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CHAPTER I 

INTRODUCTION 

1-1 General 

This thesis presents the analysis of planar continuous bent beams, 

' loaded out of the plane, by the six moment equations. 

A carry over moment procedure of solving the six moment equation~ 

is introduced. 
\ . 

The carry over moment method was developed by Tuma from 

the three moment equation and applied to the analysis of continuous 
<. 

beams (1), continuous trusses, (2) and. extended to numerous other problems 

in the plane. The analysis of beams. and frames by means of this method 

was reported by Tuma in his lectures (3). The historical background of 

the problem investigated in this thesis has been discussed by Childress 

(4) and is not repeated here. The material presented in this thef:liS 

closely follows Tuma 1 s lectures and reference to the lecture notes is 

made (3). 

The analysis is based on the assumption of elastic deformations. 

The deformaiions due to bending and torsion are considered only and the 

deformations due to shear are considered small and are consequently 

neglected. 

The symbols used in this thesis are rearranged under the heading 

of nomenclature at the beginning of the thesis. The signs of geometric 

quantities, loads, moments, forces and deformations are recorded in the 

appendix. The appendix material dealing with transformation matrices 

1 
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was prepared on the basis of Tuma's lectures dealing with transformation 

matrices (3). 

A list of a selected bibliography is presented at the end. 

1-2 Statement of the Problem 

A continuous bent member im lying in the plane XY is acted upon by 

loads perpendicular to this plane. A system of reference axes XYZ is 

selected (Fig. 1-1), the co-ordinates being measured parallel to these 

axes and denoted by x, y, z, respectively. 

+Z 

+Y 

Figure 1-1 

Continuous Bent Beam 

p I 

mz 

The supports are designated as i, j, k, 1, m and the span lengths 

are dj, dk' d1, dm. The slope of each span measured from a line parallel 

to the X-axis is represented by the symbol wand the corresponding sub-

script as shown in Fig. 1-1. The exterior ends i, mare fixed and the 

interior supports are assumed to have spherical hinges. The foundation 



under these supports is considered to be rigid and no displacement of 

supports is introduced. 

3 

The continuous bent beam shown in Fig. 1~1 has four reactive mo­

ments and five reactive forces. For the analysis of this beam, three 

equations of static equilibrium are available and six deformation con­

ditions are essential. In generai, for a continuous bent beam having 

the end supports fixed, and the number of spans equal ton, the number 

of reactive elements is (n+5), three of which can be obtained from stat­

ics and (n+2) deformation conditions are necessary. If the exterior 

ends of this beam are simply supported, the moments at the ends are 

equal to zero and the number of reactive elements decreases to (n+l). 

In other words, a continuous bent beam with the end supports fixed 

is statically indeterminate to (n+2) degree, and that with the exterior 

ends simply supported is statically indeterminate to (n-2) degree. 

The degree of indeterminacy indicates the number of redundants which 

can be selected to the convenience of the analyst. 

Basically, two systems of redundants are possible: 

(i) the case where moments acting at supports are selected as the 

redundants. 

(ii) the case where forces acting at supports are chosen as the 

redundants. 

In this thesis, the support moments are taken as redundants. Two main 

types of continuous bent beams are considered: 

(a) The fixed-end continuous bent beam having even and odd number 

of spans. (Fig. 1~2a,b) 

(b) The continuous bent beam with simply-supported ends having 

even and odd number of spans. (Fig. 1~3a,b) 



z 

Figure l-2a 

Even span continuous bent beam - end supports fixed. 

z 

y 

--tata111111111i- M 
mx 

Figure l-2b 

Odd span continuous bent beam - end supports fixed. 

M nx 

4 



z 

z 

y 

Figure l-3a 

Even span continuous bent beam - end supports 
simply-supported. 

n 

~--.•t-.-z• M mx 

5 

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~....-...x 

Figure l-3b 

Odd span continuous bent beam - end supports simply 
supported. 

After selecting the moments as redundants as shown in Fig. (l-2a,b) 

and (l-3a,b)~ it is observed that three types of basic structures may be 

introduced. 

(1) A two span continuous bent bar ijk simply supported at the 

exterior and the intermediate supports (Fig. l-4a) 

(2) A single span bar iiiii, simply supported at one end and fixed 

at the other end (Fig. l-4b) 
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(3) A single span bar mii, simply supported 'at both ends (Fig. l-4c) 

z 

y 

M.~~i ix 
V •• 

1JZ 

z 

Figure l-4a 

Basic Structure No. 1 

y 

Figure l-4b 

p 
nz 

Basic Structure No. 2 

vnmz 

X 

X 



z 

y 

p 
mz 

Figure l-4c 

Basic Structure No. 3 

7 

n 

If the moments acting at the end of these bars are applied as unit 

moments, angular flexibititics may be derived and the compatibility 

equation may be expressed in terms of these angular flexibilities, load 

functions and the redundant moments. From this discussion, the necessity 

of studying four primary phases in the analysis of the problem becomes 

evident. 

(a) Geometry of basic structure. 

(b) Statics of basic structure. 

(c) Deformation of basic structure. 

(d) Compatibility Equations. 

The geometry of the basic structure is discussed in this chapter 

and the next three topics mentioned above are treated in the subsequent 

chapters. 
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1-3 Geometry of the Problem. 

(a) Basic Structure No. 1 

-The two span basic structure ijk, lying in the plane XY and acted 

upon by loads perpendicular to this plane, is shown in Fig. 1-5. The 

bar rests on simple supports at i, j and k. The end moments and shears 

are also shown. As the structure is loaded perpendicular to its own 

plane, only the vertical shear V exists and the moment in the vertical 
z 

direction, M, is zero. 
z 

z 

y 

V .• 
1J Z 

Figure l-5 

Basic Structure No. l 
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The lengths of the members ij and jk are designated as dj and dk 

respectively. The slope of each member with reference to a line parallel 

to the X-axis is denoted by illj and~ respectively. The cross-section 

of the members varies along the length of the members. 

Each span is related to its own co-ordinate system 

(i) X':Y'Z' for member ij with origin at i 

{ii) X"Y"Z II for member jk with origin at j 

These particular co-ordinate systems can be related to the basic 

system of axes XYZ by making use of the Transformation Matrices shown 

in Tables 1-1 and 1-2. 

x' Y' X" 
"-. 

Y" 

X Oljx O!jy 

y Sjx Sjy 

Table 1-1 

Transformation Matrix 
for span 1j 

X Olkx O'ky 

y Skx a~Y 

Table 1-2 

Transformation Matrix 
for span jk 

The above Transformation Matrices are special cases of the Trans-

formation Matrix derived for the case of a general space structure in 

the Appendix (Table No. 5). The "a" and the "a" terms appearing in the 

above tables are functions of the angles illj and~ respectively. 

The Transformation Matrix provides for a systematic transformation 

of geometric quantities, moments, forces, slopes, elastic weights, etc. 

from one co-ordinate system to another. Thus it is seen that in having 

the Transformation Matrix, the analyst has a powerful tool in dealing 
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with problems in space structures. 

(b) Basic Structure No. 2 

In this case, a single span iiiii with end ''m" simply supported and 

end "n" fixed is considered. The basic structure lies in the plane XY 

and is loaded perpendicular to this plane (Fig. 1-6). The end moments 

and shears are shown. The member has a non-uniform cross-section, and 

its length is denoted by d. The principal axes of .the member may be 
n 

denoted by X'Y'Z' with origin at m, and the slope of the member with 

a line parallel to the X axes of the basic system is designated as w. 
n 

M I . mx 

z 

y 

vmn,z 

M my' 

Figure l-9 

V nmz 

Basic Structure No. 2 

nx' 
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The transformation angle is thus w and the Transformation Matrix 
n 

for the member is shown in Table 1-3. 

x' Y' 

X O:'nx (llny 

y 
enx 13ny 

Table 1-3 

Transformation Matrix 
for span mn 

It is to be noted that the structure can be in stable equilibrium 

only if the end moments about the torsional axis of the span, M , and mx 

Mnx' are equal. 

(c) Basic Structure No. 3 

A single span mn with both ends simply-supported is considered. 

The basic structure is in the plane XY and is loaded out of the plane. 

The member has a length d and a cross-section varying along the length 
n 

(Fig. l-7). 

The principal axes of the member may be designated as X'Y' and as 

in the case of the basic structure No. 2, w represents the angle between 
n 

a line parallel to the X-axis of the basic system and the X' axis and 

therefore the transformation angle. Thus the Transformation Matrix for 

this basic structure is the same as that shown in Table 1-3. 

Since the end "n" is simply-supported, the end moments at n are 

equal to zero, and as such, the end moment at min the X' direction will 



12 

also be zero to maintain equilibrium. 

z 

m 

Figure 1-7 

Basic Structure No. 3 



CHAPTER II 

STATICS OF BASIC STRUCTURE 

The statics of the basic structures, described in the last chapter, 

is now studied. 

2-1 Statics of Basic Structure No. 1 

The basic structure ijk, removed from the continuous bent beam im 

(Fig. l-2a) is shown in Fig. (2-1). 

y 

Figure 2-1 

Basic Structure No. 1 

13 
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The applied end moments at i and k about the principal axis of the 

member ij and jk are Mix'' Miy' and~"' l\y" respectively. Mix' Miy 

and~' l\y represent their transferred values about the basic system 

of reference XYZ. 

Since the structure is in equilibrium under the action of the re­

sultant of loads Ipz assumed to act up, support reactions and basic end 

moments, the summation of moments at i about the X and Y axis is equal 

to zero. 

Thus, 

-M. +l\ +SM1 +R. •yj+Rk ·Yk = 0 (2-la) ix X X JZ Z 

lMY [@i] = 0 

-Miy +~y- SMiy-Rj zxj-Rkzxk = 0 (2-lb) 

where SMix and SMiy denote the static moments of loads at i about the X 

and Y axis respectively. 

Rearranging equations (2-la) and (2-lb) 

R +R = M -M. • 3M 
j z(y j) kz(yk) ix -1cx ix 

R )+R ) jz(-xj kz(-xk 

Solving simultaneously, 



C = d d -d d. 
jx ky kx JY 

::: d •d -d ·d 
jx ky kx jy 

= Area (A-B) = C 

(M. -M. ··SM. )(dj +dk )+(Mi -M. +SM. ){d. +dk ) 
R = _ . 1.x -1<x 1.x x x y -1<y 1.y 1 y y 

jz C 

= (Mix-~ SMix)djx+(Miy-~y+SMiy)djy 
C 

(2-2a) 

(2-2b) 

(Fig. 2-1) 

(2-2c) 

(2-3a) 

(2-3b) 

Utilizing the third condition of static equilibrium in summing up 

the forces in the Z direction, 

R. +Rj +Rk +\p = 0 
l.Z z z L z 

R - -R -R -'P iz - jz kz L; z 



Substituting the values of Rjz and Rkz from Eq. (2-3a,b) and 

simplifying, 

R. 
1Z 

dkx dk 
-- (Mi -M_ -SM. )-c +(M, -M_ tSM. )..Elc _\pz x ·1cx ix 1y ·1cy 1y L 

16 

(2-3c) 

To develop the expressions for the moments at a section in spans ij 

and jk of the basic structure, the free body diagrams shown in Fig. (2-2a) 

and (2-2b) are considered. 

M, I 1y 

Figure 2-2a Figure 2-2b 

Free-body diagrams. 

Summing the moments at the section about the principal axes X'Y' 

(Fig. 2-2a)~ 



\M (i) = 0 
L x' 

M (i) = 0 
x' 

17 

(2-4a) 

where M ~i) denotes the twisting moment about the x*-axis at t.he section 
X 

in the span :fj. 

\M(i)=O 
L, y' 

-Mi ,+Ri u'+M ~i)_SM' = 0 
y z y y 

assuming that the resultant of loads between the support i and the 

section acts down. 

Thus, 

M (i) = 
y' M. I - Ri • U 1 +SM I iy z y (2-4b) 

where M ~i) and SM, represent the bending moment and the static moment 
y y 

due to loads alone, respectively, about the Y'-axis, at the section in 

the span ij. 

'Similarly, considering the other free body (Fig. 2-2b) 



M (k) = M. 
x" -1tx11 

Also 

\'M (k) = 0 
L, y" 

-M ~k)+M. 11-Rk •u'+SM " = 0 y -1<.y z y 

M (k) = 
y" M. ,.-Rk •u' +SM 11 -1cy z y 

18 

(2-5a) 

(2-5b) 

(k) (k) where M 11 , M" and SM II have similar meanings as explained for the 
X y y 

previous free body. 

Equations (2-4a,b) and (2-5a,b) are expressed in terms of moments 

about the pri.ncipal axes of members ij and jk. Using Tables 1-1 and 1-2 

and Equations (2-3b,c), the above expressions can be put down in terms 

of basic end moments. 

Thus 

(2-6a) 

(2-6b) 
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( ') [ d1 dk 
M 1. = M. •QI, +M. •13, - (M. -M. -SM )~+(M. -M. +SM )-EY+" ... p ](ut) 
y' 1.x JY 1.y JY 1.x -l<x ix C 1.y -l<y iy C /: z 

- M •d1 , +M .. r..i -[(M. -M )d +(M. -M. )d -j( 01 )+BM(i) 
ix JY 1.y ''jy - l.X -l<x kx 1.y -l<y ky_ C y (2-6c) 

(k) [ d, d. -] 
M 11 = lVL •or +M. • 13 -(M. -M. - SM. )--J.?4(M. -M. +SM. )....ll (.,' ) y lex ky -1:cy ky . 1.x -1<.x 1.x C 1.y -l<y 1.y C _ 

(2-6d) 

where BM(i) and BM(k) represent the bending moments at the section con-
y y 

- -sidered, in ij and jk respectively, due to loads alone. 

(2-7a) 

SM(k).Q', +sik)·f3. +[sM •d, -SM. d. ].(! . .'...) 
x JY y JY ix JX iy JY- C 

(2-7b) 

2-2 Statics of Basic Structure No. 2. 

The basic structure mn, isolated from the continuous bent beam in 



20 

(Fig. l-2b) is shown in Fig. 2-3. This basic structure with end m simply 

supported and end n fixed is statically indeterminate to first degree 

and the end moment M will be the selected unknown. nx 

The structure is acted upon by the resultant of loads ,;-p acting up L, z 

and the ends moments M 1 , M I and M 1 , M I about the principle axis mx my nx ny 

of the member at supports m and n respectively, 1'he transferred values 

of these end moments about the basic system XYZ are denoted by M • M mx my 

and M , M respectively. 
nx ny 

M 

y 

M my 

M 

~ ny R M 

1£ nz, nx' _v ~M 

f 1 nx 

Yn dny 

----~ 

Figure 2-3 

Basic Structure No. 2 

Since 

- M +M +SM +R • d = 0 mx nx mx nz ny 

where SM denotes the static moment of loads at m about the X-axis. 
mx 



R = nz 

Solving for R , 
nz 

M -M -SM 
mx nx mx 

d 
ny 

As the sum of forces in the z~direction is zero, 

R +R +)P - 0 
mz nz CJ z 

= -
M -M -SM mx nx nx 

d 
ny 

_\p 
lz 

21 

(2-8a) 

(2-8b) 

To ca.lculate moments at a section in mn, the free body diagram 

(Fig. 2-4) is considered. 

Y' 
M (m) X' 
y' ~ 

\ 
M(m)~ 

~x' 

R O m \ 
n1 Z X 1 _....-------"\ 

M ~ ~-----------
mx \ 

Figure 2-4 

Free-body diagram. 



Denoting by M ~m) and M ~m) the twisting moment and the bending 
X y 

moment respectively at the section considered, with reference to the 

support m, 

since 

~M (m) = 0 
[;x• 

M (m)_M = 0 
x 1 mx 1 

22 

M (m) = M , 
x' mx (2-9a) 

Also 

~y' [@m] = 0 

M (m)_M +R ·x'-SM fm) = 0 
y' my' mz y) 

assuming that the res.ultant of the loads between support m and the section 

acts down. 

M (m) 
y' 

Thus, 

= M -R •x'+SM (m) 
my' mz · y' (2-9b) 

where SM ~m) denotes the static moment due to loads at the section. 
y 

Using Eq. (2-8b) and transformation Table 1-3, Eq. (2-9a) and (2-9b) 

are expressed in terms of the basic end moments. 



M (m) 
x' 

M (m) 
y' 

M 'QI +M • S mx nx my nx 

M -M -SM 
= M . ot +M • S . +[ mx d nx . mx + \p J 

mx ·ny my ny L z ny 

+SM(m) •a! +SM(m) •S 
x ny y ny 

Denoting 

23 

(2-lOa) 

• (x I ) 

(2-lOb) 

(2-lOc) 

as the bending moment at the section due to loads alone, Eq. (2-lOb) can 

be rewritten as 

M (m) 
y' 

= M 'Cl! +M •!3 +(M -M ),£ + BM(m) 
mx my my my mx nx d Y ny 

2-3 Statics of Basic Structure No. 3. 

(2-lOd) 

The single span mn removed from the continuous bent beam in (Fig. 

1~3b) is shown in Fig. 2-5. Since the basic structure is unable to 

resist any twisting moment as pointed out in discussing its geometry, it 

can be in equilibrium only under the action of: 

(i) the resultant of loads Ipz' assumed to act up . 
. . 

(ii) the end moment at m, M 1 about the Y1 -axis. my 

(iii) the vertical reactions, R and R 
mz nz 
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Y' 

y 
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x' 

0R nz 

Figure 2-5 

Basic Structure No. 3 

The basic end moments Mmx and Mmy denote the transferred values of 

the end moment M ' my 

Since 

R •d +M 1+SM = 0 nz n my my 

where SM I denotes the static moment about the Y 1 -axis at m due to loads. my 

Solving for R , 
nz 

R = -nz 

M ,+SM , 
my my 

d 
(2-lla) 

n 



R +R +\'p = 0 
mz nz L z 

Utilizing Eq. (2-lla) and transposing, 

M ,+SM ., 
R = my my 

mz d 
n 
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(2-llb) 

To calculate moments at a section in mn, the free-body diagram 

shown in Fig. 2-6 is considered, 

r-:: 
\ (n) 

M, 
y 

Figure 2-6 

Free-body diagram 

Since the end n is simply supported, only the bending moment,·M }n) 
y 

at the section exists. 

M (n)+R ·x 1 -SM (n) = 0 
y 1 nz y' 
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assuming that the resultant of loads between support n and the section 

acts down. 

M (n) :: 
y' 

~R •x. 1 +SM (n) (2-12a) 
nz y 1 

where SM ~n) refers to the static moment at the section due to loads. 
y 

M (n) 
y' 

Substituting for R from Eq. (2-lla), 
nz 

M ,+SM I ( ) 

= [ my dn my ]·x'+SMY,n (2-12b) 

Eq. (2~12b) is in terms of moments about the principal axis of the 

span mn". Using transformation Table 1-3, it may be expressed in terms 

of moments related to the basic system XYZ. 

Thus, 

M (n) = 
y' 

Denoting 

x' 
(M •a +M , c.i +SM .a +SM , 8 ) ,-d mx ny ny ~ny mx ny my ·ny n 

x' (n) (n' = (SM •a +SM •S )·- +SM •a +SM '•(3 mx ny my ny n x ny y ny 

as the bending moment at the section due to loads alone, 

Eq. (2~12c) can be rewritten as 

(2=12c) 
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M {n) = x' (n) 
y. (Mmx ·any +1\iy f3ny) dn + B\ (2-14) 



CHAPTER III 

DEFORMATION OF BASIC STRUCTURE 

The analytical expressions for the angular functions of the basic 

structures discuss~d earlier are now derived. These angular ·functions 

can be obtained by using several methods of analysis such as the Area-

Moment method, the Elastic-Weights method, the String Polygon method, 

the Virtual Work method and the Castigliano I s method. In the following 

derivation, the Castigliano's method is used. 

3-1 Basic Structur·e No. 1. 

The basic structure ijk (Fig. 2-1) has four applied end moments 

Mix' Miy and ~x' !\_y at {ts external supports i and k respectively. 

Thus, from Castigliano's theorm, it is possible to obtain four equations 

of end slopes in terms of the angular functions and these end moments. 

The following angular functions can be expected at the support k. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The angular flexibility Fk. 
1XX 

The angular flexibility Fkiyy 

The angular flexibility Fkixy (=Fkiyx) 

The carry-over angular flexibility Gikxx 

The carry-over angular flexibility Gikyy 

The carry-over angula't flexibility Gikyx 

The carry-over angular flexibility Gikxy 

28 



= 

(8) The angular load function Tkixx 

(9) The angular load function Tkiyy I 

! 
' ,., ,, 

For cons Ant cross-sections of elemental lengths in spans ij and· jk, 

the 

1 
2 

elemental angular flexibilities are: 

).x r 

d r 
X =-

GJX, 

d " X 

>-x" = ~ x" 

(3-1) 

The strain energy of the basic structure [Jic. is 

d r 
;\ = -L-
y' Elyr 

d II 
'I _ ..I:,._ 
/\y" - EI 

y" 

j j I , ,J [M (i)J2 •;\ +J [M (i)f •A + [M (k)J2 ., + x' x' y 1 y 1 x" /\x"· 
' 

i i k 

j J[ (k)J~ 
My" 0 ;\y" 

k 

Partial differentiation of Eq. (3-2) with respect to~' ~y' 

Mix and Miy gives four deformation equations such as 

(3-2) 
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i . (i) j (1) 

6Uijk =J' [ (i)J[6Mx' ·]• + J [ (i)][6My, J 
6~x MX, 6~ Ax•· My' 6~x . ·xy, 

. i . i I 

(3-3) 

for 6Uijk 6Uijk and 6Uijk 
with correspondingly similar expressions 

o~y' 6Mix &Miy 

Substituting in ·Eq. (3-3), the values of the moments at a section 

in spans ij and jk from Eq. (2-6a,b,c,d) and applying unit moments at 

ends i and k, the analytical expressions for the angular functions at 

the support k as denoted earlier and the counterpart expressions at the 

support i may be developed. This is done, and along with the load func-

tions, recorded in Tables 3-2 and 3-3. Table 3-1 contains a list of the 

first partials required to obtain these angular functions. 

Utilizing these angular functions (F's, G's, and T's), the defer-
i 

mation equations (Eq. 3-3) are now expressed as: 

M G. + M. F ix ikxx -1<.x kixx 
(3-4a) 

MG +M. F iy ikyx -1<.y kiyx 

+ (3-4b) 
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Partial Derivatives Basic Structure No, l 
--

First Partials 
I 

First Partial Values 

6M, 
_!,_ 

o,jx 6Mix 

6M 1 d 
:..J.:.. . I k:it 

rt eou \) -
6Mix jy C 

-
6M 11 llMX, 

X 
0 

. 6Mix 
; 

6~ 

6My" d 
-v I ' .:J..!. 

6M . C ix 

6M 1 
_!,_ 

ajx 6M1 . y 

6M , . dk :_r_ 8 -u 1,~ 
6Miy . jy C 

6M ,, 6M , 
X _!,_ 

0 
6Miy 

; 
61\y 

6My 11 d 

-v '· .::,JI. ~Miy :c 

6M , dkx . :.J.:.. u'. 
61\x C 

5M 11 _x_ 
akx 61\x .. 

6My11 d 
I .:.1!. 

6?\x 
Cl'k +v ' C y 

6M 1 dky :.J.:... U I• 
6?\y C 

6M 11 d ::_x::. 
f3 +v'· .:.u. 

61\y lty C 

Table 3•1 



Angular Flexibilit~es 

-
6Ui1k 

Fikxx M :+l.0; M =~=Hie =Loads=O 
1 6Mix ix iy y 

6Uiik 
Fikyy Miy=+l.O;Mix=~=~=Loads=O 

6Miy 

· pi.kyx 
6Ui1k 

M =+l.O;M =Hicx=Hic =LoadssO 
6Mix iy ix . y 

! = 
6Ui)k 

Fikxy M :+l.O;M =Hicx=Hic =Loads=O 
6Miy ix iy y 

6Ui1k 
Fk~ 6~ 

~=+l.O;Mix=Hicx=~=Loads=O 

6Ui1k 
Fkiyy ~=+l.O;Mix=Miy=~=Loads=O 

6Hicy 

Fki}lx 
6Uijk 

Hicy~+l.O;Mix=Miy=Hicx=Load$=0 
6~ 

= 
6Uijk 

Fkixy Hicx=+l.O;M =M =Hie =Loads=O 
6Hicy ix iy y . 

Basic Structure No. l 

lj . . 1j I 2 f j I 2 
2., + -d • .!!.... • + -d .L . 

i o:jx ''x' i (ajy kx C ) Ay' k ( jx C ) Ayn 

2. + -d ·- • + -d .- • 
lj 1 j U I 2 f. j . VI 2 . 

. i ejx Ax• i (ejy ky C ) Ay• k ( . jy C ) >-y" 

!j 1j u I u I 1 j L ~ 
o:jx"ejx·>-.x,+ i (o:jy-dkx·c)(eky-~·c)Ay,+ k (-djx·c )(-djyC )>.y" 

Jj lj v' 2 1j u' 2 
k akx2·>-x"+ k Caky+dJx~c> ·>-y .. + t C~·c> ·>-y• 

lj l j , I 2 ij u' 2 2. + . +d • .L . . + d .- • 
k 8kx >-x" k (Sky jy C ) Ay" i ( .ky C ) ) y• 

Ij l j v' v' f j u' u' 
o:kx •ekx. Ax"+ (o:ky +djx ·c)(eky +djy ·chy"+ (dkx ·c)(~y ·chy• 

k k i 

Table 3-2 
(,;.) 
I\) 



33 

Angular carry•Oiter Flexibilities and Load Function• Basic Structu~e. No. l 

Gikyy 
6Ui1k .. 

M1y=t1,0;Mix'*l\x•'\y"Loada•O 
6'\y 

6ktyy 
6Ui1k 

'\y"tl .O;M1x='\x"'l\y'"Loads•O 
6Miy 

Gikxy 
6Ui)k 

M11t+l:,O; '\x "'\y "Mix"Lo!ld&=O 
6\y 

6k1yx 
&Uitk 

'\y'•tl. o; Mix =l'liy"'\x·Loada•O 
6Mb 

Gik)'X 
6Ui1k 

. ti1Y •+l, o; Mix "''\,,''\lLoads .. o 
~Mkx 

6ktxy. 
6U1Jk 

~ =+l,O;M1 =M1 •'\ =Loads=O 
6"1y X X . y y . 

. ' 

' ' 

----1----------'----~· f\~Jidkx,i' )(dky { hy,t1J(f!kldJif-H•4Jx ·f°h·y" 1 . · J . k 

Tikxx 
6Ui1k 

M1x=M1y"'\x"'\y=O. 6M1x 
l j (i) . · · u• ·. lj (k) .·. v' 
. BM. (<rj. •d_ ·-c )·A ,+ · BM (~d·j· ,-)·A 11 iy )',UC. Y1tY··XC y 

1 iky)' 
6Ui1k 

!11,tMiy ='\x "l\y =O 6Miy 

TltiltX 
6Uijk 

M =M "''\x •\ =O 61\x ix iy y 

Tkiyy 
6Ui1k 

· M1x"M1y"''\x "'\i'0 
6\y 

l j (l) u' · 1J {k) 'C v 1 
· BM (ct .. ·-. )•L,t · BM (A. td. •-)•A." J ·)' -ityC ·· --, k )' ~!(y'ltyC. ·)' 

'fable 3•3 
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+ Tikxx (3-4c) 

3-2 Basic Structure No. 2. 

The basic structure iiiii (Fig. 2-3) has four end rroments M , M mx my 

and Mnx' Mny at supports m and .n respectively. As M can be obtained ny 

from statics, only three deformation equations, two at support m and one 

at support n need to be derived. They are expressed, as before, in terms 

of the an.gular functions and the end moments M , M and M • 
mx my nx 

The following angular functions are expected. 

(a) At support min the x direction 

' ( i) The angular flexibility F mnxx 

(ii) The angular flexibility F mnyx 

(iii) The carry-over flexibility G nmxx 

(iv) The angular load function T mnxx 

(b) At support min they direction. 

(i) The angular flexibility F mnyy 

( ii) The angular flexibility F mnxy (=Fmnyx) 

(iii) The angular carry-over flexibility Gmmxy 

(iv) The angular load function T 
mnyy 

(c) At support n in the x direction 

(i) The angular flexibility F nmxx 
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(ii) The angular carry-over value G (=Gnmxx) mnxx 

( iii) The angular carry:.over value Gmnyx (=Gnmxy) 

(iv) The angular load function T nmxx 

The ·.strain energy of the basic structure mn is: 

(3-5) 

where "'x' and Xyt have similar meanings as explained before (Eq. 3-2). 

Partial differentiation of Eq. (3-5) with respect to M , M and 
mx my 

M gives three deformation conditions nx 

6 ijmn - ( m) u XI • ( m) u y t • Jn .tM {m) in .tM (m) .. 

6Mmx - . m [Mx' 1:aMmx J Ax,+ m ['\,• :raM..,. ] Ay' {3-6a) 

(3-6b) 

(3-6c) 

Substituting from Eq. (2·10a,d), the values of the moments at a 

section in span inn, in Eq. (3-6a,b,c) and applying appropriate unit 



36 

moments at m and n, anaiytical expressions for angular functions as 

denoted earlier are obtained. These expressions (F's, G's and 1' 1 s) are 

presented in Table 3-5 and a list of the first partials required for 

deriving them are recorded in Table 3-4. 

•. 

Partial Derivatives 

Basic Structure No. 2 

First Partials First Partial Values 

6Mx' 
.:-, 

6~x Q'nx 

6M , x' :._;y_;_ 
(a,uy + d) 6Mmx ny 

6M , 
--2L 

f3nx 6Mmx 

6M , :._;y_;_ 
f3ny 6Mmy 

6M , x' :...:L. --6Mnx d ny 

Table 3-4 

In terms of these angular functions and the moments M , M and mx my 

Mnx' the deformation equations are: 

M F + M G mx mnxx n~ nmxx 
+ Tmnxx . (3-7a) 

M F my mnyx 
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·Angular Flexibilities, Carry•O\rer Pl~xibil.idea and L.oad Functions Basic Structure No, ·.2. 

I 

6U11111 
' M •l ,O;M •M aLoads-0 fn ln x' 2 

'mnxx 
a 2;). ,+ (a + r> ·A , 

&MDIX _DIX mynx .· . ID DX X ID ny ny y 

~lllllyx 

au_ 
M •l,O;M •M •Loada-0 . &MDIX my_DIXDX. 

{" . . ln x' . 
60-

a~x·llnx').x,+ (any+ r>·llny').y' 
·m ID ny 

'mxy 
M =l.O;M "M =Loads-0 

61\iy DIX my ,DX 

6Umn n · n 

'mnyy 6MIDY 
Mmy•l,O;MDIX•Mnx•LoadsaO J 8r./·Ax•+L 11n/·A1 , 

m. 1B 

.aumn ln x• 2 

. '- _61\ix. Mnx•l,O;MDIX"l\iy=Loads=O <· r>··)., 
·"' ny y 

\ 

., 

-~ G . M =l,O;M •M =Loada..O . 
nmxx· &M . DX mx .. my · 

1n x' x' DIX .. (any+d)(·-;r-:)•).y• 

· 60mn 
MDIX•l,O;Mnx-Mmy"LoadsoiO. 

m ny DY 

Gmnxx ' I 

\ 
6MDX 

,, 
) 

6Umn 
°uyx M =l,O;M aM =Loads=O 

&MDX my DIXII~ · ·. n . I : .. ~ (llny>C~ ~)•).;, 
6Umn . m ny 

Gnmx;y 6Mmy 
M0 x•l,0;".ux-Mmy"Loads=O 

]· 
6Umn 

l\ix"t\ny"'\x=O 
.. i\~m).(~ +f h ,· ,: ,. 

61\.x mnxx . m ny ny Y .. 

-
60 

J°nM(m),(11 h t 
Tmnyy 

--!!!!l M =M •M ·-o 
&Mmy DIX my DX , ID Y DY Y 

&ii 1D (11) xi ·. 
Tnmxx 

--!!!!l . M "l\i =M aO 8~ ,(--)•). 1 
6Mnx DIX . y DX · m · dny Y 

'fab~e 3-5 



M F mx mnxy + M G nx nmxy 

M G + M F tU mx mnxx nx nmxx 
i; mn 

5Mnx = 
M G my mnyx 

3-3 Basic Structure No. 3. 

+ 

+ 'T 
nmxx 

(3-7b) 

(3-7c) 

In this case, .the basic structure mn has two end moments M and mx 

M at support m. The moment M can be obtained from statics and as my ._.my 

such, only one equation of slope at m along the X-di_rection is required 

to be derived. As done in previous cases, it is expressed in terms of 

angular functions and the end moments M , M · · · mx my Since there cannot be 

any moments at end support n, being the simply-supported end of a con-

tinuous structure in (Fig. l-3b), the expected angular functions at end 

m along the X-axis are: 

(i) .The angular flexibility F · mnxx 

{ii) The angular flexibility F mnyx 

·(iii) The angular load function -r mnxx 

The strain energy (of bending) of the basic structure is: 

n 

U =lijM(n)]2·'\ 
mny' 2 L y' "-y' 

m 

(3-8) 

where A v has been··explained before (Eq. 3-2). By Castigliano 1 s theorm, y 

the deformation equation at m along the x-axis is 



Substituting for M ~n) from Eq. (2-14) 
y 

n 

5Umn J [ x' (n)J x' - - M • +M • - + M ct • - • 8M - ( mx any my 1\iy)(d ) S y ( ny d ) '-y' 
mx n n 

m 

Eq. (3-9) is rewritten as 

n 

J (n) x 1 
+ SM • rx • (-) • >.. , y ny. d y 

ny 
m 
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(3-9a) 

(3-9b) 

(3-9c) 

From Eq. (3-9c), it is apparent that the expressions in the integrals 

are the three angular functions stated before. 

Thus 

oUmn 
- == M •F + M ,F + T 8M mx mnxx my mnyx mnxx 

mx 
(3-10) 
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where 

n 
2 x' 2 

O'ny • (d) •). , 
ny y 

n 

F -J mnyx (3-11) 

m 

n 

'T' -J· mnxx 
(n) x' 

BM •O' ·(d)·A I 
y ny ny y 

·m 



' . ' C~P+f:R IV 

COMPATIBILITY iQt.rATIONS 
~.... \ ' 

,: , I 

The. ~&hpat~'t#lity equations of deformation over severl!ll supports. of 
'}! 

"1 cont:1.nub~s beth: beam are .derived •. ,. For a planar ·continuous. ben~ be~ 
. '.'.( ·:;· " ., '' 

subject_ed .. Ho oufl pf plane loading, 1the condition ~f:1,consittent de-forma-
.; ,; ; ' ~ Ji . 

tions over a support would result :bi a £,(!:m~tib:tlitif equation. As such; 

lhere will be a·s many compatibility equations as there are redu~dant . 

support moments •. 

· Such a set of compatibility equations is put in a matrix form. 

Ca:rry PVfrr moment equations are derived ft;om these, compatibility equa-

. tione. A ~eat ~nd effic:ient · cari-y over procedure is evolved, which can 

be µee.P to so lye i f(?:r the. req.undant molll!!nts, ~s is illustrated algebra­

ically and in the nume#ical e~ample (9hap. :V). 

,4-1 Derivation. 

Consider the odd spa~ con{inuo~s bent ~eams 

' 
(i) su·with end g Simply sµpportecl and end n fixed (Fig. ·4-1). 

.. 

(ii) gp with end .g fix;ed and end p si~ply suppor.tecl (Fig. 4-2). 
'"(,I•' 

. -..l-. ' 
The isolated portion. ikm of· these _twc;, structures can be separatecl 

' ··~~ . ~ 

into two basic structures ijk and klm, of the type classified earlier as 

basic structure No .. L '.· Consider ·the continuous· support k. Using 
.· ,. . ' 

Castig~iano's theorm, the f:l.rst t;,artial of the strain energy Uikm with 

respect to the redUnda°fit tnoments -~ and ~ must vanish. In other words, 
. y 

41 



the summation of all slopes ~t k along the X-axis and the Y•axis must 

each be equal to zero. 

z 

z 

y 

n 

i 

Figure 4-1 

Continuous Bent Beam. 

Continuous Bent Beam. 

42 

X 
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Thus 

= = 0 ( 4-1) 

Using the deformation equations (3-4a, b) derived earlier for basic struc-

-tures ijk and adopting similar notation of symbols for basic structure 

klm, equations (4-1) are expressed as: 

(4-2a) 

MixGikxy + l\x 2)kxy + M G mx mkxy 

I~kyy + = 0 

M. G. 1 +~x)l\ + M G 1.y :).. r..yy , ___ , yy my mkyy 

( 4-2b) 

where 

Irkxx = Fk. + F . 
lFkyx = Fkiyx + Fkm J.XX ·kmxx' yx 

lj 
IFkyy 

F : = Fl . + F . = Fk. + Fkm 
c...J kxy nxy kmxy' 1.yy yy ( 4-3) 

I-rkxx = 'f + T • kixx kmxx' l~kyy = 'T"kiyy + 'T"kmyy 

Exactly similar six-moment compatibility equations apply to the 

support i of the continuous structure gp (Fig. 4-2), As the end moments 

M and M for the continuous bent beam gn are zero, Eq. (4-2a) and (1J.-2b) 
gx gy 

may be applied to the support i with this modification (Fig. 4-1). 

Next, consider the isolated portion kmn of the continuous structure 

gn. This can be separated into two parts, basic structure (No. 1) klm 
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and basic structure (No. 2) mn. At the support m, since M and M are mx my 

. the redundant moments. 

= = 0 { 4-4) 

From Eq. (3-4a, b) and (3•7a, b), the deformation conditions at m for 

basic structures klm and iim: Eq. (4-3) can be expressed as 

M.G +M \F +MG. 
-"kx kmxx mx L mxx nx nmxx 

+ l~mxx = O ( 4-5a) 

M. G + M \F -"ky kmyx my lmyx 

~Gkmxy +M IF + M G my mxy nx nmxy 

lTmyy + = 0 

~yGkmyy +M lFmyy my 

(4-5b) 

where 

l' = F + F . lF - F + F mxx. mkxx mnxx' myx mkyx mnyx 

lF - F + F , lFmyy = F + F mxy mkxy mnxy' mkyy mnyy 
(4-6) 

LT = T kx + Tmnxx; lTmyy = Tmkyy + Tmnyy mxx m x 

Eq. (4-5a,b) are the compatibility equations for the support m of the 

continuous structure gri (Fig. 4-1). 

Finally, the isolated portion mop of the continuous bent beam gp 

(Fig. 4-2) is considered. This can be separated into two parts, basic 

.structure (No. 1) iiino and basic S·tructure ·(No. 3) op. At the support o, 

since M0 x is the only redundant moment, 
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(4-7) 

Using the deformation equations along the X direction derived earlier 

(Eq. 3-4a,b, 3-10), the compatibility equation (Eq. 4-7) is expressed as 

+ ti' = 0 oxx 
M G + M tF my moyx oy opyx 

where 

IF = F + F oxx omxx opxx 

lF - F omyx + Fopyx oyx 

l~oxx = Tomxx + Topxx 

(4-9) 

Since M is statically determinate, the three-moment compatibility oy 

equation in its final form is 

M •G + M •I:F mx moxx ox oxx 
+ ET* = 0 OXX 

(4-10) 
M •G my moyx 

denoting 

( 4-11) 

It would be monotonous to derive compatibility equations for every 
-

support in the continuous structures gn and gp when the procedure of their 

derivation is similar to those obtained in Eq. (4-2), (4-5), and (4-10). 
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Instead, it is desirable to put these compatibility equations in matrix 

forms. The above treatment is general, and continuous bent beams having 

any number of spans can be analyzed similarly. 

4-2 Matrix Forms, 

(a) In the continuous structure gn (Fig. 4-1), there are seven 

redundant support moments. Thus there are seven compatibility equations. 

The redundant matrix can be expressed as shown: 

r;Fixx z:;Fiyx Gk. l.XX Gkiyx M. 
l.X r;,-ixx 

EFixy r,Fiyy Gk. ixy Gk. 1.yy M. 1.y L>'T iyy 

G.k G.k !;Fkxx !::Fkyx G G ~x '.E'Tkxx l. xx l. yx mkxx mkyx 

Gikxy Gikyy r.Fkxy :s:;Fkyy G mkxy G mkyy ~y !;'Tkyy 
= -

Gkmxx Gkmyx :Efmxx EFmyx Gnmxx M ETmxx mx 

G G r;Fmxy !:Fmyy G M r;,-myy kmxy kmyy nmxy my 

G G F M Tnmxx mnxx mnyx. nmxx nx 

(b) There are nine redundant moments in the continuous bent beam 

gp (Fig. 4-2). As such there will be nine compatibility equations. The 

redundant matrix is: 



r . 
'siyx 

G . 
Gigyx - ·- Mgx Tgixx gif ' igxx 

's1xy 'siyy Gigxy Gigyy Mgy Tgiyy 

6gtxx Ggiyx EFixx I:Fiyx Gkixx <\iyx Mix r.Tixx 

Ggixy Ggiyy EF1xy EFiyy Gkixy . Gkiyy Miy ):Tiyy 
'·, 

Gikxx .Gikyx EFkxx EFkyx Ginkxx Gmkyx ~ I:Tkxx. 

= -
. Gikxy Gikyy EFkxy EFkYY. Gmkxy Gmkyy ~y Erkyy 

•' .. 
· Gkmxx G· EF · EFmy:it GOQIXX ~ Y.:rmxx ") kmy:it mxx 

. Gkmxy G. . 
kmyy . EFmxy .EFmyy Gomxy M my '.ETmyy 

~ 
GII\OXX Gmoyx !:Foxx MOX * '.EfQXX 



4-3 Carry-Over Form. 

The compatibility equations derived for the continuous support k 

(Eq. 4-2a,b) can be expressed in a neat carry over form by solving for 

the redundant moments. 

Denoting 

Gikxx C "'mkxx 
rikxx - - r = -

r,Fkxx mkxx T,Fkxx 

Gikyx G 
r.k - r ~ 

mkyx 
= = 

l. yx r,Fkxx mkyx r,Fkxx 

r - r,Fkyx 
r = - :t:Fkx_y 

= kkyx !:Fkxx kkxy :t:Fkyy 

G.k 
( l+-12) 

Gmkxx 
r.k = - l. xy r = -

l. xy I:Fkyy mkxy EFkyy 

G.k G 

rikyy = i YY r = - mkyy 
r,Fkyy mkyy I:Fkyy 

I:Tkxx ETkyy 
~x = - ~y = -

:SFkxx I:Fkyy 

where the r-values represent the carry over values and them-values are 

the starting moments, the carry-over forms of the compatibility equations 

(Eq. 4-2) are: 

mk + ·y 

+ r 1 .M. m<xx -l<x 1\ 
+r • 

1\ . kkyx y + r . mkyx y 

r. 1 .M. +r 1 ,M. 
1: ucy ix mtcxy -l<x 

· + rkkx '1\x 
r ,M + r •M. Y 

ikyy iy mkyy -l<y 

(4-13a) 

(4-13b) 
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Carry-over forms of any set of compatibility equations may be 

obtained in a similar way. 

From the carry over moment equations (Eq. 4-13a,J;>), and similar carty 

over forms of other compatibility equations, it is possible to establish 

a carry over pattern between the starting moments with the help of the 

carry over values. A carry over pattern for the isolated portion ikm of 

the continuous structure gp (Fig. 4-2) is illustrated in Fig. 4-3. 

The beauty .of denoting ~he subscripts as they are .given to the 

F, G, ,. and r values is self-evident on studying the carry over pattern. 

Thus r k denotes the carry over value of the starting moment m to the m yx my 

.. starting moment ~· 

@ _____ ._1t....,_1<._,.._ic ___ _ 

Figure 4-3 

Carry Over Pattern 



CHAPTER V 

NUMERICAL APPLICATION 

The application of the compatibility equations derived in the last 

chapter to a numerical example is illustrated. A systematic procedure 

for analysis is outlined in the first part of the chapter. The numeri­

cal example is then analyzed following the outline procedure in the 

second part of the chapter. 

5-1 Outline for Numerical Procedure 

(a) Transformation Matrices. 

A reference system is selected and the transformation matrix 

for each span is established. 

(b) Basic Structures. 

After selecting the support moments as the unknowns, the 

continuous structure is isolated into appropriate basic structures, 

( c) Angular Flexibilities and Carry Over Flexibilities. 

The flexibility values (F's and G1 s) for the basic structures 

are calculated (Table 5-7). 

(d) Angular Load Functions. 

For the given loading, the angular load functions are computed 

(Table 3-3). 

(e) Compatibility Equations. 

The compatibility equations, in terms of these F, G, and,. 

50 
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values and the redundant support moments are now obtained. The solution 

of this set of simultaneous equations can be achieved by several methods. 

(i) by the carry over procedure derived earlier. 

(ii) by synthetic elimination. 

( iii) by inverting the flexibility matrix on an electronic 

computer, if one is available or by Choleski 1 s scheme. 

The method, best suited to the example to be analysed, may be 

used. 

(f) Shear Force, Twisting Moment and Bending Moment Diagrams 

After obtaining the redundant support moments, the shear force, 

twisting moment and the bending moment diagrams are drawn, by considering 

the statics of the basic structures. 

5-2 Numerical Example 

A planar hexagonal beam ijklmn, of uniform square section is con-

sidered (Fig. 5-1). Each span is forty feet long and rests on simple 

supports. The structure is acted upon by loads perpendicular to the 

planar beam (Fig. 5-2). Unless stated otherwise, all values given are 

in units of feet, kips or kip-feet, 

It is assumed that the Poisson's Ratio of the material of the 

structure is equal to 0.25, so that its flexural and torsional rigidity 

are equal. 

Thus, 

= EI u y = EI 
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z 

1 k/ft 

40'·0" y2 

n 

Figure 5-1 Figute 5·2 

Hexagonal Beam 

(a) Transformation Matrices 

The transformation matrix fpr each span is calculated. As the 
. .t 

si"lected reference system XYZ coincides with the principle axes of the 

span ij, the transformation angle wj for the span ij is equal to zero. 

Proceeding in a counter-clockwise direction on the structure from i to 

n, the subsequent transformation angles are: 

wk= 60° w = 240° 
n 

wl = 120° w. = 300° 
l 

w = 180° m 

The transformation matrices for the particular spans are shown in 

the following tables. 

X 

k 



X 

y 

I 

X 

y 

X 

y 

x' Y' 

O'jx = +l.000 ('.yjy = 0.000 

B. 
JX = 0.000 Sjy = +l.000 

Table 5-1 

Transformation Matrix 
for Span ij. 

X' Y' 

O'lx = -0,500 (lily = -o.866 

81x = +o.866 S1y = -0.500 

Table 5-3 

Transformation Matrix 
for Span kl. 

X' Y' 

anx = -0.500 '.Y = +o.866 ny 

snx = -o.866 Piny = -0.500 

Table 5-5 

Transformation Matrix 
for Span um 

X 

y 

X 

y 

X 

y 
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X" Y" 

O'kx = +0.500 Qlky = -o.866 

Skx = +o.866 f\:y :: +0.500 

Table 5-2 

Transformation Matrix 
for Span jk 

X" y11. 

I 

amx = -1.000 O.'my = 0.000 

8mx = 0.000 Smy = -l.000 

Table 5-4 

Transformation Matrix 
for Span lm 

X" Y" 

O'ix = +0.500 Qliy ::: +0.866 

----

f\x = -o.866 8 = +0.500 iy 

Transformation Matrix 
for Span ni 



(b) Basic Structures 

As the structure is a closed even span bent beam continuous 

over the supports, it is isolated into three basic structures, of the 

type classified earlier as basic structure No. 1 (Fig. 5-3). The re-

dundant moments, acting at supports i, k and mare shown. 

n 

i 

~~y 
M ---1111s.....,•- aBL. -mx 

M. 1.y 

..... M . 
l.X 

r 
M. iy 

Figure 5-3 

Basic Structures 

1 

t __ ..,,.,~x 

j 

(c) Angular Felxibilities and Carry Over Flexibilities 

The angular flexibilities and the carry over flexibilities 

recorded in Tables 3-2 and 3-3 are for a non-uniform section. By inte-

grating over the correct limits, they are simplified to apply to the 

case of a basic structure having a constant cross-section (Table 5-7). 
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rlexlblllty and Carry OYer rlexlbllltl•• for Coa1tant Sectlon l&alc Structure Mo, 1 

'1w, 

1tkyy 

'tkxy • '1kyx 
-

1klxx 

1kln 

1klxy • 'l'tyx 
' 

011<xx • °itt;xx 

I 
I 

0tkyy • 0k1yy 

011<xy • ~1~ 

01kyx • \txy 

fable 5·7 



The expressions in Table 5-7 are completely general for any 

basic structure No. 1 of uniform cross-section. The transformation 

matrix for each span determines the values of the geometric quantities 

in these expressions. 

Basic Structure ijk 

The angular flexibilities and the carry over flexibilities are 

calculated by using Table 5-7 for the basic structure ijk (Fig. 5-4). 

+Y 

k 

Figure 5-4 

Basic Structure ijk 

From the transformation matrix for the spans ij and jk (Tables 5-1, 

5-2) 

O!jx = Sjy = +1.000 

O'jy = fljx = 0.000 

01kx = eky = +0.500 

Qlky = -Bkx = -o.866 



djx = (40.000)(+1.000) = +40.000 

djy = (40.000)(0.000) = 0.000 

dkx = (40.000)(+0.500) = +20.000 

dky = (40.000)(+o.866) = +34.640 

C = d. ,dk - dk ,d. (Eq. 2-2c) 
JX y X JY 

= (+40.000)(+31~.640) 

= +1385.600 

F values: 

d d •d 3 
( ·) F _ 2_:j_ kx j 

]. • - QI. • + 2 
ikxx JX GJx' 3C •EI, 

y 

_ 62.25 
- + EI 

d 2 ,d 3 
jx k 

+ 2 
3C ·EI 11 y 

d B ·d •d 2 d 2 ,d. 3 
= Q 2 _i_ _ ,, j y ky j + ky l (ii) Fikyy- fl• 'EI C•EI, 2 

JY y' y 3C •EI 11 y 

13.33 
= + EI 

2 3 

(iii) F.k = Fk. = -ixy ixy 

s. •dk ·dj dk ,dk •d. · 1y X _ + X y J 
2CEI , 2 

y. 3C •Ely' 

= 
_ 3.85 

EI 

2 2 2 d 2.d 3 
O'kx ·dk (l'ky • dk Q'k ·d. ·dk jx k (iv) F = kixx GJ x" 

= + 22.22 
EI 

+ 
Ely" 

+ y ]X 
C•EI + 2 
' y'' 3C ·EI " ,y 
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2 3 
dk ,d. 

+ X J 

3C2 •EI y' 



(v) 

(vi) 

(i) 

( iii) 

- + 53.32 
- EI 

19.28 
= + EI 

G values: 

G - G = -ikxx - kixx 

2.22 
= -ET 

6.67 
= + EI 

~ 
= + EI 

2 2 
dk '.d. 

X 1 
2 . 

3C •Ely' 

2 
ak .d. ·dk y ]X 

2,CEI 11 . y 
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(iv) Gikyx = 

= - 19.28 
EI 

Basic Structure klm 

The basic structure klm with the origin of co.ordinates at k is 

shown in Fig. 5-5. 

From Tables (5-3, 5-4) 

a1x = Siy = -0.500 

Olly= -six= -o.866 

C¥ = B = -1.000 mx .··my 

O!my = smx = 0.000 

d = lx (40.000)(-0.500) = -.20.000· 

dly = (40.000)(+0.866) = +34.640 

d = (40.000)(-1.000) = -40.000 mx 

d = (40.000)(0.000) = 0.000 my 

C = d ·d - d ·d lx my mx ly 

= -(-40.000)(+34.640) 

= +1385.600 

F values: 

'" 20 d d '""l 1 otl ' 1 (i) F = x + -·E ... YI.__ ..... 
.kmxx GJ• , 

X y 

= + 22.22 
EI 

2 ,.., • d ·d '"ly mx 1 
CEIY, 

d 2.d 3 
lx m 

+ 2 
3C •EI u 

y 

59 



2 2 d 2.d 3 
81x .dl + Sly .dl + ly m 

(ii) Fkmyy = GJx' EIY.·.·' 3C2 EI 
• y" 

· (iv) 

(v) 

(vi) 

53.32 
= + EI 

= - 19.28 
EI 

2 2 3 dmx2.dl3 Cl • d dl • d mx m x m 
F = + 2 + 2 

mkxx · GJx" 3C •EI II JC •EI , 
' y y 

62.25 
= + EI 

2 a .a m mx 
F = mkyy .GJxn 

13.33 
= + EI 

2.d 
Bmy m 

+ + 
Ely" 

2 
B •d •d ·my lx rn 

F rnkxy = Fmkyx = 2CEiy'' 

= + L.§1 
EI 

s ·d ' .d 
my ly m 

CE! II 

' 'y 

2 d 2.d 3 

+ 
ly m + 2 

3C .Ely" 
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d ,d .d 3 
lx ly_ m 

+ 2 
3C •Ely" 

d. 2 .d/ my 

3C2EI y' 



G values: 

(i) Gkmxx = Gmkxx = 
2 

0/ ·d •d ly mx 1 
2CEIY'· 

2 
9 •d •d · my ly m 

(ii) Gkinyy = Gmkyy = - ~9~Iy". , 

d 2.d 3 
ly m 

3C2 •EI 11 
y 

( iii) 

6.67 
= + El 

= + 19.28 
El 

(iv) Gkinyx = Gmkxy = -

3.85 =. El 

2 
Q •d •d ""my lx m 

2CEly" 

3 d •d •d lx ly m 
2. . .· 

3C •Ely"· 

+Y 

Figure 5-5 

Basic Structure klm 
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Basic Structure mni 

The basic structure mni with the origin of co-ordinates at mis 

shown in Fig. 5-6. 
+Y 

Figure 5-6 

d = d. = 40 1 ~0 11 
n 1 

Basic Structure mni 

From Tables 5-5 and 5-6 

rynx = B = -0.500 , ny . 

Q'ny = -e = +o.866 ···nx 

Q'. = 8 .. = +0.500 
ix · 1.y 

ryiy =-six= +o.866 

d = (40.00)(-0.500) = -20.000 nx 

d = (40.000)(=0.866) = -34.640 ny 
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' d . = ( 40 • 000 )( +O. 5 00) = +20. 000 1X 

diy = (40.000)(-0.866) = -34.640 

C = d ,d. - d ·d nx 1y ix iy 

= (-20.000)(-34.640) - (+20.000)(-34.640) 

= +1385.600 

(i) 

(ii) 

F values: 

F . m1xx 

F miyy 

2 ,d O:'nx n + = GJ x' 

28.88 
= + El 

snx 
2.d 

n + = GJ x' 

= + 46.67 
EI 

2.d •d. ·d 2 tl'ny any n 1X n 
EI y' CEI y' 

~ny 
2.d e ·d •d 2 

n ny iy n 
El y' CEI y' 

0t .c •d ·O' ·B •d 
( iii) F = F = nx Pnx n ny 'ny n 

. mixy miyx GJ · · + EI 1 

d. •d. ·d 3 
+ ix 1y n 

3C2E! ' 

. 
= + 23.08 

EI 

y 

x' y 

d ·d ·d. 3 
+ nx ny 1 

2 3C EI 11 y 

+ 
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dix 
2,d 3 d 2 3 • d. n nx l. 

+ 
3C2EI , · 2 3C EI 11 y .. Y 

d. 2d 3 d 2.d.3 
iy n + ny 1 

3C2 ·EI. 1 3c2 ·EI 11 y .· y 

( QI •d. + Q ·d. )•d ·ny 1y Pny ix n 
2CEI , 

y 

2 



(iv) 

(v) 

(vi) 

(i) 

2 2 
·d ·d.2 Q!, ·di Q!, •di Q!iy 

F. 
l.X 

+ 
iy 

+ 
nx l. = imxx GJ x" EI y" 'CEI y" 

= + 
28.88 

EI 

2 •d. 
2 

·cl ·d 
2 

QI iy f\x f\y . a. 
F. l. i ny l. 

= 
. GJx" 

+ EI + CE! imyy y" y" 

= + 46.6z 
EI 

O'ix·S1x •d, a ·13 ·d 
F F. l. 

+ 
iy iy i 

= = imxy imyx GJ x" Eiy" 

d 3 d. •d. .a 3 • d •d. nx ny l. 
+ 

l.X 1.y n 
+ 

Ely" EI y' 

= 23.08 
EI 

G values: 

G mixx = Gimxx = 

= + 31.12 
EI 

Qlny·dix •d 2 
n 

2CEI y' 

d. 2.d 3 
l.X n 

3C2 •EI ·' y 
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d 2.d.3 d. 2.d 3 

+ 
nx l. + l.X n 

3c2 .. EI" 3C2 •EI . y y' 

d 2.a.3 d . 2.d 3 
ni l. iy n 

+ 2 + 
3C2 •EI 3C EI 11 y y' 

2 ( B · •d + Q', ·d )d. 
+ ·iy nx i.y ny l. 

EI y" 

2 d 2,a.3 a. ·d •d. 
l.Y nx 1. nx l. 

2CEI I, 3C2 •EI y y" 



(ii) 

( iii) 

(iv) 

G miyy = 

;:: 

G = miyx 

= 

13 • d •d 2 
G ny iy n = imyy 2CEI y' 

- 2.:.£1 
EI 

C'I • d ·ny iy 
·d 2 

n 
Gimxy = 2CE.1 , y 

d ,d •d. 
nx ny 1 

2 3C •EI 11 y 

11.56 
EI 

3 

s •d. ·d 2 = ny ·1.x n 
Gmixy = Gimyx 2CEI, 

y 

3 d ·d •d, nx ny 1 
2 

3C •Ely" 

= + 11. 5,6 
EI 

(d) Angular Load Functions 

d. 2,d 3 
iy n 

3C2 •EI y' 

dix 0 diy ·d 3 
n 

2 ,3C ·EI y' 

3 
d. ,di ,d 

1X Y n 
2 3C •El , 

y 

2 e. ·d . ·di 1y ny 
2CEI 11 

' y ·' 

3 f3 ·d ,d iy. nx i 
2CEI 11 y 

2 
Ct •d ·d iy ny i 

,2CEI 11 

·' ··. y 

d 2,d.3 
ny 1 

2 
3C •El n y 

For the given loads, the angular load functions (T values) are 

expressed ·algebraically in terms of the end slopes of a simply supported 

' 
beam loaded in the plane. 

Basic Structure ijk 

A concentrated load of P = 20 kips acts at the center of the span 

ij. (Fig. 5-2). 



From Tables 3-1 and 3-3. 

(i) 

(i) Tikyy = [ dj (i) 6My, 
BM M .• :>t.y• 

0 y 6 iy 

u'.dk d 1 . y X 
C )· EI 

d. 
. J 

+J 
~ 

P P u' .dk d ' 
<-2. u' - - •d.)(e. - y)· ..lS.. 

2 J JY C EI 

2 

On integrating and simplifying. 

P•d 2 

Tikyy = - 16Ei (2•8jy • l) 

Since S, = +l.000 
JY 

P•d 2 
j 

(Table 5-1) 
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(5-1) 

Thus Tikyy is equal to the end slope at i of a simply supported span 

ij loaded by the concentrated load P. 

6M (i) 
BM( i) • y' 

y 6Mix 

d, 

= /\-i 
0 

11'.dkx dx' 
( l U I - l • d ) (,.., • ) • -2 . 2 j wjy C EI 



Integrating and simplifying 

. d 

[ kx] T - -
ikxx-:- dky 

P•d. 2 
1 

16EI 

From Fig. 5-4 and Table 5-2 

ri'kxx = - [akx] T , -Skx ijy 

( iii) • X ' y 

U 1 •d d I 

( - f • U I ) ( ky ) ..2L + 
2 C . EI 

0 

d 

J j p I 
+ (-. u .., 

d, 2 

? 
Integration and simplificati9n gives 

2 P,d, 

Tkiyy = - 16Ei = Tijy 1 

(5-2) 

(5-3) 
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(iv) Jdj 

'T -kixx. -
. 0 

5M (i) 
BM(i). y' ' 

y 5~ • lly' 

d 

f ..:::.1 u'·d d 
2 ( P, ')( kx) x'. = - - u - + 2 C EI 

0 

:ld j p u' • '\x d ' 
+ (E . u I - - • d ) ( ) • X 

2 2• j C EI 
d . 
..J. 
2. 

= -

= + [O'kx] 
Akx' Tijy' (5-4) 

Substituting the numerical values in Eq. 5-1, 5-2, 5-3, and 5-4, 

2000 ---EI 

- .!.ill Tikxx = - Tkixx - + EI 

Basic Structure klm 

A uniformly distributed load of w = 1 kip per foot acts on the span 

kl. 

From Tables 3-1 and 3-3. 



(i) 

Integrating and simplifying, 

As Bly= -0.500 

. 3 
wd1 

(Table 5-3) 

Tkmyy = + 24EI = - Tkly' 

(ii) 

dl 

T = J Bik) kmxx y 
0 

w•d 2 1 , w•u 1 

(- -2- 'u + -2-)(aly 

On integrating and simplifying 

wd 3 
1 2 

Tkmxx = 24EI· (- 2ryly - ---) 
3 
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U 1 ,d d I 

• my) ..2f... 
C EI 

(5-5) 

U I ,d d I 
_ _..;;mx;;;;:) X 

C EI 



Since ~l = -0.866, . y . 

(iii) 

d i 1 k 5M ~k) 
T = BM( ) , y 
mkyy y. • 6M 
. o my 

• A I y 

wd1 1 12 u'•d d 1 
( +W•U )(· my) . .JL - 2. u 2 -·· C EI 

Since d = 0 my 

Tmk = 0 yy 
I 

(iv) 

dl 

T = l BM(k) • mkxx . · y 
0 

wd1 
(- - . 

2 

6M (k) 
y' . 

5Mmx 
• A I 

y 

12 U 1 •d d I 

u, + w~u )·( mx) .JL 
2 C "EI 

70 

(5-6) 

(5-7) 



Integrating, 

3 

Tmkxx = + [s~x] ::~I 

Substituting the numerical values in Eq. 5-5, 5-6, 5-7 and 5-8 

= + 2667 
EI 

T = 0 mkyy 

Basic Structure mni 

+ 1538 
Tkmxx = EI 

T = + 30J6 
mkxx · EI 

As there are no loads on the spans mn and ni, 

T - T - T - T = 0 miyy - mixx - imyy - imxx 
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(5-8) 

Summation of Flexibilities (F-values) at the supports k, m and i 

lFkxx 

l~kyy 

44.44 
= +~ 

+ 106.64 
= EI' 

= + 60.00 
EI 

\F = JF L mxy ,,., myx 
= + 26~93 

EI 

\F - + 91.13 
L ixx - EI 

\Fi L; yy 
= + 60.00 

EI 

'F = \'F L ixy L iyx 
26.93 
EI 
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Summation of Load Functions (T-values) at the supports k, m and i 

l _ + 383 
Tkxx - EI I~myy = 0 

l~kyy = + 667 
l~ixx = + 1-.!.2.2 

EI GI 

trmxx = 
+ 3076 

I~iyy 
2000 = --_, EI EI 

(e) Compatibility Equations 

The six moment compatibility equations are arranged in a 

matrix form. 

44 .• 44 o.oo -2.22 19.28 -2.22 -19.28 ~x 383 

0.00 106.64 -3.85 6.67 3.85 6.67 ~y 667 

-2.22 -3.85 91.13 26.93 31.12 11.56 M 3076 mx = -
19.28 6.67 26.93 60.00 -11.56 -6.67 M 0 my 

-2.22 3.85 31.12 -11.56 91.13 -26.93 Mix 1155 

-19.28 6.67 11.56 -6.67 -26~93 60.00 Miy -2000 

The six moment equations are solved by synthetic elimination and by 

the carl;'y ov'er procedure derived earlier (Eq. 4-13a,b), 

It is found that the carry-over procedure (Table 5-8) converges very 

slowly and consumes considerable -labor· and time as compare.d to the solu-

tion by synthetic elimination. In fact, this is apparent from observing 

that some of the carry over values vary from 0.25 to o.
1
50. As such, it 

turns out that the carry over solution is not an ideal solution for the 

analysis of a polygonal frame-work of continuous bent beams as treated 
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Carry Over Procedure 

... ~ 
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t O,OMI~ • 9.11111 • O,OltU f O,Olffl • 0 ,01111 t G, JtlU 
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.-. .... 11 
' 

•UOOII •11,ftl't ·t1l·"'"' · !1,11111 +19,JIII• ' 

Table 5-8 
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in this example.' The results obtained by these methods are recorded in 

Table 5-9~ 

Support Carry-Over Synthetic 
Moments Procedure. Elimination 

Mix + 41.09915 + 41.16508 

Miy + 73.40109 + 73.40010 

~x - o.40051 - 0.50143 

~y - 18.12727 - 18.10955 
- - ·-·----·· ----- --··----- . ---· 

M - 72.894049 - 72.98405 mx 
- . - -

~y + 50,73374 + 51.02418 

Table 5-9 

Support Moments 

(f) Shear Force, Twisting Moment and Bend:i,ng Moment Diagrams 

The known support moments are now applied on the basic struc-

tures (Fig, 5-3 ), and the support reactions are computed from their 

statics. 

The basic support moments at i, k and mare transformed to the 

principal axis of the sparis, The shear force, twisting moment and the 

bending mom~nt about the principal axes of the. spans are shown on the 

unfolded structure (Fig. 5-7). 
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Basic structure klm 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6-1 Sununary 

The application of the six-moment equat~ons to the analysis of 

planar continuous bent beams loaded laterally is presented in this thesis. 

The study is an extension of the analysis of continuous beams loaded in 

the plane by the three moment equation. 

The continuous structure is isolated into appropriate basic struc­

tures, and the support moments, about the basic system of reference XYZ, 

are selected to be the unknowns. This is essential as the compatibility 

df deformations over a continuous support can only be achieved along a 

conunon reference axis. From the statics of the basic structures, the 

moments at a section are! obtained and are expressed in terms of the 

selected unknowns by the transformation matrix. Angular constants of 

the basic structures are introduced -and the deformation.equations, in 

terms of these constants and the redundant moments are obtained by the 

Castigliano's method. Finally, by comparing the deformations over a 

continuous support, the six moment compatibility equations are obtained. 

The compatibility equations over the (n-1) support of an odd span contin­

uous bent beam having n supports are also derived. A carry over solu­

tion of the six· moment equations is demonstrated. The procedure for the 

analysis of the problem is outlined and a numerical example is included. 
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6-2 Conclusions 

The compatibility equations provide an adequate method in the 

analysis of planar continuous bent beams loaded laterally. However, it 

is observed, that, for the analysis of closed polygonal frame:-works of 

continuous bent beams as considered in the numerical application, the 

carry over procedure is not an ideal method for solving the six moment 

equations. The convergency of the starting values is slow and the labor 

involved is more than solving by other methods such as Gauss's elimi­

nation, matrix inversion by a computer, and by Choleski' s method •. 

The convergency of the carry over procedure is expected to improve 

in case of continuous bent beams, not as acutely inclined as analysed 

in the numerical example. The feasibility of applying the carry over 

procedure to such problems may then be considered. The study may be 

extended to continuous bent beams, not in one plane. 
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APPENDIX 

In the first part, the signs of geometric quantities, loads, moments, 

and deformation are shown. Both the external and cross-sectional ele­

ments are considered. 

Several tables showing the application of the transformation matrix 

as discussed by Tuma (3) are presented in the second part of the appendix, 

The tables apply to the case of a general space structure (Table 5). For 

the planar problem treated in this thesis, w2 and w3 are zero so that the 

Z-terms vanish from the general transformation matrix. 
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Moments, Rotations and Displacements 
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cross Sectional Elements 
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Transformation of Coordinates 

y 
-~ 

Xl I ~2 

x. 
z1 z2 

0=Z=Z1 

Rotation w1 
I Rotation W2 

x = x1cosw1 - y 1sinw1 x.1 = x2cosw2 + z2sinw2 

y = x1sinw1 + y 1cosw1 Y1 = Y2 

z = z1 z1 = -x2sinW2 + z2cosw2 

x 1 = xcosw1 + ysinw1 x.2 = s 1 cosw2 = z1 sinw2 

y 1 = -xsinw1 + ycosw1 Y2 = Y1 

z.1 = z I z 2 = x1 sinw2 + z1 cosw2 

Part B - Table 4 

z2 
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Rotation W3 
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Q'X = COS(l)lCOSW2 

ay = -sinw1cosw3 
~ .. 

+ cosw1sinw2sinw3 

az = sinw1sinw3 

+ ~osw1sinw2cosw3 

X = X1a + Y1a + Z1 
X y QIZ 

y = x's + Y'S + zs 
X y Z 
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r,x = sinw1cosw2 

Sy = cosw1 cosw3 -
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Sz = -cosw1sinw3 
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Sx Sy Sz 

z Yx Yy Yz 

Transformation Matrix 

Part B - Table 5 
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Yy = cosw2sinw3 
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v X · X X 
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Z' = Xa + YS + Zy z z z 
-

0) 
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