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Abstract

With the technological advancement of the 21st century, functions of different

radars are being merged. A multi-functional system brings the technology of

remote sensing to a wide array of applications while at the same time reduces

costs of implementation and operation. Ground-based multi-mission radars

have been studied in the past. The airborne counterpart deserves a through

study with additional and stringent requirements of cost, size, weight, and

power.

In this dissertation, multi-mission functions in an airborne radar is per-

formed using modular, software-based architecture. The software-based solution

is chosen instead of proposing new hardware, primarily because evaluation,

validation, and certification of new hardware is onerous and time consuming.

The system implementations are validated using simulations as well as field

measurements. The simulations are carried out using Mathworks R© Phased

Array System Toolbox. The field measurements are performed using an en-

hanced commercial airborne radar system called Polarimetric Airborne Radar

Operating at X-band Version 1 (PARADOX1), which is an X-band, vertically

polarized, solid state, pulsed radar.

The shortcomings of PARADOX1 originate from small aperture size and

low power. Various signal processing algorithms are developed and applied to

PARADOX1 data to enhance the data quality. Super-resolution algorithms

xiv



in range, angle, and Doppler domains, for example, have proven to effectively

enhance the spatial resolution. An end-to-end study of single-polarized weather

measurements is performed using PARADOX1 measurements. The results

are compared with well established ground-based radars. The similarities,

differences as well as limitations (of such comparisons) are discussed. Sense

and Avoid (SAA) tracking is considered as a core functionality and presented in

the context of safe integration of Unmanned Aerial Vehicles (UAV) in national

airspace. A “nearly” constant acceleration motion model is used in conjunction

with Kalman Filter and Joint Probabilistic Data Association (JPDA) to perform

tracking operations. The basic SAA tracking function is validated through

simulations as well as field measurements.

The field-validations show that a modular, software-based enhancement

to an existing radar system is a viable solution in realizing multi-mission

functionalities in an airborne radar. The SAA tracking is validated in ground-

based tests using an x86 based PC with a generic Linux operating system.

The weather measurements from PARADOX1 and the subsequent data quality

enhancements show that PARADOX1 data products are comparable to those

of existing ground based radars.
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Chapter 1

Introduction

1.1 Introduction

RADAR is an acronym for Radio Detection and Ranging. A general radar

transmits an electromagnetic pulse and then measures the backscattered signal.

Such a radar is called a monostatic1 pulsed2 radar. The hardware of a radar can

be recognized as a combination of transmitter subsystem, antenna subsystem,

and receiver subsystem. The transmitter subsystem is responsible for mod-

ulating the carrier frequency with a radar waveform (e.g. Linear/Non-linear

frequency modulated, various phase coded waveforms, etc.). The transmitter

subsystem is also responsible for band-pass filtering as well as amplifying the

signal before delivering it to the antenna. Since a single antenna is used for

transmit and receive, either a circulator or a switch is positioned between the

antenna and transmitter/receiver subsystems. Both (circulator and switch)

are three port microwave devices that are responsible for routing the signal

to the proper port. This ensures the signal from transmitter can only go to

the antenna and signal back from antenna can only go to the receiver. During

the signal routing, the receiver subsystem is isolated from the transmitter
1co-located transmitter and receiver
2transmitting a pulse instead of a continuous signal
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Waveform
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Local
Oscillator

Analog to Digital
Converter (ADC)
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Low Noise
Amplifier
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Figure 1.1: A basic monostatic radar block diagram

subsystem thereby preventing any interference or overloading of various receive

components. A limiter is often the first component in the receiver subsystem to

further prevent any inadvertent leakage of the transmitted signal. The antenna

subsystem functions to radiate the signal out to the atmosphere and collect the

backscattered signal. It can be as simple as a mechanical disk or as elaborate

as a phased array antenna with each elements’ own transmitter and receiver

subsystems. The receiver subsystem, on the other hand, amplifies the signal,

down-converts the signal to baseband (through one or more intermediate fre-

quency steps), and delivers the signal to an analog-to-digital converter (ADC).

Finally, the ADC digitizes the signal which can then be processed in real time

or stored for further processing. Figure 1.1 shows a very simple radar block

diagram. In modern times, the digitized signal is used for detection, display,

and various signal processing algorithms. In spite of differences in hardware,

this study treats radar hardware as a general sensor and concerns itself with

the various signal processing algorithms after digitization via the ADC.

Although there are different types of radar, this dissertation focuses on a

monostatic pulsed radar with a coherent receiver. A coherent receiver is the

one that can retrieve phase information of the returned signal in addition to

2



its amplitude. The amplitude of the returned signal is associated to the Radar

Cross Section (RCS) of the remote target while the phase of the returned signal

depends on the target’s range, relative velocity, and the signal propagation

medium. Since most modern radars can transmit/receive multiple pulses, using

a coherent receiver, a progressive change in phase can be calculated. This

change in phase can then be used to estimate the radial velocity of the remote

target. The number of pulses transmitted every second is called the Pulse

Repetition Frequency (PRF). The interval in which a set of coherent pulses are

transmitted and received is called the Coherent Processing Interval (CPI). Each

CPI can, therefore, consist of a wide variety of waveform and PRF combinations.

The amplitude of the target, again, analogous to the RCS, depends more on

the electrical properties of the target and the aspect angle to/from the radar

rather than just its physical size. For example, the RCS of a metallic vehicle is

greater than that of a tree with similar size. Furthermore, the RCS of a metallic

plate is much less when its normal is not along the direction of radar. The

range to the remote target is calculated by measuring the delay between the

transmitted and the received pulse. The continuous returned signal is sampled

in time or “binned” to get a range profile data. Note that the continuous signal

here is in contrast to the discrete signal. In a scanning radar, the antenna is

pointed towards different azimuth and elevation angles to get a 2D or a 3D

representation of the environment. The range, angle, amplitude, and phase

data can then be processed in real time to estimate radar products or stored

for post-processing algorithms.

In modern times, radar is used ubiquitously in defense, weather, scientific,

law enforcement communities as well as in commercial sectors. The first

patent associated with radar comes from Christian Hülsemeyer in Düsseldorf,

3



Germany for detecting metallic objects using electrical waves and subsequent

demonstration at the Hohenzollern Bridge in Cologne, Germany in 18th May

1904 [1]. US Naval Research Laboratory (NRL) demonstrated detection of a

ship by a radar in 1922 and then accidentally detected aircraft(s) in 1930 which

set off more substantial investigations in the field of remote sensing using radar

[2]. Further development of radar (including pulsed doppler radar) continued

during and after World War II primarily driven by military and defense needs

such as surveillance, navigation, and weapon guidance for ground, sea, and air

vehicles [2], [3].

On the meteorology side, the exact origin of a weather radar still remains a

mystery mainly due to wartime secrecy [3]. The interest in radar meteorology

stems from the apparent weather related interference during the detection of

aircrafts. The first detection of precipitation might have happened in the later

half of 1940 in General Electric Corporation Research Laboratory in Wembley,

England primarily due to the works by Dr. J. W. Ryde [3]. In the US, armed

services, particularly Air Force and its Cambridge Research Laboratories were

actively involved in studies related to meteorological capabilities of a radar. The

National Severe Storms Laboratory (NSSL) was formed in 1964 which furthered

meteorological research using Weather Surveillance Radar-1957 (WSR-57) [4],

[5]. Currently in the US, National Weather Service (NWS) operates a network of

159 high resolution S-band Doppler weather radars called WSR-88D (Weather

Surveillance Radar 1988 Doppler). Collectively, these radars are referred to as

Next Generation Radar or NEXRAD [6]–[8]. The data from all the NEXRAD

radars are publicly available at [9].

In recent years, automotive radars are increasingly being used and researched

as a means of sensing road hazards and provide more autonomous capability

4



to road vehicles. A radar sensor is capable of detecting vehicles, pedestrians,

as well as road barriers in all weather conditions, both in daytime as well

as nighttime. The availability of low cost processing systems as well as high

precision component manufacturing procedures have paved the way for a

variety of such automotive radars. Those radars generally transmit Frequency

Modulated Continuous Wave (FMCW) waveforms and use Multiple Input,

Multiple Output (MIMO) antenna technique for transmit and receive. One

substantial difference between a pulsed system and a CW (continuous wave)

system is that the former can operate with a single antenna and a single

up/down conversion chain while the latter requires at least two antennas and,

in general, matching number of up/down conversion chains. The frequency

modulation of the waveform enables the range measurement while transmitting

and simultaneously receiving the continuous wave. Multiple chirps3 can be

transmitted to measure phase information and subsequently estimate the radial

velocity. The MIMO operation allows the use of a variety of angle finding

algorithms to locate the angular position of remote scatterers.

Modern radar applications can be primarily grouped into detection, imaging

and tracking. In addition to defense and meteorology related applications

discussed above, radars are widely used in

1. Air traffic control/management

2. Altitude measurement during flights

3. Weather hazards measurement/monitoring/avoidance in aviation

4. Detection and collision avoidance by ships and now by automobiles
3a signal with varying frequency

5



5. Velocity measurement (either by law enforcement or in sports like tennis,

baseball, etc.)

6. Micro-Doppler (small Doppler due to rotating objects) measurements

and studies

7. Imaging the earth’s topography, and environmental characteristics (e.g.

forests, ice, water, land use etc)

8. Radar ecology (e.g. measuring migratory birds’ behaviors)

Currently, a different radar would be designed and implemented for each

of the different applications numerated above. The variations in applications

require a reciprocal variations in frequency bands, components, antennas as well

as data collection methods, and signal processing algorithms. For example, in

radar meteorology, reflectivity is often calculated using Rayleigh approximation

which is strictly valid only for frequencies less than 3 GHz [3]. In military and

aviation applications, the antenna pattern and scan rate needs to be different

than in meteorological applications. In SAR (Synthetic Aperture Radar) and

MTI (Moving Target Indication) applications, the data collection method as

well as signal processing algorithms are extremely different. Due to all of

these considerations, distinct radar systems for distinct applications have been

historically warranted.

In recent years, there have been some development of multi-mission radars

[10]–[12]. These radars serve the military, and defense communities and are

generally expensive. They employ Active Electronically Scanned Array (AESA)

antenna architecture which adds to the cost and complexity. The critical issue

of Cost, Size, Weight, and Power (C-SWaP) seem to be largely ignored in those

radars. Furthermore, there does not seem to be a civilian or a commercial

6



counterpart to such multi-mission radars.

However, technological advancements in hardware, computer systems, and

digital signal processing algorithms allow us to carry out multiple operations

using the same radar system. This leads to a lower number of required radar

systems which in turn results in reduced cost of operation as well as maintenance

[13]. Therefore, a multi-function radar that can meet all the required operational

necessities is a cost effective solution. Furthermore, a multi-mission radar is

the next chapter in radar technological advancement as the component level

advancement approaches the required maturity. In addition to performance

improvements, the ongoing advancements in various radar components have

resulted in increased component bandwidth thereby enabling frequency diverse

applications while using same hardware. The proliferation of phased array

antennas has paved a way for not only very rapid electronic scanning but also

changing the antenna pattern on the fly. The MIMO technique together with

angle finding algorithms enable using smaller number of antenna array elements

while maintaining the required beamwidth and performance. The continued

advancements in computer architecture, processing speed as well as data I/O

and storage have resulted in implementations of digital radar systems that can

support a variety of data collection methods as well as various real time and

post processing algorithms.

1.2 Ground based Multi-Mission Radar

Ground based multi function/mission radars have been an area of active

research. An overall implementation is therefore not too far in the horizon.

Such radar system will be able to replace NEXRAD [5]–[8], Terminal Doppler

Weather Radar (TDWR) [14], and Airport Surveillance Radar (ASR-9 and

7



ASR-11) [15]. These radars will be of interest to various government agencies

and civilian sectors alike. The fast electronic scanning capability provided by a

phased array antenna has provided a means to multi-function while maintaining

adequate update intervals. The National Weather Radar Testbed (NWRT

[16], [17]) located in Norman, OK has been a focus for such studies [18], [19].

The Multi-Function Phased Array Radar (MPAR) is a project that is being

undertaken by National Severe Storms Laboratory (NSSL) with its various

industry and academic partners to achieve the goal of multi-function ground

based radar. The requirements and road-maps of MPAR have been previously

studied [19]–[21].

Another ground based radar that has the potential to become a multi-

function radar is the Cylindrical Phased Array Radar (CPAR) [22], [23]. There

have been studies about antenna design and calibration for such multi-mission

radars [24]–[27]. While CPAR studies is currently more focused on weather

measurements, validation, and subsequent studies, the phased array architecture

provides a promising prospect for multi functionality. Therefore, in the ground

based case, there are plans and ongoing studies on multi-functionality. However,

an overall system characterization, implementation, and demonstration has not

been done yet.

1.3 Airborne Multi-Mission Radar

As “single-mission” airborne radars complement “single-mission” ground based

radars for various civilian, military, and scientific necessities, such is the case

for a multi-mission radar. The challenges in development and implementation

of an airborne counterpart of a multi-mission radar, on the other hand, are

more extreme. The classical bottle-neck of C-SWaP advances non-linearly
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as more functionalities are added to an airborne radar. The data storage

and processing present challenges in terms of bandwidth, throughput as well

as radar products’ estimation and retrieval. This paradox is also present in

ground-based multi-mission radars, although with the benefit of higher margin

in size, weight, and power requirements. A majority of ground based radars are

migrating towards Phased Array Antenna architecture due to the high speed

electronic scanning capability. However, the Phased Array architecture has a

little to do with low cost. In the most advanced Phased Array system, each

element requires its own up/down conversion chain as well as data I/O ports

and storage solutions. The appetite for larger and simultaneous processing

power is perennial, especially, in radars which are, in affect, digitizing and

manipulating high frequency signals and interpreting the results. The signal

processing challenge comes in two-fold, one in terms of hardware as the incoming

analog signals need to be digitized error free and efficiently; and another in

software as those digitized signals need to be processed in real time or stored

for later processing. So far as parallelizing the data acquisition/processing

is concerned, not all the desired parallelizations can be achieved as the data

collection and processing sometimes must follow sequential algorithms. There

have been studies about using General Purpose Graphical Processing Unit

(GPGPU) to perform parallel computations [28]–[30].

Currently, airborne weather radars are being used extensively in aviation

and defense applications. There continues to be a pertinent appetite for

research quality data originating from airborne platforms. There have been

previous efforts to build and operate a research grade airborne weather radar.

While no longer in commission, the ELDORA/ASTRAIA (Electra Doppler

Radar/Analyese Stereoscopic par Impulsions Aeroporte) airborne Doppler
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weather radar [31], [32], operated by NCAR/UCAR (National Center for

Atmospheric Research, University Corporation for Atmospheric Research), is

an example of an airborne radar for scientific missions. Another example

is the Airborne Rain Mapping Radar (ARMAR) developed by NASA and

Jet Propulsion Laboratory for operation on NASA DC-8 aircraft [33], [34].

A variety of studies and measurements were performed with ELDORA in

focus [35], [36] as well as with ARMAR in focus [37]–[39]. The utility of such

scientific mission radars cannot be overstated, however, these radars present

a substantial financial burden for operation and maintenance. While, such

radars are essential in remote sensing studies, the cost of operation results in

very sparse coverage both in time and space. A multi-mission radar can be a

viable replacement for single mission airborne radars for scientific studies.

The bulk of current generation of airborne radars are being used to detect

and assess weather hazards and thereby provide situational awareness to

pilots. One of the requirements of a multi-mission capable airborne radar is to

provide commercial grade output (for pilots) while at the same time be able to

store/process research grade data when necessary. Traditionally, multi-mission

applications in airborne radar is implemented through expensive phased array

architectures. The military and defense communities are, again, the pioneers

in this sector as they are well equipped to absorb the ensuing expenditures. So

far as civilian and commercial sectors are concerned, achieving multi-function

capabilities have been difficult, especially, on a low-cost airborne radar system.

These low-cost systems usually do not have the quality of electronics, antenna

with desired beamwidth, and computing power to support advanced capabilities.

However, as technology matures and the costs subside, the implementation of

such low C-SWaP systems appear to be more feasible.
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For meteorology, the challenge/mission is usually the precise measurement

of scattering power and phase response from moving platforms. These measure-

ments are sometimes referred to as “raw” or I/Q returns. One of the goals in

meteorology is to properly estimate “radar products” which can then be used

not only to estimate current weather parameters (like rainfall rate) but also

to make future weather predictions (weather forecast). For a single polarized

system, radar products to be estimated are Reflectivity, Doppler Velocity, and

Spectrum Width; whereas for dual polarized systems, additional radar products

like Differential Reflectivity, Correlation Coefficient, and Specific Differential

Phase need to be estimated [3], [40], [41]. The “raw” measurements along

with the radar products drive bulk of the weather related research which is

necessary for our understanding of climate and weather phenomena as well as

for preparedness against potential weather hazards.

1.3.1 Sense and Avoid

One of the core missions of a multi-mission radar is the sense and avoid

capability. Modern airspace is shared by a variety of civilian, commercial,

and military aviation in addition to birds and meteorological elements like

rain/storm clouds. All of those objects simultaneously present in an airspace

are potential threats to aviation. Uncooperative and unresponsive aircrafts are

also a concern, especially in military aviation. With the current generation of

airborne radars, there is more implementation of sensing part while avoiding

part is performed manually. Unmanned airborne systems are already in the

airspace in the form of military drones. It is just a matter of time when fully

autonomous airborne systems traverse the skies during which the potential for

safety becomes more imperative. The sense and avoid paradigm encompasses
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sensing and tracking all the aforementioned airborne threats followed by a

mitigation procedure. For an unmanned system, the first step is to ascertain the

airspace properly and change course whenever necessary. This naturally includes

radar as a sensor along with a tracking subsystem. A tracking subsystem can

be viewed as a part of processing chain that conducts target associations, track

initialization, prediction, update, maintenance and finally avoidance.

The concept of tracking emerged in the period of warfare when it was

necessary to understand the adversary’s flight path and motives. However,

as humans have evolved, it is essential to view tracking not just as a defense

apparatus but rather as a necessary tool that can aid in sharing of a common

airspace. Since autonomous navigation is now a distinct possibility, the notion of

tracking needs to evolve to encompass a broader meaning. Tracking of weather,

for instance, should be included in this broader meaning. Bad weather is often

the biggest threat to civilian and commercial aviation. Indeed, weather events

cause in-flight injuries as well as hundreds of delays and cancellations of flights

every year. As the airspace gets dense, the ability to track commercial/civilian

flights and predict their next position becomes necessary. Although, virtually

all of the air traffic today can be considered as cooperating targets, it is

still desirable to track those aircrafts in the event of any malfunction in the

transponder or the communication systems. There have been studies about the

appropriateness of current system of air traffic control called the Traffic Alert

and Collision Avoidance System (TCAS) [42]. While [42] focuses on Dynamic

Programming, the predicament of potential failure or overload of TCAS still

remains. An onboard, tracking capable, multi-mission airborne radar system is

therefore, without a doubt, useful. Hence, tracking is considered as an essential

subsystem for a multi-mission radar and such a radar needs to have the ability
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to track a variety of targets, albeit with the mission of operational safety.

Then, there is the field of autonomous navigation of an unmanned aerial ve-

hicle, which, although still in its infancy, has an ever growing list of applications

that can benefit from a sense and avoid radar. On the defense sector, there

has been feasibility studies that not only identifies the various requirements

but also presents a potential road-map in realizing such an unmanned aerial

vehicle with SAA capability [43], [44]. On the civilian sector, remote sensing

and mapping takes precedence [45]. These group of applications, especially

from the civilian surveillance prefer and in many cases have a hard requirement

of low C-SWaP. Therefore, an airborne radar on unmanned aerial vehicles

(UAVs) needs to address extreme constrains on C-SWaP. On the other hand,

unmanned aircrafts still need similar (maybe more autonomous) capabilities

for situation awareness compared to their manned counterparts [46]. Therefore,

it is necessary to explore a variety of potential solutions that can alleviate

the challenge of autonomous navigation while at the same time satisfying the

requirement of low C-SWaP.

There are indeed other novel avenues for various signal processing algo-

rithms in airborne multi-mission radars. Micro Doppler studies is one of

them. Micro Doppler in radar returns are generated due to slight variation

of Doppler velocity, especially, from a rotating target. When coupled with

machine learning techniques, micro-Doppler signatures can be classified and/or

recognized to discern different types of targets. One example is the recognition

and classification of Wind Turbines in radar return data [47].

Apart from those outlined above, there can be more potential uses of

airborne multi-mission radars. Airborne multi-mission radar is already poised

to become a necessity when we examine all the diverse applications that it
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can support. When the concept of radar was conceived about a century ago,

a lot of its modern applications were unknown. Similarly, development and

implementations of airborne multi-mission radar and the subsequent signal

processing algorithms will undoubtedly introduce various novel applications

than currently available/possible. The evolution of mankind and its technology

has never failed to astonish and an airborne multi-mission radar will be no

different. This study is one of the first steps in recognizing the possibility and

hopes to pave a path to further studies, developments, and implementations.

1.4 Research Objective

In this study, the feasibility of a practical multi-mission airborne radar is

examined in detail. With the challenges recognized above, there are two

possible paths for the solution. One is to develop a higher frequency, lower-

cost, and agile hardware, such as metamaterial scanner [48], similar to the

hardware in automobile radars [49], etc. The drawback of implementing these

new hardware changes is the necessity of thorough testing and validation

as well as meeting the requirements of aircraft recertification. In addition,

potential complications may arise during the development, implementation, and

deployment of radar hardware as well as during configuration modifications.

The other path is to use existing and certified hardware such as low-

cost weather radars. The functionalities can be enhanced through advanced

signal processing algorithms. This study focuses on this second path where

the signal processing algorithms are developed and applied. Because the

enhancements are done in software, there is little or no need to modify existing

hardware, thereby reducing the development time, costs as well as certification

risks. Multiple independent modules of signal processors can be added to
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enhance the capability of existing radar systems. There are still challenges to

this approach. Low C-SWaP systems generally comprise of smaller aperture

size, lower scanning speed, and in general slower computation time with less

memory as well as components with lower throughput. These challenges

will be addressed using modular hardware that can operate independently in

parallel or in sequence depending on the mission requirements. One of the core

objectives of this study is to verify that the signal processing algorithms can

enhance the performance of a “single-mission” radar system to meet the Sense

and Avoid (SAA) radar sensing requirements [50] or at least support the basic

functionality of SAA operations as a part of multi-mission operations. Note that,

although there has been FAA-RTCA (Federal Aviation Administration-Radio

Technical Commission for Aeronautics) working groups actively investigating

the SAA (also sometimes referred to as Detect and Avoid, DAA) radar sensing

requirements [51], [52] the final performance requirements have not been

finalized and released yet. Currently, SAA radars are being studied and

developed by multiple industry entities. Some examples are the Due-Regard

Radar from General Atomics [53], Northrop Grumman’s SAA radar, and initial

flight tests [54]. However, these on-going works do not appear to address

the multi-functional application for low-cost radar operations, as well as the

scenario of close-by multi-target tracking with angular resolution constraints.

One innovative aspect of this work is the first time integration and application

of advanced algorithms for SAA functions on a low-cost airborne weather radar

platform.

In this study, a specific commercial weather radar platform is used and its

functionalities are enhanced. The software based solution introduced in this

study intends to use low-cost hardware and advanced algorithms/processing
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back-end to meet the remote sensing goals for multi-mission applications. This

work implements and validates a basic SAA function using an existing weather

radar system, rather than proposing a completely new and dedicated SAA

radar system. In addition to the demonstration of fulfilling basic operational

needs using software processing and various signal processing algorithms, this

study will also validate multi-mission capability of this enhanced radar system.

The focus of this study is to determine the optimal operation mode and to

perform algorithm development and data quality validations, both in cases of

weather as well as sense and avoid (SAA) applications. The main challenges for

the solution are the resolution limitation due to small aperture size, limitations

from field-of-view (FOV), and scan speed due to mechanical scanning.

1.5 Outline of the Dissertation

Following Introduction, this study is organized as follows.

• Chapter 2 introduces a multi-mission airborne radar. It also builds some

radar fundamentals in terms of weather and point target detection as

well as radar signal spectrum. A formulation of tracking from a sense

and avoid point of view is then presented.

• Chapter 3 introduces the signal processing algorithm suite as well as an

end-to-end radar simulator.

• Chapter 4 details Iterative Adaptive Approach, and Matched Filter Based

Iterative Adaptive Approach as real aperture super-resolution algorithms.

• Chapter 5 presents an example of tracking from sense and avoid per-

spective by using the aforementioned multi-mission radar and resolution

enhancement algorithms.
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• Chapter 6 analyzes weather surveillance using the same sensor platform

and similar algorithms after which the results are validated against well

known ground based research radar results.

• Chapter 7 presents a summary and conclusions arrived, in this study.

• Chapter 8 outlines future work.
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Chapter 2

Airborne Multi-Mission Radar

Most of the radar systems built in the past were done to address a specific

challenge; be it military radars, civil aviation radars, meteorological/weather or

general research radars. Since each combination of a problem in an environment

requires a slightly different system characteristics, such practice has been

historically justified. Additionally, there were few overlaps between the interests

of different communities (military, civilian, science/research) and therefore each

radar was built to satisfy a particular necessity for a specific community. In

recent times, the goals of different communities are increasingly overlapped.

Tracking, for instance, was historically a defense apparatus but lately an

increasing number of commercial applications are finding it beneficial. Weather

studies, on the other hand, are of interest to not only researchers but also to

aviation industry. Imaging radars are being used to study deforestation, ice

sheet conditions, etc. in addition to mapping the earth’s surface. Since the

common goals of different radar communities are increasing, a multi-mission

capable system can not only reduce cost, but also drive the industry forward

as historically separate communities work towards a common set of goals.

Airborne radars have been a part of aviation community to access weather

hazards. As discussed in Chapter 1, such radars are used solely for situational
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awareness to the pilots. Since making hardware changes to an existing platform

would be onerous as products need to be tested, validated, and re-certified,

this study focuses on software modifications as a viable approach in realizing

multi-mission airborne radar using a commercial airborne radar platform. One

concept of such radar is PARADOX which is discussed below.

2.1 Polarimetric Airborne Radar Operating at X-band,

PARADOX

Together with Garmin International Inc. the Intelligent Aerospace Radar

Team (IART) at University of Oklahoma has been developing a new airborne

weather radar system called Polarimetric Airborne Radar Operating at X-

band (PARADOX). PARADOX has had multiple versions since 2007. In 2010

the first version (referred to as “version zero”) was flight tested with an industry

partner using IART designed hardware and some initial dual-polarimetric data

for rainfall were collected. In 2012, PARADOX1 was developed, based on

Garmin Inc’s commercial GSX70 airborne weather transceivers and processors.

Data collections were performed by designing and implementing various Co-

herent Processing Intervals (CPI’s). The collected data were analyzed using a

multitude of advanced signal processing methods [55]–[59]. PARADOX2 radar

will, again, be based on a new generation of hardware from Garmin Inc. It will

be upgraded to dual-polarization operation from the current configuration of

vertically-polarized antenna.

Figure 2.1a shows the mechanical structure of PARADOX1 while Figure 2.1b

shows the current setup. Table 2.1 lists the key parameters of PARADOX1. The

low C-SWaP (Cost, Size, Weight and Power) of PARADOX1 makes it suitable

for deployment on small to medium aircrafts including UAV’s (Unmanned

19



Radar Parameters Values

Mechanical
Dimensions

Antenna Size 10-18 inches for standard antenna product
configuration

Transceiver
Diameter

8 inches

Depth 6.3 inches

Total Weight 9.5 lbs (for a 18 inch antenna, and elec-
tronics) plus digital backend (small form
factor PC)

Operating Frequency 9.3 to 9.5 GHz

Antenna Slotted Waveguide Array and Mechanical
Scanning

FOV ±60◦ azimuth, ±30◦ elevation

Transmitter Solid-state 40 watt peak power, support
for a wide range of waveforms and PRFs

Sensitivity 0 dBZ @ 30 km

Receiver
Real-time pulse compression receiver with
optimized LFM and phase coded wave-
forms

Antenna Beamwidth Scalable: 18 inch panel: 5.6◦ az/el

Scan Speed Variable (depends on the number of Trans-
mitted Pulses)

Basic Data Products

Real-time: Reflectivity, Doppler velocity,
spectrum width. Offline: SAR (Synthetic
Aperture Radar) imaging, airborne hazard
and biological target trajectory estimation

Mounting and Installation Nose cone mounting or pod mounting

Table 2.1: PARADOX1 Specifications
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(a) Mechanical Structure of GSX-70 (b) Current Configuration (with 12 inch an-
tenna)

Figure 2.1: Garmin GSX70

Aerial Vehicles). The entire system, including the mechanical scanner and

signal processors, is integrated into the 9.5 lbs, 8 inches diameter and 6.3 inches

deep package. PARADOX1 is highly configurable by design and therefore a

number of parameters listed on Table 2.1 have multiple available options. The

aperture is a planar waveguide array that can have diameter from 6 to 18

inches for the current design, and can be extended to 50 inches with customized

designs. In addition, PARADOX1, being a solid-state radar, also supports a

variety of pulse compression waveforms. In the latest version of the hardware,

a diverse number of phase coded waveforms, modulations, and bandwidths can

be employed. The sensitivity of the radar can be tweaked using various duty

cycles.

Figure 2.2 depicts the multi-mission concept of PARADOX1. The embedded

mission processor can be configured to execute various missions simultaneously.

The SAA (Sense And Avoid) tracking part, naturally, needs to be in Track

While Scan (TWS) mode. Signal processing modules can be attached to

data output of PARADOX1 to achieve improvements such as super-resolution
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Figure 2.2: PARADOX1: A Multi-Mission Airborne Radar

(SR), range/azimuth/Doppler enhancement, sidelobe reduction etc. Chapter 4

describes the Range-Doppler-Azimuth Super-Resolution, which is an important

step required to meet the multi functionality performance goals. Chapter 5

details the SAA tracking subsystem while Chapter 6 presents scientific research

quality data validations. In each of the Chapters of this study, the data from

PARADOX1 is used to not only verify the validity of the algorithms, but also

to present PARADOX1 as an airborne multi-mission radar.

2.2 Radar Returns

A meaningful radar return data consists of a backscattered signal from a target

that is stronger than the inherent thermal noise and/or any interference at

the receiver. Radar returns are quantized in range, azimuth, and elevation.

The ability to discern returns from remote targets in space or time (essentially

resolving different targets) is referred to as resolution. An increase in resolution

is accompanied by a decrease in the cell size of space or time in the measured
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data. The resolution in range depends on the transmit waveform bandwidth1.

Although there are high bandwidth radars that can achieve sub-meter resolu-

tion, for most radars range resolution varies from tens of meters to few hundred

meters. Range resolution is generally constant for a set of data. The resolution

in azimuth and elevation depends on the antenna pattern beamwidth2. Since

radar/antenna beam broadens with increasing range, the azimuthal and eleva-

tion resolution decrease with an increase in range. The range, azimuth, and

elevation resolution constitute a 3D “resolution volume” which is analogous to

a 3D pixel. The shape of this pixel is reminiscent of a thin (3D) ellipsoid with

the span in range direction being the smallest. In general, there are multiple

scatters in each resolution volume. As a consequence, radar return is comprised

of a superposition of the returns from those multiple scatterers.

In case of airborne radars, there are two distinct types of targets that need

be considered. Firstly, the so-called hard targets that occupy very few range

bins are modeled as single point targets. Some examples are other aircrafts,

birds, most ground targets, and clutter if scanning downwards. The other

type of target is the meteorological target, e.g. storm clouds, rain, hail, snow,

etc. Those targets span multiple range, azimuth, and elevation bins and are

modeled as distributed targets. Although the basic physics of both types of

targets are largely similar, slightly different approaches are used for signal

modeling and processing. The radar range equation that gives the fundamental

signal model is discussed in the next section.
1All the components’ bandwidth should be equal to or greater than that of the waveform,

else the lowest bandwidth among the components determines the range resolution
2azimuth and elevation beamwidth may not necessarily be equal
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2.3 Radar Range Equation

The radar range equation is a deterministic signal model that relates various

radar system components to the environment and estimates the received power

at the receiver. By providing the expected return value in a theoretical sense,

radar range equation can provide an assessment of the capability of the radar

system. The received power Pr from a target at range R, with radar cross

section σ, using a radar of wavelength λ, with transmit power Pt, transmit

antenna gain Gt, receive antenna gain Gr, assuming one way propagation loss

l, and all other system losses (e.g. due to various system components like

waveguides, power dividers, radome, etc.) lumped together as ls is [2], [60]

Pr = PtGt

4πR2l
× σ

4πR2l
× Grλ

2

4πls
(2.1)

Equation 2.3 is a simple form of radar range equation. The first fraction term

on the right side is the directed power to the target; the second term is the

backscattered power from the target; and the third term is power directed

towards the receiver. Note that all the terms in equation 2.3 are of linear units

and the received power is instantaneous. For a monostatic radar (radar with

same antenna for transmit and receive), equation 2.3 can be simplified as

Pr = PtG
2λ2σ

(4π)3R4lsla
(2.2)

Here, Gt = Gr = G is the single antenna gain, and l2 = la is the two way

propagation loss due to the atmosphere.

Equation 2.3 is the basic radar range equation for a point target. In the

equation, σ is the unknown target RCS which is directly proportional to the

return power. Radar range equation provides the expected echo power from
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a remote target. In the next section, the returns from weather targets are

examined followed by a discussion of the spectrum of such returns.

2.4 Weather Returns

One of the great utilities of modern radars is the ability to measure weather

phenomena and access the associated threats to the infrastructure and public.

Therefore, measuring weather is one of the core missions of a multi-mission radar.

Especially for an unmanned airborne platform, proper weather measurements,

and subsequent assessments are crucial for operational safety. In addition,

weather measurements also provide critical research data for weather related

studies. Weather studies are increasingly paramount as the humankind is

beginning to appreciate the effect of changing climate. As aforementioned,

weather returns comprise of superposition of returns from smaller scatterers in

the 3D resolution volume and spans multiple such resolution volumes. It is,

therefore, modeled as distributed target which results in radar range equation

taking a slightly different form.

The RCS of a weather target is a contribution of RCS from different sizes

and types of hydrometeors in the resolution volume. If we let η as the average

RCS per unit volume and consider ∆V to be resolution volume then the

ellipsoidal resolution volume can be expressed as,

∆V = cτπR2θazθel
12 (2.3)

where, θaz, and θel are azimuth and elevation beamwidth respectively, c is the

speed of light, τ is the pulsewidth and R is range to the target.

The average RCS per unit volume, η, is also called reflectivity and is
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expressed as [3], [61]

η =
∫ ∞

0
σb(D)N(D)dD (2.4)

where σ(D) is the RCS for the scatter with diameter D and N(D) is the number

of such scatterers (with diameter D). Reflectivity, η is related to reflectivity

factor Z as

η = π5

λ4 |Kw|2Z (2.5)

where Kw is the dielectric factor of water, Kw = (εw−1)/(εw+2), and εw is the

dielectric constant of water. The unit of Z is mm6m−3 and is usually expressed

as dBZ (10log10Z). Equation 2.4 is called the Rayleigh approximation which is

valid when diameters of hydrometeors are small compared to radar wavelengths

[3], [61]. Therefore, radar range equation for weather targets takes the form

Pr = PtG
2λ2

(4π)3R4lsla

π5

λ4 |Kw|2Z
cτπR2θazθel

12 (2.6)

Please note that although radar range equation for weather targets is derived

using Rayleigh scattering approximation, often, this condition cannot be met,

especially when the transmit frequency for a radar is high.

2.5 Spectrum of Radar Signals

As mentioned previously, modern radars are capable of concurrently measuring

amplitude and phase of the returned echo from the remote target. The radar

range equation in the previous section provided an expression for the amplitude

of the echo (by formulating a power equation). The phase of the returned

echo signal is used for frequency analysis in a range-azimuth-elevation volume

or a resolution cell. Such frequency analyses provide the measure of velocity
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contents (or a weighted distribution of velocities) in the volume. If there are

targets in the resolution volume, the power spectrum plot for that cell consists

of peaks equaling to the number of targets and each at the frequency/velocity

location of the target. Note that if the velocity/Doppler resolution is not high

enough, multiple peaks can get “merged” and can have the appearance of a

single peak albeit wider. The width of those peaks also depends on the platform

dynamics as well as the target characteristics. In case of weather measurements,

the width of the peak (in the spectrum) is related to the atmospheric turbulence.

The phase of the echo can be expressed as [3]

ψe = −4πr
λ

+ ψt + ψs (2.7)

where, r is the range to the target, λ is the wavelength, ψt and ψs are the

phase introduced by the transmitter and remote scatterer (target) respectively.

The Doppler frequency is the time derivative of the phase which is,

fd = 1
2π

dψe
dt

= 1
2π

(−4π
λ

)
v = −2v

λ
(2.8)

In equation 2.8 above, both ψt and ψs are considered to be time invariant.

While ψt can be generally considered constant, more so for a ground based

radar, ψs, on the other hand is more nuanced. For a non-meteorological target,

ψs can be considered constant but for a meteorological target ψs is time varying

due to vibration of water droplets during precipitation. Furthermore, since

weather returns comprise of returns from multiple scatterers of different sizes

in the resolution volume, the sum total of the phases from each target no

longer remains time invariant. The vibration, of the meteorological targets,

manifests itself as a broader peak in the Doppler spectrum. Please note that v
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in equation 2.8 is the relative velocity and in fact is the relative radial velocity

(i.e. the component of velocity in the line of sight direction).

In contrast to a ground based radar, an airborne radar is in motion during

data collection and therefore a Doppler frequency shift is always present in the

received signal. The spectrum is further complicated by the turbulence in the

platform itself, causing random changes in ψt.

It is to be noted that a direct measurement of Doppler frequency from a

single short pulse is not possible. The carrier frequency of a radar is fairly high;

e.g. NEXRAD/WSR-88D radars’ frequency is between 2.7 and 3 GHz, and for

an airborne radar X-band (8 - 12 GHz) is the most popular choice. The change

in phase caused in one short pulse (tens of micro-seconds) is generally within

the limits of error. On the other hand, if there are multiple pulses transmitted

and a coherent receiver is used, the difference of the phase between successive

pulses can be calculated which can then provide the Doppler shift and finally

the radial velocity of the remote target can be estimated.

As aforementioned, the velocity of a remote scatterer is estimated by doing

a frequency domain analysis of the returned echo. Fourier Transform is taken

on the time domain return signal to generate a power spectrum estimate. The

Discrete Fourier Transform (DFT) of a time domain signal sampled M times

at a uniform spacing Ts is defined as [3]

Z(kf0) =
M−1∑
m=0

V (mTs)e−j2πf0Tsmk (2.9)

where V (mTs) is the complex voltage (amplitude and phase representation of

the echo signal) of mth sample and Z(kf0) is the complex amplitude of the

kth spectral coefficient at frequency f = kf0. Similarly, the Inverse Discrete
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Fourier Transform (IDFT) can be expressed as,

V (mTs) = 1
M

M−1∑
k=0

Z(kf0)ej2πf0Tsmk (2.10)

Note that the sampling frequency here is the PRF and therefore sampling

time, Ts = 1/PRF and there are M total pulses in the CPI. Using the Nyquist

criterion, the maximum unambiguous Doppler frequency that can be measured

is (2Ts)−1 or PRF/2. Examining equations 2.9, all the frequencies in the

summation are multiples of 1/MTs therefore, the Doppler resolution is 1/MTs

or PRF/M . Finally, the maximum unambiguous velocity that can be measured

is derived using equation 2.8 as,

vua = ±λ · PRF4 (2.11)

And the velocity resolution is,

∆v = λ · PRF
2 ·M (2.12)

The above equations, 2.11 and 2.12, give the extent of the estimated power

spectrum as well as the location of the peak(s) if scatterers are present. Next

the shape of the Doppler spectrum is briefly discussed.

The power spectrum of an infinite sinusoid is a delta function at the

frequency of the sinusoid. If the sinusoid is multiplied by a rectangular envelope

to generate a pulse in the time domain; in the frequency domain counterpart,

it is equivalent to the convolution between the delta function (spectrum of

sinusoid) and a sinc function (spectrum of rectangular envelope). The resulting

spectrum is frequency shifted sinc function. A sequence of such pulses in a
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CPI also result in a sinc function in the spectrum whose width is given by

the frequency/velocity resolution. However, as discussed previously, if the

phase change due to the scatterer ψs is varying with time, the resulting sinc

function in the frequency spectrum broadens. In ground based weather radar,

the width of the spectrum is related to the turbulence in the atmosphere. In

case of airborne radar, the there is additional spectrum broadening due to the

fluctuation of platform motion (manifested through the change in ψt).

2.6 Airborne Sense And Avoid

As mentioned previously, sense and avoid is a broader term that encompasses

the notion of target tracking. Tracking capability will certainly be of great

utility for pilots. In addition to that, it is also useful to the emerging field of

autonomous navigation. As discussed previously, SAA tracking of weather as

well as other aerial vehicles is a safety necessity.

Tracking, simply put, is an estimation of the current state/parameter of

a moving object followed by a prediction of future state. This, of course, is

complicated by the fact that moving objects never move in a perfect path and

the measurements are always contaminated by the noise. Furthermore, the

inherent limit in sensor resolution causes an uncertainty, in the measurement,

and during the mathematical modeling of the tracking algorithm. Therefore a

tracker has the function of filtering (noise), interpolating the measurements

where necessary, estimating the true measurements, and predicting the future

measurements. The prediction part is done by taking into account all the

previous measurements as well as knowledge of parameters and the statistics

of any involved noise and uncertainties. There are definitely a variety of

approaches to estimation and prediction where the benefit of accuracy is
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complemented by a complexity of computation.

In addition to the intricacies involved in estimation and prediction, modern

tracking also involves with data association. In almost all of the practical

scenarios, there are generally more than one detection. For an airborne case, it

can be argued that there may be a single target in the current field of view

in given time and space. However, the omnipresence of noise, clutter, and

the resulting false alarms are sure to result in more than one detection. Data

association part of sense and avoid associates detections to the previously

established tracks or previously detected targets. There are, of course, different

algorithms for data associations; one detection can be associated with one

target/track (hard detection) or a more probabilistic soft detection approach

can be undertaken where a single detection can be associated with more than

one target/track.

For the application outlined in this study, Kalman Filter (KF) is used for

estimating the state of dynamic targets and Joint Probabilistic Data Association

(JPDA) is used for data association. Kalman Filter [62] provides a recursive

method to optimally estimate the state of linear systems in presence of Gaussian

error statistics. JPDA provides joint posterior association probabilities for

multiple targets in presence of Poisson clutter [63], [64]. Together, JPDA and

KF are responsible for initializing tracks, associating measurements as well as

updating the tracks, states, and other relevant parameters. There are other

state estimation algorithms available. Extended Kalman Filter (EKF) [65],

[66] is based on the frameworks of Kalman Filter and includes estimation for

non-linear systems. EKF is obtained by linearization of the (non-linear) process

about the estimation point using Taylor Series expansion. First or second

order EKF can be obtained using the appropriate order during linearization.
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Particle Filter [67], [68], on the other hand, is also gaining popularity as faster

computation/processing is increasingly available. Similarly, for data association

multiple algorithms like Global Nearest Neighbor and Multiple Hypothesis

Tracking [69]–[71] are available. At the end, KF and JPDA are used primarily

because of good results with smaller/acceptable computational requirement.

Furthermore, a ”g-sigma ellipsoid” gating is used to reject measurements for

each track which further increases the computational speed. Figure 2.3 shows

the SAA tracker algorithm flow. Note that “Track Maintenance” step adds

and deletes track as necessary. A tentative track is added when a new target

is not associated with any existing tracks. An existing track is deleted if no

measurements are associated for a that track during multiple consecutive scans.

A simulated two target scenario as well as measured single target scenario and

tracking is presented later in this study. In this section, a theoretical basis of

the tracking algorithm is discussed.

2.6.1 SAA Tracking with Constant Acceleration Model

There are different motion models that can be considered for tracking. While

military and defense applications require more robust motion model to account

for high “g” maneuvering targets (essentially to incorporate the effects of higher

order derivatives of position into the motion model); the civilian applications,

on the other hand, can have some of those requirements relaxed. Since this

study presents tracking from sense and avoid perspective in an airborne multi-

function radar, the goal of tracking is to ascertain any collision threat and

change course if and when necessary. The targets can be safely assumed to move

with a non-constant velocity while at the same time not performing the high

“g” evasive maneuvering or have significant and/or deliberate jerks and jounces.
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Therefore, a constant acceleration motion model can be used to formulate the

dynamics of the system. This model, in reality, is a Wiener-process acceleration

model [65], [72]. In other words, the acceleration in the model is a process with

iid (independent identically distributed) increments. More precisely, the model

is a white noise driven “nearly constant acceleration model” which allows for

small changes in the acceleration (and those changes are assumed to be iid).

Consider, first, a one dimensional moving target. The recursive evolution of

position s, velocity ṡ, and acceleration s̈ given the values at previous sampling

time can be viewed as a noise driven process which can be represented as,

sk+1 = sk + ṡkT + 1
2 s̈kT

2 + 1
2vsT

2 (2.13)

ṡk+1 = ṡk + s̈kT + vsT (2.14)

s̈k+1 = s̈k + vs (2.15)

where T is the update time and k = nT (for integer n) is the sample time.

A moving target, in general, can move in all three dimensions. However,

since the goal of an airborne sense and avoid radar is primarily avoidance, the

three dimensional problem can be simplified to two dimensional one. Further-

more, for a general radar (like an airborne multi-mission radar), scanning and

tracking in three dimension quickly becomes onerous as the update time can

reach to tens of minutes. On the other hand, as technology matures a fast

three dimensional scan is possible in which case tracking in two dimensions

can be easily upgraded to three dimensions. The discrete time state-space

model for a target moving in two dimensions can be extended from the one

dimensional case above and is expressed as,

xk+1 = Fxk +Gwk (2.16)

34



where, xk is the state vector at sample time k,

xk+1 = [sx, sy, ṡx, ṡy, s̈x, s̈y]Tk+1 (2.17)

F is the state transition matrix, represented as

F =



1 0 T 0 1
2T

2 0

0 1 0 T 0 1
2T

2

0 0 1 0 T 0

0 0 0 1 0 T

0 0 T 0 1 0

0 0 0 0 0 0



(2.18)

G is the noise distribution matrix as,

G =



1
2T

2 0

0 1
2T

2

T 0

0 T

1 0

0 1



(2.19)

and w = [wx, wy]T is the process noise vector (at sample time k) which is

assumed to be a zero mean Gaussian noise with covariance Q. Similarly, the

measurement equation can be expressed as

yk = Hxk + vk (2.20)

where, yk is the measured vector at sample time k, H is the measurement
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transition matrix as,

H =

1 0 0 0 0 0

0 1 0 0 0 0

 (2.21)

and vk is the white Gaussian measurement noise (at k) with zero mean and a

covariance of R.

Note that although radars measure in Polar/Spherical Coordinates, the mea-

surement here is considered in Cartesian Coordinates. Spherical measurements

to Cartesian measurements can be realized easily using trigonometric functions

or a lookup table. The main drawback of using Polar/Spherical Coordinates

is that the Coordinate transformation is a non-linear process which results in

unnecessary complications due to H being non-linear 3.

The tracker is initialized at the first scan and when a measurement cannot

be attributed to any tracks. The state covariance matrix is also initialized with

a diagonal matrix at this stage. The process noise covariance matrix Q is kept

at a low value. The measurement noise covariance matrix R is modeled as a

function of range and azimuthal resolution. Since all detections are considered

as potential targets, a tentative track is formed when any kind of unassociated

(with track) detection is discovered. The M -of-N logic is used to elevate a

tentative track to a confirmed track; i.e. a tentative track is confirmed when

there are M valid detections out of last N scans. Whenever a track fails to

adhere to the rule, the track is deleted. A valid detection is the one that

situates inside a validation gate. The validation gate used is a g-sigma ellipsoid

gate which can be defined as,

d(k) = ỹT (k)S−1ỹ(k) ≤ γ2 (2.22)
3Non-linear H requires to perform linear approximation by doing Taylor expansion at

the measured value which adds complexity while decreasing accuracy
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where, γ is the gate threshold which is obtained by choosing χ2 distribution

with two degrees of freedom at 0.99% confidence level. ỹ is the innovation

(difference between predicted and measured value) and S is the innovation

covariance obtained from Kalman Filter equations. The gate itself in this

case is two dimensional ellipse obtained by cutting off the tails of a bivariate

Gaussian density. The size of this validation region changes when the innovation

covariance S changes during the evolution of the track.

2.6.2 Joint Probabilistic Data Association

When there is a single detection inside the validation region, it is straightforward

to associate that measurement to the track. However, other targets, clutter or

spurious detections might conceivably fall inside the validation gate. In such

case, there needs to be an algorithm or a logic to associate the measurement

with the track. Joint Probabilistic Data Association (JPDA) is a target-oriented

data association algorithm that works well with interfering source in presence of

Poisson clutter [63], [64]. An interfering source is one that persistently appears

inside the validation region of a track/target. A full derivation of JPDA is

beyond the scope of this study but can be found in [63], [73] etc. However, a

brief formulation is presented as follows.

Assume there are Nt tracks and Nm measurements which are used in

conjunction with gating (eq 2.22) to form a validation matrix. A feasibility

matrix is then constructed which is a combination of all feasible events, θ, that

are possible given the tracks, the measurements, and the validation matrix.

Since missed detection is always possible, feasibility matrix has entry for events

where the track is assumed to have missed the detection. The probability

of each feasible event θ given measurement Y k (at sample time k) can be
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expressed using Bayes’ rule,

P (θ|Y k) = P (θ|ỹ1, · · · , ỹM ,M, Y k−1)

= P (ỹ1, · · · , ỹM |θ, Y k−1)P (θ|M,Y k−1) (2.23)

where, ỹj is the innovation of jth measurement (j = 1, · · · ,M). The above

equation 2.23 can be simplified as [63]

P (θj,t|Y k) = Cφ

c

∏
τj=1

exp[−1
2 ỹ

T
j,tS

−1
t ỹj,t]

(2π)M/2|St|1/2 ·
∏
δt=1

PD ·
∏
δt=0

(1− PD) (2.24)

where j = 1, · · · ,M are the measurement indices, t = 1 · · ·Nt are track indices,

C is the density of false measurements, φ is the number of false measurements,

c is the normalization constant which is sum of probabilities over all feasible

events, θ, τj = 1 indicates a valid association, δt = 1 indicates target detection,

and δt = 0 indicates clutter detection (obtained from validation matrix).

With the probability of each feasible event now calculated, the probability

of measurement j associated to track t can be expressed as the sum over all

feasible events, θ, where the association is valid.

βj,t =
∑
θ

P (θj,t|Y k) (2.25)

The missed detection probability which is always possible can be expressed as

β0,t = 1−
M∑
j=1

βj,t (2.26)

where, again, j = 1, · · · ,M are the measurements and t = 1, · · · , Nt are the

tracks.
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2.6.3 Kalman Filter with JPDA

Kalman Filter, simply put, is a set of mathematical equations that start with

a set of measurements, makes the necessary prediction(s) of the state variables

(and other parameters), and then updates/corrects the prediction(s) as new

measurements arrive. Kalman Filter is an optimal, recursive data processing

algorithm [74]. It is optimal in the sense that the algorithm minimizes the

estimated error covariances when the underlying process is linear and the noise

is white and Gaussian. It is recursive in the sense that the Kalman Filter

doesn’t require all the previous data to be stored, just the current state and

error covariances. A full derivation of Kalman Filter is outside the scope of this

study but is included in [62], [75]. At first glance, a linear process with white

Gaussian noise may seem like a theoretical construct, but for a band-limited

applications like radar, noise can be considered white. The thermal noise in

radar systems are generally considered as Gaussian. The assumption of linearity

is also generally true, especially for sense and avoid tracking. However, if the

motion has higher order derivative (of position) contents (e.g. in maneuvering

targets like military fighter jets), they can still be accommodated by choosing

models that take those higher order derivatives into account. As detailed in

the descriptions as well as discussed in the previous section (2.6.1), this study

focuses on constant acceleration motion model.

As aforementioned, the tracker is initialized after first detection or when

a measurement is not associated with any existing tracks. All tracks are

initialized with a Gaussian initial state as N (x0, P0), where x0 is the state

variable (obtained from the measurement) and P0 is the initial state covariance.

The Kalman Filter algorithm includes steps as summarized below. Please note

that for clarity, the time steps, (k and k − 1) are shown inside parentheses and
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the subscripts denote track t and/or measurement j.

• Prediction: As soon as track(s) are initialized, each track’s next state

and state covariance estimates are predicted using,

xt(k|k − 1) = Fxt(k − 1|k − 1) (2.27)

Pt(k|k − 1) = FPt(k − 1|k − 1)F T +GQGT (2.28)

where t = 1 · · ·Nt is the track index.

• Gating: When new measurements/detections, y, arrive, innovation for

each track, t, and measurement, m, pair is calculated using,

ỹj,t = yj −Hxt(k|k − 1) (2.29)

where, j = 1 · · ·M is the measurement index.

Then the innovation covariance, S, is calculated as follows,

St = HPt(k − 1|k − 1)HT +R (2.30)

Note that the time dependence (k) is dropped from S because a new S

is calculated for each track at each prediction/gating step.

Finally, a binary validation matrix for each track/detection pair is con-

structed whose valid entries satisfy the following,

ỹTj,tS
−1
t ỹj,t ≤ γ2 (2.31)

• Update: The measurements are used to update the state vector as well
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as the state covariance matrix as,

xt(k|k) = xt(k|k − 1) +Wỹt (2.32)

Pt(k|k) = Pt(k|k − 1)− (1− β0,t)WtStW
T
t + P̃ (2.33)

Note, here ỹt has only track, t, as subscript and is the combined innovation

for that track which is obtained from the weighted sum of innovation

from all measurements as

ỹt =
M∑
j=1

βj,tỹj,t (2.34)

Wt is the Kalman Filter Gain for track t. Again, the time dependence k

is dropped (as opposed to other literatures) for the sake of clarity and

because Kalman Filter Gain is calculated during each update process for

each track using the equation,

Wt = Pt(k|k − 1)HTS−1
t (2.35)

The last term in equation 2.33, P̃ is

P̃ = W

 M∑
j=1

βj,tỹj,tỹ
T
j,t − ỹtỹTt

W T (2.36)

After the update step is completed, a new prediction is generated for each

track. When a new set of measurement arrives, those predictions are updated

which is followed by new predictions and so on. The measurements as well as

predictions can be displayed to view the “tracks” as the evolution of target
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position. In SAA tracking, the tracks can be used to ascertain the position,

speed, and heading of other airborne objects (e.g. another plane, weather, etc.)

and change course if necessary. A simulated tracking scenario as well as a real

time tracking results will be presented in Chapter 5.
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Chapter 3

Signal Processing Algorithm Suite

Digitization of analog signals and data capture capability at various stages

have paved the way for numerous signal processing algorithms. Those signal

processing algorithms can be categorized under real time and offline processing

groups. While it may be desirable to process all algorithms in real time, there

are still considerations to be made in terms of computation time, and data

collection methods. Some of the algorithms are data driven and/or iterative

and therefore are not feasible for real time processing. It is conceivable that,

in the future, significant technological advancement can bring a change to this.

PARADOX1 as introduced in chapter 2, is used as an example to realize the

various multi-mission signal processing capabilities. To that end, this chapter

discusses the different algorithms that are implemented in PARADOX1. Note

that the list of algorithms presented here, although extensive, are not an

exhaustive list of what PARADOX1 can support.

3.1 Pulse Compression and Matched Filter

Pulse Compression is a signal processing technique in which a code (or a wave-

form) is modulated in the carrier frequency during transmit and demodulated

at receive. Traditionally an unmodulated pulse would be transmitted and
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targets situated within the pulse-length (translated to distance) couldn’t be

resolved. However, using the technique of embedding a code within a long pulse,

targets within the pulse can be resolved. At receive, the frequency response

of the radar can be thought of as a lowpass filter as the carrier frequency is

demodulated out [2]. It is desirable to have a filter that maximizes the Signal to

Noise Ratio (SNR) which is one of the most important metric of a radar system

as all the processing algorithms and detections depend on it. Such a filter is

called Matched Filter. Matched filter is theoretically derived to maximize SNR

for a point scatterer in presence of an additive white Gaussian noise. Matched

filter can be formally defined as complex conjugated, time-reversed copy of

transmitted waveform. Matched filter operation can be realized by correlating

returned signal with complex conjugated, time-reversed copy of transmitted

waveform. The correlation operation can also be performed as multiplication in

frequency domain which can be time efficient especially if the data size is large.

Pulse compression and subsequent Matched filtering, in effect, “compresses” the

pulse to allow for finer range resolutions and hence the name. The derivation

of Matched filter is not included here as the derivation is quite straightforward

and included in a variety of radar books [2], [60], [76], [77].

3.2 Adaptive Pulse Compression

Currently, pulse compression and Matched filtering is performed in most modern

radars. As aforementioned, Matched filter is theoretically proven to provide

the best SNR for a single scatterer when the noise is White and Gaussian.

The assumption of White-Gaussian noise holds fairly well in terms of radar

for most situations, however, there are exceptions. In addition to deliberate

interference/jamming, with ever so busy spectrum, the possibility of inadvertent
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interference cannot be discounted. These interferences not only increase the

noise floor but also strip away the white Gaussian property of the noise. Then

there is the fact that most radars operate in a scene where multiple targets are

present. Apart from very specific radar systems (mostly the ones that scan at

high elevation angles), all of the radars aim to scan at few kilometers above

the earth’s surface. Human beings, almost exclusively, operate on and interact

with this region of few kilometers above the earth’s surface. Naturally, that

is where the radar coverage is wanted/needed. The earth’s surface itself and

the lower level atmosphere present a target dense environment with man made,

natural, as well as meteorological targets. Even airborne radars often scan

towards the earth’s surface. This kind of target rich environment challenges

the assumption made during Matched filter derivation and a problem arises in

a peculiar way as described below.

Since Matched filter operation is, in fact, the autocorrelation of the trans-

mitted waveform, the output contains autocorrelation sidelobes [78]. These

sidelobes can also be thought of arising due to the rectangular-like spectrum of

pulse compression waveforms. The sidelobes manifest themselves in time (or

range bins in terms of radar) and are in effect energy leakage onto neighboring

time/range cells. The sidelobes scale with the target RCS due to which a

weaker target can potentially be masked in presence of one or more stronger

targets. The range sidelobes can also be viewed as self interference whereby a

stronger target masks the returns from nearby weaker targets [79]. There have

been ongoing studies to mitigate this issue. Some take the path of designing

and optimizing waveforms with lower autocorrelation sidelobes such as linear

frequency modulated (LFM) [76], [80], non-linear frequency modulated (NLFM)

[81], [82], [83], phase coded waveforms [60], [77], etc. while others take the
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path of designing mismatched filters [84], [85], [86].

In recent years, there is an ongoing study on a new class of algorithms that

can adaptively develop a filter that is optimal for the environment [78]. These

algorithms are data driven and waveform independent. Adaptive pulse compres-

sion algorithms can be applied in “raw” I/Q data as well as Matched filtered

data to realize an enhanced resolution in range, azimuth, and Doppler domains.

This enhancement in resolution is also referred as “super-resolution.” Super-

resolution can be achieved in time/range domain, angular domain, Doppler

domain or in a combination of those domains. A discussion of range super-

resolution is presented in [87]. In general, super-resolution is achieved using

various optimization algorithms onto the measured data. While some super-

resolution algorithms work on oversampled data, oversampling is not a hard

requirement for APC algorithms. The availability of high sampling rate Analog

to Digital Converters (ADC) coupled with relative low waveform bandwidth en-

sures oversampling in most modern radar systems. Please note that, in radars,

although the carrier frequency is in the order of GHz, the actual waveform

bandwidth is in the range of MHz or even KHz. One such algorithm that can

produce super-resolution in range using minimum mean-square error formula-

tion is described in [88], [89]. Another algorithm that can offer adaptive pulse

compression and subsequent resolution enhancement in range, and azimuth

is described in [90]. In this study, yet another adaptive pulse compression

algorithm that can achieve enhanced resolution in range, and Doppler domain

[56], [57] is described in greater detail.
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3.3 Weather Sensing Data Quality Control Algorithms

As the name implies, these algorithms produce an estimation of ground truth

in the form of radar variables. For a single polarized radar, the radar products

are Reflectivity, mean Doppler Velocity, and Spectrum Width. These products

are also called spectral moments. Reflectivity is related to the signal power

and is called the zeroth moment. It is mostly a measure of water content in

a meteorological element. A detailed derivation of reflectivity is presented in

section 2.4 of Chapter 2. The mean Doppler velocity (or the first moment) is the

radial velocity as seen by the radar. Spectrum width (or the square root of the

second moment about the first moment of the normalized spectrum) is related

to the turbulence of (weather) targets in the remote region. A derivation of

Doppler velocity as well as a discussion of radar signal spectrum characteristics

(extents, location, and width) were discussed in section 2.5 of Chapter 2.

For a dual polarized radar, three additional radar products can be calculated

due to the diversity in transmit and receive polarizations. Those are differential

reflectivity, specific differential phase, and correlation coefficient. Differential

Reflectivity is the measure of difference between horizontally and vertically

polarized returns. It can be used to estimate the shape of the remote scatterer

which further aids on classifying the type of hydrometeor (e.g. rain, hail, snow,

ice, etc.). Specific differential phase is the range derivative measure of difference

in propagation phase shifts between horizontally and vertically polarized returns.

This difference in phase is caused, in part, by the shape of remote scatterers and

therefore can be used to estimate the shape of remote scatterers. Correlation

coefficient is the measure of similarity between horizontally and vertically

polarized returns. It can be used to measure the consistency of the remote

scatters in the resolution volume. High correlation coefficient is indicative
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Figure 3.1: Processing Framework for PARADOX1 radar

of meteorological scatters while lower correlation coefficient indicates non-

meteorological scatters (e.g. birds, buildings, aircrafts, etc.).

Since the current generation of PARADOX is single polarized, this study

discusses the single polarized radar products in greater detail. The first step

is generally Matched filtering as most modern radar systems employ pulse

compression. As discussed in the previous section, there are adaptive pulse

compression algorithms which can be applied before or after Matched filter

operation. Two such algorithms will be derived and discussed in this study;

Iterative Adaptive Approach which is applied before Matched filter operation

and Matched Filter base Iterative Adaptive Approach which is applied after
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Figure 3.2: Motion Compensation for Micro-Physics Validation mode

Matched filter operation.

Figure 3.1 shows the overall processing framework for PARADOX1. The

first step of pulse compression and basic spectrum estimation are carried out

inside the radar package, using embedded, real-time processors. The waveform

generation and control (which includes choice of pulse-length, bandwidth,

windowing functions, etc.) are performed through preloaded scripts. Mitigation

of range and antenna sidelobes are performed in the step of the Adaptive Pulse

Compression (APC). Note the sequence of algorithm executions in each category

(signal processing and data quality control) may not follow the exact order as

they are listed in Figure 3.1. Based on different operational modes and radar

configurations, they can be adjusted.
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3.3.1 Motion Compensation for Micro-Physics Valida-

tion Mode

Aircraft motion will have an impact on the measurements for micro-physics

validation, severe weather observation mode, as well as target detection of

PARADOX1. The affect of aircraft motion on the received data, especially, the

spectrum of the received data is well studied [3], [91], [92], [93]. The impacts

of aircraft orientation also needs to be corrected for phase, and Doppler as

discussed in [94] which is built in PARADOX1 pre-processing. Furthermore,

the method of motion correction by using the aircraft navigational systems as

described in [37], and [38], is also implemented in the PARADOX1.

For micro-physics validation, the main concern is the range migration of

remote scatterers within a scan. Range migration is the phenomena in which

remote targets’ range bin changes within one unit of measurement (e.g. CPI

or a scan). In case of PARADOX1, due to the platform/aircraft motion, range

migration is possible in a scan but unlikely in one CPI/dwell. If the micro-

physics properties of the weather are sufficiently uniform over the number

of range bins aircraft travels through, then we can simply average the radar

data along these range gates to “smooth out” the effects of aircraft motion.

For many cases, dwell-to-dwell measurements are sufficient, and no spatial

compensation is needed. However, for other cases and scan configurations, the

spatial distribution of weather/cloud from scan to scan may be of interest. In

those cases and for the overall optimal usage of accumulated measurements,

a coherence between measurements need to be maintained among the scans.

Existing approach [95] which is similar to video encoding and processing through

“block-matching” among scan images may be used for motion compensation.

This approach is useful for post-processing; whereas for accurate compensation
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Figure 3.3: Geometry for predicting motion-phase and compensation from
distributed scatterers
Obtained from [96]

at the signal processing level, the phase corrections need to be performed at I/Q

level of data. A lower-level motion effect mitigation approach for PARADOX1

is “predictive scan correlation” (PSC) algorithm, which is based on an idea

of “tracking” the weather blocks from scan to scan. As shown in Figure 3.2,

the aircraft performs PPI scans at time T and T + Ts, (i.e. each scan takes Ts

amount of time). For PARADOX1, Ts is about 3 sec for a 120◦ azimuthal scan.

The scan at time T can be used as a reference to predict how each cell in this

scan evolves into a new cell in the next scan. As a result, a progressive and

“tracked” state estimation of the same weather block for every aircraft update

interval can be established. This motion compensation involves three steps:

1. Dwell-to-Dwell phase re-alignment: Phase coherence is maintained
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from dwell-to-dwell, so the retrieval algorithms that depend on the phase

accuracies, such as KDP computation, in the future, can achieve coherent

results over the spatial zone of interest. Range re-alignment is performed

from dwell-to-dwell at each range gate where each dwell is correspondent

to one radial direction or a range profile. Small range re-alignment based

on applying a progressive phase correction for a number of consecutive

pulses or dwells is applied to the received signal to compensate the motion

of platform at adjacent dwells. The phase compensation is based on

the following relation between the received complex signal sr and the

corrected signal sl.

sl(φ, t) = sr(φ, t) exp
[
−j 2π

λ

{
2vradmT + v2

tan

R
(mT )2+

(xicosφ+ yisinφ)cosθ − zisinθ
}]

(3.1)

for m = 1, 2, · · · ,M pulses where vrad = vpcosα and Vtan = vpsinα. The

associated geometry is depicted in Figure 3.3.

2. Scan-to-Scan tracking: The relative velocity of the weather block is

used to predict the location (updated range and azimuth) of the weather

block in the next scan. This step is similar to [95] while using predictive

motion alignments rather than inter-frame matching.

3. Signal calibration: A power level adjustment on the weather pixels

based on updated relative location to radar and the updated radar

resolution volume size is applied for the same weather block. Then the

adjusted time series from the previous scan is combined with the time

series at the next scan for further processing (such as noise reduction for

the weather region of interest).
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Figure 3.4: Pulsed Airborne Radar Spectrum

3.3.2 Motion Compensation for Severe Weather Obser-

vation Mode

For severe weather observation mode, the impact of aircraft motion is mainly

on Doppler estimation and Doppler spectrum distortion, which is similar to

most airborne pulsed Doppler radars [37], [38], [97]. By knowing accurate

air-speed and radar parameters like the antenna center location/orientation,

the airborne radar spectrum center can be shifted “back” to be equivalent

to a ground-based radar observation. This basic approach derived from [38]

has been implemented in previous similar work on airborne remote sensing

[47]. Typical airborne radar spectrum contains the desired weather target

spectrum and different clutters, which are folded through the non-ambiguity

Doppler extents as shown in figure 3.4. In PARADOX1, the altitude line

return is usually ignored, and the mainlobe clutter usually centers close to the

zero-Doppler line. Spectrum transformation method is used to transform the

airborne measured spectrum to an equivalent ground-based radar spectrum,
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by removing (shifting) the effects of aircraft motion velocity. This approach is

proven to be effective for the existing PARADOX1 data measurements, and has

the added benefit of easier implementations down the processing chain using

ground-radar based radar algorithms. Mainlobe ground clutters and altitude

line clutters will return to zero-Doppler after the spectrum transformation

processing, which is removed using typical notch filtering. The sidelobe clutters

are more complicated and currently they are treated as enhanced noise power

in noise reduction processing. More advanced processing of such clutters can

be applied if multiple phase centers are available, which is planned for future

PARADOX upgrades.

3.3.3 Noise Reduction, Attenuation Correction, and

Calibration

A simple technique of thresholding the return power is used as the method

of noise control and reduction. For weather sensing, the targets are generally

dense. Furthermore, convective storm clouds often have high reflectivity. These

high reflectivity weather targets often provide ample SNR to effectively use

thresholding as a way of suppressing noise level. Attenuation correction can

be performed by adding the range squared dependence to the raw power

return. A simple threshold can be kept to avoid overcompensation of clear-air

attenuation. The calibrated reflectivity can then be obtained by comparing

with well established ground based radars like NEXRAD’s PPI or CAPPI

(Constant Altitude PPI) which is done by evaluating the reflectivity values

from PARADOX1 radar and NEXRAD for the same beam coverage region of

weather.

As part of the calibration procedure, in addition to the radar constant cali-
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Figure 3.5: Performance of GMPE for X-band attenuation corrections (using
simulated weather radar range profile based on weather models) and comparison
with existing technologies. DP: Phase Parametrization, CI: Constant Iterative,
FV: Final Value, SCWC: Self-Consistent With Constraints
Obtained from [61]

bration and range square dependence calibration, atmosphere attenuation due

to hydrometeors need to be corrected for weather radars operating at X-band

or higher frequencies. For example, based on numeric hazard detection simula-

tions, the impact of path attenuation can reduce the hail detection probability

to 30-40% compared to attenuation-free detections. The GMPE (Gaussian-

Mixture Parameter Estimator) trained by Monte-Carlo simulations has been

successfully developed for attenuation correction and has been compared to
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existing methods (as shown in Figure 3.5, with more detailed discussion in [61]).

GMPE not only demonstrated lower averaged “Root Mean Square” errors, but

also revealed a rather “even” level of errors through the range. This is a big

advantage over other techniques, which have either a higher level of estimation

error (such as the power-law related approach), or possible accumulation of

errors in cases with longer range. GMPE based attenuation estimation is ap-

propriate for radars with a longer observation range, thus providing a possible

earlier warning of “weather hazards behind hazards”.

3.3.4 Doppler and Spectrum Width Estimation

Motion compensated spectrum is used to estimate proper Doppler velocity

and Spectrum Width. Basic algorithms for estimating radial velocity and

spectrum width use standard the Lag-1 and Lag-2 pulse-pair estimators as

described in [3]. Selecting a higher PRF allows more accurate estimate of

velocity (as the Doppler spectrum has wider span and therefore includes more

of the non-aliased spectrum peak due to higher velocities) while at the same

time decreases maximum unambiguous range. The maximum unambiguous

velocity as expressed in equation 2.11 is,

vua = ±λ · PRF4 (3.2)

while, the maximum unambiguous range is

Rua = c

2PRF (3.3)
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The ambiguity relationship between range and velocity can then be expressed

as [3]

Ruavua = c · λ
8 (3.4)

where, c is the speed of light and λ is the wavelength. Therefore, PRF selection

impacts not only velocity estimates but also range estimates. However, multiple

PRF’s can be staggered to achieve higher values of the maximum unambiguous

velocity while at the same time being able to measure further in range [3],

[60]. For example if a second PRF’s is chosen such that PRF2/PRF1 = 3/2,

then the maximum unambiguous velocity triples than that of using single,

PRF1 and doubles than that while using only PRF2. Additionally, more than

two PRF’s can be staggered. Furthermore, there are multiple schemes for

implementing the staggered PRF’s to achieve a non-aliased velocity estimate.

The PRF’s can be staggered between pulses, dwells/CPI’s, or scans.

Since PARADOX1 can support multiple CPI’s, different PRF’s can be

used to increase the maximum unambiguous velocity [98] without changing

the maximum unambiguous range. One specific case using this method is

presented in chapter 6 of this study. More advanced “multi-lag” algorithms

are also possible to use, but are limited by the number of pulses available

for airborne CPI’s. In the low-SNR cases, noise reduction for Lag-1 phase

outputs may sometimes be needed to enhance the quality of velocity estimate.

One important aspect is the choice of noise floor, which not only affects the

reflectivity result plots after quality control, but also affects the spectrum width

estimation results.
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3.4 End-to-end Radar Simulator

A multi-mission radar study naturally includes development of novel signal

processing techniques and algorithms. These algorithms need to be properly

tested and validated for data originating from a variety of radar systems.

Each of these radar systems is accompanied by its own set of advantages

and shortcomings. While it may be desirable to acquire and operate on a

“real” measured data, often, such data could be hard to obtain due to lack of

resources. On the other hand, data with certain features prove to be more

important for algorithm development. It might be desired to operate on an

ideal dataset or data with specific properties like SNR levels or specific radar

parameters like waveform, antenna pattern, etc. Furthermore, it is impractical

to seek measured data from every conceivable pair of radar parameters and

environment variables. Therefore, it is prudent to develop a software based

simulation suite that can generate data with various properties originating

from various radar/environment combinations. Undoubtedly, such simulator

also needs to be able to generate a realistic data.

An end-to-end radar simulator is constructed using various system objects

from Mathworks R©Matlab Phased Array System Toolbox [99]. A generalized

workflow of the simulator is depicted in 3.6 where each block represents a

system object. The toolbox is, in essence, an API (Application Programming

Interface) that allows creation of, interactions with, and manipulations of

various radar system components. For instance, a customized antenna object

can be created with a field measured antenna pattern. This antenna can be

the sensor for Radiator and/or Collector system objects. The interaction of

Radiator/Collector objects with the environment is accomplished through the

toolbox routines. The end result is the generation of the data as if it were
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Figure 3.6: Radar Simulator Objects and Interactions

measured by an antenna with the given (field measured) pattern. There are

various other objects and routines that not only relieve some of the burden

that accompanies a realistic simulation environment but also help reduce the

potential for errors.

However, the toolbox is neither an end-all package nor it provides all the

required routines that is necessary for radar studies such as this one. Since this

study is mostly concerned with the steps after the I/Q data generation, the

toolbox is used to generate the I/Q data whenever feasible and appropriate.

Advanced signal processing algorithms presented in this study are not a part

of the Mathworks R©Matlab Phased Array System Toolbox software suite and

are fully coded, tested, and validated. The toolbox provides a software based

testing and validation platform for algorithms presented in this study.

Although software based radar simulators have been used in various radar

studies for a long time, Mathworks R©Matlab Phased Array System Toolbox is a

relatively new product. The Phase Array System Toolbox based radar simulator

is part of an ongoing effort to create software based validation tool. It has been
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Figure 3.7: Simulated PPI of a Wind Farm
Obtained from [47]

a part of previous studies like [47]. In that particular study, radar returns from

Wind Turbines were simulated and machine learning methods were employed

to recognize the Micro-Doppler signatures from the Wind Turbine. The radar

platform in the simulation was an airborne radar whose parameters matched

PARADOX1 system parameters (except antenna whose beamwidth was ∼ 2◦

in the simulation). The scene comprised of the radar scanning downwards,

towards a wind farm that contained a moving target. Ground Clutter returns

in the simulation were calculated using constant-gamma clutter model. The

scan extent was ∼15 km in range and 120◦ sector in azimuth with a single

elevation angle. Each CPI consisted of 64 pulses with a PRF of 10 KHz. The

PPI of the scan is shown in Figure 3.7 which shows the gridded Wind Turbines
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Figure 3.8: Micro-Doppler features of a range-azimuth cell containing Wind
Turbine, Ground Clutter, and ground moving target
Obtained from [47]

in the middle of the plot as well as ground clutter at about 10 km in slant

range.

In addition to return power calculation, the simulator is also capable of

simulating Doppler phase changes due to the target/platform motion. The

same study, [47], focuses on recognizing Micro-Doppler signatures and therefore

proper calculation of Doppler phase shift in the simulation was necessary.

Figure 3.8 shows the Time-Doppler plot of a range-azimuth cell that contains

a Wind Turbine, Ground Clutter, and a ground moving target. The constant

Doppler (around 0 m/s and 40 m/s velocity) with respect to time are indicative

of targets with linear motion with a constant velocity for 50 ms of illumination

time. On the other hand, around -40 m/s velocity, there is an apparent spread
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of energy in various Doppler bins with respect to time. This spread of energy is

caused by the rotational motion of the Wind Turbine blades. The simulator is,

therefore, capable of simulating the intricate Micro-Doppler patterns associated

with rotating Wind Turbine blades. Please note that the Doppler modulation

due to the platform motion is corrected in this plot.

In this study, the simulator is used to generate I/Q as well as Matched

Filter returns for validating super-resolution algorithms like Iterative Adpative

Approach (IAA) and Matched filter based Iterative Adaptive Approach (MF-

IAA). IAA and MF-IAA can enhance resolution in range, and Doppler domain.

Both of these algorithms will be derived as well as discussed in greater length

in Chapter 4. The simulated data to validate those algorithms were generated

using the aforementioned simulator, although, in this case, only a single

azimuth/elevation angle were simulated. The results of the simulator will

be presented in the context of those super-resolution algorithm discussions.

The simulator was also used to generate a series of scan data which was used

to validate Sense and Avoid tracking for a two-target scenario. The simulator

in this case played a very important role as flying multiple planes for tracking

validation is an expensive endeavor. The results, again, will be presented in

Chapter 5 in the context of SAA tracking.
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Chapter 4

Real-Aperture Super-Resolution

Cost versus performance trade-off is omnipresent in technology and a radar is

not particularly distinct. Especially for an airborne radar, there are additional

stringent requirements in size, weight, and power (together referred as C-SWaP).

As mentioned previously, this study focuses on software based enhancement to

the radar systems as a way of addressing the various shortcomings associated

with low C-SWaP systems. One particular area of concern is resolution. It

is always desirable to have high resolution in range/angle/Doppler so that

targets in close proximity can be properly resolved. However, airborne radars

often use relatively small aperture size (12 inches or less) but are still expected

to provide enough resolution for proper target discrimination. Low sensor

resolution results in wrong information (e.g. number of targets in the scene),

inaccurate information (in range, bearing or velocity of the target), and overall

degradation of system performance.

One potential cause of such degradation is Matched filter sidelobes which

can mask weaker targets in the vicinity of stronger targets. Therefore, an

Adaptive Pulse Compression (APC) algorithm is often desired using which the

effect of sidelobes can be mitigated while simultaneously enhancing resolution

[55], [57], [100]. The APC algorithms are expected to perform at lower Signal
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to Noise Ratio (SNR) and support diversified waveforms while minimizing

the disruptions to the processing chain of current generation of radars. Such

algorithms, many of which are iterative, require intensive computations although

real-time implementation is highly desirable in an airborne sense and avoid

scenario. Furthermore, Doppler processing is being used as an enhanced

approach for sense and avoid tracking process, the result of which is the

capability of removing clutter as well as resolution enhancement.

One such APC algorithm is Iterative Adaptive Approach (IAA) [56], [101]

and Matched Filter based Iterative Adaptive Approach (MF-IAA) [57]. Both

IAA and MF-IAA are non-parametric, iterative, weighted least square based

spectral estimation algorithms. IAA algorithm is versatile in the sense that it

can also applied to array antennas [102], [103]. The amplitude and phase at

the output of those algorithms translate to a resolution enhanced estimate of

of RCS amplitude and Doppler frequency of the ground truth. IAA takes its

input as non-matched-filtered “raw” I/Q data while MF-IAA does the same

with matched-filtered data.

4.1 Problem Formulation

For radar sensing of remote targets, especially from a mobile (airborne) platform,

there is a challenge of utilizing limited physical aperture size, dwell time, and

signal bandwidth to achieve the best estimate (of remote target properties).

Therefore, it is desirable to have algorithms that can mimic an ideal radar

system and provide better estimates of target properties (e.g. range, velocity,

RCS, etc.). The goal of adaptive pulse compression algorithm is to achieve the

best estimate of remote target properties using limited information measured

from a non-ideal system. Figure 4.1 depicts a typical scenario and return signal
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Figure 4.1: Depiction of Radar Signal Model

description for an airborne radar system.

For a radar system transmitting a single pulse where the target is stationary,

the return signal to the radar can be modeled as the convolution between the

transmitted waveform and complex RCS (corresponding to the targets in the

scene) which can be represented as,

y(n) =
N−1∑
k=0

skαn−k + εn n = 1, 2, · · ·N (4.1)

where εn is receiver noise and s is the phase-coded transmit waveform with N

subpulses which can be further expressed as,

sk = ej2πφ k = 1, 2, · · ·N (4.2)

here, αk is the complex impulse response (of a target) whose amplitude is

proportional to radar cross section (RCS) of the ground truth and the phase is
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the Doppler modulation due to the motion of the target in the kth range cell.

Please note that in equation 4.1 the effect of antenna pattern is not taken into

account because for a range profile (considering a single azimuth and elevation

angle), the antenna pattern is an invariant gain factor which can be removed

for simplicity.

4.2 Iterative Adaptive Approach (Single Pulse Case)

A single pulse can be used to estimate Doppler velocity provided the pulse is

long enough and the target has high enough velocity. The extreme example of

such a system is a continuous wave radar which can precisely measure Doppler

velocity. From a mathematical point of view, as long as the target produces a

measurable Doppler shift, a proper estimate of radial velocity can be made. The

single pulse case of Iterative Adaptive Approach (IAA) is more of a theoretical

construct as most modern radar systems are capable of transmitting multiple

coherent pulses.

The reflected signal from a stationary target is, simply, an amplitude

modulated copy of the transmitted signal and can be expressed as y = αs+ ε

where y is the returned signal, α is the complex amplitude/voltage response

related to radar cross section (RCS) of the remote target, s = [s0, s1, · · · , sN−1]T

is the length N (sub-pulses) transmitted waveform and ε is the receiver noise.

If the target possesses some radial velocity, an incremental Doppler phase shift

would be introduced to the received signal due to the time delay between

sub-pulses. The Doppler modulation can be added to the transmitted signal

because Doppler shift due to target motion is equivalent to that due to the

radar platform motion. In that case, the reflected signal from a moving target
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can be expressed as,

y = αs(ω) + ε (4.3)

where, s(ω) = [s0, s1e
jω, s2e

j2ω, · · · , sN−1e
j(N−1)ω]T . If multiple targets, sta-

tionary and moving, are present in the range profile, N continuous return signal

from the lth range bin can be written as [102]

yl =
D∑
d=1

αl,ds(ωd) +
N−1∑

n=−N+1
n6=0

D∑
d=1

αl+n,dJns(ωd) + εl (4.4)

Here, αl,d denotes the complex RCS for lth range bin and dth Doppler bin.

There are total L range bins and D Doppler bins. The matrix Jn is of the

form,

Jn =



0 · · · 1 · · · 0
... . . . . . . ...

0 . . . 1
... . . . . . . ...

0 · · · 0 · · · 0


(4.5)

and is a square matrix of size N . Jn has 1s in nth sub diagonal and 0s elsewhere.

Jn = JT−n and Jn = 0 for |n| ≥ N . As can be seen in equation 4.4, return

signal is a composite of reflected signal from the range (and Doppler) bin of

interest (lth range bin, and dth doppler bin) as well as reflected signal from

the adjacent range bins from l −N + 1 to l +N − 1 due to propagation time

difference among the sub-pulses. With this signal modeling, equation (18-19)

in [102] have given the iterative solution to the equations of IAA as,

α̂l,d =
sH(ωd)R−1

(i−1)(l)yl
sH(ωd)R−1

(i−1)(l)s(ωd)
(4.6)
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For range bins l = 1, · · · , L and Doppler bins d = 1, · · · , D. The covariance

matrix, R, can be calculated as,

R(i−1)(l) =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1
|αl+n,d|2Jns(ωd)sH(ωd)JTn (4.7)

4.3 Matched Filter Output

Matched Filter is the complex-conjugated, time-reversed copy of the trans-

mitted pulse. In cases where transmitted signal is known (like in radars), it

is theoretically proven to yield the maximum signal to noise ratio (SNR) in

presence of additive stochastic noise. The output after applying Matched Filter

to equation 4.4 takes the form [56],

x̂l = sHyl =
D∑
d=1

αl,ds
Hs(ωd) +

N−1∑
n=−N+1
n6=0

D∑
d=1

αl+n,ds
HJns(ωd) + sHεl (4.8)

where, x̂l is the output of the Matched Filter which is (in general) the output of a

radar system itself. As in the case of I/Q data (eq 4.4) and apparent in equation

4.8, Matched Filter output doesn’t exclusively depend on the target at lth range

bin, and dth Doppler bins but also on the targets in nearby range, and Doppler

cells. This is shown by the addition of sHJns(ωd) terms. These additions are

due to the contributions through sidelobes which often results in sub optimal

performance, especially, in target dense environments. Hence, the Matched

Filter outputs from multiple continuous range cells can be used to generate a

better estimate of the ground truth state. Let x̃l = [x̂l−Kl
, · · · , x̂l, · · · , x̂l−Kr ]T

be the vector of Matched Filter outputs that includes 0 ≤ |Kl| ≤ N − 1

neighboring cells in the left and 0 ≤ |Kr| ≤ N − 1 neighboring cells in the right

around lth range cell of interest [102]. Note that Kl and Kr don’t need to be
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equal but a balanced filter usually yields better result. x̃l can be written as,

x̃l =



∑D
d=1 αl,ds

HJ−Kl
s(ωd) +∑N−1

n=−N+1
n6=Kl

∑D
d=1 αl+n−Kl,ds

HJns(ωd) + sHεl−Kl

...∑D
d=1 αl,ds

Hs(ωd) +∑N−1
n=−N+1
n6=0

∑D
d=1 αl+n,ds

HJns(ωd) + sHεl

...∑D
d=1 αl,ds

HJ−Krs(ωd) +∑N−1
n=−N+1
n 6=−Kr

∑D
d=1 αl+n+Kr,ds

HJns(ωd) + sHεl+Kr


(4.9)

Let, gn(ωd) = [sHJn+Kl
s(ωd), · · · , sHJns(ωd), · · · , sHJn−Krs(ωd)]T , then equa-

tion 4.9 can be re-written in a compact form as,

x̃l =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1

αl+n,dgn(ωd) + ε̃l (4.10)

where ε̃l = [sHεl−Kl
, · · · , sHεl, · · · , sHεl+Kr ]T . There iterative solution at the

ith iteration to equation 4.10 is [101], [102],

α̂l,d =
gH0 (ωd)R−1

(i−1)(l)x̃l
gH0 (ωd)R−1

(i−1)(l)g0(ωd)
(4.11)

For range bins l = 1, · · · , L and Doppler bins d = 1, · · · , D. Then the covariance

matrix, R, can be calculated as,

R(i−1)(l) =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1
|αl+n,d|2gn(ωd)gHn (ωd) (4.12)

4.4 Doppler Shifted Matched Filter

Equation 4.8 formulates the Matched filter operation without Doppler phase

shift. Effectively, the Matched filter operation is conducted assuming zero

Doppler modulation in the returned signal. This is potentially a cause for
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degradation in SNR as the Doppler modulation within sub-pulses do not match.

Equation 4.8 can be updated to reflect the sub-pulses Doppler modulation as

follows,

ẑl,q = sH(ω̃q)yl =
D∑
d=1

αl,ds
H(ω̃q)s(ωd)+

N−1∑
n=−N+1
n6=0

D∑
d=1

αl+n,ds
H(ω̃q)Jns(ωd) + sH(ω̃q)εl (4.13)

where, ω̃q is the Doppler-shifted Matched filter. Note that ω̃q may not be

necessarily from the Doppler bins set {ωd} nor it needs to be within the

Doppler interval of interest. However, it may be desirable to select ω̃q from the

set of Doppler bins {ωd}. Matched filter responses from multiple Doppler bins

may be grouped together for further processing. Let z̃l = [ẑl,1, ẑl,2, · · · , ẑl,Q]T

be such a vector where Q is the total number of Doppler bins where Matched

filtering is performed. z̃l can be expressed as,

z̃l =



∑D
d=1 αl,ds

H(ω̃1)s(ωd) +∑
n

∑D
d=1 αl+n,ds

H(ω̃1)Jns(ωd) + sH(ω̃1)εl∑D
d=1 αl,ds

H(ω̃2)s(ωd) +∑
n

∑D
d=1 αl+n,ds

H(ω̃2)Jns(ωd) + sH(ω̃2)εl
...∑D

d=1 αl,ds
H(ω̃Q)s(ωd) +∑

n

∑D
d=1 αl+n,ds

H(ω̃Q)Jns(ωd) + sH(ω̃Q)εl


(4.14)

where, for the second summation, n = −N + 1, · · · ,−1, 1, · · · , N − 1 and note

n 6= 0.

If we let S = [s(ω1), s(ω2), · · · , s(ωD)] and S̃ = [s(ω̃1), s(ω̃2), · · · , s(ω̃Q)],

we can express equation 4.14 in a more compact form as,

z̃l = Fαl + εl (4.15)
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where, F = S̃HS = [f1, f2, · · · , fD] and,

εl =
N−1∑

n=−N+1
n6=0

S̃HJnS + S̃Hvl (4.16)

Equation 4.15 can be solved using the IAA algorithm. IAA estimation at the

ith iteration is,

α̂
(i)
l,d =

fHd R−1
(i−1)(l)z̃l

fHd R−1
(i−1)(l)fd

(4.17)

for range bin l = 1, · · · , L and Doppler bin d = 1, · · · , D, where the covariance

matrix R is,

R(i−1)(l) =
N−1∑

n=−N+1

D∑
d=1
|α(i−1)
l+n,d|2S̃HJns(ωd)sH(ωd)JTn S̃ (4.18)

Computation of MF-IAA algorithm depends largely on the modified filter

length, Q. Selection of ωq can be flexible and lead to a much smaller filter than

the original filter (Q << N) which results in more efficient MF-IAA.

4.5 MF-IAA: Multipulse Case

In most radar systems, multiple pulses are transmitted and received which can

be combined to generate a better output using the MF-IAA algorithm. The N

continuous returned signal for lth range bin from the pth pulse can be written

as [101],

yl(p) =
N−1∑

n=−N+1

D∑
d=1

αl+n,de
j(p−1)TrωdJ−ns(ωd) + εl(p) (4.19)

where Tr is the pulse repetition time divided by the duration of a single subpulse

(numbers of subpulses within one Pulse Repetition Time, PRT). If the return

from the pulses yl(p), 1 ≤ p ≤ P are stacked on top of each other, the return
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takes the form [101],

yl =
N−1∑

n=−N+1

D∑
d=1

αl+n,dp(ωd)⊗ (J−ns(ωd)) + εl (4.20)

where yl = [yTl (1), · · · , yTl (P )]T , ⊗ is the Kronecker Matrix Product, and

p(ω) = [1, ejTrω, · · · , ej(P−1)Trω]T .

The matched filter response takes the form,

x̂l = sHyl =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1

αl+n,dp(ωd)⊗ (J−ns̃(ωd)) + sHεl (4.21)

where, s̃(ω) = [s̃−N+1−Kl
(ω), · · · , s̃0(ω), · · · , s̃N+1+Kr(ω)]T and,

s̃k(ω) =
N−1+Kr∑

n=−N+1−Kl

sHn sn−k(ω) k = −N + 1−Kl, · · · , 0, · · · , N + 1 +Kr

(4.22)

Note, Jn here is a square matrix of size 2N + Kl + Kr that has 1s in nth

sub-diagonal and 0s elsewhere. If we let fn(ωd) = p(ωd) ⊗ (Jns̃(ωd)), and

sHεl = ε then we can re-write equation 4.21 in a compact form as,

x̂l =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1

αl+n,dfn(ωd) + ε (4.23)

Equation 4.23 can be solved by applying the IAA algorithm [102]. The estimate

at the ith iteration is,

α̂
(i)
l,d =

fH0 R−1
(i−1)(l)x̂l

fH0 R−1
(i−1)(l)f0

(4.24)

and,

R(i−1)(l) =
N−1+Kr∑

n=−N+1−Kl

D∑
d=1
|αl+n,d|2fn(ωd)fHn (ωd) (4.25)
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4.6 Simulation Studies

Iterative Adaptive Approach (IAA) and Matched Filter Iterative Adaptive

Approach (MF-IAA) can both produce super-resolution results. Numerical

simulations are used to test the overall performance of IAA and MF-IAA against

Matched Filter results. The simulation method/software used is described

in Chapter 3. While there are multitude of approaches as well as metrics

for comparisons, this study focuses more on the impact of waveforms and

Signal-to-Noise-Ratio (SNR). The Range-Doppler image from Matched Filter

output is generated using FFT-based spectrum estimator and compared against

Range-Doppler image generated by the IAA and MF-IAA algorithms. Note

that both IAA, and MF-IAA are spectral estimators and their outputs are

Range-Doppler images of the scene.

4.6.1 Impact of Waveforms

4.6.1.1 IAA

I/Q returns are simulated for a variety of transmit waveforms and compared

against IAA outputs. For the simulations, 20 pulses are transmitted with a Pulse

Repetition Frequency (PRF) of 10 KHz. This provides a frequency resolution

of 500 Hz in Range-Doppler image using traditional spectrum estimation from

Matched Filter output. The Iterative Adaptive Approach (IAA) algorithm

attempts to improve the resolution by a factor of 10 (i.e with final resolution

of 50 Hz, same as transmitting 200 pulses). The algorithm is iterated 10 times

in each case. In the resulting figures, the circles represent ground truth with

darker color corresponding to higher SNR for the targets. IAA is used with all

20 pulses in each iteration.
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Figure 4.2: Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits rectangular pulse waveform

Figure 4.3: Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 13 bits Barker Code waveform
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Figure 4.4: Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits P4 Code waveform

Figure 4.5: Comparison between Range-Doppler Images resulting from Matched
Filter and IAA outputs for 16 bits Pseudo Random Code waveform
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Figures 4.2, 4.3, 4.4, and 4.5 depict the Range-Doppler image from Matched

filter output (the upper portion) and IAA algorithm output (the lower portion)

for rectangular pulse, phase coded 13 bits Barker Code, 16 bits P4 code, and

16 bits Pseudo Random code respectively. It can be seen from the figures that

IAA does achieve super-resolution in Range-Doppler domain while properly

estimating the ground truth. IAA does work for all of the waveforms tested and

the impact of waveform has more to do with the autocorrelation function (which

is also the matched filter output) of the particular waveform. As anticipated,

the rectangular pulse in figure 4.2 has no modulation within the pulse and

therefore has the worst performance. For phase coded waveforms with similar

lengths (Barker, P4, and Pseudo Random) there are significant differences in

Matched Filter based Range-Doppler image whereas there are no significant

difference in IAA based Range-Doppler image. Again, these differences in

Matched Filter output can be attributed to the autocorrelation function of

those waveforms from which IAA doesn’t seem to be impacted. While leaving

room for future studies, it can be reasonably asserted that the performance of

IAA doesn’t depend on the type of waveform used.

As aforementioned, there are different methods to use the multiple available

pulses. In figures 4.2, 4.3, 4.4, and 4.5 IAA is directly extended to multi-pulse

case and all 20 pulses are used in all iterations. Another way of testing is by

dividing the pulses in a CPI into multiple groups, applying multi-pulse IAA to

each group and then averaging the IAA outputs from those groups. This can

potentially improve the SNR by way of averaging and thereby reducing the

noise floor. Figure 4.6 illustrates the results for the case of Pseudo Random

Phase Coded waveform. There are 20 available pulses from which 4 groups

of 5 pulses each are created. IAA algorithm is separately applied in each of
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Figure 4.6: Comparison between Range-Doppler Images resulting from Matched
Filter output and IAA (obtained by averaging groups of pulses) output for
16-bits Pseudo Random Coded waveform

those 4 groups, then the outputs are averaged, and finally compared to the

Matched Filter Range-Doppler output. As can be seen from figure 4.6, when

compared to the Matched Filter output, both the Range-Doppler resolution as

well as the SNR are improved by applying this technique. This technique of

grouping followed by IAA and finally averaging can also be compared against

the previous case of using all the pulses once. It can be seen that the averaging

technique produces lower resolution (in Doppler) image apparent by the spread

of targets’ energy in the Doppler bins. The SNR, on the other hand, seems to

be better using the averaging technique. The lower resolution but higher SNR

is expected as using a smaller number of pulses doesn’t quite provide the same

resolution as using a larger number of pulses. The averaging process naturally

decreases the noise floor value resulting in an increased SNR.

77



Figure 4.7: Comparison between Range-Doppler Images resulting from Matched
Filter and MF-IAA outputs with 16 bits Rectangular pulse waveform

4.6.1.2 Matched Filter IAA

As in the case of traditional Iterative Adaptive Approach, the impact of

waveforms were also tested in MF-IAA algorithm and compared against Range-

Doppler image from Matched Filter output. In this part of numerical simula-

tions, 30 pulses are used with a PRF of 6 KHz where the SNR is maintained

∼ 15 dB. This results in a Doppler resolution of 200 Hz in Matched Filter case

while MF-IAA improves the resolution by a factor of 10 (i.e. final Doppler

resolution of 20 Hz). Again, the circles represent the ground truth and darker

color represent higher SNR for the targets. Similar to the case of traditional

IAA, MF-IAA algorithm is also iterated 10 times in each case and in general,

the convergence is achieved in less than 10 iterations.

The Matched Filter output (the upper portion) and the MF-IAA output
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Figure 4.8: Comparison between Range-Doppler Images resulting from Matched
Filter and MF-IAA outputs with 13 bits Barker Code as waveform

Figure 4.9: Comparison between Range-Doppler Images resulting from Matched
Filter and MF-IAA outputs with 16 bits Phase Coded (P4) waveform
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Figure 4.10: Comparison between Range-Doppler Images resulting from
Matched Filter and MF-IAA outputs with 16 bits Pseudo Random waveform

(the lower portion) results in Figures 4.7, 4.9, 4.8, and 4.10 aim to compare

the impacts of four different transmit waveforms; 16 bits Rectangular Pulse,

16 bits P4 phase coded, 13 bits Barker, and 16 bits Pseudo Random phase

coded waveform respectively. As can be seen from figure 4.7, with a rectangular

transmit pulse, Matched Filter output does not have good range resolution

and suffers with low resolution in (Doppler) frequency domain. The MF-IAA

output shows much better resolution in both range and Doppler domains. This

is because MF-IAA is able to use the autocorrelation of the transmit waveform

while estimating the ground truth. For rectangular waveform, autocorrelation is

a “sinc” function which can provide better range resolution. Doppler resolution

is a function of number of pulses and sub-pulses transmitted so MF-IAA can

properly estimate the Doppler resolution. Figures 4.8, 4.9, and 4.10 show some

difference in Matched Filter output; sidelobes of P4 waveform seem to be lower
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than that of Pseudo Random waveform while Barker waveform is somewhere

in the middle. This is due to the property of the transmitted waveforms

themselves, more specifically because of their autocorrelation functions. In

MF-IAA case, the noise floor of P4 and Barker waveforms seem to be slightly

lower than that of Pseudo Random waveform. As for the targets themselves,

P4, Barker and Pseudo Random waveforms have similar resolution both in

terms of range and Doppler. Hence, it can be concluded that, while low sidelobe

waveforms provide some advantages, the overall performance of MF-IAA is

invariant with the type of waveforms used. The results (from MF-IAA) in all

cases are better than that of traditional Matched Filter.

4.6.2 MF-IAA: Impact of Signal to Noise Ratio (SNR)

A similar simulation study is performed to evaluate MF-IAA performance with

regards to the SNR metric. Similar to previous case, 30 pulses are used with

a Pulse Repetition Frequency, PRF, of 6 KHz. The transmit waveform in

all cases is a Linear Frequency Modulated (LFM) waveform of length 100 µs

with a bandwidth of 6 MHz. Again, the Doppler resolution in traditional

Range-Doppler image from Matched Filter output is 200 Hz which has been

improved to 20 Hz. The number of iterations remains to be 10 which generally

results in convergence.

Figures 4.11, 4.12, and 4.13, show the comparison between Range-Doppler

Image resulting from Matched Filter outputs (the upper portion) and MF-IAA

outputs (the lower portion) for three different SNR levels while using the same

LFM transmit waveform. The circles in MF-IAA results are the ground truth.

The varying colors in the ground truth circles represent the target radar cross

section (RCS) amplitude. It can be seen that the resolution in range-Doppler
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Figure 4.11: Comparison between Range-Doppler Images resulting from
Matched Filter (Top) and MF-IAA (Bottom) outputs for SNR ∼ 0dB (for each
pulse)

domain has improved in all of the three cases. Figure 4.11 depicts the results for

the first case where SNR is ∼ 0 dB in each pulse. There are only 3 discernible

targets in the Range-Doppler plot from Matched Filter output when there

are five different targets in the simulation. MF-IAA is able to enhance the

RCS signatures of five targets but because of low SNR, the targets are not as

distinct as desired. Figure 4.12 shows results from the second case where SNR

is ∼ 5 dB in each pulse. Again, in the Matched Filter case, there is no proper

distinction between the targets while in MF-IAA case, there are five vivid

targets. The final case has the highest SNR (∼ 10 dB in each pulse), and is

presented in figure 4.13. In Matched filter case, the two targets at the farthest

range are more distinct (both targets have same range but different Doppler

frequency); however, the two targets in mid-range (same Doppler frequency

but distinct and near range) appear as a single target. Two nearby targets
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Figure 4.12: Comparison between Range-Doppler Images resulting from
Matched Filter (Top) and MF-IAA (Bottom) outputs for SNR ∼ 5dB (for each
pulse)

with similar Doppler frequency is a common scenario in radar and it can be

observed that MF-IAA was able discriminate such targets whereas Matched

Filter was not. Hence, it can be agreed that MF-IAA performs better than

Matched Filter even in low SNR cases.

4.7 Measurement Data

For validation using measured data, PARADOX1 as described in Section 2.1 of

Chapter 2 was used to collect returns from a nearby water tower. The Range-

Doppler image generated from Matched Filter output was compared against

those generated by IAA and MF-IAA algorithms. In addition, radar returns

were collected from an airborne target (Piper Seneca) through coordination

with University of Oklahoma, School of Aviation. Those returns were Matched
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Figure 4.13: Comparison between Range-Doppler Images resulting from
Matched Filter (Top) and MF-IAA (Bottom) outputs for SNR ∼ 10dB (for
each pulse)

Filtered and the generated Range-Doppler image was compared against IAA

and MF-IAA outputs.

Figure 4.14 shows the Plan Position Indicator (PPI) scan of a scene that

comprises of the water tower about 6.6 km from the radar. A sample range

profile, highlighted as the white dotted line in the figure (4.14), is extracted in

which IAA and MF-IAA algorithms were applied. Each coherent pulse interval

(CPI) in this case consisted of 30 pulses with PRF of 5 KHz (Doppler resolution

of about 166 Hz). Both IAA, and MF-IAA were used to enhance the Doppler

resolution by a factor of 10 (new Doppler resolution is about 16 Hz). Both

results show significant enhancement in resolutions. The water tower target

appears in 0 Hz and about 6.6 km in each case. In the IAA case, the individual

scattering centers is seen while in MF-IAA just a single target with a weaker

range sidelobe is seen. Doppler Resolution in both cases are enhanced; evident
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Figure 4.14: PPI Scan from PARADOX1 for a scene containing a Ground
Target. The dotted line is the azimuth angle used for IAA and MF-IAA

Figure 4.15: Comparison between Range-Doppler Images resulting from
Matched Filter Output (Top) and IAA Output (Bottom) for Ground Tar-
get (Water Tower)
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Figure 4.16: Comparison between Range-Doppler Images resulting from
Matched Filter Output (Top) and MF-IAA Output (Bottom) for Ground
Target (Water Tower)

by the fact that the target spans a single Doppler bin. There are no Doppler

sidelobes in the IAA as well as MF-IAA results.

Similarly, figure 4.17 shows the PPI scan of a scene containing an airborne

target (Piper Seneca). The PARADOX1 radar was located at the rooftop while

the plane flew over in a predetermined path. As in previous case, the dotted

white line highlights the range profile extracted for MF-IAA processing. Each

CPI in this case consisted of 20 pulses at 5 KHz PRF (Doppler resolution is

250 Hz). Again, MF-IAA was used to enhance the resolution by a factor of 10

(resulting in 25 Hz Doppler resolution). Figure 4.18 shows the Matched Filter

output (on the top portion) and MF-IAA output (on the bottom portion). The

improvement in resolution can be clearly seen. In contrast to the Matched

Filter output, MF-IAA output shows target energy in very few range-Doppler

cells, which is a clear indication of enhanced resolution. While the resolution
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Figure 4.17: PPI Scan from PARADOX1 for a scene containing an airborne
target. The dotted line is the azimuth angle is used for MF-IAA

Figure 4.18: Comparison between Range-Doppler Images resulting from
Matched Filter Output (Top) and MF-IAA Output (Bottom) for Airborne
Target
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is enhanced when compared to Matched Filter output, the MF-IAA output

show the RCS signature of the airborne target (Piper Seneca) in about two

range bins and several Doppler bins. The lack of finer Doppler resolution

can be attributed to the small number of pulses in the CPI. The lower SNR

of the airborne target (note the Piper Seneca has much less RCS than the

water tower) might also have contributed to the suboptimal performance. The

Doppler sidelobes can also be attributed to a mismatch in the Doppler shifted

Matched Filter estimate. The result from MF-IAA is still a big improvement

over the result from Matched Filter and an adequate detection algorithm can

easily separate the peak in MF-IAA case.

4.8 Summary and Conclusions

In this chapter, a class of non-parametric, iterative, super-resolution algorithms,

namely, Iterative Adaptive Approach (IAA) and Matched Filter based Iterative

Adaptive Approach (MF-IAA) are presented. IAA operates on the “raw” I/Q

data while MF-IAA operates on Matched Filtered data to produce a resolution

enhanced Range-Doppler image. A detailed derivation for both algorithms are

presented which starts with a convolution based problem formulation and ends

with an optimized iterative solution. The algorithms are tested using simulated

data originating from a variety of transmit waveforms as well as Signal to Noise

Ratio scenarios. The resulting Range-Doppler images from both, IAA and

MF-IAA were compared with those generated from traditional Matched Filter

algorithm. The resolution was enhanced by a factor of 10 in each case and

both of the algorithms were shown to be waveform independent. The impact

of SNR was visible in the sense that higher SNR produced clearer peaks while

resolution enhancement was apparent in all SNR levels.
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Additionally, the algorithms were also evaluated using field measured data

from PARADOX1 radar. PARADOX1 was used in a ground based configuration

to measure a nearby water tower target and a general aviation aircraft target. In

both cases, both algorithms achieved resolution enhancements when compared

with Matched Filter based Range-Doppler Image. While comparing side-by-

side, for the airborne target, IAA showed better result than MF-IAA. IAA

results had a more distinct peak in Doppler and lower sidelobes in range.

MF-IAA results, on the other hand, still had a distinct peak but the sidelobe

levels were higher. It is demonstrated that IAA and MF-IAA algorithms

can achieve resolution enhancements in range and Doppler domain. Both of

those algorithms are validated to be appropriate for a multi-mission radar like

PARADOX1.
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Chapter 5

Sense and Avoid Function Validations

Sense and Avoid (SAA) tracking is considered as one of the fundamental mis-

sions for airborne multi-mission radars like PARADOX1. Indeed, the airspace is

getting populated with increasing number of commercial and research vehicles

in addition to meteorological as well as natural objects. Therefore, it is neces-

sary to demonstrate SAA tracking capability to designate PARADOX1 as an

airborne multi-mission radar. In this chapter, the overall system configuration

introduced in section 2.1 of Chapter 2 as Polarimetric Airborne Radar Operat-

ing at X-band – Generation 1 (PARADOX1) is used for validation of Sense

and Avoid (SAA) tracking functionality. The multi-mission concept depiction

was presented in Figure 2.2 of Chapter 2. As mentioned in Chapter 2, PARA-

DOX1 supports attachment of various modules for signal processing. These

signal processing modules help achieve improvements such as super-resolution

(SR), range/azimuth/Doppler enhancement, sidelobe reduction etc. Currently,

Reiterated Minimum Mean Square Error (RMMSE) [104] based deconvolution

algorithm is applied for the azimuthal SR and Matched Filter based Itera-

tive Adaptive Approach (MF-IAA) algorithm is used for Range-Doppler SR.

To support real-time performance, all the SR processing are performed after

Pulse Compression. The target detection is based on a simple “pixel-centroid”
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Figure 5.1: Configuration of the Airborne Radar test system

extraction based on [105] from the binary detection output using enhanced

pulse compression algorithm. The tracking of multiple collision hazards is

implemented through Kalman filter and Joint Probabilistic Data Association

(JPDA). A detailed explanation of tracking based on Kalman Filter and JPDA

was presented in Chapter 2. The chapter also detailed the motion model used

and presented various equations as well as overall algorithm used in tracking.

The end-to-end processing chain is validated through both simulations and

measurements. The simulation environment is detailed in section 3.4 of Chapter

3. Another novel aspect of this study is the demonstration of the simultaneous

monitoring of weather and air-traffic targets through the same aperture and

same signal processing chain, which is also tested through measurements.

5.1 SAA Processor and Algorithms

Figure 5.1 shows a simplified block diagram of the current system configuration.

The data (I/Q or matched filtered) stream from the airborne radar is transported

through Gigabit Ethernet Interface which is then processed in real-time at
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Figure 5.2: Diagram summary of processing flow executed in a SAA/DAA
processor

the external processor. A more detailed depiction of the external processor is

presented in Figure 5.2.

There are three major steps in the processing flow – data pre-formatting,

real aperture (or real-beam scan) imaging, and target tracking. Data pre-

formatting is a simple step to organize the scan data into structures that are

easy to navigate through; given the processor architecture and programming

language used. Real-aperture imaging takes either pre-compressed or post-

compressed pulses and generates a scan image, which includes the steps of

SR processing, Doppler processing/correction and target detection as well as

centroid extraction. This step also classifies different types of hazards (such
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as discrete vs distributed) and sends output to programs that handle those

different types of hazards. Collision targets are tracked in the third step which

include complete logic for track initiation, maintenance, and termination. The

focus of this chapter is the SAA radar processor which is currently a small

form factor PC. Other embedded processors based on Field Programmable

Gate Array (FPGA), and Digital Signal Processor (DSP) are also available

but they are not included in this study. In a complete SAA/DAA radar, the

SAA processor needs to receive aircraft status data (such as GPS data and

orientation information like heading, pitch, roll, yaw) and communicate with

other avionics units. The algorithm developed and applied in this chapter is

adequate to be executed in either real-time or at a reasonable speed on a simple

embedded PC platform.

5.2 Real-Aperture Imaging

Real-aperture imaging is essentially the result from a three-dimensional con-

volution between antenna pattern, time domain waveform and the target’s

space-time impulse response. For 2D scan, the problem is simplified as a

convolution between azimuth antenna pattern, time waveform, and the target

2D (range-azimuth) response. This concept is illustrated in the Figure 4.1

of Chapter 4. Ideally, an impulse radar with infinite aperture size would be

the desired sensor to retrieve the “ground truth” of the targets of interest. In

reality, both the aperture size and the waveform bandwidth are limited. The

adaptive pulse compression (APC) is introduced in [88] and provides estimation

of h from y (as shown in Figure 4.1 of Chapter 4), which is equivalent to

emulating an infinite bandwidth, ideal impulse radar through signal processing

and software algorithms. Traditional APC algorithms emphasize on resolution
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improvements and sidelobe suppression while in real-world, target velocities

also need to be discriminated. Super-resolution on Doppler domain is usually

achieved through multi-pulse spectrum estimation. One method of Doppler

super-resolution was discussed in Chapter 4.

5.2.1 Azimuth Super-Resolution

Azimuth super-resolution (SR) has been studied in the previous studies [106]; in

this section, the focus is the effect of SR in the target detection and extraction

as well as SAA tracking performance for multiple targets. The distributed

target results in the case of weather studies will be presented in Chapter 6.

Firstly, each real-beam scan, is converted to a binary image using a threshold,

followed by a pixel detection. Center of mass of each group of pixels is recorded

as a detected target. If there is a single disconnected pixel, it is discarded

considering the fact that most targets illuminate multiple pixels because of

higher sampling rate (there are multiple samples in each main-beam coverage)

as well as the presence of sidelobes (in range/azimuth/Doppler). Thus, a single

pixel illumination is most likely a false alarm. The azimuth resolution is the

most significant here. With 6◦ of mainbeam width, the azimuth or “cross-range”

span can reach more than 1 km at 10 km range. In cases with multiple nearby

targets, low resolution causes significant detection bias in addition to loss of

detection for some targets. This phenomenon causes transmission of wrong

information to the tracker resulting in wrong evolution of track and in the

worst case loss of a track altogether. To address this challenge, the SR solution

overcomes this problem by discriminating discrete scatterers from main beam

returns after which proper detection and tracking can continue.

Figure 5.3a shows a scenario with two targets close in both range and
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azimuth. The wider beamwidth as well as the azimuthal sidelobes result in

a single lumped target as opposed to two discrete targets in the Matched

Filter Output. Changing the threshold here offers little benefit as the sidelobes’

return from the (left) stronger target is comparable to the mainlobe return from

the weaker (right) target. Figure 5.3b depicts the resulting detections from

the matched filter output. The “plus” sign shows the truth location whereas

the “circle” shows the location where detection was made. There is a single

detection in this case, in other words, the tracker’s input will have a single

target in the wrong location. This will undoubtedly cause wrong evolution of

tracks.

Figures 5.4a and 5.4b show the output of RMMSE SR algorithm output

and the resulting detections respectively. The two distinct targets are quite

vivid in both algorithm’s output plot and resulting detection plot. The truth

and detection locations in Figure 5.4b match quite well for the target towards

the left except for the limitation due to which the lower left grid point of each

range-azimuth cell is plotted as the detection point. For the right-side target,

there is a bias between detection and truth because there is a bias between

measurement and truth which can be observed in both Figure 5.3a and Figure

5.4a. Those detections are more representative of the ground truth and will

lead to better tracking performance when compared to tracking done with

Matched Filter based detections.

5.3 Simulated multi-target SAA scenario

Since conducting a close by flights using multiple aircrafts was not feasible,

a two-target scenario was simulated using MATLAB R© Phased Array System

toolbox. The details of this simulation environment were presented in Chapter
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(a) Matched Filter Output for two close targets

(b) Detections resulting from Matched Filter Outputs

Figure 5.3: Matched Filter output and resulting Detection
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(a) RMMSE Super-Resolution Algorithm Output

(b) Detections resulting from Super-Resolution Algorithm Output

Figure 5.4: RMMSE-SR Output and resulting Detection
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3. The simulation parameters were chosen to match the specifications of

PARADOX1 as described in Table 2.1 except for the antenna. The antenna

used for simulation is a linear phased array antenna with 4.5◦ azimuthal

beamwidth. Since all scans are performed in the same elevation, the elevation

beamwidth is not significant in simulation. Furthermore, using a linear array

(with only azimuth beamforming) instead of a planar array (allows for both

azimuth and elevation beamforming) kept the antenna elements at a lower

number which eased the computational burden during the simulation procedure.

There are two closely moving targets in the simulation scene. The target and

the radar positions are updated after each pulse. Random number of false

targets are also added at random locations throughout the scan area for each

scan to generate false detections. The number of random targets for each scan

is generated using Poisson random number generator. Since the simulation is

computationally expensive, scans are generated and saved which were later fed

into the tracker one scan at a time. In other words, although the simulation

and tracking didn’t happen concurrently, the tracker still received the data

one scan at a time as would happen in a field measurement. This method also

allows for an independent evaluation of tracker performance.

The motion model used in SAA tracking is a constant acceleration model

(as described in Chapter 2). In this model, process noise is incorporated

as perturbations in acceleration. The process noise, itself, is modeled as a

Gaussian random variable with 0 mean and standard deviation of 6 m/s2

in range direction and 2 m/s2 in cross-range direction. A scan snapshot of

Matched Filter output along with its resulting detection as well as RMMSE

super-resolution algorithm output along with its resulting detection were

shown in Figures 5.3a, 5.3b and Figures 5.4a, 5.4b respectively. These results
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were also discussed in the previous subsection (5.2.1). In this section the

tracking performance before and after RMMSE super-resolution algorithm

will be discussed. RMMSE-SR algorithm is used in this case (as opposed to

IAA) primarily because the two targets are in separate azimuth angles. IAA

algorithm is used in cases where there are multiple targets in same azimuth

angle (same range profile) but with different yet unresolvable range and Doppler

frequencies.

Figures 5.5 and 5.6 show tracking results with Matched Filter based detec-

tions and RMMSE-SR based detections respectively. Matched Filter algorithm

was not able to resolve the two targets adequately which lead to a single detec-

tion and finally a single track was formed between the two true tracks. Scan

to scan variation of the target RCS caused the detections to spread around

the true tracks. Furthermore, some detections also arose from the false targets

that were added randomly as described above. In some cases, sidelobes from

the stronger target also registered as detection. Since the two targets were not

resolved due to low azimuth resolution, most of the detections appear towards

the middle of two tracks. This resulted in the formation of a single lumped

large target in the binary detection image. Therefore, the detection point was

the center of mass of that lumped large target as discussed in section 5.2 and

depicted in Figures 5.3a and 5.3b. As a simple threshold detector was used, the

trade-off between having the ability to detect smaller targets (by setting lower

threshold) and preventing sidelobes registering as targets (by setting higher

threshold) became more consequential. Due to the limitation in azimuthal

resolution, matched filter based tracker resulted not only in wrong number of

targets/tracks but also in wrong evolution/estimation of the track.

In case of RMMSE-SR based detection and tracking, the two tracks are
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Figure 5.5: Tracking Results with Matched Filter based Detections

Figure 5.6: Tracking Results with RMMSE based Detections
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clearly visible. Although, there were few detections away from the truth,

most of the detections were close to the truth and so were the generated

tracks. False detections and measurement noise are potentials reasons for the

detections away from the truth. Since the data is simulated, the only source

of measurement noise is assumed to be the inaccuracies caused by range and

azimuth resolution. For example, if the range resolution is 10 meters, the

range accuracy of a detection cannot be better than 10 meters. Therefore, the

deviation of measurements from the truth data is caused by fluctuations in RCS

and resolution limitation. Despite those limitations, the tracks closely follow the

detections. Note that the performance of the tracker is a function of detections

and not necessarily the truth. In case of a real radar, calibration procedures aim

to correct measurement noise but the limitation due to resolution as described

above still remains. In RMMSE based tracker result (Figure 5.6), there is

loss of detection (lower track left side), but the tracker continues prediction

for few scans without significant degradation. The track updates when next

measurement falls inside the gate (of predicted position).

5.4 Ground Measurement and Results

A ground measurement test was conducted to demonstrate and evaluate the

feasibility of real time tracking using PARADOX1 radar. As aforementioned,

tracking was done in Track While Scan (TWS) mode. For this ground test,

the radar was placed on the roof of a two story building while a small twin

engine aircraft was flown in a predetermined path. A sketch of flight trajectory

and radar location in addition to a picture of PARADOX1 setup is depicted

in Figure 5.7. The required elevation angle of the radar was designed to be

sufficiently high to eliminate ground clutter returns which more closely mimics
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air-to-air tracking scene. In this particular test, the elevation of the radar was

kept constant and the plane was allowed to fly in and out of the beam coverage

in elevation. Note that for an airborne collision avoidance operation, elevation

angle of the radar platform may be changed between scans. Collision threats

that are flying in a constant altitude would then be in and out of the beam

coverage in elevation similar to the current ground test setup. However, the

most compelling scenario occurs when the collision threat is located in the same

horizontal plane (thus at the zero elevation) of the radar platform. For such case,

measurement data points will increase due to better scan coverage which results

in improved tracking performance when compared to current setup of ground

measurement. In this setup the speed of airplane is maintained around 55 m/s

(with some fluctuations causing from the wind, pilot control/maneuvering, etc.)

and the radar scan update time is about 2.5 seconds.

The module used for SAA tracking consisted of a small form factor PC

with Intel c© CoreTM i7 processor and 16 GB of DDR3 Random Access Memory

(RAM). The module operated a generic GNU/Linux Operating System. Data

from the radar sensor was fed into the module using gigabit speed Ethernet

port which was read and processed by MATLAB R© using various C functions.

The output to a connected monitor was the PPI plot of the current scan and

tracks resulting from previous scans. With this test configuration, the hardware

was adequate to perform SAA tracking between each scan update time of about

2.5s. Figure 5.8 shows the module for SAA/DAA tracking.

Figure 5.9 shows a sample tracking result for the current ground tracking

test. The figure clearly depicts a confirmed track around the measurement

points. The measurements are scattered around the ground truth (as opposed

to be coincident). This is most likely due to the measurement error. The
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Figure 5.7: Real Time Ground Tracking Flight Trajectory

Figure 5.8: Real Time Ground Tracking Module
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Figure 5.9: Real Time Ground Tracking Results

Matched Filter output is used to generate a “cluster” of detections and the

center of the cluster is regarded as the measurement. The range as well as

azimuthal sidelobes can alter the detection and cause errors in measurement.

Furthermore, since, the signals are “quantized” in range and angle, the inherent

resolution limitation likely causes additional errors. The current setup of

PARADOX1 has a 18 inch antenna with a beamwidth of 5.6◦ in both elevation

and azimuth; whereas the range resolution is 16 meters. The plane employs

a Differential GPS system which is much more accurate than the one used

by the ground based radar. Therefore, the GPS truth is considered accurate.

The update time also plays an important role in the bias of measurements. A

faster update time generally means less target movement between scans and

consequently less bias.

The performance of Kalman Filter and JPDA based tracker appears to

be adequate in this case. The tracker was able to track the measurements
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Statistic Range Dir. (m) Azimuth Dir. (◦)
Maximum Square Error 43.6 2.07
Minimum Square Error 0.53 0
Mean Square Error 16.46 0.76
Std Deviation of Square Error 19.87 0.95

Table 5.1: Error Statistics for PARADOX1 during Ground Based SAA Tracking

and maintain the track in real time for the duration of target visibility. An

error analysis is performed between measured values and truth values which is

presented in Table 5.1. Although the error in azimuth direction is expected to

be high as it is significantly affected by the azimuthal beam spread, in reality,

the values are lower because of the detection procedure (center of mass of

centroid is assumed to be the measured position). The Mean-Square-Error

(MSE) in range dimension is about one range resolution distance which is

acceptable. The maximum error in range is about 43 meters which could be

due to the misalignment of radar scan update rate and plane GPS update rate.

In the future, timestamps for each pulse can be collected to decrease this error.

5.5 Summary and Conclusions

The sense and avoid tracking functionality of PARADOX1 was developed,

tested, and validated. First, a two targets scan scenario was simulated using pa-

rameters that matched closely to that of PARADOX1. Tracking was performed

with and without super-resolution processing and the results were discussed.

Furthermore, a real-time tracking experiment was performed through a single

target flight scenario. In both (simulated and measurement cases), state estima-

tion and update were carried out using Kalman Filter and the data associations

were performed using Joint Probabilistic Data Association algorithm. Both of

those algorithms were discussed in detail in Chapter 2.
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For the simulated two-target case, the targets were placed at close prox-

imity so that Matched Filter would not be able to resolve them. Azimuthal

super-resolution was performed using RMMSE algorithm which was able to

differentiate the two targets. Tracking was performed in each of the cases

(Matched Filter and RMMSE). Since the targets were not resolved in the

Matched FIlter case, the results showed a single track in between the two true

tracks. In RMMSE case, the targets were resolved and therefore two separate

tracks were formed and maintained. Therefore, RMMSE-based super-resolution

and KF/JPDA-based tracking is successfully validated.

In the single target, real-time tracking scenario, the radar was placed on a

rooftop while the plane flew over, getting in an out of the radar beam coverage.

An x86 based PC was used as a SAA processor and the generated track as

well as true track (as measured by Differential GPS) were plotted. The results

validated the basic real-time SAA functionality of PARADOX1 radar. The

error statistics show maximum MSE in range to be 43.6 meters (less than 3

range bins). The maximum MSE in azimuth was about 2◦ which is much less

than the azimuth resolution.
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Chapter 6

Weather Surveillance

As a continued development of multi-mission capability of PARADOX1, this

chapter aims to scrutinize the weather measurements from PARADOX1. As

aforementioned, airborne radars are already being used for weather hazard

monitoring and providing situational awareness to the pilots. However, for

scientific as well as research purposes, more specialized and high cost Active

Electronically Scanned Array (AESA) radars have been historically used. The

reluctance of using low C-SWaP radars for research and scientific purposes

stems from the necessity of high quality data. Since most low C-SWaP radars

are not built for the purpose of gathering scientific data, often the quality

of electronics tend to be subpar. Fortunately, in modern times, the quality

and reliability of components have increased with a simultaneous decrease

in cost. PARADOX1 (introduced in 2.1) is used as an example of a multi-

mission airborne radar which can measure weather from airborne platforms

with research grade data. Various weather surveillance algorithms introduced

in Chapter 3 are implemented and validated in this chapter.

A thorough assessment of meteorological data quality (obtained from PARA-

DOX1) is complicated primarily due to the unavailability of airborne meteo-

rological truth data. Indeed, airborne flight campaigns are expensive. Such
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campaigns, if at all conducted, are usually done at specific geographical regions

for a specific time to measure a specific meteorological event. The only reliable,

time-continuous, and geography-contiguous source of validation data comes

from NEXRAD [6]–[8]. Therefore, as a method of assessment of data quality

(of PARADOX1), NEXRAD data are used which was obtained from [9].

NEXRAD (Next Generation Radar) is a network of 159 S-band ground-

based pulsed Doppler radar in the US operated by National Weather Service.

They are also known as WSR-88D (Weather Survelliance Radar 1988 Doppler).

It is to be noted that NEXRAD operates at a different frequency and has

a “bottom-up” view of weather events which is in contrast to PARADOX1.

PARADOX1 operates at X band, and has a “top-down” view of the weather

event. Additionally, due to the difference in aspect angle, direct comparison of

radial velocities are not possible to make. In spite of these limitations, and in

lieu of proper airborne validation data, NEXRAD data is still the best choice

for this comparison due to the wide coverage and availability of data.

In addition to NEXRAD, PX-1000 (Polarimetric X-band 1000) [107], [108]

radar operated by Advanced Radar Research Center (ARRC) is also used

for comparison and validation of weather measurements. PX-1000 is an X-

band polarimetric weather radar with transmit power of 200 Watts in each

polarization. It has a receiver bandwidth of 5 MHz and the antenna’s azimuth

and elevation beamwidth is 1.8◦.

For scientific studies, PARADOX1 radar supports two operational modes:

micro-physics validation and severe weather observation. Figure 6.1 depicts

the concepts of these two operational modes. For the micro-physics (MP)

validation mode, the radar probes short range within or near clouds (range

from ∼100 m to 20 km). Once the aircraft passes through some distance, the
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Figure 6.1: Operation modes of PARADOX1: Micro-Physics Validation (with
Polarimetric measurements) (Top), Airborne Severe Weather Observation
(Bottom)

received radar data can be compared with the on-board micro-physics/particle

probes for cross-validations. The MP validation mode focuses on a narrow

forward-looking sector always in front of the aircraft heading direction. Slow

scan and relatively fast dwell are used to ensure that the aircraft motion can

be compensated for the radar returns from range cells. High range and angular

resolutions are needed. Also for this mode, short pulse waveforms need to be

used to achieve the shortest possible blind range or adaptive pulse compression

need to be used for the mitigation [58], [89], [90].

For the severe weather observation mode, PARADOX1 can measure the

weather (e.g. storm or precipitation) using either forward-looking or downward-

looking scanning configurations. For the forward-looking scenario, the aircraft

is located 10-100 km distance from the convective activities. Plan Position

Indicator, PPI, and Range Height Indicator, RHI, scans are used to cover the
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Figure 6.2: Sensitivity Curves (Minimum detectable Reflectivity vs range) of
PARADOX1 for Micro-Physics Validation Mode for various range resolutions,
∆R. SNR is constant at 0 dB

larger observation volume. For downward looking from higher altitudes, the

observations (so-called “storm-tops”) have scientific values for studying strato-

spheric hydration, ozone observations, and convective activity identifications.

Longer pulse (or larger duty cycle) is needed to observe at further distance.

Larger scale, “ensemble target” observations are provided for data assimilation

and storm dynamics analysis. The resolutions can be enhanced through the

processing mentioned in chapters 3 and 4. In addition to micro-physics vali-

dation and severe weather observation modes, PARADOX1 has a long-range

operation mode that can capture and display weather echoes up to 300 km

which is a mode mainly used for early warning of severe weather.

The micro-physics validation mode requires good sensitivity for a shorter

range, while the severe weather observation mode requires sufficient sensitivity

for storm observations at longer range. It is possible to use similar waveforms
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Figure 6.3: Sensitivity Curves (Minimum detectable Reflectivity vs range) of
PARADOX1 for Airborne Severe Weather Observation Mode for various SNRs.
Range resolution is constant at 16 m

to achieve both requirements. A pulse width of 13.66 µs is used as an example

waveform configuration with 9.375 MHz LFM modulation bandwidth (16 m

range resolution). Based on system parameters in Table 2.1 and assuming a

16-pulse integration, the sensitivity/link budget curves for short range, and

medium–long range operations are shown in Figures 6.2 and 6.3 respectively.

The expected system sensitivity is suitable for both modes of operations. Please

note that there are a lot of variations in waveform and other radar parameters

that can be applied. Figures 6.2 and 6.3 depict the sensitivity for a few of such

parameters’ combinations.

6.1 Resolution Enhancement using RMMSE Algorithm

As briefly discussed in Chapter 3 with more details as well as derivations in

Chapter 4 and an example in Chapter 5, adaptive pulse compression algorithms

111



were shown to enhance the resolution in range, azimuth, and Doppler domains.

For an airborne platform such as PARADOX1, the aperture size is generally

small (due to restrictions in C-SWaP as mentioned in Chapter 2). Therefore,

it is necessary to have signal processing algorithms that are able to resolve and

discriminate various types of targets. The super-resolution results using IAA

and MF-IAA for point targets (buildings etc.) were discussed in chapter 4. In

this section, two dimensional sidelobe mitigation and resolution enhancement

algorithm as described in [90], is validated for weather targets. Furthermore,

the results are compared with PX-1000 and the similarities as well as the

differences are discussed.

In addition to the hard-target detection scenario (presented in Chapter 5),

RMMSE Super-Resolution algorithm can also be used in distributed target

scenarios like weather events. Figures 6.4a, 6.4b, 6.5a, and 6.5b show an

example of application of RMMSE-based super-resolution algorithm regarding

weather targets. These are uncalibrated power level data from the PPI scans

of PARADOX1 and PX-1000 radar. The data was collected during a field

campaign in Fall 2016. Figures 6.4a, 6.4b, and 6.5a respectively show the

matched filter output, RMMSE-SR output and range downsampled RMMSE-

SR output for the PARADOX1 radar. The range was downsampled to achieve

a better comparison with PX-1000 PPI scan which is depicted in figure 6.5b.

The two radars were located about 10 meters apart and they scanned over

the same light to moderate rainfall area. Note that due to beam blockage,

PX-1000 output missed some data around the 0◦ azimuth. In the same region,

PARADOX1 shows lower SNR values. A proper data quality assessment as

well as removal of such “unreliable” data will be presented in the following

sections.
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(a) Matched Filter Output PPI

(b) RMMSE Super-Resolution Algorithm Output PPI

Figure 6.4: Matched Filter and SR output for distributed weather target for
PARADOX1
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(a) Range Downsampled RMMSE results PPI from PARADOX1

(b) Reflectivity PPI from PX-1000

Figure 6.5: Downsampled Super-resolution output from PARADOX1 compared
with PX-1000 outputs for distributed weather target
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As is the case with most weather events, an accurate ground truth is often

difficult to obtain. However, at first glance, and while looking at just the

uncalibrated power returns, it can be reasonably asserted that RMMSE-SR

produces better azimuthal resolution. In addition to increasing the dynamic

range, the RMMSE-SR results show less smearing around more prominent

weather regions, e.g. around 14 km range and -12◦ azimuth, 12 km range and

8◦ azimuth, and 3 km range and 60◦ azimuth. When PARADOX1 data is

compared against PX-1000 data, although there is a difference in sensitivity, the

overall picture of the weather appears to be similar. The high Reflectivity areas

as well as the transition of higher Reflectivity to lower Reflectivity in the scan

have a general agreement. A complete data quality analysis will be performed in

the following sections which will enable us to properly examine the validity and

feasibility of PARADOX1 as a research-grade weather measurement capable

radar. For the time being, it can be concluded that RMMSE-SR can be used

to enhance the azimuthal resolution in cases of both point targets (as shown in

Chapter 5) as well as distributed weather targets.

6.2 PARADOX1: Airborne Flight Campaign of 2017

Airborne flight test campaigns have been routinely performed since 2015 for

validation of the system performance and data quality of the PARADOX radars.

A recent flight campaign was performed in spring of 2017 where the airborne

PARADOX1 radar measured weather returns in a forward-looking scenario

in a region around Southern Oklahoma. The radar location, weather event

location as well as radar field of view is depicted in Figure 6.6. Please note that

the map is rotated so that the heading direction points towards the positive

Y-axis. The radar parameters configurations and the aircraft supplemental
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Figure 6.6: Airborne Campaign 2017: Scan extent of PARADOX1 in Google
Earth R©

information are listed in Table 6.1.

As listed in Table 6.1, the radar was at 10 km altitude scanning downward

(at -1◦ elevation). In the airborne configuration, the earth surface was more

than 550 km away in slant range. Examining the two different PRF’s, the

maximum unambiguous ranges were calculated to be about 149.89 km (for

1000 Hz PRF) and 99.93 km (for 1500 Hz PRF). Although the maximum

unambiguous ranges (associated with both of the PRF’s) could potentially

cause multi-trip echoes in high power radars, PARADOX1 is a low C-SWaP

radar. Furthermore, the earth surface was at a sufficiently large distance.

Therefore, multi-trip echo was not considered in this case. As discussed in

Chapter 3, the three most important spectral moment were estimated. This

was followed by the application of basic motion compensation algorithm to

obtain the “true” Doppler measurement of weather targets. Next, basic noise

reduction, and removal were performed. Finally, staggered dual PRF CPI’s
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Radar Parameter Value
Radar Frequency 9.376 GHz
Waveform Type Linear Frequency Modulated
Pulse width 82.4µs
Waveform Bandwidth 686 KHz
Pulse Repetition Frequency (PRF) 1000 Hz and 1500 Hz
Radar Altitude 10057 m
Scan Elevation -1◦
Scan Azimuth -60◦ to +60◦ from Heading Direction
Aircraft Latitude and Longitude 34.05◦ N and 96.38◦ W
Aircraft Heading -84.6◦
Aircraft Ground Speed 119.5 m/s

Table 6.1: PARADOX1 Parameters used in Airborne Measurement Campaign
of 2017

were employed to increase the maximum unambiguous velocity extents. Please

note that the clutter is (generally) not strong for a forward-looking air-to-air

scenario, and therefore additional spectrum compensation as well as clutter

mitigation strategies were not performed in this case.

From the raw signal power plot at Figure 6.7a, a significant weather phe-

nomenon can be seen at about 45 km (40 km heading and 20 km cross-heading)

from the radar. The Matched Filter output from PARADOX1 was passed

through a threshold detector that removed fluctuating values around noise

floor; the threshold was set at 20 dB. The output after thresholding is depicted

in Figure 6.7b. For the airborne case, there were no near-range clutter as in the

ground data collection case, and overall, the scene did’t have many scatterers

either. Therefore, the 20 dB threshold setting was able to provide an adequate

distinction between the weather phenomenon and its surroundings. The spatial

resolution appeared to be satisfactory for this severe weather observation case;

so no further resolution enhancement processing was applied.

The first spectral moment or the Radial Velocity PPI is shown in Figure
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(a) Raw Return Power

(b) Raw Return Power after noise control processing

Figure 6.7: Airborne Case: Return Power Plots
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(a) Radial Velocity Plot

(b) Spectrum Width Plot

Figure 6.8: Airborne Case: Radial Velocity and Spectrum Width Plots
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Algorithm 1 Velocity ambiguity resolution using two PRF’s
1: For each CPI estimate the Radial Velocity.
2: Calculate one-time alias of Radial Velocity estimate in each case.
3: Compare all the estimated Radial Velocities.
4: The matching Radial Velocity value from the two CPI’s is the newly

estimated non-aliased Radial Velocity.

6.8a whereas the square root of the second spectral moment or Spectrum Width

is shown in Figure 6.8b. As a result of quality control (QC) processing, there

is a significant number of empty values in the display plot due to the lack of

hydrometeor scatterers or any other targets in the field of view (of the radar).

The returned signals from those range-azimuth bins (the ones without a target)

have very low Signal to Noise Ratio (SNR). In addition, the lack of targets

result in a uniform random distribution of (pulse to pulse) phase changes. The

random phase changes then result in random Radial Velocity estimates and

also results in higher values of Spectrum Width. Hence, if a range-azimuth cell

met the condition of having low SNR and at the same time very high Spectrum

Width value, the data at that particular range-azimuth cell was considered to

not have met the data quality threshold. Such data points were removed from

the final PPI plots.

There were two available Coherent Pulse Intervals (CPI’s) during the

campaign, with PRF’s of 1000 Hz and 1500 Hz. Separately, the maximum

unambiguous velocities were 7.99 m/s (for CPI with PRF 1500 Hz) and 11.99

m/s (for CPI with 1000 Hz) at the transmit frequency of 9.376 GHz. However,

there are techniques to increase the maximum unambiguous velocity using

multiple CPI’s with different PRF’s. One of the techniques as described in

[98] was used to increase unambiguous velocity to 23.98 m/s. Such increase of

maximum unambiguous velocity range is dependent on the ratio of PRFs. A

discussion is presented in subsection 3.3.4 of Chapter 3. This current algorithm
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of ambiguity resolution is presented in Algorithm 1. This algorithm results in

unambiguous velocity estimates to be between -23.98 to +23.98 m/s. However,

if the true velocity is outside this (new) unambiguous velocity extent, aliasing

will still occur. As the figure shows, there appears to be a fair amount of

velocity aliasing in the plot, since the values jump between +23.98, 0, and

-23.98 m/s. Of course, a higher PRF can be used to increase the maximum

unambiguous velocity but that will also decrease the maximum unambiguous

range. Hence, a different set of staggered PRF’s can be employed to achieve

higher values of both maximum unambiguous range and maximum unambiguous

velocity. The Spectrum Width was calculated using time domain pulse pair

processing as explained in [3]. As aforementioned, low SNR causes higher and

unreliable estimate of Spectrum Width. Therefore, any data that caused the

Spectrum Width to exceed the value of 24 m/s or equal to 0 m/s was considered

unreliable. Hence, those data points were removed from consideration in both

of the moment plots in Figure 6.8 as well as Figure 6.7b.

6.2.1 Comparison with NEXRAD/KTLX (PPI Plots)

A basic comparison is performed between the data obtained and processed from

PARADOX1 and a NEXRAD radar. KTLX radar at Oklahoma City, OK was

chosen for the comparison because of its proximity to the weather event. The

procedure for choosing NEXRAD radar is presented in Algorithm 2. Please note

that the scan time and elevation angles between PARADOX1 and NEXRAD

radars rarely match and a closest match is used for comparisons. The implicit

assumption here is that the weather event is big enough and the beamwidth (of

each radar) is wide enough so that a comparison can be made for the specific

weather location. An additional assumption is that the weather event evolves
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Algorithm 2 Algorithm to chose proper NEXRAD data for comparisons
1: Calculate the location (Latitude, Longitude, and Altitude) of the weather

event.
2: Find the closest NEXRAD radar (among 159 NEXRAD radars).
3: Download the NEXRAD dataset with closest match in time (with PARA-

DOX1 dataset).
4: Calculate the required elevation from NEXRAD’s point of view and collect

the data with closest match in elevation.

slowly enough that the time difference between the scans by PARADOX1 and

NEXRAD doesn’t have a significant impact on the measurements.

As in the case of PARADOX1, KTLX data also shows a significant number

of empty values on the plot. The reason for that is the strict data quality

procedures employed by NEXRAD processors. NEXRAD I/Q data is fed

into algorithms that perform Interference Filtering, Ground Clutter Filtering,

Spectral Noise Level Estimation and a series of other algorithms to censor

imprecise range-azimuth-elevation cell data. Figure 6.9a shows the Reflectivity

plot from KTLX with the field of view of PARADOX1 traced towards the

bottom. Figures 6.9b, 6.10a, and 6.10b show the Reflectivity, Radial Velocity,

and Spectrum Width plots respectively from KTLX with the similar field-of-

view of PARADOX1.

There is a fair agreement between the Reflectivity plot of PARADOX1

and KTLX. As aforementioned, an accurate Reflectivity-to-Reflectivity (dBz

to dBz) comparison cannot be performed because there is a slight difference

between the beam coverage and the time of scan between the two radars. In

addition, the frequency difference between PARADOX and NEXRAD causes

backscatter (and forward scatter) amplitudes from hydrometeors to be different.

Due to those reasons, the two weather events are not of the same size (in space).

Additionally, there appears to be another smaller Reflectivity region around 30
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(a) PARADOX1 Field of View in KTLX PPI

(b) KTLX Reflectivity Plot

Figure 6.9: Airborne Case: NEXRAD/KTLX Reflectivity PPI with same Field
of View as PARADOX1
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(a) KTLX Radial Velocity Plot

(b) KTLX Spectrum Width Plot

Figure 6.10: Airborne Case: NEXRAD/KTLX Radial Velocity and Spectrum
Width PPI with same Field of View as PARADOX1
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km heading and 50 km cross-heading direction in PARADOX1 PPI which is

not so apparent in KTLX PPI.

The Radial Velocity between the two radars most likely will not match

because of the different location of the radars. Nevertheless, few conjectures

can still be derived. The Radial Velocity plot in KTLX seems to have more

uniformity and fewer fluctuations between the positive and negative extremes,

and zero. This uniformity can be attributed to the fact that the terminal

velocity of rain drops (as they fall towards the earth’s surface) is the most

significant component on the Radial Velocity plot of KTLX radar. Since the

PRF(s) of current NEXRAD is unknown (there are multiple scanning strategies

of NEXRAD, and they are not specified in Level 2 data), excessive commenting

on Radial Velocity is refrained. PARADOX1, on the other hand, measured

from an airborne configuration. The motion compensation was applied so

the aircraft’s motion effect is largely removed. The velocity that appears

in PARADOX1 Radial Velocity plot is the summation of the component of

terminal velocity (of rain drops) and their radial motion (relative to radar due

to wind). There is also a potential for an additional Doppler phase change due

to aircraft motion that was not corrected by motion compensation algorithm.

Therefore, it is impossible to definitively claim the validity (or lack thereof) of

the Radial Velocity plot generated from PARADOX1.

In case of Spectrum Width, the case is similar to the Reflectivity plot.

Since Spectrum Width measures the “spread” of velocity (or turbulence) in

the scene, it is reasonable to assume that there will be a general agreement

between KTLX data and PARADOX1 data. As it is evident, both radars have

maximum Spectrum Width values around 12 m/s and a majority of values

between 4 and 8 m/s. Spectrum Width values are highly dependent on the
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returned Signal to Noise Ratio (SNR). A ground radar with higher transmit

power is expected to have better SNR and therefore more accurate Spectrum

Width estimation.

6.2.2 Comparison with NEXRAD/KTLX Constant Al-

titude PPI (CAPPI) Plots

As aforementioned, the airborne PARADOX1 was at about 10 km altitude

and scanned at -1◦ elevation. Considering near zero scan elevation coupled

with a wide beamwidth (around 7◦), it is prudent to use Constant Altitude

Plan Position Indicator (CAPPI) plots from ground radar for comparisons.

In contrast to a more general Plan Position Indicator (PPI) plot, a CAPPI

plot maintains a constant altitude throughout the plot. As NEXRAD radars

(and by extension KTLX) have a 3D cone of coverage, a single altitude cut

can be obtained by extracting proper data values from different elevation

scans and filling out the remaining data points using interpolation algorithms.

The method of obtaining CAPPI data is similar to Algorithm 2 except all

the elevation data from step 3 is used (essentially, last step is skipped). The

3D coverage data can then be processed using Python ARM Radar Toolkit

(Py-ART) library [109] to generate CAPPI of the three radar moments after

which a comparison with the PARADOX1 plots can be made.

Figures 6.11a, 6.11b, 6.12a, and 6.12b show the “full” KTLX Reflectivity plot

for the same scene (depicted in Figure 6.9a), the field of view of PARADOX1

for Reflectivity, Radial Velocity, and Spectrum Width, respectively. One of

the first thing that is vivid in all of the the CAPPI plots is their smoothness

which is caused by the interpolation of data. As opposed to both KTLX

PPI and PARADOX1 PPI which have more fluctuating values, especially in
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(a) PARADOX1 Field of View in KTLX PPI

(b) KTLX Reflectivity Plot

Figure 6.11: Airborne Case: NEXRAD/KTLX Reflectivity CAPPI with same
Field of View as PARADOX1
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(a) KTLX Radial Velocity Plot

(b) KTLX Spectrum Width Plot

Figure 6.12: Airborne Case: NEXRAD/KTLX Radial Velocity and Spectrum
Width CAPPI with same Field of View as PARADOX1
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Radial Velocity and Spectrum Width, there is a smoother transition from high

values to low values in CAPPI plots. Another difference between CAPPI and

PARADOX1 (and KTLX) PPI plots is the visibility of range-azimuth cells in

the plots. In PARADOX1 and KTLX PPI plots, the shape and size of the

range-azimuth cells are visible as individual “pixels”. As the range increases,

the range-azimuth cells become more oblate leading to a better differentiation

of individual range-azimuth cells at a further range. The reason is that in

contrast to range resolution which is constant, the spatial resolution in azimuth

(and elevation) direction increases with increasing range. In case of CAPPI,

the range-azimuth cells are uniform (and square in the current case but not

always necessary).

Quantitatively, the CAPPI plots match better with PARADOX1 plots

than the original PPI plots from KTLX. Comparing the Reflectivity plot in

Figures 6.7b, 6.9b, and 6.11b, the CAPPI plot shows a bigger region of higher

Reflectivity than KTLX PPI. PARADOX1 also has a bigger region of high

return power. KTLX PPI doesn’t show the weaker return from about 30 km

in heading direction and 50 km cross-heading direction but both CAPPI plot

and PARADOX1 PPI have those returns. The main reason for this distinction

is the beam coverage; KTLX PPI beam coverage is slanted with 4◦ elevation

and was chosen so that the data from the more prominent weather region

(around 40 km heading and 20 km cross-heading) is captured. Choosing a

single elevation KTLX PPI consequently leads to mismatched beam coverage

(with PARADOX1) in other areas. CAPPI plot was included in the comparison

precisely to alleviate this limitation.

The velocity plots, on the other hand, cannot be compared directly because

of difference in aspect angle. In case of Spectrum Width, there is a small region
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Figure 6.13: Ground Measurement Campaign 2016: Scan extent of PARADOX1
in Google Earth R©

around 40 km heading and 20 km cross-heading, where the Spectrum Width

value is high in CAPPI but not in KTLX PPI. The PARADOX1 PPI shows

generally higher values in Spectrum Width.

6.3 PARADOX1: Ground Measurement Campaign of

2016

Similar to the airborne measurement campaign, PARADOX1 was also used in a

ground-based configuration for a data collection campaign. The measurements

were performed in fall of 2016 to observe general precipitations. The purpose of

this particular ground test was to achieve more accurate comparison scenario

with ground-based radars, in the shorter range. Similar to the previous case

where airborne data from PARADOX1 is compared to the NEXRAD returns,

this section examines the PARADOX1 data in the ground-based case and
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Radar Parameter Value
Radar Frequency 9.323 GHz
Waveform Type Linear Frequency Modulated
Pulse width 13.65µs
Waveform Bandwidth 4.69 MHz
Pulse Repetition Frequency (PRF) 5000 Hz
Scan Elevation 3.4◦
Scan Azimuth -60◦ to +60◦ from Heading Direction
Radar Latitude and Longitude 35.24◦ N and 97.46◦ W
Radar Heading 161◦

Table 6.2: PARADOX1 Parameters used in Ground Measurement Campaign
of 2016

comparisons are made. In addition to comparing with NEXRAD, the data is

also compared against another ground-based research radar, PX-1000. PX-1000

[107], [108] radar was briefly discussed in Section 6.1. During the measurements,

PX-1000 was located about 10 meters south-west from the ground-based

configuration of PARADOX1 radar. As done in the previous case, the return

power, Radial Velocity and Spectrum Width results are compared and discussed.

Figure 6.13 shows the scene of this ground-based measurement. Please note that

the PARADOX1 radar was facing south-west and the -60◦ to +60◦ coverage

is shown in red sector. The basic radar parameter configuration is listed in

Table 6.2. In this measurement, the PARADOX1 data suffered from two

beam blockages one at 0◦ (161◦ from true north, clockwise) caused by NOAA’s

National Weather Radar Testbed (NWRT) building which is also seen in

PX-1000 scans. Another beam blockage for PARADOX1 radar was caused by

the PX-1000 radar located at about 40◦ to the right (about 201◦ from true

north, clockwise).

The signal processing algorithms applied in ground-based PARADOX1 raw

I/Q data is similar to the airborne case. The differences are as follows,
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1. There is no need for motion compensation as PARADOX1 is stationary.

2. Since the data was collected using a single PRF (5000 Hz), velocity

ambiguity mitigation algorithms couldn’t be applied. However, because

of higher PRF, the maximum unambiguous velocity results to be 40.2

m/s which is well above the light rain maximum velocity. Therefore,

there was no need for staggered PRF and subsequent velocity ambiguity

correction.

For the moment computation algorithms, the noise floor was chosen at 20

dB. Radial Velocity and Spectrum Width were calculated using time domain

autocorrelation method as described in [3]. Because of relatively short range,

only range squared and radar constant calibration was used; range attenuation

correction algorithm was not applied. The range-azimuth super-resolution

enhancement processing was tested on this dataset, and the results were

shown in Figures 6.4b, and 6.5a of Section 6.1. Since the range resolution of

PARADOX1, in this case, was good (as a matter of fact, better than ground

radar scans), range-resampling was applied to reduce the resolution for proper

comparison with ground radar data.

Figures 6.14, 6.15a, and 6.15b show the plots of return power (before

calibrating into dBz values), Radial Velocity and Spectrum Width respectively

in this ground observation case. As in the case of the airborne campaign, there

is a fair amount of empty values in all the three plots. As aforementioned, data

with low SNR tend to produce high values of Spectrum Width; subsequently,

the Quality Control Algorithm considered any range-azimuth cell that has

Spectrum Width value higher than 13 m/s as unreliable and therefore removed

those data from the display. In addition to the higher SNR values all around

the PPI in further range, there appeared a more distinct weather event around
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Figure 6.14: Ground Measurement: Uncalibrated but noise processed Return
Power PPI

14 km heading and -5 km cross-heading direction. That location was chosen

to calculate the required elevation angle from NEXRAD which was used to

further examine the returns. The process of data retrieval from NEXRAD is

equivalent to the airborne campaign case which was discussed in the previous

section with the procedure presented in Algorithm 2.

Closer examination of the Radial Velocity plot shows a clear trend of

negative velocity values towards the right side of plot transitioning to zero

values towards the center of the plot and then to positive values in the left

side of the plot. Therefore, this data indicates the rain was moving from

West side towards East side while the radar was facing the South direction.

Another explanation might be a presence of updraft and downdraft in the rain

region. The Spectrum Width plot shows higher values around the edges of

the weather event while showing lower values in the range-azimuth cells that
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(a) Radial Velocity PPI

(b) Spectrum Width PPI

Figure 6.15: Ground Measurement: Radial Velocity and Spectrum Width Plots
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Figure 6.16: Ground Based Case: PX-1000 Reflectivity PPI

contain weather event. Again, Spectrum Width is highly dependent on the

SNR, and a less severe weather event (like moderate rain) may not necessarily

produce enough SNR for a proper calculation of Spectrum Width.

6.3.1 Comparison with PX-1000

In this ground measurement case, PX-1000 radar data was also used for

comparisons. Figures 6.16, 6.17a, and 6.17b show the PPI plots for Reflectivity,

Radial Velocity, and Spectrum Width, respectively (from PX-1000). In the

data, there is a single beam blockage due to NOAA’s National Weather Radar

Testbed (NWRT) building. The general trend in Reflectivity matches quite

well to the return power in PARADOX1 data. As in the PARADOX1 case,

the velocity values transition from negative values in right side of the plot to
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(a) PX-1000 Radial Velocity PPI

(b) PX-1000 Spectrum Width PPI

Figure 6.17: Ground Based Case: PX-1000 Radial Velocity and Spectrum
Width PPI
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zero values in the middle of the plot and finally to positive values in the left

side of the plot. The above mentioned (in PARADOX1 case) theory seems to

be complimented by PX-1000 velocity data as well. Although PARADOX1

and PX-1000 are close to each other, comparison of actual velocity values is

refrained because of the difference in elevations of PARADOX1 and PX-1000

data. Rainwater is being moved due to the wind (with unknown speed and

direction) as well as regions with updraft and downdraft (also unknown).

Since PARADOX1 is scanning at higher elevation in this case, Radial Velocity

estimation includes larger contribution from the terminal velocity as well as

updraft/downdraft components (of true rain velocity). The Spectrum Width

plot in PX-1000 case shows a lot of lower values, mostly less than 2 m/s. In

PARADOX1 case, the area with higher power returns exhibits lower Spectrum

Width values. Again, apart from the number-to-number comparison, the trend

of Spectrum Width values match in both cases.

6.3.2 Comparison with NEXRAD/KTLX

Next, the results from NEXRAD radar (KTLX in Oklahoma City, OK) is

examined and compared with PARADOX1 returns. Figure 6.18a shows the

location of radar and the field of view of PARADOX1 in KTLX PPI plot.

KTLX was about 25 km away from the PARADOX1 location in North-East

direction. As aforementioned, the elevation of KTLX was chosen in such a way

that the main beam illuminates the weather region in 14 km heading and -5 km

cross-heading direction from PARADOX1 point of view. Figure 6.18b shows

the Reflectivity from KTLX radar as a field of view from PARADOX1. The

Reflectivity plot shows a good agreement with PARADOX1 radar, especially

in the target area.
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(a) PARADOX1 Field of View in KTLX PPI Ground Based Case

(b) KTLX Reflectivity PPI

Figure 6.18: Ground Based Case: KTLX Reflectivity PPI
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(a) PX-1000 Radial Velocity PPI

(b) PX-1000 Spectrum Width PPI

Figure 6.19: Ground Based Case: KTLX Radial Velocity and Spectrum Width
PPI
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The Radial Velocity PPI is depicted in Figure 6.19a. As seen in the PPI,

the trend of velocity is negative on the right side, zero in the center and

positive values on the left side of the plot. This trend matches with the trend

of PARADOX1 and is compatible with the theory of wind blowing rain from

West to East direction. Again, actual velocity values are not compared due

to the differences in aspect angle as well as elevation angles as the terminal

velocity components might differ. Finally, the Spectrum Width plot shows

a lot of empty values. It is public knowledge that NEXRAD has a stringent

data quality control procedure after which some data are marked as unreliable.

Speculating the exact procedure to get to the conclusion of missing data from

the above Spectrum Width plot is refrained.

6.4 Summary and Conclusions

The weather surveillance functionality of the multi-mission airborne radar,

PARADOX1, was evaluated in this Chapter. PARADOX1 radar was used

in an airborne as well as a ground-based configuration to measure the data

originating from various weather conditions. For the ground measurement,

RMMSE algorithm was used for azimuthal super-resolution, and the results

were compared with ground-based PX-1000 radar. In addition to that, the

PPI scans of return power, Radial Velocity as well as Spectrum Width were

generated and compared with those of PX-1000 as well as nearby NEXRAD

(KTLX). The results show a good agreement between the PARADOX1 return

power and Reflectivity from both PX-1000 and NEXRAD in the weather region.

Since Radial Velocity is highly dependent on aspect angle, only the overall trend

of velocity distribution was examined. The results, again, show agreement with

both PX-1000 and NEXRAD. Spectrum Width, on the other hand, exhibited
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higher values in case of PARADOX1 which is attributed to low SNR.

Additionally, weather data was measured in a flight campaign near Okla-

homa City, OK, using PARADOX1. Similar to the ground-based test, PPIs for

return power, noise-removed return power, Radial Velocity as well as Spectrum

Width were generated. Those plots were compared against NEXRAD data

from the same weather region. The weather is “looked down upon” from

PARADOX1 while KTLX “looks up to” the weather. In addition, Constant

Altitude PPI (CAPPI) plots were also generated from KTLX and the results

were compared. The Reflectivity and return power plots bear resemblance with

each other. Similar to the ground-based test, accurate comparison of velocity

measurements couldn’t be performed due to the difference in aspect angle.

Also similar to the ground-based test scenario, Spectrum Width showed higher

values which is, again, attributed to the SNR. In conclusion, PARADOX1’s is

verified to be a capable radar for weather moment measurements. Compared to

ground-radars, it has better range resolution, but poorer azimuthal resolution,

and lower SNR values.
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Chapter 7

Summary and Conclusions

This study introduces a Polarimetric Airborne Radar Operating at X-band

Version 1 (PARADOX1) as an airborne multi-mission radar. The radar hard-

ware itself is developed in collaboration with Garmin International and its

GSX-70 line of airborne radars. The necessity of an airborne multi-mission

radar originates from the overlapping interests and goals of various scientific as

well as commercial entities. There is an apparent need for airborne research

quality data that is essential not only for weather and climate related studies

but also for research related to earth’s surface conditions like deforestation, ice

sheet status, etc. Sense and Avoid (SAA) or sometimes referred to as Detect

and Avoid (DAA) is another emerging field that is increasingly being recognized

by various commercial and government agencies. Considering the practical

needs of various communities, a proper study of a multi-mission airborne radar

was necessary.

In contrast to proposing an entirely new hardware platform, this study

focuses on development as well as implementation of various signal processing

algorithms to achieve a multi-mission capability on a commercial airborne

weather radar platform. This approach leads to more rapid implementations as

testing, validating, and certifying a completely new hardware is often sluggish
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and carries more risk of failure to achieve specified goals on time. Therefore,

this study provides a blueprint for various signal processing algorithms that

are of interest to realize a multi-mission airborne radar.

The characteristics of radar signals in terms of power and frequency content

is examined in detail in Chapter 2. The chapter builds on fundamentals of

radar signals not only for point targets but also for distributed targets. The

effects of platform motion onto the spectrum of radar signals are derived and

discussed. As signal processing is presented as a viable solution to achieve

multi-mission capability, an algorithm suite is presented in Chapter 3. Data

quality concerns, using both airborne and ground based configurations are

discussed in Chapter 6.

In addition to the algorithm suite, a realistic simulation environment is

also presented in Chapter 3. The simulation environment provides a method of

generating data using a variety of combinations of radar parameter values and

environment/target variables. This simulation environment has been a part of

previous studies like [47]. In this study, the simulation environment is used to

evaluate and validate super-resolution algorithms by generating returns when

various transmit waveforms are used. The simulation also provided the data

with desired noise level to study the algorithms’ performance with regard to

various SNR levels. The simulation environment was also used to generate a

series of scans for a scenario containing two close-by airborne targets. The

simulation was based on air-to-air scanning scenario and the radar parameters

were similar to that of PARADOX1. Other environmental parameters like

radar platform motion, target RCS fluctuations, false detections, etc. were also

applied. This data was used to validate the SAA tracking functionality.

Weather measurement data from PARADOX1 is scrutinized to determine if
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the data meets the research quality threshold. For that purpose, PARADOX1

was used in airborne as well as ground based configurations to measure weather

data. The measured weather data was fed through various signal processing

algorithms described in Chapter 3 and the results were compared against

NEXRAD (KTLX at Oklahoma City, OK) radar data as well as data from a

research radar named PX-1000 [107], [108]. The similarities as well as differences

among the results from PARADOX1 and these well known scientific/research

radars are discussed in Chapter 6. The results show that, indeed, PARADOX1

radar is able to measure research quality data and enhancements on the data can

be made through various signal processing algorithms. One significant difference

from those comparisons was in the result of Spectrum Width estimation. The

major contributor for this difference is considered to be the Signal to Noise

Ratio (SNR). Since PARADOX1 radar is a low C-SWaP radar, the SNR is

always expected to be lower than the high powered ground based radars.

Another difference, although not always apparent, originates from the

limited aperture size. PARADOX1 uses a 12 inch planar slotted waveguide

array antenna in the airborne configuration while that of 18 inches is used in

the ground based configurations. The resulting beamwidth is not nearly as fine

as in case of the ground based radars like NEXRAD and PX-1000. However,

a class of pulse compression algorithms called Adaptive Pulse Compression

(APC) is discussed to mitigate the effect of lower aperture size. Reiterated

Minimum Mean Square Error, RMMSE, algorithm [90] is used to enhance the

resolution and the results are presented in Chapter 5 and Chapter 6.

In addition to RMMSE, two super-resolution algorithms in range-Doppler

domain called Iterative Adaptive Approach (IAA) [56] and Matched Filter

based Iterative Adaptive Approach (MF-IAA) [57] are presented in Chapter 4.
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Both of these algorithms are non-parametric, iterative, weighted least square

based spectral estimation algorithms. IAA operates on “raw” I/Q returns

whereas MF-IAA operates on Matched Filter output to generate a resolution

enhanced range-Doppler map using iterative methods. These algorithms are

derived from a convolution based problem formulation. The algorithms were

examined and evaluated using simulated as well as measured data. In the

simulated data, a variety of transmit waveforms as well as SNR levels were

chosen to analyze the performance of both IAA, and MF-IAA algorithms. The

results show that resolution enhancement using IAA and MF-IAA is possible.

Furthermore, PARADOX1 was used to measured ground based target (Water

Tower) as well as airborne target (Piper Seneca Aircraft). IAA and MF-IAA

algorithms were applied to the measured data and the results were compared

against the results from the traditional Matched Filter data. The comparisons

validated the simulation results. When IAA was compared against MF-IAA

for the airborne target, IAA performed better than MF-IAA. Those results are

presented in Chapter 4.

Sense and Avoid functionality is considered as a core capability of an air-

borne multi-mission radar. Tracking of airborne targets from SAA perspective

is discussed using Kalman Filter and Joint Probabilistic Data Association in

Chapter 2. As most of airborne targets can be considered friendly and not

performing any evasive maneuvering, the motion model consisted of “nearly”

constant acceleration model. The related theories, equations as well as appro-

priate derivations are presented in Chapter 2. Since coordinating flights of

multiple close by targets was difficult, the aforementioned simulation environ-

ment was used to generate such data. The data was then used to validate the

RMMSE super-resolution algorithm and then perform a two-target tracking.
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Additionally, PARADOX1 was placed on a roof top and a real-time tracking

was performed by coordinating a flight with University of Oklahoma, School of

Aviation. This demonstrated the SAA tracking capability of PARADOX1 radar.

The results show the error of deviation during tracking to be in an acceptable

region. The discussions as well as the results are presented in Chapter 5.

In this study, PARADOX1 is presented as a low C-SWaP (Cost, Size, Weight,

and Power) multi-mission airborne radar. The limitations of PARADOX1 radar

are alleviated using both mature and novel signal processing algorithms and

techniques. Range, azimuth, and Doppler super-resolution algorithms are

developed and discussed that enhanced the capability of PARADOX1. A

modular solution to multi-mission in an airborne platform is presented and

validated. This study shows that using modular software based solution in

an existing radar hardware can be a viable path to achieving multi-mission

capability in an airborne platform.
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Chapter 8

Future Work

While this study provides an initial framework for a multi-mission airborne

radar, there are a lot of paths forward. As mentioned throughout this study,

PARADOX1 is just the latest iteration of an ongoing study of multi-mission

capable airborne radar. The future versions of PARADOX will most certainly

have various hardware upgrades. For instance, the current generation consists

of a vertically polarized antenna which can be upgraded to a dual polarization

capable antenna in the future. Furthermore, as technology advances and

the costs subside, the various components of the the radar systems can be

upgraded to provide higher bandwidth and/or lower noise figure as well as other

enhancements while still maintaining the low C-SWaP profile. Undoubtedly,

these hardware upgrades will enhance the capability of future versions of

PARADOX as a true airborne multi-mission radar.

On the signal processing side, which is the focus of this study, there are

potential areas of advancement. There will always be need of higher resolution

and while some of the resolution enhancement may be provided by improvement

in hardware, there will still be an appetite for resolution enhancement through

signal processing. Continued studies in Adaptive Pulse Compression and Super-

Resolution will pave the way for sub-meter resolution which will introduce
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more capabilities in the future. The aperture size limitation is one of the

most apparent shortcomings of PARADOX1. While it is possible to include

larger antenna, such actions deviate from the core principle of maintaining

a low C-SWaP profile. Therefore, novel signal processing techniques can be

studied and employed to achieve better resolution in angular domain. On the

Doppler estimations, PARADOX1 is already capable of transmitting CPI’s

with multiple combinations of pulse length, PRF, waveform bandwidth, etc.

Two staggered PRF’s and the associated data was examined in this study, and

in the future, more of such staggered PRF’s can be employed and the results

examined. The Spectrum Width estimation in this study did not obtain high

quality due to low SNR. More studies on proper estimation can be done to

achieve similar results as the ground based radars. Potential sources of error

during Spectrum Width estimations are studied previously [110], [111]. These

studies can be extended to provide more accurate Spectrum Width in cases

with lower overall SNR.

This study validated SAA tracking with a single airborne target while

PARADOX1 was at the ground. Although costly, a multi-target air-to-air SAA

tracking test can be performed not only to validate current algorithm but also

to discover any potential limitations in the actual operational environments.

The target motion models can be upgraded to include Interactive Multiple

Model (IMM) [112], [113] which can aid in proper state estimation even for

maneuvering targets. Similarly, Joint Probabilistic Data Association algorithm

can be improved using, for example [114] for more efficient data association.
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