UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

ADVANCED SIGNAL PROCESSING
FOR MULTI-MISSION AIRBORNE RADAR

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the

Degree of
DOCTOR OF PHILOSOPHY

By

Ramesh Nepal
Norman, Oklahoma
2018



ADVANCED SIGNAL PROCESSING
FOR MULTI-MISSION AIRBORNE RADAR

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Yan “Rockee” Zhang, Chair
Dr. S. Varahan

Dr. J.R. Cruz

Dr. Choon Yik Tang

Dr. Lei Ding

Dr. Mark E. Weber



(© Copyright by Ramesh Nepal 2018
All Rights Reserved.



To my mum, Radha, buwa, Ratna, and my wife, Shivani



Acknowledgments

I would like to express my deep gratitude to my advisor and committee chair
Dr Yan “Rockee” Zhang. His support, encouragement, and guidance has been
enormous throughout my graduate studies. The collaborations he arranged have
been monumental in advancing my research. My gratitude to my committee
members for their guidance and flexibility throughout this process. My thanks
to Dr Zhengzheng Li for his collaboration and advice.

Furthermore, I'd like to acknowledge Garmin Inc, Kansas, for their collabo-
ration and support. I’'m thankful to the whole radar team at Garmin, especially
Dr William Blake for his invaluable insights, suggestions, and feedbacks. The
hardware support as well as the data provided by them have been instrumental
in my research.

I also extend my appreciation to the faculty and staff at School of Electrical
and Computer Engineering as well as Advanced Radar Research Center (ARRC)
at University of Oklahoma. Additionally, many thanks to my friends and
colleagues, especially, Jingxiao Cai, Xinning Yu, Ridhwan Mirza, Zhe Li, and
Yunish Shrestha for helping me during various stages and for being good friends.
All of you have made my stay at Norman delightful and memorable.

Finally, I’d like to acknowledge the support and sacrifices from my family.

Their love has propelled me forward and motivates me every day.

v



Table of Contents

Acknowledgments iv
Abstract xiii
1 Introduction 1
1.1 Introduction . . . . . . . . . . . 1

1.2 Ground based Multi-Mission Radar . . . . . . . .. .. ... .. 7

1.3 Airborne Multi-Mission Radar . . . . . . . . .. .. ... ... 8
1.3.1 Senseand Avoid . . . . . . . . . ... 11

1.4 Research Objective . . . . . . . ... ... ... ... ..... 14

1.5 Outline of the Dissertation . . . . . . . . . . .. .. ... ... 16

2 Airborne Multi-Mission Radar 18

2.1
2.2
2.3
24
2.5
2.6

Polarimetric Airborne Radar Operating at X-band, PARADOX 19

Radar Returns . . . . . .. .. ... ..o 22
Radar Range Equation . . . . . .. ... ... ... ...... 24
Weather Returns . . . . . . . ... ..o 25
Spectrum of Radar Signals . . . . . .. ... ... ... ... 26
Airborne Sense And Avoid . . . . . ... 30
2.6.1 SAA Tracking with Constant Acceleration Model . . . 33
2.6.2 Joint Probabilistic Data Association . . . ... .. ... 37



2.6.3 Kalman Filter with JPDA . . . . . .. . .. ... ... 39

3 Signal Processing Algorithm Suite 43
3.1 Pulse Compression and Matched Filter . . . . . . .. ... .. 43
3.2 Adaptive Pulse Compression . . . . . . .. ... ... ..... 44
3.3  Weather Sensing Data Quality Control Algorithms . . . . . .. 47

3.3.1 Motion Compensation for Micro-Physics Validation Mode 50

3.3.2 Motion Compensation for Severe Weather Observation

3.3.3 Noise Reduction, Attenuation Correction, and

Calibration . . . . . ... ... ... L. 54

3.3.4 Doppler and Spectrum Width Estimation. . . . . . . . 56

3.4  End-to-end Radar Simulator . . . . . . ... ... ... ... 58
4 Real-Aperture Super-Resolution 63
4.1 Problem Formulation . . . . . . ... ... ... ........ 64
4.2 Tterative Adaptive Approach (Single Pulse Case) . . . . . . . . 66
4.3 Matched Filter Output . . . . .. ... ... ... ... ... 68
4.4 Doppler Shifted Matched Filter . . . . . .. .. ... .. ... 69
4.5 MF-TAA: Multipulse Case . . . . . . ... ... ... .. .... 71
4.6 Simulation Studies . . . . . ... ... 73
4.6.1 Impact of Waveforms . . . . . .. ... . ... ... ... 73
4.6.1.1 TAA . ... 73

4.6.1.2 Matched Filter TAA . . . . . ... ... ... 78

4.6.2 MF-TAA: Impact of Signal to Noise Ratio (SNR) . . .. 81

4.7 Measurement Data . . . . . . . ... ... L. 83
4.8 Summary and Conclusions . . . . . . ... ... ... ... .. 88

vi



5 Sense and Avoid Function Validations 90

5.1 SAA Processor and Algorithms . . . . .. ... ... ... ... 91
5.2 Real-Aperture Imaging . . . . . . .. ... ... 93
5.2.1 Azimuth Super-Resolution . . . . . . .. .. ... ... 94
5.3 Simulated multi-target SAA scenario . . . . .. ... ... .. 95
5.4 Ground Measurement and Results . . . . . ... ... ... ... 101
5.5 Summary and Conclusions . . . . . .. .. ... .. ... ... 105
6 Weather Surveillance 107
6.1 Resolution Enhancement using RMMSE Algorithm . . . . . .. 111
6.2 PARADOX1: Airborne Flight Campaign of 2017 . . . . . . . . 115
6.2.1 Comparison with NEXRAD/KTLX (PPI Plots) . . . . . 121

6.2.2 Comparison with NEXRAD/KTLX Constant Altitude
PPI (CAPPI)Plots . . . . . ... ... ... ...... 126
6.3 PARADOX1: Ground Measurement Campaign of 2016 . . . . 130
6.3.1 Comparison with PX-1000 . . . . . . .. ... .. ... 135
6.3.2 Comparison with NEXRAD/KTLX . . . ... ... ... 137
6.4 Summary and Conclusions . . . . . . . ... ... ... ... . 140
7 Summary and Conclusions 142
8 Future Work 147
References 149

vii



List of Tables

2.1

5.1

6.1

6.2

PARADOXI1 Specifications . . . . . . .. ... ... ... ... 20

Error Statistics for PARADOXI1 during Ground Based SAA
Tracking . . . . . . .. Lo 105

PARADOX1 Parameters used in Airborne Measurement Cam-
paign of 2017 . . . . .. L 117
PARADOXI1 Parameters used in Ground Measurement Cam-
paign of 2016 . . . . .. L 131

viii



List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

4.1
4.2

4.3

A basic monostatic radar block diagram . . . . ... ... .. 2
Garmin GSX70 . . . . . . .. 21
PARADOXI1: A Multi-Mission Airborne Radar . . . . . . .. 22
Tracking Flowchart . . . .. .. .. .. ... ... ... .... 32
Processing Framework for PARADOX1 radar . . . . ... .. 48
Motion Compensation for Micro-Physics Validation mode . . . 49
Geometry for predicting motion-phase and compensation from

distributed scatterers Obtained from [96] . . . . . . .. .. ... 51
Pulsed Airborne Radar Spectrum . . . . ... ... ... ... 53
Performance of GMPE for X-band attenuation corrections . . 55
Radar Simulator Objects and Interactions . . . . . . .. ... 59
Simulated PPI of a Wind Farm . . . . . . ... ... ... .. 60

Micro-Doppler features of a range-azimuth cell containing Wind

Turbine, Ground Clutter, and Ground moving target . . . . . . 61

Depiction of Radar Signal Model . . . . ... .. ... .. .. 65
Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits rectangular pulse waveform 74
Comparison between Range-Doppler Images resulting from Matched

Filter and IAA outputs for 13 bits Barker Code waveform . . . 74

X



4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits P4 Code waveform . . . . . 75
Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits Pseudo Random Code waveform 75
Comparison between Range-Doppler Images resulting from Matched
Filter output and IAA (obtained by averaging groups of pulses)
output for 16-bits Pseudo Random Coded waveform . . . . . . . 7
Comparison between Range-Doppler Images resulting from Matched

Filter and MF-IAA outputs with 16 bits Rectangular pulse wave-

Comparison between Range-Doppler Images resulting from Matched
Filter and MF-TAA outputs with 13 bits Barker Code as waveform 79
Comparison between Range-Doppler Images resulting from Matched

Filter and MF-IAA outputs with 16 bits Phase Coded (P4) wave-

Comparison between Range-Doppler Images resulting from Matched

Filter and MF-TAA outputs with 16 bits Pseudo Random waveform 80

Comparison between Range-Doppler Images resulting from Matched
Filter and MF-TAA outputs for ~0dB SNR . . . .. .. ... 82
Comparison between Range-Doppler Images resulting from Matched
Filter and MF-TAA outputs for ~ 5dB SNR . . . .. ... .. 83
Comparison between Range-Doppler Images resulting from Matched
Filter and MF-TAA outputs for ~ 10dB SNR.. . . . . . . . .. 84
PPI Scan from PARADOXI1 for a scene containing a Ground
Target . . . . . . . 85



4.15

4.16

4.17

4.18

5.1
5.2

5.3
5.4
5.9
5.6
5.7
5.8
5.9

6.1
6.2

Comparison between Range-Doppler Images resulting from Matched
Filter Output and TAA Output for Ground Target (Water Tower) 85
Comparison between Range-Doppler Images resulting from Matched

Filter Output and MF-TAA Output for Ground Target (Water

Tower) . . . . . 86
PPI Scan from PARADOXT1 for a scene containing an airborne
target . ..o 87
Comparison between Range-Doppler Images resulting from Matched

Filter Output and MF-IAA Output for Airborne Target (Piper

Seneca airplane) . . . . . . ... 87

Configuration of the Airborne Radar test system . . . . . . . .. 91

Diagram summary of processing flow executed in a SAA/DAA

PTOCESSOT . .« © v v v v vt e e e e e e e e e e 92
Matched Filter output and resulting Detection . . . . . . . .. 96
RMMSE-SR Output and resulting Detection . . . . . . . . . .. 97
Tracking Results with Matched Filter based Detections . . . . 100
Tracking Results with RMMSE based Detections . . . . . .. 100
Real Time Ground Tracking Flight Trajectory . . . . . . . .. 103
Real Time Ground Tracking Module . . . ... ... .. ... 103
Real Time Ground Tracking Results. . . . . .. ... .. ... 104
Operation Modes of PARADOX1 . . . . ... ... ... ... 109

Sensitivity Curves (Minimum detectable Reflectivity vs range)
of PARADOX1 for Micro-Physics Validation Mode for various

range resolutions . . . . .. ..o 110

xi



6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Sensitivity Curves (Minimum detectable Reflectivity vs range)
of PARADOX1 for Airborne Severe Weather Observation Mode
for various SNRs . . . . . . . . ...
Matched Filter and SR output for distributed weather target
for PARADOXT . . . . . . . .
Downsampled Super-resolution output from PARADOX1 com-
pared with PX-1000 outputs for distributed weather target . .
Airborne Campaign 2017: Scan extent of PARADOX1 in Google

Airborne Case: Radial Velocity and Spectrum Width Plots . .
Airborne Case: NEXRAD/KTLX Reflectivity PPI with same
Field of View as PARADOX1 . . . .. ... ... ... . ...
Airborne Case: NEXRAD/KTLX Radial Velocity and Spectrum
Width PPI with same Field of View as PARADOX1 . . . . . .
Airborne Case: NEXRAD/KTLX Reflectivity CAPPI with same
Field of View as PARADOX1 . . . . ... ... ... ... ...
Airborne Case: NEXRAD/KTLX Radial Velocity and Spectrum
Width CAPPI with same Field of View as PARADOX1 . . . .
Ground Measurement Campaign 2016: Scan extent of PARA-
DOX1 in Google Earth® . . . . . . ... ... ... ... ...
Ground Measurement: Uncalibrated but noise processed Return

Power PPI . . . . . . .

113

114

116

118

119

123

124

128

130

133

6.15 Ground Measurement: Radial Velocity and Spectrum Width Plots134

6.16

Ground Based Case: PX-1000 Reflectivity PPT . . . . . . . ..

xii

135



6.17 Ground Based Case: PX-1000 Radial Velocity and Spectrum
Width PPT . . . . . . ... 136

6.18 Ground Based Case: KTLX Reflectivity PPI . . . . . . . . .. 138

6.19 Ground Based Case: KTLX Radial Velocity and Spectrum
Width PPT . . . . . . ... 139

Xiil



Abstract

With the technological advancement of the 21%° century, functions of different
radars are being merged. A multi-functional system brings the technology of
remote sensing to a wide array of applications while at the same time reduces
costs of implementation and operation. Ground-based multi-mission radars
have been studied in the past. The airborne counterpart deserves a through
study with additional and stringent requirements of cost, size, weight, and
power.

In this dissertation, multi-mission functions in an airborne radar is per-
formed using modular, software-based architecture. The software-based solution
is chosen instead of proposing new hardware, primarily because evaluation,
validation, and certification of new hardware is onerous and time consuming.
The system implementations are validated using simulations as well as field
measurements. The simulations are carried out using Mathworks® Phased
Array System Toolbox. The field measurements are performed using an en-
hanced commercial airborne radar system called Polarimetric Airborne Radar
Operating at X-band Version 1 (PARADOX1), which is an X-band, vertically
polarized, solid state, pulsed radar.

The shortcomings of PARADOX1 originate from small aperture size and
low power. Various signal processing algorithms are developed and applied to

PARADOXI1 data to enhance the data quality. Super-resolution algorithms

Xiv



in range, angle, and Doppler domains, for example, have proven to effectively
enhance the spatial resolution. An end-to-end study of single-polarized weather
measurements is performed using PARADOX1 measurements. The results
are compared with well established ground-based radars. The similarities,
differences as well as limitations (of such comparisons) are discussed. Sense
and Avoid (SAA) tracking is considered as a core functionality and presented in
the context of safe integration of Unmanned Aerial Vehicles (UAV) in national
airspace. A “nearly” constant acceleration motion model is used in conjunction
with Kalman Filter and Joint Probabilistic Data Association (JPDA) to perform
tracking operations. The basic SAA tracking function is validated through
simulations as well as field measurements.

The field-validations show that a modular, software-based enhancement
to an existing radar system is a viable solution in realizing multi-mission
functionalities in an airborne radar. The SAA tracking is validated in ground-
based tests using an x86 based PC with a generic Linux operating system.
The weather measurements from PARADOX1 and the subsequent data quality
enhancements show that PARADOX1 data products are comparable to those

of existing ground based radars.
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Chapter 1

Introduction

1.1 Introduction

RADAR is an acronym for Radio Detection and Ranging. A general radar
transmits an electromagnetic pulse and then measures the backscattered signal.
Such a radar is called a monostatic' pulsed? radar. The hardware of a radar can
be recognized as a combination of transmitter subsystem, antenna subsystem,
and receiver subsystem. The transmitter subsystem is responsible for mod-
ulating the carrier frequency with a radar waveform (e.g. Linear/Non-linear
frequency modulated, various phase coded waveforms, etc.). The transmitter
subsystem is also responsible for band-pass filtering as well as amplifying the
signal before delivering it to the antenna. Since a single antenna is used for
transmit and receive, either a circulator or a switch is positioned between the
antenna and transmitter /receiver subsystems. Both (circulator and switch)
are three port microwave devices that are responsible for routing the signal
to the proper port. This ensures the signal from transmitter can only go to
the antenna and signal back from antenna can only go to the receiver. During

the signal routing, the receiver subsystem is isolated from the transmitter

Lco-located transmitter and receiver
2transmitting a pulse instead of a continuous signal



Waveform
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Figure 1.1: A basic monostatic radar block diagram

subsystem thereby preventing any interference or overloading of various receive
components. A limiter is often the first component in the receiver subsystem to
further prevent any inadvertent leakage of the transmitted signal. The antenna
subsystem functions to radiate the signal out to the atmosphere and collect the
backscattered signal. It can be as simple as a mechanical disk or as elaborate
as a phased array antenna with each elements’ own transmitter and receiver
subsystems. The receiver subsystem, on the other hand, amplifies the signal,
down-converts the signal to baseband (through one or more intermediate fre-
quency steps), and delivers the signal to an analog-to-digital converter (ADC).
Finally, the ADC digitizes the signal which can then be processed in real time
or stored for further processing. Figure 1.1 shows a very simple radar block
diagram. In modern times, the digitized signal is used for detection, display,
and various signal processing algorithms. In spite of differences in hardware,
this study treats radar hardware as a general sensor and concerns itself with
the various signal processing algorithms after digitization via the ADC.
Although there are different types of radar, this dissertation focuses on a
monostatic pulsed radar with a coherent receiver. A coherent receiver is the

one that can retrieve phase information of the returned signal in addition to



its amplitude. The amplitude of the returned signal is associated to the Radar
Cross Section (RCS) of the remote target while the phase of the returned signal
depends on the target’s range, relative velocity, and the signal propagation
medium. Since most modern radars can transmit/receive multiple pulses, using
a coherent receiver, a progressive change in phase can be calculated. This
change in phase can then be used to estimate the radial velocity of the remote
target. The number of pulses transmitted every second is called the Pulse
Repetition Frequency (PRF). The interval in which a set of coherent pulses are
transmitted and received is called the Coherent Processing Interval (CPI). Each
CPI can, therefore, consist of a wide variety of waveform and PRF combinations.
The amplitude of the target, again, analogous to the RCS, depends more on
the electrical properties of the target and the aspect angle to/from the radar
rather than just its physical size. For example, the RCS of a metallic vehicle is
greater than that of a tree with similar size. Furthermore, the RCS of a metallic
plate is much less when its normal is not along the direction of radar. The
range to the remote target is calculated by measuring the delay between the
transmitted and the received pulse. The continuous returned signal is sampled
in time or “binned” to get a range profile data. Note that the continuous signal
here is in contrast to the discrete signal. In a scanning radar, the antenna is
pointed towards different azimuth and elevation angles to get a 2D or a 3D
representation of the environment. The range, angle, amplitude, and phase
data can then be processed in real time to estimate radar products or stored
for post-processing algorithms.

In modern times, radar is used ubiquitously in defense, weather, scientific,
law enforcement communities as well as in commercial sectors. The first

patent associated with radar comes from Christian Hiilsemeyer in Diisseldorf,



Germany for detecting metallic objects using electrical waves and subsequent
demonstration at the Hohenzollern Bridge in Cologne, Germany in 18** May
1904 [1]. US Naval Research Laboratory (NRL) demonstrated detection of a
ship by a radar in 1922 and then accidentally detected aircraft(s) in 1930 which
set off more substantial investigations in the field of remote sensing using radar
[2]. Further development of radar (including pulsed doppler radar) continued
during and after World War II primarily driven by military and defense needs
such as surveillance, navigation, and weapon guidance for ground, sea, and air
vehicles [2], [3].

On the meteorology side, the exact origin of a weather radar still remains a
mystery mainly due to wartime secrecy [3]. The interest in radar meteorology
stems from the apparent weather related interference during the detection of
aircrafts. The first detection of precipitation might have happened in the later
half of 1940 in General Electric Corporation Research Laboratory in Wembley;,
England primarily due to the works by Dr. J. W. Ryde [3]. In the US, armed
services, particularly Air Force and its Cambridge Research Laboratories were
actively involved in studies related to meteorological capabilities of a radar. The
National Severe Storms Laboratory (NSSL) was formed in 1964 which furthered
meteorological research using Weather Surveillance Radar-1957 (WSR-57) [4],
[5]. Currently in the US, National Weather Service (NWS) operates a network of
159 high resolution S-band Doppler weather radars called WSR-88D (Weather
Surveillance Radar 1988 Doppler). Collectively, these radars are referred to as
Next Generation Radar or NEXRAD [6]-[8]. The data from all the NEXRAD
radars are publicly available at [9].

In recent years, automotive radars are increasingly being used and researched

as a means of sensing road hazards and provide more autonomous capability



to road vehicles. A radar sensor is capable of detecting vehicles, pedestrians,
as well as road barriers in all weather conditions, both in daytime as well
as nighttime. The availability of low cost processing systems as well as high
precision component manufacturing procedures have paved the way for a
variety of such automotive radars. Those radars generally transmit Frequency
Modulated Continuous Wave (FMCW) waveforms and use Multiple Input,
Multiple Output (MIMO) antenna technique for transmit and receive. One
substantial difference between a pulsed system and a CW (continuous wave)
system is that the former can operate with a single antenna and a single
up/down conversion chain while the latter requires at least two antennas and,
in general, matching number of up/down conversion chains. The frequency
modulation of the waveform enables the range measurement while transmitting
and simultaneously receiving the continuous wave. Multiple chirps® can be
transmitted to measure phase information and subsequently estimate the radial
velocity. The MIMO operation allows the use of a variety of angle finding
algorithms to locate the angular position of remote scatterers.

Modern radar applications can be primarily grouped into detection, imaging
and tracking. In addition to defense and meteorology related applications

discussed above, radars are widely used in
1. Air traffic control/management
2. Altitude measurement during flights
3. Weather hazards measurement/monitoring/avoidance in aviation

4. Detection and collision avoidance by ships and now by automobiles

3a signal with varying frequency



5. Velocity measurement (either by law enforcement or in sports like tennis,

baseball, etc.)

6. Micro-Doppler (small Doppler due to rotating objects) measurements

and studies

7. Imaging the earth’s topography, and environmental characteristics (e.g.

forests, ice, water, land use etc)
8. Radar ecology (e.g. measuring migratory birds’ behaviors)

Currently, a different radar would be designed and implemented for each
of the different applications numerated above. The variations in applications
require a reciprocal variations in frequency bands, components, antennas as well
as data collection methods, and signal processing algorithms. For example, in
radar meteorology, reflectivity is often calculated using Rayleigh approximation
which is strictly valid only for frequencies less than 3 GHz [3]. In military and
aviation applications, the antenna pattern and scan rate needs to be different
than in meteorological applications. In SAR (Synthetic Aperture Radar) and
MTT (Moving Target Indication) applications, the data collection method as
well as signal processing algorithms are extremely different. Due to all of
these considerations, distinct radar systems for distinct applications have been
historically warranted.

In recent years, there have been some development of multi-mission radars
[10]-[12]. These radars serve the military, and defense communities and are
generally expensive. They employ Active Electronically Scanned Array (AESA)
antenna architecture which adds to the cost and complexity. The critical issue
of Cost, Size, Weight, and Power (C-SWaP) seem to be largely ignored in those

radars. Furthermore, there does not seem to be a civilian or a commercial



counterpart to such multi-mission radars.

However, technological advancements in hardware, computer systems, and
digital signal processing algorithms allow us to carry out multiple operations
using the same radar system. This leads to a lower number of required radar
systems which in turn results in reduced cost of operation as well as maintenance
[13]. Therefore, a multi-function radar that can meet all the required operational
necessities is a cost effective solution. Furthermore, a multi-mission radar is
the next chapter in radar technological advancement as the component level
advancement approaches the required maturity. In addition to performance
improvements, the ongoing advancements in various radar components have
resulted in increased component bandwidth thereby enabling frequency diverse
applications while using same hardware. The proliferation of phased array
antennas has paved a way for not only very rapid electronic scanning but also
changing the antenna pattern on the fly. The MIMO technique together with
angle finding algorithms enable using smaller number of antenna array elements
while maintaining the required beamwidth and performance. The continued
advancements in computer architecture, processing speed as well as data 1/O
and storage have resulted in implementations of digital radar systems that can
support a variety of data collection methods as well as various real time and

post processing algorithms.

1.2 Ground based Multi-Mission Radar

Ground based multi function/mission radars have been an area of active
research. An overall implementation is therefore not too far in the horizon.
Such radar system will be able to replace NEXRAD [5]-[8], Terminal Doppler
Weather Radar (TDWR) [14], and Airport Surveillance Radar (ASR-9 and



ASR-11) [15]. These radars will be of interest to various government agencies
and civilian sectors alike. The fast electronic scanning capability provided by a
phased array antenna has provided a means to multi-function while maintaining
adequate update intervals. The National Weather Radar Testbed (NWRT
[16], [17]) located in Norman, OK has been a focus for such studies [18], [19].
The Multi-Function Phased Array Radar (MPAR) is a project that is being
undertaken by National Severe Storms Laboratory (NSSL) with its various
industry and academic partners to achieve the goal of multi-function ground
based radar. The requirements and road-maps of MPAR have been previously
studied [19]-[21].

Another ground based radar that has the potential to become a multi-
function radar is the Cylindrical Phased Array Radar (CPAR) [22], [23]. There
have been studies about antenna design and calibration for such multi-mission
radars [24]-[27]. While CPAR studies is currently more focused on weather
measurements, validation, and subsequent studies, the phased array architecture
provides a promising prospect for multi functionality. Therefore, in the ground
based case, there are plans and ongoing studies on multi-functionality. However,
an overall system characterization, implementation, and demonstration has not

been done yet.

1.3 Airborne Multi-Mission Radar

As “single-mission” airborne radars complement “single-mission” ground based
radars for various civilian, military, and scientific necessities, such is the case
for a multi-mission radar. The challenges in development and implementation
of an airborne counterpart of a multi-mission radar, on the other hand, are

more extreme. The classical bottle-neck of C-SWaP advances non-linearly



as more functionalities are added to an airborne radar. The data storage
and processing present challenges in terms of bandwidth, throughput as well
as radar products’ estimation and retrieval. This paradox is also present in
ground-based multi-mission radars, although with the benefit of higher margin
in size, weight, and power requirements. A majority of ground based radars are
migrating towards Phased Array Antenna architecture due to the high speed
electronic scanning capability. However, the Phased Array architecture has a
little to do with low cost. In the most advanced Phased Array system, each
element requires its own up/down conversion chain as well as data I/O ports
and storage solutions. The appetite for larger and simultaneous processing
power is perennial, especially, in radars which are, in affect, digitizing and
manipulating high frequency signals and interpreting the results. The signal
processing challenge comes in two-fold, one in terms of hardware as the incoming
analog signals need to be digitized error free and efficiently; and another in
software as those digitized signals need to be processed in real time or stored
for later processing. So far as parallelizing the data acquisition/processing
is concerned, not all the desired parallelizations can be achieved as the data
collection and processing sometimes must follow sequential algorithms. There
have been studies about using General Purpose Graphical Processing Unit
(GPGPU) to perform parallel computations [28]-[30].

Currently, airborne weather radars are being used extensively in aviation
and defense applications. There continues to be a pertinent appetite for
research quality data originating from airborne platforms. There have been
previous efforts to build and operate a research grade airborne weather radar.
While no longer in commission, the ELDORA/ASTRAIA (Electra Doppler

Radar/Analyese Stereoscopic par Impulsions Aeroporte) airborne Doppler



weather radar [31], [32], operated by NCAR/UCAR (National Center for
Atmospheric Research, University Corporation for Atmospheric Research), is
an example of an airborne radar for scientific missions. Another example
is the Airborne Rain Mapping Radar (ARMAR) developed by NASA and
Jet Propulsion Laboratory for operation on NASA DC-8 aircraft [33], [34].
A variety of studies and measurements were performed with ELDORA in
focus [35], [36] as well as with ARMAR in focus [37]-[39]. The utility of such
scientific mission radars cannot be overstated, however, these radars present
a substantial financial burden for operation and maintenance. While, such
radars are essential in remote sensing studies, the cost of operation results in
very sparse coverage both in time and space. A multi-mission radar can be a
viable replacement for single mission airborne radars for scientific studies.
The bulk of current generation of airborne radars are being used to detect
and assess weather hazards and thereby provide situational awareness to
pilots. One of the requirements of a multi-mission capable airborne radar is to
provide commercial grade output (for pilots) while at the same time be able to
store/process research grade data when necessary. Traditionally, multi-mission
applications in airborne radar is implemented through expensive phased array
architectures. The military and defense communities are, again, the pioneers
in this sector as they are well equipped to absorb the ensuing expenditures. So
far as civilian and commercial sectors are concerned, achieving multi-function
capabilities have been difficult, especially, on a low-cost airborne radar system.
These low-cost systems usually do not have the quality of electronics, antenna
with desired beamwidth, and computing power to support advanced capabilities.
However, as technology matures and the costs subside, the implementation of

such low C-SWaP systems appear to be more feasible.

10



For meteorology, the challenge/mission is usually the precise measurement
of scattering power and phase response from moving platforms. These measure-
ments are sometimes referred to as “raw” or I/Q returns. One of the goals in
meteorology is to properly estimate “radar products” which can then be used
not only to estimate current weather parameters (like rainfall rate) but also
to make future weather predictions (weather forecast). For a single polarized
system, radar products to be estimated are Reflectivity, Doppler Velocity, and
Spectrum Width; whereas for dual polarized systems, additional radar products
like Differential Reflectivity, Correlation Coefficient, and Specific Differential
Phase need to be estimated [3], [40], [41]. The “raw” measurements along
with the radar products drive bulk of the weather related research which is
necessary for our understanding of climate and weather phenomena as well as

for preparedness against potential weather hazards.

1.3.1 Sense and Avoid

One of the core missions of a multi-mission radar is the sense and avoid
capability. Modern airspace is shared by a variety of civilian, commercial,
and military aviation in addition to birds and meteorological elements like
rain/storm clouds. All of those objects simultaneously present in an airspace
are potential threats to aviation. Uncooperative and unresponsive aircrafts are
also a concern, especially in military aviation. With the current generation of
airborne radars, there is more implementation of sensing part while avoiding
part is performed manually. Unmanned airborne systems are already in the
airspace in the form of military drones. It is just a matter of time when fully
autonomous airborne systems traverse the skies during which the potential for

safety becomes more imperative. The sense and avoid paradigm encompasses
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sensing and tracking all the aforementioned airborne threats followed by a
mitigation procedure. For an unmanned system, the first step is to ascertain the
airspace properly and change course whenever necessary. This naturally includes
radar as a sensor along with a tracking subsystem. A tracking subsystem can
be viewed as a part of processing chain that conducts target associations, track
initialization, prediction, update, maintenance and finally avoidance.

The concept of tracking emerged in the period of warfare when it was
necessary to understand the adversary’s flight path and motives. However,
as humans have evolved, it is essential to view tracking not just as a defense
apparatus but rather as a necessary tool that can aid in sharing of a common
airspace. Since autonomous navigation is now a distinct possibility, the notion of
tracking needs to evolve to encompass a broader meaning. Tracking of weather,
for instance, should be included in this broader meaning. Bad weather is often
the biggest threat to civilian and commercial aviation. Indeed, weather events
cause in-flight injuries as well as hundreds of delays and cancellations of flights
every year. As the airspace gets dense, the ability to track commercial/civilian
flights and predict their next position becomes necessary. Although, virtually
all of the air traffic today can be considered as cooperating targets, it is
still desirable to track those aircrafts in the event of any malfunction in the
transponder or the communication systems. There have been studies about the
appropriateness of current system of air traffic control called the Traffic Alert
and Collision Avoidance System (TCAS) [42]. While [42] focuses on Dynamic
Programming, the predicament of potential failure or overload of TCAS still
remains. An onboard, tracking capable, multi-mission airborne radar system is
therefore, without a doubt, useful. Hence, tracking is considered as an essential

subsystem for a multi-mission radar and such a radar needs to have the ability
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to track a variety of targets, albeit with the mission of operational safety.

Then, there is the field of autonomous navigation of an unmanned aerial ve-
hicle, which, although still in its infancy, has an ever growing list of applications
that can benefit from a sense and avoid radar. On the defense sector, there
has been feasibility studies that not only identifies the various requirements
but also presents a potential road-map in realizing such an unmanned aerial
vehicle with SAA capability [43], [44]. On the civilian sector, remote sensing
and mapping takes precedence [45]. These group of applications, especially
from the civilian surveillance prefer and in many cases have a hard requirement
of low C-SWaP. Therefore, an airborne radar on unmanned aerial vehicles
(UAVs) needs to address extreme constrains on C-SWaP. On the other hand,
unmanned aircrafts still need similar (maybe more autonomous) capabilities
for situation awareness compared to their manned counterparts [46]. Therefore,
it is necessary to explore a variety of potential solutions that can alleviate
the challenge of autonomous navigation while at the same time satisfying the
requirement of low C-SWaP.

There are indeed other novel avenues for various signal processing algo-
rithms in airborne multi-mission radars. Micro Doppler studies is one of
them. Micro Doppler in radar returns are generated due to slight variation
of Doppler velocity, especially, from a rotating target. When coupled with
machine learning techniques, micro-Doppler signatures can be classified and /or
recognized to discern different types of targets. One example is the recognition
and classification of Wind Turbines in radar return data [47].

Apart from those outlined above, there can be more potential uses of
airborne multi-mission radars. Airborne multi-mission radar is already poised

to become a necessity when we examine all the diverse applications that it
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can support. When the concept of radar was conceived about a century ago,
a lot of its modern applications were unknown. Similarly, development and
implementations of airborne multi-mission radar and the subsequent signal
processing algorithms will undoubtedly introduce various novel applications
than currently available/possible. The evolution of mankind and its technology
has never failed to astonish and an airborne multi-mission radar will be no
different. This study is one of the first steps in recognizing the possibility and

hopes to pave a path to further studies, developments, and implementations.

1.4 Research Objective

In this study, the feasibility of a practical multi-mission airborne radar is
examined in detail. With the challenges recognized above, there are two
possible paths for the solution. One is to develop a higher frequency, lower-
cost, and agile hardware, such as metamaterial scanner [48], similar to the
hardware in automobile radars [49], etc. The drawback of implementing these
new hardware changes is the necessity of thorough testing and validation
as well as meeting the requirements of aircraft recertification. In addition,
potential complications may arise during the development, implementation, and
deployment of radar hardware as well as during configuration modifications.
The other path is to use existing and certified hardware such as low-
cost weather radars. The functionalities can be enhanced through advanced
signal processing algorithms. This study focuses on this second path where
the signal processing algorithms are developed and applied. Because the
enhancements are done in software, there is little or no need to modify existing
hardware, thereby reducing the development time, costs as well as certification

risks. Multiple independent modules of signal processors can be added to
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enhance the capability of existing radar systems. There are still challenges to
this approach. Low C-SWaP systems generally comprise of smaller aperture
size, lower scanning speed, and in general slower computation time with less
memory as well as components with lower throughput. These challenges
will be addressed using modular hardware that can operate independently in
parallel or in sequence depending on the mission requirements. One of the core
objectives of this study is to verify that the signal processing algorithms can
enhance the performance of a “single-mission” radar system to meet the Sense
and Avoid (SAA) radar sensing requirements [50] or at least support the basic
functionality of SAA operations as a part of multi-mission operations. Note that,
although there has been FAA-RTCA (Federal Aviation Administration-Radio
Technical Commission for Aeronautics) working groups actively investigating
the SAA (also sometimes referred to as Detect and Avoid, DAA) radar sensing
requirements [51], [52] the final performance requirements have not been
finalized and released yet. Currently, SAA radars are being studied and
developed by multiple industry entities. Some examples are the Due-Regard
Radar from General Atomics [53], Northrop Grumman’s SAA radar, and initial
flight tests [54]. However, these on-going works do not appear to address
the multi-functional application for low-cost radar operations, as well as the
scenario of close-by multi-target tracking with angular resolution constraints.
One innovative aspect of this work is the first time integration and application
of advanced algorithms for SAA functions on a low-cost airborne weather radar
platform.

In this study, a specific commercial weather radar platform is used and its
functionalities are enhanced. The software based solution introduced in this

study intends to use low-cost hardware and advanced algorithms/processing
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back-end to meet the remote sensing goals for multi-mission applications. This
work implements and validates a basic SAA function using an existing weather
radar system, rather than proposing a completely new and dedicated SAA
radar system. In addition to the demonstration of fulfilling basic operational
needs using software processing and various signal processing algorithms, this
study will also validate multi-mission capability of this enhanced radar system.
The focus of this study is to determine the optimal operation mode and to
perform algorithm development and data quality validations, both in cases of
weather as well as sense and avoid (SAA) applications. The main challenges for
the solution are the resolution limitation due to small aperture size, limitations

from field-of-view (FOV), and scan speed due to mechanical scanning.

1.5 Outline of the Dissertation

Following Introduction, this study is organized as follows.

e Chapter 2 introduces a multi-mission airborne radar. It also builds some
radar fundamentals in terms of weather and point target detection as
well as radar signal spectrum. A formulation of tracking from a sense

and avoid point of view is then presented.

e Chapter 3 introduces the signal processing algorithm suite as well as an

end-to-end radar simulator.

e Chapter 4 details Iterative Adaptive Approach, and Matched Filter Based

Iterative Adaptive Approach as real aperture super-resolution algorithms.

e Chapter 5 presents an example of tracking from sense and avoid per-
spective by using the aforementioned multi-mission radar and resolution

enhancement algorithms.
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e Chapter 6 analyzes weather surveillance using the same sensor platform
and similar algorithms after which the results are validated against well

known ground based research radar results.

e Chapter 7 presents a summary and conclusions arrived, in this study.

e Chapter 8 outlines future work.
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Chapter 2

Airborne Multi-Mission Radar

Most of the radar systems built in the past were done to address a specific
challenge; be it military radars, civil aviation radars, meteorological /weather or
general research radars. Since each combination of a problem in an environment
requires a slightly different system characteristics, such practice has been
historically justified. Additionally, there were few overlaps between the interests
of different communities (military, civilian, science/research) and therefore each
radar was built to satisfy a particular necessity for a specific community. In
recent times, the goals of different communities are increasingly overlapped.
Tracking, for instance, was historically a defense apparatus but lately an
increasing number of commercial applications are finding it beneficial. Weather
studies, on the other hand, are of interest to not only researchers but also to
aviation industry. Imaging radars are being used to study deforestation, ice
sheet conditions, etc. in addition to mapping the earth’s surface. Since the
common goals of different radar communities are increasing, a multi-mission
capable system can not only reduce cost, but also drive the industry forward
as historically separate communities work towards a common set of goals.
Airborne radars have been a part of aviation community to access weather

hazards. As discussed in Chapter 1, such radars are used solely for situational
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awareness to the pilots. Since making hardware changes to an existing platform
would be onerous as products need to be tested, validated, and re-certified,
this study focuses on software modifications as a viable approach in realizing

multi-mission airborne radar using a commercial airborne radar platform. One

concept of such radar is PARADOX which is discussed below.

2.1 Polarimetric Airborne Radar Operating at X-band,
PARADOX

Together with Garmin International Inc. the Intelligent Aerospace Radar
Team (IART) at University of Oklahoma has been developing a new airborne
weather radar system called Polarimetric Airborne Radar Operating at X-
band (PARADOX). PARADOX has had multiple versions since 2007. In 2010
the first version (referred to as “version zero”) was flight tested with an industry
partner using IART designed hardware and some initial dual-polarimetric data
for rainfall were collected. In 2012, PARADOX1 was developed, based on
Garmin Inc’s commercial GSX70 airborne weather transceivers and processors.
Data collections were performed by designing and implementing various Co-
herent Processing Intervals (CPI’s). The collected data were analyzed using a
multitude of advanced signal processing methods [55]-[59]. PARADOX2 radar
will, again, be based on a new generation of hardware from Garmin Inc. It will
be upgraded to dual-polarization operation from the current configuration of
vertically-polarized antenna.

Figure 2.1a shows the mechanical structure of PARADOX1 while Figure 2.1b
shows the current setup. Table 2.1 lists the key parameters of PARADOX1. The
low C-SWaP (Cost, Size, Weight and Power) of PARADOX1 makes it suitable

for deployment on small to medium aircrafts including UAV’s (Unmanned
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Radar Parameters

Values

Antenna Size

10-18 inches for standard antenna product
configuration

Mechanical Tr'ansceiver % inches
Dimensions | Diameter
Depth 6.3 inches

Total Weight

9.5 Ibs (for a 18 inch antenna, and elec-
tronics) plus digital backend (small form

factor PC)
Operating Frequency 9.3 to 9.5 GHz

Slotted Waveguide Array and Mechanical
Antenna .

Scanning
FOV +60° azimuth, £30° elevation

. Solid-state 40 watt peak power, support

Iransmitter for a wide range of vfavefolr)ms and PI’)II;FS
Sensitivity 0 dBZ @ 30 km

Real-time pulse compression receiver with
Receiver optimized LFM and phase coded wave-

forms

Antenna Beamwidth

Scalable: 18 inch panel: 5.6° az/el

Scan Speed

Variable (depends on the number of Trans-
mitted Pulses)

Basic Data Products

Real-time: Reflectivity, Doppler velocity,
spectrum width. Offline: SAR (Synthetic
Aperture Radar) imaging, airborne hazard
and biological target trajectory estimation

Mounting and Installation

Nose cone mounting or pod mounting

Table 2.1:

PARADOX1 Specifications
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(a) Mechanical Structure of GSX-70 (b) Current Configuration (with 12 inch an-
tenna)

Figure 2.1: Garmin GSX70

Aerial Vehicles). The entire system, including the mechanical scanner and
signal processors, is integrated into the 9.5 lbs, 8 inches diameter and 6.3 inches
deep package. PARADOXI1 is highly configurable by design and therefore a
number of parameters listed on Table 2.1 have multiple available options. The
aperture is a planar waveguide array that can have diameter from 6 to 18
inches for the current design, and can be extended to 50 inches with customized
designs. In addition, PARADOXI1, being a solid-state radar, also supports a
variety of pulse compression waveforms. In the latest version of the hardware,
a diverse number of phase coded waveforms, modulations, and bandwidths can
be employed. The sensitivity of the radar can be tweaked using various duty
cycles.

Figure 2.2 depicts the multi-mission concept of PARADOXI1. The embedded
mission processor can be configured to execute various missions simultaneously.
The SAA (Sense And Avoid) tracking part, naturally, needs to be in Track
While Scan (TWS) mode. Signal processing modules can be attached to

data output of PARADOXI1 to achieve improvements such as super-resolution
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Figure 2.2: PARADOX1: A Multi-Mission Airborne Radar

(SR), range/azimuth/Doppler enhancement, sidelobe reduction etc. Chapter 4
describes the Range-Doppler-Azimuth Super-Resolution, which is an important
step required to meet the multi functionality performance goals. Chapter 5
details the SAA tracking subsystem while Chapter 6 presents scientific research
quality data validations. In each of the Chapters of this study, the data from
PARADOXT1 is used to not only verify the validity of the algorithms, but also

to present PARADOXI1 as an airborne multi-mission radar.

2.2 Radar Returns

A meaningful radar return data consists of a backscattered signal from a target
that is stronger than the inherent thermal noise and/or any interference at
the receiver. Radar returns are quantized in range, azimuth, and elevation.
The ability to discern returns from remote targets in space or time (essentially
resolving different targets) is referred to as resolution. An increase in resolution

is accompanied by a decrease in the cell size of space or time in the measured
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data. The resolution in range depends on the transmit waveform bandwidth!.
Although there are high bandwidth radars that can achieve sub-meter resolu-
tion, for most radars range resolution varies from tens of meters to few hundred
meters. Range resolution is generally constant for a set of data. The resolution
in azimuth and elevation depends on the antenna pattern beamwidth?. Since
radar/antenna beam broadens with increasing range, the azimuthal and eleva-
tion resolution decrease with an increase in range. The range, azimuth, and
elevation resolution constitute a 3D “resolution volume” which is analogous to
a 3D pixel. The shape of this pixel is reminiscent of a thin (3D) ellipsoid with
the span in range direction being the smallest. In general, there are multiple
scatters in each resolution volume. As a consequence, radar return is comprised
of a superposition of the returns from those multiple scatterers.

In case of airborne radars, there are two distinct types of targets that need
be considered. Firstly, the so-called hard targets that occupy very few range
bins are modeled as single point targets. Some examples are other aircrafts,
birds, most ground targets, and clutter if scanning downwards. The other
type of target is the meteorological target, e.g. storm clouds, rain, hail, snow,
etc. Those targets span multiple range, azimuth, and elevation bins and are
modeled as distributed targets. Although the basic physics of both types of
targets are largely similar, slightly different approaches are used for signal
modeling and processing. The radar range equation that gives the fundamental

signal model is discussed in the next section.

LAll the components’ bandwidth should be equal to or greater than that of the waveform,
else the lowest bandwidth among the components determines the range resolution
2azimuth and elevation beamwidth may not necessarily be equal

23



2.3 Radar Range Equation

The radar range equation is a deterministic signal model that relates various
radar system components to the environment and estimates the received power
at the receiver. By providing the expected return value in a theoretical sense,
radar range equation can provide an assessment of the capability of the radar
system. The received power P, from a target at range R, with radar cross
section o, using a radar of wavelength A\, with transmit power P;, transmit
antenna gain Gy, receive antenna gain G,., assuming one way propagation loss
[, and all other system losses (e.g. due to various system components like

waveguides, power dividers, radome, etc.) lumped together as [, is [2], [60]

Pr . Pth o Gr)\2

_ 9.1
anr " arr " and, (2.1)

Equation 2.3 is a simple form of radar range equation. The first fraction term
on the right side is the directed power to the target; the second term is the
backscattered power from the target; and the third term is power directed
towards the receiver. Note that all the terms in equation 2.3 are of linear units
and the received power is instantaneous. For a monostatic radar (radar with
same antenna for transmit and receive), equation 2.3 can be simplified as

P.G?*\%0

p=—1"27
(47)3 R,

(2.2)

Here, G, = G, = G is the single antenna gain, and [? = [, is the two way
propagation loss due to the atmosphere.

Equation 2.3 is the basic radar range equation for a point target. In the
equation, ¢ is the unknown target RCS which is directly proportional to the

return power. Radar range equation provides the expected echo power from
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a remote target. In the next section, the returns from weather targets are

examined followed by a discussion of the spectrum of such returns.

2.4 Weather Returns

One of the great utilities of modern radars is the ability to measure weather
phenomena and access the associated threats to the infrastructure and public.
Therefore, measuring weather is one of the core missions of a multi-mission radar.
Especially for an unmanned airborne platform, proper weather measurements,
and subsequent assessments are crucial for operational safety. In addition,
weather measurements also provide critical research data for weather related
studies. Weather studies are increasingly paramount as the humankind is
beginning to appreciate the effect of changing climate. As aforementioned,
weather returns comprise of superposition of returns from smaller scatterers in
the 3D resolution volume and spans multiple such resolution volumes. It is,
therefore, modeled as distributed target which results in radar range equation
taking a slightly different form.

The RCS of a weather target is a contribution of RCS from different sizes
and types of hydrometeors in the resolution volume. If we let 7 as the average
RCS per unit volume and consider AV to be resolution volume then the

ellipsoidal resolution volume can be expressed as,

ctmR?0,.,0,,

A =
v 12

(2.3)

where, 0,., and 0, are azimuth and elevation beamwidth respectively, c is the
speed of light, 7 is the pulsewidth and R is range to the target.

The average RCS per unit volume, 7, is also called reflectivity and is
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expressed as [3], [61]
n= /0 ~ 04(D)N(D)dD (2.4)

where o (D) is the RCS for the scatter with diameter D and N (D) is the number
of such scatterers (with diameter D). Reflectivity, 7 is related to reflectivity
factor Z as

7'('5 2

where K, is the dielectric factor of water, K, = (e, —1)/(€w+2), and €, is the

63 and is usually expressed

dielectric constant of water. The unit of Z is mm
as dBZ (10logy0Z). Equation 2.4 is called the Rayleigh approximation which is
valid when diameters of hydrometeors are small compared to radar wavelengths

3], [61]. Therefore, radar range equation for weather targets takes the form

P P,G?)\? W5’Kw’2ZCT7rRlQ29azﬁel

, T 2.6
(AT R 1, N (2:6)

Please note that although radar range equation for weather targets is derived
using Rayleigh scattering approximation, often, this condition cannot be met,

especially when the transmit frequency for a radar is high.

2.5 Spectrum of Radar Signals

As mentioned previously, modern radars are capable of concurrently measuring
amplitude and phase of the returned echo from the remote target. The radar
range equation in the previous section provided an expression for the amplitude
of the echo (by formulating a power equation). The phase of the returned
echo signal is used for frequency analysis in a range-azimuth-elevation volume

or a resolution cell. Such frequency analyses provide the measure of velocity
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contents (or a weighted distribution of velocities) in the volume. If there are
targets in the resolution volume, the power spectrum plot for that cell consists
of peaks equaling to the number of targets and each at the frequency/velocity
location of the target. Note that if the velocity/Doppler resolution is not high
enough, multiple peaks can get “merged” and can have the appearance of a
single peak albeit wider. The width of those peaks also depends on the platform
dynamics as well as the target characteristics. In case of weather measurements,
the width of the peak (in the spectrum) is related to the atmospheric turbulence.

The phase of the echo can be expressed as [3]

4rr

%:~T+m+% (2.7)

where, r is the range to the target, A\ is the wavelength, ; and 1, are the
phase introduced by the transmitter and remote scatterer (target) respectively.

The Doppler frequency is the time derivative of the phase which is,

fa

1dye 1 (‘4”) S (2.8)

Tor dt 27\ A\ )

In equation 2.8 above, both v, and s are considered to be time invariant.
While ¢, can be generally considered constant, more so for a ground based
radar, ¥, on the other hand is more nuanced. For a non-meteorological target,
1, can be considered constant but for a meteorological target 1, is time varying
due to vibration of water droplets during precipitation. Furthermore, since
weather returns comprise of returns from multiple scatterers of different sizes
in the resolution volume, the sum total of the phases from each target no
longer remains time invariant. The vibration, of the meteorological targets,

manifests itself as a broader peak in the Doppler spectrum. Please note that v
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in equation 2.8 is the relative velocity and in fact is the relative radial velocity
(i.e. the component of velocity in the line of sight direction).

In contrast to a ground based radar, an airborne radar is in motion during
data collection and therefore a Doppler frequency shift is always present in the
received signal. The spectrum is further complicated by the turbulence in the
platform itself, causing random changes in ;.

It is to be noted that a direct measurement of Doppler frequency from a
single short pulse is not possible. The carrier frequency of a radar is fairly high;
e.g. NEXRAD/WSR-88D radars’ frequency is between 2.7 and 3 GHz, and for
an airborne radar X-band (8 - 12 GHz) is the most popular choice. The change
in phase caused in one short pulse (tens of micro-seconds) is generally within
the limits of error. On the other hand, if there are multiple pulses transmitted
and a coherent receiver is used, the difference of the phase between successive
pulses can be calculated which can then provide the Doppler shift and finally
the radial velocity of the remote target can be estimated.

As aforementioned, the velocity of a remote scatterer is estimated by doing
a frequency domain analysis of the returned echo. Fourier Transform is taken
on the time domain return signal to generate a power spectrum estimate. The
Discrete Fourier Transform (DFT) of a time domain signal sampled M times

at a uniform spacing T is defined as [3]

Z(kfy) = Mi V (mT,)ed2mfolsmk (2.9)

m=0

where V(mTy) is the complex voltage (amplitude and phase representation of
the echo signal) of m' sample and Z(kf,) is the complex amplitude of the

kt" spectral coefficient at frequency f = kf,. Similarly, the Inverse Discrete
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Fourier Transform (IDFT) can be expressed as,

1 M-1

V(mTy) = 7 > Z(k fo)e*moTemk (2.10)
k=0

Note that the sampling frequency here is the PRF and therefore sampling
time, Ty = 1/PRF and there are M total pulses in the CPI. Using the Nyquist
criterion, the maximum unambiguous Doppler frequency that can be measured
is (2T,)"! or PRF/2. Examining equations 2.9, all the frequencies in the
summation are multiples of 1/M T therefore, the Doppler resolution is 1/MT;
or PRF/M. Finally, the maximum unambiguous velocity that can be measured

is derived using equation 2.8 as,

A PRF

=+ 2.11
v 1 (2.11)
And the velocity resolution is,
A PRF
Av=——— 2.12
V= (2.12)

The above equations, 2.11 and 2.12, give the extent of the estimated power
spectrum as well as the location of the peak(s) if scatterers are present. Next
the shape of the Doppler spectrum is briefly discussed.

The power spectrum of an infinite sinusoid is a delta function at the
frequency of the sinusoid. If the sinusoid is multiplied by a rectangular envelope
to generate a pulse in the time domain; in the frequency domain counterpart,
it is equivalent to the convolution between the delta function (spectrum of
sinusoid) and a sinc function (spectrum of rectangular envelope). The resulting

spectrum is frequency shifted sinc function. A sequence of such pulses in a
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CPT also result in a sinc function in the spectrum whose width is given by
the frequency/velocity resolution. However, as discussed previously, if the
phase change due to the scatterer v, is varying with time, the resulting sinc
function in the frequency spectrum broadens. In ground based weather radar,
the width of the spectrum is related to the turbulence in the atmosphere. In
case of airborne radar, the there is additional spectrum broadening due to the

fluctuation of platform motion (manifested through the change in ;).

2.6 Airborne Sense And Avoid

As mentioned previously, sense and avoid is a broader term that encompasses
the notion of target tracking. Tracking capability will certainly be of great
utility for pilots. In addition to that, it is also useful to the emerging field of
autonomous navigation. As discussed previously, SAA tracking of weather as
well as other aerial vehicles is a safety necessity.

Tracking, simply put, is an estimation of the current state/parameter of
a moving object followed by a prediction of future state. This, of course, is
complicated by the fact that moving objects never move in a perfect path and
the measurements are always contaminated by the noise. Furthermore, the
inherent limit in sensor resolution causes an uncertainty, in the measurement,
and during the mathematical modeling of the tracking algorithm. Therefore a
tracker has the function of filtering (noise), interpolating the measurements
where necessary, estimating the true measurements, and predicting the future
measurements. The prediction part is done by taking into account all the
previous measurements as well as knowledge of parameters and the statistics
of any involved noise and uncertainties. There are definitely a variety of

approaches to estimation and prediction where the benefit of accuracy is
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complemented by a complexity of computation.

In addition to the intricacies involved in estimation and prediction, modern
tracking also involves with data association. In almost all of the practical
scenarios, there are generally more than one detection. For an airborne case, it
can be argued that there may be a single target in the current field of view
in given time and space. However, the omnipresence of noise, clutter, and
the resulting false alarms are sure to result in more than one detection. Data
association part of sense and avoid associates detections to the previously
established tracks or previously detected targets. There are, of course, different
algorithms for data associations; one detection can be associated with one
target /track (hard detection) or a more probabilistic soft detection approach
can be undertaken where a single detection can be associated with more than
one target /track.

For the application outlined in this study, Kalman Filter (KF) is used for
estimating the state of dynamic targets and Joint Probabilistic Data Association
(JPDA) is used for data association. Kalman Filter [62] provides a recursive
method to optimally estimate the state of linear systems in presence of Gaussian
error statistics. JPDA provides joint posterior association probabilities for
multiple targets in presence of Poisson clutter [63], [64]. Together, JPDA and
KF are responsible for initializing tracks, associating measurements as well as
updating the tracks, states, and other relevant parameters. There are other
state estimation algorithms available. Extended Kalman Filter (EKF) [65],
[66] is based on the frameworks of Kalman Filter and includes estimation for
non-linear systems. EKF is obtained by linearization of the (non-linear) process
about the estimation point using Taylor Series expansion. First or second

order EKF can be obtained using the appropriate order during linearization.
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Particle Filter [67], [68], on the other hand, is also gaining popularity as faster
computation/processing is increasingly available. Similarly, for data association
multiple algorithms like Global Nearest Neighbor and Multiple Hypothesis
Tracking [69]-[71] are available. At the end, KF and JPDA are used primarily
because of good results with smaller/acceptable computational requirement.
Furthermore, a "g-sigma ellipsoid” gating is used to reject measurements for
each track which further increases the computational speed. Figure 2.3 shows
the SAA tracker algorithm flow. Note that “Track Maintenance” step adds
and deletes track as necessary. A tentative track is added when a new target
is not associated with any existing tracks. An existing track is deleted if no
measurements are associated for a that track during multiple consecutive scans.
A simulated two target scenario as well as measured single target scenario and
tracking is presented later in this study. In this section, a theoretical basis of

the tracking algorithm is discussed.

2.6.1 SAA Tracking with Constant Acceleration Model

There are different motion models that can be considered for tracking. While
military and defense applications require more robust motion model to account
for high “¢” maneuvering targets (essentially to incorporate the effects of higher
order derivatives of position into the motion model); the civilian applications,
on the other hand, can have some of those requirements relaxed. Since this
study presents tracking from sense and avoid perspective in an airborne multi-
function radar, the goal of tracking is to ascertain any collision threat and
change course if and when necessary. The targets can be safely assumed to move
with a non-constant velocity while at the same time not performing the high

[P

g” evasive maneuvering or have significant and/or deliberate jerks and jounces.
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Therefore, a constant acceleration motion model can be used to formulate the
dynamics of the system. This model, in reality, is a Wiener-process acceleration
model [65], [72]. In other words, the acceleration in the model is a process with
iid (independent identically distributed) increments. More precisely, the model
is a white noise driven “nearly constant acceleration model” which allows for
small changes in the acceleration (and those changes are assumed to be iid).
Consider, first, a one dimensional moving target. The recursive evolution of
position s, velocity s, and acceleration § given the values at previous sampling

time can be viewed as a noise driven process which can be represented as,

1 1
Sk1 = Sk + SpT + §§kT2 + 5quTQ (2.13)
Sk+1 = Sk + SkT + UST (214)
Sk1 = Sk + Vs (2.15)

where T' is the update time and k = nT" (for integer n) is the sample time.

A moving target, in general, can move in all three dimensions. However,
since the goal of an airborne sense and avoid radar is primarily avoidance, the
three dimensional problem can be simplified to two dimensional one. Further-
more, for a general radar (like an airborne multi-mission radar), scanning and
tracking in three dimension quickly becomes onerous as the update time can
reach to tens of minutes. On the other hand, as technology matures a fast
three dimensional scan is possible in which case tracking in two dimensions
can be easily upgraded to three dimensions. The discrete time state-space
model for a target moving in two dimensions can be extended from the one

dimensional case above and is expressed as,
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where, x;, is the state vector at sample time £k,

xk—&-l - [San Sya 'éxa ‘éya é:t? S'y]ZJrl (217)

F' is the state transition matrix, represented as

10T 0 377 0
01 0T 0 iT?
001 0 T 0
F = (2.18)
000 1 0 T
00T 0 1 0
000 0 O 0
(G is the noise distribution matrix as,
0
0 177
T 0
G = (2.19)
0 T
1 0
0 1
and w = [w,,w,]” is the process noise vector (at sample time k) which is

assumed to be a zero mean Gaussian noise with covariance (). Similarly, the

measurement, equation can be expressed as

where, y; is the measured vector at sample time k, H is the measurement
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transition matrix as,

100000
H= (2.21)

010000

and vy, is the white Gaussian measurement noise (at k) with zero mean and a
covariance of R.

Note that although radars measure in Polar/Spherical Coordinates, the mea-
surement here is considered in Cartesian Coordinates. Spherical measurements
to Cartesian measurements can be realized easily using trigonometric functions
or a lookup table. The main drawback of using Polar/Spherical Coordinates
is that the Coordinate transformation is a non-linear process which results in
unnecessary complications due to H being non-linear 3.

The tracker is initialized at the first scan and when a measurement cannot
be attributed to any tracks. The state covariance matrix is also initialized with
a diagonal matrix at this stage. The process noise covariance matrix () is kept
at a low value. The measurement noise covariance matrix R is modeled as a
function of range and azimuthal resolution. Since all detections are considered
as potential targets, a tentative track is formed when any kind of unassociated
(with track) detection is discovered. The M-of-N logic is used to elevate a
tentative track to a confirmed track; i.e. a tentative track is confirmed when
there are M valid detections out of last N scans. Whenever a track fails to
adhere to the rule, the track is deleted. A valid detection is the one that
situates inside a validation gate. The validation gate used is a g-sigma ellipsoid

gate which can be defined as,

d(k) =g" (k)S~y(k) < ~* (2.22)

3Non-linear H requires to perform linear approximation by doing Taylor expansion at
the measured value which adds complexity while decreasing accuracy
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where, 7 is the gate threshold which is obtained by choosing x? distribution
with two degrees of freedom at 0.99% confidence level. 7 is the innovation
(difference between predicted and measured value) and S is the innovation
covariance obtained from Kalman Filter equations. The gate itself in this
case is two dimensional ellipse obtained by cutting off the tails of a bivariate
Gaussian density. The size of this validation region changes when the innovation

covariance S changes during the evolution of the track.

2.6.2 Joint Probabilistic Data Association

When there is a single detection inside the validation region, it is straightforward
to associate that measurement to the track. However, other targets, clutter or
spurious detections might conceivably fall inside the validation gate. In such
case, there needs to be an algorithm or a logic to associate the measurement
with the track. Joint Probabilistic Data Association (JPDA) is a target-oriented
data association algorithm that works well with interfering source in presence of
Poisson clutter [63], [64]. An interfering source is one that persistently appears
inside the validation region of a track/target. A full derivation of JPDA is
beyond the scope of this study but can be found in [63], [73] etc. However, a
brief formulation is presented as follows.

Assume there are N, tracks and N,, measurements which are used in
conjunction with gating (eq 2.22) to form a validation matrix. A feasibility
matrix is then constructed which is a combination of all feasible events, 6, that
are possible given the tracks, the measurements, and the validation matrix.
Since missed detection is always possible, feasibility matrix has entry for events
where the track is assumed to have missed the detection. The probability

of each feasible event @ given measurement Y* (at sample time k) can be
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expressed using Bayes’ rule,

P<9|Yk) - P(9|g1a 73}M7M7Yk_1)

= P(gy, -, gu|0, YY) PO|M, Y1) (2.23)

where, §; is the innovation of j* measurement (j = 1,---, M). The above

equation 2.23 can be simplified as [63]

~7 o1~
expl—307,57 U]
YF) = — 224, P (1-P 2.24
P( Jt| H (2 M/2’S ‘1/2 JH D 5!_[ D) ( )
where j = 1,--- , M are the measurement indices, t = 1--- N, are track indices,

(' is the density of false measurements, ¢ is the number of false measurements,
¢ is the normalization constant which is sum of probabilities over all feasible
events, ¢, 7; = 1 indicates a valid association, 6; = 1 indicates target detection,
and 6; = 0 indicates clutter detection (obtained from validation matrix).
With the probability of each feasible event now calculated, the probability
of measurement j associated to track ¢ can be expressed as the sum over all

feasible events, #, where the association is valid.
Bie=>_ P0;]Y") (2.25)
0

The missed detection probability which is always possible can be expressed as

M
Por=1— Z Bi (2.26)

j=1
where, again, j = 1,--- , M are the measurements and t = 1,--- , N; are the

tracks.

38



2.6.3 Kalman Filter with JPDA

Kalman Filter, simply put, is a set of mathematical equations that start with
a set of measurements, makes the necessary prediction(s) of the state variables
(and other parameters), and then updates/corrects the prediction(s) as new
measurements arrive. Kalman Filter is an optimal, recursive data processing
algorithm [74]. It is optimal in the sense that the algorithm minimizes the
estimated error covariances when the underlying process is linear and the noise
is white and Gaussian. It is recursive in the sense that the Kalman Filter
doesn’t require all the previous data to be stored, just the current state and
error covariances. A full derivation of Kalman Filter is outside the scope of this
study but is included in [62], [75]. At first glance, a linear process with white
Gaussian noise may seem like a theoretical construct, but for a band-limited
applications like radar, noise can be considered white. The thermal noise in
radar systems are generally considered as Gaussian. The assumption of linearity
is also generally true, especially for sense and avoid tracking. However, if the
motion has higher order derivative (of position) contents (e.g. in maneuvering
targets like military fighter jets), they can still be accommodated by choosing
models that take those higher order derivatives into account. As detailed in
the descriptions as well as discussed in the previous section (2.6.1), this study
focuses on constant acceleration motion model.

As aforementioned, the tracker is initialized after first detection or when
a measurement is not associated with any existing tracks. All tracks are
initialized with a Gaussian initial state as N (xg, ), where zg is the state
variable (obtained from the measurement) and P, is the initial state covariance.
The Kalman Filter algorithm includes steps as summarized below. Please note

that for clarity, the time steps, (k and k — 1) are shown inside parentheses and
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the subscripts denote track ¢ and/or measurement j.

e Prediction: As soon as track(s) are initialized, each track’s next state

and state covariance estimates are predicted using,

vkl — 1) = Fa(k — 1|k — 1) (2.27)

Pi(klk —1) = FP(k — 1|k — 1)FT + GQG™ (2.28)

where t = 1--- N, is the track index.

e Gating: When new measurements/detections, y, arrive, innovation for

each track, t, and measurement, m, pair is calculated using,
Jjx =y; — Hay(k|k — 1) (2.29)

where, 7 = 1--- M is the measurement index.

Then the innovation covariance, S, is calculated as follows,
Sy =HP,(k—1k—-1)H" + R (2.30)

Note that the time dependence (k) is dropped from S because a new S
is calculated for each track at each prediction/gating step.
Finally, a binary validation matrix for each track/detection pair is con-

structed whose valid entries satisfy the following,
UinSt i < (2.31)

e Update: The measurements are used to update the state vector as well
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as the state covariance matrix as,

zo(k|k) = 2 (k|k — 1) + W, (2.32)

Py(k|k) = Py(k|k = 1) = (1 = Bos)WeSW," + P (2.33)

Note, here y; has only track, ¢, as subscript and is the combined innovation
for that track which is obtained from the weighted sum of innovation

from all measurements as

M
Y = Z Bj.cYj.t (2.34)
=

W, is the Kalman Filter Gain for track . Again, the time dependence k
is dropped (as opposed to other literatures) for the sake of clarity and
because Kalman Filter Gain is calculated during each update process for

each track using the equation,
W, = P,(klk — 1)H"S;* (2.35)
The last term in equation 2.33, P is

M
P=Ww [Z Bialidlyy — Uil ] wt (2.36)

J=1

After the update step is completed, a new prediction is generated for each

track. When a new set of measurement arrives, those predictions are updated

which is followed by new predictions and so on. The measurements as well as

predictions can be displayed to view the “tracks” as the evolution of target
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position. In SAA tracking, the tracks can be used to ascertain the position,
speed, and heading of other airborne objects (e.g. another plane, weather, etc.)
and change course if necessary. A simulated tracking scenario as well as a real

time tracking results will be presented in Chapter 5.
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Chapter 3

Signal Processing Algorithm Suite

Digitization of analog signals and data capture capability at various stages
have paved the way for numerous signal processing algorithms. Those signal
processing algorithms can be categorized under real time and offline processing
groups. While it may be desirable to process all algorithms in real time, there
are still considerations to be made in terms of computation time, and data
collection methods. Some of the algorithms are data driven and/or iterative
and therefore are not feasible for real time processing. It is conceivable that,
in the future, significant technological advancement can bring a change to this.

PARADOXI as introduced in chapter 2, is used as an example to realize the
various multi-mission signal processing capabilities. To that end, this chapter
discusses the different algorithms that are implemented in PARADOXI1. Note
that the list of algorithms presented here, although extensive, are not an

exhaustive list of what PARADOXI1 can support.

3.1 Pulse Compression and Matched Filter

Pulse Compression is a signal processing technique in which a code (or a wave-
form) is modulated in the carrier frequency during transmit and demodulated

at receive. Traditionally an unmodulated pulse would be transmitted and
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targets situated within the pulse-length (translated to distance) couldn’t be
resolved. However, using the technique of embedding a code within a long pulse,
targets within the pulse can be resolved. At receive, the frequency response
of the radar can be thought of as a lowpass filter as the carrier frequency is
demodulated out [2]. It is desirable to have a filter that maximizes the Signal to
Noise Ratio (SNR) which is one of the most important metric of a radar system
as all the processing algorithms and detections depend on it. Such a filter is
called Matched Filter. Matched filter is theoretically derived to maximize SNR
for a point scatterer in presence of an additive white Gaussian noise. Matched
filter can be formally defined as complex conjugated, time-reversed copy of
transmitted waveform. Matched filter operation can be realized by correlating
returned signal with complex conjugated, time-reversed copy of transmitted
waveform. The correlation operation can also be performed as multiplication in
frequency domain which can be time efficient especially if the data size is large.
Pulse compression and subsequent Matched filtering, in effect, “compresses” the
pulse to allow for finer range resolutions and hence the name. The derivation
of Matched filter is not included here as the derivation is quite straightforward

and included in a variety of radar books [2], [60], [76], [77].

3.2 Adaptive Pulse Compression

Currently, pulse compression and Matched filtering is performed in most modern
radars. As aforementioned, Matched filter is theoretically proven to provide
the best SNR for a single scatterer when the noise is White and Gaussian.
The assumption of White-Gaussian noise holds fairly well in terms of radar
for most situations, however, there are exceptions. In addition to deliberate

interference /jamming, with ever so busy spectrum, the possibility of inadvertent
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interference cannot be discounted. These interferences not only increase the
noise floor but also strip away the white Gaussian property of the noise. Then
there is the fact that most radars operate in a scene where multiple targets are
present. Apart from very specific radar systems (mostly the ones that scan at
high elevation angles), all of the radars aim to scan at few kilometers above
the earth’s surface. Human beings, almost exclusively, operate on and interact
with this region of few kilometers above the earth’s surface. Naturally, that
is where the radar coverage is wanted/needed. The earth’s surface itself and
the lower level atmosphere present a target dense environment with man made,
natural, as well as meteorological targets. Even airborne radars often scan
towards the earth’s surface. This kind of target rich environment challenges
the assumption made during Matched filter derivation and a problem arises in
a peculiar way as described below.

Since Matched filter operation is, in fact, the autocorrelation of the trans-
mitted waveform, the output contains autocorrelation sidelobes [78]. These
sidelobes can also be thought of arising due to the rectangular-like spectrum of
pulse compression waveforms. The sidelobes manifest themselves in time (or
range bins in terms of radar) and are in effect energy leakage onto neighboring
time/range cells. The sidelobes scale with the target RCS due to which a
weaker target can potentially be masked in presence of one or more stronger
targets. The range sidelobes can also be viewed as self interference whereby a
stronger target masks the returns from nearby weaker targets [79]. There have
been ongoing studies to mitigate this issue. Some take the path of designing
and optimizing waveforms with lower autocorrelation sidelobes such as linear
frequency modulated (LEM) [76], [80], non-linear frequency modulated (NLFM)
[81], [82], [83], phase coded waveforms [60], [77], etc. while others take the
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path of designing mismatched filters [84], [85], [86].

In recent years, there is an ongoing study on a new class of algorithms that
can adaptively develop a filter that is optimal for the environment [78]. These
algorithms are data driven and waveform independent. Adaptive pulse compres-
sion algorithms can be applied in “raw” I/Q data as well as Matched filtered
data to realize an enhanced resolution in range, azimuth, and Doppler domains.
This enhancement in resolution is also referred as “super-resolution.” Super-
resolution can be achieved in time/range domain, angular domain, Doppler
domain or in a combination of those domains. A discussion of range super-
resolution is presented in [87]. In general, super-resolution is achieved using
various optimization algorithms onto the measured data. While some super-
resolution algorithms work on oversampled data, oversampling is not a hard
requirement for APC algorithms. The availability of high sampling rate Analog
to Digital Converters (ADC) coupled with relative low waveform bandwidth en-
sures oversampling in most modern radar systems. Please note that, in radars,
although the carrier frequency is in the order of GHz, the actual waveform
bandwidth is in the range of MHz or even KHz. One such algorithm that can
produce super-resolution in range using minimum mean-square error formula-
tion is described in [88], [89]. Another algorithm that can offer adaptive pulse
compression and subsequent resolution enhancement in range, and azimuth
is described in [90]. In this study, yet another adaptive pulse compression
algorithm that can achieve enhanced resolution in range, and Doppler domain

[56], [57] is described in greater detail.
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3.3 Weather Sensing Data Quality Control Algorithms

As the name implies, these algorithms produce an estimation of ground truth
in the form of radar variables. For a single polarized radar, the radar products
are Reflectivity, mean Doppler Velocity, and Spectrum Width. These products
are also called spectral moments. Reflectivity is related to the signal power
and is called the zeroth moment. It is mostly a measure of water content in
a meteorological element. A detailed derivation of reflectivity is presented in
section 2.4 of Chapter 2. The mean Doppler velocity (or the first moment) is the
radial velocity as seen by the radar. Spectrum width (or the square root of the
second moment about the first moment of the normalized spectrum) is related
to the turbulence of (weather) targets in the remote region. A derivation of
Doppler velocity as well as a discussion of radar signal spectrum characteristics
(extents, location, and width) were discussed in section 2.5 of Chapter 2.

For a dual polarized radar, three additional radar products can be calculated
due to the diversity in transmit and receive polarizations. Those are differential
reflectivity, specific differential phase, and correlation coefficient. Differential
Reflectivity is the measure of difference between horizontally and vertically
polarized returns. It can be used to estimate the shape of the remote scatterer
which further aids on classifying the type of hydrometeor (e.g. rain, hail, snow,
ice, etc.). Specific differential phase is the range derivative measure of difference
in propagation phase shifts between horizontally and vertically polarized returns.
This difference in phase is caused, in part, by the shape of remote scatterers and
therefore can be used to estimate the shape of remote scatterers. Correlation
coefficient is the measure of similarity between horizontally and vertically
polarized returns. It can be used to measure the consistency of the remote

scatters in the resolution volume. High correlation coefficient is indicative
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Figure 3.1: Processing Framework for PARADOX1 radar

of meteorological scatters while lower correlation coefficient indicates non-
meteorological scatters (e.g. birds, buildings, aircrafts, etc.).

Since the current generation of PARADOX is single polarized, this study
discusses the single polarized radar products in greater detail. The first step
is generally Matched filtering as most modern radar systems employ pulse
compression. As discussed in the previous section, there are adaptive pulse
compression algorithms which can be applied before or after Matched filter
operation. Two such algorithms will be derived and discussed in this study;
Iterative Adaptive Approach which is applied before Matched filter operation

and Matched Filter base Iterative Adaptive Approach which is applied after
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Figure 3.2: Motion Compensation for Micro-Physics Validation mode

Matched filter operation.

Figure 3.1 shows the overall processing framework for PARADOXI1. The
first step of pulse compression and basic spectrum estimation are carried out
inside the radar package, using embedded, real-time processors. The waveform
generation and control (which includes choice of pulse-length, bandwidth,
windowing functions, etc.) are performed through preloaded scripts. Mitigation
of range and antenna sidelobes are performed in the step of the Adaptive Pulse
Compression (APC). Note the sequence of algorithm executions in each category
(signal processing and data quality control) may not follow the exact order as
they are listed in Figure 3.1. Based on different operational modes and radar

configurations, they can be adjusted.
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3.3.1 Motion Compensation for Micro-Physics Valida-

tion Mode

Aircraft motion will have an impact on the measurements for micro-physics
validation, severe weather observation mode, as well as target detection of
PARADOXI. The affect of aircraft motion on the received data, especially, the
spectrum of the received data is well studied [3], [91], [92], [93]. The impacts
of aircraft orientation also needs to be corrected for phase, and Doppler as
discussed in [94] which is built in PARADOXI1 pre-processing. Furthermore,
the method of motion correction by using the aircraft navigational systems as
described in [37], and [38], is also implemented in the PARADOXI.

For micro-physics validation, the main concern is the range migration of
remote scatterers within a scan. Range migration is the phenomena in which
remote targets’ range bin changes within one unit of measurement (e.g. CPI
or a scan). In case of PARADOXI, due to the platform/aircraft motion, range
migration is possible in a scan but unlikely in one CPI/dwell. If the micro-
physics properties of the weather are sufficiently uniform over the number
of range bins aircraft travels through, then we can simply average the radar
data along these range gates to “smooth out” the effects of aircraft motion.
For many cases, dwell-to-dwell measurements are sufficient, and no spatial
compensation is needed. However, for other cases and scan configurations, the
spatial distribution of weather/cloud from scan to scan may be of interest. In
those cases and for the overall optimal usage of accumulated measurements,
a coherence between measurements need to be maintained among the scans.
Existing approach [95] which is similar to video encoding and processing through
“block-matching” among scan images may be used for motion compensation.

This approach is useful for post-processing; whereas for accurate compensation
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at the signal processing level, the phase corrections need to be performed at I/Q
level of data. A lower-level motion effect mitigation approach for PARADOX1
is “predictive scan correlation” (PSC) algorithm, which is based on an idea
of “tracking” the weather blocks from scan to scan. As shown in Figure 3.2,
the aircraft performs PPI scans at time 7" and T + Ty, (i.e. each scan takes Ty
amount of time). For PARADOXI1, Ty is about 3 sec for a 120° azimuthal scan.
The scan at time T' can be used as a reference to predict how each cell in this
scan evolves into a new cell in the next scan. As a result, a progressive and
“tracked” state estimation of the same weather block for every aircraft update

interval can be established. This motion compensation involves three steps:

1. Dwell-to-Dwell phase re-alignment: Phase coherence is maintained

o1



from dwell-to-dwell, so the retrieval algorithms that depend on the phase
accuracies, such as KDP computation, in the future, can achieve coherent
results over the spatial zone of interest. Range re-alignment is performed
from dwell-to-dwell at each range gate where each dwell is correspondent
to one radial direction or a range profile. Small range re-alignment based
on applying a progressive phase correction for a number of consecutive
pulses or dwells is applied to the received signal to compensate the motion
of platform at adjacent dwells. The phase compensation is based on
the following relation between the received complex signal s, and the

corrected signal s;.

’U2

27T an
1(0,8) = 50(6.1) exp| —j - { 20paamT + =5 (mT)*+

(xicosp + y;sing)cost — zisz’nQH (3.1)

form =1,2,---, M pulses where v,,q = vpcosa and Vi, = vpsina. The

associated geometry is depicted in Figure 3.3.

. Scan-to-Scan tracking: The relative velocity of the weather block is
used to predict the location (updated range and azimuth) of the weather
block in the next scan. This step is similar to [95] while using predictive

motion alignments rather than inter-frame matching.

. Signal calibration: A power level adjustment on the weather pixels
based on updated relative location to radar and the updated radar
resolution volume size is applied for the same weather block. Then the
adjusted time series from the previous scan is combined with the time
series at the next scan for further processing (such as noise reduction for

the weather region of interest).
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Figure 3.4: Pulsed Airborne Radar Spectrum

3.3.2 Motion Compensation for Severe Weather Obser-

vation Mode

For severe weather observation mode, the impact of aircraft motion is mainly
on Doppler estimation and Doppler spectrum distortion, which is similar to
most airborne pulsed Doppler radars [37], [38], [97]. By knowing accurate
air-speed and radar parameters like the antenna center location/orientation,
the airborne radar spectrum center can be shifted “back” to be equivalent
to a ground-based radar observation. This basic approach derived from [3§]
has been implemented in previous similar work on airborne remote sensing
[47]. Typical airborne radar spectrum contains the desired weather target
spectrum and different clutters, which are folded through the non-ambiguity
Doppler extents as shown in figure 3.4. In PARADOXI1, the altitude line
return is usually ignored, and the mainlobe clutter usually centers close to the
zero-Doppler line. Spectrum transformation method is used to transform the

airborne measured spectrum to an equivalent ground-based radar spectrum,
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by removing (shifting) the effects of aircraft motion velocity. This approach is
proven to be effective for the existing PARADOX1 data measurements, and has
the added benefit of easier implementations down the processing chain using
ground-radar based radar algorithms. Mainlobe ground clutters and altitude
line clutters will return to zero-Doppler after the spectrum transformation
processing, which is removed using typical notch filtering. The sidelobe clutters
are more complicated and currently they are treated as enhanced noise power
in noise reduction processing. More advanced processing of such clutters can

be applied if multiple phase centers are available, which is planned for future

PARADOX upgrades.

3.3.3 Noise Reduction, Attenuation Correction, and

Calibration

A simple technique of thresholding the return power is used as the method
of noise control and reduction. For weather sensing, the targets are generally
dense. Furthermore, convective storm clouds often have high reflectivity. These
high reflectivity weather targets often provide ample SNR to effectively use
thresholding as a way of suppressing noise level. Attenuation correction can
be performed by adding the range squared dependence to the raw power
return. A simple threshold can be kept to avoid overcompensation of clear-air
attenuation. The calibrated reflectivity can then be obtained by comparing
with well established ground based radars like NEXRAD’s PPI or CAPPI
(Constant Altitude PPI) which is done by evaluating the reflectivity values
from PARADOXI1 radar and NEXRAD for the same beam coverage region of
weather.

As part of the calibration procedure, in addition to the radar constant cali-
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Figure 3.5: Performance of GMPE for X-band attenuation corrections (using
simulated weather radar range profile based on weather models) and comparison
with existing technologies. DP: Phase Parametrization, CI: Constant Iterative,
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Obtained from [61]

bration and range square dependence calibration, atmosphere attenuation due
to hydrometeors need to be corrected for weather radars operating at X-band
or higher frequencies. For example, based on numeric hazard detection simula-
tions, the impact of path attenuation can reduce the hail detection probability
to 30-40% compared to attenuation-free detections. The GMPE (Gaussian-
Mixture Parameter Estimator) trained by Monte-Carlo simulations has been

successfully developed for attenuation correction and has been compared to
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existing methods (as shown in Figure 3.5, with more detailed discussion in [61]).
GMPE not only demonstrated lower averaged “Root Mean Square” errors, but
also revealed a rather “even” level of errors through the range. This is a big
advantage over other techniques, which have either a higher level of estimation
error (such as the power-law related approach), or possible accumulation of
errors in cases with longer range. GMPE based attenuation estimation is ap-
propriate for radars with a longer observation range, thus providing a possible

earlier warning of “weather hazards behind hazards”.

3.3.4 Doppler and Spectrum Width Estimation

Motion compensated spectrum is used to estimate proper Doppler velocity
and Spectrum Width. Basic algorithms for estimating radial velocity and
spectrum width use standard the Lag-1 and Lag-2 pulse-pair estimators as
described in [3]. Selecting a higher PRF allows more accurate estimate of
velocity (as the Doppler spectrum has wider span and therefore includes more
of the non-aliased spectrum peak due to higher velocities) while at the same
time decreases maximum unambiguous range. The maximum unambiguous

velocity as expressed in equation 2.11 is,

- PRF
Vya = :|:7>\ 4R (3.2)

while, the maximum unambiguous range is

Ry, = SPRE (3.3)
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The ambiguity relationship between range and velocity can then be expressed
as [3]

c- A
Rua ua —
! 8

(3.4)
where, c is the speed of light and A is the wavelength. Therefore, PRF selection
impacts not only velocity estimates but also range estimates. However, multiple
PREF’s can be staggered to achieve higher values of the maximum unambiguous
velocity while at the same time being able to measure further in range [3],
[60]. For example if a second PRF’s is chosen such that PRF,/PRF, = 3/2,
then the maximum unambiguous velocity triples than that of using single,
PRF1 and doubles than that while using only PRF5. Additionally, more than
two PRF’s can be staggered. Furthermore, there are multiple schemes for
implementing the staggered PRF’s to achieve a non-aliased velocity estimate.
The PRF’s can be staggered between pulses, dwells/CPT’s, or scans.

Since PARADOX1 can support multiple CPI’s, different PRF’s can be
used to increase the maximum unambiguous velocity [98] without changing
the maximum unambiguous range. One specific case using this method is
presented in chapter 6 of this study. More advanced “multi-lag” algorithms
are also possible to use, but are limited by the number of pulses available
for airborne CPI’s. In the low-SNR cases, noise reduction for Lag-1 phase
outputs may sometimes be needed to enhance the quality of velocity estimate.
One important aspect is the choice of noise floor, which not only affects the
reflectivity result plots after quality control, but also affects the spectrum width

estimation results.
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3.4 End-to-end Radar Simulator

A multi-mission radar study naturally includes development of novel signal
processing techniques and algorithms. These algorithms need to be properly
tested and validated for data originating from a variety of radar systems.
Each of these radar systems is accompanied by its own set of advantages
and shortcomings. While it may be desirable to acquire and operate on a
“real” measured data, often, such data could be hard to obtain due to lack of
resources. On the other hand, data with certain features prove to be more
important for algorithm development. It might be desired to operate on an
ideal dataset or data with specific properties like SNR levels or specific radar
parameters like waveform, antenna pattern, etc. Furthermore, it is impractical
to seek measured data from every conceivable pair of radar parameters and
environment variables. Therefore, it is prudent to develop a software based
simulation suite that can generate data with various properties originating
from various radar/environment combinations. Undoubtedly, such simulator
also needs to be able to generate a realistic data.

An end-to-end radar simulator is constructed using various system objects
from Mathworks®Matlab Phased Array System Toolbox [99]. A generalized
workflow of the simulator is depicted in 3.6 where each block represents a
system object. The toolbox is, in essence, an API (Application Programming
Interface) that allows creation of, interactions with, and manipulations of
various radar system components. For instance, a customized antenna object
can be created with a field measured antenna pattern. This antenna can be
the sensor for Radiator and/or Collector system objects. The interaction of
Radiator/Collector objects with the environment is accomplished through the

toolbox routines. The end result is the generation of the data as if it were
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measured by an antenna with the given (field measured) pattern. There are
various other objects and routines that not only relieve some of the burden
that accompanies a realistic simulation environment but also help reduce the
potential for errors.

However, the toolbox is neither an end-all package nor it provides all the
required routines that is necessary for radar studies such as this one. Since this
study is mostly concerned with the steps after the I/Q data generation, the
toolbox is used to generate the I/Q data whenever feasible and appropriate.
Advanced signal processing algorithms presented in this study are not a part
of the Mathworks@®Matlab Phased Array System Toolbox software suite and
are fully coded, tested, and validated. The toolbox provides a software based
testing and validation platform for algorithms presented in this study.

Although software based radar simulators have been used in various radar
studies for a long time, Mathworks®Matlab Phased Array System Toolbox is a
relatively new product. The Phase Array System Toolbox based radar simulator

is part of an ongoing effort to create software based validation tool. It has been
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Figure 3.7: Simulated PPI of a Wind Farm
Obtained from [47]

a part of previous studies like [47]. In that particular study, radar returns from
Wind Turbines were simulated and machine learning methods were employed
to recognize the Micro-Doppler signatures from the Wind Turbine. The radar
platform in the simulation was an airborne radar whose parameters matched
PARADOXI1 system parameters (except antenna whose beamwidth was ~ 2°
in the simulation). The scene comprised of the radar scanning downwards,
towards a wind farm that contained a moving target. Ground Clutter returns
in the simulation were calculated using constant-gamma clutter model. The
scan extent was ~15 km in range and 120° sector in azimuth with a single
elevation angle. Each CPI consisted of 64 pulses with a PRF of 10 KHz. The
PPI of the scan is shown in Figure 3.7 which shows the gridded Wind Turbines
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Figure 3.8: Micro-Doppler features of a range-azimuth cell containing Wind
Turbine, Ground Clutter, and ground moving target
Obtained from [47]

in the middle of the plot as well as ground clutter at about 10 km in slant
range.

In addition to return power calculation, the simulator is also capable of
simulating Doppler phase changes due to the target/platform motion. The
same study, [47], focuses on recognizing Micro-Doppler signatures and therefore
proper calculation of Doppler phase shift in the simulation was necessary.
Figure 3.8 shows the Time-Doppler plot of a range-azimuth cell that contains
a Wind Turbine, Ground Clutter, and a ground moving target. The constant
Doppler (around 0 m/s and 40 m/s velocity) with respect to time are indicative
of targets with linear motion with a constant velocity for 50 ms of illumination

time. On the other hand, around -40 m/s velocity, there is an apparent spread
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of energy in various Doppler bins with respect to time. This spread of energy is
caused by the rotational motion of the Wind Turbine blades. The simulator is,
therefore, capable of simulating the intricate Micro-Doppler patterns associated
with rotating Wind Turbine blades. Please note that the Doppler modulation
due to the platform motion is corrected in this plot.

In this study, the simulator is used to generate 1/Q as well as Matched
Filter returns for validating super-resolution algorithms like Iterative Adpative
Approach (IAA) and Matched filter based Iterative Adaptive Approach (MF-
IAA). IAA and MF-TAA can enhance resolution in range, and Doppler domain.
Both of these algorithms will be derived as well as discussed in greater length
in Chapter 4. The simulated data to validate those algorithms were generated
using the aforementioned simulator, although, in this case, only a single
azimuth /elevation angle were simulated. The results of the simulator will
be presented in the context of those super-resolution algorithm discussions.

The simulator was also used to generate a series of scan data which was used
to validate Sense and Avoid tracking for a two-target scenario. The simulator
in this case played a very important role as flying multiple planes for tracking
validation is an expensive endeavor. The results, again, will be presented in

Chapter 5 in the context of SAA tracking.
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Chapter 4

Real-Aperture Super-Resolution

Cost versus performance trade-off is omnipresent in technology and a radar is
not particularly distinct. Especially for an airborne radar, there are additional
stringent requirements in size, weight, and power (together referred as C-SWaP).
As mentioned previously, this study focuses on software based enhancement to
the radar systems as a way of addressing the various shortcomings associated
with low C-SWaP systems. One particular area of concern is resolution. It
is always desirable to have high resolution in range/angle/Doppler so that
targets in close proximity can be properly resolved. However, airborne radars
often use relatively small aperture size (12 inches or less) but are still expected
to provide enough resolution for proper target discrimination. Low sensor
resolution results in wrong information (e.g. number of targets in the scene),
inaccurate information (in range, bearing or velocity of the target), and overall
degradation of system performance.

One potential cause of such degradation is Matched filter sidelobes which
can mask weaker targets in the vicinity of stronger targets. Therefore, an
Adaptive Pulse Compression (APC) algorithm is often desired using which the
effect of sidelobes can be mitigated while simultaneously enhancing resolution

[55], [57], [100]. The APC algorithms are expected to perform at lower Signal
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to Noise Ratio (SNR) and support diversified waveforms while minimizing
the disruptions to the processing chain of current generation of radars. Such
algorithms, many of which are iterative, require intensive computations although
real-time implementation is highly desirable in an airborne sense and avoid
scenario. Furthermore, Doppler processing is being used as an enhanced
approach for sense and avoid tracking process, the result of which is the
capability of removing clutter as well as resolution enhancement.

One such APC algorithm is Iterative Adaptive Approach (IAA) [56], [101]
and Matched Filter based Iterative Adaptive Approach (MF-IAA) [57]. Both
IAA and MF-IAA are non-parametric, iterative, weighted least square based
spectral estimation algorithms. IAA algorithm is versatile in the sense that it
can also applied to array antennas [102], [103]. The amplitude and phase at
the output of those algorithms translate to a resolution enhanced estimate of
of RCS amplitude and Doppler frequency of the ground truth. TAA takes its
input as non-matched-filtered “raw” 1/Q data while MF-IAA does the same

with matched-filtered data.

4.1 Problem Formulation

For radar sensing of remote targets, especially from a mobile (airborne) platform,
there is a challenge of utilizing limited physical aperture size, dwell time, and
signal bandwidth to achieve the best estimate (of remote target properties).
Therefore, it is desirable to have algorithms that can mimic an ideal radar
system and provide better estimates of target properties (e.g. range, velocity,
RCS, etc.). The goal of adaptive pulse compression algorithm is to achieve the
best estimate of remote target properties using limited information measured

from a non-ideal system. Figure 4.1 depicts a typical scenario and return signal
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Figure 4.1: Depiction of Radar Signal Model

description for an airborne radar system.

For a radar system transmitting a single pulse where the target is stationary,
the return signal to the radar can be modeled as the convolution between the
transmitted waveform and complex RCS (corresponding to the targets in the

scene) which can be represented as,

N-1

y(n) = > sgomp+en n=12---N (4.1)
k=0

where ¢, is receiver noise and s is the phase-coded transmit waveform with N

subpulses which can be further expressed as,
sp =62 k=1,2---N (4.2)

here, «y is the complex impulse response (of a target) whose amplitude is

proportional to radar cross section (RCS) of the ground truth and the phase is
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the Doppler modulation due to the motion of the target in the k" range cell.
Please note that in equation 4.1 the effect of antenna pattern is not taken into
account because for a range profile (considering a single azimuth and elevation
angle), the antenna pattern is an invariant gain factor which can be removed

for simplicity.

4.2 Tterative Adaptive Approach (Single Pulse Case)

A single pulse can be used to estimate Doppler velocity provided the pulse is
long enough and the target has high enough velocity. The extreme example of
such a system is a continuous wave radar which can precisely measure Doppler
velocity. From a mathematical point of view, as long as the target produces a
measurable Doppler shift, a proper estimate of radial velocity can be made. The
single pulse case of Iterative Adaptive Approach (IAA) is more of a theoretical
construct as most modern radar systems are capable of transmitting multiple
coherent pulses.

The reflected signal from a stationary target is, simply, an amplitude
modulated copy of the transmitted signal and can be expressed as y = as + €
where y is the returned signal, a is the complex amplitude/voltage response
related to radar cross section (RCS) of the remote target, s = [sg, 1, -+, sy_1]7
is the length N (sub-pulses) transmitted waveform and e is the receiver noise.
If the target possesses some radial velocity, an incremental Doppler phase shift
would be introduced to the received signal due to the time delay between
sub-pulses. The Doppler modulation can be added to the transmitted signal
because Doppler shift due to target motion is equivalent to that due to the

radar platform motion. In that case, the reflected signal from a moving target
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can be expressed as,

y=as(w)+e (4.3)

where, s(w) = [s0, 516", 50672 -+ sy_1ZWV =D T If multiple targets, sta-

tionary and moving, are present in the range profile, N continuous return signal

lth

from the {"" range bin can be written as [102]

D N-1 D
y=2 aaslwa)+ D D armalns(wa) +e (4.4)
d=1 n——N+1d-1

Here, a;4 denotes the complex RCS for [ range bin and d® Doppler bin.

There are total L range bins and D Doppler bins. The matrix J, is of the

form, ] )
0 1 0

J. =10 1 (4.5)
0O - 0 --- 0

and is a square matrix of size N. J,, has 1s in n'* sub diagonal and 0Os elsewhere.

J,=JT and J, = 0 for |n| > N. As can be seen in equation 4.4, return

signal is a composite of reflected signal from the range (and Doppler) bin of

I range bin, and d** doppler bin) as well as reflected signal from

interest (
the adjacent range bins from [ — N + 1 to [ + N — 1 due to propagation time
difference among the sub-pulses. With this signal modeling, equation (18-19)

in [102] have given the iterative solution to the equations of IAA as,

SH(Wd)R(_i£1)(l)yl
sM (wa) Ry (D)s(wa)

A

Ald =
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For range bins [ = 1,--- , L and Doppler bins d = 1,--- , D. The covariance

matrix, R, can be calculated as,

N—-1+K, D

Ry = > D lawmalTns(wa)s” (wa) Iy (4.7)

n=—N+1-K; d=1
4.3 Matched Filter Output

Matched Filter is the complex-conjugated, time-reversed copy of the trans-
mitted pulse. In cases where transmitted signal is known (like in radars), it
is theoretically proven to yield the maximum signal to noise ratio (SNR) in
presence of additive stochastic noise. The output after applying Matched Filter

to equation 4.4 takes the form [56],

D N-1 D
Zr=s"y = aas"s(wa)+ D D arpnasIns(wa) + s e (4.8)
d=1 n=—N+1d=1
n

where, Z; is the output of the Matched Filter which is (in general) the output of a
radar system itself. Asin the case of I/Q data (eq 4.4) and apparent in equation
4.8, Matched Filter output doesn’t exclusively depend on the target at I** range
bin, and d"* Doppler bins but also on the targets in nearby range, and Doppler
cells. This is shown by the addition of s#J nS(wq) terms. These additions are
due to the contributions through sidelobes which often results in sub optimal
performance, especially, in target dense environments. Hence, the Matched
Filter outputs from multiple continuous range cells can be used to generate a
better estimate of the ground truth state. Let & = g, - , %1, , 21k, |
be the vector of Matched Filter outputs that includes 0 < |K;| < N — 1
neighboring cells in the left and 0 < |K,.| < N — 1 neighboring cells in the right

around [*" range cell of interest [102]. Note that K; and K, don’t need to be
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equal but a balanced filter usually yields better result. Z; can be written as,

D H N-1 D H H
>ie1 Qas” J gy s(wa) + 0T N1 de Qan-k,.a8T Ins(wa) + sV ek,
n#K;

~ D N-—1 D
T = S as’s(wa) + X0 v Y QynasT Ins(wa) + e
n#0

D H N-1 D H H
D1 148 J—Kré‘(wd) + Zn:—N—i—l Zd:1 A4+ K, dS Jns(wd) + sY €4k,

n#—Kr i
(4.9)

Leta gn<wd) = [SHJn+Kl$(wd>7 ) SHJn3<wd)> ) SHJn—KTS(wd)]T7 then equa-

tion 4.9 can be re-written in a compact form as,

N—-14+K, D

Lil = Z Z aHn,dgn(wd) -+ gl (410)

n=—N+1-K; d=1

where ¢ = [s¢_g,, -+ ,s%e, -+, s¥e k|7, There iterative solution at the

i" iteration to equation 4.10 is [101], [102],

. 9" (wa) Ry (D7
Qld = —g —1 (411)
90 (Wd)R(i—l)(l)QO(Wd)
For range bins [ = 1,--- , L and Doppler binsd = 1,--- , D. Then the covariance

matrix, R, can be calculated as,

N—-14+Kr D

Rony(l) = D> > |l gn(wa)gl (wa) (4.12)

n=—N+1-K; d=1
4.4 Doppler Shifted Matched Filter

Equation 4.8 formulates the Matched filter operation without Doppler phase
shift. Effectively, the Matched filter operation is conducted assuming zero

Doppler modulation in the returned signal. This is potentially a cause for
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degradation in SNR as the Doppler modulation within sub-pulses do not match.
Equation 4.8 can be updated to reflect the sub-pulses Doppler modulation as

follows,

D
g =" (@y =D aas™ (@) s(wa)+
d=1

N-1 D
SN apnas™ (@) Ins(wa) + 5™ (@g)e (4.13)
n:—;é\é-i-l d=1

where, «, is the Doppler-shifted Matched filter. Note that «w, may not be
necessarily from the Doppler bins set {wy} nor it needs to be within the
Doppler interval of interest. However, it may be desirable to select @, from the
set of Doppler bins {wy}. Matched filter responses from multiple Doppler bins
may be grouped together for further processing. Let %, = [211, 212, , 21.0]"
be such a vector where () is the total number of Doppler bins where Matched

filtering is performed. z; can be expressed as,

Yy cuas™ (@1)s(wa) + X, S0y Qenas™ (@01)Tns(wa) + 7 (@1)e

i Y s’ (@2)s(wa) + X Xgly Qinas™ (@2)Tns(wa) + 7 (@D2)e
7, =
i aras™ (@q)s(wa) + X0 Ty qunas™ (@g)Ins(wa) + 57 (Gg)e]
(4.14)
where, for the second summation, n=-N+1,---,—1,1,--- , N — 1 and note
n # 0.
If we let S = [s(wi), s(wa), -+, s(wp)] and S = [s(&), s(@), - - -, 8(Qg)],
we can express equation 4.14 in a more compact form as,
2[ = FO&[ + € (415)
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where, F = S”S = [f1, fo, -+ , fp] and,

N-1
€ = Z SHJnS + SHUl (416)

n=—N+1
n#0

Equation 4.15 can be solved using the TAA algorithm. TAA estimation at the

it" iteration is,
O FIRGL (D7
h FIRGE (D) fa

for range bin [ = 1,--- , L and Doppler bin d = 1,--- , D, where the covariance

(4.17)

matrix R is,

N-1 D , ~ B
Ro ()= 3 3 |af0PS" T, s(wa)s™ (wa) IS (4.18)

n=—N+1d=1

Computation of MF-TAA algorithm depends largely on the modified filter
length, Q). Selection of w, can be flexible and lead to a much smaller filter than

the original filter () << N) which results in more efficient MF-IAA.

4.5 MF-IAA: Multipulse Case

In most radar systems, multiple pulses are transmitted and received which can
be combined to generate a better output using the MF-IAA algorithm. The N

continuous returned signal for [** range bin from the p'* pulse can be written

as [101],
N-1 D
ulp)= >, > Wy g€ P IT0T | s(wq) + e(p) (4.19)
n=—N+1d=1

where T;. is the pulse repetition time divided by the duration of a single subpulse
(numbers of subpulses within one Pulse Repetition Time, PRT). If the return

from the pulses y;(p), 1 < p < P are stacked on top of each other, the return
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takes the form [101],

N-1 D
Y= Z Z al+n,dp(wd) ® (J—ns(wd)) + € (420)
n=—N+1d=1

where 3, = [yl (1),-- ,yf (P)]T, ® is the Kronecker Matrix Product, and
p) = [L T, . 1T,

The matched filter response takes the form,

N—-1+K» D

Zi‘l = SHyl = Z Z al+n’dp(wd) X (J_n§(wd)) + SHEZ (421)
n=—N+1-K; d=1

where, §(w) = [§_y41-k,(w), -+, 50(w), - -+, Sng11k, (W)]" and,
N—1+K<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>