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Abstract: Today’s electric power grids face serious challenges due to overstressed 

networks, need to assimilate variable generation, strict environmental regulations and 

widespread weather-caused outages. There is an urgent need to improve grid resilience 

and system security more than ever before. Amidst such challenges, the best approach 

would be to focus primarily on the grid intelligence rather than implementing redundant 

preventive measures. The foundation of any intelligent operational strategy would be on 

the ability of the grid to assess its current dynamic state instantaneously. Traditional 

forms of real-time power system security assessment consist mainly of methods based on 

power flow analyses. Such methods do not consider the dynamics inherent in the system 

and hence, are static in nature. However, in order to capture the nonlinear dynamics 

present in the system, it is necessary to carry out time-domain simulations (TDS) that are 

computationally too involved to be performed in real-time. Machine learning (ML) 

techniques have the capability to organize data gathered from such simulations and 

thereby extract useful information in order to better assess the system security 

instantaneously. This dissertation presents a framework that would enable 

implementation of machine learning techniques for real-time assessment of grid 

resilience. An IEEE 14-bus test system is used in this work for simulation purposes. 

Firstly, a set of multiple steady-state operating points is generated by performing a SSA 

on the base case of the power system. Secondly, a TDS is performed on each operating 

point to assess the grid resilience against a specific disturbance, thus generating a 

database for this work. This work highlights the importance and need for selecting a few 

operating points as “landmarks” in the operational space under consideration for 

prediction of power system security. Further, a few heuristics are developed so as to rank 

all the operating points of the system. The proposed ranking methodologies are used to 

select the best landmarks in order to improve prediction accuracy on the original 

database, thereby enhancing the ability to assess grid resilience instantaneously. 
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CHAPTER I 
 

 

INTRODUCTION 

In the wake of new vulnerabilities such as those arising from severe weather events and cyber-

attacks, current electric grids can no longer be allowed to operate as they did in the past. It is 

becoming increasingly difficult to analyze different combinations of contingencies under 

changing scenarios. Grid resilience and improved situational awareness will form the basis of 

future electric grids in order to tackle these new challenges.  

A resilient grid would have the ability to adapt to changing conditions and recover rapidly from 

incidents such as natural disasters, deliberate attacks or any other types of system failures. The 

most cost effective way to meet such stringent requirements is through intelligent operation of the 

grid by employing data driven models that are both reactive and predictive in nature. The key 

attribute involved here is the ability to assess the current state of the power system in real-time in 

terms of its security. Power system security is defined as its ability to survive imminent 

disturbances (contingencies) without interruption of customer service. A more secure grid would 

be more resilient to all kinds of potential disruptions. Historically, it has been recognized that for 

a power system to be secure, it must be stable against all types of disturbances [1,2]. Stability 

refers to the ability of a power system, for a given initial operating condition, to maintain intact 

operation and equilibrium following a physical disturbance. Hence, stability analysis is an 

integral component that can facilitate the assessment of power system security and thus, its 

resiliency. 
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Security in terms of operational requirements implies that following a sudden disturbance, power 

system would be secure if and only if:  

1) it could survive the transient swings and reach an acceptable steady state condition, and  

2) there are no limit violations in the new steady state condition. 

The first requirement can be met by carrying out time-domain simulations in order to investigate the 

instability phenomena such as loss of synchronism or voltage collapse in the post-contingency 

transient phase. The second requirement is met by using power-flow based methods in order to assess 

the new steady state condition for voltage and current limit violations. 

Time-domain simulations (TDS) are computationally involved and too complex to be performed in 

real-time. Therefore, for many years in the past, the electric utility industry’s framework for real-time 

security assessment mainly consisted of solution methods that would meet only the second 

requirement stated earlier. Such a type of real-time security analysis is prevalent even today and is 

commonly referred to as “Static Security Assessment (SSA)”. On the other hand, a “Dynamic 

Security Assessment (DSA)” procedure would strive to meet both the requirements (as stated earlier) 

in real-time in order to assess power system security. 

Different forms of DSA practices have existed in North America since the late 1980s [3]. Modern 

DSA implementations are able to complete a computation cycle within 5-20 minutes after a real-time 

snapshot (base case) of the system is available [4]. Real-time snapshots are provided by existing 

SCADA-based state estimators every few seconds or minutes depending on the size of the system [5-

9]. Thus, these modern DSA implementations can be termed as “near real-time” and not “real-time”. 

However, the latest PMU-based data collection technology can provide much better snapshots 

wherein the measurements are transmitted to the main control center at rates as fast as 60 

samples/second [10]. Thus, DSA implementations of the future will be required to handle large 

amounts of data and complete the computation cycles much faster in order to assess the system 
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security in true “real-time”. Mathematically, such an instantaneous assessment would be possible 

only if grid resilience against any contingency can be expressed as a function of the state estimator 

output. In other words, input to the data-driven models must consist of only steady-state (static) 

quantities namely bus voltages and bus angles derived from power-flow based methods. 

Moreover, with consumers demanding better power quality and reliability, our systems are required to 

be more adaptive and secure than ever before. In order to come to terms with new challenges, nations 

around the world are developing increased interest in modernization of their current electric grids. 

The ongoing efforts taken in this direction has led to the emergence of “Smart Grid” paradigm 

throughout the world. The main objective of the smart grid concept is to provide safe, secure and 

reliable power to today’s modern digital societies. Some of its features include the following: 

 Self-healing (ability to quickly detect, respond and restore the system from perturbations) 

 Grid and consumer interaction (to provide an interface in order to incorporate consumer 

behavior and equipment in to the current grid) 

 Two-way power flow 

 To facilitate the integration of new and intermittent renewable sources of energy and storage 

options 

 Tolerant of terrorist and cyber attacks 

 To optimize asset management and operational efficiency 

 Use of advanced communications, internet and IT solutions for real-time monitoring  

 Optimize grid operations in order to reduce costs of maintenance and system planning 

Again, the foundation of such a concept would lay on the ability of the grid to assess its current 

operating state instantaneously. Today, the most promising approach to achieve such instantaneous 

assessment for large power systems is to harness the power of data-driven models through application 

of machine learning techniques. 
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Machine learning (ML) techniques have the ability to assimilate and reason with knowledge the way 

human brain does. Such techniques are primarily driven by data that could be in the form of various 

power system parameters such as [11-13]: voltage, current, power, frequency, power angles etc. ML 

techniques can capture the nonlinear dynamics of power systems by extracting useful information 

from such data. DSA tools employing such ML techniques will have the ability to determine stability 

limits in real-time. Such sophisticated tools will be able to analyze the current and future dynamics of 

power systems without carrying out extensive time-domain simulations. Additionally, these tools 

would also benefit the system operators by providing them with real-time information on trends in 

system security, thereby facilitating faster decision-making during crucial times. Also, as the entry of 

renewable energy systems further increases grid complexity, it is possible to extend the proposed 

work in order to accommodate online training, thereby resulting in a smart tool that can very 

effectively assess the system security in real-time.  

Based on power systems analysis fundamentals, this dissertation develops a framework that would 

enable implementation of machine learning techniques for real-time assessment of grid resilience. An 

IEEE 14-bus test system is used in this work for simulation purposes. Firstly, a set of multiple steady-

state operating points is generated by performing a SSA on the base case of the power system. 

Secondly, a TDS is performed on each operating point to assess the grid resilience against a specific 

disturbance, thus generating a database for this work. This work highlights the importance and need 

for selecting a few operating points as “landmarks” in the operational space under consideration for 

prediction of power system security. Further, a few heuristics are developed so as to rank all the 

operating points of the system. The proposed ranking methodologies are used to select the best 

landmarks in order to improve prediction accuracy on the original database, thereby enhancing the 

ability to assess grid resilience instantaneously. 
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CHAPTER II 
 

 

STATIC SECURITY ASSESSMENT (SSA) 

2.1 SSA Algorithm 

Static security assessment (SSA) provides a mathematical framework to compute stability limits 

for individual buses and lines based on power flow based methods. Such an assessment forms an 

integral part of the framework mentioned in this report and is conducted before carrying out time-

domain simulations. SSA involves checking for voltage stability criteria at each bus, i.e. if steady-

state voltages at all buses are within limits (in per-unit). Power-voltage (PV) curves are plotted 

for each bus by systematically loading the base case of the power system under consideration. 

This is achieved by means of an algorithm called as “Continuation Power Flow (CPF)” [14]. 

CPF is a “case worsening” procedure where the power system is loaded in steps as follows: 

0

0

0

LL

LL

GG

QQ

PP

PP

 

 

(1) 

where PG0, PL0, QL0 are the base case generator and load powers (in per-unit) and λ is the loading 

parameter (in per-unit). CPF facilitates plotting of voltage curves as a function of loading 

parameter λ, for each bus.  
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2.2 A Set of Operating Points 

As stated earlier, such a framework can be used to generate a dataset consisting of multiple 

steady-state operating points. For an n-bus system, every such operating point can be represented 

by a feature vector x of dimension 2n consisting of n bus voltages and n bus angles as features. A 

set S containing such objects is given by, 

}],......,,......[:{ 11

2 T

nn

n VVxx  
(2)                                

where Vi’s are bus voltages (in per unit) and δi’s are bus angles (in degrees). 

Such a set of S can be generated by systematically loading the base case of the power system 

under consideration. In order to cover the broader spectrum of power system operation, additional 

scenarios in the form of  transmission line outages can be considered, thus adding more number 

of objects of the form x to the set S as given in equation (2).   

A CPF routine can be performed for each line outage i of the power system along with the base 

case (i=0). Thus, a maximum loading parameter λmaxi can be calculated for each i, taking voltage 

stability criteria into account. For SSA, voltage stability criteria can be stated in the form of 

maximum and minimum values of permissible voltage levels at all buses in the system.  The set S 

represented by equation (2) is generated only for values of λ given by, 

ii ,1 max  
 (3) 

In equation (3), the loading at λ=1 represents the base case loading of the power system under 

consideration and hence, this signifies that set S is generated by successively loading the base 

case until there is violation of the voltage stability criteria at any of the buses in the system. It has 

to be noted that these λmaxi values account for only steady-state voltage violations and hence, do 

not provide any information about dynamic system security. In order to account for dynamic 

stability, time-domain simulations are performed for each operating point, as described in the 
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next chapter. Figure 1 shows flowchart for implementing static security assessment (SSA) on any 

power system in order to generate a set S containing objects of the form x with each representing 

a steady-state operating point of the system. 

 

Figure 1: Flowchart for SSA implementation 

Base Case 
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Initialize 
outage i = 0 & Δλ 
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Power Flow 
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2.3 Test System: IEEE 14-bus system 

The IEEE 14-bus test system as shown in Figure 2 is used for simulation purposes [15]. It has 14 

buses, 5 generators and 11 loads. Generators are represented by machine models along with 

automatic voltage regulators and turbine governors.  The voltage stability criteria for each bus is 

considered as follows, 

Maximum permissible voltage: Vmax = 1.2 per-unit 

Minimum permissible voltage: Vmin = 0.8 per-unit 

PSAT toolbox for Matlab is used to carry out all the power system routines on the test system 

[16]. 

 

Figure 2: IEEE 14-bus Test System 
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2.4 SSA on the Test System 

SSA is performed on the IEEE 14-bus test system for the voltage stability criteria as stated 

earlier: Vmax = 1.2pu and Vmin = 0.8pu at each bus. The CPF routine from the PSAT toolbox is 

simulated for each line outage i of the test system along with the base case (i=0). For each 

scenario i, the CPF routine generates a power flow solution at every steady-state operating point 

of that scenario, starting from zero loading (λ=0) until there is violation of the voltage stability 

criteria at any of the buses in the system, thus generating the value for λmaxi. Figures 3a and 3b 

show V-λ curves for the base case and a particular line outage respectively. Table 1 shows the 

values of maximum loading parameter λmaxi for each i, taking voltage stability criteria into 

account.   

Now, a set S as represented by equation (2) is generated for only those values of λ as given by 

equation (3). For the 14-bus test system, each object x in the set S is a 28-dimensional vector 

consisting of 14 bus voltages and 14 bus angles as features. Such an object x can be represented 

as follows, 

14
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14

2
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(4) 
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Figure 3a: V-λ curves of PQ buses for the base case, bus 14 voltage reaches Vmin at λ = 3.5748 
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Figure 3b: V-λ curves of PQ buses for outage of line#16 (bus 2 to bus 4), bus 5 voltage reaches 

Vmin at λ = 3.1487 
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Line outage λmaxi (per-unit) 

Base case 3.5748 

1 3.2587 

2 3.5436 

3 3.5715 

4 2.7225 

5 2.7464 

6 3.0640 

7 3.5626 

8 3.0592 

9 2.7461 

10 2.3900 

11 1.3306 

12 2.2194 

13 3.5660 

14 3.3899 

15 3.4707 

16 3.1487 

17 3.5150 

18 2.2428 

19 3.3218 

20 3.0248 

 

Table 1: Maximum Loading Parameters λmax for base case and line outages 
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CHAPTER III 
 

 

DYNAMIC SECURITY ASSESSMENT (DSA) 

3.1 A Survey on DSA of Power Systems 

As mentioned earlier, traditional implementations of security assessment rely only on steady-state 

methods whereas a DSA implementation would assess both: steady-state and dynamic security of 

the power system. The following subsections present a discussion on basic DSA architecture and 

its various other aspects such as: typical DSA workflow, solution methods, security indices and 

examples of DSA implementations around the world. 

3.1.1 DSA Architecture 

DSA architecture consists of various modules such as measurements, state estimator, 

computation, outputs and controls. Measurements from the traditional SCADA systems or the 

latest PMU-based systems form the main DSA input. The state estimator makes use of the 

complete system model along with external equivalents in order to generate system snapshots. 

These snapshots are presented to the computation module that carries out all the computations 

required for security assessment. The computation module consists of solution methods that 

evaluate both the steady-state and dynamic performance of the power system under consideration. 

Outputs are provided in the form of various displays and visualizations in the control room for the 

attention of the operators. Outputs are also integrated with remedial action schemes thereby 

invoking closed-loop automatic controls. Figure 4 shows the block diagram of DSA architecture. 
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Figure 4: DSA Block Diagram 

3.1.2 Typical DSA Workflow 

The snapshot presented to the computation module forms the starting point of any typical DSA 

workflow process as follows, 

 Apply the list of contingencies/scenarios to the current snapshot 

 Evaluate steady-state and dynamic security assessment using available solution methods 

 Case worsening: Systematically load the given snapshot by using an algorithm such as 

continuation power flow in order to generate more snapshots 

 Repeat analyses for all individual snapshots 

 Advanced forms of DSA may even predict future snapshots and repeat the above 

procedure for each predicted snapshot 

 Perform post-disturbance event analysis for each contingency 

 Generate stability indices to evaluate different contingencies/scenarios and to evaluate the 

security status of the snapshot under consideration 
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 These indices can be converted into various forms of displays and visualizations. 

3.1.3 DSA Solution Methods 

The basic power system solution methods are as follows, 

 Steady-State Power flow: This involves solving the basic algebraic power flow equations 

of the system. It includes employing steady state limits on power flows, voltages and 

currents. Power flow analysis can be performed for one (N-1) or more (N-k) outages of 

power system components. 

 Transient Stability: This involves solving the differential algebraic equations following a 

large disturbance such as faults on transmission system, sudden trips of generators, loads 

etc. Such an analysis involves performing time-domain simulations that generate 

dynamic responses of all the system state variables. 

 Small-Signal Stability: This involves study of system oscillations following small 

disturbances such as small variations in generation and loads. Such an analysis checks if 

all the system modes are sufficiently damped by using the system state matrix derived 

after linearizing the differential algebraic equations of the system.  

 Frequency Stability: This involves monitoring the ability of the system to maintain its 

frequencies within safe limits following any disturbance. Such an analysis can be 

facilitated by performing time-domain simulations. 

Reference [2] provides a brief summary on solution methods available in the power systems 

domain and also includes extensions to the basic solution methods mentioned above. In addition 

to this,  [17] describes Single Machine Equivalent (SIME) method that transforms  multi-machine 

system into a suitable one-machine infinite bus equivalent and  [18] gives description about the 

direct Transient Energy Function (TEF) method. 
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Different types of security applications can be deployed by using such solution methods in order 

to improve situational awareness in the power grid. For example, a DSA can be implemented to 

handle any of the following problems, 

 Abnormal angles 

 Abnormal voltages 

 Dynamic oscillations and damping 

 Line overloads 

 Loss of synchronism 

 Voltage collapse 

 Frequency rise/decline 

 Post-disturbance violations 

3.1.4 Indices for DSA 

The computation module of DSA may carry out measurement based analyses as well as the ones 

that are simulation based or may use a hybrid approach combining the benefits of both. The 

output results from DSA must be properly presented to the operators through displays and 

visualizations in the control room in order to highlight the security status of the power system. 

These displays may range from simple P-V curves or time-plots of state variables to security 

indices designed specifically to understand the phenomena of interest. Such indices measure the 

security level of the current operating point and provide deeper insight into the steady-state and 

dynamic violations that occur in the system. Moreover, security indices help in reducing 

excessive amount of information   generated by any of the solution methods or DSA applications, 

so as to avoid information overload to the operators. As mentioned earlier, these indices would 

clearly identify system security concerns related to thermal overloading, steady-state stability, 

voltage stability, transient stability and frequency stability. 
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References [19,20] define indices that represent overload on every branch and voltage violations 

at every bus in the system. The motivation and justification for using composite indices is 

presented in [21,22]. References [23-27] propose different types of indices that are based on 

deviations of rotor angles, frequencies, voltages and power flows. Risk-based indices that depend 

on probability of occurrence and impact of the contingency are defined in [28]. References 

[29,30] state indices that are based on coherency of generator angles and variations of transient 

energy during the contingency. Indices for transient classifiers and filters that employ transient 

energy function method are mentioned in [31-33]. The fluctuation analysis technique defined in 

[34] uses a frequency-based index that is calculated for every window of samples from PMU 

measurements. Reference [35] proposes an index that is based on primary frequency response of 

the system and [36] proposes an index for assessment of voltage unbalance. Reference [37] 

provides an exhaustive list of dynamic security indices. 

3.1.5 DSA Implementations around the World 

DSA practices have been followed in North America since the late 1980s [38]. The DSA tool 

implemented at PJM completes a transient stability assessment cycle within 15 minutes by 

applying 3000 contingencies on the current system snapshot provided by its EMS [39]. Southern 

Company Services (USA) has implemented a transient security assessment tool that roughly 

processes 250 contingencies in about 30 minutes [40]. In this case, the real-time snapshots are 

created by Southern’s EMS on an hourly basis. ERCOT’s DSA implementation consists of 

Voltage Security Assessment Tool (VSAT) and a Transient Security Assessment Tool (TSAT) 

[41]. The wide-area monitoring system at ISO New England consists of System Disturbance 

Management (SDM) module and Oscillatory Stability Management (OSM) module [42]. SDM 

identifies, locates and characterizes significant events in the system whereas OSM characterizes 

electromechanical oscillations.  
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BC Hydro’s online transient stability tool not only assesses the system dynamic performance but 

also determines the margin of stability and its sensitivity to key variables of the system [43]. 

Reference [44] presents six security analysis methods that are available in the DSA 

implementation of Brazilian system operator – ONS. Sensitivity analysis is used in the ONS DSA 

in order to rank various voltage and power flow controls in the system. The DSA module 

presented in [45] has been tested on several provincial power grids in China. Its main features are 

contingency screening and preventive control algorithms based on TEF methods. Hydro-

Quebec’s DSA tool provides dynamic security limits every 5 seconds [46]. Reference [47] 

elaborates the methodology adopted by BC Transmission Corporation to determine 2-dimensional 

security margins for its northern and eastern generation areas through DSA implementation. The 

European PEGASE Project is aimed at implementing an online DSA for the Pan European 

Transmission Network through advancements in state estimation, optimization algorithms, time-

domain simulations and power system component modeling [48]. The DSA implementation at 

National Control Centre in Ireland is designed for handling high amounts of wind generation in 

the system [49]. It calculates secure wind levels and ramping requirements for real-time operating 

points. All these DSA examples simply highlight the importance of such implementations in 

ensuring optimal security conditions on a continual basis for any electric power grid. 

3.2 Database Generation 

The goal of a DSA is to classify different cases based on their dynamic security severity. 

Dynamic security depends on the time responses of various system variables for the contingency 

under consideration. As mentioned earlier, it is not possible to perform computationally intensive 

time-domain simulations in real-time. Nonetheless, machine learning techniques have the ability 

to extract information from offline time-domain simulations. Subsequently, such useful 

information can be used to predict dynamic system security for new configurations in order to 

avoid lengthy time-domain simulations. To implement such an application, detailed time-domain 
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simulations are required to be conducted for different operating points. Thus, a database, on 

which ML techniques can operate, needs to be generated in offline mode. 

The database is generated in the form of a feature matrix X and an output vector y. Each row of 

the feature matrix X represents a steady state operating point in the form of object x  from 

set S as defined in equation (2). Matrix X contains total number of ’m’ such objects and hence, its 

size is (m x 2n). A time-domain simulation for a specific contingency is performed on each of 

these m objects. These simulations are tagged as ‘stable’ or ‘unstable’ depending on the time 

responses of system variables. As mentioned earlier, different stability indices can be generated 

from such time-domain simulations which typically represent instability phenomenon such as loss 

of synchronism, voltage collapse or frequency excursions.  Power system quantities like dynamic 

voltages, frequencies and generator rotor angles provide access to such phenomenon. A few 

examples of stability indices are as follows: maximum angle separations between generators, 

duration of frequency deviation, time to instability and transient voltage violations.  

Output vector y is a binary column vector with m rows wherein each row represents whether the 

corresponding TDS is stable(1)  or unstable(0). As shown in Figure 5, each row of matrix X 

represents a steady state operating point in the form of object x and each column represents a 

feature of that object. As highlighted in equation (2), the n bus voltages and n bus angles form the 

features for any n-bus system. 

Essentially, DSA is a mapping between each object x and its resiliency against the contingency 

under consideration, expressed by function f such that, 

unstableisTDSif

stableisTDSif
xf

,0

,1
)(

 

 

(5) 

The next chapter describes the application of machine learning techniques in order to arrive at 

this unknown function f. 
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Figure 5: Matrix X and vector y 

3.3 DSA on the Test System 

For the IEEE 14-bus test system considered in this report, a feature matrix X is formed consisting 

of objects x from set S as generated in the previous chapter. Each row of matrix X is a 28-

dimensional vector, as given by equation (4), representing 14 bus voltages and 14 bus angles as 

features of the test system. A TDS for a load disturbance of 0.2 per-unit (increase) is performed 

for every steady state operating point as represented by each row of  matrix X. Stability is decided 

based on the average values of voltage violations over the entire simulation period (Vmax = 1.2pu 

and Vmin = 0.8pu). Accordingly, an output vector y is formed wherein a stable TDS is represented 

by a bit ‘1’ and an unstable TDS by bit ‘0’. Figure 6 shows the flowchart for DSA 

implementation. 

Figures 7a, 7b and 7c show the dynamics of generator frequencies, relative generator angles and 

bus voltages for a stable case. Figures 8a, 8b and 8c show the dynamics of generator 

frequencies, relative generator angles and bus voltages for an unstable case. From figure 7a, 7b, 

8a and 8b, it can be observed that generators do not loose synchronism for both stable and 

unstable cases. However, the voltage stability criteria is being violated for the unstable case 
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(figure 8c) when averaged over the entire simulation period. Thus, it can be concluded that 

voltage violations occur before the loss of grid synchronism for the 14-bus test system under 

consideration. Similar behavior is observed when a TDS (as specified earlier) is performed on 

any of the steady-state operating points contained in matrix X. Therefore, for the purpose of this 

work, stability of each operating point is decided based on the violation of the voltage stability 

criteria. 
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Figure 6: Flowchart for DSA implementation 
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Figures 7a: Generator frequencies (stable case) 

 

Figures 7b: Relative Generator Angles (stable case) 
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Figures 7c: Bus Voltages (stable case) 

 

Figures 8a: Generator frequencies (unstable case) 
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Figures 8b: Relative Generator Angles (unstable case) 

 

Figures 8c: Bus Voltages (unstable case) 
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CHAPTER IV 
 

 

APPLICATION OF MACHINE LEARNING TECHNIQUES 

4.1 Introduction to Machine Learning (ML) 

A database forms an essential part of any machine learning (ML) framework, as shown in Figure 

9. Generally, database contains pre-processed data rather than raw data, as a collection of objects. 

An object is described by a certain number of features or attributes providing some information. 

In this work, database is formed in the form of matrix X and vector y as described earlier. The 

output information for each object in matrix X is contained in vector y. Depending on the output 

information given by any ML algorithm, a problem can be of two types as follows [50]: 

 Classification problem: to predict discrete valued output 

 Regression problem: to predict continuous valued output 

 

Figure 9: Machine Learning Framework 
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As shown in Figure 10, a classification problem involves determining the class of each object 

into 2 or more classes by learning the decision boundary. In this figure, each object is a 2-

dimensional vector with x1 and x2 as its features; and output y of each object represents the class 

to which it belongs (either class ‘1’ or class ‘0’ in this figure). Further, the class of any new object 

appearing in the future time can be found out instantaneously once the algorithm learns the 

decision boundary from the training data.   

In a regression problem, the algorithm predicts a continuous numerical value for the object under 

consideration. This is illustrated in Figure 11 which shows a 1-dimensional object along x-axis 

and its output along y-axis. In this figure, each object is described by only one feature x1 and as in 

case of classification problem, the output of any new object appearing in the future time can be 

easily found once the algorithm fits the training data to the curve as shown. 

Further, MI techniques can be employed to learn the input-output relation in two ways, namely, 

supervised and unsupervised learning. In supervised learning, algorithm is trained using a training 

set of data consisting of known input-output value pairs. The algorithm then models the input-

output relationship which can be used to explain the observed pairs or to predict the output value 

for any new unseen input. In other words, algorithm maps the relationship between the matrix X 

and vector y. On the other hand, unsupervised learning methods are not oriented towards any 

prediction task. Rather, these methods try to cluster similar objects automatically without any 

output information or they analyze similarity among attributes that describe an object. Hence, for 

unsupervised methods, the database consists of only matrix X and not vector y.  

For the purpose of work presented in this report and as mentioned in Chapter III,  the stability or 

output of each object in matrix X is tagged as either stable ‘1’ or unstable ‘0’ with respect to the 

TDS of a specific disturbance or contingency. Such a problem can be categorized as a 

“classification” problem for the purpose of implementing the ML framework.   
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Figure 10: Classification Example for Machine Learning 

 

Figure 11: Regression Example for Machine Learning 
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4.2 Application of ML Techniques to DSA 

The first stage of any machine application is to generate a sufficient database that covers a wide 

range of operating scenarios of the power system under consideration. As mentioned earlier, 

database is generated in the form of feature matrix ‘X’ and output vector ‘y’. Each row of matrix 

‘X’ is a collection of variables that represents an operating point of the power system. This can be 

a solved power flow case or an output from the state estimator. And each row of output vector ‘y’ 

represents the security index in form of real-valued scalar or a categorical variable. The process 

of database generation is critical to the success of ML implementation in order to analyze the 

dynamic phenomena of interest. This section provides a brief survey on application of ML 

techniques for DSA of power systems. 

Reference [51] explores the application of neural networks (NN) to screen and rank contingencies 

based on a dynamic index generated from variant of TEF method. A statistical pattern recognition 

approach for classification of transient simulations in to stable and unstable cases is presented in 

[52] whereas [53] presents a probabilistic approach to transient stability using Monte Carlo 

simulations. References [54,55] employ Decision Trees (DT) based approach for security 

assessment and preventive control. Hierarchical clustering is used in [56] to group generators that 

show similar rotor angle behavior for a large number of contingencies. This work can be applied 

to label the training data required for online prediction of power system dynamic signature. 

Reference [57] makes comparison of Kernel Regression Trees with DTs and NNs 

implementations of DSA. A Case-Based Reasoning (CBR) methodology for assessment of real-

time dynamic security is presented in [58]. A much more computationally efficient NN algorithm 

called Extreme Learning Machine (ELM) is described in [59-61]. Reference [62] presents an 

application of various ML methods for detection of cyber-attacks on the power system. A fuzzy-

logic based classification method is developed in [63] in order to predict the security index of any 

given operating point of the power system. Further, a range of supervised ML methods like NNs, 
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Support Vector Machines (SVM), DTs, AdaBoost and unsupervised methods like self-organizing 

maps are described in [64-71]. 

As can be seen from the above literature survey,   the starting point for most DSA 

implementations is the current system snapshot as provided by the state estimator. The next step 

involves carrying out simulations for many contingency scenarios by employing different 

solution methods, thereby generating a database. However, as mentioned earlier, the latest PMU-

based data collection technology can provide much better snapshots and the actual states of the 

power system to the main control center in real-time. Thus, DSA implementations of the future 

will be required to handle such large amounts of data and complete the computation cycles much 

faster in order to assess the system security in “actual” real-time. Under these circumstances, 

sparsity techniques that enable reduction of data burden and information overload will gain 

importance. The ML framework presented in this chapter is an attempt along similar lines.   

4.3 Implementation of ML Framework 

Machine learning techniques can be applied to the database as generated in the previous section 

in the form of feature matrix X (size m x 2n) and output vector y (size m x 1).  Each row i of 

matrix X is in the form of object x  from set S as defined in equation (2) and is referred to 

as the i
th
 training example: x

(i)
. Similarly, the i

th
 row from vector y represents the output of the i

th
 

training example and is represented by a bit y
(i)

 (either 0 or 1). Therefore, we have, 

x
(i)

 =  i
th
 training example 

y
(i)

 =  output (stability) of  the i
th
 training example (either 0 or 1) 

For ‘2n’ features and ‘m’ training examples, the mathematical representation of matrix X and 

vector y can be now given as follows, 
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(6) 

For a n-bus power system, training example x
(i)

 can be represented by 2n-dimensional object x as 

defined in equation (2). The more general form of object x for any 2n features can be given as 

follows, 

T

nxxxx ].........,,.........,[ 221  
(7) 

Next, a prediction/hypothesis function h in terms of parameter vector  (column vector) of size 2n 

is proposed as follows, 

)()( xgxh T

 

(8) 

where x is any training example vector as given in equation (7) and g depends on the machine 

learning algorithm being employed. 

Parameter vector  is given as follows, 

T

n ]...,..........,.........,[ 221  
(9) 

This leads to, 

nn

T xxxx 222211 .....................  
(10) 

In ML applications, bias terms x0 (=1) and θ0 are often added to the object vector x (equation 7) 

and parameter vector θ (equation 9) respectively. Hence, a term θ0 x0 gets added to the RHS of 

equation (10). 
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The cost function J for machine learning algorithms is generally of the form [72], 

m
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(11) 

The above cost function is the mean of the sum of squared errors in predicting the outputs of m 

training examples. Such a cost function can be minimized by using analytical method or batch 

gradient descent method. The batch gradient descent method updates any randomly initialized 

vector  in an iterative manner as follows, 

for j = 0,2,………., 2n 

iterate { 
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           } 

The optimal parameter vector   thus derived can be used for predicting the stability of future 

cases in real-time. In this work, a robust MATLAB routine “fminunc” [73] is used for solving the 

unconstrained minimization problem represented by equations (11) and (12).  

The problem presented in this report is to classify a TDS as stable(1)  or unstable(0). For such 

classification problems, logistic regression can be used, in which case functions g and J are given 

as follows [74], 
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The function g(z) given in equation (13) is a sigmoid function and its value lies between 0 and 1 

as shown in Figure 12. For classification purposes, TDS cases for which g(z) is greater than 0.5 

can be considered as stable and the rest as unstable. At this point, it should be noted that function 

h given in equation (8) approximates the unknown function f of equation (5) given in the previous 

chapter, when the parameter   is optimal.  

 

 

Figure 12: Sigmoid function g 
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The approximated function fapprx can be given by, 

5.0)(,0

5.0)(,1
)(

xhif

xhif
xfapprx

 

 

(15) 

In order to test the algorithm, the 14-bus dataset represented by matrix X and vector y (as 

generated in the previous section) can be divided into a training set (75%) and a test set (25%), 

which is a normal practice in ML domain. We may also delete the constant feature columns from 

matrix X such as those containing PV bus voltages and reference angles, since such constant 

feature values do not add any valuable information. Therefore, an original matrix X with 22 

columns (features) is used in this report for training the ML algorithms. Figures 13a and 13b 

show the learning curves for the training and test sets respectively. Learning curves are plotted by 

varying the number of examples m in the training set. As highlighted in these figures, the average 

prediction errors on the training and test sets are calculated as 1.487 % and 2.674 % respectively. 

For m objects, prediction error is the percentage of examples that are classified incorrectly by the 

function fapprx given in equation (15) and it is calculated as follows, 

otherwise
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Figure 13a: Learning Curve (Training set) 

 

Figure 13b: Learning Curve (Test set) 
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Apart from logistic regression, this work also employs an unsupervised ML technique called k-

means clustering [75]. The k-means algorithm forms clusters of objects in the given dataset as 

shown in Figure 14. In this figure, each object is a 2-dimensional vector with x1 and x2 as its 

features. With respect to the ML framework as described in earlier sections, k-means algorithm 

operates on just the feature matrix X to generate the clusters and the output vector y is not 

required. Hence, this algorithm is categorized as an unsupervised ML technique. 

Essentially, given a dataset containing m′ objects in d-dimensional space,  and an integer K, 

the k-means algorithm generates K centroids in  , so as to minimize the mean squared distance 

of each object from its nearest centroid. After random initialization of K centroids, such a 

minimization can be achieved by iterating over the following 2 steps: 

 Cluster assignment step: 

             In this step, each of the m′ objects is assigned the cluster that is nearest to it. 

 Move centroid step: 

In this step, each centroid is moved to a new position given by the mean of all the objects  

assigned to the cluster represented by that centroid. 

The k-means algorithm is used in the later part of this report in order to generate the “landmarks” 

in the operational space under consideration from the database of the form given by equation (6). 

The next section of this chapter introduces the concept of “landmarks” and “linear kernel”. 

Further, this report presents a strategy to select best landmarks in order to improve the prediction 

accuracy. 
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Figure 14: k-means clustering 

4.4 Landmarks and Linear Kernel 

The concept of selecting “landmarks” gains importance from the fact that a few training examples 

may contain the most relevant information about the inherent dynamics present in the database 

[76]. This section investigates the possibility of selecting such landmarks within the operational 

space under consideration in order to improve prediction accuracy without compromising 

computational efficiency. Essentially, these landmarks are 2n-dimensional objects belonging to 

the same set S given by equation (2). Such a landmark l can be specified as follows, 

T

nllll ]....,..........,.........,[ 221  
(17) 

In order to demonstrate the effectiveness of this concept, L number of landmarks are drawn at 

random from the rows of matrix X and then, every (training example, landmark) pair is compared 
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using a linear kernel [77]. A linear kernel measures the similarity between any training example x 

(as specified in equation (7)) and landmark l using the dot product and is given by, 

nn

T lxlxlxlxlxsim 222211 .....................),(  
(18) 

For m training examples in feature matrix X and L number of landmarks, similarity is calculated 

between each training example x
(i)

 and landmark point l
(j)

 such that 1≤ i ≤ m and 1≤ j≤ L. As a 

result, the original feature matrix X (size m x 2n) gets transformed into a new matrix X’random (size 

m x L) which can be now used for training and testing purposes. If a matrix XLMs1 contains all the 

L landmarks of the form as specified in equation  (17) along its rows, then such a matrix of size 

(L x 2n)is given by, 
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For matrix X (size m x 2n) as specified in equation (6) and matrix XLMs1 (size L x 2n), a new 

matrix X’random (size m x L), as mentioned earlier, can be obtained as follows, 

T

LMsrandom XXX 1

'
 

(20) 

Computational efficiency is maintained by enforcing the following constraint, 

nL 2  
(21) 

The above constraint states that the number of columns in the new matrix X’random should not be 

greater than that in the original feature matrix X. This ensures that the size of matrix X’random (in 

terms of computer memory requirements) is not greater than that of matrix X, thus maintaining 

the computational efficiency.  
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As shown in Figures 15a and 15b, prediction errors on the training and test sets decrease as the 

number of landmarks L increases. However, it should be noted that such a random selection of 

landmarks does not guarantee better performance when compared with the average training and 

test set errors calculated in the previous section as seen in these figures.  
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Figures 15a: %Error vs number of landmarks (training set) 

 

Figures 15b: %Error vs number of landmarks (test set)  
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4.5 Selection of Landmarks using K-means Algorithm 

Choosing the most appropriate set of “landmarks” for a given dataset is not an easy task. In this 

section, k-means algorithm is used to derive better landmarks as compared to the random ones 

selected in the previous section. Using k-means algorithm as described in Section 4.3 of this 

chapter, centroids can be calculated for any feature matrix X. A total number of L such centroids 

are generated from original matrix X for use as landmark points and then, using linear kernel a 

new matrix X’centroids is formed like in the previous section. If these L centroids are contained in 

the matrix XLMs2 with each of the form as specified in equation (17), then the matrix XLMs2 will be 

similar to the matrix XLMs1 as defined in equation (19). Matrix X’centroids can be now given as 

follows, 

T

LMscentroids XXX 2

'
 

(22) 

In an attempt to find the better landmarks, the original matrix X is divided into 2 matrices Xstable 

and Xunstable consisting of only stable and unstable cases respectively. If matrix X contains m1 

stable cases and m0 unstable cases such that m1+ m0 = m, then the size of matrix Xstable is (m1 x 2n) 

and that of matrix Xunstable is (m0 x 2n). Using k-means, a total number of L centroids are generated 

for each of these two matrices separately and again using linear kernel, two new matrices X’stable 

and X’unstable are formed. If matrix XLMs3 contains L centroids generated from matrix Xstable and 

matrix XLMs4 contains L centroids generated from matrix Xunstable, then both matrices XLMs3 and 

XLMs4 will be of the size (L x 2n) as defined in equation (19). Matrices X’stable and X’unstable can be 

now derived as follows, 

T

LMsunstable

T

LMsstable

XXX

XXX

4

'

3

'

 

 

(23) 
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Note that all of the matrices X’random , X’centroids , X’stable and X’unstable have the same size:  (m x L). 

Again, while selecting total number of landmark points L, the constraint given by equation (21) 

should be enforced so as maintain the computational efficiency.  

The strategy for selecting landmarks using k-means can be summarized as follows, 

 Select L random examples from original matrix X as landmarks and generate X’random  

 Select L centroids from original matrix X as landmarks and generate X’centroids  

 Select L centroids from Xstable as landmarks and generate X’stable 

 Select L centroids from Xunstable as landmarks and generate X’unstable  

 Plot learning curves using X’random, X’centroids, X’stable , X’unstable  

 Compare the training and test set errors and select the best L landmarks 

Figure 16 shows the flowchart representation for implementing the above strategy. 

For simulation purposes, the original matrix X, as generated from IEEE 14-bus test system in 

Section 2 of this chapter, is used to form the matrices X’random, X’centroids, X’stable and X’unstable. 

Figures 17a and 17b show learning curves for the training and test sets generated from each of 

the these matrices with L=22 landmarks. From these figures we can conclude that centroids 

selected from the unstable cases are the best landmarks for this dataset. Moreover, it has to be 

noted that computational efficiency is not compromised since the total number of landmarks used 

here (L=22) is not greater than the total number of columns in the original matrix X (=22). 

Figures 18a and 18b again compare the learning with increasing number of landmarks for the 

case of random landmarks against landmarks selected as centroids from only unstable cases. 

Figures 19a and 19b plot the learning curves for the original matrix X (without any landmarks) 

and X’unstable (best landmarks). These plots confirm that when best landmarks are employed, 

prediction accuracy improves on both: the training set and the test set. 
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Figure 16: Selection of Landmarks using k-means 
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Figure 17a: Learning curves (training set): mean ± SEM (standard error of the mean) 

 

Figure 17b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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Figure 18a: %Error vs num. of landmarks (training set): mean ± SEM 

 

Figure 18b: %Error vs num. of landmarks (test set): mean ± SEM 
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Figure 19a: Learning curves (training set): mean ± SEM 

 

Figure 19b: Learning curves (test set): mean ± SEM 
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CHAPTER V 
 

 

SELECTION OF BEST LANDMARKS AND RESULTS 

 

Chapter IV highlights the concept of employing “landmarks” in order to reduce prediction errors 

on a database given in the form of matrix X and vector y as in equation (6). The practical value of 

this concept is demonstrated by selecting random landmarks from matrix X in order to show the 

reduction in prediction errors. A second approach is to employ centroids generated from full 

matrix X as landmarks by using k-means algorithm. However, such an approach does not use 

information contained in vector y of the database given by equation (6). For the case of 14-bus 

test system used in this work, best landmarks are found by generating centroids from only 

unstable operating points of matrix X, thereby using the information contained in vector y. This 

chapter presents ranking methodologies in order to select such best landmarks so as to decrease 

prediction errors on both, training and test sets of the database. 

5.1 Based on Fisher’s Vector 

The Fisher’s vector is derived from a technique known as Fisher’s linear discriminant analysis 

(FLDA) [77,78]. FLDA is a dimensionality reduction technique that generates low-dimensional 

representation of the original data which is optimal for the classification problem under 

consideration. Hence, such a technique uses information contained in both, matrix X and vector y 

of the database given by equation (6). 
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The classification problem considered in this work consists of two classes: “stable” (bit 1) and 

“unstable” (bit 0) as previously mentioned. For such a two-class case, it is possible to generate an 

optimal vector w which is called as Fisher’s vector using FLDA technique. This vector belongs to 

the same operating space as the database under consideration and maximum class separation is 

achieved when original data is projected onto it. Therefore, if matrix X consists of operating 

points of the form x ∈ ℝ2n given by equation (7), vector w also belongs to the same 2n-

dimensional space i.e. w ∈ ℝ2n. The one dimensional representation z of a vector x is derived by 

projecting it on to the Fisher’s vector w as follows, 

xwz T
 

(24) 

Fisher’s vector w is given by, 

)( 01

1

wSw  
(25) 

where Sw = within-class scatter matrix 

           μ1, μ0 = means of stable and unstable classes respectively 

The within-class scatter matrix Sw is given by, 
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For m1 stable and m0 unstable operating points in matrix X, class means are given by, 

1: 0:0

0

1

1
)( )(

1
;

1

i iyi yi

ii x
m

x
m

 

(27) 

For ranking purposes, similarity between each operating point x ∈ ℝ2n and Fisher’s vector w ∈ 

ℝ2n is computed using,  
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(28) 

The operating points with high SIM values are the ones that are most similar to the Fisher’s 

vector. Moreover, Fisher’s vector represents a direction that spans high density regions in the 2n-

dimensional space under consideration. However, operating points in the low-density regions are 

the ones that are most useful for prediction [77]. Therefore, the operating points with the lowest 

SIM values are used for the purpose of generating landmarks. 

This ranking methodology is tested on the original 14-bus database generated earlier in the form 

of matrix X and vector y. The operating points in matrix X are ranked in ascending order of their 

SIM values with the best ones having lowest SIM values. A total of L = 22 centroids are 

generated from only top 30% of the operating points in matrix X for use as “landmarks”. The 

performance of these landmarks is compared with that of same number of random landmarks and 

same number of centroids generated from full matrix X for use as landmarks. Figures 20a and 

20b confirm that the proposed ranking methodology gives the best performance on both, training 

and test sets in comparison to the other two approaches. Here, computational efficiency is not 

compromised since L is not greater than the total number of columns in the original matrix X 

(=22 features). Figures 21a and 21b compare the effect of increasing number of landmarks on 

the prediction errors for the case of random landmarks and the case of landmarks selected through 

the proposed ranking methodology. Figures 22a and 22b further prove that landmarks selected 

through this ranking methodology perform better in comparison to the case that does not employ 

the concept of “landmarks”. 
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Figure 20a: Learning curves (training set): mean ± SEM (standard error of the mean) 

 

Figure 20b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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Figure 21a: %Error vs num. of landmarks (training set): mean ± SEM

 

Figure 21b: %Error vs num. of landmarks (test set): mean ± SEM 
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Figure 22a: Learning curves (training set): mean ± SEM 

 

Figure 22b: Learning curves (test set): mean ± SEM 
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5.2 Based on Class Separation Metric 

This section presents a ranking methodology based on Fisher criterion that is used in Fisher’s 

linear discriminant analysis (FLDA) [77,78]. The proposed methodology is used to rank all the 

operating points contained in matrix X for the purpose of selecting better landmarks as compared 

to random landmarks or landmarks generated in the form of centroids over full matrix X. The 

basic idea is to consider each operating point in matrix X as a “landmark”, one at a time and then 

project the entire matrix X on to this operating point. The resulting one-dimensional 

representation of the entire data is then used to compute a metric for that operating point.  

As given in equation (6), size of the original matrix X is (m x 2n) where m is the total number of 

operating points of the form x ∈ ℝ2n given by equation (7). Matrix X is divided into 2 matrices 

Xstable and Xunstable consisting of only stable and unstable cases respectively, thereby utilizing the 

information contained in vector y of the database given by equation (6). As mentioned in the 

previous chapter, if matrix X contains m1 stable cases and m0 unstable cases such that m1+ m0 = m, 

then the size of matrix Xstable is (m1 x 2n) and that of matrix Xunstable is (m0 x 2n). 

A one-dimensional projection of any operating point x ∈ ℝ2n on to the landmark k ∈ ℝ2n is 

given by, 

xkz T
 

(29) 

where k and x are both of the form given by equation (7).  

Similarly, all operating points in matrices Xstable and Xunstable are linearly projected on to the 

landmark k.  The resulting one-dimensional representation of all operating points is derived in the 

form of vectors Z
k
stable (size m1 x 1) and Z

k
unstable (size m0 x 1) as follows,  
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Let (μk1, σk1) and (μk0, σk0) be the maximum likelihood estimates of means and standard deviations 

computed from Z
k

stable and Z
k

unstable respectively. The measure of dissimilarity between stable and 

unstable operating points in the one-dimensional space represented by landmark k is given by a 

class separation metric (CSM) defined as follows, 
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The CSM defined in equation (31) is the Fisher criterion that is used in Fisher’s linear 

discriminant analysis (FLDA). It is the ratio of the between-class variance to the within-class 

variance. Moreover, it is maximized when separation between the means of stable and unstable 

classes is maximized; and the variance within each class is minimized, thus reducing the overlap 

between the two class distributions. Therefore, higher the CSM value more is the separation 

between stable and unstable operating points in the one-dimensional space represented by 

landmark k. 

For ranking purposes, each operating point x ∈ ℝ2n is considered as a landmark and a metric 

CSM(x) is computed using equation (31). The landmarks with high CSM values represent 

directions that span high density regions in the 2n-dimensional space under consideration. As 

mentioned earlier, landmarks that lie in low density regions are the ones that are most useful for 

prediction [77]. Thus, the operating points with lowest CSM values are selected as the best 

landmarks. 

The proposed ranking methodology is tested on the 14-bus database wherein the operating points 

are ranked in ascending order of their CSM values. The topmost L = 22 operating points in matrix 
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X are selected as the best landmarks. Figures 23a and 23b confirm that the proposed ranking 

methodology is better as compared to selecting random landmarks or selecting the centroids 

generated from matrix X as landmarks.   As in the previous section, computational efficiency is 

not compromised since L is not greater than the total number of columns in the original matrix X 

(=22 features). Figures 24a and 24b compare the effect of increasing number of landmarks on 

the prediction errors for the case of random landmarks and the case of landmarks selected through 

the proposed ranking methodology. Figures 25a and 25b further prove that landmarks selected 

through this ranking methodology perform better in comparison to the case that does not employ 

the concept of “landmarks”. 
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Figure 23a: Learning curves (training set): mean ± SEM (standard error of the mean) 

 

Figure 23b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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Figure 24a: %Error vs num. of landmarks (training set): mean ± SEM 

 

Figure 24b: %Error vs num. of landmarks (test set): mean ± SEM 
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Figure 25a: Learning curves (training set): mean ± SEM 

 

Figure 25b: Learning curves (test set): mean ± SEM 
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5.3 Based on Fisher Information Metric 

This section presents a ranking methodology based on Fisher information distance, which is a 

measure of dissimilarity between two probability distribution functions [79]. It uses the same idea 

as described in the previous section, wherein the entire matrix X is projected on to each operating 

point considered as “landmark” one at a time and the resulting one-dimensional representation of 

the data is used to compute a metric for that operating point. Such a metric can be computed for 

every operating point in matrix X so as to rank them for the purpose of selecting best landmarks. 

As mentioned earlier, Xstable (size m1 x 2n) and Xunstable (size m0 x 2n) consisting of stable and 

unstable cases respectively such that m1+ m0 = m where m is the total number of operating points 

in matrix X (size m x 2n). For a landmark k ∈ ℝ2n, all points in Xstable and Xunstable are linearly 

projected on k using equation (29). The resulting one-dimensional representation of all operating 

points is derived in the form of vectors Z
k
stable (size m1 x 1) and Z

k
unstable (size m0 x 1) by using 

equation (30).  As defined in the previous section, (μk1, σk1) and (μk0, σk0) are the maximum 

likelihood estimates of means and standard deviations computed from Z
k

stable and Z
k

unstable 

respectively. The measure of dissimilarity between stable and unstable operating points in the 

one-dimensional space represented by landmark k is given by Fisher Information (FI) metric as 

follows, 
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For ranking purposes, each operating point x ∈ ℝ2n is considered as a landmark and a metric 

FI(x) is computed using equation (32). The landmarks with high FI values represent directions 

that span high density regions in the 2n-dimensional space under consideration. As mentioned 

earlier, landmarks that lie in low density regions are the ones that are most useful for prediction 

[77]. Thus, the operating points with lowest FI values are selected as the best landmarks. 

The proposed ranking methodology is tested on the 14-bus database wherein the operating points 

are ranked in ascending order of their FI values. The topmost L = 22 operating points in matrix X 

are selected as the best landmarks. Figures 26a and 26b confirm that the proposed ranking 

methodology is better as compared to selecting random landmarks or selecting the centroids 

generated from matrix X as landmarks.   As in the previous section, computational efficiency is 

not compromised since L is not greater than the total number of columns in the original matrix X 

(=22 features). Figures 27a and 27b compare the effect of increasing number of landmarks on 

the prediction errors for the case of random landmarks and the case of landmarks selected through 

the proposed ranking methodology. Figures 28a and 28b further prove that landmarks selected 

through this ranking methodology perform better in comparison to the case that does not employ 

the concept of “landmarks”. 
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Figure 26a: Learning curves (training set): mean ± SEM (standard error of the mean) 

 

Figure 26b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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Figure 27a: %Error vs num. of landmarks (training set): mean ± SEM 

 

Figure 27b: %Error vs num. of landmarks (test set): mean ± SEM 
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Figure 28a: Learning curves (training set): mean ± SEM  

 

Figure 28b: Learning curves (test set): mean ± SEM  
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5.4 Based on Gaussian Mixture Model 

This section presents a ranking methodology based on probabilistic approach known as Gaussian 

mixture model [77].  In this methodology, it is assumed that all the operating points of the form x 

∈ ℝ2n in matrix X belong to a probability distribution model which is a mixture of Gaussians. 

The classification problem considered in this work consists of two classes: “stable” (bit 1) and 

“unstable” (bit 0) as previously mentioned. For such a two-class case, distribution model is 

assumed to be a mixture of two Gaussians; one for “stable” operating points and the other for 

“unstable” operating points. 

For a class K, a multivariate Gaussian in D-dimensional space with mean μK and covariance 

matrix ΣK is defined as follows,  
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(33) 

The probability distribution model is a mixture of two classes: stable (K = 1) and unstable (K = 0) 

and is given as follows,   

),|(),|()|( 000111 xNxNxp  (34) 

 where μ1 and Σ1 = parameters of class “stable” 

            μ0 and Σ0 = parameters of class “unstable” 

            1 and 0 = mixing weights for “stable” and “unstable” classes respectively 

             = list of model parameters = ( 1, μ1, Σ1, 0, μ0, Σ0)   
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The two approaches that are used to compute the model parameters given by  form the basis of 

the ranking methodology presented in this section.  As already described in the previous chapter, 

the two approaches are called as “supervised” and “unsupervised” approaches. The supervised 

approach utilizes entire database i.e. matrix X and vector y as given by equation (6) whereas 

unsupervised approach utilizes only matrix X and not vector y. The ranking methodology for 

selecting best landmarks is formulated based on the two models thus derived.  

The “supervised” approach fits a model using the concept of maximum likelihood estimation. The 

maximum likelihood estimates (MLE) of the model parameters given by  are computed using 

matrix X and vector y.  For this purpose, matrix X is divided into 2 matrices Xstable and Xunstable 

consisting of only stable and unstable cases respectively, thereby utilizing the information 

contained in vector y. As mentioned in the previous chapter, if matrix X (size m x 2n) contains m1 

stable cases and m0 unstable cases such that m1+ m0 = m, then the size of matrix Xstable is (m1 x 2n) 

and that of matrix Xunstable is (m0 x 2n). Matrix Xstable is used to compute the MLEs of parameters 

( 1, μ1, Σ1) and matrix Xunstable is used to compute the MLEs of parameters ( 0, μ0, Σ0). The MLEs 

are given as follows, 
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The “unsupervised” approach fits a model using the concept of expectation-maximization (EM). 

For the model given in equation (34), EM algorithm computes its parameters by using only 

matrix X and not vector y. EM algorithm is an iterative improvement algorithm consisting of the 

following two steps after initialization, 

1) E-step:  

Given the parameter list , class posterior probabilities p(y=1|x) and p(y=0|x)   are computed for 

each operating point x ∈ ℝ2n in matrix X. The operating points are assigned to the class (y=1 or 

0) with maximum posterior probability as follows, 
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(38) 

Therefore, in this step, a vector y consisting of class labels is generated for the original matrix X 

thereby resulting in new class distributions. 

2) M-step: 

The parameter list  is updated by computing MLEs of new class distributions using equations 

(35-37).  

The convergence of EM algorithm depends on the initialization and hence, may lead to local 

maxima. Since full database in the form of matrix X and vector y is available for the purpose of 

this work, EM algorithm is initialized by using MLEs from the supervised approach. The model 

derived from EM algorithm can be termed as an “unsupervised model” since it does not use 

vector y, other than for initialization. In this work, an EM routine from the MATLAB package 

called PMTK is used for simulation purposes [80]. 



67 
 

For ranking purposes, probabilities p(x| supervised) and p(x| unsupervised) are computed using equation 

(34) for each operating point x ∈ ℝ2n in matrix X, where supervised and unsupervised  are the model 

parameters derived from supervised and unsupervised approach respectively. A metric that 

captures class information (CI) is formulated as follows, 

)|()|()( supsup ervisedunervised xpxpxCI  
(39) 

The operating points with high CI values are the ones that contain maximum class information 

and hence, lie in the high density regions of the 2n-dimensional space under consideration. As 

mentioned earlier, landmarks that lie in low density regions are the ones that are most useful for 

prediction [77]. Thus, the operating points with lowest CI values are selected as the best 

landmarks. 

 This ranking methodology is tested on the original 14-bus database generated earlier in the form 

of matrix X and vector y. The operating points in matrix X are ranked in ascending order of their 

CI values with the best ones having lowest CI values. A total of L = 22 centroids are generated 

from only top 30% of the operating points in matrix X for use as “landmarks”. The performance 

of these landmarks is compared with that of same number of random landmarks and same number 

of centroids generated from full matrix X for use as landmarks. Figures 29a and 29b confirm 

that the proposed ranking methodology gives the best performance on both, training and test sets 

in comparison to the other two approaches. Here, computational efficiency is not compromised 

since L is not greater than the total number of columns in the original matrix X (=22 features). 

Figures 30a and 30b compare the effect of increasing number of landmarks on the prediction 

errors for the case of random landmarks and the case of landmarks selected through the proposed 

ranking methodology. Figures 31a and 31b further prove that landmarks selected through this 

ranking methodology perform better in comparison to the case that does not employ the concept 

of “landmarks”. 
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Figure 29a: Learning curves (training set): mean ± SEM (standard error of the mean) 

 

Figure 29b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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Figure 30a: %Error vs num. of landmarks (training set): mean ± SEM 

 

Figure 30b: %Error vs num. of landmarks (test set): mean ± SEM 
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Figure 31a: Learning curves (training set): mean ± SEM  

 

Figure 31b: Learning curves (test set): mean ± SEM  
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5.5 Comparison of Ranking Methodologies 

This chapter presents four ranking methodologies to select best “landmarks” in the operational 

space of the power system under consideration. Each methodology highlights the importance of 

selecting a few operating points of the system as “landmarks” so as to reduce prediction errors on 

the database of the form given by equation (6). Such landmarks facilitate fast prediction of power 

system’s resiliency against any disturbance or contingency under consideration, thus enabling the 

grid to assess its dynamic security in real-time. Moreover, data burden and information overload 

can be reduced significantly by retaining only such landmarks from the database for future use. 

The four ranking methodologies are as follows: 

1) Based on Fisher’s vector 

In this approach, Fisher vector w is derived from database given in the form of matrix X and 

vector y by using equation (25). The ranking methodology is based on similarity between each 

operating point x ∈ ℝ2n in matrix X and the Fisher vector w. An index SIM(x) is calculated for 

each operating point using equation (28) and the operating points with lowest SIM values are 

found to generate the best landmarks. 

2) Based on class separation metric 

In this approach, each operating point x ∈ ℝ2n is considered as a “landmark”, one at a time and 

the entire matrix X is projected on to this operating point. The resulting one-dimensional 

representation of the entire data is then used to compute a class separation metric CSM(x) for that 

operating point using equation (31). The operating points with lowest CSM values are found to 

generate the best landmarks. 
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3) Based on Fisher information metric 

As in the previous approach, here again the entire matrix X is projected on to each operating point  

x ∈ ℝ2n considered as “landmark” one at a time and the resulting one-dimensional representation 

of the data is used to compute a Fisher information metric FI(x) for that operating point using 

equation (32). The operating points with lowest FI values are found to generate the best 

landmarks. 

4) Based on Gaussian mixture model 

In this approach, data is assumed to belong to a probability distribution model given by equation 

(34), which is a mixture of two Gaussians; one for “stable” operating points and the other for 

“unstable” operating points. The model parameters are derived by using “supervised” and 

“unsupervised” approaches. A class information metric CI(x) is calculated for each operating 

point x ∈ ℝ2n using equation (39) and the operating points with lowest CI values are found to 

generate the best landmarks. 

The above four ranking methodologies are found to generate better “landmarks” as compared to 

the following two general approaches, 

1) Selecting random operating points from matrix X as landmarks 

2) Selecting centroids generated from full matrix X as landmarks 

Therefore, by enabling selection of best landmarks from the database, the ranking methodologies 

presented in this chapter can play an important role in reducing data burden and thereby 

improving computational efficiency. 

The four methodologies are compared by testing their performance on the original 14-bus 

database generated earlier in the form of matrix X and vector y. Figures 32a and 32b show that 



73 
 

ranking methodology based on Fisher’s vector performs best for the 14-bus database used in this 

work. In particular, the best ranking methodology would depend on the database under 

consideration.   

 

Figure 32a: Learning curves (training set): mean ± SEM (standard error of the mean) 
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Figure 32b: Learning curves (test set): mean ± SEM (standard error of the mean) 
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CHAPTER VI 
 

 

CONCLUDING REMARKS AND FUTURE WORK 

The ability to assess the current state of the power system instantaneously is the key attribute 

needed to identify and establish enhanced grid resilience. Electric power entities carry out offline 

studies on power system models of different sizes, thus generating offline databases. Machine 

learning techniques can be employed to use such databases in order to learn the inherent non-

linear relationships that exist among different power system parameters. Such useful information 

can be used later for online real-time security analysis of the power system. 

This work presents a framework to apply machine learning (ML) techniques for real-time 

assessment of the grid resilience against any disturbance or contingency with respect to its static 

and dynamic security by using offline databases. Further, this work demonstrates a strategy to 

select a few operating points of the system as “landmarks” in order to improve prediction 

accuracy without compromising computational efficiency. The four ranking methodologies 

presented in this work can be used to rank all operating points of the system in order to select the 

best landmarks for future use. Only the best landmarks can be retained thereby reducing data 

burden and information overload. The proposed heuristics are tested on a database generated from 

IEEE 14-bus power system. 

Moreover, the proposed approach can be extended for analyzing grid resilience under multiple 

contingencies. Metrics for grid resilience can be developed based on such multi-contingency 
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analyses. With large-scale penetration of renewable energy in to the current grid and emergence 

of micro-grids, future grid applications would require real-time training in order to extract useful 

information on a continuous basis. Machine learning techniques can accommodate such complex 

requirements posed by the continually changing nature of the electric grid and hence, would 

definitely play an important role in realizing next-gen real-time power system applications. 

Future work would mainly focus on further improvement of the landmarks selection strategy and 

the prediction accuracy.  Essentially, it would be desirable to select the minimum number of 

landmark points so as to improve computational efficiency further. The following concepts would 

be explored in order to achieve the desired results, 

 Mutual Information: To select those landmark points which contain maximum 

information about the output vector y  

 k-means with Bayesian nonparametric models such as Dirichlet process (DP): To select 

optimal number of cluster centroids as landmark points   

 An approach to model power system data as “probabilistic mixture models”  

 Comparison of prediction accuracy using different types of kernels 

 Study different types of metrics available in the ML and statistics domain 

 Incorporate larger power system models and different ML techniques 

Finally, all the research outcomes need to be incorporated in to a ML framework which could 

handle multiple contingencies of the power system under consideration. Such a framework can 

lead to a comprehensive tool for assessment of grid resiliency in real-time. 
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