1385.600
F values:
2 2 2 .3 2 .3
@y, 4y QIyidl Qly'dmx°dl dox *91 d1x 4
(1) Frmex = G0 ¥ R T CEI * T2 tTo
X y! Tyt 3¢"-gr, 3CT.EL ,,
o, 22.22

EI



(i)

(1ii)

(i)

(v)

(vi)

kayy =

kmxy =

kaxx

kayy =

kaxy =

60

2 2 2 .3
Bk 41 . Piy -4 . 4y "
Gy Eny 302'EI "
, 53.32
EI
6. 4 A, B, +d +d. 2 4. .d. .d
C%x G Yy Py Py %1yt
kmyx_ GJx. EIy, 2CEI , BCE'EI .
y
19.28
EI
o “d 4 243 4 2,43
m= m 1x m_ o, _mX 1
Glen  3c2.gr,,  3c2.EI,
- y y
+ 62.25
TEI
2 2 2 2 .3 2 .3
Bux "% Py "% N By %1y 9n dly"dm . day "4
Gy ELon CEL n 3¢®.EL, 3C°EI ,
- y Y
, 13.33
EI
2
, By tYixdm . Yy
= 3
mkyx 2CEI_, 3¢<-EL,,
, 3.85



(920
frmt

G values:
ed .4 % 2 .3 2 .3
(1) ¢ =G Ay e - ! 4 "
. - = : ) x
kmxx mkxx 2CEIy.v ‘3c2-EI 1 3¢5 BT,
L . 2.22
~ EI
g8 +d. -d 2 d 2-d 3
(11) 6 =¢., =--S lym _ly m
kmyy mkyy IQCFIY"“v 3C2FEI -
-, 867
EI
3 3
* . d, -d, °d
(111) 6 =c.  -dyom® Gx1y
kmxy mkyx 2CEIy. 3C2'EI N
_, 1o.28
EI
e 3
(iv) G = G - - Bmy dlx m dlx'dly' m
kmyx mkxy ECEIy" 3C2'E1 ;
o . 3.8
= EI A‘I-Y
k*dlx**
1

+X

¥

Figure 5-5

Basic Structure klm



Basic Structure mni

The basic structure mni with the origin of co-ordinates at m is

shown in Fig. 5-6.
+Y

wn///-\\\ e +X

\y .
W
“ix
Figure 5-6

Basic Structure mni

d =d, = ho'-Q"
n i

From Tables 5-5 and 5-6

nx ~ Bny = =0.500
o = =-p__ = +0,866
ny ~nx

i = ﬂiy = +0,500

Qiy = “Bix = +0.866

o,
il

(40.00)(~0.500) = -20.000
(40.000)(-0.866) = -34.640

nx

[§

d
ny
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‘dix = (40.000)(+0.500) = +20,000
diy = (40,000)(-0.866) = -34.640
C =4d__.d, = d, .d,
nx iy 1X 1y
= (-20.000)(-34.640) - (+20,000)(-34.6L40)
= +1385,600
F values:
o 2-d I5% 2'd o *d, 2 4. 2.d 3 d ,2°d.3
(i)F =nx n+ny n_nylxn_lx.n+nx 1
mixx GJX' EIyg ] CEIy| 3C2EI . 3C2EI "
y oy
28.88
=7 TE1
8 2,4 8 2.4 B -d. -d 2 4 24 3 g 2.43
(ii) F = nx n+ ny n_ ny 1y sl + 1y n + ny L
miyy GJX' : EIy| ) CEIy| 3C2'EI| 3C2'EI "
- . : y Yy
_ 4 ho.67
- EI
2
("i) F = F _ O!nx an‘dn + @hy Bny.dn - (any'diy + Bny'dix).dn
o mixy ~ ‘miyx ~ GJ_, " EL, 2CEIL ,
o X Y y
d, «d, +d> a_-a a3
+ 1X 21y n + nx 2ny i
3C7EL° 3C°EI_,,
y y
_ . 23.08

EI



(1v) Fimxx =

F. =
imyy

(vi)

i

Fimxy

G values:

(i) ¢ =

mixx

3¢%EI,,
y

(Biy 9o

3C2°EI '
y

aiy°dny)di

6L

EI
y"
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—
He
[

~
(]

|

2 3 3
C‘1'/ny‘div'dn . dix'd;y'dn - Biy'dnx' i

= G, =
2
imxy 2CEIy. 3ac ‘EIy.

e
e
e
[o%

g
(]

=
~

bl

i

n

9]

=1

~

d _.d_-d>
- nx nz 1
3¢°.EI,,
y

B -d, -d 2 d, .d, .d 3 o, *d -d,2
ny 4ix n ix iy n iv nv i

= N - ?CEIy"

(iv) ¢, G, =
mixy imyx 2CEIy. 302'E1y'

i

d -d ~d,3
- nx ni 1
3C2'EI "
y

11,56
T TEY

(d) Angular Load Functions
For the given loads, the angular load functions (7 values) are
expressed 'algebraically in terms of the end slopes of a simply suppérted

beamiloaded in the plane.

Basic Structure ijk

A concentrated load of P = 20 kips acts at the center of the span

1j. (Fig. 5-2).
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From Tables 3-1 and 3-3.

\ i)
dj &M S
(1) Tipyy = f ) —6%__ " Ay
o] ' iy y
gi
1
- f P (_ g .u')(e ) u'.de). dxl
o 2 “jy C EI
%
. ]
f &R, - - k).
4 2 "%37/\P3yT TC EI
1
2

On integrating and simplifying.

p.d,°>

= o ——r (O, -
Tikyy =~ 16EI (2-8 L)

iy
Since ﬁjy = +1,000 (Table 5-1)

P-4’
Tikyy = T 1BEI ~ Tijy' (5-1)

Thus T4 is equal to the end slope at i of a simply supported span

kyy
IE loaded by the concentrated load P.

d
3 (1)
(11) [ w0 2
ii T, = BM Aot
ikxx o y 5Mix y
4 .
2 u ’dkx dx'
a— PR i - —————
= ( ) «u )(Q’jy C ) EI
o
dj -
. d
- 2.4 Y(q, - kxy, _x!
2" 3/\%y T EI



Integrating and simplifying

: d p.d,°
o [-kx7 i
Tikxx [dk ] 16E1
| y

From Fig. 5-4 and Table 5-2

Yrx

iy

Tikex = ° [ka Tijy!

% (1)
(iii) 7 —f BM(i)—GEX:-— A
ki = ' . '
<iyy . y o My y
_2__]_ .
'.d d
_ _ E_ 1 u ky x'
“,f (-2 )= =) 51
(o]
d '
Ip o _p s
+J; G- "5 ) g

Integration and simplification gives

Tkiyy = 7 1681 ~ Tijy'

67
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(5-3)



. o (1)
(iv) Trixx = Bn(i) 3 P Aot
; y M, Y
d
Ei u' dkx dx'
=". (-3 0" )—g—) 57 *
(o]
d

1

Y,

kx
R

ka: in

68

(5-1)

Substituting the numerical values in Eq. 5-1, 5-2, 5-3, and 5-4,

_ __ 2000
Tikyy = Tkiyy = EI

- 4+ 122

Tikxx =~ Tkixx = T TET

Basic Structure kim

A uniformly distributed load of w =1 kip per foot acts on the span

From Tables 3~1 and 3-3.



, wd 3
2 1
T R (‘ S =)
kmyy lyy 2 EI
As Bly = ~0.500 (Table 5-3)
¢d13
Tkmyy = ZhEI T T Tkly'
‘1 (k)
(ii) - BM(k) . EP_IIL_
7/ Trmxx y ﬁka AY'

On integrating and simplifying

3
._.‘ic.l.l:.(..g .._2_.)
Tkmxx ~ 2§EL ' %1y 3

69

(5-5)
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(5-7)



Tokxx

Substituting the numerical values in Eq. 5-5, 56, 5-7 and 5-8

Tkmyy

kayy

Basic

Integrating,

3

N
C=Y1x- 2LEI

&)
= ST TGt
LBx KLy

L 2667

- , . 4 1238
-7 B Tkmxx ~ ©  EI
= _ 4 3076
=0 ’ Tmkxx = © - EI

Structure mni

As there are no loads on the spans mn and ni,

Tmiyy

E}kxx =

(

T -
myy

Do =
| mxx

= . = . = = 0
Tmixx Tlmyy T imxx

Summation of Flexibilities (F-values) at

bl bl : ! : 26.93
+ EI ’ }mey ~,§?myx =+ EI
106.64 , T . 91,13
T : ZFixx =+ EI
L . ' 60,00
= E?kyx =0 ’ }?iyy =* 71
, 9L.13 i 5% _ E? _._ 26.93
EI : /o ixy /[ iyx T EI
60.00 ]
EI ’

~J
—

(5-8)

the supports k, m and i
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Summation of Load Functions (r-values) at the supports k, m and i

E}kxx = *E1 : ZTmyy =0

T .66 N N 11
>w“'kyy " TR ’ Z”ixx "t eI
Tro = + 228 R -
[, mXX EI iyy El

(e) Compatibility Equations
The six moment compatibility equations are arranged in a

matrix form.

wy 000 -2.22  19.28 -2.22 -19.28| [m | [ 383 |
0.00  106.6k -3.85i 6.67  3.85 6.67| | M 667v
-2,22 . =3.85 9l.13  26.93 3l.12 11.56 - 3076
19.28 6.67 26.93  60.00 -11.56 = -6.67 M - 0
-2.22 3.85 31.12 -11.56 91.13 -26.93 i 1155
_;19.28 6.67 11,56 -6.67 '-26.93 60.09_ | My | _:2obof_

The six moment equations are solved by synthetic elimination and by
the carry byer procedure derived earlier (Eq. L-13a,b).

‘It is found that the cafry—over procedure (Table 5-8) converges very
slowly and consumes considerabie-labor'and time as compared to the solu-
tion by synthetic elimination, In fact, this is apﬁarent from observing
that some of the carry over y#lues vary from 0.25 to 0150. As such, it
tufns out that the carry ovef solution is not an ideal solution for the

analysis of a polygonal frame-work of continuous bent beams as treated



Carry Over Procedure
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Tinm ® ¢ S0 Ty ® ¢ 00BN T * 0000 Tiagy * - S0 e L] Ty ¢ G0N
Tigmy * = 0.3 Tom ® 00NN Taie * - 0N iy * 0000 My * » 80000 (."' LAY BT
Tiney ©. ¢ 0000 Ry * + 03NN Ty * * 000 Tiaga ® ¢ 041 g ¢+ D00 s 02N
Ty ® # 0.10004 Ty * ¢ 0320 Taty © * 01034 Tia * ¢ BN Tagn * T 0N Taiyn * * 000
Tligy ® + 0400 ey * 9.00000 Yo * » B.04003 'llu- " & 0. 1380 agu * 0.0006 [ — - 0.19530
gty . 06000 =33, 19907 33,30 e 8, 00000
11,500 o s + 450408  Laun +5.18201
TR +17.28304 v 5,000 .00 14040 + 4332
+ 1400 - ann SnamM + 1N - ans R
+12, 10043 + 0,430 - 447704 + 5000 - A1M + L
+ 0.0 8.00000 - 049183 + 1.2 ehhpaneg + 109841
+ 5,00 - 0,70907 1,000 + 2,00 - 0,370 + 100830
+ 3msm + 3.30087 - LABN RTIT - 0730 * LI
+ 1.9 + 10080 - 340000 + 1000 - 0.76004 +1.09473
Al e + 0,380 = .09 + 400 - 0.4010 + 104148
+ 3.0M83 - 04871 « 9,003 + 1L.IMN - 0.38501 + 4, 00004
+ 1.0 + 3.0 - Lo + 0.9 « 0.50400 + 0000
+ 0.0 « 3.00160 « Lonan? + 070704 « 0.440 + 7.08200
ETTI + 0.0 - 2.12200 + 50801 - oamn + 122600
+ 10011 R - 30900 + .01 - 0.19004 + 1ann
+ LM + 1001 - 0.90148 + 404200 - 0.9i6) + 0.5
+ 0,100 000000 - 0,19000 + 0.3003% - 4,3019) + 0,5003%
+ 0.30607 « L0001 + }.26420 +0.3194 - 0. 20094 W
+ 1.06040 + 0ann - pan + LT A B + 0. 0030
+ Lansn - 01048} B + 0.4 = 0. An + 197000
+ 1,004 + |.30003 - 0401 + 2400 - G.mM + 0.381
+ 034000 . LA + 0,005 + 030107 . 0. 47008 + LI
+ 1560810 + B - 0.0049 T b - 009244 + 04030
+ 078 « .10340 - LI + 040764 - 0.0060 + 0.0
+ 05404 + 0,80663 = 0.79383 + }.05830 * 0.10638 + 0. 0868
+ 0.9 - 0. - 0.40032 + 0.1 0,108 e
+ 1A + 0,013 "« 0.sases + 06648 - 0.0347 + 0,285
+ DM * 0.06508 e L + .20 - 0,041 + 058760
+ 0.0 + 0N - D.J6oss + Loa? - 0.06%9 + 0125
R - 04NN R +0.0000 - 0.08231 + D.BS
cl.T- + 0.0M304 - 0. %0790 +0.40068 - 0.03253% + 017370
+ 0.04732 0,00000 - 0.06057 + o - |.49082 + om0
t0.ane - DuDb0NE - 0.01074 + 0.13080 - 0,003 + 0.36803
+ 0.9 + 0.36693 - 0,000 + 084878 - 0.05389 + 0.0%01
+ 0.00409 - 0.09308 = 0. 34082 + 0.m081 - 0,050 + 0.0
+ Q.aiTe0 + 0.0M8 - 0.0413 + 0.31310 * 0.0138 T 0.1440
+ 0,20013 - 0080 - 050604 + 0,119 - Q02018 + 0.26303 5
+ 0.15283 T 02400 = 0.063%1 t 044 - 0.00m0 + 0.051
+ 0.05780 - 0. - 0,104 + 0.0%0% - 00044 + 0aMB
+ 0420438 + 0.02100 « 014258 + 0.1887) - 0.01518 + 008000
* 00119 - 000714 - 0.34350 + 0.08816 + D010 + 0,057
+ U.0s0n + 0.3 - 0,008 1 0.3034) - .01 + 0.030%3
+ 00004 = 9. biaTY  0.01983 + 0.0 - 0.01683 + 000000
Ve + .01 - 000383 1 0.10000 - 0.0082% + 004681
+ 0,008 - 0.0400) - §,20080 + B0 = 0.00728 t 009002
+ 0.08820 + 00000 = 0.0 + 0. 10001 - 0,011 + 002079
+ 0.01498 T - 0.DhEN + 00108} - 0,00005 + 0.08748
+ Q.40 + 0.00008 - 0.0001) C f 0.08433 * 9.00519 + 0.0M
e « 0.0040% < BN + 0.00300 - 0.00437 t 00801
1 004140 T G- = 0.01W0 + 0. 10560 = 000660 + 0. 00008
+ 9.0 - 004044 - 0.031% + 0.0100 - 0.00383 +0.0831)
i s « Q.4008) 1145000 11340109 BUREE] 1907174

Table

5-8




Th

in this example. The results obtained by these methods are recorded in

Tablg 5-9.

Support Carry-Qver Synthetic
Moments Procedure. Elimination
M, + u;.09915 + 41.16508
Mly + T73.L40109 + T73.40010
M, - 0.40051 - 0.501L43
Yy - 18.12727 - 18.10955
w | - 7e.8loly | - 72.98405
Mmy + 50.73374 + 51.02418

Table 5-9

Support Moments

(f) sShear Force, Twisting Moment and Bending Moment Diagrams
The known support moments are now applied on the basic struc-
tures (Fig, 5-3 ), and the Support reactions are computed from their
statics,
The basic support moments at i, k and m are transformed to the
principal axis of the spans. The shearvforce, twisting moment and the
bending momént‘about‘the principal axes of the spans are shown on the

unfolded structure (Fig. 5-7).
. ‘ »
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6-1 Summary

The application of the six-moment equations to the analysis of
planar continuous bent beams loaded laterally is presented in this thesis.
The study is an extension of the analysis of continuous beams loaded in
the plane by the three moment equation.

The continuous structure is isolated into appropriate basic struc-
tures, and the suppdrt moments, about the basic system of reference XYZ,
are selected to be the unknowns. This is essential as the gompatibiiity
of deformations over a continuous support can only be achieved along a
common reference axis. From the statics of the basic structurés, the
moments at a section are%obtained and are expressed in terms of the
seiected unknowns by the transformation matrix. Angular constants of
the basic structures are introduced -and the deformatién-equations, in
terms of these constants and the redundant moments are obtained by the
Castigliaﬁo's method. Finally, by comparing the deformations over a
contiﬁuous support, the six moment compatibility equations are obtained.
The compatibility equatioﬁs over the (n-1) support of an odd span contin-
uous bent beam having n supports aré also derived. A carry over solu-
tion of the six moment equations is demonstrated. The procedure for the

analysis of the problem is outlined and a numerical example is included,.

7
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6-2 Conclusions

"The compatibility equations provide an adequate method in the
analysis.of planar continuous bent beams loaded laterally. However, it
is observed, that, for the analysis of closed polygonal frame-works of
continuous bent beams as considered in the numerical application; the
carry over procedure is not an ideal method for solving the six moment
equétions. The convergency of the starting values is slow and the labor
involved is more than solving by other methods such as Gauss's elimi-
nation, matrix inversion by a computer, and by Choleski's method.

The convergency of the carry over procedure is expected to improve
in case of continuous bent beams, not as acutely inclined as analysed
in the numerical e#ample. The feasibility of applying the carry over
procedure to such problems may then be considered. The study may be

extended to continuous bent beams, not in one plane.
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APPENDIX

In the first part, the signs of geometric guantities, loads, moments,
and deformation are shown. Both the external and cross-sectional ele-
ments are Eonsidered.

Several tables showing the application of the transformation matrix
as discussed by Tuma (3) are presented in the second part of the appendix,
The tables apply to the case of a general space structure (Table 5). For
the planar problem treated in this thesis, ®_ and w, are zero so that the

p and

Z-terms vanish from the general transformation matrix,
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Geometry and Forces

Part A - Table 1
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ﬁ iz iz
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Moments, Rotations and Displacements

Part A - Table 2
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Cross Sectional Elements

Part A - Table 3
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Transformation of Coordinates

Part B - Table L

Y E . :2
Y 0=Y;=Y y wo 3
1 | e U -
(!)2 X 1
51 %o
- X | g Y
0=z=zl Zl 2 2
Rotation ®; ' Rotation wp Rotation Wq
I - v et - + R v =
X xlcoswl ylslnw1 x1 x2cosw2 2231nw2 X, x3
y = xlsinwl + ylcoswl yl =Y, y2 = yscosw3 - z3sinw3
P = - inw [i 4} , = '
z zy zy X, sin 5 + z,cosW, Z, = y4C08W, + z3cosw3
Xy = xcoswl + y51nwl Xy = slcosw2 = zlslnw2 Xq = X5
v, = -xsing, + ycoswl y> =Y y3 = y2cosw3 + z231nw3
‘zl = 2z z, = xls1nw2 + zlcosw2 L -y251nw3 + zzcosw3
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-Part B - Table 5

= = inw = =81
o, = cosw cosw, Bx sin®, cosm, Yy sinw,
a'y = —31nw1cosw3 By = coswlcosm3 Yy = cosu.>2s1n(1)3
+ coswlslnw2s1nw3 + 51nw1s1_nw251nw3
o, = s1nwlsigw3 Bz = -cosw1s1nw3 , Y, = coswzgost
+ cosw1s1nw2cosw3 + s1nw1s1nw2cosw3
— t t 1] '
= X' ! X o o | o L ,
Y X Bx + Y By + ZBZ % y z Y Xay + YBy + Zyy
Z = ¥ BX BY BZ z' =

¥ ' 4
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Z vl oy,

Transformation Matrix

xaz + YBZ + Zyz
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General Transformation Matrices Part B - Table 6
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