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Abstract 

Interests in naturally fractured reservoirs have grown rapidly in recent years due to the increasing 

energy needs. Understanding the behavior of naturally fractured reservoirs would be beneficial for 

a variety of engineering applications, including enhanced oil recovery in the petroleum industry, 

reservoir stimulation in enhanced geothermal systems, salt water disposal, carbon dioxide storage, 

and nuclear waste management. In naturally fractured reservoirs with low permeability rock 

matrix, natural fractures provide primary pathways for fluid flow and dominate the flow behavior 

of the fractured medium. Fractures are stress sensitive. They could dilate, slip in shear, and 

propagate possibly as a result of stress changes caused by fluid injection operations, thereby 

increasing fracture aperture and permeability, and influencing reservoir performance. Injection 

into fractured reservoirs could also induce seismicity, which is often attributed to shear slippage 

on fractures. 

In this study, we developed a three dimensional fully coupled thermo-poroelastic model which is 

integrated with a stochastic natural fracture network to simulate the response of fractured 

reservoirs to fluid injection. Fluid injection induces significant perturbations in the pore pressure, 

temperature and stress fields within a reservoir, and involves coupling between fluid flow, heat 

transfer, and mechanical deformation. This coupling process is modeled using a linear theory of 

thermo-poroelasticity and solved using a finite element method. The presence of natural fractures 

is taken into consideration by implementing a fracture network model into the coupled thermo-

poroelastic model. A discrete fracture network is generated based on stochastic descriptions of 

fracture distribution parameters, including fracture density, size and orientation. The available 

fracture geometry includes penny-shaped circular fractures, elliptical fractures and rectangular 

fractures. Since the calculations of flow in non-circular fractures require additional mathematical 
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treatments (Long et al. 1985) and the available solutions to heat transfer in the non-circular 

fractures are also limited, therefore, the commonly used penny-shaped circular fracture is modeled 

in this work. The permeability of the fractured rock is estimated using an equivalent permeability 

approach. The fracture permeability can increase by shear dilation and fracture propagation. For 

numerical simulations of fracture slip, two most widely used friction models are incorporated, 

including a constant friction model and a rate-and-state friction (RSF) model that considers the 

dependence of friction on the slip velocity and the past sliding history. The coupled FEM is solved 

for pressure, temperature, and deformation in the equivalent continuum medium formed by the 

fractures and the rock matrix. Knowing the flows and heads within the fracture network and the 

intersections between fractures, local pressure distribution on individual fracture planes is solved 

analytically based on an image theory (Rahman et al. 2002). Heat transfer within the 

interconnected fracture network is modeled by a flow pipe network model considering both the 

convection via fracture flow and the conduction between adjacent rock mass and the fluid in the 

fracture. Stress dependent fracture deformation behavior including opening, shear dilation, and 

possible propagation is considered, and the associated changes in fracture aperture and fracture 

network geometry are updated for permeability in the coupled FEM. The potential of 

microseismicity induced by fracture shear slippage is also modeled. The developed model is 

verified against analytical solutions and previously published numerical results. 

This model is first used to simulate cold water injection into a naturally fractured reservoir to 

examine its capability of analyzing the dynamic reservoir response during injection. Results show 

that the fluid and heat flow within the fractured reservoir are primarily dominated by the connected 

fracture network. The results also indicate that the overall reservoir permeability enhancement can 

be attributed to the combined effects of fracture opening, shear slippage, and propagation. A 
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sensitivity study is carried out for investigating the effect of various parameters on the reservoir 

performance and on the occurrence of induced seismicity during injection. The results show that 

the injection response of a naturally fractured reservoir is a complex process controlled by multiple 

factors, including the properties of fracture network, in-situ stress conditions, rock matrix 

permeability, the properties of injecting fluid, injection scheme and injection temperature. 

The developed model has a wide variety of engineering applications in naturally fractured rock. 

Two application examples are present in this dissertation. The first application example is the 

simulation of reservoir stimulation in the Newberry EGS Demonstration. Field data on the fracture 

network and in-situ stress and laboratory data on rock and fracture properties are used in model 

construction. The simulated injection profile, the evolution of permeability and induced 

microseismic events have good agreements with field observations. Simulation results also show 

the perturbation and rotation of the in-situ stress field adjacent to the injection well, which helps 

to explain the discrepancy between the stress models derived pre-injection and inverted from 

seismic data post-injection.  

The second application example is a large scale simulation of the 12 years long term wastewater 

injection in central Oklahoma. A conceptual model is built based on the available data on the fault 

geometry, regional stress fields, and well injection history. Simulation results show that during 

injection, the elevated pore pressure can migrate downward from the Arbuckle injection layer into 

the deeper crystalline basement via the fault system. For nearly critical fractures, a small elevated 

pressure is sufficient to cause shear slippage of fractures along the optimally oriented Meeker-

Prague fault and potentially induce seismicity. Injection strategies of capping the total injected 

volume, reducing the injection rate, and restricting the injection depth are proposed to reduce the 

size of the potentially induced seismicity. 
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The numerical model developed in this study is shown to have the capability of analyzing the 

dynamic reservoir response during fluid injection. It is useful for the design and evaluation of 

injection plans in naturally fractured reservoirs.
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1. Introduction 

1.1 Naturally Fractured Reservoirs 

All reservoir rocks are fractured to some extent, with natural fractures occurring at various scales, 

from microscopic to continental kilometer sized (National Research Council1996). Many 

underground reservoirs, including petroleum and geothermal reservoirs, are formed in naturally 

fractured rocks. A significant portion of the world’s hydrocarbon reserves is discovered in 

naturally fractured reservoirs. More than 60% of the world’s proven oil reserves and 40% of the 

world’s gas reserves are held in fractured carbonates (Ahmed 2010). In the United States, the 

domestic petroleum target in naturally fractured reservoirs is estimated to be hundreds to thousands 

of trillions of cubic feet (Laubach et al. 2000). As a reliable, safe and stable source of renewable 

energy, geothermal energy has been attracting more and more attention in the past few decades. 

Most geothermal resources are located in low permeable hot rocks and are naturally fractured at 

various scales. Heat production from these type of reservoirs requires a successful stimulation by 

injecting cold water into hot rocks to enhance reservoir permeability, which has led to the concept 

of Enhanced Geothermal Systems (EGS). Many of the world’s EGS projects extract geothermal 

energy from naturally fractured reservoirs, such as Northwest Geysers, Landau, Insheim, Urach, 

Bruchasl, Soultz-sous-Forets, Fjallbakcka, Hijiori. Rosemanowes, Falkenberg, and Newberry 

(Breede et al. 2013). As increasing energy needs, interests in naturally fractured reservoirs have 

grown rapidly in recent years. 

In naturally fractured reservoirs with low permeability rock matrix, natural fractures are the 

primary pathways for fluid flow through the rock. The behavior of natural fractures dominates the 

flow behavior of the fractured system and influences reservoir performance. Fractures are very 

sensitive to pore pressure and stress changes. When fluid production or injection operations occur, 
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pressure and temperature variations in the reservoir can perturb the in-situ reservoir stress state 

leading to fracture deformation, changing fracture aperture and permeability, and influencing 

reservoir performance. Injection of fluids into a fractured reservoir can increase the fluid pressure, 

which will lower the effective stress on fracture, causing fractures to dilate, thereby increasing 

fracture aperture and enhancing fracture permeability. When cold water is injected into hot 

reservoirs, temperature changes could induce tensile thermal stress which also causes changes in 

effective stress, and consequently influences the deformation behavior of fractures. 

Natural fractures slip in shear when shear strength is exceeded. Shear slippage induces dilated 

aperture which will further enhance reservoir permeability. Due to the frictional resistance of 

rough natural fracture surfaces, the dilated flow conduit will remain open after shear slip without 

requiring proppants, and the dilated aperture is permanent, at least over a period. This permeability 

enhancement strategy is called shear dilation or hydroshearing. It was first recognized in rock joint 

deformation studies in the 1970s. Later, its role in enhancing the permeability of naturally fractured 

reservoirs has been recognized by the petroleum and geothermal industries. The shear dilation 

concept has been recognized as the dominant mechanism for permeability enhancement during the 

hydraulic stimulation in naturally fractured engineered geothermal systems (EGS) (e.g., Pine and 

Batchelor 1984; Rahman et al. 2002). Laboratory scale injection-driven shear stimulation tests on 

granite fractures (Ye et al. 2017; Huang et al., 2018) and fractured shale samples (Ye et al. 2018; 

Ye and Ghassemi 2018) have successfully observed permeability enhancement through shear slip 

and dilation. 

Previous models of naturally fracture rock have not considered the possibility of fracture 

propagation. However, Kamali and Ghassemi (2018) have shown that natural fractures can 

propagate by shear slip in response to injection, contributing to fracture network connectivity. 
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Some fractures could propagate even at a low injection pressure that is below the minimum in-situ 

stress depending on their geometric parameters (Kamali and Ghassemi 2018) and strength 

properties of the fractures and the matrix. These theoretical considerations have been recently 

demonstrated in pioneering laboratory study of injection-induced fracture propagation (Ye and 

Ghassemi 2018) showing that the preexisting fractures could propagate and coalesce at treatment 

pressure lower than the minimum principal stress during injection. Their observations also 

confirmed the suggestion (Kamali and Ghassemi 2018) that both shear dilation and fracture 

propagation contribute to the hydraulic stimulation in fractured reservoirs. Therefore, it is crucial 

to simultaneously account for the effects of shear dilation and fracture propagation on the 

stimulation performance of naturally fractured reservoirs. Such a model has been developed in 2D 

for petroleum reservoir stimulation (Sesetty and Ghasssemi 2017 and 2018). 

Injection into fractured reservoirs not only change reservoir permeability, but also can induce 

seismicity. The occurrence of injection related seismicity is often attributed to shear slip on natural 

fractures in response to a reduction in the effective stress acting on the fractures due to an increase 

in the pore pressure field. The detection and interpretation of these seismic events can provide 

useful information for estimating the stimulated reservoir volume and the resulting permeability, 

geometry of the geological structures and the in-situ stress state (Pine and Batchelor 1984; 

Warpnski et al. 2001; Guiterrez-Negrin and Quijano-Leon 2003). On the other hand, extensive 

induced seismicity at levels above the tolerated magnitude or frequency can be a potential risk in 

reservoir development operations. Assessing potential injection induced seismicity is important 

for both interpretations of reservoir stimulation outcomes and management and mitigation of the 

hazards and risks associated with induced seismicity. 
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For a better reservoir development and management, it is necessary to better understand the 

processes and mechanisms associated with fluid injection induced changes in naturally fractured 

reservoirs. Numerical modeling provides a powerful tool for the investigation of the behavior of 

rock masses embedded with natural fractures. However, the development of numerical tools for 

naturally fractured reservoirs is very challenging. Fluid injection induces significant changes in 

the pore pressure, temperature and stress fields within reservoirs, and involves coupled fluid flow, 

heat transfer and deformation in the fractured rocks. Given the extensive development effort and 

expensive solution cost required for coupled modeling, in most existing models for fractured rocks, 

the coupling process has been either neglected (e.g., Willis-Richards et al. 1996; Walsh and 

Zoback 2016) or simplified using empirical correlations (e.g., Bruel 2002), and the pressure 

distribution within the fractured reservoir is usually estimated from simplified flow model (e.g., 

Rahman et al. 2002; Walsh et al. 2017). A fully coupled numerical model is necessary for 

improving understanding of reservoir behavior during various reservoir development activities. 

Moreover, the presence of natural fractures in the reservoirs makes the reservoir response more 

complicated and poses additional challenges in numerical modeling. Due to the variable spatial 

distribution, orientation and geometry of natural fractures, fluid and heat flow within fractured 

reservoirs are very complicated. The numerical model for a naturally fractured reservoir containing 

numerous natural fractures should include: 1) a realistic geometrical representation of complex 

three dimensional fracture networks, 2) a mathematical model for describing flow through the 

fractured medium, and 3) a geomechanical model for describing the dynamic fracture response to 

operation induced stress changes. Besides, since the deformation of natural fractures will have an 

influence on reservoir behavior by changing fracture permeability, the integration between fracture 
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model and the coupled thermo-poroelastic model should also be considered in the numerical 

models for fractured reservoirs. 

Therefore, this study aimed to develop a numerical model which can consider the coupled thermo-

poroelastic processes during injection and is capable of accounting for the stress dependent fracture 

deformation behavior including opening, shear dilation, and possible propagation. 

 

1.2 Motivation and Objectives 

This study is motivated by the need of developing a comprehensive numerical model to help 

analyze the complex behavior of a naturally fractured reservoir subject to fluid injection. The 

objectives of this study are: 

To develop a three dimensional fully coupled thermo-poroelastic model integrated with a fracture 

network model, for simulating the response of a naturally fractured reservoir to fluid injection. 

To predict the injection induced pore pressure, temperature and stress variations within the 

fractured reservoir, to evaluate fracture deformation, permeability change and the potential of 

injection induced seismicity, and to investigate the influences of various reservoir, fracture and 

fluid parameters on the injection outcomes. 

To apply the developed numerical model for solving relevant engineering problems, including 

enhanced geothermal systems (EGS) stimulation and wastewater injection. 

 

1.3 Dissertation outline 

This dissertation is divided into eight chapters. The details of individual chapters are as follows: 

Chapter 1 gives a general introduction, including an overview of naturally fractured reservoirs, as 

well as motivation and objectives of this research. 
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Chapter 2 provides a brief description of thermo-poroelasticity. First, the development history of 

thermo-poroelasticity theory is reviewed. Then, the derivation of governing equations for the 

coupled thermo-poroelastic processes in the reservoir during injection/production is illustrated. 

Chapter 3 presents the basic theory of finite element model. The detailed FEM solution to the 

coupled thermo-poroelastic problems is also provided. 

Chapter 4 focuses on the methodology for modeling natural fractures. A literature review of 

numerical models for the fractured medium is presented, followed by a detailed description of the 

proposed natural fracture network model. The integration between the fracture network model and 

the coupled thermo-poroelastic finite element model is also described. 

Chapter 5 presents verifications of the developed model components using analytical solutions and 

previously published numerical results. 

Chapter 6 presents two numerical examples. The first example aims to demonstrate the capability 

of the developed model for predicting the dynamic response of naturally fractured reservoirs to 

injection. The emphasis of the second example is to investigate the sensitivity of reservoir injection 

response to various parameters. 

Chapter 7 consists of two applications on the study of relevant engineering problems. The first 

application is a simulation of the reservoir stimulation in the Newberry EGS Demonstration 

project. The results from this modeling are used to better understand and explain the filed 

observations on injection rate and stress reorientation. The second application presents a 

simulation of wastewater injection in central Oklahoma region. A conceptual model is built for 

investigating the injection induced poroelastic effects on the geomechanical behavior of the fault 

systems and evaluating the potential for seismicity. 
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Chapter 8 summarizes the major findings of this study and outlines the main contributions and 

achievements of the whole Ph.D. work. Recommendations for future research works are also 

proposed. 
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2. Thermo-poroelasticity 

Cold water injection into a reservoir is a coupled process involving rock deformation, fluid flow 

and heat transfer in the porous rock. The coupled poroelastic process involving the influence of 

fluid flow in a porous rock was firstly recognized in a one-dimensional soil consolidation problem 

developed by Terzaghi (1923). He considered the impact of pore fluid diffusion on soil 

deformation and proposed the total stress concept consist of effective stress and pore pressure. The 

fundamental linear theory of poroelasticity was systematically formed by Biot (1941). He 

developed a coupled model between fluid and solid which accounts for solid-fluid coupling 

(change in applied stress results in a change in fluid pressure of fluid mass) and fluid-solid coupling 

(change in fluid pressure of fluid mass causes a change in the volume of the porous material). 

Poroelasticity was developed further by Rice and Cleary (1976). They extended Biot’s linear 

poroelasticity theory by using different formulations of the coupled deformation-diffusion field 

equations. They also proposed two limiting behaviors by using drained and undrained parameters 

and the constituent compressibilities. 

The theory of poroelasticity has been extended into the non-isothermal field, to include the effect 

of temperature changes on the stresses and displacements. Palciauskas and Domenico (1982) 

firstly presented the constitutive equations for thermo-poroelasticity theory by modifying the 

classical Biot’s theory with additional parameters describing the thermal expansion of the solid, 

fluid and pore volume.  Later, McTigue (1986) developed a linear theory for fluid saturated porous 

thermoelastic martial and presented a general solution. This theory accounts for compressibility 

and thermal expansion of both the fluid and solid constituents. The diffusion equation with a 

temperature‐dependent source term governs a combination of the mean total stress and the fluid 

pore pressure. Kurashige (1989) extended the Rice and Cleary’s theory to incorporate the heat 



9 

transportation by fluid flow through pores in addition to the difference in the thermal expansibility 

between the pore fluid and the solid skeleton. This theory has also been further extended in a 

chemically-active environment to analyze the coupled thermo-chemo-poroelastic process (e.g., 

Mody and Hale 1993; Heidug and Wong 1996; Ghassemi and Diek 2003; Ghassemi et al. 2009; 

Zhou and Ghassemi 2009). 

The theory of thermo-poroelasticity has important contributions in a diverse range of engineering 

fields, such as wellbore stability analysis (e.g., Li et al. 1998; Ghassemi and Zhang 2004; Chen 

and Ewy 2005; Zhou and Ghassemi 2009; Lee and Ghassemi 2010) and enhanced oil recovery 

(e.g., Freeman et al. 2008; Yin et al. 2009; Hou et al. 2012) in petroleum engineering, reservoir 

stimulation in enhanced geothermal systems (e.g., Watanabe et al. 2011; Koh et al. 20111; 

Ghassemi and Zhou 2011; Wang and Ghassemi 2012; Rawal and Ghassemi 2014; Safari and 

Ghassemi 2015), carbon dioxide storage (e.g., Rutqvist et al. 2002; Goodarzi et al. 2013; Vilarrasa 

et al. 2014), and nuclear waste management (e.g., Yow and Hunt 2002; Boulton et al. 2004; Chan 

et al. 2005). 

This chapter provides a brief introduction to the theory of thermo-poroelasticity, followed by a 

detailed description of its mathematical model. 

 

2.1 Coupling in Thermo-poroelasticity 

The interaction between solid and fluid phase involves the coupling between rock deformation, 

pore fluid diffusion, and heat transfer. Although temperature has a significant influence on the 

stresses, strains, and pore pressure, in general, the deformation and pore pressure does not lead to 

significant temperature change. Therefore, the influences of rock deformation and fluid flow on 
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the temperature field are ignored in this work (Figure 2.1). The main mechanism of thermo-

poroelastic coupling process can be summarized as: 

(1) rock volumetric deformation (compression or expansion) due to change in pore pressure; 

(2) change in pore pressure due to rock volumetric deformation; 

(3) change in pore pressure and volumetric stresses due to temperature change (heating or cooling). 

 

Figure 2.1. Illustration of the coupling process in thermo-poroelasticity. 

 

2.2 Mathematical Model of Thermo-poroelasticity 

In this work, the governing equations developed by McTigue (1986) and Kurashige (1989) are 

followed. The sign convention in this section is tension positive. The constitutive equations, 

conservation laws and field equations are summarized below: 

2.2.1 Constitutive Equations 

For a fluid saturated porous rock subjected to both mechanical and thermal disturbances, the 

general constitutive equations describing the influence of stresses, pore pressure and temperature 

on the deformation of the solid phase and the pore space can be written in the following form 

(Kurashige 1989): 

Tl

ij ijkl kl ij ijC B p T                                                                                                                      (2.1) 

T

kl kl pB Dp T                                                                                                                      (2.2) 
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Assuming the rock is isotropic, the parameters are defined as: 
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Tl Tl

ij m ij                                                                                                                                                       (2.8) 

Where 
ij , 

ij , p and T  are the total stress, strain, pore pressure and the temperature change, 

respectively.  , G , K , v , uv  and Tl

m  are the porosity, shear modulus, bulk modulus, drained 

Poisson’s ratio, undrained Poisson’s ratio and the linear thermal expansion coefficient of the 

porous rock matrix, respectively; 
fK  is the bulk modulus of the pore fluid; '

sK  is the effective 

bulk modulus of the solid constituent; T

m  and T

p  are the volumetric thermal expansion 

coefficient of the rock and the pore space, respectively; If the pores expand with their shapes 

remaining similar as the porous matrix expands thermally, 3T T

p m  ; B  is the Skempton’s pore 

pressure coefficient;   is the Biot’s coefficient. 

Eqn. (2.1) and (2.2) can be rewrite in terms of total stress and pore space change: 

2 2 (1 )
2 ( )

3 3(1 2 )

T

ij ij kk ij ij m ij

G G v
G K p T

v
       


    


                                                                         (2.9) 
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Since the local heat exchange between the matrix solid and pore fluid may be rapid enough 

compared to the global heat and fluid diffusions, the same temperature is used for thermal 

expansion (Kurashige 1989). 

Linearization of the pressure-density-temperature curve of the pore fluid gives the change in fluid 

density due to pore pressure and temperature variation: 

f T

f

f f

p
T

K







                                                                                                                                        (2.11) 

Where T

f  is the volumetric thermal expansion coefficient of the pore fluid; 
f  and 

f  are the 

fluid density and the change in fluid density, respectively. 

The mass content of pore fluid in a unit bulk volume of the material is: 

fm                                                                                                                                                     (2.12) 

A change in fluid mass per unit volume is given by: 

f fm                                                                                                                                           (2.13) 

Substituting (2.10) and (2.11) into (2.13) yields: 
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The relations between the material parameters are: 

' 2
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Eqn. (2.14) can be rewritten in terms of the change of fluid volume content per unit reference 

volume: 
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Eqn. (2.9) and (2.16) are convenient forms of the constitutive relation for thermo-poroelasticity. 

The constitutive relations associated with heat and fluid diffusion processes are also considered. 

By identifying the consequence of positive entropy production as an implied relationship between 

the fluxes and their driving forces, the coupled Fourier-Darcy laws is obtained for the case of no 

body force: 

, ,i f ij j ij jq p L T                                                                                                                        (2.17) 

, ,'T

i ij j ij jh T L p                                                                                                                       (2.18) 

Where ih  and iq  are the heat flux and fluid mass flux, respectively; 
ij  is the permeability; T

ij  is 

the thermal conductivity; 
ijL  and 'ijL  are the cross-effect coefficients. 

Since in general the last terms on the right hand sides in Eqn. (2.17) and (2.18) are much smaller 

than the first terms, they could be neglected: 

,i f ij jq p                                                                                                                                  (2.19) 

,

T

i ij jh T                                                                                                                                    (2.20) 

 

2.2.2 Conservation Laws 

Three conservation laws are involved in the thermo-poroelastic analysis. 

The first is a momentum balance or equilibrium equation, for the case of no body force: 

, 0ij j                                                                                                                                            (2.21) 

The second is the fluid mass conservation equation, for case of no fluid mass supply: 

iiq
t

m
,




                                                                                                                                    (2.22) 
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The above equations (Eqn. (2.21) and (2.22)) are the same as those of an isothermal case. 

The third equation is an energy conservation equation. In fractured reservoirs with very low matrix 

permeability, fluid flows mainly within fractures. For such systems, convective heat transfer within 

the low permeable rock matrix is negligible (Delaney 1982) and is not considered. Heat transfer 

in the reservoir is assumed to occur via fracture flow and heat conduction between rock matrix and 

fracture fluid. If there is no heat source: 

, ,t t i i f i i

T
C h C Tq

t



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
                                                                                                            (2.23) 

Where t  is the total mass density; tC  and 
fC  are the specific heat of the total mass and pore 

fluid, respectively. The first and last term on the right-hand side of this equation represents the 

conductive heat transfer through the porous matrix and the convective heat transfer via fluid flow 

through pores, respectively. 

 

2.2.3 Field Equations 

The deformation of a material is described by a strain-displacement relation as follows: 

, ,

1
( )

2
ij i j j iu u                                                                                                                             (2.24) 

Substituting Eqn. (2.24) into Eqn. (2.9), equilibrium equation Eqn. (2.21) can be reduced to a 

modified Navier equation in terms of displacement, which is the deformation field equation: 
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Next, we consider the fluid diffusion field equation. Differentiating Eqn. (2.16) with respect to 

time, we have: 
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The relationship between material properties is: 
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Substituting Eqn. (2.19) into (2.22), we have: 
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Rewriting Eqn. (2.27) using Eqn. (2.28) and (2.29): 
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Differentiating Eqn. (2.9) with respect to time: 
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Then, substituting Eqn. (2.31) back into Eqn. (2.30) and rearranging, we have: 
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                                                                                                  (2.32) 

2 (1 2 )(1 2 )

2 ( )

u

u

v v

G v v




 



                                                                                                               (2.33) 

2

T T T

m f p                                                                                                                                 (2.34) 

The thermal diffusion field equation is obtained as follows. Substituting Eqn. (2.19) and (2.20) 

into the energy conservation equation Eqn. (2.23): 

, , ,( )T

t t jj f f i i

T
C k T C Tp

t
  


 


                                                                                                       (2.35) 

Rearranging Eqn. (2.35), we have: 
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, , ,( ) 0T T

jj i i

T
c T Tp

t



  


                                                                                                           (2.36) 

In which: 

tt

T
T

C

k
c


                                                                                                                                     (2.37) 

f fT

t t

C

C


 


                                                                                                                                     (2.38) 

In summary, Eqn. (2.25), (2.32) and (2.36) are the fully coupled thermo-poroelastic field equations 

for deformation, fluid diffusion and thermal diffusion, respectively. 
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3. Finite Element Method 

Chapter 2 has described mathematical models for thermo-poroelasticity. The governing equations 

for thermo-poroelasticity (Eqn. (2.25), (2.32) and (2.36)) are a set of partial differential equations 

with respect to space and time. Unfortunately, analytical solutions are available only for problems 

with simple geometry and boundary conditions. Numerical solutions are required for complex 

problems. Finite element method (FEM) is a powerful numerical tool for solving problems 

governed by PDEs. This chapter gives a theoretical background for FEM and presents the FEM 

formulation used for solving the coupled thermo-poroelastic problems. A FORTRAN computer 

code is extensively developed based on the previous modeling effort by Lee and Ghassemi (2000 

and 2011) and Wang and Ghassemi (2011, 2012 and 2013). 

 

3.1 Basis for FEM 

Many physical phenomena can be described in terms of partial differential equations (PDE). 

Classical analytical solutions only exist for relatively simple geometries and material properties 

and are generally subjected to many strict assumptions, such as homogeneous, continuum, and 

simple boundary. To deal with complex physical conditions, such as arbitrary shapes, 

heterogeneity, and nonlinearity, numerical solutions are required. There exist a large number of 

numerical methods for solving a set of PDEs, such as finite difference method (FDM), finite 

element method (FEM), finite volume method (FVM) and boundary element method (BEM). The 

finite element method (FEM) was firstly developed in the 1950s for the aerospace industry. FEM 

has become one of the most common numerical tools for solving rock mechanics problems, due 

to its great flexibility in the treatment of arbitrary geometries, material heterogeneity, anisotropy, 

non-linear deformability, complex boundary conditions (Hutton 2003). 
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In the methodology of FEM, the solution domain is divided into small finite elements connected 

by nodes, and the governing equations are approximated over these finite elements. The FEM 

consists of the following steps: 

(1) Discretization/meshing: The solution domain is discretized into small finite elements which 

could have simple but arbitrary geometry with finite number of degree of freedoms. 

(2) Element formulation: The equations of the individual elements are established according to the 

properties of the elements. 

(3) Matrix assembly: The global equations for the entire system are obtained from the elemental 

equations based on element connectivity. 

(4) Solution and post-processing: After the initial and boundary conditions are imposed, the 

equations are solved. The results of the FEM solution are shown in displacement, pressure, 

temperature, etc. Additional parameters such as strains and stresses can also be computed after the 

FEM solution. 

 

3.1.1 Spatial Discretization 

Numerical implementation of the governing equations of thermo-poroelasticity requires both 

spatial and temporal discretization. Special discretization is performed by dividing the solution 

domain into a number of finite elements. Temporal discretization is performed by dividing the 

time domain into a number of time steps and utilizing a time marching scheme. 

The PDEs of physical problems need to be firstly discretized in their spatial dimensions. Several 

approaches can be used to transform the PDEs to its finite element discrete formula. The most 

popular approach is the Galerkin method. The following simple example is present to explain the 

technique of applying the Galerkin method in the finite element formulation (Smith and Griffiths 

2004). 
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Figure 3.1 shows the simplest solid element, an 1D rod element of length L , with two end nodes 

1 and 2. 

 

Figure 3.1. Example of a 1D rod element with two nodes. 

 

When an external force is applied on this element, the differential equation for displacement can 

be written as (Smith and Griffiths 2004): 

0
2

2

 F
dx

ud
EA                                                                                                                             (3.1) 

Where E  is the Young’s modulus; A  is the cross sectional area; u  is the longitudinal 

displacement along the axial loading direction (x direction); F  is the applied body force (units of 

force/length). 

In FEM, the continuous variables can be approximated in terms of their nodal values interpolating 

by shape functions. 

1

m

i i

i

u N u


                                                                                                                                    (3.2) 
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Where u  is the polynomial interpolation of continuous displacement; iu  is the value on the 

corresponding node i ; iN  is the interpolation function, and is generally referred to as a shape 

function; and m is the number of nodes. 

For this rod element, we have: 

  1 1 2 2u x N u N u                                                                                                                          (3.3) 

Where 
L

x
N 11  and 

L

x
N 2 . 

Eqn. (3.3) can be rewritten as: 

    1

1 2

2

u
u N N N u

u

 
  

 
                                                                                                        (3.4) 

After substituting Eqn. (3.4) in Eqn. (3.1), the differential equation has now been replaced by an 

equation in terms of the nodal values, which has the following approximate form: 

RF
u

u
NN

dx

d
EA 









2

1

212

2

~

~
][                                                                                                        (3.5) 

Where R  is a nonzero residual, which is a measure of the error introduced during discretization. 

To minimize the residual, many methods have been developed, such as collocation, subdomain, 

Galerkin and least squares methods (Smith and Griffiths 2004). The difference between them 

depends on the choice of the weighting functions. 

The most popular method is the Galerkin method (Finlayson 1972). It minimizes residual by 

multiplying or weighting the residual in the above equations by each shape functions in turn, 

integrating over the element and equating to zero. 

  
































 LL

Fdx
N

N

u

u
dxNN

dx

d
EA

N

N

0
2

1

2

1

0
212

2

2

1

0

0
~

~
                                                                  (3.6) 
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Since in this example linear shape functions are used, double differentiation of these functions 

would cause them to vanish, which is not desirable. This difficulty is resolved by applying Green’s 

theorem, i.e., integration by parts (Smith and Griffiths 2004). Integral terms with double 

differentiation can be calculated as: 

 











dx

x

N

x

N
dx

x

N
N

jij

i 2

2

+boundary terms (usually neglected)                                           (3.7) 

Assuming EA  and F  are not functions of x , Eqn. (3.6) becomes: 

1 1 1 2

1 1

0 0
2 22 1 2 2

0

0

L L

N N N N

u Nx x x x
EA dx F dx

u NN N N N

x x x x

    
          

         
         
     

                                                            (3.8) 

After integration, we have: 
























































0

0

2

2
~

~

11

11

2

1

L

L

F
u

u

LL

LLEA                                                                                            (3.9) 

The above equation represents the rod element stiffness relationship, and it is usually simplified 

using matrix notation as: 

    fuK
~~                                                                                                                                       (3.10) 

Where  K  is the element stiffness matrix;  u~  is the element nodal displacement vector, and  f
~

 

is the element nodal force vector. 

 

3.1.2 Finite Elements and Shape Functions 

The choice of element type and shape function is essential for spatial discretization, and it depends 

on the purpose of numerical simulations. The commonly used types of 2D finite elements include 

triangular and quadrilateral elements.  In 3D, tetrahedrons and hexahedrons are commonly used. 
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Shape functions are often taken to be polynomials which depend on the element type and the 

number of nodes in the element. Examples of various types of 2D and 3D elements and their shape 

functions are illustrated in Figure 3.2. In this study, 8-node hexahedron (brick) element is used for 

discretization. As mentioned previously, Green’s theorem is used to avoid the vanishing of shape 

functions under a high order of differentiation. The general pattern of how terms in a differential 

equation appear in the matrix form after discretization has been summarized in Table 3.1 (Smith 

and Griffiths 2004).  

Table 3.1 General remarks on the PDE discretization (Smith and Griffiths 2004) 

Term in differential equation Term in matrix equation 

u  i jN N dx  

du

dx
 j

i

dN
N dx

dx  

2

2

d u

dx
 ji

dNdN
dx

dx dx
  

4

4

d u

dx
 

22

2 2

ji
d Nd N

dx
dx dx  
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Figure 3.2. Commonly used 2D and 3D finite elements and their shape functions. 

 

3.1.3 Temporal Discretization 

For time dependent problems, there exist various methods to discretize the time steps in FEM 

formulation. Here, we introduce the most commonly used method for time integration, the θ-

method. 

In the θ-method, the time derivative of a variable is approximated using a linear interpolation 

between its values at two consecutive time steps as (Pepper and Heinrich 2017): 
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1 0(1 )d

dt t

    



                                                                                                                    (3.11) 

Where   is the time dependent variable;   is the relaxation parameter; t  is the time step; and 

the subscripts represent two consecutive time steps “0” and “1”. 

The solution from time step “0” to “1” is obtained using a weighted average of the gradients at the 

beginning and end of the time interval: 

1 0(1 )                                                                                                                              (3.12) 

The parameter   is used to control the accuracy and stability of the solution (Pepper and Heinrich 

2017). It is usually specified within the range between 0 and 1. The commonly used values are: 

0   (explicit Euler forward method), 1 2   (Crank-Nicolson method) (Crank and Nicolson 

1947) and 1   (fully implicit backward method). The solution is unconditionally stable when 

1 2   (Smith and Griffiths 2004). In this study,   is assumed to be 1, which means fully implicit 

time stepping scheme in FEM discretization. 

 

3.2 FEM Solution to Thermo-poroelasticity 

3.2.1 Discretization in Space 

In the Chapter 2, the governing equations (Eqn. (2.25), (2.32) and (2.36)) for the case of thermo-

poroelasticity are given as follows: 

0)
3

( ,1,,,  jjjijjji Tpu
G

KGu                                                                                          (3.13) 

02, 




dt

dT
p

dt

dp

t
jj

kk 


                                                                                               (3.14) 

, , ,( ) 0T T

jj i i

T
c T Tp

t



  


                                                                                                          (3.15) 
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The above governing equations use the second order for the space domain and the first order for 

the time domain. Firstly, spatial discretization is performed using 8-node brick element. 

According to Eqn. (3.2), the numerical interpolation of displacement, pore pressure and 

temperature can be expressed as: 

  uu N u                                                                                                                                  (3.16) 

 pp N p                                                                                                                                  (3.17) 

 TT N T   
                                                                                                                                 (3.18) 

Where u , p , and T  are displacement, pore pressure, and temperature field variables, 

respectively; u , p  and T  are nodal values of displacement, pore pressure and temperature, 

respectively; uN , pN  and TN  are shape function matrices. 

For a 3D 8-node brick element: 

 
T

x y zu u u u                                                                                                                        (3.19) 

   Tzyxzyx uuuuuuu 888111 ~~~...~~~~                                                                                          (3.20) 

   Tppp 81 ~...~~                                                                                                                        (3.21) 

   TTTT 81 ~
...

~~
                                                                                                                          (3.22) 

 

















8

8

8

1

1

1

00

00

00

...

...

...

00

00

00

u

u

u

u

u

u

u

N

N

N

N

N

N

N                                                                                   (3.23) 

1 8...p p pN N N                                                                                                                        (3.24) 

  1 8...T T TN N N                                                                                                                      (3.25) 

The single and double differentiations of the variables can be expressed as: 
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    uB u                                                                                                                                   (3.26) 

   , j pp B p                                                                                                                               (3.27) 

    , j TT B T                                                                                                                            (3.28) 

   ,

T

jj p pp B B p                                                                                                                      (3.29) 

Where uB , 
pB    and  TB  calculate the derivatives of shape functions for displacement, pore 

pressure and temperature, respectively: 
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 
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B                                                                                                              (3.32) 

Substituting the shape functions for the factors (Eqn. (3.16), (3.17) and (3.18)) into the thermo-

poroelasticity field equations (Eqn. (3.13), (3.14) and (3.15)), and then using Galerkin’s method, 

the finite element formulations for displacement, pore pressure and temperature can be written as 

(Zhou and Ghassemi 2009; Lee and Ghassemi 2010; Wang and Ghassemi 2011): 

uuTupu FTCpCuK 
~~~                                                                                                                  (3.33) 

pu p pp pT q

du dp dT
C K p C C F

dt dt dt
                                                                                          (3.34) 
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TT cdT cvT h

dT
C K T K T F

dt
                                                                                                                (3.35) 

Where uF , qF , and hF  are the term of external force, fluid and heat sink/source, respectively. 

Other matrices are described as following: 


eV

u

T

uu dVDBBK                                                                                                                      (3.36) 


eV

p

T

uup dVINBC                                                                                                                      (3.37) 


eV

T

T

uuT dVINBC 1                                                                                                                   (3.38) 


eV

p

T

pp dVBBK                                                                                                                       (3.39) 

T

uppu CC                                                                                                                                    (3.40) 


eV

T

T

ppT dVNNC 2                                                                                                                   (3.41) 


eV

p

T

ppp dVNNC                                                                                                                      (3.42) 


eV

T

TT

TcdT dVBCBK                                                                                                                (3.43) 


eV

Tp

TT

TcvT dVNpBBK ~                                                                                                           (3.44) 


eV

T

T

TTT dVNNC                                                                                                                      (3.45) 
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 

  

                   (3.46) 

 1 1 1 0 0 0
T

I                                                                                                                     (3.47) 

 

3.2.2 Discretization in Time 

The finite element formulations derived in the previous section also include time dependent 

variables for displacement, pore pressure and temperature, and require temporal discretization. 

After differentiating both sides with time, the set of equations (Eqn. (3.33), (3.34) and (3.35)) can 

be rearranged in the matrix form as: 

0 0 0

0 0

0 0 0 0

up uT u

pu pp pT p q

TT cdT cvT h

du

dtK C C u F
dp

C C C K p F
dt

C K K T F
dT

dt

 
 

        
                 
              

 
  

                                              (3.48) 

To discretize the time domain, the θ-approximation method (Eqn. (3.11)) is used: 

(1 )t t tu udu

dt t

   



                                                                                                                    (3.49) 

(1 )t t tp pdp

dt t

   



                                                                                                              (3.50) 
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(1 )t t tT TdT

dt t

   



                                                                                                              (3.51) 

Substituting the above equations back into Eqn. (3.48), we have: 

0 0 0

0 0

0 0 0 0 ( )

up uT t t u

pu pp pT p t t q

TT cdT cvT t t h

K C C u u u tF
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It can be rearranged as: 

0 0 ( ) ( )
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                     (3.53) 

In this work,   is set to be 1, which means implicit scheme in spatial discretization. The finite 

element formula of the governing field equations in thermo-poroelasticity is obtained as (Zhou and 

Ghassemi 2009; Wang and Ghassemi 2011): 
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          
               

                       (3.54) 

Where the primary unknowns u , p  and T  are the incremental values of displacement, pore 

pressure and temperature between successive time steps, respectively; t  is the time step size. 

For each node, there are a total of 5 degree of freedoms: 3 for displacements ( xu , yu  and zu ), 1 

for pore pressure p  and 1 for temperature T . Therefore, for an 8-node brick element, Eqn. (3.54) 

represents a set of 40 equations. 

 

3.2.3 Boundary Conditions 
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Before solving the finite element equations, initial and boundary conditions need to be applied. 

The initial conditions, such as in-situ stresses, initial pressure and temperature, are relatively easy 

to handle and can be directly defined on the related elements/nodes at the beginning of time.  

The numerical model for coupled fluid flow and solid deformation problems should be able to 

handle various types of boundary conditions that may arise in different operation conditions 

(Raghavan and Chin 2004). The boundary conditions for the fluid phase include the prescribed 

wellbore pressure boundary or the flow rate boundary. For the solid phase, either the prescribed 

displacement or stress boundary condition could be applied. 

Boundary conditions of explicit variables, such as displacement, injection pressure and injection 

temperature, can be defined by the penalty method. In this method, the corresponding diagonal 

entry in the stiffness matrix on the left hand side is multiplied by a large number (e.g., 1030), and 

the corresponding entry on the right hand side vector is replaced by the prescribed boundary values 

scaled by the same large number. This is to impose a prescribed known value on the boundary 

nodes for the unknown variables. 

 

Figure 3.3. The penalty method used to define boundary conditions of displacement, pore pressure 

and temperature (revised from Lee 2011). 
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Since Eqn. (3.54) is the incremental version of the FEM formulations, it gives the relative values 

for displacement, pore pressure and temperature. For a constant boundary condition, the prescribed 

values are applied only for the first time step, and there will be no relative changes in the following 

time steps. If the absolute version of the FEM discretization is used, the prescribed values of 

boundary conditions should be applied in each time step. 

The boundary condition of injection rate is defined in a different way. Writing out again the 

finite element formulations for the fluid mass balance equation: 

pu p pp pT q

du dp dT
C K p C C F

dt dt dt
                                                                                          (3.55) 

The fluid source/sink term on the right hand side can be defined by injection rate Q  at the injection 

wellbore elements, as shown in Figure 3.4. In the case of injection rate boundary condition, the 

pore pressure at the wellbore for a given injection rate is computed from FEM as an output. 

 
1

nip

q i

i

F N Q d


                                                                                                                            (3.56) 

Where Q  is the injection rate; nip  is the number of Gaussian points and iN  is the shape function. 

 

Figure 3.4. The method used to define boundary conditions of injection rate (revised from Lee 

2011). 
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Mechanical loading is another commonly used boundary condition in the coupled fluid flow and 

solid problems, such as tractions applying on the wellbore surface, and overburden loads acting on 

the top surface of the simulation domain. The finite element formulation including a mechanical 

loading term at the boundary for the solid is written as: 

u up uT uK u C p C T F                                                                                                                  (3.57) 

 
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

                                                                                                                         (3.58) 

The mechanical loading term on the right hand side of Eqn. (3.57) is applied as traction, as shown 

in Figure 3.5. 

 

Figure 3.5. The method used to define boundary conditions of mechanical loading (revised from 

Lee 2011). 

 

The inclusion of gravity is another important concern in geomechanical modeling. There exist two 

approaches to account for gravity in the simulation (Lee 2011). The first approach is to directly 

apply gravity to the entire model by specifying a gravitational body force to the vertical direction 

in each element based on rock density data. The other approach is to use the measured reservoir 

initial pore pressure and far-field stress as initial background stresses that increases with depth. 
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One of the most challenging tasks in modeling geomechanics problems is to properly handle the 

initial in-situ stresses (Fredrich and Fossum 2002). After applying initial and boundary conditions 

to the model, an initialization step is usually introduced, to ensure the initial stress field equilibrates 

with the applied loads and boundary conditions at the beginning of actual analysis. This 

initialization can be done by performing a pre-run to calculate the state of stress generated under 

the applied conditions and then pre-stressing the model with the state of stress calculated from the 

pre-run step (Altman 2010; Holzbecher 2017). Ideally, after the initialization, the system should 

exactly in equilibrium and produce zero deformations (Fredrich and Fossum 2002; Aliguer et al. 

2015). In practice, the model is run for a sufficient time to approach to a nearly equilibrium steady 

state with displacements and stains converged to a static value. Then the newly developed stresses 

are considered as the initial stress state and the resulting displacements and strains are reset to zero 

for subsequent analyses (Hammond and Grzebieta 2000; Fredrich and Fossum 2002). In our 

simulations, the pore pressure field is initialized with the reservoir pore pressure data and the 

reservoir regional stresses are considered as initial background stresses. The evolution of reservoir 

stress distribution during field operations is computed by adding the induced stress changes to the 

initial background stress in each Gaussian point of the element (Lee 2010). 

 

3.2.4 FEM Modeling for Fractured Reservoirs 

In the finite element modeling of a fractured reservoir, the domain is firstly discretized into small 

elements. Natural fractures are generated and mapped into the FEM mesh using an equivalent 

continuum approach (Chapter 4). After elemental properties (such as mechanical, hydraulic and 

thermal properties) are obtained, the coefficient matrix for each element can be formed. They are 

used to assemble the global coefficient matrix for the entire system in the left hand side of Eqn. 

(3.54). Next, initial conditions (such as in-situ stress, initial pressure and temperature) and 
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boundary conditions (such as injection pressure/rate, injection temperature, far field boundary 

pressure and stress) are defined in the FEM model. The solutions of Eqn. (3.54) gives the 

incremental results of displacements, pore pressure and temperature. After FEM analysis, a post-

processing step is employed to analyze the response of natural fracture networks. The integration 

scheme of the natural fracture network model to the FEM model will be described in the next 

Chapter. 
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4. Natural Fracture Network Model 

Reservoir stimulation in unconventional petroleum and geothermal reservoirs is significantly 

impacted by the presence of natural fractures. Injection causes the change of fluid pressure inside 

a fracture network, and consequently, changes the effective normal and shear stresses over the 

fracture surfaces. These changes could cause natural fractures to deform and modify the hydraulic 

properties of the fracture network. Slip on fractures increases reservoir permeability through shear 

dilation and results in injection induced micro-seismicity. Natural fractures could also propagate 

due to gradually increased fluid pressure during stimulation, which contributes to the improvement 

of fracture network connectivity and reservoir permeability. Numerical modeling of these 

phenomena can help understand how fractures contribute to the stimulation outcome, which is 

essential for stimulation optimization. 

In this chapter, a brief literature review of the numerical models and approaches for naturally 

fractured reservoirs is presented. Following that, the natural fracture network modeling approach 

used in this study is described. 

 

4.1 Literature Review 

Due to the variable spatial distribution, orientation and geometry of natural fractures, fluid and 

heat flow within fractured reservoirs are very complicated. The major components in modeling 

naturally fractured rocks should include: 1) realistic geometrical representations of complex three 

dimensional fracture networks, 2) mathematical models for describing flow through the fractured 

medium, and 3) geomechanical models for describing the dynamic fracture response to 

injection/production induced stress changes. 
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4.1.1 Fracture Generation 

Based on how natural fractures are generated, the geometrical models of fracture networks can be 

classified into two categories: deterministic fracture network model which locates individual 

fracture explicitly (e.g., Kolditz 1995; Hicks et al. 1996; Kolditz and Clauser 1998; Ghassemi et 

al., 2003; Safari and Ghassemi 2011), and stochastic fracture network model which generates the 

fractures from statistical distributions (e.g., Long 1983; Dershowitz 1985; Bruel and Cacas 1992; 

Willis-Richards et al. 1996; Tezuka et al. 2005; Wang and Ghassemi 2011, 2012 and 2013; 

Farmahini-Farahani and Ghassemi 2016; Cheng and Ghassemi 2017). In practice, since the details 

of individual fractures embedded in a three dimensional rock volume are not available, a stochastic 

method is necessary for fracture network modeling. 

 

4.1.2 Mathematical Models 

Naturally fractured reservoirs are usually characterized by a system of fractures existing within a 

background rock matrix. Mathematical models for simulating the behavior of rock mass embedded 

with natural fractures are grouped into three main classes (National Research Council 1996): (1) 

discrete fracture network (DFN) models, (2) equivalent continuum models (ECM), and (3) hybrid 

models. 

DFN (e.g., Hudson and La Pointe 1980; Long et al. 1982; La Pointe et al. 1997) treats the rock 

mass as a set of impermeable blocks, separated by systems of fractures. Since it models individual 

fractures explicitly, it has the ability to accurately describe the fractured reservoir. However, it 

could be very expensive regarding computational cost, especially when dealing with a large 

number of fractures. 
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Figure 4.1. Discrete fracture network model for a naturally fractured reservoir (La Pointe et al. 

1997). 

 

Conversely, continuum models have the advantage of modeling the fractured masses at a larger 

scale. In a conventional ECM (e.g., Snow 1970; Long et al. 1982; Oda 1986; Carrera et al. 1990; 

Lee and Ghassemi 2011), a fractured reservoir is treated as an equivalent porous system and 

averaged rock properties are assigned. In a dual continuum model (DCM) (e.g., Warren and Root 

1963; Kazemi 1969; Kazemi et al. 1976), fracture and rock matrix are modeled as two separate 

but overlapping systems. Equivalent properties are assigned to the model grids to represent the 

combined effects of fractures and matrix. These continuum approaches are simple but not accurate, 

especially for highly heterogeneous porous medium (Lee et al. 1999). 
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Figure 4.2. Dual porosity model for a naturally fractured reservoir (Warren and Root 1963). 

 

Hybrid models (e.g., Tezuka and Watanabe 2000; Rahman et al. 2002; Wang and Ghassemi 2011, 

2012 and 2013) have been considered and developed. It uses a discrete fracture network to estimate 

the effective properties for continuum approximations. As the hybrid model combines the 

advantages from both DFN and continuum models, it is efficient but still could provide reasonably 

accurate solutions. 

 

Figure 4.3. Conversion of fractures to continuum mesh in a hybrid model (Rahman et al. 2002). 
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4.1.3 Geomechanical Models 

The response of natural fractures to stimulation has been studied for many years, and several 

geomechanical models are available for simulating low pressure shear stimulation. Willis-

Richards et al. (1996) developed a preliminary shear dilation based model. They assumed that the 

fracture aperture is affected by effective normal stress acting on the fracture surface and shear 

displacement. This approach has been further developed and widely used for fractured geothermal 

reservoir stimulation design (e.g., Wang and Ghassemi 2011; Cladouhous et al. 2011). Rahman et 

al. (2002) improved the shear dilation-based model by considering the combined effects of shear 

dilation and natural fracture propagation on reservoir performance. It was assumed that fractures 

might propagate and then interconnect with other fractures due to the gradually increased fluid 

pressure during injection. An analytical mixed-mode crack propagation model was developed to 

improve the computational efficiency for analysis of a large number of natural fractures. 

However, in most of the shear stimulation models, the pressure distribution within the fractured 

reservoir is estimated from approximate methods (e.g., Rahman et al. 2002) and the thermo-

poroelastic coupling process is neglected (e.g., Willis-Richards et al. 1996; Ucar et al. 2016) or 

simplified using empirical correlations (e.g., Bruel 2002). Wang and Ghassemi (2011) developed 

a fully coupled thermal-poroelastic FEM model with stochastic fracture networks. Stress, pore 

pressure and temperature results obtained from coupled finite element model are used for fracture 

deformation analysis. 

In this work, a numerical model for stimulation in naturally fractured reservoirs is developed. It 

consists of four main sub-models: 1) a stochastically generated fracture network model describing 

the fracture geometry and fluid transport within the fractures; 2) a heat transfer model describing 

the heat transport within the interconnected fracture network; 3) a shear dilation based 

geomechanical model to analyze fracture deformation and induced micro-seismicity; 3) a natural 
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fracture propagation model to evaluate fracture extension. The numerical models are described in 

the following sections. 

 

4.2 Stochastic Fracture Network Generation 

In this work, a 3D stochastic fracture network model is generated and implemented into the 3D 

coupled finite element model. Each fracture is assumed to be a penny-shaped circular plate, and is 

specified by its location (center point), size (radius and aperture) and orientation (dip and azimuth 

or plane normal direction).  

 

Figure 4.4. Representation of a penny-shaped fracture in the model. 

 

Since the location, size and orientation of individual fracture within a fractured medium are usually 

unavailable, they can be treated as random variables with inferred probability distributions (Cacas 

et al. 1990). The following stochastic descriptions are used in this study to generate fracture 

networks: Poisson’s distribution for fracture density, log-normal distribution for the fracture size, 

and Fisher von Mises distribution for the fracture orientation. Natural fracture characterization 
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from field observations, core measurements, borehole images, and logging operations provides 

input values for these stochastic models. 

 

Figure 4.5. Example of a stochastic fracture network of 20 penny-shaped fractures. 

 

4.2.1 Fracture Location 

Fracture location is a fundamental parameter describing the spatial distribution of fracture 

networks. The most common approach is to use the center point of a fracture to represent its 

location and assume fracture centers are randomly distributed within the simulation region 

following Poisson distribution (e.g., Long et al. 1982; Bruel 2002; Min et al. 2004; Xu and Dowd 

2010; Wang and Ghassemi 2011). 

The 3D coordinates (x, y, z) of fracture centers are assumed independently and uniformly 

distributed within the domain according to a homogeneous Poisson point process. The detailed 

procedure has been described in Xu and Dowd (2010): The interest domain V  is firstly divided 

into several sub-domains. The number of fractures iN  falling inside a sub-domain iV  follows a 

Poisson distribution: 
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Where i iV   is the mean value, or the expected number of fractures;   is the fracture density, 

i.e., the number of fractures within a unit volume; iV  is the volume of the sub-domain. 

Considering iN k , for each of the k fractures in the sub-domain iV , three values are 

independently generated using uniform distributions to represent the three coordinates (x, y, z) of 

the fracture center point located within the sub-domain. The total number of fractures generated 

within the domain is the sum of that of all sub-domains, 
iN N . 

   

   

Figure 4.6. Fracture center distributions with different density parameters. 

N=50 N=100 

N=300 N=500 
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An example of fracture center distributions with different density parameters is shown in Figure 

4.6. A network of fractures is randomly generated in a 500 m x 500 m x 500 m 3D domain, on the 

basis of a fracture density of 4.0E-7 m-3, 8.0E-7 m-3, 2.4E-6 m-3 and 4.0E-6 m-3, respectively. The 

total number of fractures is 50, 100, 300 and 500, respectively. Same size (μ=2.3, σ=0.7) and 

orientation distribution parameters (κ=1.0) are used in all cases. 

 

4.2.2 Fracture Size 

The size of a penny-shaped fracture is described by its radius and aperture. A log-normal 

distribution is commonly used for fracture radii (e.g., McMahon, 1971; Baecher et al., 1977; Long 

et al., 1982; Dershowitz and Einstein, 1988). The choice of a log-normal distribution for fracture 

size has been validated based on laboratory measurements (e.g., Gentier 1986; Gale 1987; Hakami 

and Barton 1990) as well as observations in the field (e.g., Bourke et al. 1985; Cacas et al. 1990; 

Massiot et al. 2015). 

The input variables of log-normal distribution include the mean and standard deviation of log 

values of fracture radii, and the output variables are fracture radii: 

 
2

2

ln1
( ) exp

22

r
f r

r





 
  

  

                                                                                             (4.2) 

Where r  is the fracture radius;   is the mean of ln r ; and   is the standard deviation of  ln r . 

Figure 4.7 shows four sets of fractures with different size distribution parameters. Same 

distributions for fracture locations (N=500) and orientations (κ=1.0) are assumed. It can been seen 

that the average size of fractures is controlled by the mean value  , and the spread out range is 

controlled by the standard deviation  . 
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Figure 4.7. Fracture distributions with different size parameters. 

 

Fracture aperture governs fracture permeability, hence, it is an important property that controls the 

flow and transport in the fractured rock mass. However, compared with the studies on the 

distribution of fracture length, there are relatively few studies on aperture distribution. Similar 

distribution functions are usually used for fracture length and aperture in stochastic fracture 

modeling. Once the fracture length distribution is obtained, fracture radii can be calculated from a 

length-aperture relationship. 

The initial fracture aperture, a, at zero effective stress, is assumed to be proportional to its radius 

(Vermilye and Scholz 1995; Willis-Richards et al. 1996; Tezuka and Watanabe 2000). 

μ=1.6  

σ=0.4 

μ=1.6  

σ=0.9 

μ=2.3  

σ=0.4 
μ=2.3  

σ=0.9 
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na r                                                                                                                                          (4.3) 

Where r  is fracture radius;   is an coefficient which can be estimated in terms of the average 

virgin permeability of the fractured medium (Willis-Richards et al. 1996); n  is the length-aperture 

exponent which varies between 0.5 and 2 (Bonnet et al. 2001). 

 

4.2.3 Fracture Orientation 

The orientation of a fracture can be specified either by its dip angle and azimuth or by the normal 

of the fracture plane. The most common distribution used for fracture orientations in rock masses 

is the Fisher von Mises distribution (e.g., Cacas et al. 1990; McKenna and Reeves 2006; Klimczak 

et al. 2010). 

Fracture orientations are assumed to follow the Fisher von Mises distribution around the mean 

orientation. Two angles (dip and azimuth) are stochastically generated for each fracture: 

( ) exp( cos )sin
2 ( )

f
sh


   


                                                                                                (4.4) 

Where   is the angle variable, dip or azimuth angle; and   is the Fisher coefficient which 

measures the dispersion in fracture orientations (Fisher 1953). The distribution is uniform for   

equals zero, whereas a high value of   will generate fractures aligned primarily in one orientation. 

The normal directions of each fracture plane are calculated in terms of fracture dip and azimuth 

angles: 

sin sinl                                                                                                                                   (4.5) 

sin cosm                                                                                                                                 (4.6) 

cosn                                                                                                                                        (4.7) 

Where   and  are the fracture dip angle and azimuth angle, respectively. 
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Figure 4.8 shows the examples of four sets of fracture normal directions generated from Fisher 

von Mises distribution by setting the Fisher parameter equal to 0.2, 1.0, 5.0 and 9.0. The mean 

orientation (0.866, 0, 0.5) is the same for all four sets. Same distributions for fracture locations 

(N=500) and size (μ=2.3, σ=0.7) are assumed. 

   

   

Figure 4.8. Fracture normal directions generated with a mean direction at (0.866, 0, 0.5) and a 

Fisher parameter of 0.2, 1.0, 5.0, and 9.0, respectively. 

 

The corresponding fracture networks are shown in Figure 4.9. Significant visual differences are 

seen. The larger the Fisher coefficient, the higher the concentration of the distribution around the 

κ=0.2 κ=1.0 

κ=5.0 κ=9.0 
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mean direction. Fracture planes generated from a large Fisher coefficient mostly align parallel to 

each other. 

   

   

Figure 4.9. Fracture networks with different orientation distributions. 

 

In general, we assume all fractures in the generation domain follow the same distribution with one 

single set of parameters. However, this approach could be adopted when necessary. More complex 

fracture models can be generated by defining different distribution parameters for specific fracture 

sub-sets or by combining several different distributions. In Chapter 7, the natural fracture network 

in the Newberry EGS site is generated from a hybrid approach. Two sets of fractures are generated: 

one set is deterministically generated using borehole televiewer (BHTV) scanning results to 

κ=0.2 κ=1.0 

κ=5.0 κ=9.0 
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represent the fractures intersecting the wellbore; the other set to represent fractures in the near 

wellbore region is generated stochastically based on field observed micro-earthquake (MEQ) data. 

 

Figure 4.10. An example of the fracture network in the Newberry EGS site generated from hybrid 

approach. 

 

In addition to penny-shaped fractures, the geometry shape of fractures could also be specified as 

rectangular, elliptical or polygon. Figure 4.11 shows an example of a fracture network consists of 

two orthogonal sets of rectangular shaped fractures. This fracture network generation approach 

has the flexibility to model almost any form of complex fracture networks. 

 

Figure 4.11. An example of a fracture network consists of two orthogonal sets of rectangular 

shaped fractures. 



49 

4.3 Equivalent Permeability 

Once a fracture network has been generated, it is implemented into the finite element model. In 

the equivalent continuum approach for modeling fractured rocks, the rock blocks which contain 

natural fractures are treated as a continuum media with a permeability equivalent to the fractured 

rock. The equivalent permeability concept used in Rahman et al. (2002) is applied to estimate the 

overall permeability of the fractured reservoir. 

Using finite elements, the reservoir block is discretized into small elements. Before computing 

equivalent permeability, a preliminary step is to calculate intersections between penny-shaped 

fractures and finite element faces based on a geometric surface-surface intersection algorithm. 

Fracture intersection lengths along the x, y and z directions are determined for each element. This 

algorism of introducing a fracture network into the finite element mesh is described in Appendix 

A at the end of this dissertation. 

 

Figure 4.12. Intersection between a penny-shaped fracture and finite element face. 

 

For an individual element, matrix flow and fracture flow are considered separately, and are 

superposed together. 

f mQ Q Q                                                                                                                                   (4.8) 

For matrix flow, Darcy’s law is applied: 
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The flow within each fracture is assumed to be parallel plate flow without tortuosity, and governed 

by cubic law (Jing et al. 2000; Rahman et al. 2002): 
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Therefore, Eqn. (4.8) can be written as: 
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Where Q  is the volumetric flow rate; mk  is the matrix permeability; l  is the length of intersection 

line between the fracture and element interface; a  is the aperture of the fracture;   is the fluid 

viscosity; p  is the pressure gradient; and A  is the interface area. 

The equivalent permeability at interface A  can be obtained: 

2( /12)m m fk A a A
k

A


                                                                                                                       (4.12) 

Where fA  is the fracture cross-section area, fA al . 

Since each element could contain more than one fracture, the total directional permeability (along 

x, y or z direction) on an element interface with contributions from all fractures it intersects can 

be expressed in the following way (Rahman et al. 2002): 

3

1

1 12

n

m i in
i i i

m

i

k a l
a l

k k
A A





  


                                                                                                                (4.13) 

Where n  is the total number of fractures in the element; ia  is the aperture of the 
thi  fracture; il  is 

the length of intersection line on the element interface A . 
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In fractured reservoirs with very low matrix permeability, the rock matrix permeability could be 

several orders (104 to 106) lower than fracture permeability. Furthermore, the fracture cross-section 

area fA  (in mm2) is much smaller than the element interface A  (in m2). The last term in Eqn. 

(4.13) is a higher order term and can be ignored. 

For an individual element, the total permeability is the sum of the rock matrix permeability and 

the fracture permeability. It should be noted that for a small isolated fracture that are contained 

within a single element, there will be no intersections between its edge and the element faces. In 

this case, its bulk fracture permeability is considered zero, and it would not have a contribution to 

the total equivalent permeability. 
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To quantify the contributions of natural fractures to the equivalent permeability of the entire 

reservoir, an average reservoir permeability is introduced. For a reservoir block with a log-normal 

size distribution of fractures, a 1/3 power average is used to approximate the average effective 

permeability in each direction (Hristopulos and Christokos 1999; Wang 2014).  
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Where iK  is the average effective permeability in the 
thi direction, 1,2,3i  ; elsn is the total 

number of elements; and ik  is the permeability in the 
thi direction of the 

thiel  element. 

The overall average reservoir permeability is then calculated as the root mean square value of the 

total directional permeabilities (Rahman et al. 2002): 
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This average reservoir permeability is used as an index for evaluating stimulation efficiency, as 

presented in the Chapter 6. 

 

4.4 Pressure Distribution on Individual Fractures 

During fluid injection, the fluid pressure and temperature inside the fracture network are changed, 

which alters the stress distribution around fractures and affects the deformation behavior of 

fractures. Fracture aperture changes upon deformation and slip, and influences the permeability 

evolution of the equivalent continuum medium. Therefore, the solutions for pressure, temperature 

and stresses within the fracture network are integrated with those of the equivalent medium. 

At each time step, the fluid pressure in the equivalent continuum medium is a direct output of the 

coupled thermo-poroelastic finite element model. The average fluid pressure on a fracture is 

approximated by averaging the values of all elements intersected by it. However, the exact solution 

of fluid pressure insides individual fractures is a complex task. In this study, an analytical solution 

(Long 1983) is used for the 2D pressure distribution on individual fracture planes. 

Fractures are treated as circular shaped disc discontinuities in an impermeable matrix. The flow 

problem in individual fracture planes is solved using image theory to account for the impermeable 

disc boundaries. In a 3D fracture network, fracture intersections are lines instead of intersection 

points in a 2D network. Each intersection could play a line source or sink on the fracture plane. 

The head distribution within a fracture containing an arbitrary number of lines sources and sinks 

is based on the solution for a point source within a circular flow region. 

For a disc which contains a point source of strength +m at the location (g, 0), if steady state 

condition is assumed, the image system which accounts for the impermeable disc boundary gives 

an image source of strength +m on the same radial direction at the location (a2/g, 0) and an image 
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sink of strength –m at the disc center (0, 0). The head at any point in the fracture disc can be found 

by accumulating the head contributions of the source and the two images. 

 

Figure 4.13. Image system for a point source in a disc (reproduced from Long 1983). 

 

The point source solution is extended for a line source by assuming many point sources distributed 

along an arbitrary line segment. A non-radial line segment source will have an arc shaped image, 

and a radial line source will have a radial segment image, as shown in Figure 4.14. 

 

Figure 4.14. Image systems for radial and non-radial line sources in a disc (reproduced from Long 

1983). 
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The fundamental solution of the Laplace equation for the potential due to a point source in an 

infinite plane is: 

ln( )
2

Q
Kbh r


                                                                                                                       (4.17) 

Assume such point sources are distributed over a line segment in the fracture plane, and the 

potential due to the line source is given by: 
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The potential due to the image is similar: 
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The expressions for the potentials of radial line intersections and their images (Figure 4.15) are 

listed in Eqn. (4.18) and (4.19). The detailed procedures to find these expressions are given in 

Appendix B. 
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Where 
2      ; 

4a  ; 
22a x   ; 

2 2x y   . 
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Figure 4.15. Geometry for radial line intersection and its image in a disc (taken from Long 1983). 

 

The expressions for the potentials of non-radial line intersections and their images (Figure 4.16) 

are: 
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Figure 4.16. Geometry for non-radial line intersection and its image in a disc (taken from Long 

1983). 

 

For each intersection i in the fracture k, the total potential is the sum of potential due to the 

intersection source and its image. 

k k k

i iN iI                                                                                                                                         (4.24) 

The total potential in fracture k is the sum of the potential due to all intersections on it: 
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The intersections between fracture discs are identified using the geometry algorithm described in 

Appendix A. At each time step, the local 2D potential distributions are calculated for each fracture 

plane using the above method, and then head distributions can be obtained. Note that the above 

calculations involve using different local coordinates. A local arbitrary (X, Y) coordinate system 

is established for each fracture disc. All these equations for potential distribution must be translated 

to (X, Y) coordinates before they are added. 
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4.5 Heat Transfer within Fracture Network 

Temperature usually has a significant influence on stresses, strains and pore pressure. However, 

deformation and pore pressure change do not lead to significant temperature change. Therefore, 

temperature field and heat transfer can be decoupled from the poro-mechanical response analysis. 

In this work, heat transfer within the interconnected fracture network is solved independently from 

the FEM analysis. The approach of Bruel (2002) is used by assuming a 3D flow channel consists 

of 1D pipes (Cacas et al. 1990). Each connected fracture is treated as a 1D flow pipe connecting 

fracture center and mid-point of the intersection with the adjacent fracture. An example of the pipe 

flow model is shown in Figure 4.17. 

 

Figure 4.17. An example of flow channel of 1D pipes formed by intersecting fractures. O1, O2, O3 

and O4 are fracture centers; the intersections between fractures are shown as blue lines; the flow 

channel is shown in red. 

 

4.5.1 Fracture Network Connectivity 

In the decoupled heat transfer analysis, the fluid flow through the rock matrix is ignored. We 

assume the fluid flow is confined within the interconnected fracture network. Before computing 

heat transfer in the fracture network, a preliminary step is the evaluation of fracture network 
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connectivity, which means calculating fracture intersections and finding out the interconnected 

fractures. 

A special search algorithm is employed: The first step is to determinate whether or not two 

fractures in three dimensional space intersect. If they intersect, the intersection between them is 

calculated. Then each fracture is checked if it directly intersects the injection wellbore or it is 

included in the connected flow path. Performing connectivity searching between a large number 

of discrete fractures is computationally intensive. In order to speed up the computation, an iterative 

process is developed to do the searching.  Finally, the fractures are identified as connected fractures 

and isolated fractures. The details of this algorithm are described in Appendix A. 

 

Figure 4.18. Detection of interconnected fractures (colored) and isolated fractures (grey). 

 

4.5.2 Heat Transfer Model 

In fractured reservoirs, convective heat flow within interconnected fracture network takes place so 

rapidly during simulation time that the convection from adjacent rock to fractures can be ignored. 

Therefore, the heat transfer model includes two mechanisms: 1) 1D linear heat conduction from 
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adjacent rock matrix to fractures; and 2) 1D liner heat convection through flow pipes formed by 

interconnected fractures. This heat transfer model is connected to that of the rock matrix by a heat 

exchange model at the fracture wall assuming continuity of temperature between the fluid in the 

fracture and the rock matrix. 

The assumptions of this model are: 1) flow in the fractured reservoirs primarily occurs on channels 

within fractures; and 2) heat conduction develops perpendicular to the fracture plane (Bruel 2002). 

In this study, since fracture aperture is assumed to be pressure-dependent, the change in thermal 

energy retained by the fluid within the fractures due to fracture volume change is also considered. 

The energy conservation equation is written for each fracture by balancing the convective heat 

transport from fluid flow, heat conduction between adjacent rock mass and the fluid in the fracture, 

and the change of internal energy retained by the volume of fluid within the fractures. 

0conv cond fdQ dQ dQ                                                                                                                (4.26) 

Where convQ  and condQ  are convective and conductive thermal energy, respectively; fQ  is the 

energy retained by the fluid within a fracture. 

 

Figure 4.19. Energy conservation in the interconnected fracture network. 
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4.5.3 Convective Energy 

The convective thermal energy exchanged during a time interval is given in Eqn. (4.25) (Bruel 

2002): 

( ) ( )convi f f ij fj t f f ik fi t tin out
dQ C q T dt C q T dt                                                                       (4.27) 

Where ijq  is the flux entering a given fracture i  from the adjacent fracture j at time t ; ikq  is the 

flux leaving fracture i  to the next fracture k ; fiT  and fjT  are the temperature of fracture i  and j

, respectively; f  is fluid density; fC  is heat capacity of the fluid. 

The pipe flow model assumes that the flow occurs through channels joining the center of each 

fracture to the center of the adjacent fractures. As shown in Figure 4.20, the channels are made up 

of two pipes, one for each connected fracture, meeting at their intersection center. 

 

Figure 4.20. Flow channel between two connected fractures. 

 

The hydraulic conductivity of each pipe is determined from fracture permeability and aperture 

based on cubic law: 

12
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i
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k


                                                                                                                                     (4.28) 

The flow rate in a given bond between two fractures is given by (Cacas et al. 1990): 
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Where ik  and jk  are the conductivity of fracture i  and j , respectively; iL  and jL  are the pipe 

length in fracture i  and j , respectively, which is the distance between fracture center and the 

intersection in the fracture; ip  and jp  are the pore pressure at each fracture center, respectively, 

which have been obtained by averaging the pore pressure of all elements intersected by the 

fracture. 

 

4.5.4 Conductive Energy 

Heat conduction between adjacent rock mass and the fluid in the fracture is assumed to develop 

perpendicular to the fracture plane. At any time, the continuity of the temperature at the fracture 

surface is: 

f mT T  at  0y                                                                                                                               (4.31) 

Where fT  and mT  are the temperature of fluid and matrix, respectively. 

Conductive energy (Eqn. (4.30)) is related to the heat flux at the fracture surface (Eqn. (4.31)) 

which has to dissipate in its adjacent rock block according to the diffusion equation (Eqn. (4.32)). 

The heat exchange on the fracture surface is given as (Bruel 2002): 

condi i idQ S dt                                                                                                                               (4.32) 

0( )m
i m y

dT
K

dy
                                                                                                                             (4.33) 



62 

2 m
m m

T
T

t



 


                                                                                                                              (4.34) 

m
m

m m

K

C



                                                                                                                                        (4.35) 

Where i  is the heat flux at the fracture surface; iS  is the exchange area; mK  is the matrix heat 

conductivity; m  is the heat diffusivity of rock mass; m  and mC  are the density and heat capacity 

of the matrix, respectively. 

The above diffusion equations are solved using a finite difference method (FDM) to obtain the 

temperature in the adjacent rock matrix and the conductive heat energy developed on each fracture 

surface. 

As shown in Figure 4.21, the shape of the surrounding rock block is assumed to be cylindrical, 

with a radius equal to the fracture radius. The height of the block should allow the temperature at 

the opposite end of the block to remain unchanged during the simulation. 

The distance at which a heat transfer takes places after a period can be defined as a thermal 

diffusion characteristic length (Marin 2010). After time t  has elapsed, the heat outspread over a 

sphere of radius  : 

2 t                                                                                                                                         (4.36) 

Where   is the thermal diffusion characteristic length;   is the heat diffusivity; t  is the time 

duration. 

Since thermal diffusivity coefficient is usually very small for rocks, the temperature change will 

not develop at a considerable distance from fracture surface within the simulation period. 

Therefore, the block to block thermal interactions and the thermal stress effects are ignored in the 

current study. For a rock with a heat diffusivity of 1.15E-6 m2/s, the thermal diffusion characteristic 
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length is 12 m per year. In short term simulations, the thermal diffusion characteristic length is 

much shorter. A height of 12 m is used for the height of the surrounding rock block to ensure the 

temperature at the opposite end of the block is unchanged after one year of heat transfer. 

 

Figure 4.21. Discretization of the rock matrix adjacent to a fracture surface. 

 

The adjacent rock matrix is discretized into a total of M small elements with an element size of 

idy . Eqn. (4.32) can be rewritten using the Backward-Time Central-Space (BTCS) scheme as: 
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Ignoring the last term, and then Eqn. (4.35) can be rewritten as: 
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The boundary conditions are: 
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If the element size is uniform, i.e., idy  is a constant value, let 
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The above equations yield: 
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Eqn. (4.39) can be written in matrix form as: 
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                                                                          (4.44) 

For each fracture, one set of diffusion equations is set up at its surrounding rock blocks. The finite 

difference solution will return the temperature distribution from the fracture surface to the other 

end of this rock block. Then, the heat flux 
i  and the conductive energy changed at the fracture 

surface convidQ  can be obtained. 

 

4.5.5 Internal Heat Energy 

The change of internal heat energy retained by the volume of fluid within the fractures is due to 

temperature change and the change of fracture volume: 
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Where f  and fC  are the density and heat capacity of the fluid, respectively; ( )fi tV  and ( )fi t tV   

are the fracture volume at time t  and t t , respectively; ( )fi tVc  is the fluid volume change due 

to expansion or compression. 

At each fracture center, the energy balance equation (Eqn. (4.26)) is applied. The temperature 

change between time steps is usually small, therefore, knowing the fracture aperture and pressure 

change from the FEM solutions and the temperature from the previous time step, the set of energy 

balance equations for all fractures are solved for the temperature at the current time step. The initial 

fracture temperature is prescribed and the temperature of the injection fluid is also prescribed on 

the fluid entering fractures. 

Once the changes in fluid pressure and temperature within the fracture network are known, the 

effects of these changes on fracture deformation behavior are taken into consideration in terms of 

poroelastic and thermoelastic induced stresses. At each time step, the pressure and temperature 

changes are substituted into Eqn. (2.25) for all elements that contain fractures, to obtain the total 

in-situ stresses in the rock medium surrounding the fractures.  

 

4.6 Fracture Deformation and Shear Dilation 

Natural fractures are usually stress sensitive, i.e., they deform, and slip/open due to the stresses 

caused by injection/extraction operations. In this work, the fracture deformation analysis is based 

on the injection perturbed pore pressure and stress. It is assumed that the fracture deformation is 

mechanically decoupled from the FEM analysis and it does not impact stress distributions in the 

FEM analysis (Wang 2014), thus it is carried out sequentially after FEM analysis at each time step. 

It consists of three main steps: 1) obtain the effective stresses acting on the fracture surface from 
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the FEM analysis; 2) calculate fracture deformation and aperture changes under the new effective 

stresses; 3) update the fracture permeability and equivalent elemental permeability for the next 

time step in the FEM solution. Considering the negligible fracture aperture change with respect to 

the matrix element size, to keep the problem complexity at a manageable level, the induced stress 

in the rock matrix due to fracture deformation is not included, which means it is mechanically 

decoupled with the thermo-poroelastic model. 

 

4.6.1 Shear Dilation 

The deformation of natural fractures depends on the combined effects of pore pressure and total 

in-situ stress, which can be expressed by effective stress: 

eff n P                                                                                                                                  (4.46) 

By applying the Mohr-Coulomb failure criterion to the Patton’s saw-tooth fracture model (Patton 

1966), the shear strength of a fracture is written as: 
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Where eff  is the effective normal stress on fracture surface; basic  is basic friction angle; 
eff

dil  is 

the effective shear dilation angle; dil  is the laboratory measured dilation angle and nref  is the 

effective normal stress required to cause 90% reduction in fracture aperture. When the shear stress 

acting on fracture surface exceeds fracture shear strength, the fracture slips. 

p                                                                                                                                              (4.49) 
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As a result of shear slippage, shear displacement occurs on fracture surfaces. This permanent 

displacement has a significant influence on the permeability enhancement of fractured reservoirs 

(Ye et al. 2017 and 2018). The shear slip displacement is a function of the excess shear stress 

(Hicks et al. 1996): 

p

s

s

U
K
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                                                                                                                                   (4.50) 

Where sU  is the shear slip displacement;   is the shear stress acting on fracture surface; and sK

is the geometrical stiffness of the fracture. For a penny-shaped circular fracture, 
7

24
s

G
K

r


  

(Dieterich 1992), G  is the shear modulus of surrounding intact rock and r  is the radius of the 

fracture. 

Shear slip on natural fractures can induce fracture opening as the opposing fracture asperities slide 

over each other and cause a dilation in aperture (Figure 4.22). 

 

Figure 4.22. Fracture surfaces slip and cause dilation in fracture aperture. 

 

The dilated aperture due to shear slippage is proportional to shear displacement: 

tan( )eff

s s dila U                                                                                                                               (4.51) 

For in contact fractures that have slipped, the total stimulated fracture aperture (Willis-Richards et 

al. 1996) is written as: 
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Where 0a  is the initial aperture; sa  is the aperture change due to shear slippage; and resa  is the 

residual aperture at very high effective stress which is usually small (Willis-Richards et al. 1996) 

and is assumed to be zero in this study. 

A typical behavior of fracture aperture as a function of effective normal stress is shown in Figure 

4.23. As fluid injection pressurizes the fracture, the effective normal stress is reduced and fracture 

aperture increases due to deformation in the normal direction. Once shear slippage occurs, the 

increase in aperture is due to the combined effects of both normal deformation and shear dilation. 

 

Figure 4.23. Fracture aperture evolution with respect to different effective normal stress. 

 

When the effective normal stress acting on the fracture becomes negative, i.e., when nP  , the 

fracture will be mechanically open, which is usually termed as hydraulic jacking. Subsequent 

pressurization will further open the fracture. For fully-open fractures, the aperture is the relative 

normal displacements of the two fracture surfaces (Willis-Richards et al. 1996). The normal 

normal deformation 

& shear dilation 

shear slip 

normal deformation 
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displacement of any point on the circular crack surface of a circular shape fracture is given in Eqn. 

(4.51) (Jaeger and Cook 1969), which indicates that the maximum normal displacement is at the 

center of the fracture. 

2 22(1 )
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                                                                                                          (4.53) 

Therefore, the maximum opening aperture is also at the center, and equals to twice the normal 

displacement of one surface: 
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The average crack aperture can be calculated from an equal volume penny-shaped crack (Willis-

Richards et al. 1996): 
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Since the fracture aperture change has a direct influence on reservoir permeability evolution, the 

fracture deformation model is integrated with the thermo-poroelastic FEM model. After fracture 

aperture calculations, the updated values are used as inputs to calculate the equivalent permeability 

in the FEM model for the next time step. 

Generally, fracture aperture change (~10-4 m) is negligible compared with the element size (~101 

m). Therefore, for simplicity, the elemental strain induced by fracture dilation is not considered in 

this current study, which means this fracture deformation model is mechanically decoupled from 

FEM analysis. To solve the coupling between fracture deformation and elemental strain, 

sophisticated fracture deformation models (e.g., Huang et al. 2011) are required. 
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4.6.2 Rate-and-state Friction (RSF) Model 

Slip on natural fractures is an important mechanism to increase permeability and to cause 

microseismicity during reservoir stimulation. The mechanism of slip on fractures is a highly 

complex process involving many factors such as fracture geometry, the stress field and the 

constitutive frictional law. Among these factors, the constitutive friction law is a particularly 

important one, since it represents the material characteristics of a fracture, while other factors are 

condition dependent. There are various forms of constitutive frictional laws existing, such as 

constant friction law, slip weakening law and rate-and-state (RSF) dependent friction law. 

Slip weakening law is a widely used constitutive law to simulate the loss of frictional resistance to 

shear and the residual strength of the pre-existing fractures. It assumes that the weakening process 

of the frictional strength is a function of the slip distance only. The simplest slip weakening law is 

in a linear form (Ide 1972; Palmer & Rice 1973), which implies a constant weakening rate: 

( )s s k

c

u

d
       when cu d                                                                                                        (4.57) 

k   when cu d                                                                                                                           (4.58) 

Where s  is the static friction coefficient; k  is kinetic friction coefficient, which is independent 

of slip velocity; cd is the critical value of slip, i.e., the characteristic slip distance, and u  is the slip 

distance. 

As shown in Figure 4.24, for a certain value of the relative shear slip along the fracture, friction 

decreases linearly from the peak value to a residual value. Although the slip weakening friction 

law can describe the dynamic behavior of fault slip and has a straightforward numerical 

implementation, it could not precisely capture the velocity dependence and time dependence of 

friction in experimental observations (Dieterich 1979). 
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Figure 4.24. Linear slip weakening friction law assumes friction decreases from a static value to 

a kinetic value linearly over the slip distance. 

 

Rate-and-state friction (RSF) is another commonly used constitutive frictional law to describe 

friction evolution on a fault. It was introduced by Dieterich (1979) and Ruina (1983) in the early 

1980s based on laboratory observations of rock friction. Now it is widely used in earthquake 

modeling to describe friction evolution on a fault. According to RSF, the coefficient of friction 

changes over time as a function of sliding velocity and the past sliding history of the fault 

(Dieterich 1979; Ruina 1983): 

0
0

0

ln ln
c

vv
a b

v d


                                                                                                               (4.59) 

Where 0v  is a reference velocity; 0  is the steady state friction at 0v v ; a  and b  are 

dimensionless material constants, representing the magnitude of the direct effect and the evolution 

effect, respectively, i.e., the rate at which the friction coefficient varies with the change in velocity 

and in the state variable, respectively; cd  is the characteristic slip distance over which evolution 
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to a new steady state occurs, which can be estimated from laboratory friction measurements; The 

magnitude of cd  depends on the surface roughness and fault gouge (Dieterich 1979), which is 

typically on the order of microns in the laboratory scale;   is a state variable which changes over 

time as friction evolves on the fault; It represents the surface memory of previous sliding history 

(Ruina 1983) and can be interpreted as the damage that has occurred on the fault surface. 

Among many empirical state evolution laws that have been proposed, the two most commonly 

used forms are the aging law (Dieterich 1979) and the slip law (Ruina 1983). 

The aging law (Dieterich 1979) allows the state to evolve even as 0v . At zero slip velocity,   

increases linearly with the elapsed time:  

1
c

d v

dt d

 
                                                                                                                                  (4.60) 

The slip law (Ruina 1983) allows the state to evolve only with slip, i.e., 
d

dt


 vanishes when 0v 

: 

ln( )
c c

d v v

dt d d

  
                                                                                                                         (4.61) 

The aging law is more consistence with laboratory test data (Ruina 1983; Segall et al. 2010), while 

the slip law appears to be more relevant to nucleation (Ampuero and Rubin 2008; Segall et al. 

2010). Although the two state evolution laws have their own physical implications, they will 

exhibit the steady state sliding ( 0
d

dt


 ) when 1

c

v

d


 , i.e., the steady state friction coefficient is 

the same for both laws. The steady state   at slip velocity v  is identical for the two laws: 

cd

v
                                                                                                                                           (4.62) 
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Therefore, irrespective of the choice of state evolution law, the steady state friction coefficient is 

given by: 

 0

0

ln
v

a b
v

                                                                                                                          (4.63) 

The magnitudes of the parameters a and b are of order 0.01 (Ruina 1983), which are much smaller 

than the friction coefficient (of order 0.6~1.0). Their relatively small values are consistent with the 

observation that the variation in friction coefficient during a sliding event is usually small. The 

relative magnitudes of the parameters a and b determine whether or not the slip occurs in a stable 

or unstable condition (Ruina 1983; Dieterich 2007). The coefficient for the logarithmic term in 

Eqn. (4.63), a-b, may be either positive or negative, depending on the experimental conditions and 

the rock specimens. The condition a>b is referred to as velocity strengthening. The friction 

coefficient increases following an increase in velocity, and slips are stable. In contrast, the 

condition a<b is referred to as velocity weakening, and unstable slips will occur. 

             

Figure 4.25. Rate-and-state friction law. Left: stable (velocity strengthening); Right: unstable 

(velocity weakening). 
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The numerical implementation of a RSF model is significantly more computationally intensive 

than a constant friction coefficient model as it requires very fine spatial and temporal discretization 

to avoid numerical instability and to capture the rapidly changing rate-and-state dependent 

evolution (LaPusta 2011). In this work, to make a tradeoff between accuracy and efficiency, we 

assume the friction evolution on the fractures caused by shear slippage is in the steady state. 

Considering the time scale over which the evolution to steady state occurs (on the order of 10-8 ~ 

10-1 s; based on fracture slip velocity on the order of 10-5 ~ 102 m/s (Rowe and Griffith 2015) and 

characteristic slip distance on the order of 10-6 m) is extremely small compared to the numerical 

time step (on the order of 100 ~ 104 s), it is reasonable to make this assumption. 

The RSF model is carried out sequentially after fracture shear slippage analysis. At each time step, 

the slip velocity for each slipped fracture is approximately calculated from its shear slip 

displacement over the time interval: 

sU
v

t
                                                                                                                                           (4.64) 

Then the steady state friction coefficient is calculated using Eqn. (4.59), and updated for the next 

time step to evaluate the slip condition for this fracture. 

 

4.6.3 Induced Microseismicity 

When shear slip on a fracture plane occurs, seismic energy is released and micro-earthquake 

(MEQ) is induced. The released seismic energy can be quantified by the event moment (McGarr 

et al. 1979), which is an integral of shear modulus times the shear displacement over the fracture 

area: 

0 sM GU dA                                                                                                                             (4.65) 
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Where 0M  is the seismic moment; G  is the shear modulus of the fracture embedded in the rock; 

A  is the slip area, i.e., the area of fracture surface. 

The location of the induced MEQ is assumed to be the center of each slipped fracture. The moment 

magnitude of an MEQ can be obtained from the relationship (Hanks and Kanamori 1979): 

0

2
log 10.7

3
M M                                                                                                                    (4.66) 

Where M  is the seismic magnitude; 0M  is in dyn·cm. 

 

4.7 Fracture Growth 

In this work, an analytical method of mixed-mode (mode I and mode II) fracture propagation 

(Rahman et al. 2002) is used to examine the growth of a natural fracture. 

A penny-shaped fracture embedded in a rock block is compressed by in-situ stresses, as shown in 

Figure 4.26. The fracture is oriented at an angle of α with the maximum principal stress σ1. The 

fracture is internally pressurized by a fluid pressure Pf. Although a penny-shaped crack is more of 

a 3D nature, it can be treated as 2D problem when the fracture is assumed to be axially symmetric 

and a plane strain condition exists (Sneddon 1946, Valko and Economides 1995, Rahman et al. 

2000). 
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Figure 4.26. A penny-shaped fracture subjected to far field stresses (σ1 and σ3) and internal 

pressure (Pf) (reproduced from Rahman et al. 2002). 

 

The normal and shear stresses acting on a fracture plane are: 

2 2

1 3sin cosn                                                                                                                       (4.67) 

 1 3

1
sin 2

2
                                                                                                                        (4.68) 

The value of shear resistance f  for the case of a fracture opened by fluid pressure is very small 

compared to the applied shear stress  , and therefore is neglected. The net pressure and the 

effective shear stresses acting on the fracture surface could be written as: 

 2 2

1 3sin cosn f n fP P P                                                                                                  (4.69) 
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eff f                                                                                                             (4.70) 
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The stress intensity factor is a parameter used to predict the stress state in the vicinity of a crack 

tip caused by a remote loading or residual stress. The mode I (opening) and mode II (shearing) 

stress intensity factors (Rice 1968) for a crack are: 

I nK C lP                                                                                                                                   (4.71) 

II effC lK                                                                                                                                   (4.72) 

Where IK  and IIK  are the mode I and mode II stress intensity factor, respectively; nP  and eff  

are the net pressure and the effective shear stresses acting on the fracture surface, respectively; l  

is the fracture half length, i.e., radius; C  is the geometry coefficient. For a penny-shaped fracture, 

C  is 2 /   (Rice 1968). 

As shown in Figure 4.26, for an internally pressurized penny-shaped fracture oriented with the 

maximum principal stress 1  by an angle  , the stress intensity factors are: 

 2 2

1 3sin2 cosI f
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The equivalent mode I stress intensity factor is calculated as: 
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According to the maximum tensile stress criterion (Erdogan and Sih 1963), the fracture will 

propagate if: 

eff

I IcK K                                                                                                                                         (4.76) 

Where IcK  is the mode I fracture toughness, which is material dependent and can be determined 

from laboratory measurements. 
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The fracture tip propagation angle is: 

0 0   if  0IIK                                                                                                                                (4.77) 
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Two values of 0  are obtained from Eqn. (4.78) using positive and negative signs before the square 

root term. The angle which produces the maximum tensile stress max  (Eqn. (4.79)) is taken as 

the propagation direction of the fracture tip. 
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To estimate how far the fracture tip will propagate along 
0 with respect to its current direction 

and to predict the propagation path, a pure analytical approach (Rahman et al. 2000) is used. For 

an initial internally pressurized penny-shaped fracture subjected to far field stresses, the stress 

intensity factors IK  and IIK  and the fracture tip propagation angle 0  can be calculated as 

discussed before. The tip of the initial fracture propagates along 0  up to a new location by an 

incremental length in fracture radius, r . Rahman et al. (2000) suggested that any value of r  

between 5% and 10% of the original fracture radius would provide reasonably accurate results. 

As shown in Figure 4.27, the center of an initial fracture is located at the origin O. The tip of the 

initial fracture A propagates along 0i  to the new tip B by an incremental length, r . The new 

fracture plane O-B rotates at an angle of 1i   from the initial fracture plane O-A.  
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Figure 4.27. Illustration of fracture tip propagation path (reproduced from Rahman et al. 2000). 

 

The change in the orientation angle of a propagated fracture can be calculated from geometric 

relationships (Rahman et al. 2000): 
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The new half-length and the new orientation of the new fracture plane can be calculated as: 

2 2

1 02 cosi i i il l r l r                                                                                                                 (4.81) 

1 1i i ij                                                                                                                                    (4.82) 

Where j  is the direction vector; 1j   if 0i  is positive (counterclockwise); 1j    if 0i  is 

negative (clockwise). 

The coordinates of the new fracture tip are: 

1 1 1cosi i iX l                                                                                                                                (4.83) 

1 1 1sini i iY l                                                                                                                               (4.84) 
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At the new location, the new stress intensity factors and new propagation direction are calculated 

to determine the next step of propagation. This process is repeated sequentially until the fracture 

becomes stable (i.e., eff

I IcK K ). 

When modeling the deformational response of a natural fracture network, it is assumed that a 

fracture will propagate if its net fracture pressure is positive ( 0nP  ), i.e., when the pressure inside 

the fracture exceeds the normal stress acting on it. In the case of negative net fracture pressure (

0nP  ), the mode I (opening) stress intensity factor IK  is negative. However, the presence of mode 

II (shearing) stress intensity factor IIK  may cause the effective stress intensity factor eff

IK  to be 

greater than the fracture toughness IcK , and it may result in a very complex twisted non-planar 

geometry (Rahman et al. 2000), which is not considered in this study. In a natural fracture network, 

once the propagated fracture coalesces with another nearby fracture or reaches the model boundary 

or the net fracture pressure becomes compressive (Rahman et al. 2000), the propagation process 

will be terminated. 

In practice, due to the effect of mixed-mode propagation, the final shape of the propagated 

fractures can be reoriented or twisted, which requires sophisticated mathematical tools for exact 

solutions to the non-planar problems. Since the propagated length is relatively short compared to 

the initial length and the amount of the fracture plane reorientation is usually smaller than that of 

the initial orientation, it is reasonable to assume the final fracture remains in the same initial plane 

(Hossain 2001). After the propagation process, the radius of the propagated fractures is updated 

for the next time step. 

When natural fractures are subjected to fluid injection and slipped in shear, the stress intensity at 

the fracture tips could be increased, and wing cracks could initiate from the fracture tips at an angle 

of approximately 70 ° from the pre-existing fracture plane and propagate toward the maximum in-
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situ direction (e.g., Jung 2013; Kamali and Ghassemi 2016 and 2018; Ye and Ghassemi 2018). To 

include the propagation of shear slippage induced wing cracks, an analytical approach (Jung 2013) 

is used. 

 

Figure 4.28. Illustration of wing crack propagation (reproduced from Jung 2013). 

 

The criterion of the initiation of wing cracks (Cotterell and Rice 1980; Jung 2013) is given as: 
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Where  ex n P       is the excess shear stress exceeding the Coulomb friction failure line; 

  and n  are the shear stress and normal stress acting on the fracture, respectively;   is the 

friction coefficient; P  is the fluid pressure in the fracture; IcK  is the fracture toughness; and 0L  

is the half length of the fracture, i.e., the radius. 

The length of the propagated wing crack parallel to the direction of the maximum principal stress 

is approximated as: 
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Where L  is the length of the wings; 3  is the minimum principal stress; and   is the angle 

between the fracture normal direction and the maximum principal stress, as shown in Figure 4.28. 

For each slipped fracture, its excess shear stress is calculated. If the criterion of wing crack 

initiation is satisfied, two wing cracks are considered to be initiated at the fracture tips and their 

propagation lengths are calculated from Eqn. (4.86). In this current work, the final geometry of the 

propagated fracture with shear slippage induced wings is approximated by adding two penny-

shaped fractures at the tips of the original fracture, orienting 70° to the initial fracture plane and 

with a radius equals to the half-length of the wings.  

 

Figure 4.29. Updated fracture geometry considering the propagated wing cracks. 

 

At each time step, the fracture growth condition is checked for each fracture. If a fracture grows, 

its geometry is updated for the next step. Consequently, the intersections between fractures are re-
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calculated to update the connectivity of the fracture network. The intersection relationships 

between fractures and finite element surfaces should also be re-calculated for equivalent 

permeability calculations. 

This analytical approach for modeling fracture propagation in naturally fractured reservoirs is 

computationally efficient compared to numerical methods, especially when dealing with a large 

number of natural fractures. However, due to its simplified 2D approximate solutions, the model 

does not have the capability to predict the geometry of the propagated fractures in 3D space. In 

addition, since this model assumes a planar extension for the pressurized fractures and 

approximates wing crack propagations by adding new fractures at the fracture tips, it is a simplified 

representation of the actual non-planar propagation problem. It may not accurately capture the 

changes in the fracture network connectivity caused by fracture propagation and consequently the 

overall reservoir hydraulic conductivity changes. Future model development effort in these areas 

is suggested. 

 

4.8 Integration with the Coupled FEM 

The fracture network model is integrated with the coupled thermo-poroelastic FEM by linking the 

equivalent permeability change with the fracture deformation and growth. On the one hand, at each 

time step, the fracture aperture data are input for the equivalent permeability used in the FEM. The 

stresses required for subsequent fracture deformation analysis are calculated from the FEM 

solutions. Once fractures deform, their apertures are updated in the next time step for following 

solutions. Permeability could also change as a result of fracture growth. The enlargement of 

fracture radii improves the connectivity of the fracture network, and consequently, enhances the 

hydraulic conductivity of the fractured medium. Therefore, fracture network geometry should also 
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be updated in the next time step. The step-by-step solution procedure for the integrated model is 

shown in Figure 4.30. 

 

Figure 4.30. Step-by-step solution procedure for the integrated model. 
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5. Model Verification 

In this chapter, we present the verification process of the developed numerical model. As fully 

verification of numerical models of complex natural geological systems is impossible (Oreskes et 

al. 1994), the individual components of this model are verified against analytical solutions or 

previously published numerical solutions when possible. 

 

5.1 FEM Solution to Thermo-poroelasticity 

In this section, the FEM solution to thermo-poroelasticity is firstly verified using problems of 

poroelastic consolidation and thermoelastic consolidation. The result from a code comparison 

against a benchmark problem of the poroelastic response in a fault zone is provided as well. The 

verifications have also been performed using thermo-poroelastic wellbore loading problem (Lee 

2011) and the poroelastic consolidation problems of Terzaghi and Mandel (Wang 2014). 

 

5.1.1 Poroelastic Consolidation 

The finite element model is firstly verified by compared to analytical solutions of Terzaghi’s 

classical 1D consolidation problem (Terzaghi 1923). An external normal load is applied 

instantaneously on the top surface of a fluid saturated porous sample. The fluid is allowed to 

dissipate only at the drained top surface. It is known as 1D consolidation since the deformation 

and pore fluid flow only occur in one direction.  



86 

 

Figure 5.1. Illustration of Terzaghi’s consolidation problem. 

 

The analytical solution for the pore pressure field as a function of time and space is (Terzaghi 

1923; Jaeger et al. 2007; Cheng 2016): 
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Where ( , )p z t is the pore pressure in depth z at time t; 
0p is the initial pore pressure; h is the 

thickness of the sample; k  is permeability;  is fluid viscosity; S is storage coefficient; erfc(x) is 

the coerror function, 
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The analytical solution of vertical displacement is: 
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                         (5.2) 

Where ( , )w z t  is the displacement in depth z  at time t ;   is the Lame’s parameter; G  is the shear 

modulus;   is the Biot effective stress coefficient; M  is the Biot modulus. 
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To verify our finite element model, the same problem is analyzed. The model setup is shown in 

Figure 5.2. The model extends from the top surface of z=0 m down to a depth of z=10 m. To 

consider a 1D consolidation problem, it is discretized using 8-node brick elements with 10 

elements and 44 nodes. The initial pore pressure in the domain is set to be 0 MPa. On the top 

surface where drainage is allowed, a uniform downward load of 1 MPa is applied suddenly, and 

the excess pore pressure on this surface is kept at 0 MPa. On all other sides, the normal component 

of displacement is fixed, and no flow of pore fluid is permitted. The material properties used in 

this example are given in Table 5.1. 

 

Figure 5.2. Finite element mesh for the Terzaghi’s consolidation problem. 

 

Table 5.1 Properties used in the Terzaghi’s problem 

Model Geometry 10 m x 1 m x 1 m 

Shear Modulus 12 GPa 

Poisson’s Ratio 0.15 

Undrained Poisson’s Ratio 0.29 

Biot’s Coefficient 1.0 

Permeability 0.5 md 

Fluid Viscosity 0.0003 Pa · s 

Applied Load 1 MPa 

 

z=0 m 

 

 

 

 

 

z=10 m 
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The FEM simulation results (shown in symbols) for pore pressure at different time are compared 

to analytical solutions (shown in solid lines) in Figure 5.3. The excess pore pressure is normalized 

by the magnitude of the applied load. The evolution of pore pressure shows that initially excess 

pore pressure is induced as a result of the applied load. As the pore fluid drains out from the top 

surface, the excess pore pressure dissipates, and pore pressure gradually returns to its initial value. 

 

Figure 5.3. Pore pressure profiles at different time. 

 

Similarly, simulation results for top surface displacement from FEM (shown in symbols) and 

analytical solutions (shown in solid lines) are compared in Figure 5.4. The applied load 

instantaneously induces rock deformation. As pore fluid drainage starts, the sample gradually 

consolidates. In both comparisons, our FEM results match excellently with the analytical solutions, 

which verify the capability of our FEM model for poroelastic analysis. 
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Figure 5.4. Displacement profiles at different time. 

 

5.1.2 Thermoelastic Consolidation 

The thermo-poroelastic part of the finite element model is verified by simulating the 1D 

thermoelastic consolidation behavior of a fully saturated soil column. 

 

Figure 5.5. Illustration of the 1D thermoelastic consolidation problem. 

 

The saturated soil column is 7 m in height, at an initial temperature of 0 °C and pore pressure of 0 

Pa. A constant surface compression load of 1 Pa and a constant temperature boundary of 50 °C are 
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applied on the top surface of the soil column. All the boundaries are assumed to be thermally 

insulated and impermeable with normal displacements constrained, except at the top surface. As 

shown in Figure 5.6, the column is discretized into 50 elements and 204 nodes. A refined mesh is 

used near the top surface to eliminate the numerical errors in transient heat transfer solutions. 

Parameters used in the model are listed in Table 5.2. 

 

Figure 5.6. Finite element mesh for the thermoelastic consolidation problem. 

 

Table 5.2 Properties used in the thermoelastic consolidation problem (Aboustit el al. 1982 and 

Noorishad et al. 1984) 

Model Geometry 7 m x 1 m x 1 m 

Young’s Modulus 6000 Pa 

Poisson’s Ratio 0.4 

Biot’s Coefficient 1.0 

Porosity 0.2 

Hydraulic Conductivity 4e-6 m/s 

Heat Capacity 167.2 KJ/m3/°C 

Thermal Conductivity 836.0 W/m/°C 

Thermal Expansion Coefficient 9e-7 

Initial Pore Pressure 0 Pa 

Initial Temperature 0 °C 

Surface Temperature 50 °C 

Applied Load 1 Pa 

z=0 m 

 

 

 

 

 

z=7 m 
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Due to lack of an analytical solution for the thermoelastic consolidation problem, a code-to-code 

comparison is performed. The results of the top surface displacement from the coupled finite 

element model are plotted in Figure 5.7, along with the numerical results obtained by Aboustit el 

al. (1982) and Noorishad et al. (1984) for comparison. The numerical results of an isothermal case 

are also compared with an analytical solution (Biot’s 1941). It shows that our finite element 

modeling results agree well with the results published in the literature, which verifies the capability 

of our model for fully coupled thermo-poroelastic analysis. 

 

Figure 5.7. Comparisons of our numerical solutions for displacement at the top surface in the 

thermoelastic consolidation problem (solid lines); and comparison to the analytical solution for the 

isothermal consolidation problem (dash lines). Good agreement is achieved. 

 

5.1.3 Benchmark Problem 

The finite element model has also been used in a code comparison study for solving a benchmark 

problem structured by the United States Department of Energy, Geothermal Technologies Office. 

This problem involves a poroelastic response to water injection in a fault zone within a geothermal 
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reservoir. It is based on recent observations at a test well in the Raft River EGS demonstration site 

in southern Idaho, which demonstrates a nonlinear permeability feedback from pressure changes 

(White et al. 2016). 

The schematic representation of this problem is shown in Figure 5.8. Water is injected from a 

vertical well at a constant rate of 80 kg/s, with the fluid entering the reservoir in a narrow (4 m 

thick) horizontal faulted layer at the depth of 2000 m. The injection is assumed under isothermal 

conditions, therefore, only the coupled poroelastic response is involved. 

 

Figure 5.8. Schematic of the benchmark problem (modified from White et al. 2016). 

 

A 1/8 symmetric Cartesian domain (Figure 5.9) is modeled. It includes 2 m of fault zone and 20 

m of dense reservoir rock surrounding the fault zone, and extends 2000 m away in the x and y 

directions. The bottom, top, left and front boundaries are treated as no flow, while fixed fluid 

pressure is applied on the right and back sides, with values equal to the initial fluid pressure. Actual 

wellbore injection boundary is taken into consideration by modeling the wellbore geometry 

explicitly. The constant injection rate is specified at the wellbore nodes and its corresponding 
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surface traction is applied on the wellbore. Water density and viscosity are kept constant. The 

parameters specified in this benchmark problem are given in Table 5.3. 

   

Figure 5.9. A 1/8 symmetric domain of the benchmark problem. Left: It includes 2 m of fault zone 

and 20 m of dense reservoir rock; Right: 2D planar view of the domain showing the applied surface 

traction on the wellbore. 

 

Table 5.3 Properties used in the benchmark problem (White et al. 2016) 

 Dense Rock Fault Zone 

Thickness (m) 20 2 

Young's Modulus (GPa) 600 800 

Poisson's Ratio 0.1 0.2 

Permeability (m2) 1.0E-18 1.0E-13 

Porosity 0.01 0.0001 

Pore Compressibility (Pa-1) 4.0E-10 1.0E-07 

Bulk Compressibility (Pa-1) 4.0E-12 1.0E-11 

Bulk Modulus (GPa) 250 100 

Overburden Stress (MPa) - 45 

Exponential Coefficient - 10 

Rock Density (kg/m3) 2500 

Water Viscosity (Pa.s) 2.02E-04 

Water Density (kg/m3) 936.42 

Water Compressibility (Pa-1) 4.48E-10 
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This problem considers a nonlinear permeability-fluid pressure feedback. Permeability is defined 

as an exponential function of hydrodynamic pressure in the fault zone (White et al. 2016). 

 0

0 exp
c P P

k k


 
  

 
                                                                                                (5.3) 

Where 0k  is the permeability at zero stress; the exponent c  is a fitting parameter which can be 

experimentally determined; P  and 0P  are the fluid pressure at the current time and at the initial 

condition, respectively;   is the total overburden stress. 

Two scenarios are modeled: (1) no leak-off scenario assuming the adjacent reservoir formation is 

impermeable and fluid is confined within the fault zone; (2) leak-off scenario considering a finite 

permeability of the reservoir formation, which allows the reservoir rock to receive fluid from the 

fault zone. 

 

Figure 5.10. Pressure evolution versus time at r=14.142 m for the no leak-off scenario (White et 

al. 2016). Our result is labeled as “OU”, which agrees well with the results of other participating 

teams. 

OU 
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Figure 5.11. Pressure evolution at r=14.142 m for the leak-off scenario (White et al. 2016). Our 

result is labeled as “OU”, which agrees well with the results of other participating teams. 

 

Comparisons of pressure solutions among all participating teams including universities, industry 

and U.S. national laboratories are illustrated in Figure 5.10 and Figure 5.11, for the no leak-off and 

leak-off scenarios, respectively. In both scenarios, our modeling results (labeled as “OU”) are in 

good agreements with the results from other participating teams, which verifies the capability of 

our finite element code for solving the coupled poroelastic problems. 

 

5.2 Heat Transfer in Fracture Network 

For the verification of heat transfer model in the fracture network, we solve a heat extraction 

problem in a single circular shaped fracture with a borehole doublet. 

A fracture of radius R is centered at the origin, containing a pair of injection and extraction wells, 

which are located at (-a, 0) and (a, 0), with an equal magnitude but opposite flow rate of +Q and –

OU 
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Q, respectively. With known initial temperature, injection temperature and flow rate, the 

temperature at the extraction well is solved and compared with the results obtained from an 

analytical solution (Rodemann 1982) and an integral equation solution (Ghassemi et al. 2003). 

The geometry and data set used in Rodemann (1982) for the Urach hot dry rock project is adopted 

for this numerical solution. As shown in Figure 5.12, the fracture radius is 50 m, and the spacing 

between the injection well (-31.25, 0) and extraction well (31.25, 0) is 62.5 m. The initial rock 

temperature is 140 °C, and the injection temperature is 60 °C. The flow rate is 0.003 m3/s. Other 

data are listed in Table 5.4. 

Table 5.4 Properties used in the heat transfer verification problem 

Rock Temperature 140 °C 

Injection Temperature 60 °C 

Fracture Radius 50 m 

Fracture Width 0.001 m 

Half Distance between Boreholes 31.25 m 

Flow Rate 0.003 m3/s 

Water Viscosity 0.0003 Pa·s 

Water Density 1000 kg/m3 

Rock Density 2700 kg/m3 

Specific Heat Capacity of Water 4180 J/Kg/K 

Specific Heat Capacity of Rock 840 J/Kg/K 
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Figure 5.12. Geometry of the heat extraction problem. The fracture radius is 50 m. The distance 

between injection and production well is 62.5 m. 

 

To represent the fracture and doublet system, we generated a fracture network that consists of 3 

interconnected fractures: an injection fracture, a solution fracture, and an extraction fracture, with 

a radius set to be 0.1 m, 50 m, and 0.1m, respectively. The intersections with the injection and 

extraction fracture are at (-31.25, 0) and (31.25, 0), respectively, which is the same as in the 

problem description. The intersection of the injection/extraction fracture and the solution fracture 

is a line with a length equal to the diameter of the injection/extraction fracture. Considering the 

contrast between the intersection line length (0.2 m) and the diameter of the fracture (100 m), it is 

still reasonable to treat the injection/extraction fractures as “point source”. A fracture width of 

0.001 m is assigned to all three fractures, and is fixed during the simulation to exclude the change 

in internal thermal energy caused by fracture volume change. 

To initiate the fluid flow from the injection fracture to the extraction fracture with a rate of 0.003 

m3/s, a pressure gradient is applied on the fracture network, as shown in Figure 5.13. 

 

Injection well Extraction well 
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Figure 5.13. Pressure profile on the fracture. Fluid flows from the injection fracture to the 

extraction fracture under the pressure gradient. 

 

Using the heat transfer model developed in this study (Chapter 4.5), the temperature distribution 

within the fracture network can be obtained. Figure 5.14 shows the temperature result after 3 days 

of injection. The temperature in the solution fracture is 136.8 °C. In our heat transfer model, the 

temperature on a fracture is assumed to be constant throughout the fracture surface, which results 

in a uniform temperature distribution pattern on each fracture. Besides, it is assumed that fluid 

exits a fracture at the same temperature as the current temperature in it. Therefore, the extraction 

temperature is 136.8 °C. 

The fluid temperature in the fracture after 3 days of injection has also been obtained analytically 

by Rodemann (1982) and by using an integral equation solution by Ghassemi et al. (2003) (Figure 

5.15). Both of them show that after 3 days of injection, the fluid temperature at the extraction point 

is approximately 137 °C, which is very close to our results. 

Injection well Extraction well 
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Figure 5.14. Temperature distribution within the fracture network. At the time of 3 days, the 

extraction fluid temperature is 136.8 °C. 

 

   

Figure 5.15. Fluid temperature distribution in a circular fracture after 3 days injection. Left: from 

analytical solution (Rodemann 1982); Right: from an integral equation solution (Ghassemi et al. 

2003). Both show an extraction temperature of approximately 137 °C, which is close to our results. 

 

The numerical results presented here are in good agreements with other published results, which 

verifies the capability of the proposed model in solving heat transfer problems in fracture networks. 

Injection well Extraction well 
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At this moment, the detailed 2D temperature distribution on individual fracture plane is not 

available. It may be achieved by the implementation of the image theory and requires further model 

improvement in the future. 

 

5.3 Fracture Growth 

The analytical method of mixed-mode fracture propagation has been verified through numerical 

results by Hossain (2001) and Kumar (2018). The stress intensity factors were firstly compared 

with those obtained from a boundary element based fracture analysis program FRANC3D and 

those obtained from a boundary element method based simulator GeoFrac3D using a crack-tip 

opening displacement approach (Kumar and Ghassemi 2015). The tip propagation path predicted 

by the proposed analytical method was also compared with that obtained from the FRANC3D and 

the GeoFrac3D analysis. In this study, the same validation problems are solved, and the results are 

presented for comparisons. 

As shown in Figure 5.16, an internally pressurized penny-shaped fracture is subjected to far field 

stresses. The half-length of the fracture is 10 m, and it inclines at an angle with respect to the 

maximum principal stress direction. The fluid pressure inside the fracture is assumed to be constant 

throughout the fracture surface. The geometrical and mechanical properties for the model are listed 

in Table 5.5. 

Table 5.5 Properties used in the crack propagation model 

Fracture radius (half length) 10 m 

Fracture inclination 15°, 30° and 45° 

Mode I fracture toughness 1.25 MPa·m0.5 

Fracture internal pressure 80 MPa 

Maximum principal stress 92 MPa 

Maximum principal stress 63 MPa 
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Figure 5.16. An inclined penny-shaped fracture subjected to internal pressure and far field stresses 

(left); 2D view of the inclined penny-shaped fracture (right). 

 

The stress intensity factors are estimated using Eqn. (3.69) and (3.70), for different fracture 

orientations: inclined 15°, 30° and 45° with respect to the maximum principal stress direction. The 

analytical results are plotted in Figure 5.17, along with those obtained from FRANC3D (Hossain 

2001) and from GeoFrac3D (Kumar 2018). Our analytical results are identical to those published 

in Hossain 2011, since the same equations are applied for stress intensity factor calculations. It can 

be seen that the analytical results agree well with the numerical results for different fracture 

orientations.  

σ3 

σ1 

σ3 

σ1 
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Figure 5.17. Comparison of stress intensity factors from the analytical method with numerical 

results from FRANC3D (Hossain 2001) and GeoFrac3D (Kumar 2018). 

 

The comparisons between the fracture tip propagation paths predicted by the proposed method and 

those from FRANC3D (Hossain 2001) are plotted in Figure 5.18. As summarized by Hossain 

(2001), for all fracture orientations, good agreements between the analytical and the numerical 

results are obtained. The analytical results of this current study also have a perfect match with the 

published analytical results. Our analytical results are also in good agreements with those obtained 

from GeoFrac3D (Kumar 2018) for the fracture orientations at 15° and 30°. 
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Figure 5.18. Comparison of fracture tip propagation path from the analytical method with 

numerical results from FRANC3D (data digitized from Hossain 2001). 

 

5.4 Rate-and-state Friction Model 

The implementation of the rate-and-state-friction (RSF) in the fracture network model is verified 

by comparing with results published in literature. Samuelson et al. (2011) presented the velocity 

weakening frictional response of a slipped fracture to a change in sliding velocity from 10 μm/s to 

30 μm/s, as described by a RSF model. For verification purpose, the same inputs are used in our 

RSF model, and the results are compared. The properties used in the verification problem are listed 

in Table 5.6. 

Table 5.6 Properties used in the RSF friction model verification 

Initial Friction Coefficient μ0 0.6 

Sliding Velocity v0 10 μm/s 

Sliding Velocity v 30 μm/s 

Parameter a 0.001 

Parameter b 0.0015 

Characteristic Slip Distance dc 25 μm 
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The results are plotted in Figure 5.19. In this case, since the direct effect parameter a is lower than 

the evolution effect parameter b, a velocity weakening behavior in the friction coefficient is 

predicted by the RSF model. A nearly perfect agreement between our RSF model results and the 

published data is observed. 

 

Figure 5.19. Comparison of friction evolutions predicted by our RSF model (red line) and 

published data (blue symbols). Perfect agreement is observed. 
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6. Numerical Examples 

In this chapter, we present numerical examples for injection experiments of naturally fractured 

reservoirs while taking into account thermo-poroelastic coupling and fracture network 

deformation. A sensitivity study is also performed to examine the influences of different fracture 

properties, reservoir parameters, and injection scheme on the shear stimulation outcome in 

fractured reservoirs. 

 

6.1 Injection Response of Fractured Reservoirs 

A simulation is firstly carried out to obtain a general view of the response of a synthetic 3D 

naturally fractured reservoir to fluid injection. 

 

6.1.1 Model Setup 

The geometric model used in this study is a reservoir block of 100 m x 100 m x 100 m. A natural 

fracture network of 20 penny-shaped fractures is stochastically generated in the domain using the 

approach described in Chapter 4. Poisson’s distribution, log-normal distribution and Fisher von 

Mises distribution are used for defining fracture location, size and orientation data, respectively. 

The input parameters for fracture generation are listed in Table 6.2. This domain is meshed into 

68,921 nodes and 64,000 brick elements with a uniform element size of 2.5 m x 2.5 m x 2.5 m. 

The geometry and mesh of this model are shown in Figure 6.1. 

 



106 

   

Figure 6.1. Simulation domain contains 20 stochastic fractures (left); A uniform mesh with 64,000 

elements (right). 

 

Table 6.1 Fracture network generation inputs  

Number of Fractures 20 

Mean of Fracture Radii (Log EX) 2.5 

Standard Deviation of Fracture Radii (Log SD) 0.3 

Size-aperture Coefficient 4.0E-5 

Fisher von Mises Orientation Parameter 2.8 

 

The injection well is considered to be located at the center of this model, with an injection interval 

of 20 m in the middle (from -10 m to 10 m). Considering the scale ratio of the simulation domain 

and the well radius, the injection interval is represented by injection elements in the vertical 

direction. A constant injection rate of 0.001 m3/s is specified at the injection wellbore. The top 

boundary of this domain is set to be an unconstrained free boundary, while zero normal 

displacements are applied for the bottom and lateral boundaries. All side boundaries are assumed 

to be no flow. 
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Assuming the reservoir is located at a depth of 2 km, and it is under a strike-slip faulting regime. 

The vertical stress is 45 MPa (Sv, z direction), the maximum horizontal stress is 50 MPa in the E-

W direction (SHmax, x direction), and the minimum horizontal stress is 30 MPa in the N-S direction 

(Shmin, y direction). The initial pore pressure is assumed to be 20 MPa. The initial reservoir 

temperature is 170 °C and the temperature of the injected fluid is 20 °C. The properties of reservoir 

rock and fractures are selected to represent a typical fractured EGS (Wang and Ghassemi 2013; 

Doonechaly et al. 2016; Ucar et al. 2016), and are summarized in Table 6.2. 

 

Table 6.2 Reservoir, fracture and fluid properties 

Rock Properties 

Young's Modulus 10 GPa 

Drained Poisson's Ratio 0.22 

Undrained Poisson's Ratio 0.46 

Biot's Coefficient 0.97 

Matrix Permeability 1E-17 m2 

Rock Porosity 0.2 

Rock Density 2400 kg/m3 

Thermal diffusivity 1.6E-6 m2/s 

Thermal Expansion Coefficient of Solid 1.8E-5 K-1 

Fracture Properties 

Basic Friction Angle 30°  

Shear Dilation Angle 2° 

90% Closure Stress 20 MPa 

Characteristic Slip Distance 2E-5 m 

Direct Effect Parameter 0.011 

Evolution Effect Parameter 0.020 

Reference Sliding Velocity 1E-12 m/s 

Mode I Fracture Toughness 2.0 MPa·m0.5 

Fluid Properties 

Fluid Density 1000 kg/m3 

Fluid viscosity 3E-4 Pa·s 

Fluid Bulk Modulus 2.235 GPa 

Fluid Compressibility 4.475E-5 Pa-1 
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Heat Capacity of Fluid 4200 J/(kg·K) 

Thermal Expansion Coefficient of Fluid 3.0E-4 K-1 

Stress State 

Maximum Horizontal Stress 50 MPa 

Minimum Horizontal Stress 30 MPa 

Vertical Stress 45 MPa 

Initial and Boundary Conditions 

Initial Pore Pressure 20 MPa 

Initial Reservoir Temperature 170 °C 

Injection Rate 0.001 m3/s 

Injecting Fluid Temperature 20 °C 

 

6.1.2 Simulation Results 

An injection duration of 9 hours is simulated, and the response of the fractured reservoir to 

injection is analyzed, in terms of spatial distribution of pressure and temperature changes, 

permeability evolution and injection induced micro-seismicity. 

In this model, the propagation of natural fractures is considered, and its effects on the simulation 

results are evaluated. Initially, only 8 out of 20 fractures are connected to the injection flow path, 

as shown in Figure 6.2 (left). After 6 hours of injection, 1 fracture starts to propagate. Since the 

propagated fracture is still in an isolated status, no new fractures are added to the existing flow 

path. As fluid is continued to be injected, this fracture continues to propagate and coalesces with 

a nearby fracture at the time of 8 hours. The second fracture propagation occurs after injection for 

9 hours. After fracture propagations, 6 more fractures get connected to the flow path and the 

connectivity of the fracture network is improved. As a consequence, the fluid flow within the 

fractured system and the stimulation outcome are affected, as will be discussed below. 

 



109 

   

   

Figure 6.2. Comparison of fracture network connectivity before (top left) and after fracture 

propagations (after 6, 8 and 9 hours injection). The interconnected fractures on the injection flow 

path are shown in green. The isolated fractures are shown in grey. The edges of the propagated 

fractures are shown in pink.  

 

The evolution of pore pressure distribution during the injection (at 1 hr, 4 hrs, 7 hrs, and 9 hrs) is 

shown in Figure 6.3. The results show that the pore pressure in the reservoir is elevated as injection 

continues. It can also be seen that the pore pressure development is controlled by the fracture 

network. The injection fluid mostly pressurizes the interconnected fractures other than the rock 

0 hr 6 hrs 

8 hrs 9 hrs 
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matrix, which is reasonable, since the permeability of the fractures (3E-12 m2 to 2E-10 m2) is 

several orders of magnitude higher than that of the matrix (1E-17 m2). 

   

   

Figure 6.3. Pore pressure development within the reservoir at different injection time (central slice 

x=0 and central slice z=0 are shown). 

 

The pore pressure evolutions on individual fractures are shown in Figure 6.4. Significant pore 

pressure increase is observed on the interconnected fractures, while there is less pore pressure 

increase on isolated fractures. The connectivity of the fracture network plays an essential role in 

fluid flow and pore pressure development. 

1 hr 4 hrs 

7 hrs 9 hrs 
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Figure 6.4. Pore pressure development within the fracture network at different injection time. 

 

The local 2D pore pressure distribution on individual fracture planes are also recorded. Figure 6.5 

shows an example of pressure development on a fracture plane after 1 hour and 6 hours of injection, 

respectively. This fracture is located in the center of this domain, with a center point at (0, 0, 0.5). 

Initially it has 3 intersections with the neighboring fractures. After 1 hour of injection, the pressure 

on this fracture surface is in the range of 21.0 MPa to 21.1 MPa, and its distribution is controlled 

by the relative strengths of the intersection line sources. After 6 hours of injection, this fracture 

has a new intersection with other fractures as a result of fracture propagation, and the pressure 

1 hr 4 hrs 

7 hrs 9 hrs 
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within this fracture is further increased to 25.44 MPa. It should be noted that this fracture has 

reached a steady state, resulting a nearly uniform local pressure distribution, as shown in the right 

figure in Figure 6.5. 

    

Figure 6.5. Example of 2D pore pressure development on a fracture plane at different injection 

time. The center point of this fracture is located at (0, 0, 0.5). 

 

Figure 6.6 shows the evolution of temperature distribution within the fracture network.  The results 

show that heat transfer is confined within the interconnected fracture network. Cooling occurs on 

early on the fractures that have direct connections with the injection well interval. As injection 

continues, the temperature front diffuses further into the fracture network and causes cooling on a 

few more fractures. After 9 hours of cold water injection, the average temperature of all fractures 

is reduced to 104 °C. No temperature change is observed on the isolated fractures, which again 

suggests that the heat transfer within the fractured rock is dominated by the convective heat transfer 

via fracture flow. 

1 hr 6 hrs 
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Figure 6.6. Temperature development within the fracture network at different injection time. 

 

In this simulation, both shear slippages and opening events are observed on fractures. Figure 6.7 

shows the slipped and opened fractures at different injection time. After 1 hour of injection, the 

pressure and stress changes are not sufficient to cause the fractures to slip in shear or mechanically 

open. After injecting for 4 hours, 5 fractures slip and 1 fracture opens. As injection continues, more 

slippage events occur. In the end of the 9 hours of injection, 12 fractures slip and 2 fracture open. 

1 hr 4 hrs 

7 hrs 9 hrs 
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Figure 6.7. Fracture status at different injection time. Slipped fractures are shown in red, and 

opened fractures are shown in green. The fractures shown in blue do not have status change. 

 

During injection, fracture deformation could lead to an increase in fracture aperture and 

consequently enhances the permeability. The evolution of fracture permeability is shown in Figure 

6.8. Significant permeability enhancement can be seen on most of the fractures. After 9 hours of 

injection, the maximum fracture permeability enhancement is approximately three-fold. 

1 hr 4 hrs 

7 hrs 9 hrs 
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Figure 6.8. Permeability development within the fracture network at different injection time. 

 

Figure 6.9 shows the permeability improvement in terms of equivalent permeability of finite 

elements at different injection time. It can be seen that the presence of natural fractures provides a 

good source of permeability in the fractured medium with low permeable rock matrix. After 

injection, the overall equivalent permeability of the fractured medium is improved. 

1 hr 4 hrs 

7 hrs 9 hrs 
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Figure 6.9. Equivalent permeability development within the reservoir at different injection time 

(central slice x=0 and central slice z=0 are shown). 

 

Shear slippage induced microseismic events are also recorded during the simulation. As shown in 

Figure 6.10, a few microseismic events occurred near the injection interval at the early stage of 

injection. As injection continues, more fractures slipped in shear and generated widely distributed 

microseismic events. After 9 hours of injection, a total of 12 microseismic events were generated. 

The stimulated zone indicated by microseismicity cloud has a similar shape as the pore pressure 

elevated zone. 

1 hr 4 hrs 

7 hrs 9 hrs 
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Figure 6.10. Injection induced microseismicity within the reservoir at different injection time. 

 

It can also be seen from Figure 6.10 that the magnitudes of microseismic events are not strongly 

related to the distance from the slipped fracture to the injection source. It is reasonable since 

seismic moments depend on both slip displacement and fracture geometry (Eqn. (4.61)), which are 

influenced by a number of parameters, such as the pore pressure and stress alterations, fracture 

orientation and fracture size. This simulation was also performed using different time step controls 

and the same results are produced. 

 

1 hr 4 hrs 

7 hrs 9 hrs 
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6.1.3 Discussion 

In this study, three types of the geomechanical response of fractures are considered: fracture 

opening, shear slippage, and fracture propagation. To examine the contribution of each mechanism 

to the stimulation outcome, we plot the average fracture aperture profile (Figure 6.11) and the 

average equivalent permeability profile (Figure 6.12) against the history of these events. 

It can be seen from Figure 6.11 that the average aperture of all fractures is increased from 0.16 

mm to 0.66 mm after injection, with an increase of 4 times. When injection begins, the temperature 

of the 3 fractures that intersecting the injection wellbore was immediately set to be 20 °C, which 

is the same as the injection fluid temperature. This cooling effect induces significant tensile stress, 

causes these fractures to open and significantly increases their apertures. As injection continues, 

shear slippages occur on some fractures and induce dilation in apertures. When propagation criteria 

are met, fractures propagate. After propagation, the connectivity of the entire fracture network 

could be improved, which contributes to further pressurization in the fracture network and benefits 

the stimulation outcome. The enhancement in fracture aperture and permeability is a result of the 

combined contributions from opening, shear slippage, and propagation. 
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Figure 6.11. Average fracture aperture profile and the corresponding fracture opening, shear 

slippage and propagation events. 

 

A similar response is found on the average permeability. As shown in Figure 6.12, after 9 hours 

of injection, due to the combined contributions of fracture opening, shear dilation and propagation, 

the average permeability is increased from 4.6E-16 m2 to 2.3E-14 m2, with an enhancement of 

approximately two folds. 
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Figure 6.12. Average permeability profile and the corresponding fracture opening, shear slippage 

and propagation events. 

 

In order to better understand the contributions on permeability enhancement from different 

mechanisms, we carried out three additional experiments for comparison: (1) isothermal case, 

without considering thermal effects; (2) shear dilation only case, without considering fracture 

propagation; and (3) constant friction case, without considering Rate-and-state friction effects. The 

case present earlier is referred to as the base case. In the comparison cases, all other settings are 

the same as the base case, and the same input parameters are used. The simulation results in terms 

of average fracture aperture and average permeability are shown in Figure 6.13 and Figure 6.14, 

respectively. 

Comparing the results in Figure 6.13 and Figure 6.14 clearly demonstrates that the stimulation 

outcomes are significantly influenced by thermal effects. When the difference between the 

fracture network 

connectivity significantly 

improves after propagation 

more fractures slipped 

fractures slipped & opened 
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injection temperature and the reservoir temperature is ignored, the enhancement in fracture 

aperture and permeability will be greatly underestimated. The inclusion of fracture propagation 

predicts higher permeability since the propagated fractures could increase the fracture network 

connectivity, which in turn result contributing higher permeability enhancement. When the rate-

and-state friction (RSF) model is included, higher shear displacement (Eqn. (4.48)) and higher 

dilated fracture aperture (Eqn. (4.49)) are obtained. Consequently, the predicted permeability is 

higher than the constant friction case. 

 

Figure 6.13. Comparison of average fracture aperture profiles predicted from different cases. 
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Figure 6.14. Comparison of average permeability profiles predicted from different cases. 

 

The selection of the friction model also influences the induced microseismicity. As shown in 

Figure 6.15, after 9 hours of injection, a total of 12 microseismic events are predicted by the RSF 

model, and 82% of these events have a seismic magnitude between 0.6 to 1.1. The results from the 

constant friction model show 11 microseismic events, and 83% of their magnitudes are in the range 

from 0.1 to 0.9. This comparison demonstrates that the RSF model would predict more 

microseismic events as well as higher seismic magnitudes than the constant friction model. In this 

simulation, a velocity weakening friction law (RSF parameter a<b) is assumed. When unstable slip 

event occurs, the shear strength of a fracture (Eqn. (4.45)) is reduced, which could generate higher 

excess shear stress and hence larger shear displacement (Eqn. (4.48)), compared to the constant 

friction model. As a result, the seismic moment (Eqn. (4.61)) and magnitude (Eqn. (4.62)) of a 

shear slippage induced microseismic event are larger. 
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Figure 6.15. Comparison of the injection induced microseismic clouds estimated from RSF model 

(left) and constant friction model (right), after 9 hours of injection. 

 

6.1.4 Case Summary 

This simulation example shows that the presence of a natural fracture network has a significant 

impact on the stimulation outcome in a fractured reservoir. Fluid flow and heat transfer within the 

reservoir are mostly controlled by the fracture network. Results also show that fracture could 

dilate, open, slip and propagate due to injection induced stress variations. During the injection 

process, increase in fracture aperture is observed, and it has a direct impact on reservoir 

permeability enhancement. From the simulation results, we have also seen the increases in fracture 

aperture and permeability result from the combined contributions of fracture opening, shear 

slippage, and propagation.  

Thermal effects play an important role in the stimulation process, especially when the opening of 

fractures due to cooling is considered. Ignoring the temperature difference between the injection 

fluid and the reservoir will cause a dramatic error in estimating the permeability development in 

fractured reservoirs. 

Rate-and-state Friction 

12 MEQs 

 

Constant Friction 

11 MEQs 
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The friction model should also be selected appropriately for evaluating injection induced shear 

slippage and the associated microseismicity, as it describes the fundamental frictional 

characteristics of a fracture. 

Fractures may propagate under certain injection conditions. The propagation of fractures also has 

a contribution to the stimulation outcomes, by improving the connectivity of the fracture network. 

The inclusion of a fracture propagation model along with the shear slippage model provides a 

better approach for analyzing the permeability enhancement mechanism in fractured reservoirs. 

The proposed model is shown to be capable of analyzing the dynamic response of a complex 

naturally fractured reservoir subject to injection, and it provides a powerful numerical tool for 

evaluating reservoir performance and stimulation outcome. 

 

6.2 Sensitivity Analysis 

In this study, we are interested in the key parameters controlling the response of naturally fractured 

reservoirs to fluid injection. After carrying out the small scale fracture network simulation, we 

conducted a sensitivity analysis on a fractured reservoir with a large scale fracture network, to 

investigate the effects of different parameters (e.g., number of fractures, fracture size and 

orientation, stress orientation, stress regime, differential stress, fluid viscosity, injection scheme) 

on the overall permeability enhancement and injection induced microseismicity results.  

 

6.2.1 Model Setup 

The same reservoir domain as in Section 6.1 is used, which is a block of 500 m x 500 m x 300 m. 

It is uniformly discretized into 75,000 brick elements. A large stochastic natural fracture network 

of 1000 penny-shaped fractures is generated using the parameters listed in Table 6.3. 
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Table 6.3 Fracture generation inputs 

Number of Fractures 1000 

Mean of Fracture Radii (Log EX) 2.3 

Standard Deviation of Fracture Radii (Log SD) 0.6 

Size-aperture Coefficient 4.0E-5 

Fisher von Mises Orientation Parameter 2.8 

 

   

Figure 6.16. Simulation domain contains 1000 stochastic fractures (left); A uniform mesh with 

75,000 elements (right). 

 

The fracture network geometry and the domain mesh are illustrated in Figure 6.16. It should be 

noted that fracture parameters are dependent on geological conditions and are more likely to be 

different in different stress regimes. However, the same set of fracture network is used in the 

sensitivity study for the purpose of comparison, except in the cases for evaluating the effects of 

fracture network properties, such as fracture number, size, and orientation, where different fracture 

networks are generated. 

In this sensitivity study, a constant injection pressure of 25 MPa is applied, and the injection is 

assumed to be under an isothermal condition, which means the temperature of the injected fluid is 
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the same as reservoir temperature. Exceptions are in the cases for evaluating the effects of injection 

rate and injection temperature, in which different values of injection rate are applied, and various 

temperature differences between injecting fluid and reservoir are considered, respectively. All 

other properties are the same as the previous simulation in Section 6.1. An injection duration of 

72 hours is simulated. The results of this sensitivity study are presented as below. 

 

6.2.2 Effect of Fracture Density 

Fracture network plays an important role in governing the response of a fractured reservoir to 

injection. To start with, we performed sensitivity studies on various fracture network properties, 

including statistical parameters controlling stochastic fracture distribution (fracture density, size, 

and orientation) and a mechanical parameter controlling the shear dilation response (fracture 

dilation angle). 

To study the effect of fracture density on reservoir permeability enhancement and induced 

seismicity during the injection process, three sets of fracture networks are generated with a 

different total number of fractures, nfrac: 500, 750 and 1000. 

The corresponding evolutions of the average permeability of the entire reservoir block (Eqn. 

(4.16)) during the 72 hours of injection are plotted in Figure 6.17. It is evident that the permeability 

enhancement increases with the increased number of fractures. In the three cases studied with a 

total of 500, 750 and 1000 fractures, the permeability is increased by 1.6, 2.3 and 3.3 times, 

respectively. We also notice that the initial permeability also increases with the increased fracture 

number. It is increased from 1.55E-16 m2 to 3.13E-16 m2 when the number of fractures varied 

from 500 to 1000. It is because the average reservoir directional permeability is calculated from 

the sum of elemental permeability (Eqn. (4.15)). The increased number of fractures contributes to 

achieving more elemental permeability in each direction, and hence in the overall reservoir block. 
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Figure 6.17. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different fracture number. 

 

Figure 6.18 shows the comparisons of induced microseismicity at the end of the 72 hours of 

injection and the corresponding pore pressure distribution within the fracture networks containing 

a different number of fractures. We could see from the figure that the injection induced 

microseismicity (left panels in Figure 6.18) is also sensitive to the number of fractures within the 

simulated reservoir domain. The number of microseismic events increases as increasing the total 

number of fractures. There are two main reasons for this response. First, as the total number of 

fractures increases, the number of fractures that are favorably oriented for slip is increased. Second, 

the increase in fracture number not only improves the initial reservoir permeability, but also 

contributes to the improvement of fracture network connectivity, which in turn results in a broader 

diffusion of fluid flow and elevated pore pressure (see right panels in Figure 6.18), and cause more 

fractures to slip and dilate. Therefore, the case with a larger fracture number has seen more 

microseismic events and a much more significant permeability enhancement. 
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Figure 6.18. Comparison of microseismic events and pore pressure distribution in fracture network 

after 72 hrs of injection for the cases of different fracture number. 

nfrac=500 

42 MEQs 

 

nfrac=750 

79 MEQs 

 

nfrac=1000 

141 MEQs 
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6.2.3 Effect of the Initial Fracture Size 

To investigate the effect of fracture size on overall permeability enhancement, three different 

values of the mean (  ) of log values of fracture radii are specified in stochastic fracture network 

generation: 2.1, 2.3 and 2.5, which corresponds to a mean fracture radius of 8 m, 10 m and 12 m, 

respectively. The other input variable in the log-normal distribution of fracture size, the standard 

deviation ( ) of ln r , is set to a constant value of 0.6 in this series of studies. 

Results are presented in Figure 6.19, which shows that when the mean fracture radius varies from 

8 m to 12 m, the average reservoir permeability at the end of the injection increases from 4.4E-16 

m2 to 2.2E-15 m2 revealing that larger fractures contribute more permeability enhancement during 

injection. It is evident from Eqn. (4.48) that larger fracture radius reduces shear stiffness and 

increases shear displacement. According to Eqn. (4.49), a higher stimulated aperture would be 

induced by shear dilation. Therefore, as a result, the enhancement of the overall reservoir 

permeability is improved. In addition, we also notice that the increase in fracture size also results 

in a higher initial reservoir permeability, which is similar to the effect of increasing fracture 

number. When the radii of fractures embedded in the fractured medium are enlarged, there will be 

more elements intersected by the fractures, which means higher elemental permeability, and hence 

higher average permeability of the fractured block. 
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Figure 6.19. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different fracture size. 

 

Similar to the effect of increasing fracture number, as the fracture size increases, the fracture 

network connectivity is improved, and consequently, the fluid flow diffusion and pressure increase 

within the reservoir domain are promoted. In Case 1, when the mean fracture radius is small, the 

flow has not yet diffused to the regions far from the injection well after 72 hours of injection. In 

contrary, a broader spatial distribution of fluid flow diffusion and pore pressure increase are 

observed in Case 3, in which the largest fracture size is assumed. Therefore, the fractures in Case 

3 are exposed more pressure increase, have a larger tendency to slip and induce more microseismic 

events, consequently more permeability enhancement. 
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Figure 6.20. Comparison of microseismic events after 72 hrs of injection for the cases of different 

mean fracture radius value. 

2.1  (mean radius=8 m) 

84 MEQs 

 

2.3  (mean radius=10 m)  

141 MEQs 
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6.2.4 Effect of Fracture Orientation 

Fracture orientation has a direct impact on determining the stresses acting on a fracture and hence 

the potential of fracture shear slippage. In order to investigate the effect of fracture orientation on 

the injection response of fractured reservoirs, we generated three stochastic fracture networks with 

a different distribution of fracture orientations using different Fisher coefficient value: (1) κ=1.8; 

(2) κ=2.8; and (3) κ=5.0. As mentioned earlier in Chapter 4.2, the Fisher coefficient measures the 

dispersion in fracture orientations. In Case 3, the higher Fisher coefficient generates fractures 

having a higher concentration around the mean direction. 

Figure 6.21 and Figure 6.22 shows the comparison of permeability enhancement and induced 

microseismic clouds in the three cases, respectively. 

 

Figure 6.21. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different fracture orientation distribution. 
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Figure 6.22. Comparison of microseismic events after 72 hrs of injection for the cases of different 

fracture orientation distribution parameter. 

κ=2.8 

144 MEQs 

 

κ=1.8 

88 MEQs 

 

κ=5.0 

187 MEQs 
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The role of fracture orientations is evident. For the settings in this series of study, both the 

enhancement in reservoir permeability and the number of seismic events increase with increasing 

Fisher coefficient, which means the fracture network with a highly concentrated orientation 

distribution is favorable for shear stimulation. It is because in this study the mean orientation of 

the stochastic fractures is assumed to coincide with the direction of the maximum principal stress, 

which is a favorable orientation for shear slippage as a result of a relatively small pore pressure 

perturbation. Case 3 has more fractures aligned in this direction (right panels in Figure 6.22), and 

hence is more likely to have the greatest number of slipped events and result in a higher stimulated 

permeability. 

 

6.2.5 Effect of Fracture Dilation Angle 

Besides the distribution characteristics of natural fractures, the mechanical properties of fractures 

such as dilation angle also have an influence on the injection induced shear slippages and the 

associated permeability enhancement. For studying the effect of fracture shear dilation angle on 

the response of the fractured reservoir subject to injection, 3 sets of models were simulated with 

different dilation angle, dil : 2°, 3° and 4°. These are the typical values found in hot dry rock 

stimulation sites, representing smooth, fairly smooth and fairly smooth fracture surfaces, 

respectively (Willis-Richards et al. 1996). 

It can be observed from Figure 6.23 that the permeability enhancements are higher in the models 

with a higher dilation angle. In the cases studied here, for increasing the shear dilation angle from 

2° to 4°, the corresponding average reservoir permeability after 72 hours of injection increases 

from 1.04E-15 m2 to 2.82E-15 m2. 
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Figure 6.23. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different fracture dilation angle. 

 

The results of the induced microseismic events are plotted in Figure 6.24. It can be seen from this 

figure that both the number of the seismic events and the distribution pattern are similar in these 

three cases. In the cases studied here, changing the value of fracture dilation angle has little 

influence on the occurrence of injection induced shear slippage and the associated microseismicity. 

The difference in the permeability enhancements in Figure 6.23 could be explained as a result of 

the higher contribution of dilation in fractures with a higher value of dilation angle. It is evident 

that the increased shear dilation angle directly increases the effective shear dilation angle (Eqn. 

(4.46)). Although there is a decrease in the shear displacement (Eqn. (4.45) and (4.48)) due to the 

increased effective shear dilation angle, the resulting overall effect on the dilated aperture due to 

shear slippage (Eqn. (4.49)) is positive, hence the overall permeability is enhanced. 
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Figure 6.24. Comparison of microseismic events after 72 hrs of injection for the cases of different 

differential stress. 

 

6.2.6 Effect of the Rock Matrix Permeability 

To evaluate the effect of matrix permeability, three simulations are conducted using same 

properties except from the matrix permeability values: 0.005 mD (5E-18 m2), 0.05 mD (5E-17 m2) 

and 0.5 mD (5E-16 m2). 

2dil     

141 MEQs 

 

3dil     

156 MEQs 

 

4dil     

159 MEQs 
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The equivalent permeability is the sum of the matrix permeability and the fracture permeability. 

As expected, Figure 6.25 shows that in all three cases, the average reservoir permeability at the 

initial stage is higher than the matrix permeability. It confirms the presence of natural fractures 

does contribute to the overall reservoir permeability. The average reservoir permeability in Case 3 

is much higher than in the other two cases since it has a higher matrix permeability (0.5 mD). 

During injection, fractures dilate as a result of pore pressure and stress changes. As shown in Figure 

6.26, fracture dilation behavior is sensitive to matrix permeability. Cases 1 with the lowest matrix 

permeability (0.005 mD) results in the most signiciant increase in the average fracture aperture. 

The contribution of the dilated apertures to reservoir permeability enhancement could also be seen 

in Figure 6.25. After 72 hours of injection, the average reservoir permeability in Case 1, 2 and 3 

is increased by 6.0, 3.2 and 1.8 times, respectively.  

 

Figure 6.25. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different matrix permeability. 
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Figure 6.26. Comparison of average fracture aperture increase during 72 hrs of injection for the 

cases of different matrix permeability. 

 

The resulting microseismic events also depend on the matrix permeability, as shown in Figure 

6.27. As matrix permeability decreases, the number of induced microseismic events increases, 

which is consistent with the observations in fracture aperture and permeability evolution. It is 

because the low matrix permeability prevents the diffusion of fluid flow into the matrix and 

provides higher pressure increases in the fractures (Figure 6.27), which consequently results in 

more aperture increase and more permeability enhancement. Results of these simulations show 

that fracture slippage and consequently permeability of the fractured rock is significantly affected 

by the permeability of the rock matrix. Permeability enhancement attributed to the mechanism of 

fracture shear dilation is more significant in low permeable reservoirs. 
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Figure 6.27. Comparison of microseismic events and pore pressure distribution in fracture network 

after 72 hrs of injection for the cases of different matrix permeability. 
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6.2.6 Effect of the In-situ Stress Orientation 

The stresses acting on a fracture depends on its direction relative to the in-situ principal stresses as 

well as the magnitudes of these principal stresses. Therefore, it is important to investigate the 

effects of various in-situ stress conditions on the resulting induced microseismicity and 

permeability evolution during the injection process. 

The first parameter investigated is the stress orientation. For the assumed normal faulting regime 

(Sv=50 MPa, SHmax=40 MPa and SHmin=35 MPa), two cases are examined: (1) the orientation of 

the maximum horizontal stress SHmax is in the N-S direction; (2) the orientation of the maximum 

horizontal stress SHmax is in the E-W direction. 

Figure 6.28 illustrates the evolution of the average permeability of the entire reservoir block. 

Comparing the permeability curves in Figure 6.28, it can be seen that the permeability 

enhancement is significantly higher for the case when SHmax is in the N-S direction compared to 

the case with SHmax in the E-W direction. We also notice that there is a discrepancy in the average 

permeability in these two cases at the beginning of the injection (t=0). It is because, for a given 

fracture, the initial fracture aperture 0a  at zero effective stress is assumed to be proportional to 

fracture size (Eqn. (4.3)), and is the same in both cases. In this work, stress-dependent permeability 

model is used. When the same fracture network is subjected into different stress conditions, the 

initial in-situ aperture of the fractures (Eqn. (4.50)) varies, which resulting different values of 

initial permeability in the two cases. 
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Figure 6.28. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different maximum horizontal stress azimuth. 

 

During simulation, the injection induced microseismic events are also recorded. As shown in 

Figure 6.29, when SHmax is in the N-S direction, a total of 141 MEQs occur after 72 hours of 

injection, while only 4 MEQs are induced when SHmax is rotated 90° to the E-W direction. This 

significant difference in MEQs explains the difference observed in the permeability evolution 

curves. In Case 1, where SHmax is in the N-S direction, more fractures slip in shear as a result of 

injection induced pressure and stress changes. Therefore, the permeability enhancement caused by 

shear dilation is much more significant. 



142 

   

Figure 6.29. Comparison of microseismic events after 72 hrs of injection for the cases of different 

maximum horizontal stress azimuth. 

 

Figure 6.30 shows the orientations of the slipped fractures after 72 hours of injection in both cases. 

The grey points represent the normal directions of all fractures in the domain, while colored points 

represent the slipped fractures and the color contour shows the magnitude of shear slippage 

induced microseismic events. It can be seen from this figure that in both cases, shear slippage 

occurs on the fractures whose normal orientations fall into a certain range with respect to the 

maximum horizontal stress. The fractures oriented close to the maximum horizontal stress 

direction are favorable to slip, and have greater contributions to the enhancement of permeability. 

In case 1, as there are more fractures generated align with its maximum horizontal stress direction, 

it could have more fractures to slip and dilate, inducing more microseismic events and significantly 

improving the overall permeability. The less number of microseismicity and less permeability 

enhancement observed in case 2 can be explained by the lack of optimally orientated fractures with 

respect to the stress orientation in this case. 

SHmax in N-S 

141 MEQs 

 

SHmax in E-W 

4 MEQs 
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Figure 6.30. Comparison of orientations of slipped fractures after 72 hrs of injection for the cases 

of different maximum horizontal stress azimuth. 

 

6.2.7 Effect of the Stress Regime 

The effect of stress regime on injection induced shear slip of fractures and permeability 

enhancement is also investigated. Three different far-field stress regimes are tested: (1) normal 

faulting (Sv=50 MPa, SHmax=45 MPa, Shmin=30 MPa), with vertical stress as the maximum in-situ 

stress component; (2) strike-slip faulting (SHmax=50 MPa, Sv =45 MPa, Shmin=30 MPa), with 

horizontal stresses as the maximum and minimum in-situ stresses; and (3) reverse faulting 

(SHmax=50 MPa, Shmin =45 MPa, Sv =30 MPa), with vertical stress as the minimum in-situ stress 

component. In all three cases, the magnitude of the maximum shear stress is identical, and the 

maximum and minimum horizontal stresses SHmax and Shmin are set in the N-S direction and in the 

E-W direction, respectively. 

The comparison of permeability enhancements is shown in Figure 6.31. Similar trends are 

observed in the models under normal faulting and strike-slip faulting regimes, which have more 

significant improvements in average reservoir permeability compared to the model in reverse 

SHmax 

SHmax 

SHmax in N-S 

141 MEQs 

 

SHmax in E-W 

4 MEQs 
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faulting. For most of the fractures present in this series of models, the normal faulting and strike-

slip faulting stress conditions tend to generate a lower effective normal stress on them, which 

reduces their shear strength and increases the possibility of shear slippage. We also note there is a 

variation in the initial permeability of the reservoir under different stress regimes. This is because 

the initial aperture of fractures is calculated based on their orientation relative to the in-situ 

principal stresses. For this given stochastically generated fracture network, several large fractures 

that are governing the average reservoir permeability tend to have a lower normal stress and a 

larger initial in-situ aperture under the reverse stress condition. Hence, the average initial 

permeability is higher in the reverse faulting regime compared to the other two regimes. 

 

Figure 6.31. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different stress regime. 

 



145 

   

   

   

Figure 6.32. Comparison of microseismic events and orientations of slipped fractures after 72 hrs 

of injection for the cases of different differential stress. 
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As expected, the comparison of induced microseismicity in Figure 6.32 also shows sensitivity to 

the in-situ stress regime. When the same set of fractures is subjected to different stress regime, the 

slipped fractures show different orientations. These observations again demonstrate the important 

role of fracture orientation with respect to the in-situ stresses in the fracture shear behavior. For 

the given fracture network, normal faulting and strike-slip faulting are more favorable for creating 

shear slippage on fractures. We also note that in all three stress regimes, the distributions of the 

resulting microseismic events are quite scatted, without showing a preferred growth direction. It 

may due to the fact that we ignore the dependence of fracture distribution parameters on geological 

conditions and in-situ stress fields. 

 

6.2.8 Effect of Differential Stress 

A series of simulations are also conducted for various differential stresses to investigate their 

effects on the response of fractured reservoirs to fluid injection. For the assumed normal faulting 

regime, different magnitudes of the differential stress (dS) between the maximum principal stress 

(Sv) and the minimum principal stress (Shmin) are applied, by keeping Shmin fixed at 30 MPa and 

changing the values of Sv. Three cases are studied: (1) Sv=53 MPa and dS=23 MPa; (2) Sv=50 MPa 

and dS=20 MPa; and (3) Sv=47 MPa and dS=17 MPa. 

The resulting permeability evolutions are illustrated in Figure 6.33. In Case 3, after 72 hours of 

injection, the average permeability in the reservoir block is significantly increased from 3.15E-16 

m2 to 3.36E-16 m2, which is increased by 7%. Significant permeability enhancements are observed 

in Case 1 and Case 2. When the differential stress is increased to 20 MPa in Case 2, the average 

reservoir permeability is increased by 3.3 times, increased from 3.13E-16 m2 to 1.04E-15 m2. A 

much more significant permeability enhancement is observed in Case 1, as the differential stress 

is further increased to 23 MPa, where the average permeability was increased by 5.3 times, from 
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3.20E-16 m2 to 1.70E-15 m2. It can also be seen from Figure 6.33 that in Case 1 and Case 2, after 

a certain duration of injection, the rate of permeability increase slows down, and the reservoir 

permeability tends to reach a plateau value, which is reasonable for the assumed constant injection 

pressure boundary. As injection continues, the entire reservoir reaches equilibrium in pressure, 

therefore, no further enhancement in permeability will develop. We also note that the equilibrium 

state is reached earlier in Case 1, at about 24 hours of injection. It is due to the faster fluid diffusion 

in the reservoir as a result of significant permeability enhancement occurred in the early stage of 

the injection process. 

 

Figure 6.33. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different deviatoric stress between the vertical and the minimum horizontal stresses (dS= Sv - 

Shmin). 

 

The response of induced microseismicity is also sensitive to the differential stress change, as 

shown in Figure 6.34. The results indicate that higher differential stress has the highest propensity 

to promote slip, dilate and increase permeability. After 72 hours of injection, Case 1 and Case 2 
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predicted a total of 254 and 141 microseismic events, respectively. Only 1 fracture slipped and 

generated 1 microseismic event in Case 3. 

   

 

Figure 6.34. Comparison of microseismic events after 72 hrs of injection for the cases of different 

differential stress between the vertical and the minimum horizontal stresses (top left: dS=23 MPa; 

top right: dS=20 MPa; bottom: dS=17 MPa). 

 

The various response of the fractured reservoir to different differential stresses could be 

schematically explained with the aid of a Mohr diagram. In Figure 6.35, the Mohr circles defined 

by the difference between the maximum and minimum principal stresses in these three cases 
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studied are plotted, to show the states of initial stresses (colored semi-circles) in relation to the 

shear failure line (black straight line). As shown in this figure, keeping the minimum principal 

stress unchanged, as differential stress increases with increasing the magnitude of the maximum 

principal stress, the diameter of the Mohr circle is enlarged. Hence it is more likely to have shear 

slippages on fractures. In Case 3 (dS=23 MPa), the Mohr circle at the initial state already touches 

the failure line, and shear flip could occur on the critically stressed fractures. As injection starts, 

more fractures would slip, dilate and increase permeability as a result of injection induced 

perturbations in the pressure and stress field. Therefore, significant permeability enhancement and 

more microseismic events are expected for the cases with higher differential stress. 

 

Figure 6.35. Mohr diagram representation of different initial stress states. 

 

We also examined the cases that having the same value of differential stress, but different 

magnitudes of the initial maximum and minimum principal stresses. For the assumed normal 

faulting regime, three cases were designed: (1) Sv=53 MPa and Shmin=33 MPa; (2) Sv=50 MPa and 
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Shmin=30 MPa; and (3) Sv=47 MPa and Shmin=27 MPa. The differential stress, dS, is identical in 

these cases, with a value of 20 MPa. 

The resulting permeability evolution curves and microseismicity clouds are plotted in Figure 6.36 

and Figure 6.37, respectively, which show significant sensitivity to the principal stress magnitudes. 

Case 3 with the lowest initial principal stresses has a permeability increase from 7.9E-16 m2 to 

4.3E-15 m2 (increased by 5.5 times). In contrast, the permeability increase in Case 1 where the 

highest initial principal stresses were applied is from 2.40E-16 m2 to 2.46E-16 m2 (only increased 

by 2%). The difference in the initial average reservoir permeability is also attributed to the different 

initial principal stresses. The lower the applied in-situ compressive stresses, the higher the stress-

dependent fracture aperture, hence the higher the permeability. 

 

Figure 6.36. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different stress magnitudes. 

 

The resulting microseismic events are also significantly affected by the different stress magnitudes 

applied in the reservoir, as shown in Figure 6.37. After 72 hours of injection, no microseismic 
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events is observed in Case 1, the case with the highest initial principal stresses, which means 

fractures within the reservoir domain do not slip under such stress condition. As the initial stress 

magnitudes reduce, the number of slipped events is increased. A total of 141 events is observed in 

Case 2. The number is dramatically increased to 470 in Case 3. 

   

Figure 6.37. Comparison of microseismic events after 72 hrs of injection for the cases of different 

stress magnitudes (left: Sv=50 MPa and Shmin=30 MPa; right: Sv=47 MPa and Shmin=27 MPa). No 

microseismic events in Case 1 (Sv=53 MPa and Shmin=33 MPa). 

 

The various responses in the induced microseismicity could also be explained using a Mohr 

diagram. When the maximum and minimum principal stresses are increased by the same amount, 

the differential stress is unaffected. Therefore, the Mohr circle remains the same diameter and only 

shifts to the right, which means moving away from the failure envelope. As shown in Figure 6.38, 

the Mohr circle at the initial stress state in Case 3 (Sv=47 MPa and Shmin=27 MPa) already touches 

the failure line, suggesting fractures oriented at specific directions could slip under the initial in-

situ condition. It explains the dramatically enhancement in reservoir permeability at the early stage 

of injection. As the initial stresses continually increase, the Mohr circles in Case 2 and Case 1 

Sv=50 MPa, Shmin=30 MPa 

141 MEQs 

 

Sv=47 MPa, Shmin=27 MPa 
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move to the right, farther away from the failure line. After the same period of injection, Case 2 

observed less slipped events compared to Case 3. None of the fractures slipped under the stress 

condition in Case 1, where the highest initial stresses were applied. 

 

Figure 6.38. Mohr diagram representation of different initial stress magnitudes. 

 

6.2.9 Effect of Fluid Viscosity 

The properties of injecting fluid are important parameters to consider during the injection 

operation. Among them, the viscosity is probably the most important property as it directly governs 

the fluid flow (Eqn. (4.11)) within the reservoir and controls reservoir pressure change. We also 

conducted three injection simulations using different values of fluid viscosity μf: 1.6E-4 Pa·s, 3.0E-

4 Pa·s, and 1.0E-3 Pa·s, which corresponds to the water viscosity at 170 °C, 100 °C and 20 °C. 

Comparison of the resulting permeability resolutions is shown in Figure 6.39. It can be seen that 

after 72 hours of injection, the case with the highest fluid viscosity has the minimum increase in 

reservoir permeability. In the cases with lower viscosity, much significant permeability 
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enhancements are observed. These results suggest that a low viscous fluid is more favorable for 

enhancing the permeability in naturally fractured reservoirs via shear stimulation. 

 

Figure 6.39. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different fluid viscosities. 

 

Figure 6.40 shows the induced microseismicity after 72 hours of injection in each case and their 

corresponding pore pressure distributions. We could see from the figure that the induced 

microseismicity is also sensitive to fluid viscosity. The case with a lower fluid viscosity results in 

more microseismic events and has a broader distribution of the seismic cloud. This response could 

be explained by the difference in the pore pressure evolution processes. As a result of reducing 

fluid viscosity, the hydraulic conductivity is increased, which increases the diffusion speed of 

elevated pressure caused by injection. Consequently, the faster pressure disturbance within the 

fracture network tends to cause more fractures to slip in shear and dilate, inducing more seismic 

events and greatly enhancing reservoir permeability. In Case 1, when a low viscosity (1.6E-4 Pa·s) 

fluid is injected, the rapid fluid diffusion causes a much more significant disturbance of pore 
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pressure within the fracture network, and it induces more slipped events. Also, due to the fast 

diffusion, the pressure within the reservoir quickly reached the near equilibrium state after 40 hours 

of injection. Beyond which, there is no significant increase in reservoir permeability, as shown in 

the permeability curve of Case 1 in Figure 6.39. 

In conventional hydraulic fracturing aimed at creating new fractures, high viscous fluid/gel is 

usually preferred to reduce fluid leak-off into the formation (e.g., Hossain 2001), and to carry 

proppants that required to keep the induced hydraulic fracture open. On the contrary, the results 

from these sensitivity studies suggest that a low viscous fluid has positive effects on shear 

stimulation of natural fractures by promoting fluid and pressure diffusion in the fracture network. 

In addition, due to the roughness of sliding fracture surfaces, no proppants is required during the 

shear dilation process. Therefore, the use of a low viscous fluid is suitable for shear stimulation. 
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Figure 6.40. Comparison of microseismic events and pore pressure distribution in fracture network 

after 72 hrs of injection for the cases of different fluid viscosities. 
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6.2.10 Effect of Injection Rate 

The operational factors such as injection rate and volume are also important parameters to consider 

for stimulation designs. To investigate how the injection rate will affect the injection outcome, 

different value of injection rate is fixed at the wellbore, instead of a constant injection pressure in 

the previous studies. The stress condition is the same as in the base case, i.e., Sv is 45 MPa and 

SHmax and Shmin is 50 MPa and 30 MPa, respectively. Three injection rates, Qinj, are examined: 

0.025 m3/s, 0.050 m3/s and 0.075 m3/s. The same injection duration of 72 hours was simulated. 

Figure 6.41 shows the evolutions of average reservoir permeability against the injection time. It is 

clear from the figure that in all three cases, the overall permeability is greatly improved as a result 

of the injection. At the same injection time, a larger volume of fluid will be injected in the case of 

a higher injection rate, and the reservoir permeability enhancement is higher. 

 

Figure 6.41. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different injection rate. 
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The evolution of average reservoir permeability is also plotted against the injected volume in 

Figure 6.42. It shows that the permeability is continually improved as more volume of fluid is 

injected into the fractured reservoir. When injecting the same amount of fluid under different 

injection rate, much more significant permeability enhancement is observed in the case of a higher 

injection rate. 

 

Figure 6.42. Comparison of permeability enhancement against injected volume for the cases of 

different injection rate. 

 

Figure 6.43 shows the comparisons of injection induced microseismicity and the pore pressure 

distribution after injecting the same volume of fluid, 6480 m3, in the three cases. The corresponding 

injection time is 72 hours for Case 1 (Qinj=0.025 m3/s), 36 hours for Case 2 (Qinj=0.050 m3/s), and 

24 hours for Case 3 (Qinj=0.075 m3/s). The results suggest that both the number and the maximum 

magnitude of induced microseismic events could be increased by injecting the same volume during 

a short time, i.e., increasing injection rate. 
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Figure 6.43. Comparison of microseismic events and pore pressure distribution in fracture network 

after injecting the same volume of fluid (6480 m3) using different injection rate. 

Qinj=0.075 m3/s 

106 MEQs 

 

Qinj=0.05 m3/s 

90 MEQs 

 

Qinj=0.025 m3/s 

71 MEQs 
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Comparing the pore pressure distributions (right panels in Figure 6.43), we could see that an 

increase in the injection rate leads to higher pressure build up. As the higher pressure translates 

into lower effective normal stresses acting on fractures, it in turn promotes the possibility of 

fracture slippages. Therefore, a relatively high injection rate is favorable for enhancing reservoir 

permeability via the mechanism of fracture shear stimulation. 

We also examined the effects of injection rate under different stress differentials. We consider a 

low rate of 0.075 m3/s and a high rate of 0.15 m3/s, and two differential stresses between the 

maximum and minimum horizontal stresses (dS= SHmax - Shmin) with a magnitude of 1 MPa and 15 

MPa, respectively. The same vertical stress and the minimum horizontal stress are assumed in this 

series of studies, with a value of 30 MPa. Using different combinations of the two parameters, four 

cases are simulated: (1) dS=1 MPa and Qinj=0.075 m3/s; (2) dS=1 MPa and Qinj=0.15 m3/s; (3) 

dS=15 MPa and Qinj=0.075 m3/s; and (4) dS=15 MPa and Qinj=0.15 m3/s. The total injection 

volume is kept the same as 19,400 m3, and the injection duration for the low injection rate case 

and the high injection rate case is set to be 72 hours and 36 hours, respectively. In all four 

simulations, the injection pressure is below the minimum principal stress. 

The comparison of overall reservoir permeability enhancements is plotted against the injected 

volume in Figure 6.44. In the cases with a higher differential stress of 15 MPa, the reservoir 

permeability is increased from 5.4E-16 m2 to 3.1E-15 m2 and 2.4E-15 m2 for the high and low 

injection rate, respectively, corresponding to an increase of 5.8 times and 4.5 times. However, in 

the cases with a low differential stress of 1 MPa, the average reservoir permeability is only 

increased by 2.2 times and 1.9 times for the high and low injection rate, respectively. The results 

indicate that injecting fluid at a relatively high rate always leads to a higher permeability 

enhancement. In the cases with a higher differential stress, the enhancement in the average 
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reservoir permeability is much more significant. Comparing the results from Case 2 (low dS and 

high Qinj) and Case 3 (high dS and low Qinj), it suggests that for this given fracture network, when 

the differential stress is high, reservoir stimulation via shear dilation could be effectively 

accomplished by injecting water even at a reasonably low injection rate. The results are also 

dependent on the fracture network geometry and whether propagation is allowed or not. 

 

Figure 6.44. Comparison of permeability enhancement against injected volume for the cases of 

different injection rate and different stress differential: low injection rate of 0.075 m3/s (dashed 

lines) and high injection rate of 0.15 m3/s (solid lines), low differential stress of 1 MPa (red 

colored) and high differential stress of 15 MPa (blue colored). 

 



161 

   

   

   

Figure 6.45. Comparison of microseismic events and the average reservoir permeability after 

injecting the same volume (19400 m3) of fluid for the cases of different injection rate (low injection 

low dS, low Qinj 

0 MEQ 

cc 

low dS, high Qinj 

0 MEQ 

cc 

high dS, low Qinj 

282 MEQs 

high dS, high Qinj 

343 MEQs 



162 

rate of 0.075 m3/s and high injection rate of 0.15 m3/s) and different horizontal stress differential 

(low differential stress of 1 MPa and high differential stress of 15 MPa). 

 

Figure 6.45 compares the average reservoir permeability and the microseismic events generated 

from different injection rate and differential stress combinations. It is evident that as expected, 

after injecting the same volume of fluid, a higher injection rate in a highly differential stress field 

promotes more fractures to slip in shear and induce microseismicity in the reservoir. In the cases 

which having a low differential stress of 1 MPa, none of the fractures slip in shear and therefore, 

no microseismic event is induced. The permeability enhancement in the low differential stress 

cases is attributed to the dilation of fracture aperture caused by fracture normal deformation during 

the injection process. 

 

6.2.11 Effect of Injection Temperature 

In the above sensitivity studies, the injections are assumed under isothermal conditions. However, 

as described in Chapter 6.1, the thermal effect also plays an important role in governing the 

response of fractured reservoirs to injection and is worthy evaluations. In the simulations present 

in this section, the temperature of the injection fluid is fixed at 50 °C. Different values of initial 

reservoir temperature are assumed: 50 °C, 100 °C and 170 °C. The corresponding temperature 

difference is 0 °C, 50 °C and 120 °C, respectively. 
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Figure 6.46. Comparison of permeability enhancement during 72 hrs of injection for the cases of 

different injection temperature difference. 

 

The comparison of average reservoir permeability evolutions is illustrated in Figure 6.46. In the 

isothermal case, the average reservoir permeability is increased 3.3 times, from 3.13E-16 m2 to 

1.04E-15 m2. In Case 2, when the temperature difference between the injection fluid and the 

reservoir is 50 °C, after 72 hours of cold water injection, the permeability is significantly increased 

to 3.92E-15 m2, which is increased by 12.8 times. The enhancement of permeability is much more 

significant in Case 3, where the temperature difference is further increased to 120 °C. After the 

cold fluid is injected for 72 hours, the average permeability in the reservoir block is increased by 

39.8 times, to a value of 1.22E-14 m2. In this study, many fracture clusters are directly connected 

with the injection well, allowing heat transfer via the fractures. We assume the temperature on the 

fractures that intersecting with the wellbore is immediately reduced to the same temperature as the 

injected fluid. The large temperature difference on these fractures (50 °C in Case 2, and 120 °C in 

Case 3) would generate significant high tensile stresses and cause them to mechanically open, 
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which contributes to the sharp increments in the average permeability at the very early stage of 

injection. For a fracture network with poor connectivity and limited access to the injection source, 

the heat transfer would be insignificant, therefore, the thermal effects on the injection outcome are 

expected to be minimal. 

Figure 6.47 shows the microseismic events and temperature drawdown induced by fluid injection 

under different thermal conditions. As expected, the isothermal case results in the least number of 

seismic events. In the two thermal cases, cooling is observed on the fractures near the injection 

well. Case 3 has more thermally impacted fractures with a highest temperature reduction of 120 

°C, and results in the maximum number of seismic events. The results show that the higher the 

temperature difference between the injection fluid and the reservoir, the more the injection induced 

slipped events. The thermal effects due to cooling could induce tensile thermal stress on fracture 

surfaces, promote fracture shear slippage and consequently induce microseismicity and improve 

reservoir permeability. 
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Figure 6.47. Comparison of microseismic events (left) and temperature drawdown (right) in 

fracture network after 72 hrs of injection for the cases of different temperature difference. For 

dT=0°C 

141 MEQs 

 

dT=50°C 

203 MEQs 

 

dT=120°C 

218 MEQs 
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better visualizations, in the right panels, the temperature drawdowns are only shown on the thermal 

affected fractures. 

 

6.2.12 Summary 

The developed numerical model is used to investigate the effects of various parameters on the 

overall reservoir permeability enhancement and induced microseismicity in a naturally fractured 

reservoir subject to fluid injection. Based on the results of case studies, the following conclusions 

can be drawn: 

The distribution of fractures within the natural fracture network has a significant effect on the 

injection response. Higher fracture density and larger fractures not only contribute to higher initial 

permeability, but also contribute to more slipped events and result in higher permeability 

enhancement. The orientation of natural fractures plays an important role in determining the 

stresses on the fractures and the slip potential. Therefore, it has major control over the injection 

response of fractured reservoirs. Besides the distribution parameters of the fracture network, the 

mechanical properties of fractures could also affect the results. Increasing fracture shear dilation 

angle would enlarge the dilated apertures caused by shear slippage, hence has positive effects on 

permeability enhancement by the mechanism of fracture shear slippage. 

The results also reveal the important role of in-situ stress conditions acting in the reservoir. For a 

given natural fracture network, the stress regime, the orientation of the stresses, and the magnitude 

of the differential stress between the maximum and minimum principal stresses govern not only 

the relative direction of the fractures with respect to the in-situ stresses, but also the magnitudes of 

the stresses acting on fracture planes. When a natural fracture is favorably oriented with respect to 

the principal stresses, the fracture would have the greatest propensity to slip, dilate and increase 
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reservoir permeability. Higher differential stress and lower in-situ stress magnitudes are favorable 

for fracture shear slippage and the associated permeability enhancement. 

The response of a fractured rock is also sensitive to the permeability of its matrix. When the rock 

matrix permeability is low, fluid flow diffusion into the matrix is prevented, providing higher 

pressures within the fracture network, and consequently promoting fracture slippage and dilation. 

The operational parameters such as fluid viscosity, injection rate and injection volume control the 

fluid diffusion and pressure change within the reservoir, hence, are also important factors affecting 

the injection outcomes. In contrary to a high viscous fluid which is usually preferred for creating 

new fractures by hydraulic fracturing, an injecting fluid with low viscosity shows favorable for 

induce shear slippage on fractures. Moreover, since no proppants is required in shear dilation of 

natural fractures, the use of low viscous fluid for shear stimulation is suitable. 

As injection volume increases, higher pressure buildup within the reservoir would lead to a greater 

increase in fracture aperture and cause fractures to slip in shear and dilate, hence improving 

permeability. Injecting the same volume of fluid at a high rate would cause larger perturbation in 

the pore pressure field, promote shear slippage on fractures, and induce more microseismic events 

with higher seismic magnitudes. 

The temperature difference between the injected fluid and the reservoir is also a crucial factor in 

controlling the injection outcomes. Cooling on fracture surface induces thermal stress in tension, 

which is beneficial for fracture dilation and permeability enhancement. When a large amount of 

tensile thermal stress is induced, fractures may be mechanically open, significantly improving the 

overall reservoir permeability. 

The results from these sensitivity studies suggest that the response of naturally fractured reservoirs 

to fluid injection is a complex process controlled by many factors, including the properties of 



168 

natural fractures, in-situ stress conditions, rock matrix permeability, the properties of injecting 

fluid, injection scheme and injection temperature. All of these factors should be carefully evaluated 

during the design phase of an injection operation to optimize its performance. 
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7. Model Applications 

The developed model has applications in many diverse engineering fields. In this chapter, we 

present an application on simulating the stimulation response of an enhanced geothermal system 

and an application on simulating the wastewater disposal and the potential of induced seismicity. 

 

7.1 Newberry EGS Stimulation 

7.1.1 Background 

The Newberry Volcano EGS Demonstration project is designed to demonstrate cutting-edge 

research for Enhanced Geothermal System (EGS) development and to improve the feasibility and 

viability of EGS technologies and applications. The project site is located in the high temperature 

and low permeability volcanic formations in Central Oregon, on the northwest flank of the 

Newberry Volcano (AltaRock 2014). 

 

Figure 7.1. Location map of the Newberry EGS Demonstration site (taken from Alta Rock 2014). 
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The Demonstration project has been executed in multiple phases. Phase 1 of the Demonstration 

began on May 2010 involved hydrological testing and stimulation planning. In the fall of 2012, 

Phase 2.1 of the demonstration, stimulation of Well NWG 55-29 was initiated. The first stimulation 

injected a total of 41,639 m3 (11 million gallons) of water at a maximum wellhead pressure (WHP) 

of 16.9 MPa (2450 psi). However, casing leaking was observed. After casing repair, Phase 2.2 

stimulation began in September 2014 and terminated in November 2014. During the stimulation, 

9,464 m3 (2.5 million gallons) of water were injected at a maximum wellhead pressure of 19.7 

MPa (2850 psi) (AltaRock 2014). 

In this study, we use the proposed coupled thermo-poroelastic finite element model to simulate the 

Phase 2.2 stimulation. The first round of injection began on September 23, 2014 and ended on 

October 15, followed by a fall-off test. On November 11, the second round injection started, and 

lasted for 10 days until November 21. 

 

Figure 7.2. Wellhead pressure and flow rate profiles of Newberry EGS Phase 2.2 stimulation 

from September 23 to October 8, 2014. Data from AltaRock (2014). 

 

Simulation Period 
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Our target simulation period is from September 26, 20:00 to October 7, 10:00, a total of 254 hours, 

such that the noisy data due to leaks, equipment repairs and thermal zonal isolation material 

(TZIM) treatments is not included. The 254 hours includes a step-rate test and the initial part of 

Round 1 stimulation. The detailed injection profile is illustrated in Figure 7.2. 

 

7.1.2 Model Setup 

The simulation domain used to represent the Newberry EGS is 2000 m in the N-S direction (x-

axis), 3000 m in the E-W direction (y-axis), and 2200 m in the vertical direction (z-axis). The 

injection well NWG 55-29 is assumed to be located in the center of the domain. Cold water is 

injected from two open sections: from 1896 m to 2228 m and from 2492 m to 3066 m. The model 

geometry and injection intervals are shown in Figure 7.3 (left). The grey line represents the 

wellbore, and the red portions represent the open intervals. Considering the scale ratio of the 

simulation domain and the well radius, the open intervals are represented by vertical injection 

elements as a line source. The injection pressure of each injection element is specified based on a 

known wellhead pressure and a hydrostatic pressure calculated at the middle of each injection 

element.  For the specific flowing conditions within the wellbore and the fluid properties assumed 

in this model, the wellbore frictional pressure drop is less than 0.02 MPa, which is negligible 

compared to other pressure terms. Therefore, it is not considered in this current model. The 

injection rate of the line source is calculated as part of the simulation output. 

The domain is discretized into 55,924 8-nodes brick elements with 60,480 nodes (Figure 7.3, 

right). To investigate the near wellbore response, finer gridding is used in this area. The model 

consists of three layers, representing three main geological formations of the Newberry reservoir: 

John Day (1300 m to 2400 m), Intruded John Day (2400 m to 3400 m) and Intruded John Day base 

(3400 m to 3500 m) (AltaRock 2014). 
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Figure 7.3. Left: The simulation domain is 2000 m in N-S (x-direction), 3000 m in E-W (y-

direction), and 2200 m in vertical (z-direction). The wellbore is located in the center (grey line), 

which has two open intervals (red lines). Right: The domain consisting of three geological 

formations is discretized into 55,924 elements. 

 

The pore pressure and temperature are prescribed at the top and bottom boundaries, whereas the 

side boundaries are assumed closed for fluid flow. Zero normal displacement is imposed for the 

lateral and bottom boundaries. The top of the domain is modeled as an unconstrained “free” 

boundary. The initial conditions are taken from earlier analyses of the pre-stimulation steady-state 

conditions at Newberry (Cladouhos et al. 2011; AltaRock 2014 and Sonnenthal et al. 2015). The 

initial temperature distribution follows a high gradient of 100 °C/km, with a maximum temperature 

of about 365 °C at the bottom of the domain. Initial pore pressure is assumed to be slightly lower 

than hydrostatic, with a linear gradient of 8.3 MPa/km. Pre-stimulation analysis on the stress field 

suggests a normal faulting regime in the Newberry site (Cladouhos et al. 2011). The maximum 

principal stress is vertical, with a lithostatic gradient of 24.1 MPa/km (1.07 psi/ft). The 
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intermediate principal stress is oriented in the N-S direction (SHmax, x direction) with a gradient of 

23.5 MPa/km (1.04 psi/ft). The minimum principal stress is oriented in the E-W direction (Shmin, 

y direction) with a gradient of 14.9 MPa/km (0.66 psi/ft). 

Table 7.1 Reservoir properties used in model 

Young's Modulus 15 GPa 

Drained Poisson's Ratio 0.22 

Undrained Poisson's Ratio 0.46 

Biot's Coefficient 0.97 

Fluid Viscosity 3x10-4 Pa∙s 

Thermal Expansion Coefficient of Solid 1.8x10-5 K-1 

Thermal Expansion Coefficient of Fluid 3.0x10-4 K-1 

Thermal Diffusivity 1.6x10-6 m2/s 

Maximum Horizontal Stress 23.5 MPa/km 

Minimum Horizontal Stress 14.9 MPa/km 

Vertical Stress 24.1 MPa/km 

Fluid Pressure 8.3 MPa/km 

Permeability of John Day (kx, ky, kz) 1x10-17, 5x10-18, 1x10-17 m2 

Permeability of Intruded John Day (kx, ky, kz) 1x10-17, 5x10-18, 1x10-17 m2 

Permeability of Intruded John Day Base (kx, ky, kz) 1x10-18, 1x10-18, 1x10-18 m2 

 

The mechanical properties were taken from the laboratory measurements on Newberry tuff 

samples (Li et al. 2012 and Wang et al. 2016). Thermal and hydrological properties follow those 

used in previous studies (AltaRock 2014; Sonnenthal et al. 2015). Homogeneous distributions of 

parameters are used in this current study, except for permeability. Since the Newberry site features 

a NS-striking fracture system (Sonnenthal et al. 2015), anisotropic initial permeability is assumed 

in the fractured zone, i.e., John Day and the Intruded John Day formations: higher values (1x10-17 

m2) in the x-direction and vertical direction compared to the y-direction (5x10-18 m2). Permeability 

of the lowest 100 m in the Intruded John Day base formation is set to be 1x10-18 m2 in all directions. 

To represent the fractured zone located in the Newberry EGS site, a natural fracture network is 

generated and introduced into the reservoir domain. The fractures are assumed to be penny-shaped, 
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and are specified by location, size and orientation. In this study, both the borehole televiewer 

(BHTV) and micro-earthquake (MEQ) data are used as basis for fracture generation. Two sets of 

fractures are generated: 351 fractures detected by BHTV and 399 fractures ascertained from the 

MEQ events detected during the Phase 2.2 stimulation (AltaRock 2014). The orientation and depth 

of fractures imaged in the wellbore are used to describe the 351 fractures intersecting with the 

wellbore. The other 399 fractures are assumed to distribute within 400 m from the wellbore and at 

a depth between 2000 m and 3000 m, as suggested by the MEQ cloud distributions. Further, we 

assume the orientations of the 399 fractures from MEQs based on fault plane directions calculated 

from seismic moment tensor results (AltaRock 2014). 

   

Figure 7.4. Location maps of MEQs detected during Phase 2.2 stimulation. The seismic cloud plots 

within 400 m from the wellbore and at a depth between 2000 m and 3000 m. 
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Figure 7.5 shows the histograms of the dip directions and dip angles of the 750 fractures. There 

are two primary sets of fractures both with a wide dispersion: east-dipping fractures with an 

average dip direction of 110° and west-dipping fractures with an average dip direction of 280°, 

and most fractures have a dip angle between 40° to 70°, which also agree with the fracture 

orientations estimated from Geomechanics-Based Stochastic Analysis of Mircoseismicity 

(GBSAM) (Lu and Ghassemi 2017). 

 

 

Figure 7.5. Rose diagram of dip directions (top) and histogram of dip angles (bottom) of generated 

fractures, and obtained from BHTV and MEQ data. 
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Since it is difficult to determine the fracture size from wellbore data, Log-normal distribution is 

used for fracture size generation. Fracture radii are assumed to range from 10 m to 200 m, which 

align with previous studies (Cladouhos et al. 2011). The initial apertures of the fractures are 

assumed to be proportional to radius, which could be calculated using Eqn. (4.3). The coefficient 

  is assumed to be 0.0004 and the exponent n  is set to be 0.5, which are adopted from the typical 

values for a hot dry rock system (Tezuka and Watanabe 2000). The aperture of fractures is assumed 

to be stress-dependent. At each time step, stresses on the fracture surfaces are calculated to update 

aperture and permeability. The fracture network of 750 penny-shaped fractures is shown in Figure 

7.6. 

   

Figure 7.6. Fracture network in the simulation domain. A total of 750 fractures are generated and 

introduced to the simulation domain. 

 

The slip on natural fractures is a highly complex process involving many factors, such as fracture 

geometry, stress condition and constitutive friction law. Among them, constitutive friction law is 

a particularity important one, since it is an internal factor representing the material characteristic 

of a fracture. Constant friction and rate-and-state friction (RSF) are the most commonly used 
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friction laws. Friction experiments (Fang et al. 2016) on drilling cuttings from well NWG 55-29 

suggested that the rate-strengthening/weakening parameter at the base of the open injection 

interval is nearly zero, which means the rate and state effects are negligible. Therefore, a constant 

friction approach is suitable for this modeling. 

Table 7.2 Fracture parameters used in model 

Number of Fractures 750 

Fracture Radius 10-200 m 

Fracture Size (Log SD) 2.63 

Fracture Size (Log EX) 0.79 

Size-aperture Coefficient 4x10-4 

Basic Friction Angle 0.459 

Shear Dilation Angle 0.035 

90% Closure Stress 20 MPa 

 

7.1.3 Simulation Results 

In this study, we follow the injection WHP profile from September 26, 20:00 to October 7, 10:00. 

Cold water is injected from the openhole sections by using WHP boundary control.  The injection 

water temperature at depth is assumed to be the same as the surface temperature (25 °C), with the 

heat transmission in the wellbore neglected. It should be noted that this temperature is lower than 

the actual water temperature at the injection interval, therefore, the cooling effect will be 

overestimated by using this assumption. However, for the short injection period we modeled, the 

cooling effect is confined to the near wellbore region, and it would not significantly affect the 

overall modeling results. 

The WHP profile and the resulting injection rate profile are plotted in Figure 7.7. In each stage, as 

the WHP increases, a significant increase in flow rate is observed, following by a decline to lower 

rates. Other authors (Cladouhos et al. 2015) interpreted the flow spikes as the compression of water 

due to the pressure increase in the wellbore and the formation. However, considering the small 
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change in water compressibility under the injection conditions, likely the water compression alone 

is not sufficient to cause such high temporary flows. One could explain this behavior in terms of 

the fracture network response. When increasing the injection pressure, it is likely that some 

fractures opened due to the elevated pressure, and the increase in fracture volume is reflected in a 

higher injection rate. If there is insufficient energy to further increase the pressure within the 

fractures, no further increase in the fracture volume would occur, which may correspond to the 

rate declines. 

 

Figure 7.7. Wellhead pressure and injection rate profiles. As the WHP increases, a simultaneously 

significant increase in flow rate is observed and following by a decline to lower rates. The flow 

spikes may due to fracture volume increase as a result of fracture opening. When there is no 

sufficient injection pressure to promote further opening, the flow required for fracture volume 

increase vanishes, resulting in a decline in flow rate. The resulting flow rates generally agree with 

the field measured values. 
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Figure 7.7 also shows the comparison between the simulation resulting flow rate and the flow rate 

measured at the field. It should be pointed out that many attempts are made to best fit the actual 

injection rates. Since the distribution of fractures has a major control on reservoir behavior and it 

is difficult to accurately quantify the distribution from the available data, a trial and error process 

has been used. The simulation is firstly run with a fracture network model generated from an initial 

guess on fracture distribution. If the resulting injection rate is lower than the field measured rate, 

the orientation and size of some fractures are adjusted to create a better connected fracture network 

which allows more fluid to be injected into the reservoir. If the resulting rate is higher than the 

actual value, some of the fractures are disconnected from the main flow path. The fractures for 

adjustment are selected based on their contributions to the network connectivity, hence, fluid flow. 

We start by adjusting the large fractures located on or near the flow path, by rotating them, 

increasing or decreasing their radius, to improve or diminish the overall connectivity of the fracture 

network. During this process, the properties of the isolated small fractures which have negligible 

contributions to the flow behavior are adjusted accordingly, such that the overall statistical 

distribution of fracture network properties, such as fracture number, size, and orientation, is not 

affected. After each adjustment, the resulting flow rate is compared with the field observed data. 

This adjusting process is repeated until an acceptable match is reached. The fracture network after 

adjusting is shown in Figure 7.3. The resulting flow rates generally agree with the field measured 

values, though the match is not exact in details. Future adjustments on the model inputs are 

required to capture the sensitive changes in flow rate. 

Pore pressure distributions within the reservoir after 3 hours injection and after 254 hours injection 

are shown in Figure 7.8. It can be seen that pore pressure development is mostly controlled by the 
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fracture network connectivity. Injection fluid mainly pressurizes the fractures that intersect the 

wellbore, and the interconnected fractures. 

   

Figure 7.8. Pore pressure evolution after 3 hrs injection (left) and 254 hrs injection (right) shows 

that pore pressure development is mostly controlled by the fracture network connectivity. 

 

During injection, fractures could dilate and have an increased aperture. As a result, the 

permeability of fractures could also be increased, since it is critically dependent on the third power 

of fracture apertures. Figure 7.9 shows the evolution of the geometric averaged fracture 

permeability after 3 hours and 254 hours of injection, respectively. During injection most fractures 

show permeability improvement which contributes to the overall reservoir permeability 

enhancement. 

Figure 7.10 shows the simulated injection induced MEQ events after 3 hours and 254 hours 

injection, respectively. At the beginning of the initial step-rate test, only a few MEQs occurred 

adjacent to the wellbore. As injection continued, more MEQ events were located in a broader 
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diffusion space. After the 254 hours of short period injection, a total of 39 MEQs was observed in 

the near wellbore area. 

   

Figure 7.9. Fracture permeability evolution after 3 hrs injection (left) and 254 hrs injection (right) 

shows the permeability of most of the fractures is improved during injection. 

 

   

Figure 7.10. Injection induced MEQs evolution after 3 hrs injection (left) and 254 hrs injection 

(right) shows that MEQ events were induced as injection continued. 
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Three planar views of the MEQ locations are shown in Figure 7.11. It can be seen that most events 

are located near the openhole sections, within 200 m from the wellbore, and between the depths of 

2000 m and 3000 m. It confirms that the near wellbore area has been successfully stimulated by 

water injection. Our simulation results are in good agreement with the field observations, even 

though we obtained fewer MEQ numbers due to the short simulation period ended on October 7. 

If the injection continues, more MEQs are expected to occur. It should be mentioned that our model 

assumes only one MEQ event is generated per fracture per slip while in reality a fracture could 

slip multiple times during stimulation and generate repeated MEQs. Therefore, our model could 

underestimate the total number of MEQs, which contributes to the discrepancy in the simulated 

and field observed MEQ numbers. It should also be mentioned that the lower magnitudes of the 

modeled MEQs compared to the field observed MEQs might be attributed to smaller fracture size 

distribution in the model. Since seismic moment is proportional to the area of a slipped fracture 

(Eqn. (4.63)), fracture size could be the limit of a seismic moment, hence, the magnitude of an 

induced MEQ. Further data mining in model input parameters is required to improve the match 

with the field data, since many parameters are difficult to quantify and each of them has large 

uncertainties. 
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Figure 7.11. Location maps of 39 MEQs obtained in the preliminary simulation (from September 

28 to October 7). The plane views show that the induced MEQs locate within 200 m radius from 

the wellbore, and are close to the depths of the injection intervals, which are in good agreement 

with the field observations. 

 

The normal directions of the slipped fractures and the magnitudes of their corresponding MEQs 

after 254 hours of injection are plotted in Figure 7.12. As shown in the figure, the normals of 

slipped fractures fall into a certain range which indicates the significant influence of fracture 

orientation on the occurrence of fracture shear slippage and induced MEQs. 
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Figure 7.12. Normals to the fracture planes and the MEQ magnitudes of the slipped fractures 

(colored squares) after 254 hours injection. The fractures that did not slip are shown as blank 

squares. 

 

During the simulation, the temperature change only occurred in the area near the injection 

wellbore. It is due to the low thermal conductivity and the short simulated time. As water was 

injected, the fractures directly connected with the injection intervals were cooled down, while the 

other fractures remain at their initial temperature following the temperature gradient in depth. 
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Figure 7.13. Left: distribution of temperature after 254 hours injection. Right: zoom in view of 

temperature distribution on fractures. Only the temperature of fractures around the injection well 

is reduced. 

 

In this case, we also observed the rotation of the stress tensor and changes in stress regime around 

the injection well caused by water injection. At the beginning of this simulation, the stress regime 

in Newberry was understood to be one of normal faulting (Sv>SHmax>Shmin) with the maximum 

principal stress and the intermediate principal stresses being nearly equal (SHmax=0.97Sv) 

(AltaRock 2014). After injection, the maximum principal stress near the injection well rotated 

from vertical toward the horizontal direction and resulted in a strike-slip regime, as shown in 

Figure 7.14. The magnitude of the in-situ stress was also altered by injection. As pore pressure in 

the vicinity of the injection well is increased, excess compressive stress is generated due to 

poroelastic effects. In contrast, thermal induced stress due to cooling is tensile, which means a 

reduction from the in-situ compressive stress. The total stress is a combination of the contributions 

from both poroelastic and thermoelastic induced stresses (e.g., Ghassemi and Zhou, 2011; Rawal 

and Ghassemi, 2014). 
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Figure 7.14. Distribution of the maximum principal stress and its vector after 254 hours injection 

(left: central slice in x-z plane; right: zoom in view of the area near injection intervals). The 

maximum principal stress near the injection well rotated from vertical toward the horizontal 

direction and resulted in a strike-slip regime. 

 

Figure 7.15 is an example of the stress profile along a line in the x-z plane central slice (y=0 m) at 

the middle depth of the injection interval (z=2500 m). Due to the presence of the randomly 

distributed fractures and the varied injection pressure history, variations are seen in the stress 

profile. In the near wellbore region (from -500 m to 500 m), excess compressive stresses due to 

pore fluid diffusion are observed, while at the wellbore, there is a reduction in the compressive 

stresses caused by cooling. Since in the simulation period, the temperature variation does not 

propagate a great distance, the reduction is only seen close to the wellbore. In this figure, two stress 

rotation regions are also seen, where the maximum horizontal stress (SHmax) exceeds the vertical 

stress (Sv), which means the maximum principal stress rotates 90° (e.g., Gao and Ghassemi, 2017; 

Kumar and Ghassemi, 2018). 



187 

 

Figure 7.15. Stress profile along a line in the x-z plane central slice (y=0 m) at the middle depth of 

the injection interval (z=2500 m) after 254 hours injection. It shows two stress rotation regions (in 

grey dashed lines) where the maximum principal stress rotates from the initial vertical direction 

towards horizontal. Excess compressive stresses in the vicinity of injection well (-500 m to 500 

m) is due to poroelastic stress induced by pore pressure increase. The compressive stress reduction 

at the wellbore is due to cooling induced tensile stress. 

 

The operator of the Newberry EGS Stimulation project observed a discrepancy between the stress 

model derived during the stimulation and the model based on pre-stimulation data. The stress 

model derived from the stimulation seismic data shows horizontal compression and relatively 

weaker vertical stress, which is inconsistent with the local and regional stress field suggesting a 

vertical maximum principal stress (AltaRock 2014). After evaluating the contributions of four 

likely source of native stress (tectonic stress, local topographic stress, magmatic stress and 



188 

subduction zone stress) to the total stress field, they suggested that the most likely explanation for 

the discrepancy may due to fluid injection and additional modeling of this phenomenon is required. 

Our modeling results successfully confirm that fluid injection could significantly modify the stress 

field adjacent to the well, in addition to merely raising pore fluid pressures. This reaffirms the need 

for investigating the effects of potential stress regime change under different stimulation scenarios 

on the long term production from the EGS reservoirs. Our numerical model provides an effective 

tool for predicting and evaluating the stimulation response of naturally fractured geothermal 

reservoirs. 

 

7.1.4 Summary 

The simulation results of the Newberry EGS Phase 2.2 stimulation show good agreements with 

field observations. Increase in fracture permeability is captured, together with the injection induced 

microseismic events observed in the near wellbore area, which confirms that this stimulation 

successfully improved the hydraulic conductivities of the reservoir. A history matching of the 

injection rate was performed. Our modeling results suggest that the flow spikes occurred as the 

injection pressure increases in each stage may due to fracture volume increase as a result of fracture 

opening. As stated in AltaRock’s report for Phase 2.2 report, Newberry EGS demonstration, 

seismicity data “suggests that the fluid injection, with a wellhead pressure of about 20 MPa, is 

significantly modifying the stress field in addition to simply raising pore pressure fluid pressures”. 

It was suggested that additional modeling of this phenomenon would be required to ascertain 

whether the stress field inferred from the seismicity is related to pore pressure perturbations. Our 

numerical simulations clearly show that the injection has indeed caused a rotation in the stress 

tensor around the injection well. The stress regime changes from the initial normal faulting to a 

strike-slip regime, which explains the discrepancy between the pre-stimulation stress model and 
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the stress model derived during the stimulation. Our simulation results confirm that fluid injection 

could not only raise pore fluid pressure, but also alter the stress field. It is of great importance to 

evaluate the potential stress change under different stimulation scenarios, since it could have 

significant effects on the long term production from the EGS reservoir. This model is useful in 

analyzing the behavior of naturally fractured reservoirs and could be used for evaluating future 

stimulation plans. 

 

7.2 Oklahoma Wastewater Injection 

This section provides an application of the developed numerical model to the problem of 

wastewater injection. The wastewater injection in central Oklahoma was simulated and the 

response of the fault systems within the injection area was analyzed. 

 

7.2.1 Background 

In the past several years, the central United States has seen a rapid increase in seismicity rates, as 

shown in Figure 7.16. In Oklahoma, increased seismic activity has been observed since 2009. The 

increased seismic activity is generally attributed to the disposal of wastewater coproduced along 

with oil and gas productions (e.g., Keranen et al. 2013; McGarr 2014; Walsh and Zoback 2015; 

Chen et al. 2017; Hincks et al. 2018). It can be seen from Figure 7.17 that the trend of the 

occurrence of earthquakes in Oklahoma correlates well with large volumes of wastewater disposal. 
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Figure 7.16. Increasing rate of earthquakes in the central United States beginning in 2009 

(Rubinstein 2018). 

 

 

Figure 7.17. Relationship between wastewater injection and seismic activity in Oklahoma from 

2008 to 2017 (Chen et al. 2017). 
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In Oklahoma, most of the wastewater (more than 50%) is injected via deep saltwater disposal wells 

(SWD) into the commonly under-pressured and relative permeable Arbuckle Group sedimentary 

rocks (Murray 2015), which lies directly on top of the Precambrian crystalline basement where 

most seismic events occurred (McNamara et al. 2015). These seismic events have been explained 

to be associated with slip on nearby faults due to active wastewater disposal in the vicinity (e.g., 

Keranen et al. 2013; Sumy et al. 2014; McGarr 2014). The mechanism of injection induced 

seismicity is generally explained by the classic Mohr-Coulomb failure criteria. When water is 

injected into a deep formation which has hydraulic communications with a nearby fault, the 

increased pore pressure could be transmitted to the fault zone and reduce the effective normal 

stress acting on the fault, thereby reducing the fault strength, inducing slip and seismicity. 

The most significant earthquake sequences in Oklahoma include the 2011 Prague earthquake and 

the 2016 Pawnee earthquake. In November 2011, three large damaging earthquakes (>5.0 Mw) 

occurred near the town of Prague, Oklahoma, including a foreshock of Mw 5.0 on November 5, a 

main shock of Mw 5.7 on November 6 and an aftershock of Mw 5.0 on November 8 (Sumy et al. 

2014). The Mw 5.7 main shock was the largest recorded earthquake in Oklahoma history, and this 

record was surpassed by the 2016 Pawnee earthquake occurred on September 3, 2016. The 2016 

Mw 5.8 Pawnee earthquake was also the most powerful earthquake in the central and eastern 

United States over the past 70 years (Yeck et al. 2017). The Mw 5.0 and greater large earthquakes 

also include the 2016 Mw 5.1 Fairview earthquake occurred on February 13 and the 2016 Mw 5.0 

Cushing earthquake occurred on November 7.  

As large injection related earthquakes would lead to significant seismic risks including building 

damages and people injuries, public concern about wastewater disposal is growing. It is of great 

importance to improve the current understanding of the interactions between wastewater injection 
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and induced seismicity. However, despite numerous studies have been carried out focusing on this 

topic in recent years, most of these studies rely on several simplifying assumptions. The fluid flow 

is commonly solved analytically using a 2D radial flow model (e.g., Norbeck 2016), without 

considering the heterogeneity in the lithologic properties and the variations in the stress field (e.g., 

Walsh et al. 2017). The interaction between multiple injection wells and the detailed real injection 

history are ignored, and the pore pressure change is simplified calculated by linearly superposing 

each well (e.g. Walsh et al. 2017). Furthermore, many of the existing models do not have the 

capability to predict the seismic magnitude of the potentially induced earthquakes (e.g., Carrell 

2014; Walsh and Zoback 2016) and do not account for the dynamic friction evolution during a 

seismic event (e.g. Walsh et al. 2017). 

The objective of this study is to develop a robust numerical model that could integrate the fully 

coupled reservoir fluid flow model with a geomechanical model for natural fracture network and 

an earthquake simulation model within a rate-and-state friction framework for simulating the 

response of central Oklahoma fault systems to water injection. We are also trying to identify the 

possible correlations between fluid injection and the induced earthquakes and seeking to optimize 

fluid injection strategy to reduce the risk of slip on nearby faults. 

 

7.2.2 Study Area 

The study area selected for modeling wastewater injection into the central Oklahoma subsurface 

is located in the northeast Oklahoma, extents northern Pottawatomie County, eastern and southern 

Lincoln County. Selection of this area is based on the increased seismicity in this area and the 

increased SWD injection volumes in the 2000 to 2011 timeframe. This area is approximately 20 

km by 20 km, encompassed approximately 400 square kilometers (shown by the yellow rectangle 
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in Figure 7.18). The latitudes range from 35.41°N to 35.59°N, and the longitudes range from 

96.93°W to 96.69°W. 

 

Figure 7.18. Location of the study area (shown in the yellow box). Oklahoma ML ≥3 seismic events 

from the USGS PDE catalog. Events from 1975 to 2008 are shown by grey circles, and events 

from 2009 to 2011 are shown by red squares. Marker size indicates seismic magnitude. (modified 

from Llenos and Michael 2013). 

 

Within this selected study area, two major fault systems present: the Wilzetta fault zone (WFZ) 

and the Meeker-Prague fault (MPF). The Wilzetta fault zone is a relatively long, narrow zone of 

high angle normal, strike-slip, and reverse faults (Dycus 2013). The Wilzetta fault is a complex 

Pennsylvanian-age fault system about 124 miles in length (Keranen et al. 2013), which includes a 

prominent structure feature of the Cherokee Platform and a member of a series of sub-parallel 

subsurface faults in the region (Dycus 2013). The Wilzetta fault is a vertical or near vertical fault, 

with a main trace trending approximately N25°-30°E. In some cases, it is truncated by a series of 

study area 
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faults trending ~N55°-60°E (Dycus 2013). The Meeker-Prague fault extends for about 10.8 miles 

and strikes approximately N55°E. It obliquely intersects the main trace of the Wilzetta fault. The 

included angle between these two faults is approximately 30° (Dycus 2013). 

 

Figure 7.19. Two major fault systems within the study area: the WFZ trending ~N25-30E and the 

MPF trending ~N55E (modified from McMahon et al. 2016). 

 

Between 2000 and 2011, there are eight active SWD wells injecting large volumes of wastewater 

into this area: Stasta 1, Stasta 2, Wilzetta, Mazkoori, Pantlik, Turner, Jesse and Howard. Well 

information such as location, injection volume, and duration of injection are obtained from the 

reported data by Oklahoma Geological Survey (OGS) (http://www.ou.edu/ogs/data) and 

Oklahoma Corporation Commission database (http://www.occeweb.com/og/ogdatafiles2.htm). 

Figure 7.20 summarizes the monthly reported injected volumes recorded in well reports. For each 
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well, the monthly average injection rate is calculated. The average injection rate varies in these 

wells, and the highest rate is approximately 0.036 m3/s (600,000 bbl/month). 

Table 7.3 Overview of the SWD injection wells 

Well Name Latitude Longitude 
Injection 

Start Year 

2000-2011 Total Injection 

Volume (106 m3) 

Stasta 1 35.560 -96.750 1993 0.052 

Stasta 2 35.562 -96.750 1993 0.058 

Pantlik 35.501 -96.725 2009 0.138 

Wilzetta 35.558 -96.738 1999 3.850 

Mazkoori 35.541 -96.751 2000 0.986 

Jesse 35.426 -96.701 2003 2.326 

Turner 35.442 -96.726 2004 2.568 

Howard 35.421 -96.754 2008 1.435 
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Figure 7.20. Injection profiles of the 8 SWD wells between 2000 to 2011. Monthly injection 

volume data from Oklahoma Corporation Commission (OCC) database. Monthly average 

injection rate is calculated accordingly. 

 

7.2.3 Model Setup 

This study aims to build a conceptual numerical model for evaluating the effect of water injection 

on pore pressure and stress changes within the central Oklahoma region and its consequential 

influence on the potential of the induced seismicity. 

The dimension of this model is approximately 20 km x 20 km x 1 km. It extends from 708222.5 

m to 728400.7 m (96.93°W to 96.69°W) in the E-W (x direction), from 46332.98 m to 65976.26 

m (35.41°N to 35.59°N) in the N-S (y direction), and from 2000 m to 3000 m in the vertical 

direction. As shown in Figure 7.21, the model domain consists of two layers: the Arbuckle Group 

sedimentary rocks (2000 m to 2600 m) and the Precambrian crystalline basement (2600 m to 2800 

m). The domain is discretized into 400,000 brick elements using a uniform element size of 100 m 
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x 100 m x 126 m. The input parameters of this model are taken from previous geological and 

geomechanical studies on this area, and are listed in Table 7.4. 

 

Figure 7.21. Numerical model consists of two layers: the Arbuckle group (2000 m to 2600 m, 

shown in green) and the basement (2600 m to 3000 m, shown in blue). 

Table 7.4 Input parameters in the model 

Rock Properties 

Young's Modulus 65 GPa 

Drained Poisson's Ratio 0.22 

Undrained Poisson's Ratio 0.46 

Biot's Coefficient 0.97 

Horizontal Permeability of Arbuckle 1E-12 m2 

Vertical Permeability of Arbuckle 5E-13 m2 

Permeability of Basement 1E-18 m2 

Porosity of Arbuckle 0.15 

Porosity of Basement 0.10 

Rock Density 2550 kg/m3 

Fracture Properties 

Number of Fractures 510 

Fracture Radius 0 m ~ 400 m 

Arbuckle 

Basement 
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Mean of Fracture Radii (Log EX) 4.8 

Standard Deviation of Fracture Radii (Log SD) 0.4 

Size-aperture Coefficient 0.0004 

Basic Friction Angle 0.61 

Shear Dilation Angle 0.0353 

90% Closure Stress 20 MPa 

Characteristic Slip Distance 2E-5 m 

Direct Effect Parameter 0.011 

Evolution Effect Parameter 0.015 

Reference Sliding Velocity 1E-12 m/s 

Fluid Properties 

Fluid Density 1000 kg/m3 

Fluid viscosity 3E-4 Pa·s 

Fluid Bulk Modulus 2.235 GPa 

Fluid Compressibility 4.475E-5 Pa-1 

Stress State 

Maximum Horizontal Stress 79 MPa 

Minimum Horizontal Stress 39 MPa 

Vertical Stress 65 MPa 

Initial and Boundary Conditions 

Initial Pore Pressure 24.2 MPa 

Injection Rate follows well history 

 

The Arbuckle Group is the primary target of wastewater disposal in Oklahoma. According to OCC, 

from 2009 to 2014, the Arbuckle zone SWD volumes comprised 51% to 68% of the statewide total 

volume (Morgan and Murray 2015). Since wastewater injection is practically intensive within the 

Arbuckle group in comparison with other formations, only the Arbuckle group is considered in 

this model, and the presence of other overburden formation layers is considered only through their 

contributions to the vertical stress. 

Subsurface geology data show that the Arbuckle group has a formation top located between 1800 

m to 2200 m depth from the subsurface (Keranen et al. 2013), and has a variable thickness of 600 
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m to 2750 m (Faith et al. 2010). A uniform thickness of the modeled Arbuckle layer is set to be 

600 m, based on an estimated average thickness of 1900 ft (579 m) from the “WFZ Basement” 

cross-section study (Dycus 2013). This selection of layer thickness is consistent with the previous 

studies (Barbour et al. 2017). The reported permeability of the Arbuckle group has a wide range 

from 0.1 mD to 17000 mD, and the mean large-scale permeability measured from drill-stem tests 

is 797 mD (7.91 x 10-13 m2) (Carrell 2014). Previous studies also indicate that Arbuckle is highly 

heterogeneous and anisotropic (Carrell 2014; Morgan and Murray 2015). In this conceptual model, 

we assume the horizontal permeability is 1 x 10-12 m2 (10 mD), and the anisotropy ratio of the 

vertical permeability to horizontal permeability is 0.5, which has been suggested as a textbook 

anisotropy ratio for the Arbuckle formation (Domenico and Schwartz 1990; Carrell 2014). The 

reported Arbuckle porosity ranges from 3% to 40% with a representative mean value of 15% (Rahi 

and Halihan 2009; Carrell 2014). The rock mechanical properties of the Arbuckle layer rocks are 

taken from the geomechanical characterization on outcrop samples (Yu and Ghassemi 2017), as 

summarized in Table 7.4. 

Below the Arbuckle group is the igneous Precambrian age basement rock, which is the location of 

the majority of earthquakes in north-central Oklahoma. The thickness of the basement ranges from 

about 2600 m to more than 3500 m (Devegowda 2016). Recent seismicity occurred in the basement 

is mostly confined to a depth between 2000 m to 5000 m depth (Dycus 2013). However, in order 

to reduce the numerical cost, the basement to a depth of 3000 m is included in our current model. 

The basement matrix has a very low permeability on the order of 10-15 ~ 10-18 m2 and a low porosity 

of 10% ~ 15% (Morgan et al. 2015). In this model, the permeability and porosity for the basement 

matrix is set to be 10-18 m2 and 10%, respectively. Same rock mechanical properties as in the 

Arbuckle group are used for the basement layer. 
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To represent the highly faulted and fractured nature of this region, a natural fracture network is 

generated based on fault characterization data. We assume all fractures are in the basement, and 

no fractures in the Arbuckle formation (Devegowda 2016). Due to the lack of detailed fracture 

distribution data such as fracture density, size, location and orientation, the following assumptions 

are made: (1) the fractures are penny-shaped; (2) fracture centers are located along the fault traces 

and stochastically distributed within the fault line; (3) fracture depth varies within the entire 

thickness of the basement layer, from 2600 m to 3000 m; (4) the orientations of these fractures 

follow the fault trends (± 5°); (5) fracture length ranges between 0 to 400 m, which is estimated 

from the magnitudes of the 110 best quality events recorded in 2011 (Holland 2015) using a well-

known empirical earthquake magnitude-scaling relationship (Wells and Coppersmith 1994), i.e., 

log( ) 2.44 0.59length Mag   . A total of 510 fractures are generated, as shown in Figure 7.22. 

Though this fracture network may not reflect the actual fractured conditions in the subsurface, it 

allows us to evaluate the injection response at different locations on the fault systems efficiently. 

In this conceptual model, a rate-and-state friction model is used for describing friction evolution. 

The RSF frictional properties of the fractures are taken from previous studies on the frictional 

faulting response in Oklahoma earthquake sequence (Norbeck and Horne 2016). The direct effect 

parameter and the evolution effect parameter are prescribed to be 0.011 and 0.015, respectively. 

The reference sliding velocity is assumed to be 1E-12 m/s, and the characteristic slip distance is 

assumed to be 2E-5 m. 
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Figure 7.22. Fracture network modeled in the basement: 3D view (top) and 2D view (bottom). The 

injection wells are shown in red squares. 
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The regional stress state in central Oklahoma is characterized primarily by strike-slip, with the 

maximum horizontal stress oriented approximately N85°E (Alt and Zoback 2014). Under this 

condition, the vertical stress represents the intermediate principal stress. The stress gradients of the 

maximum (SHmax) and the minimum horizontal stresses (Shmin) are estimated to be 30 MPa/km and 

15 MPa/km, respectively, and the vertical stress (Sv) gradient is estimated to be 25 MPa/km 

(Norbeck et al. 2016). The Arbuckle group is predominantly underpressured (Carrell 2014; 

Morgan and Murray 2015), and has an equivalent fluid pressure gradient less than the hydrostatic 

gradient for saltwater (0.465 psi/ft or 10.3 MPa/km), which is assumed to be 9.3 MPa/km. 

Considering the low thermal conductivity of the rock matrix and the small convective heat transfer 

within the matrix via fluid flow through pores, temperature front would not propagate a long 

distance from the injection wells to reach the faults that located a few kilometers away. Therefore, 

thermal effects are currently ignored in this large size model to keep the numerical cost at a 

manageable level. 

On the top boundary of this model, which is the upper surface of the Arbuckle layer, the load from 

the weight of the overburden formations is applied. The side boundaries are modeled as no flow 

boundary. Gravity is also considered by applying a gravitational load to the entire model. Zero 

normal displacement is applied on the bottom and side boundaries, and an unconstrained free 

boundary is assumed for the top. After applying the initial and boundary conditions, an 

initialization step is performed to ensure the model is in equilibrium before injection is modeled. 

This initialization results in a vertical compaction less than 1 m at the top surface, which is 

negligible compared to the model thickness of 1000 m and is discarded. 

The injection wells in the selected study area are modeled as vertical line source, and the injection 

interval on each well is assumed throughout the entire thickness of the Arbuckle (from 2000 m to 
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2600 m). The 12 years injection history between 2000 and 2011 is followed by specifying the 

average monthly injection rate on individual wells. 

We simulate the 12 years water injection into the central Oklahoma region, monitor the changes 

of the pore pressure and stress fields in the domain, and evaluate the possibility of induced 

seismicity. It should be noted that due to the simplifications used in this conceptual model, the 

objective of this study is to better understand the response of the fault systems to injection, rather 

than to match the observations in the field. Both model setup and input data are subject to further 

revision and improvements. 

 

7.2.4 Results 

To illustrate the perturbations in the pore pressure and stress fields caused by fluid injection, the 

simulation results at plotted for two selected depths, i.e., at the middle depth of the Arbuckle 

formation (2300 m) and at the middle depth of the basement (2800 m), and for four selected time 

step, at the end of 2002, 2005, 2008 and 2011, i.e., after 3 year, 6 years, 9 years, and 12 years of 

injection. 

Figure 7.23 shows the evolution of pore pressure within the Arbuckle formation (at the depth of 

2300 m) during the 12 years. It is evident that fluid injection into this permeable formation 

increases the pore pressure in the area near the injection wells. It can also be seen from the figure 

that the distribution of the elevated pore pressure is dominated by the relative strength of the active 

injection sources. During the 12 years of injection, the maximum pressure increase at this depth is 

about 1.3 MPa, from the initial pore pressure of 21.4 MPa to 22.7 MPa. 

The evolution of pore pressure within the basement is plotted in Figure 7.24, which shows that the 

fracture network in the basement is also pressurized as a result of fluid injection into the Arbuckle 

formation. It indicates that the fluid could migrate from the Arbuckle downwards into the basement 
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via the existing faults. As injection continues, higher pressure buildup is observed. After the 12 

years of injection, the maximum pressure buildup within the fractures is approximately 1.0 MPa, 

with the pressure increased from the initial value of 26.1 MPa to 27.1 MPa. Slight pressure buildup 

is also observed near the well locations, which is due to the downward fluid migration from the 

injection wells into the basement rock matrix. 

 

Figure 7.23. Pore pressure evolution at the middle depth of the Arbuckle formation (2D view, 

central slice: z=2300 m). 
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Figure 7.24. Pore pressure evolution at the middle depth of the basement (2D view, central slice: 

z=2800 m). 

 

In addition to changes in the pore pressure field, fluid injection also induces changes in the stress 

field. The total stress changes in the x (E-W) and y (N-S) directions within the Arbuckle formation 

at the middle depth of 2300 m and in the basement at the middle depth of 2800 m are shown in 

Figure 7.25. During injection, an increase in the compressive total stress is observed, which is due 

to the poroelastic coupling effects caused by pore pressure increase. 
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Figure 7.25. Change of the total stress after 12 years of injection at the middle depth of the 

Arbuckle formation (central slice: z=2300 m) and at the middle depth of the basement (central 

slice: z=2800 m). Top: total stress in the x direction (Sx); bottom: total stress in the y direction 

(Sy). 

 

The changes in the effective stresses within the Arbuckle formation and the basement are shown 

in Figure 7.26, respectively. As expected, a reduction of the effective stresses components is 

observed in the areas affected by elevated pore pressure. It is clear from the definition of effective 
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stress that it is equal to the total stress minus the pore pressure. Due to the fact that during injection 

pore pressure is increasing more than the total stress, which leads to reducing the effective stress. 

 

 

Figure 7.26. Change of the effective stress after 12 years of injection at the middle depth of the 

Arbuckle formation (central slice: z=2300 m) and at the middle depth of the basement (central 

slice: z=2800 m). Top: total stress in the x direction (Sx); bottom: total stress in the y direction 

(Sy). 

 

The average pore pressure on a fracture could be approximated by averaging the elemental values 

of all elements intersected by the fracture. The 12 years evolution of pore pressure within the 
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fracture network is plotted in Figure 7.27. It clearly shows that as fluid injection continues, excess 

pressure is gradually built up in the fracture network, and higher pressure buildup occurs on 

fractures near the high volume injection wells. After 12 years of injection, the maximum pressure 

increase on fractures is about 1.0 MPa. 

 

Figure 7.27. Pore pressure evolution within the fracture network (2D view). The injection wells 

are shown in red squares. 

 

In this study, the frictional response of fractures is modeled within a RSF framework. Since a 

velocity weakening RSF model is assumed, during the injection process, reductions in friction 

coefficient are captured on a few fractures. As shown in Figure 7.28, after 12 years of injection, 
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the maximum reduction in friction coefficient is about 0.05. In addition to the poroelastic effects 

caused by injection, the weakening of fracture frictions also contributes to the slips and the 

associated seismicity. 

 

Figure 7.28. Friction coefficient reduction of fractures (2D view). A maximum reduction of 0.05 

is observed on fractures. 

 

Induced seismicity is recorded during this simulation, as illustrated in Figure 7.29. The seismic 

events are plotted using the colored spheres, with the colors and sizes indicating the magnitude of 

seismic events. After 3 years of injection, no seismic event is observed. As injection continues, at 

the end of 2005, 3 events occur near three high volume injection wells, Stasta 1, Stasta 2 and 

Wilzetta. After 9 years of injection, 15 seismic events occur. After 12 years of injection, a total of 

18 seismic events is induced with a maximum event magnitude of 3.02. It could also be seen that 

seismic events could be induced by high volume injection wells as far as more than 10 km away. 
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Figure 7.29. Distribution of the induced microseismic events (2D view). Most MEQs occur on the 

N55°E Meeker-Prague fault.  

 

The predicted seismic events are in good agreements with the earthquake records in Oklahoma, 

which also shows a sudden increase in seismicity since 2008. It is also obvious from this figure 

that the predicted locations of induced seismicity are consistent with the field observations of MEQ 

distribution (Figure 7.19). Most MEQs occur on the Meeker-Prague fault striking N55°E, which 

is a major fault system with an orientation favorable to slip. As discussed in the previous chapter, 

the orientation of a fracture plays an important role in the determining the stresses acting on the 

fracture, and hence the occurrence of shear slippage and the induced seismicity. Even though the 

15 MEQs 18 MEQs 

0 MEQ 3 MEQs 
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Wilzetta fault is located closer to the injection wells, its orientation relative to the stress field is 

less favorable for shear slippage as a result of a small pore pressure perturbation.  

The number of the predicted seismic events is several orders of magnitude less than the field 

observed number. As mentioned earlier, due to the lack of fracture distribution data, the objective 

of this conceptual model is to understand the mechanisms associated with water injection, rather 

than to exactly match the field observations. We also notice that the maximum magnitude of the 

simulation resulting MEQs is approximately Mw 3.0, which is lower compared to the Mw 5.7 

Prague earthquake occurred on November 6, 2011. It may due to the limit of fracture size assumed 

in this conceptual model. As seismic moment is proportional to the area of a slipped fracture, for 

a certain amount of slip displacement, the size of the fracture could be the limit of the seismic 

moment and magnitude. In the field, larger surface areas are available for rupture and generating 

larger earthquakes. For the Mw 5.0 earthquake occurred on November 5, 2011, the estimated 

rupture size is 2.8 km long by 2.9 km deep. The estimated rupture size for the Mw 5.7 earthquake 

on November 6 is estimated as large as 8.3 km long by 5.4 km deep (Norbeck and Horne 2016). 

These estimated rupture size are much larger than the fractures size used in this conceptual model. 

Future studies on fracture characterization are essential for refining the selection of the model 

inputs and hence improving the accuracy of seismic prediction. 

 

7.2.5 Discussions 

To investigate the impacts of operational parameters on the potential of induced seismicity and to 

seek possible injection optimization strategies, we perform a series of numerical tests by varying 

the injection volume, injection rate and injection depth. We narrow down the study area to a small 

area with a size of 4 km by 4 km, and consider a single injection well. The geometry of the small 

area is shown in Figure 7.30. A total of 59 fractures present within this area, distributed along the 
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N55°E Meeker-Prague fault and the N30°E Wilzetta fault traces. Same as the large scale 

simulation presented in the previous section, two geological layers are modeled: the Arbuckle 

group from 2000 m to 2600 m, and the crystalline basement from 2600 m to 3000 m. All fractures 

are assumed within the basement. The model inputs are the same as listed in Table 7.4, except the 

injection parameters varied in the testing cases. 

 

Figure 7.30. 2D view of the fracture network within the selected small area (4 km x 4 km). The 

injection well is shown in red square. 

 

In the first series of tests, we consider a constant injection rate scheme, and run the model using 

three different values for injection rate: 0.015 m3/s, 0.010 m3/s and 0.005 m3/s, which corresponds 

to a monthly injection volume of approximately 240,000 bbl, 160,000 bbl and 80,000 bbl, 

respectively. The choice of the injection rates is based on the representative rates in two high 
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volume injection wells located in the vicinity of the faults, the Wilzetta well and the Mazkoori 

well. Figure 7.31 is example of the pore pressure distribution within the fracture network after 

injecting for 1 year using a constant rate of 0.015 m3/s, along with the associated induced seismic 

events. As a result of injection into the permeable Arbuckle layer, the fractures in the basement 

are also pressurized. The resulting seismic events are distributed along the favorably oriented 

Meeker-Prague fault striking N55°E, which is consistent with results of the large scale simulation. 

 

Figure 7.31. Induced seismic events within the small area after 1 year of injection using a constant 

injection rate of 0.015 m3/s. The injection well is shown in red square. The seismic events are 

shown in circles. 

 

The maximum expected size of earthquakes (maximum magnitude or seismic moment) is an 

important parameter in assessing seismic hazard and risk. Analysis of numerous case histories of 

fluid injection induced earthquake sequences has indicated that the maximum seismic moment or 

magnitude for a specified injection activity might in relation to the volume of injected fluid 
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(McGarr 2014). In Figure 7.32, the maximum seismic moment in each testing case is plotted as a 

function of the cumulative injection volume. A similar increasing trend in the maximum seismic 

moment is seen in these cases. As more fluid is injected, the maximum seismic moment increases. 

This observation suggest that we could cap the injection volume to migrate the size of the 

potentially seismic events that may be induced during wastewater disposal operations. 

 

Figure 7.32. Maximum seismic moment as a function of cumulative injection volume in the cases 

of different injection rate. 

 

The influence of injection rate on the maximum seismic moment could also be seen in Figure 7.32. 

For a given injected volume, the case injecting at the lowest rate of 0.005 m3/s predicts the lowest 

value of the maximum seismic moment or magnitude. The lower injection rate allows the fluid to 

distribute more evenly throughout the fracture network, resulting a lower pressure difference 

between the highest and the lowest pressure value. Consequently, the possibility of shear slippage 

is reduced. Therefore, injecting the same amount of fluid at a lower rate over a longer time could 
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serve a strategy to reduce the size of the induced seismic events, hence, minimize the potential 

seismic hazard and risks. 

We also varied the injection depth in the testing cases. In the basic case, the injection interval is 

set throughout the Arbuckle layer, from 2000 m to 2600 m. In the comparing case, the injection 

depth is reduced to 2300 m, which is at 300 m above the top surface of the basement. Thus, water 

is injected into the upper Arbuckle layer only. A constant injection rate of 0.015 m3/s is applied on 

the well for 1 year. Figure 7.33 shows the comparison of the maximum seismic moment of the 

induced seismic events observed in the two cases. It is evident that the injection depth relative to 

the basement is strongly correlates with seismic moment release. After 1 year of injection, the 

basic case with an injection depth of 2600 m induces a maximum seismic moment of 1.1E13 N·m, 

corresponding to a seismic magnitude of 0.002. When the injection depth is reduced by 300 m, the 

maximum seismic moment is reduced by a factor of 1.43, resulting a value of 7.9E12 N·m, which 

corresponds to a smaller maximum seismic magnitude of -0.1. When the injection well depth is 

reduced, the diffusion of fluid and pressure within the Arbuckle layer in the vertical direction is 

restricted. As a consequence, the elevated pore pressure transmitted into the basement fractures is 

reduced, minimizing the possibility of slippage. 
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Figure 7.33. Maximum seismic moment as a function of cumulative injection volume in the cases 

of different injection depth. 

 

These numerical tests suggest that for a given site with known hydrogeological conditions and 

fault configuration, the injection scheme governs the spatial and temporal perturbation of excess 

pore pressure, consequently, fault stability and the potential of induced seismicity. During 

wastewater disposal operations, the injection parameters, such as injection volume, rate and 

injection well depth, should be carefully selected. Capping the total injection volume, reducing 

injection rate, and restricting injection depth relative to the basement are possible injection 

strategies to effectively minimize the seismic hazards and risks. 

 

7.2.6 Summary 

This study utilized a 12 years injection history of wastewater injection into central Oklahoma to 

develop a better understating of the response of the existing fault systems and the potential of 
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induced seismicity. A conceptual model considering the poroelastic coupling behavior during 

injection and shear slippage induced seismicity is developed. 

Simulation results show that the injected fluid increases pore pressure within the target Arbuckle 

layer and migrates into the deeper crystalline basement rocks via natural fractures along the faults. 

Under the assumed condition, the pressure increase in the fractures after 12 years of injection is 

up to 1.0 MPa. This small pressure change is sufficient to promote slippage on favorably oriented 

fractures and induce seismicity. The predicted seismicity is primarily occurred along the Meeker-

Prague fault striking N55°E, which is consistent with the distribution of the field observed seismic 

events between 2000 to 2011. 

This study also carried out numerical tests to explore the correlations between key well operational 

parameters and induced seismicity. The results suggest that the magnitude of the maximum seismic 

event could be minimized by limiting the total injected volume, reducing the injection rate and 

restricting the injection depth relative to the basement. 

Despite the uncertainty in input parameters, this conceptual model provides valuable 

understanding of the process of induced seismicity in the faulted wastewater disposal region. It 

could be served as an initial assessment tool for evaluating the potential of injection induced 

seismicity prior to detailed studies. It could also be used to evaluate the effectiveness of seismic 

hazard mitigation strategies. 
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8. Summary 

8.1 Conclusions 

This dissertation presents a numerical model for simulating the response of naturally fractured 

reservoirs to fluid injection. A fully coupled thermo-poroelastic model is utilized to simulate the 

coupling between rock deformation, fluid flow and heat transfer in the porous rock medium during 

injection process. A discrete stochastic fracture network model is implanted into the thermo-

poroelastic model using an equivalent continuum approximation. The integration of these two 

models is achieved by linking the permeability change with the stress dependent fracture 

deformation and fracture network growth. Not only fracture aperture changes due to opening and 

shear dilation is accounted in updating the equivalent permeability, but also fracture network 

geometry change due to fracture propagation. The potential of injection induced seismicity is also 

modeled, providing a real-time distribution of both the locations and magnitudes of the seismic 

events. In addition, a heat transfer model for heat flow within a fracture network is developed by 

considering both the convection via fracture flow and the conduction between the fluid within 

fractures and the adjacent rock mass. The local pressure distribution on individual fractures is also 

solved using an analytical approach. This numerical model has been verified against analytical 

solutions and numerical results in the literature.  

The model is applied to several numerical examples for evaluating the response of naturally 

fractured reservoirs to fluid injection, with different modeling emphasis. The results show that: 

The developed model is capable of predicting different aspects of reservoir response to fluid 

injection. It is useful for predicting the changes in the pore pressure, temperature and stress fields 

within the reservoir, evaluating fracture network deformation and the associated permeability 

enhancement, and understanding the injection induced microseismicity. 
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Natural fracture network plays an important role in the injection outcome as it governs the fluid 

and heat flow within the fractured system, the development of pore pressure field and the 

occurrence of induced microseismicity. Results also show that the enhancement of permeability is 

attributed to the combined contributions of fracture opening, shear slippage and propagation. 

The injection response of a naturally fractured reservoir is a highly complex process affected by 

many parameters, including the properties of natural fractures, in-situ stress conditions, the 

properties of rock matrix, the properties of injecting fluid, injection scheme and injection 

temperature. A careful evaluation of these parameters is essential for injection optimization.  

Simulation of the Newberry EGS stimulation project is carried out using a stochastic fracture 

network generated based on field data. The simulated injection profile and the induced 

microseismic events are in good agreements with the field observations. The simulation results 

also show that fluid injection could not only increase pore pressure but also change the in-situ 

stress. The perturbation and rotation of the stress field is observed near the injection well, which 

helps to explain the discrepancy between the pre-stimulation stress model and the stress model 

derived from stimulation seismic data. 

Results from Oklahoma wastewater injection simulation indicate that the presence of fractures and 

faults permit the downward fluid migration from the Arbuckle injection target into the deeper 

crystalline basement, causing shear slippage of favorably oriented fractures and inducing 

seismicity. To minimize the potential hazards and risks of induced seismicity during wastewater 

injection operations, well operational parameters should be carefully selected. The possible 

injection strategies induced capping the total injection volume, reducing injection rate, and 

restricting injection depth relative to the basement. 
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The integrated model developed in this study has shown to be capable of predicting the complex 

behavior of naturally fractured reservoirs during fluid injection process. It is a powerful tool for 

planning and optimizing the injection process in naturally fractured reservoirs. 

 

8.2 Contributions 

The contributions of this dissertation are summarized as below: 

1. This research develops a step-by-step workflow to incorporate a stochastic discrete fracture 

network into a 3D fully coupled thermos-poroelastic finite element model for simulating the 

behavior of naturally fractured reservoirs. The detailed integration procedure of these two models 

is presented. 

2. The geomechanical model for simulating the deformation behavior of a natural fracture network 

is improved by considering the propagation of natural fractures simultaneously with shear dilation. 

It has a capability of capturing the permeability enhancement due to the improvement of fracture 

network connectivity as a result of fracture growth.  

3. As fracture aperture is assumed to be stress dependent in this work, fracture could deform during 

injection process. The model for heat transfer within a fracture network is improved by considering 

the change in thermal energy retained by the fluid within the fractures caused by fracture volume 

change. 

4. An analytical approach is used for estimating the local 2D pressure distribution on individual 

fracture planes. It utilizes the fracture network pressure distribution results and the intersection 

information between fractures, and provides a computational efficient estimation. 
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5. The model for injection induced seismicity is improved by the inclusion of a rate-and-state 

friction model (RSF), which has an advantage of capturing the friction evolution on a fracture/fault 

as a function of sliding velocity and its past sliding history. 

6. The developed FORTRAN code is part of the Reservoir Geomechanics and Seismicity Research 

(RGSR) Group’s in-house code, GeoFrac-Stim. Each of the developed sub-models is implemented 

as an optional module. This code is also compatible with various modules, such as rock 

heterogeneity model, continuum damage model, providing flexibility in representing different 

aspects of rock and fracture behavior. 

7. The developed numerical model has been applied to various verification problems and 

engineering problems, which confirm the capability of this model as well as provide important 

insights into the behavior of naturally fractured reservoirs. 

 

8.3 Recommendations 

The following areas are recommended for future studies: 

1. It is challenging to generate a realistic 3D natural fracture network model for representing 

complex natural fractures presenting in the underground. Further efforts on fracture 

characterization are required to obtain accurate fracture distribution parameters with respect to 

fracture density, size and orientation. Furthermore, since the fracture network is generated from a 

stochastic approach, Monte-Carlo tests are required to verify the reproducibility in stochastic 

simulation, and to examine the influence of random data set on the simulation results. 

2. Future models might also include the mechanical coupling between fracture deformation and 

finite element displacement by considering the induced stress and elemental strain in rock matrix 

due to fracture deformation. 
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3. Advanced fracture propagation model might be included to improve the capability of accurately 

identifying and predicting the growth of natural fractures. 

4. Including wellbore heat transmission to determine the temperature change between the surface 

and the injection interval is essential for more accurately modeling the thermal effects caused by 

cold fluid injection operations. 

5. Conditional statistical distributions of rock matrix and natural fracture properties should also be 

incorporated to represent the inherently heterogeneity of fractured rocks. In addition, since fluid 

properties, such as density and viscosity, are pressure and temperature dependent, the dynamic 

fluid property changes should be considered when modeling the behavior of the deep underground 

reservoirs during injection/extraction process. 

6. Enhancement of the computational efficiency is important, especially for large scale fractured 

reservoir simulations. High performance computing technique, such as parallel computing, would 

be beneficial. 
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Appendix A: Algorisms for determining fracture network connectivity 

The determination of the connectivity of a fracture network requires an algorism to determine the 

intersections between fractures and an algorism to search for conductive flow path assembled by 

interconnected fractures and to exclude isolated fractures. 

 

A.1 Detecting intersections between fractures 

The first step is to determine if two fractures intersect with each other. The implicit functions of 

two fracture planes can be written as: 

1 1 1 1 0x y zn x n y n z d                                                                                                                  (A.1) 

2 2 2 2 0x y zn x n y n z d                                                                                                               (A.2) 

Where  1 1 1 1 1 1 1x c y c z cd n x n y n z     and  2 2 2 2 2 2 2x c y c z cd n x n y n z    ; n and c are the normal 

and center of a fracture. 

There are three possible relative locations of the two fracture planes in three dimensional space: 

1. Two fracture planes are parallel ( 1 2 1n n    and 0d  ) 

If two fracture planes have same or opposite normal, and the distance between these two planes is 

not equal to zero, they are parallel. Fractures locating on parallel planes will never intersect, and 

there will be no intersection in this case. 

2. Two fracture planes are co-planar ( 1 2 1n n    and 0d  ) 

If two fracture planes have same or opposite normal, and the distance between these two planes is 

zero, they are the same plane. In this case, the 3D intersection problem is reduced to a planar 

problem. The intersection problem can be solved by comparing the distance between two fracture 

centers to the sum of their radius. There will be 1 intersection point if 1 2d r r   or 1 2d r r  ; 2 
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intersection points if 1 2d r r  . The solution to this planar intersection problem is very common, 

and is not discussed here. 

3. Two fracture planes are non-parallel and non-coplanar ( 1 2 1n n   ) 

If two fracture planes are non-parallel and non-coplanar, they will intersect. In this case, the 

intersection line of these two planes are identified, then this problem reduces to finding the 

intersection points of this intersection line and a circle. Finally, the intersection between two 

fractures are determined based on the relative locations of the intersection points by calculating 

the line segment overlapping. 

The intersection line between these two planes is: 

0x x ft 
                                                                                                                                         (A.3) 

0y y gt 
                                                                                                                                   (A.4) 

0z z ht 
                                                                                                                                     (A.5) 

Where the parameter coefficients f, g, h and the point is given by: 

1 2 2 1c c c cf y z y z 
                                                                                                                         (A.6) 

1 2 2 1c c c cg z x z x 
                                                                                                                            (A.7) 

1 2 2 1c c c ch x y x y 
                                                                                                                         (A.8) 

      2 2 2

0 1 2 2 1 1 2 2 1c c c cx g d z d z h d y d y f g h                                                                   (A.9) 

      2 2 2

0 1 2 2 1 2 1 1 2c c c cy f d z d z h d x d x f g h                                                                    (A.10) 

      2 2 2

0 1 2 2 1 2 1 1 2c c c cz f d y d y g d x d x f g h                                                                (A.11) 

Next, the intersection points between a line and a circle in 3D space are determined as follows: 

The fracture circle equation written using its center and radius is: 
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     
2 2 2 2

c c cx x y y z z r                                                                                                   (A.12) 

The parametric form of the line is: 

1x x Ft                                                                                                                                       (A.13) 

1y y Gt                                                                                                                                   (A.14) 

1z z Kt                                                                                                                                    (A.15) 

There could be 0, 1, or 2 intersection points between a line and a circle. Here, only the 2 intersection 

points case is described, since the 0 intersection points case means no intersection and the 1 

intersection points case can be treated as a special case of the 2 intersection points case. 

The coordinates of the two intersection points can be calculated as: 

      

         

2
22 2 2

1 1

2 2

1 1 1 1

c c

c c c c

root r F G K F y y G x x

G z z K y y K x x F z z

      


       


                                                              (A.16) 

     1 1 1

2 2 2

c c cF x x G y y K z z root
t

F G K

       
 

                                                                     (A.17) 

1x x Ft                                                                                                                                      (A.18) 

1y y Gt                                                                                                                                   (A.19) 

1z z Kt                                                                                                                                    (A.20) 

After finding the 4 intersection points (2 points for each fracture), the next step is to solve an 

overlapping problem of line segments to obtain the intersection line of two fractures. There are 

seven possible relative locations of four end points of two line segments: 
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Figure A.1. Possible relative locations for line segment overlapping (Wang 2013). 

 

The relative positon of these four points are determined by calculating the value of four angles: 

angle132, angle 142, angle 314, and angle 324. Knowing the two intersection points, the length of 

the intersection line could be obtained. Repeat the same searching procedure for all fracture pairs, 

we can obtain the local connectivity of the fractures. The flow channel between two intersecting 

fractures is formed by connecting the fracture centers with the mid-point of fracture intersections, 

as shown in Figure 4.17. 

 

A.2 Searching for interconnected flow path 

To determine the interconnected flow path within a fracture network, a searching algorithm is 

developed. The searching process starts from a fracture or a set of fractures defined as the fluid 

entering fractures. In this work, since we are interested in the conductive fracture flow path from 

the injection well, the fractures that have intersections with the wellbore are selected to be the entry 

fractures. For each of the entry fractures, the local connectivity is checked and the fractures 

intersecting them are added to the flow path. For each of the newly added fractures, we check their 

local connectivity and add the fractures that have intersections with them to the flow path. This 
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process is repeated until no new fractures are added. A fracture could intersect with multiple 

fractures, and may has been accounted in the flow path searched in the previous steps. Therefore, 

a deduplication step is used to remove the redundant fractures. Finally, the fractures within the 

network can be classified as “connected” or “isolated” fractures, based on their belongings to the 

flow path. The detailed searching algorithm is illustrated in Figure A.2. 

 

Figure A.2. Algorithm for searching for the connected fracture flow path. 

 

Appendix B: Potentials of radial and non-radial line intersections and their 

images 

The analytical solution in each fracture plane is based on the assumption that each fracture 

intersection acts like a source or sink (Long 1983). The procedure to find the expressions for the 

potentials of radial and non-radial line intersections and their images described as follows. 
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As shown in Figure 4.14, a radial source has a radial segment image. The equation of the line on 

which the segment lies can be given as: 

Ax By C                                                                                                                                  (A.21) 

Written in radial coordinates, the equation becomes: 

cos sinAr Br C                                                                                                                  (A.22) 

Where cosx r  , siny r   and 
cos sin

C
r

A B 



. 

When the line segment is radial, 0C   , the equation of the image segment is: 

 1tan A B                                                                                                                                  (A.23) 

The two endpoints of the image segment are given by 2

1/r a g   and 2

2/r a g . 

When the line segment is non-radial, 0C  , the equation of the image arc is: 

 
2 2

cos sin
a a

R A B
r C

                                                                                                               (A.24) 

Written in the Cartesian coordinates: 

 
2 2

2 2 4
2 2

22 2 4

a A a B a
x y A B

C C C

   
       

   
                                                                                       (A.25) 

It is the equation of a circle centered at 
2 2

,
2 2

a A a B

C C

 
 
 

, 0C   with radius 
2

2 2

2

a
A B

C
 . It always 

passes through the origin. 

For a non-radial line intersection, a local arbitrary X, Y coordinate system can be established for 

each fracture disc. For calculation convenience, x, y and x’, y’ coordinates are generated, as shown 

in Figure A.3. The origin of the x’, y’ coordinates is located at one end point of the non-radial 

intersection, and the y’ axis lies on the intersection. 
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Point O is the center of this fracture, and Point P is an arbitrary point on this plane. All the equations 

for potential distribution must be referred to X, Y coordinates before they are added up to obtain 

the total potential on this disc. 

 

Figure A.3. Non-radial line source (Long 1983). 

 

The fundamental solution of the Laplace equation for the potential due to a point source in an 

infinite plane is: 

ln( )
2

Q
Kbh r


  

                                                                                                                    (A.26) 

Assume such point sources are distributed over a line segment in the fracture plane, and the 

potential due to the line source is given by: 

0
ln( ( ))

2

l
k

iN p

Q
r d

l
  


  

                                                                                                           (A.27) 

The potential due to the image is similar: 

2

1

ln( ( ))
2

S
k

iI p
S

Q d
r s ds

l dS





  

                                                                                                         (A.28) 
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Eqn. (A.27) can be written as: 

 
22

0

1
ln ' '

2 2

ilk

iN

i

Q
x y d

l
  


    
                                                                                           (A.29) 

It can also be re-written as: 

   
22 1

0

'
' ln ' ' 2 2 ' tan

4 '

il

k

iN

i

Q y
y x y x

l x


   




               
   

                                         (A.30) 

It has to be translated to x, y coordinates and then rotate to X, Y coordinates. Finally, it will result 

in an expression of the form: 

 ,k k

iN i iNQ f X Y                                                                                                                          (A.31) 

 

Figure A.4. Non-radial line source image arc (Long 1983). 

 

The image arc of a non-radial source is shown in Figure A.4. The integral for the potential 

distribution at any point on the plane due to sources on S can be written as: 

2

1

ln( ( ))
2

S
k

iI p
S

i

Q d
r ds

l dS


 


                                                                                                       (A.32) 
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Where pr  is the distance from a point S on the arc to any point P (x’, y’) on this plane. 

   
2 22 ' cos ' ' sin 'pr x R y R                                                                                                    (A.33) 

2
2

2 2
cos ' cos 2 1 2sin 1 2

B


  



 
      

 
                                                                              (A.34) 

2 2

2
sin ' sin 2 2sin cos

B

B


   


  


                                                                                          (A.35) 

Substituting the above equations into Eqn. (A.32), we have: 

    2 2

1 1

2 2ln ln
4

k i
iI

i

Q
d B d

l

 

 
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
                                                                                         (A.36) 

2                                                                                                                                      (A.37) 

 2 2 2 2' ' 2 'x y R Rx B                                                                                                                (A.38) 

4 'Ry B                                                                                                                                      (A.39) 

2 2 2' ' 2 'x y R Rx                                                                                                                      (A.40) 

Solve for the integral, it can be rewritten as: 

 
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2

1 2 2 1

2

4 2
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4 2 4
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 
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                        (A.41) 

Finally, it must be translated to X, Y coordinates and has the form: 

 ,k k

iI i iIQ f X Y                                                                                                                                     (A.42) 

If the intersection is radial, there will be a different form for the potentials. Figure A.5 shows the 

geometry of a radial line source. 
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Figure A.5. Radial line source image arc (Long 1983). 

 

The potential due to the radial source is: 
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2 21
ln ( )

4 2

k i
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Q
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


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
                                                                                              (A.43) 

Solve for the integral, it can be re-written as: 

 
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2 2 1ln ( ) 2 2 tan ( )
4

k i
iN

i

Q x
x x y y

l y
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                                                  (A.44) 

The image of a radial source is also a radial line segment, as shown in Figure A.6. 
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Figure A.6. Radial line source image arc (Long 1983). 

 

The distance from a point on the image to any point P (x’, y’) is: 

 2 2 2 2 2 42
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 
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                                                                              (A.45) 

Similar to the non-radial case, the potential due to the image of a radial source can be written as: 
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Where, 
2      ; 

4a  ; 
22a x   ; 

2 2x y   . 

The integration yields: 
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                               (A.47) 

Finally, apply coordinate transformation, and write all potentials in the X, Y coordinate system. 

The potential contribution of the intersection i and its image on fracture k is of the form: 

   , ,k k k k k

i iN iI i iN i iIQ f X Y Q f X Y                                                                                       (A.48) 


