DEADLOCK AVOIDANCE IN AUTOMATED
MANUFACTURING SYSTEMS

By
RALPH A. FERNANDES
Bachelor of Engineering
University of Bombay
Bombay, India

1992

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1995

OKLAHOMA STATR UNIVERSITY

DEADLOCK AVOIDANCE IN AUTOMATED
MANUFACTURING SYSTEMS

Thesis Approved:

Thesis Advisor

D /QM
K_)',ZWM C (.

Dean of Graduate College

ii

ACKNOWLEDGMENT

This thesis represents a milestone in my career; a personal achievement on one hand,
as well as the result of several individuals’ efforts and encouragement. I extend my
deepest appreciation to Dr. Manjunath Kamath for his consistent encouragement and
belief in my capabilities as a student, for being a guide as well as a friend, as a true
teacher should, and for supporting me as a research assistant at the Center for Computer
Integrated Manufacturing. Many thanks are due to my other committee members, Dr.
David Pratt, and Dr. Timothy Greene, who were always prepared to offer their
assistance, and who taught me how to succeed within the classroom and beyond it.

Many thanks to my friends at the Center for CIM and elsewhere, for helping me feel
at home in a new world.

Last but not least, my heartfelt gratitude must go to my family; my parents, sisters,
and late uncle; their sacrifices and precious love have helped me reach this milestone,

and will keep me going onwards.

iii

TABLE OF CONTENTS

Chapter Page
L INTRODUCTION it mammsioniass s isassieisitsse sed dussmnsrassansaesasssrepnsansen 1
Background of the Problem............ccoccoiiiiiiiiiirne e, 1
Strategies Employed in Deadlock Resolutioncccoeeevieecicicennciiececeeens 3
Thie Probleny SURISHIeHE ..o comiuiiminimmssimimamiississosistmsisrasiiissisiiois 5

Deadlock Avoidance: An NP-Complete Problemccccocvevieiniiiniiiiiccinnnn 5

Deadiork Prevenlion - ccunnsnianiisimnmmmsmiia i 8
Deadlock Avoidance .. ik SRR R S e s e L
Deadlock Detection aud Recovery .. 14
L. STATEMENT OF THE RESEARCH.......c.cccicinasisiisssvsissssssassesssissnivssssssissias 17
Research Objectives e R N I
Research Scope And Assumptlons T v
R OIRCE IACHBIET . o ey hes ke ot R R At RS s e R AR 19
IV, RESEARCH APPROACH.......ccionuammnimmnismisismssinsspesiistmisimiamae 23
Design of the Test SyStemS.cccveeeveeericeiieeeiariiaeesreeree e e resaeereaeseassesaneesneens 23
Synthesis of a Blocking Restricted Petfri Net..............ccccoeiieciemonieransansaissssansns 26
Development of the Research: A Preview............ccccoevveeicveccvenieceniosiessnseeens 34
Elementary Reduction of the BRN model..........cccceeeiiieieecceccieiceceeceeeeen 37
Evnamic RedUChon . cvinniiimamismnsns s s rimatsss i rassaass 50
Habermann’s Algorithm and its Adaptation to Manufacturing Systems........... 51
The HS® ALZOTIAID ... esseeeeeeesees e seeeeeseesssseeneens 58
Safe State Seeking HOUMISHC .. .ccmmsiimsrimssmisussssmasnpssseniasis sasssssssdorsssusnsnsss 62
A Procedure for Obtaining the Minimal Requirements for a Process.............. 68
Incorporating Processes with Alternate Routings into the Claim Matrix 72

iv

Chapter

APPENDIX I: GLOSSARY ...
APPENDIX II: TABLES OF MARKINGS
APPENDIX III: PROOF OF HABERMANN S SECOND THEOREM

.................

LIST OF TABLES

Table Page
1. Bit operations used for various problem sizes and algorithmic
SOOI D ORI C8 . .. 855100 8 At S s i o SO R SRRV ST MR SRR A 21
2. Interpretation of places in Figures 5 and 6..........cccoeeeeiicicicicniniecnicninnns 31
3. Interpretation of places for BRN of System B in Figure 7........ccoccceeee 32
4. Interpretation of places for e-BRN of System A..........ccoeeiveirvicrieeeniennns 46
5. Interpretation of places for e-BRN of System B........ccccoovvivviriicciininnnnne 48
6. Comparison of HS® algorithm to other published avoidance 86
algorithms...
Al Markings for e-BRN Model of System A in Figure 17...........c.ccooeeeen.n. 99
A2 Deadlock Markings for e-BRN Model of System A in Figure 17............. 100
A3 Markings for e-BRN Model of System B in Figure 18........ccc.cooevveceennene 101
A4 Deadlock Markings for e-BRN Model of System B in Figure 18............. 102

vi

LIST OF FIGURES

Figure Page
1. Automated Manufacturing System A..........ccooieieiieiriieeecieiieeee e 24

2. Alternate process plans for @ TaW Part............ccooveiiniicninisininsciccnces 25
3. EAVOULTOE SYBEHE B ooivisovssinmsssnsiminiivmsioissaims i sisasessiisi 27
4.. Routing for partin System B.........cccuiimiiiisiimssamssisissssansississ 27
5. Resource Activity Subnets for System A..............coooiiiiiiiiie e 29

6. Synthesis of a BRN for System A from a union of resource activity
SUDDELS 1N FIZUIE 5.ttt e s e s a e aneaae e 30

7. BRIN 10T BYSLE Biciioniisimsmes disininsssssssimas fisrsesmisaiammasiavisimisssamsavonssn 33

8. A one machine AGV SYSIEM........cccccoveraerirssrenssssreassssassersossensnsssssossanes 38

9. A blocking restricted net for the system in Figure 8..........cccoceeeiecuneennn. 38
10. The reachability graph for Figure 9...........coooocmicciicirieeecieeeeeeeees 40
11. Removal of subnets for reducing the blocking restricted net.................. 40
12.. Controller et for FIgure 9. wassmmsssimmmssasssmamisonissmmissassarsasisons 41
13. Reachability graph for Figure L1.......ccociviiiicininiceciics v 42
14. Deadlock free reachability graph for Figure 11........ccoovveieriiiiciiecninnne 42
15, TYPC I TedUCRION.. ..occuensneromsarrenmsnnssnessassussmmsssassnsonsansosnnssnnsonnsisomsnsisnarsnnes 44
16, TYREILISHUCHON s nnnmas s S s 44

17. e-BRN of System A obtained from the net in Figure 6............ccccvveenneeene 45

vii

Figure
18.
19.
20.
21.

22.

Al.

Page
EBRN OF SHten B cimnisscnuisssiiimissssmimimi s tnassim s 49
Deadlock Avoidance Controller Scheme............ccocoooieiieiiiicicciicicenee. 59
1 T3 RN T S, 60
Concept behind REUriBIC. . icciiissimsimimsniaisisimsmmssisisssssisiasasnsiseeiss 61
A process plan with alternate routes represented as an OR digraph........ 72
Reachability graph for e-BRN for System B in Figure 18...................... 103

viii

CHAPTER I

INTRODUCTION

Background of the Problem

Automated manufacturing systems (AMSs) provide the flexibility needed for
producing a wide variety of parts. These systems are characterized by limited resources
which are shared among jobs. One of the problems arising in the control of such systems
is the possibility of system deadlock. In an unmanned AMS, the problem of system
deadlock becomes significant because a deadlocked system can remain in that state
indefinitely, i.e. the system is crippled. Because of the complex sequence of operations
in such systems, deadlocks are difficult to predict. It is clear that the nature of deadlock
renders automated operation impossible. Once a deadlock occurs, human intervention is
needed to clear buffers and machines and restore the system to a state that is known to
produce deadlock free operation under normal conditions of operation. Designing and
operating an AMS without deadlock considerations can lead to excessive manual
intervention to resolve deadlocks and reset the system to a known manufacturing state
[Wysk et al. 1994]. Such intervention violates the definition of unmanned (automated)
operation, and the cost in terms of lost production and labor may be high.

The problem of deadlocks has been studied quite extenmsively in computer
science as it is critical in multiprogramming environments. Here, several processes
compete for a finite number of resources, e.g. the central processing unit and memory

space. Coffman, Elphick, and Shoshani (1971) state four necessary and sufficient

conditions which lead to a deadlock. These are: mutual exclusion, wait-for condition, no
preemption, and circular wait. It follows that one of the ways in which a deadlock may
be prevented from occurring is by ensuring that the four conditions listed above do not
hold simultaneously.

While the four conditions given above were developed for computer systems,
they are applicable to manufacturing systems as well. However, most of the detailed
implementation of deadlock resolution strategies used for computer systems cannot be
applied to manufacturing systems [Leung and Sheen 1993]. One reason is that deadlock
resolution algorithms are dependent on the topology of the system and the way the
system operates. Also, resolution procedures which are suited to computer systems may
be inappropriate to manufacturing systems. For example, in a computer system, a
program may be “trashed” in order to free space, while “trashing” a part in a
manufacturing system is not desirable [Leung and Sheen 1993]. Most of the resolution
procedures adopted for dealing with deadlocks in distributed systems are of the detection
and recovery type. Once a deadlock is detected, recovery is effected by a roll back to a
prevoius state. This is clearly not possible with AMSs. However, Habermann's
algorithm [Habermann 1969] which was the earliest detailed discussion on deadlock
avoidance in the context of operating systems, forms an integral part of the research
developed in this thesis. The adaptability of Habermann’s theorem to manufacturing
systems is promoted by the fundamental manner in which he approaches the problem.

While deadlocks have been studied in the computer literature for quite some
time, the same cannot be said of manufacturing. The problem of deadlocking in an

AMS (which is more prone to deadlocks compared to conventional manufacturing

topologies) has been ignored by most research in scheduling and control [Wysk et al.
1991].

Approaches to the deadlock problem in AMSs can be categorized by way of the
strategies employed, or by way of the methodologies employed to resolve deadlocks.
The related literature reveals essentially three different strategies to resolve deadlocks:
(i) deadlock prevention, (ii) deadlock avoidance and recovery, and (iii) deadlock
detection and recovery. Various methodologies are used for implementing these
strategies, including: Petri net models to analyze the system under consideration or to
execute these models in real time for controlling deadlocks, directed graphs to model part
routings, and real time control algorithms. The three strategies employed for deadlock

resolution are defined below.

Strategies Employed in Deadlock Resolution

Deadlock Prevention

Deadlock prevention is concerned with the formulation of policies for designing
AMS:s so that one or more of the necessary and sufficient conditions for deadlock hold
false while the AMS is in operation. Sincé deadlock prevention is accomplished by
imposing restrictions during the design stage itself, poor resource utilization results

[Viswanadham et al. 1990].

Deadlock Avoidance

Deadlock avoidance and recovery is concerned with avoiding potential deadlock
situations in real time, and initiating automatic recovery procedures when a deadlock
state could not be avoided. While deadlock prevention results in static resource
allocation policies, deadlock avoidance results in dynamic resource allocation policies;

consequently the resource utilization with this approach is expectedly higher.

Deadlock Detection and Recovery

In this approach, deadlocks are allowed to occur, i.e. no attempt is made to
avoid deadlocks using any type of look-ahead in real time. Once a deadlock state has
been detected, a correction system is initiated to move one of the deadlocked parts into a
buffer space reserved exclusively for use in such situations [Wysk et al. 1991]. The rest
of the deadlocked parts are transferred sequentially to their next destination.

As will be seen in the literature review, some of the methodologies employed
for resolving deédlocks guarantee deadlock free operation of the manufacturing system
under conmsideration, however there are limitations on the types of manufacturing
topologies that can be handled by these approaches. The other set of methodologies are
general enough to be applied to a wide variety of manufacturing topologies; however,
they cannot guarantee deadlock free operation of the system, or in doing so would be

computationally expensive.

The Problem Statement

At this point the idealized version of the problem may be stated: “To operate a
fully automated manufacturing system so that (1) it is guaranteed to be deadlock free, (2)
the control is non-conservative, i.e. only true unsafe states are avoided, (3) the algorithm
is executable in real-time, and (4) no need for additional resources is imposed.”

As it turns out, the general problem as stated above does not have a practical
solution. The reasons are discussed in the following section. Instead, this research will
be restricted to the following version of the general problem: “To operate a fully
automated manufacturing system so that (1) it is guaranteed to be deadlock free, (2) the
control algorithm has an acceptable level of conservativeness, (3) the algorithm has a

polynomial time solution, (4) no need for additional resources is imposed.”

Deadlock Avoidance: An NP-Complete Problem

The class of NP-complete problems is a fairly recent discovery in the
mathematical world. A practical explanation of an NP-complete problem is that no
known polynomial time solution exists for that problem. The first NP-complete problem
was discovered by Stephen Cook in 1970. Cook also discovered certain theorems to
determine whether a problem is NP-complete or not. These theorems are among the
most profound discoveries in the mathematical world [Dewdney 1993]. One of these
theorems states that all NP-complete problems are equivalent in the sense that any one
problem in that class can be reduced to any other in polynomial time. This means that if

an efficient algorithm (i.e. an algorithm with polynomial time complexity) is found for

any NP-complete problem, then every NP-complete problem can also be solved
efficiently [Manber 89]. As of today, no one has found an efficient algorithm for any
NP-complete problem, and it appears unlikely that such an algorithm will ever be found
[Dewdney 1993]. It so happens that most real world problems either fall into the class of
NP-complete problems or they do not. The latter class can generally be solved using
low-degree polynomial time algorithms; hence their solutions are efficient in an ordinary
sense. On the other hand, the former class of problems generally cannot be solved
practically (leave alone a solution in polynomial time).

The general deadlock avoidance problem as stated above is NP-complete [Gold
1978]. Gold (1978) discusses various restricted classes of problems and classifies them
as easy (solvable in polynomial time) or difficult (not solvable in polynomial time). The
restrictions developed by him for the former class of problems are abstract, and difficult
to justify in the context of real world manufacturing systems. Gold also provides proofs
of the NP-complete nature of the general deadlock avoidance problem. In this author’s
opinion, the greatest use of Gold’s paper is that by proving the NP-complete nature of
deadlock avoidance for the general case, Gold has clearly delimited the solutions that can
be expected for this problem. In other words, the fact that deadlock avoidance is NP-
complete in the general case, means that it would be impractical to strive for exact
solutions to this problem. Gold (1978) suggests three directions that research on this
problem can proceed in: (1) fast solutions for restricted cases of this problem, (2)
heuristic solutions for the general problem, which will usually solve it in polynomial
time, even though exponential time will be required in the worst cases, and, (3) fast

solutions for the general problem which will not always be correct, but will always err on

the conservative side: all unsafe system states will be correctly classified, but some safe
system states will be classified as unsafe. The research approach developed in this thesis

takes the third direction.

CHAPTER I

REVIEW OF THE LITERATURE

The review of the related literature is presented under the headings of the
methodologies used for deadlock resolution strategies, as discussed in the introduction

chapter.

Deadlock Prevention

Viswanadham et al. (1990) use Generalized Stochastic Petri nets (GSPNs) to
model a hypothetical FMS. Petri nets are well suited to modeling systems which exhibit
concurrency and conflict, which are characteristic of AMSs. The model is used for both
prevention, and avoidance and recovery strategies. For the prevention strategy, a
reachability tree is obtained from the GSPN model. The reachability tree depicts all the
reachable markings from a given initial marking. Terminating states in the reachablility
tree expose the deadlock states. An exhaustive path analysis of the reachability tree is
then done to derive a set of resource allocation policies that prevent the occurrence of
deadlocks. In arriving at these policies, one or more of the four necessary and sufficient
conditions to deadlock are falsified. It is necessary to do such an analysis just once in
order to devise the policies.

A major problem with the method outlined above is that the reachability tree
grows explosively with the system size, thus practically ruling out this method for real-

world systems.

Agerwala (1979) and Kamath and Viswanadham (1986) demonstrate the use of
net invariants to determine whether a net has the potential for deadlocking. An efficient
method of computing the invariants of a net during its synthesis is provided by Narahari
and Viswanadham (1985). Once all the invariants are obtained, certain invariants are
intuitively selected to analyze certain states for deadlocks. The disadvantages with such
an approach are 1) the use of intuitive reasoning does mot lend itself to the use of
conventional computer algorithms, and 2) an exhaustive search would be needed in order
to determine all possible deadlock states in the net. Since such a search process has an
exponential time complexity, this approach essentially faces the same problem of state
space explosion of a basic reachability graph analysis.

D’Souza (1994) developed a Petri net control model from a list of
programmable logic controller events. The programmable logic controller (PLC) was
developed for a simple automated cell in the Manufacturing Automation Laboratory at
Rutgers University, comprising a CNC lathe, a pick-and-place robot, and an input buffer
of raw parts. The Petri net control model is represented in a matrix definitional form
(MDF). This is the graphical form of the Petri net recast in vector and matrix terms as:

MDF = (C", C, M,)
where C” = the output incidence matrix,
C = the input incidence matrix,
M, = the initial marking.

The purpose of developing the Petri net model is to validate the programmable

logic controller, i.e. to ensure that the controller does not permit the cell to enter a

deadlock state. In validating the PLC, the Petri net model is used to generate all possible

states that the automated cell is capable of entering. A deadlock detection algorithm
checks for the presence of a terminating state (i.e. a deadlock state). The algorithm
defines a goal state which it attempts to reach from any given state by firing an
appropriate sequence of transitions. The state equation defined below is used for this
purpose.

M =M, +uyC
where M, is the initial state,

C is the incidence matrix; C=C" + C;, and

Uy is the control vector which defines the transitions to be fired.

The methodology discussed above is essentially identical to a reachability tree
analysis, and hence suffers from the same major problem of state-space explosion. Since
the controller developed for the system results in static resource allocation policies, poor
resource utilization may result.

Another approach to deadlock prevention is the synthesis of a class of live nets
using a bottom-up approach. Zhou and DiCesare (1991) use two types of elemental net
structures to synthesize a live net. These structures are referred to as parallel mutual
exclusion (PME) and sequential mutual exclusion (SME). A PME models a resource
shared by distinct independent processes, while an SME models a sequential composition
of PMEs. Sufficient conditions are obtained for synthesizing live nets from these
structures. The restrictions imposed during the synthesis stage are translated into
restrictions at the design stage. This means that scheduling policies designed

independently of deadlock considerations may not be freely applied to the system.

10

Deadlock Avoidance

Deadlock avoidance policies are by definition executed in real-time.
Viswanadham et al. (1990) use the generalized stochastic Petri net referred to earlier and
define a look-ahead of ‘n’ steps to construct a real-time controller for deadlock
avoidance. When the state of the Petri net is defined by a vanishing marking (at least one
immediate or zero-time transition is enabled), potential deadlock situations can be
detected in advance. By selecting the appropriate immediate transition to fire, the
deadlock can be avoided if the set of look-ahead markings had a non-deadlocked
marking. Otherwise, if the look-ahead set had only deadlocked markings, then deadlock
recovery procedures will be initiated in advance. Such a strategy would require the
reservation of a buffer case for such occasions.

The number of look-ahead steps needed for complete deadlock avoidance
cannot be computed. It can be seen that only infinite look-ahead can guarantee deadlock
avoidance for general systems. This would result in an exponential time cost, which is to
be expected given that avoidance in the general case is an NP-complete problem.

Banaszak and Krogh (1990) developed a framework for modeling flexible
manufacturing systems using classical Petri nets. The net type developed is referred to as
a Production Petri Net (PPN). The set of places in the PPN is divided into two disjoint
sets; one representing the set of operations within a process plan, and referred to as
operation places, and another for the resources of the system, referred to as resource
places. The PPN models the production sequence for a product. The resource

requirements are modeled separately. A deadlock state in the system is defined in terms

11

places. The PPN models the production sequence for a product. The resource
requirements are modeled separately. A deadlock state in the system is defined in terms
of two types of transition enablings; process-enabled transitions and resource-enabled
transitions. A process-enabled tramsition represents a job that is currently in the
production step preceding the process-enabled transition. A resource is modeled using a
pair of places, one to show the number of available units of that resource type, and
another to show the number of busy units of that type. It is assumed that each production
step in the sequence requires only one resource in the system. When a set of process-
enabled transitions can never become resource-enabled, the set of transitions is said to
be deadlocked.

The principle behind the authors’ algorithm is that deadlocks are caused by
shared resources (resources which are revisited in the course of a process plan) in the
system. Hence their approach consists of restricting the number of parts that can enter
into certain zones delineated by such shared resources. The production sequence is

divided into a sequence of zones of the type
= 1 s(p,)
Pq=Pq(0)zq ... Zg "+ 'pq(Lqtl)
where pq(0) represents a production order, pg(Lgt1) represents the completion of an

order, Lg is the length of the production sequence, and n(p,) is the number of unique sets

of sub-zones of the form

qu = Sq%qk, k o 132! sasy u(pCI)

12

The deadlock avoidance algorithm consists of two rules, DDA1 and DDA2.
DDALI states that a token can enter a new zone in the production sequence only when the
capacity in the unshared subzone exceeds the number of jobs currently in the zone. Rule
DDA2 requires that if a shared resource is being requested by the job, then all of the
shared resources in the remainder of the zone must be available at the time. The authors
then follow the deadlock avoidance algorithm with a proof to show that the restriction
policy guarantees that restricted deadlock will not occur.

Although the algorithm guarantees that all deadlocks are avoided, there are
many limitations imposed on the type of systems that can be modeled. A major
limitation is that it restricts the definition of an FMS to those systems without alternative
part routings, which is not in keeping with trends towards real-time scheduling and
control of FMSs (thus permitting greater flexibility of the systems). Only sequential
production processes are modeled; thus branching and merging cannot be included.
Another assumption is that a production step requires only one resource in the system for
a given part type. The algorithm is quite conservative. For example, when applied to the
system used by the authors to demonstrate the algorithm, not more than 10 parts are
permitted in one of the production zones, while up to 19 parts could be safely allowed (as
this author determined). The algorithm becomes increasingly conservative as the
proportion of shared resources in the system increases. The algorithm fails (does not
allow the system to start) in the limiting case, when all the system resources are shared
among processes. Given that it is not uncommon for all resources in an AMS to be
shared, by virtue of the fact that they are “flexible” resources, it follows that the above

limitation is a severe one.

13

Hsieh and Chang (1994, 1992) extend the methodology developed by Banaszak
and Krogh (1990) to include processes holding multiple resources. Although this is a
significant extension, the other major limitations remain, i.e. alternate routings or
branching cannot be modeled. The algorithm is conservative, since it is based on a
sufficient condition for liveness (rather than a necessary and sufficient condition). The
authors claim that their algorithm permits high resource utilization levels; however, their
algorithm is based on the same idea that Banaszak and Krogh use, and it follows that the
algorithm will become increasingly conservative as the proportion of shared resources in
the system increases.

Leung and Sheen (1993) developed a real-time control algorithm for avoiding
deadlocks. The principle used in their algorithm is that if one of the four necessary and
sufficient conditions for a deadlock (discussed earlier) is relaxed, then a deadlock
situation can be avoided.

The authors claim that the algorithm is general enough to be applied to a wide
variety of FMS’s, however, they state that the algorithms caﬁuol be proved to be optimal
in any sense. Furthermore, the deadlock avoidance strategy requires buffer spaces to be

specially reserved if all deadlocks are to be avoided.
Deadlock Detection and Recovery

Wysk et al. (1991) developed a graph based method to detect deadlocks. Part
routings are represented as directed graphs, where nodes represent machines and directed
arcs represent flow sequences through the machines. Directed arcs are labeled with the

part numbers contributing to the arc. The presence of a circuit in the graph is a necessary

14

but not sufficient condition for deadlocking. Circuits in the graph are detected using
string anthmetic. Additional inspection is then used to determine if the circuit satisfies
the sufficiency conditions of a deadlock.

Given a graph G = (V, A), the following conditions are sufficient for a system
deadlock.

a) There exists at least one circuit C= (V. , A.).
b) The number of jobs contributing arcs to C must be equal to the number of arcs in C.
c) The number of machines in C must be equal to the number of arcs in C.

To implement the deadlock avoidance approach, a deadlock detection procedure
is activated whenever a new part attempts to enter the system. Routing information for
the new part as well as for remaining routes for all parts currently in the system is
converted into a graph and examined for circuits. If a potential deadlock is detected, the
part is not allowed to enter the system until such time that its entry does not cause a
deadlock situation.

While the aim of this approach is to entirely avoid deadlocks (i.e. there should
be no need for recovery procedures), this necessitates detecting combinations of circuits
which could lead to deadlocks, while the individual circuits in themselves would not. A
higher level circuit has lower level circuits as its nodes. For example, a second-level
node is actually a circuit with machines as its nodes. It is clear then, that if deadlocks are
to be entirely avoided, then all such higher-level circuits that could lead to a deadlock
need to be examined. The level upto which such circuits would have to be examined is

indeterminate.

15

As an alternative strategy, only the next immediate destination of parts in the
system is used to form a graph. When a system deadlock is detected, a correction system
is initiated to move one of the deadlocked parts (chosen at random) to a special reserved
storage. The rest of the deadlocked parts are then transferred sequentially to their next
destination. It is clear that routing beyond the immediate destination cannot produce a
system deadlock, hence it is ignored imn the graph conmstruction. This approach
corresponds to the deadlock detection and recovery strategy.

A major limitation in the graph-theoretic approach is that the part routing has to
be fixed, i.e. alternate routings cannot be treated. Other limitations of this approach are
that false deadlocks may be detected on the one hand, while true deadlock states may not
be detected, on the other hand. Furthermore, a resolution from the deadlock state
requires that a buffer space be reserved for such occasions.

A common limitation with all these strategies is that a complete resource
allocation policy which optimizes resource utilization has not been defined, rather, the
deadlock resolution algorithms have as their goal only the resolution of deadlocks. This

limitation will be maintained in the development of this thesis.

16

CHAPTER III
STATEMENT OF THE RESEARCH
Research Objectives

Objective I To develop an understanding of the various approaches to the
resolution of deadlocks in unmanned flexible manufacturing systems and related systems,

as presented in the literature.

Objective II To develop a new approach to the problem that attempts to (1)
guarantee deadlock free operation of an AMS, while (2) maintaining an acceptable level
of conservativeness; further, (3) it should be solvable in polynomial time, and (4) it
should not require the reservation of resources as an aid to deadlock resolution. These
criteria formed the structure of the practical problem statement. Given the NP-complete
nature of the problem, we have opted to use the verb “attempts” in defining this

objective.

Objective III To stimulate further research on the deadlock avoidance problem
in unmanned flexible manufacturing systems, given the limited body of literature in the

area.
Research Scope And Assumptions

A widely studied problem in the flexible manufacturing systems literature is

concerned with dynamically determining the part routing. By its very nature, an FMS is

17

flexible, allowing for several alternate routings for a part type. In developing heuristics

for part routings, the researchers have ignored the deadlock problem. This research does

not propose to develop deadlock control strategies or a set of resource allocation policies
that at the same time also result in an optimal or near optimal operation of the automated
manufacturing system by design.

The following conditions will be assumed to hold for the automated
manufacturing systems under consideration:

1. Mutual exclusion: A customer (part) requires the exclusive use of a resource.

2. Hold while waiting: A part holds on to resources while waiting for additional
resources to become available.

3. No preemption: Parts holding resources determine when they will be released.

4. Awvailability of raw parts: For convenience in modeling, rather than as a necessity, it
will be assumed that raw parts are always available, and consequently the availability
of raw parts will not be modeled.

5. A machine that fails comes up in finite time.

The above conditions are not to be viewed as restrictions from the viewpoint of
the deadlock problem. Conditions (1) through (3) are necessary for a system to
deadlock, i.e. if any of these conditions were not true for a given system, then that system
would not experience deadlocks in the sense that a recovery could be affected from any

“deadlock’ state.

18

Performance Measures

The primary objective of this research is to study the efficacy of any approach
developed by this author in avoiding deadlocks in the operation of the AMS under
control. Since the scope of this research does not include development of optimal
resource allocation policies, traditional performance measures like throughput and
resource utilization are not considered. The performance metrics that are of relevance in
this research include (1) the proportion of deadlocks avoided, (2) the time complexity of

the algorithm, and (3) the conservativeness of the algorithm.

Proportion of Deadlocks Avoided

The performance measure defined below will be used to determine the efficacy
of the algorithms developed:
Proportion of Deadlocks Avoided =1 - __ No. of deadlock states that the AMS entered

Total no. of deadlock states in the state space of
the AMS

If the above performance measure is 1, then the algorithm has guaranteed
deadlock free operation of the AMS under its control. If the performance measure is less
than 1, then the algorithm did not guarantee deadlock free operation of the AMS. In this
case the next logical step would be to compare the computational complexity of the
algorithm (which affects the time needed to execute the algorithm in real-time), with that
of another algorithm applied to the same system configuration. To make a proper
comparison of the computational complexity, not only should the performance of the

algorithm (i.e. the proportion of deadlocks avoided) in the control experiment be the

19

same, but also the deadlock states avoided/visited should be the same. For example,
identical avoidance performance measures can be achieved in the finite look-ahead
algorithm of Viswanadham et al. (1990) by varying the look-ahead parameter, however
this will not ensure that the deadlock states avoided/visited will be the same as with the
proposed algorithm.

For this reason, the computational complexity of the algorithm will be estimated
based on the number of computational steps to be executed in the algorithm. This
approach will be preferred rather than using simulation to compare the execution speed
of the algorithm with that of a comparable algorithm, because of the difficulty in
obtaining identical results in the control experiment so that a meaningful comparison
may be made, as discussed above.

Comparison of the computational complexities of the new algorithms with those
of established algorithms would help in establishing guidelines on the use of the various

approaches for different AMS types.

Time Complexity

The time complexity of an algorithm is represented by the big ‘O’ notation, for
example, a polynomial complexity is written as O(n"), where b is the degree of the
polynomial. The relation between the big-O estimate and the time complexity f(n) is:
f(n) = O(g(n)) = f(n) < C.g(n) when n > k; C and k are constants.

The table [Rosen 1988] below displays the time required for solving problems

of various sizes using algorithms of varying complexities.

20

Bit operations used

Problem Size Complexity
n n’ 2" n!
10 107 sec. 10 sec. 3(10) sec.
10 107 sec. 4(10") yr. >10'® yr.
10 10" sec. >10' yr. >10'® yr.

Table 1: Bit operations used for various problems sizes and algorithmic complexities.

From the table, it is easy to see the great disparity between the time complexities
of polynomial solutions versus exponential and factorial solutions, and also the reason
why exponential and factorial solutions are impractical for large problems. One of the
requirements of the problem statement is that the algorithm developed in this research

have a polynomial time complexity.
Conservativeness

The conservativeness of the algorithm determines how restrictive it is in
execution. If an algorithm is too conservative, then it may result in poor resource
utilization, and will interfere with the execution of scheduling policies when these are
designed independently of deadlock considerations (as will usually be the case).

Let the state space of the system be S. Let the set of unsafe states in S be S,.
Let the state space of the system when controlled by the deadlock avoidance algorithm be
S.. Then a logical metric for conservativeness can be expressed as:

IS4

Conservativeness = | - ———
|S = Sul

21

Zero conservativeness means that the algorithm correctly avoids only true
unsafe states. The metric defined above is appropriate only when the algorithm always
errs on the safe side. If this were not true, then it is possible that some of the undetected
unsafe states would count for some of the incorrectly avoided safe states. For such
algorithms, the only way to establish the true conservativeness would be to compare

every state in the original and controlled state space sets.

22

CHAPTER IV

RESEARCH APPROACH

Design of the Test Systems

Issues Related to the Design of the Test Systems

In order to test any algorithm that would be developed in the course of this
thesis, two test systems were designed. System A was designed as an example of a
system with concurrent processes, alternate process plans, and multiple resource holdings
by a single process, which is modeled by the synchronization of a set of resources (which
in turn can also be interpreted as assembly). System B was designed with a view to
testing the algorithm for processes with alternate routings. Both these systems were
designed prior to the development of the algorithms presented in this thesis; thus there
could have been no bias towards any algorithm when the systems were designed.

The sizes of the test manufacturing systems were limited by the following: 1)
the availability of appropriate software and hardware to develop the reachability tree
corresponding to the state space of the system, and 2) the requirement that any algorithm
developed would have to be tested over the entire state space to determine how
conservative it was, and whether it would avoid all unsafe states. The first limitation is
due to the fact that any software code (external) used to develop the reachability graph
will have an exponential time and space complexity (due to the phenomenon of the state
space explosion); thus there is a limit on the system size that can be handled when

developing the reachability graph. The second limitation arises since the scope of this

23

thesis does not include the implementation of the algorithm in a machine executable
language. As will be seen later, the algorithm that this author developed was tested over
the entire state space manually. The layout of System A is shown in Figure (1). The

layout of System B is shown in Figure (3).

Description of System A

The test System A has three types of resources, viz. machining centers M1 and
M2, automated guided vehicles (AGVs), and fixtures A and B. There are two units of
M1, one unit of M2, two AGVs, and two fixtures of each type (A and B). The routing of

the AGV is determined by the process plan, which is shown in Figure (2).

Load Unload
Station Station
AGV AGV
M3 (@M 6) O O
M2
Ml Fix.| |Fix. Fix.| |Fix.
A A B B

Figure (1): Automated Manufacturing System A

Two alternate process plans are modeled. The alternate process plans require that
two machining operations be carried out on a part. Any operation may precede the other;

however, each operation may be performed on only one type of machine. For e.g., Ml

24

may perform drilling operations, while M2 may perform milling operations. The
functions of the two machines cannot be exchanged, so that a part has to be routed
through both machine types. A fixture of type A is used when the first operation is being

performed on a part, while fixture B is used when the second operation is performed on

the part.
Process plan A:
load _,[AGV _,!Ml + fixture A _,[AGV _,Imz + fixture B _’chv !luuload
Process plan B:
Joad —xtwv —)|M2 + fixture A -3AGY —)LMI + fixture B —){ AGY ——)1un]oad

Figure (2): Alternative process plans for a raw part

The AGV is loaded with raw parts at the load station, carries them to either M1
or M2, where it awaits unloading. The AGV is unloaded only when both a fixture and
machine are free, otherwise it remains blocked. The AGV also transports semi-finished
parts to either machine M1 or M2, depending on which operation was completed on the
semi-finished part. When a finished product (a part which has been processed on both

M1 and M2) is available, the AGV can be assigned to carry it to the unload station.

Description of System B

System B is shown in the layout diagram in Figure (3). A single process plan

with two alternate routings is modeled in this system. The routing is shown in Figure

25

(4). There are two shared resources (resources which are revisited in the course of a

process plan), M2 and the AGV.

Assumptions in the systems

The conditions defined earlier in the section “Research Scope and Assumptions”
hold. In addition:

1. The unload station is assumed to have infinite capacity. (Such assumptions are
necessary to define the boundary of the system model.)

Note that we have not explicitly assumed that the load station is of infinite
capacity. This is not required, since the system boundary does not include the process of
loading the load station. Hence, a load station filled to its capacity with raw parts would
not have any impact on the potential of the system to enter into a deadlock. Having

described the two systems, a framework is now presented for modeling the systems.
Synthesis of a Blocking Restricted Petri Net

Deadlocks are defined by a circular blocked state, where each blocked resource
in a set is awaiting another blocked resource in that set. A blocking operation can be
viewed as a state i? which a resource is waiting to be unloaded (by transferring its load
on to another resource). From the definition of a deadlock as a circular blocked state, it
follows that only the blocking operations are of relevance to the deadlock phenomenon.
Hence it suffices to model the blocking operations only in the Petri Net (PN) model.

When the scope of a PN model of the system is restricted thus, then the model is

26

Ml

L AGV

Load
Stn

M4

Unload
Stn

Figure (3): Layout for System B

Load Stn

AGV J Ml AGV

—| AGV

M3’\

AGV |, M2

_@ Unload Stn

e
\M4/

Figure (4): Routing for part in System B

27

referred to as a Blocking Restricted Net (BRN). The BRN is synthesized from a union of
subnets, where each subnet models the cycle of blocked activities that a resource may go
through. These subnets are referred to as resource activity nets (RANs), and are shown
in Figure (5) for the three types of resources in System A. The interpretation of the
places is given in Table 2. The set of places can be classified into two types: (1) resource
places, which model the availability of resources, and (2) operation places, which model
the loading or unloading operations, i.e. the blocking operations of a process. The
transitions have a dual interpretation, in that they represent the commencement or
completion of a particular activity.

The synthesis of the complete BRN model is achieved through a union of these
subnets, and is shown in Figure (6) for System A. The interpretation of places is given in
Table 2. The union process essentially combines the identical places and transitions in
the full PN model. The advantage of this bottom-up approach is clear: the modeler
needs to deal with only one resource type at a time.

The synthesis of the BRN for System B is accomplished in a similar manner,
and is shown in Figure (7). The interpretation of places is given in Table 3.

Having obtained the BRN of the system, we can identify the properties that give
it the potential for deadlocking. These are: 1) sequential mutual exclusion (SME), and 2)
parallel mutual exclusion (PME) [Zhou and DiCesare 1991]. In ordinary words, these
concepts can be explained through examples as follows. An AGV can either load M1, or

it can unload M1, but it cannot concurrently do both operations. This is an example of

28

Pl

Ti T2
p P3
T T4

(a) Activity subnet for M1

T2 T6
T4 T8

(c) Activity subnet for fix. A

4
T5 T6
P5 P6
T7 T8

(b) Activity subnet for M2

T5 Tl
T3

| 74

(d) Activity subnet for fix. B

A I |
14
e TG

T8
O L O
T5 P9’ Tl
T/ T3
P13 . P15
(e) Activity subnet for AGV
T10 TIi2

Figure (5): Resource activity subnets for system A

29

Figure (6). Synthesis of blocking restricted net (B for System
A from a union of resource activity subnets in Figure. (5)

30

RESOURCE PLACE INTERPRETATION
Pl MI available
P4 M2 available
P9’ AGYV available
P10 Fixture A available
54 1 | Fixture B available
OPERATION PLACE INTERPRETATION
P2 M1 processing semi-finished part on Fix. B
P3 M1 processing raw part on Fix. A
PS5 M2 processing semi-finished part on Fix. B
P6 M2 processing raw part on Fix. A
P7 AGYV with semi-finished part awaiting M1
P8 AGV with semi-finished part awaiting M2
P12 AGYV with raw part awaiting M1
P13 AGV with finished product unloaded from M2
P14 AGYV with raw part awaiting M2
P15 AGV with finished product unloaded from M1

Table 2: Interpretation of places for Figures (5) and (6).

31

RESOURCE PLACE INTERPRETATION
P1 M1 available
P4 AGYV available
P6 M2 available
P10 M3 available
P11 M4 available
OPERATION PLACE INTERPRETATION
P4" AGV with raw part
P2 M1 busy
P3 AGYV carrying WIP from M1
P5 M2 busy
P7 AGYV carrying WIP from M2
P7’ AGV moving WIP from M2 to M3
P7” AGV moving WIP from M2 to M4
P8 M3 busy
P9 M4 busy
P12’ AGV moving WIP to M2
P13 M2 processing operation # 4.

Table 3: Interpretation of places for BRN of System B in Figure (7)

32

Figure (7): BRN for System B

33

SME. Second, an AGV can either load M1, or it can load M2; but it cannot do both
concurrently. This is an example of PME. There are many other instances of SMEs and
PME:s in this system.

It may be noted that although these properties are undesirable, no attempt is
made to synthesize the net without these properties. An approach where this is done falls

into the category of synthesis of live nets, and is critiqued in the literature review chapter.

Development of the Research: A Preview

In an initial approach to the problem, this author developed a framework for
modeling an automated manufacturing system from the perspective of the deadlock
phenomenon. The framework uses classical Petri nets to model the blocking operations
within the AMS, and was used to model two test systems in the preceding section. This
framework is appropriate since any deadlock state can be defined in terms of a set of
blocked resources, with each resource in the set waiting indefinitely for the other to
become available. Petri nets was chosen as the modeling tool because of its suitability
for modeling characteristics like concurrency and synchronization which are prevalent in
an AMS. The resulting net is referred to as a Blocking Restricted Net (BRN). An
example of synthesizing a BRN for System A was described in the preceding section.

Once a framework had been developed for modeling the deadlock phenomenon,
the next step in the evolution of this research was the identification of a set of elementary
reductions to be applied to the net model. The resulting reduced model is referred to as
an e-BRN, for elementary blocking restricted net. The concept of reduction was

motivated by the finite look-ahead algorithm of Viswanadham et al. (1990) (referred to

34

as the VNJ algorithm). Such a concept was appealing because the state space of a Petri
net is exponentially proportional to its size (number of nodes), except for simple nets
such as marked graphs. Thus the state space of a reduced net would be significantly
smaller than the state space of the original net. It follows that the average number of
look-ahead steps needed to avoid the same subset of deadlocks as the VNJ algorithm (for
the same system) would be lower.

Hence the improvements of this approach over the VNI algorithm were
achieved in two phases: (1) by restricting the scope of the Petri net model to only those
operations of relevance to the deadlock phenomenon, a first reduction in the state space is
implicit (the PN model used for the VNI algorithm is not restricted to blocking
operations), and (2) by further reducing the net model, the state space is further reduced.
However, as was the case with the VNJ algorithm, all deadlock states were not avoided.

The next tramsition in the development of this research was the process of
dynamic reduction. Such a reduction was performed on the e-BRN for every new
marking that was entered. The concept behind dynamic reduction was the same as that
behind elementary reduction, i.e. to reduce the state space of the net, and thereby reduce
the average size of the look-ahead needed in order to avoid a certain proportion of
deadlocks. With dynamic reduction, a greater number of deadlock states could be
avoided than with elementary reduction alone. However, it still could not avoid all
deadlocks. A study of the successful cases of deadlock avoidance revealed a parallel

with the principle behind Habermann’s algorithm [Habermann 1969].
This research culminated in the HS® algorithm, which used Habermann’s

algorithm to guarantee deadlock avoidance, and a heuristic to reduce the

35

conservativeness of Habermann’s algorithm when adapted to manufacturing systems.
Habermann’s algorithm essentially determines whether a process can be assigned its
share of resources so that it may continue without interruption to termination. If all such
processes can be sequentially cleared, then the state of the system as defined by the set of
active processes and the resources allocated to that set is safe. If this is not true, then the
system state as defined above is declared unsafe. Since an unsafe state may be falsely
declared thus, it makes the algorithm conservative. The structure of the HS® algorithm is
designed to reduce the conservativeness of Habermann’s algorithm.

The following discussion is divided into sections corresponding to the
evolutionary steps outlined above. A discussion of the clementary reduction (ER)
approach is presented first, followed by a presentation of the dynamic reduction
algorithm, and finally the HS® algorithm, which is presented as the solution to the
pratical version of the deadlock problem. The elementary reduction approach is not a
necessary step in the application of the Hs’ algorithm. However, such a reduction has
the advantage of resulting in a significantly reduced state space for the given system;
hence the frequency of invoking the HS® algorithm is reduced. Both the BRN models of
the test systems were reduced to their e-BRN versions prior to testing the Hs’ algorithm
over the state spaces (of the e-BRNs). The dynamic reduction approach does not form
any part of the HS® algorithm. The purpose served by presenting the dynamic reduction
algorithm in itself is that it provides the reader with a gist of the transition to the gs®

algorithm from the elementary reduction approach, which was the first approach to be

developed in this thesis.

36

Elementary Reduction of the BRN Model

In the course of a preliminary study of the problem, the author had developed an
elementary reduction (ER) approach that is demonstrated for the simple system shown in
Figure (8). The system consists of a load-unload station, a single machine station, and an
AGYV. This system has been used as an example by Viswanadham et al. (1990) for their
deadlock detection algorithm. The AGV transports raw parts from the load-unload
station to the machine, as well as finished parts from the machine to the load-unload
station. There are no buffers in the system. It is assumed that raw parts are always
available. Two states of deadlock are evident in this system. In one such state, the AGV
is waiting to load the raw part it has onto the machine, which has a finished part on it.
The machine in turn is waiting for the AGV to carry off the finished part and load a fresh
raw part on it. This represents the circular ‘wait-for’ state discussed in the literature.

The second deadlock state occurs when the empty AGV is assigned to carry a
finished part from the machine, while the empty machine is waiting for the AGV to load
a raw part onto it. This again represents a cycle of requests which cannot be fulfilled, i.e.
the system is frozen.

The elementary reduction approach uses Petri nets to model the ‘wait-for’ or
blocking relationships between the resources. Thus the scope of the modeling view is
restricted to blocking phenomena only. This modeling scope differs from that adopted
by Viswanadham et al. (1990), who use generalized stochastic Petri nets to develop a

general purpose model of the system. The restricted scope model results in a

37

Load-unload Machi
I : AGV ‘ e

Figure (8). A one-machine-AGV system

Al
tl i
Wi é
—-—' A2
o !
A3

w2 3.&_34

t5

Figure (9). A blocking-restricted net for
the system in Figure (8)

EXPLANATION OF PLACES

W1 - machine waiting for AGV to load raw part
W2 - machine waiting for AGV to unload finished part

Al - AGV waiting for raw part

A2 - AGV waiting at machine to load raw part

A3 - AGV waiting for resource allocation decision

A4 - AGV waiting to unload finished part from machine

38

simpler net structure; consequently the modeling process is made simpler. The ‘wait-for’
or blocking-restricted Petri net model is shown in Figure (9).

The next step in the approach is to further reduce the blocking-restricted met
model by eliminating those portions of the net which represent fixed, deterministic paths
for the flow of tokens.

More formally, let G = (P, T, IN, OUT) be the blocking-restricted Petri net

model of the system. Let G = (Ps, T, INs, OUT) be a sub-net, P < P, Ts < T, such

that:
VteTs |.t|=1
[t]|=1
VpeP; |pl=1
lp-|=1
where:

.p is set of input transitions to place p;
p. represents the set of output transitions of place p;
.t is the set of input places to transition t; and,
t. denotes the set of output places from traasition t.
The net reduction procedure consists of removing all such sub-nets (see Figure
(11)) from the original net. If the Petri net of Figure (9) is reduced in accordance with

the method outlined above, then the net in Figure (12) is obtained. This will be referred

39

to as the “controller-net”, which will determine those transitions to be fired in order to

avoid a deadlock state.

P={WI, W2, Al, A2, A3, A4}
MO = (1, 0, 1, 0, 0, 0)
Ml =(1, 0,0, 1, 0, 0)
M2=(0,1,0,0, 1, 0)
M3 =(0, 1, 0,0, 0, 1)
M4 = (1, 0, 0,0, 1, 0)
M5=(0,1,1,0,0,0)
M6 = (0, 1, 0, 1, 0, 0)*
M7=(1,0,0,0,0, 1)*

123

M7

Figure (10). The reachability graph for Figure (9)

Al t3

t1 Ad

t4

Figure (11). Removal of subnets for reducing
the blocking restricted net

40

In the controller-net, place A’ represents the set of places {Al, A2, A3, A4} in
the original net. A token in places {Al, A2, A3, A4} in the original net puts a
corresponding token in place A’ in the controller net. The controller net is decision-free,
even though place A’ has two out-going arcs to tramsitions t2° and t5°. This gives the
appearance of conflict, but as can be seen from the reachability tree of the controller net
in Figure (13), there is no conflict. Furthermore, the net is reinitializable, i.e. there is no
terminating state (or deadlock state). It can be seen from Figure (14) that if the controller
net is interfaced with the original net model, then it will ensure that no transition is fired
in the original net which will lead to a deadlock, thus ensuring deadlock free operation of

the system.

wI'
"'*O A’ = {Al, A2, A3, A4, AS}
;_ W1 = (W)
2
W2’ = (W2}

(E 12° = {tl, 12, 14}
/ 15" = {13, 15}

Figure (12). Controller net for Figure 9

41

MO =(1,0,1
(t B |) places — {WI', wz‘!’ Ai}

MO=(1,0,1)

Figure (13). Reachability graph for Figure (11)

()

tl

Figure (14). Deadlock free reachability tree for

2
@ original net interfaced with controller net

o}
u

42

To observe how a deadlock state is avoided using the controller net, consider the
marking M2 for the original net (1 token in M2 and 1 token in A3). This marking
enables two transitions, viz. t3 and t4. If transition t4 is fired, then the net will ultimately
reach a deadlock state (corresponding to marking M6 in Figure (10)). Now, the marking
M2 puts tokens in places W1’ and A’ in the controller net, resulting in marking M1' for
the controller net. This marking enables transition t5°, which represents the set of
transitions {t3, t5} of the original net. This means that either transition t3 or t5 should be
fired in the original net in order to avoid a deadlock state. Since t5 is not enabled in the
original net, it cannot be fired. Thus 3 is fired, and the deadlock state of M6 is avoided.

The elementary reduction approach is now described for the BRN of System A.

Elementary Reduction of the BRN for System A

Let G be the 4 tuple (P, T, IN, OUT) representing a BRN. The process of
reducing subnets of the type G, , where G, = (P, T, IN;, OUT,); VpeP,, |.p| = |p.| = 1;
VteT,, |.t| = |t.| = 1; Y(p,t)e(P; X T¢), IN; = IN; OUT, = OUT; into macro places and
macro transitions is referred to as an elementary reduction. The reduced net is referred to
as an e-BRN (elementary Blocking Restricted Net).

There are two types of elementary reductions. A type I reduction involves a
subnet consisting of a resource place followed by its operation place. For example, the
subnet shown below consists of a resource place P9’ and an operation place P12. This

subnet is merged to form the macro place P9 = {P9’, P12,...} and macro transition T2 =

43

{T2’, T9}. The ellipses indicate that other places are also included in the macro place

P9, through the merging of other subnets.

P9=(P9", P12,...}

Figure (15): Type I reduction

A type II reduction involves a subnet consisting of an operation place followed
by a resource place. For example, the subnet below consists of an operation place P15
and a resource place P9’. This subnet is merged to form the macro place P9 = {P9’, P15,

...} and the macro transition T3 = {T3’, T12}.

"[3‘
P15

PO={P9", P15,..}
T2

é Py’ T 9 T3={13",T12}

Figure (16): Type II reduction

Since the reduced net is used to control the original net, any disabled macro
transition requires that any transition in the original net making up the macro transiton
should not be fired, with an exception. The exception is that macro transitions derived
from type II reductions are excluded from this rule. Consider a subnet corresponding to a

type II reduction. A token in the operation place enables the tramsition preceding the

44

resource place. Thus the only effect of firing the transition which has the operation place
as its input place is to make a resource available. It is intuitive that when the only effect
of an action is to increase the availability of a resource, then the resulting state cannot
have progressed towards a deadlock. Therefore, although the macro transition resulting
from a type II reduction may not be enabled, it is safe to fire the individual transitions
comprising that macro transition.

The e-BRN for System A is shown in Figure (17). There are 369 markings in
the original BRN, of which 61 are deadlock markings. In the e-BRN, there are 71
markings, of which 9 are deadlock markings. Hence, the elementary reduction algorithm

does not avoid all deadlocks. The performance measure defined earlier can be applied

Figure (17): e-BRN for System A obtained from the net in Figure (6)

45

RESOURCE PLACE

INTERPRETATION

Pl M1 available

P4 M2 available

P9 AGYV available

P10 Fixture A available

P11 Fixture B available
OPERATION PLACE INTERPRETATION

P2 M1 processing semi-finished part on Fix. B

P3 M1 processing raw part on Fix. A

P5 M2 processing semi-finished part on Fix. B

Pé M2 processing raw part on Fix. A

P7 AGV with semi-finished part awaiting M1

P8 AGYV with semi-finished part awaiting M2

Table 4: Interpretation of places for e-BRN of System A

46

for this case. The value is:

1-9/61=0.85
1.. 85% of the deadlock states are avoided. At this point, it would be pertinent to inquire
why the reduction algorithm does not avoid all deadlock states. The reason can be found
in the motivation behind the algorithm, which derives from the finite look ahead
algorithm of Viswanadham et al. (1990). Just as a finite number of look-ahead steps
cannot guarantee avoidance of all deadlock states, so also the finite look-ahead built into
the reduced net canmot guarantee avoidance of all deadlock states. The advantage of
building look-ahead in the net through reduction is that the state space of the reduced net
is significantly reduced, hence the number of steps needed to check whether a state is
safe (there is at least one sequence of transitions which can be fired from a safe state to
mitialize the system) will be less on the average. However, the number of steps needed
for complete avoidance is still indeterminate.

This implies that look-ahead would still be needed to guide the reduced net
away from potential deadlocks. Thus, the reduction algorithm with look-ahead would
continue to have an exponential time complexity.

The e-BRN for System B is shown in Figure (18) and can be obtained in a
similar manner by performing the elementary reduction on the BRN of System B. The e-
BRN model of this system is only used as a model for the other approaches as a test
whether the approaches are general enough to handle alternate routings. The

interpretation of places in the e-BRN is given in Table 5.

47

RESOURCE PLACE INTERPRETATION
Pl M1 available
P4 AGYV available
P6 M2 available
P10 M3 available
P11 M4 available
OPERATION PLACE INTERPRETATION
P2 MI busy
P3 AGYV carrying WIP from M1
P5 M2 busy
P7 AGV carrying WIP from M2
P8 M3 busy
P9 M4 busy
P12 AGV moving WIP to M2
P13 M2 processing operation # 4.

Table S. Interpretation of places of e-BRN of System B

48

Dynamic Reduction

Dynamic Reduction of the BRN seemed to be a natural step in the evolution of
this thesis. Henceforth, all development is directed at guaranteeing avoidance in the e-
BRN. It follows that if any algorithm avoids the deadlock states in the e-BRN, then it
would also accomplish the same for the original BRN, when used in conjunction with the
clementary reduction algorithm.

In dynamic reduction, a reduced net is obtained every time a new marking is
obtained, as opposed to a static elementary reduction. The subnets reduced in dynamic
reduction depend on the marking. The dynamic reduction algorithm is presented below

and is restricted to systems without alternate routings.

Dynamic Reduction Algorithm

1. Let S denote the current marking corresponding to the actual system state.

2. Let Po, be the set of empty operation places in S. Delete pePo. . Merge .p with p.
Repeat V pePo, .
3. Fire a transition teTq. , where T4, represents the set of enabled macro transitions in

the dynamically reduced net.
Testing of this algorithm showed that it avoided more deadlock states than an
elementary reduction, however, it still would not avoid all deadlocks. In the special case
where there is only one resource of each type, the dynamic reduction process avoided all

deadlocks. However, there appeared to be a similarity in the way the algorithm was

50

avoiding deadlocks with the theory developed by Habermann (1969), which is now

discussed in detail.

Habermann’s Algorithm and its Adaptation to Manufacturing Systems

The process of dynamic reduction enables a macro-transition when all the
resource places needed for thst macro trsnsition are marked. This reflects the principle
behind Habermann’s algorithm (also referred to as the H-algorithm). The H-algorithm
was developed for computer operating systems; thus the algorithm does not directly
apply to manufacturing systems. This section summarizes Habermann’s algorithm and
discusses the issues related to the adaptation of the algorithm to manufacturing.

The H-algorithm was intended for avoiding deadlocks due to improper resource
allocation among processes that satisfy certain assumptions. The following assumptions
are stated [Habermann 1969].

1. While a resource A is allocated to process P; , no other process P; can seize A .

2. An allocated resource is not released until it has fulfilled its task.

Both the above assumptions require that no resource in use by a process can be
pre-empted by another resource. It may be recalled that this assumption corresponds to
one of the four necesary conditions for a deadlock to occur [Coffman et al. 1971], i.e. the
assumption of no preemption is not strictly necessary for the algorithm to work; however
if a system did allow preemption of resources, then a recovery could be easily be effected
from a deadlock state. Habermann further states the distinction between the conception
of a process as opposed to a resource: A resource works by order of a process P or

another resource, while a process does not. This distinction leads to the following

51

definitions: An independent process is one 1) which releases all the resources allocated

to it upon completion, and 2) whose termination does not require the commencement of

another process. A dependent process, on the other hand, can be defined as one 1) which

releases a subset of the resources allocated to it upon completion, and 2) whose

termination requires the commencement of another process. This conceptualization of

dependent versus independent processes is specifically relevant to manufacturing

systems, as it determines the applicability of the H-algorithm to manufacturing systems.

The following terms are defined in context of the algorithm.

L

=

The resource availability vector a states the availability of each type of resource when
the system is initialized.

The claim vector b defines the minimum number of resources of each type that a
process will need in order to terminate. The matrix of claim vectors is denoted by B
and is called the claim matrix.

The allocation vector ¢ defines the number of resources currently allocated to a
process. The matrix of allocation vectors is called the allocation matrix and is
denoted by C.

r = a - 2 C is the free resource vector.

The following relations are defined:

Rl: V k, by <a, i.e. no process claims more resources than are initially available in

the system.
R2: C < B, i.e. no process will try to seize more resources than it has claimed.

R3: X C <a, i.e. at most all resources are allocated.

52

8. R4: Let S be an ordered set of active processes. The state defined by S is safe if and

only ift VP, € S, by, <r + Zsm <0 C> where Py is a process in S; S(1) is the

rank of the 1® process Py; C is the allocation matrix; r is the free resource vector; and

by is the claim vector for P. Further details are provided in Habermann (1969).

The relations R1, R2, and R3 must hold for a state to be realizable. The relation R4
becomes a condition for a realizable state to be safe, when the set S includes all the

participating processes in that state. Habermann derived three theorems in the course of

arriving at his algorithm. These are reproduced below.
Theorem 1

Theorem I states the necessary and sufficient condition for declaring a given
state as safe. “When no process will release its resources until it has been allocated all its
claimed resources, the process will not get into a deadlock if and only if the allocation
state is safe.”

Note that there is an explicit assumption in this theorem, which is later discussed

in the context of the NP-complete nature of the generalized deadlock problem.
Theorem II

The most significant of the three theorems, theorem II makes possible the exact
solution of the deadlock problem in polynomial time, given the restrictions mentioned in
theorem I. “If the allocation state is safe and a subsequence S fulfills the condition for

safeness (R4), then S can be extended into a full safe sequence.”

53

In more logical terms, this theorem can be stated as follows. Let P be the
assertion “The state S is safe”. Let Q be the assertion “Any subsequence q fulfilling
relation R4 can be extended into a full sequence”. Then theorem II states that P — Q.
The converse of this theorem is equally important: —=Q — —P (“not Q implies not P”). In
words, the converse of theorem II states that if a subsequence cannot be extended into a
safe sequence, then the given state is unsafe, and there is no need for backtracking. If n
is the number of active processes in a given state, theorem II says that in the worst case,
we do not have to check all n! possible sequences to find a safe sequence; instead we
would need only n(nt1)/2 checks. This is a remarkable reduction in the worst case
computational complexity.

Although a detailed proof of the theorem is reproduced in the Appendix III, the
success of theorem IT may be intuitively explained as follows. Whenever an independent
process is terminated by allocating its claim to it, then it will release all the resources
allocated to it. It is intuitive that if the only effect of an action is to make resources
available, then that action could not be possibly constraining the system to move in the
direction of a deadlock. It does not matter which process we chose to terminate from a
set of active processes, since the only effect of any termination action is to make more
resources available.

Note that although a state may be declared safe by an application of theorem II,
there can still be transitions that take that state into- a deadlock. However, theorem II
does say that there is at least one sequence of transitions from the given state that can

take the system back to its initial state.

54

Theorem III

This theorem states that any subsequence satisfying condition R4 and containing

the most recently introduced process can be extended into a full safe sequence. “If a safe

state is transformed by allocating resources to process Py and if any subsequence can be

found containing Py and fulfilling condition R4, then the transformed state is also safe.”

Having defined the concept of independent vs. dependent processes, we will
now proceed to show why it is not possible to apply Habermann’s theorems (II and III)
to dependent processes.

Consider the e-BRN in Figure (17). At a first inspection, there are two ways to
define a process:

1) The places P2, P3, PS5, P6, P7, P8 may be considered as distinct processes which
need certain sets of resources to terminate. For example, the process P3 needs M,
Fixture A, and an AGV to terminate; this is its c/aim. By virtue of being active, it will
already possess one unit each of M1 and Fixture A. Thus it would require just one unit
of an AGV to terminate. However, the manner in which we have defined P3 as a process
makes it a dependent process. This is because the termination of P3 requires the
initiation of the process P8. Further, P3 releases only M1 and Fixture A upon

termination, while the AGV is assigned to P8.

2) The sets of places Py = {P3, P8, PS5}, P, = {P6, P7, P2} Pz = {P8, P5}, P4 = {P7,
P2}, Ps = {P5}, and Pg = {P2} are defined as processes. The manner in which the above
processes are identified corresponds to the definition of independent processes. For

example, P needs the following resources (one each) to proceed to termination: {Ml,

55

Fixture A, AGV, M2, Fixture B}. It is obvious that upon termination of Pj, this set of
resources would be available for use. Further, the termination of P; does not imply the
initiation of a subsequent process, since no process follows from P;. Similarly, the
definition of all the other processes P, ..., Pg can be seen to correspond to independent
processes. The resource vector a and the claim matrix of Py, ..., P¢ can be written as:
a=[P1 P4 P9 PI10 P11]T= 2122 2]T

B = [by bz b3 by bs bg]

by=[11111]"

by=[11111]"

bs=[01101]"

bs=[10101]"

bs=[01101]"

bs=[10101]"

Note: Henceforth, the transpose symbol ‘T’ will be left out for convenience.

If Habermann’s algorithm could be applied to dependent processes, then an
exact solution of the above system would be possible in polynomial time (and the class of
NP-complete problems solved!). Unfortunately, this is not possible, the reason being that
theorem II breaks down when applied to dependent processes. Since theorem ITI depends
on theorem II, the former breaks down as well. We have provided a mathematical

explanation showing precisely how theorem II degenerates in Appendix III along with

the proof.

56

Having set the stage for the application for the H-algorithm in a manufacturing
setting, the sub-problems arising from such an application are now discussed. The above
definition of an independent process is not in concordance with the restriction in theorem
I. This restriction requires that a process not release any of its allocated resources until it
has been allocated its full claim of resources. The independent processes defined here do
release some of their allocated resources at intermediate steps, i.e. it is not necessary that

an independent process be allocated its full claim before releasing some if the resources it

holds. For example, P; releases M1 and Fixture A when it has been allocated an AGV,

although its full claim requires that it be allocated M2 and Fixture B in addition to the
AGV. The consequence of applying the H-algorithm to independent processes is that the
algorithm now becomes conservative, i.e. the solution is not exact, but whenever the
algorithm errs, it will always err on the conservative side, i.e. it will declare some safe
states as unsafe. Hence, the H-algorithm can still be used to guarantee avoidance of all
deadlocks. A metric for conservativeness was defined in the section titled “Performance
Measures” (chapter III). The sub-problem is: “given that an algorithm conservatively
guarantees that all deadlock states in a system will be avoided, how can the
conservativeness be reduced?”.

This sub-problem completely transforms the focus of the original problem,
which was to guarantee avoidance of deadlocks. With the application of the H-
algorithm, the focus is nmow omn reducing its comservativeness when applied to
manufacturing systems. It may be noted that in defining the sub-problem, we have used
the word “reduced”, and not “eliminated”. To eliminate the conservativeness (with a

polynomial time solution) would be to solve the class of NP-complete problems. Given

57

that a solution to NP-completeness is improbable [Dewdney 1993], the sub-problem is

appropriately stated as above.

The HS® Algorithm

At this juncture, the algorithmic structure that we have conceptualized for
solving the deadlock problem can be depicted as in Figure (19), in the larger context of a
deadlock avoidance controller scheme, and in the high level scheme of Figure (20). This
structure was based on the discovery that if the system state is allowed to advance after
being incorrectly classified as unsafe by the H-algorithm, then it is likely that the
advanced state will be correctly recognized as safe. Note that the H-algorithm always
correctly declares a state to be safe (SAFE), while it may falsely declare a state as unsafe
(labeled as UNSAFE?).

In the figure (19), the elementary Blocking Restricted Net (e-BRN) model of the
Automated Manufacturing System determines the control points at which the deadlock
avoidance algorithm will be invoked. The avoidance algorithm has two procedures. The
first procedure is the H-algorithm, which determines whether a process can be safely
introduced in addition to the current set of active processes. The H-algorithm will

declare the given state as safe or unsafe. If the state is declared as safe, then the process

is allowed. If the state is declared unsafe, then the second procedure, viz. the S heuristic
is invoked. The objective of the S® heuristic is to reduce the conservativeness of the

avoidance algorithm. It achieves this by advancing the given unsafe state to a future
state, which is tested for safeness by the H-algorithm. If the original state was

incorrectly classified as unsafe, then it is possible that the H-algorithm will correctly

58

control

1 | Petri Net Model
AMS <state> BRN* of AMS
Physical System
& 4 <process>
control
H-algorithm

Deadlock Siinsite <modified

avoidance

algorithm | state> Sl

Heuristic

Note: *BRN = Blocking Restricted Net

Terms in angular brackets represent input variables

Figure (19): Deadlock avoidance control scheme

59

procedure H-algorithm

C=SAFE

C = UNSAFE?

procedure S* heuristic

set C=C’

C=UNSAFE

60

Figure (20): The HS® Algorithm

classify the derived state as safe. When the state can no longer be advanced by the
heuristic, then the state is classified as UNSAFE.
The concept behind the algorithm can be explained with the help of Figure (21).

Suppose that Ma is a safe state which is incorrectly classified as unsafe by the H-
algorithm. Then the S? heuristic advances Ma to Mb, where it is again checked by the H-

algorithm. It is possible that the H-algorithm now recognizes Mb as a safe state. Then

theorem IV (a simple proof and explanation are provided later) says that Ma is also safe.
It is also possible that the states Mb, Mc are not recognized as safe. Suppose that the s?
heuristic advances Mc to Mp instead of taking the left path. Then Ma would be
incorrectly classified as unsafe, and the heuristic exited. The H-algorithm is presented

below in pseudocode, and the structure of the S® heuristic is later discussed.

Ma

o
o

o MD
O Mo Mp = deadlock

Figure (21): Concept behind

_heuristic

61

Pseudocode for Habermann's Algorithm [adapted from Habermann (1969)]

In the algorithm below, S* represents the complement of S, and Py is the proposed

process.
Initialize
S=a.
T=8%,
whilenot (PyinSorT=®) do
begin if Pyin T
then Pcandidate = Pk
else P yndidate = I1st member of T; T =T - {Pcandidate }

if b[candidate] - c[candidate] < r +) c[i] then
P;eS

begin S =S U {Pcudidate} ; T = S* end
end

SAFE = Pk in S.

Safe State Seeking Heuristic

The Safe State Seeking Heuristic (S3 heuristic) was developed by this author as an

embellishment to the H-algorithm developed by Habermaon. The function of the s’

heuristic is to reduce the conservativeness of the H-algorithm. It achieves this by

evolving a future state from a given state which is proclaimed unsafe by the H-algorithm.

62

Thus, the S® heuristic is executed only when the H-algorithm declares a given state as
unsafe. If the new state thus generated is safe, then the given state is also safe.

To achieve its purpose, the S® heuristic first determines the unavailable resource
requirements of the shortest process (measured in terms of remaining resource
requirements). Then it attempts to move the load of one of the busy resources needed by
the shortest process into an available resource (thereby seizing that resource), preferably
one that is not needed by the shortest process. If a transfer is accomplished, then the
resultant state is checked for safeness by the H-algorithm. If this state is safe, then it is

intuitive that the predecessor state is also safe. A simple proof is provided in theorem

IV. If this state is not safe, then the S* heuristic is executed again. This process is

repeated till the S® heuristic cannot evolve a state any further. The S® heuristic is written

in algorithmic form below.

Algorithm for S? Heuristic

Note: Use of existing notation is consistent with its use in the section on the H-
algorithm.

1. Let Cg be the given state (as the allocation matrix), where C; = UNSAFE? (as
declared by the H-algorithm alone). Let C = Cj.
2. Let {P} be the set of active processes in C. Select the shortest active process say Ps,

in terms of the size of |bs - ¢5|, where by and ¢ are treated as sets.

63

3. Let the set of resources needed to finish Ps be by, Let the set of free resources be r.
Let ug be the set of unavailable resources needed by Ps. Try to advance some process
P; where P; satisfies the following: (1) P; # P, (2) ¢; N ug # @, (3) the resource set
held by P; is released upon seizing another resource set w, where (i) w c r, and (ii) w
N bg = ®@. If there is no w such that w n by = @, then only condition (i) need be

satisfied. If there is no P; satisfying the above conditions, then exit the heuristic,

setting C = UNSAFE. If a transformation is achieved, let the new state be C.
4. Check C for safeness using the H-algorithm.

5. If C=UNSAFE?, go back to step 2.

6. If C = SAFE, then Cq is also safe, i.e. Cg = SAFE.

Theorem IV

Let M be the current marking (state). If there exists a sequence of enabled
transitions (firing vector) o such that M [o > M, and M is a safe state, then M is also
safe.

Proof: Since M' is safe, it follows from the definition of a safe state that there
exists a firing vector ¢' such that M' [¢' > M, , where M, is the initial marking
corresponding to the initial system state where all resources are available.

Let o* = ¢ + o'; where the operator '+' means "extend the operand o by the argument
c'". Then it follows that:

M [c*>M, . Hence M is safe.

A Demonstration of the S Heuristic

The utility of the S* heuristic is demonstrated in the following situation.
Consider two processes represented as a routing of workstations, Py = {W1, W2, W3,
W4} and P, = {W4, W3, W1}. P is currently allocated workstation W1, while P; is

currently allocated workstation W4. When this state is checked for safeness by the H-

algorithm, it will be classified as unsafe (UNSAFE?). The S? heuristic is now invoked.
The shortest process is P,, since it needs two resources to finish, while Py needs three. In
keeping with the notation used in the heuristic, P; = Py; P; = Py; r = {W2, W3}; uy =
{W1}; bs = {W1, W3, W4}; ¢, = {W4}; b; = {WI1, W2, W3, W4}; ¢; = {W1}. The
current state is [¢;, ¢z2] = [¢;, ¢s]. In accordance with the heuristic, P; is selected to be
advanced (P; # Ps; ¢; ™ ug # ®). To advance Pj, the resource set w = {W2} needs to be
acquired. The set w satisfies the condition w n by = @ in this case. After advancement,
the transformed state is P;' = {W2, W3, W4}; ¢;' = {W2}; ¢; = {W4}. The new state
defined by [cy', ¢2] is correctly detected as a safe state. Hence the original state [¢g, ¢2] is

also declared safe.

Application of the HS® Algorithm to System A

The HS® algorithm successfully avoids a// deadlock states in the state space of the e-

BRN model of System A in Figure (17). Further, it does so with zero conservativeness,

i.e. only true unsafe states of the e-BRN are avoided. Since the e-BRN can be controlled

65

to avoid all deadlocks, it can be interfaced with the original BRN to avoid all deadlocks
in the larger state space of the original BRN, i.e. the physical system can run indefinitely
(as long as any resources that fail in the course of a processing operation comes up in
finite time).

That the HS algorithm avoids all deadlock states is to be expected, since it is based
on the H-algorithm, which in turn ensures that the necessary and sufficient condition for
safeness is always satisfied. With regards to the comservativeness metric, the HS®
algorithm could not have performed better (mathematically and literally speaking).

Later, the HS® algorithm is applied to System B, which includes alternate routings. For
System B, the us? algorithm again performs with zero conservativeness (of course, all

true unsafe states are avoided). The application of the HS® algorithm will be

demonstrated below for two states, a safe state and an unsafe one.

Consider marking M46 in Table A1 (Appendix II). The fact that this state is active
implies that it was found to be safe by HS’. Suppose that we want to verify whether the
state M47 is safe, where M47 is derived from M46 by firing transition T6. The marking
of M47=[020001 101 1 0], where all places are ordered according as P1, P, ...,
P11. There are 4 active processes in M47, viz. Pg, Pg, P4, and P; (note: two of these

processes are identically defined). These processes were earlier defined in the section
"Habermann's Algorithm and its Adaptation to Manufacturing Systems"). The claim

matrices, allocation matrices, and free resource vector are:

be=[10101]

66

bs=[10101]

by=[11111]
C =[eg ¢ ¢4 €2]
cs=[10001]
c4=[00100]
c2=[01010]

r=a->C=[21222]-[21112]=[00110]

According to the H-algorithm procedure in HS’, the most recently introduced
process is first checked to see whether it can be terminated. The most recently
introduced process in this case is P, by virtue of firing T6 from M46. It can be seen that
relation R4 is not satisfied, i.e. by - ¢ =[1 0 1 0 1] is not less than or equal to r (note:
this does not necessarily mean that by - ¢; > r). The next step is to check whether some
other process can satisfy R4. It can be seen that Pg satisfies R4, and can be deallocated.
The new value of r is:
rr=[10111]

Now, the relation R4 holds for P,, and the state is SAFE. Note that there is no need
to check whether the other two remaining processes Pg and P4 can be terminated; this is

by virtue of Habermann’s third theorem.

Consider the second state M70 =[0201 002 002 0]. This state is reached from

M47 by firing T8. There are 4 active processes in this state, viz. Pg, Ps, P4, P4. The

67

claim and allocation vectors for these processes are given above. The value of the free
resource vector is recomputed
r=a-2C=[21222]-[20202]=[01020]

It can be seen that no process satisfies R4. Hence the state M70 is labeled
UNSAFE?. This invokes the S heuristic. The shortest process is Pg in terms of the size
of its remaining resource requirements (it needs only the AGV to terminate). Hence, s?
will search for a process which can release an AGV (viz. place P9). The resources P9 are

held by the two processes P4, P4. Neither of these can release the AGV (P9) till they
obtain M1 (P1) and fixture B (P11). Since S? is unsuccessful in releasing P9, the state is
labeled UNSAFE by HS®. Indeed, M70 is a deadlock marking as can be seen from the

marking set in Table A2 in Appendix IL
In the following section, a systematic method of computing the claim vector b

for a process is described.
A Procedure for Obtaining the Minimal Requirements for a Process

A systematic way of obtaining the minimal resource requirements for an
independent process is developed in this section. Initially, only processes without
alternate routings are considered. Later, the procedure is extended to include processes

with alternate routings.

68

Processes without Alternate Routings

A blocking restricted net of a process without alternate routings is a marked
graph, the transitions of which form a unique T-invariant [Desrochers and Al-Jaar 1995]
corresponding to that process. When the T-invariant is ordered according to the
appearance of its transitions in the elementary path, the T-invariant is referred to as an

ordered T-invariant. The procedure developed here is first described with the help of an

example. Consider the independent process P = {P3, P8, PS5} in the e-BRN in Figure
(17). The elementary path describing Py is {T2, P3, T4, P8, TS, P5, T7}. The ordered
T-invariant corresponding to Py is T2T4T5T7. In the example, the minimal requirement

of the AGV (represented by P9) in P; is computed.

T-invariant | P9 (2)
T2 -1+1(1,2)
T4 -1(1)
TS +1 (2)
T7 -1+1(1,2)

In the table above, the first column contains the transitions of the ordered T-
invariant. In the second column, the numbers in brackets represent the number of
resources available after firing the transition in that row. If a transition is associated with
a self loop, then there will be two numbers in the brackets; the first represents the
quantity available upon firing the transition and ignoring the output arc to the resource

place; the second quantity represents the quantity available upon firing the transition with

69

all arcs preserved. The signed numbers represent the change in availability of the
resource. The minimal resource requirement, denoted as min(P; , Ry), where Ry is the '
resource type, is:

min(P; , P9) = | min(change vector) | = | min(-1, 1, -1, 1, -1, 1) | = L.

Let the ordered T-invariant of P be written as T = ujuy, ..., Uyp), where y;
represents the ith transition in T, and 1(p) is the length of the T-invariant. Let A" be the
output incidence matrix corresponding to the ordered T-invariant of an independent
process P and a given resource place. Let A’ represent the input incidence matrix

corresponding to the ordered T-invariant of an independent process P and the given
resource place. The pseudocode for obtaining the minimal resource requirement is given

below.

Algorithm for Computing min(P, R)

In the algorithm below, T = uy, uy, ..., uyp,) is the ordered T-invariant, and the 1 x I(p)
row unit vector ¢; corresponding to tramsition u; is defined as:
&= [21,22, ..., Zyp); Zj=0forj=i;2=1forj=1i
Input: P, T, R (set of system resources types)
Initialize: j=1
do while (R = D)
A’ [j]= A" (T-invariant of P X resource place representing R;)

AT 1= A" (T-invariant of P X resource place representing R;)

70

Initialize: ¢;j=x=0;i=1
do while (i <1(p))
begin ¢;=c;+e;. ATj]
If ¢j <x then x = ¢;
cj=cj+e. AT[j]
1i=it+1
end
min(P, R)) = |x|
R=R- {R;}
j=j+1
end

The vector min(P, R) is the claim vector for P, i.e. for process Py , we can write by =

min(Py , R).

71

Incorporating Processes with Alternate Routings into the Claim Matrix

_....Operation 4

_..._operation 5

Figure (22): A process plan with alternate routes
represented as an OR digraph

Alternate routings in a process may be represented by the OR digraph in Figure
(22) [Wysk 1995]. Note that the digrapgh is strictly OR; an AND digraph would
represent alternate process plans [Wysk 1995], i.e. alternate processes. The OR digraph
is not an integral part of the approaches developed below; rather, it is used as a scheme to
clearly present the concept of a process with alternate routes. We can see that the process
represented in Figure (22) above can take 1.2.3.1.2 = 12 different routes.

Let P be a process defined as the ordered set of operations in the e-BRN of the

given system, i.e. P = {py, p2, ..., Pip)}, Where py(p) represents the last operation in P, and
I(p) is the number of distinct operations needed to produce the end product. Hence p; can

be considered as a set of one or more operation places in the e-BRN of P. Each p; can be

72

mapped onto one or more operation places in the e-BRN. If p; can be mapped on to two
or more operation places, then it is interpreted as an operation with alternate sets of
concurrently needed resources available for its processing, and represents alternate routes
in P. Let P, = {p;} be such an ordered set of operations (with alternate sets of
concurrently needed resources available for its processing) in P. The distinction between
an operation (e.g. a drilling operation) and an operation place representing that operation
will be maintained in the exposition below.

Define a function f: O — P, where O is the set of operation places that define P
in its e-BRN. Define the set U = { o; | f (0;) # f(0j) ; i #j }. Define the set V=0 - U.
The function f maps every operation place in O to an operation p in P. The set U is the
set of operation places corresponding to operations in P without alternate resources
available for processing that operation. Thus if the domain of f is restricted to {0 |0 € U
}, then fis a one-to-one function, since every operation place in U can be mapped on to a
unique operation in P, and vice-versa. The set V is the set of operation places
corresponding to operations in P with alternate resources available for processing that
operation. When the domain of f is restricted to the set { o | 0€V }, then fis not a one-
to-one function. For example, refer to the e-BRN of System B in Figure (18). Thereisa

single process with two alternate routes. The process can be defined as P = {py, p2, p3,
P4, Ps, P6}- The set of operation places that define P in the e-BRN shown is O = {P2, P3,
PS5, P7, P8, P9, P12}. We have f(P8) = f(P9) = ps. The set U = {P2, P3, PS5, P7, P12}.

The set V = {P8, P9}.

73

Further, define z; = { o; | f(0;) = f(0;) =p1; i #]j, p1 €Pa }, where k = s(pj), and
s(py) is the rank of p; in P,. z; defines the set of operation places that map on to a single
operation p in P,. It can be seen that V = U z; over all k. In the above example, z; =
{P8, P9}.

Having defined the terms above, we will proceed to develop two approaches to
incorporating processes with alternate routes into the claim matrix. The first approach
does not impose any further restrictions on the system being modeled. The second

approach is more refined, however it requires a further restriction on the system types

allowed.

Approach 1

This approach computes one claim vector for each route that a process can take in
the course of its exeution. For the OR digraph shown in Figure (22), there are 12 claim
vectors for the process represented by the digraph. For the process modeled in Figure
(18), there are 2 claim vectors. In general, a claim vector must be computed for each

route that a process can take. For a process P, let P, be defined as above. Let v = |P,|.
Let ¢ be the number of claim vectors for P. Then ¢ = number of routes for P = |2;| x |23]
.... |zy| . The method of obtaining the claim vector corresponding to a route of P is the
same as obtaining the claim vector by treating that route as the only route for P. Let by =
[bkl,..., by’] be the claim sub-matrix thus obtained for P. Then the H-algorithm is

modified as follows.

74

Pseudocode for the H-Algorithm, Extended to Processes with Alternate Routings.

Step 1.
Input a, B, C, Py (most recently introduced process)
Step 2.
Initialize
S=®.
T =S8 *. // S*is the complement of S
Step 3.
whilenot (PyinSorT=®) do
begin if Pyin T
then Pcandidate = Pk
else Pcangidate = 1st member of T; T =T - {Pcandidate}
j=1
while (j < c) do // ¢ is the no. of routes that Py can take, as computed earlier
b[candidate] = b [candidate]

begin if b[candidate] - c[candidate] < r +) ¢fi]
P, eS

then begin S = S U {Peadidac} ; T=5*;j=c+ 1 end // set j = c+1 to exit
elsej=j+1
end

end

SAFE =P, in S. UNSAFE? =Py notin S.

75

Approach 11

The concept behind this approach is to define an equivalent (hypothetical)
resource as a logical (as in the use of logic operators OR, AND) combination of the
alternate resource sets that are available for performing an operation. The claim vector
thus computed is refered to as an equivalent claim vector. The size of the claim vector is
increased by the number of equivalent resources defined. This approach results in having
to define a single claim vector for a process with alternate routings, as against ‘c’
different claim vectors as defined in approach L

For a process P with alternate routings, let O, U and V be sets as defined above.
Let R(O), R(U) and R(V) be the set of resource places needed to initialize the operation
places in O, U and V respectively. In this discussion, to “initialize” an operation place
means to begin the operation corresponding to that operation place. In the Petri net
model, this would be translated as the placement of a token into the operation place. In
order to develop this approach, the following restriction is needed: the maximum claim
by P of a resource type belonging to the set R(V) is limited to one unit. There is no
restriction on the set of distinct resource types that a process can concurrently claim, as
long as the maximum claim for each resource type belonging to R(V) is one unit. Many
realistic AMSs can satisfy this restriction.

Consider a process P with alternate routings and confirming to the restriction
above. Let the set z; be defined as above. z; represents an operation in P which can be

I k

performed onm |zj| alternate resource sets. We can write z; = {z; ,...,zik”} , where z;

76

represents the k™ operation place in z;. Define R(zik) as the set of resources needed to

initialize z*, The procedure for obtaining the claim matrix is as described below.

Procedure For Obtaining The Equivalent Claim Vector

The minimal claim for a resource r by process P can be written as min(P, r eR
U Req), Where R is the set of system resources, Req is the set of equivalent resources
defined as follows:
1. min(P,1)=0VreR-R(0)
2. min(P, r) = min(P, r) as computed using algorithm for processes without alternate

routings, for any route of P; V r € R(U)

3. min(P,1)=0Vr1eR(V)-{RU) nR(V)}

4. min(p, Teq) = 1 V Ieq € Req, Where Req = { Reql,..., Req'}, where v is the number of

operations in P with alternate resource sets to choose from, and Rq is defined below.

Reqi(P) = ORI ANP R(zik)], where the operators OR and AND are logical operators
Zi Rz)

with their conventional definitions. As the above expression shows, the AND operator is

applied over the set R(zik), and represents the fact that for the ja alternative, the
operation place must have one unit of each type of resource contained in the set R(zik),
The OR operator is applied over the set z;, and represents the choice between the sets
{R(zik)} to perform the operation. For example, consider the net in Figure (18). Here, z;

= {P8, P9}, i.c. zy' =P8 and 2 = P9. R(z") = {P10}, R(z") = {P11}. Then Req'(P)=

77

P10 OR P11. Thus ch] is TRUE (boolean value of 1) when P10 OR P11 is TRUE, i.e.
when there is at least one unit of P10/P11 available (or both P10 and P11 available). In
this example, the AND operator is not used, since both |R(zll)| =1 and |R(z|2)| =1. To
see the use of the AND operator, suppose that an additional resource type represented by
a resource place P14 is needed for transition T5 (refer Figure (18)) to fire. Then R(zll) =
{P10, P14}, and Req'(P) = (P10 AND P14) OR (P11). In words, Reql(P) =1 when P10
and P11 are both available, or when P11 is available, or all three resource types are
available. However, if only P10 is available, or if only P14 is available, the expression
does not evaluate to 1, 1.e. the claim min(P, &ql(P)) 1s not satisfied.

In determining the allocation vector ¢ for a process, all resources that are
physically allocated to the process are entered as usual into the vector. All equivalent
resources that hold true (i.e. evaluate to 1) for the process are also entered as such into
the allocation vector for the process.

In determining the r, free resource vector, we first compute the free resource

vector ignoring the set of equivalent resources; let this partial vector be r'. Next, using

the partially computed free resource vector, we obtain the free equivalent resource

vector, say req by evaluating the expressions for the equivalent resources. The

combination of r' and req gives the free resource vector.

78

Application Of HS® To System B

System B is represented by its e-BRN in Figure (18). A single process plan
with two alternate routes is modeled. The HS> algorithm will be applied to this system
using the second approach developed for process plans with alternate routings to compute
the claim matrix. The sets O, U, V, R, R(O), R(U), R(V) are listed below.

O = {P2, P3, P5, P7, P8, P9, P12}
U= (P2, 03, PS5, P7. P12}
V = {P8§, P9}
z; = {P8, P9}
R = {P1, P4, P6, P10, P11}
R(O)=R
R(U) = {P1, P4, P6}
R(V) = {P10, P11}
R(U) - R(V) = {P1, P4, P6}; min(P, P1) = min(P, P4) = min(P, P6) =1
Since there is only one operation with alternate resource sets to choose from,

there is correspondingly only one equivalent resource defined:
Req =P10 OR P11.

The above expression for R.,ql is derived in the discussion on approach II for
processes wiith alternte roufings. The minimal requirement for all equivalent resources

is one unit, i.e. min(P, R,ql) =1

79

Consider marking M12 for this example. Let the set of places be ordered as
(P1, P2, .., P12). The marking M12=[0100011 100 1 0], i.e. there is a token in
each of the places P2, P6, P7, P8, and P11.

At this state, three active independent processes can be defined. The three
processes can be defined by their header operation places, viz. P2, P8, and P7, and will

be referred to as P;, Pj, and P;. The most recently introduced process was that headed
by place P7. This can be seen from the reachability graph in Figure (23), where M10 |

T4 > M12, and the firing of T4 initializes P7, which implies the initiation of P;. In
applying the HS® algorithm to see whether the allocation state C is safe, what is checked

for is whether the claim of the process P3 can be satisfied.

The resource vector a and the claim vector B are shown below. The allocation

vector C and free resource vector r for marking M12 are also shown.
a=[Pl, P4, P6, P10, P11, Reg'] =1 1111 1].

B = [by b b3]

b1=[111001]

b=[011001]

b3=[011001]

C=[e;c2¢3]

¢;=[100000]

¢2=[000101]

e3=[010001]

80

r=a- Y C, where the summation over C is a vector summation,
=1' + req; Where ' is the free resource vector for the physical resources, and req is the
free resource vector for the equivalent hypothetical resources.
r={11111]-{11010]
=[00101]
Teg = chl =P10 OR P11 =1 (since P11 is available)
r=[001011]

According to the HS® algorithm, we first use the H-algorithm to label a state as
SAFE or UNSAFE?, and if the label is UNSAFE?, then the S° heuristic is applied to

modify the allocation state. The cycle is then repeated till the state is either declared

SAFE or no further modification is possible, when the state is labeled UNSAFE.

In the H-algorithm procedure, the candidate process is P; (most recently introduced

process):

b[candidate] = bs; ¢[candidate] = c3.

b3-¢c3=[011001]-[010000]=[001001]<[001011]

Since the condition b[candidate] - ¢[candidate] < r is true, the allocation state is SAFE.
The HS? algorithm will now be tested on marking M14, which is unsafe, i.e.

every path from M14 leads to a deadlock marking. Using a straightforward look-ahead
approach, the look-ahead parameter would have to be a minimum of 4 to avoid M14, and

several states would have to be checked before concluding that M14 is an unsafe state.

81

The marking MI4=[10100101 100 0]. There are three active processes
viz. Py, Py, P3 in this marking, and are defined by their header operation places P3, P8,

and P9. The resource vector was defined above. The claim vectors for these processes

are:
by=[011111]
b,=[011001]
b3;=[011001]
The allocation vectors are:
¢1=[010000]
c2=[000101]
¢3=[000011]
The free resource vector ié:
r=[10100 0] (as computed from r' + req)
It can be seen that condition R4 is not satisfied in the H-algorithm, hence the

state is labeled UNSAFE?. This invokes the S° heuristic, which selects P, as the shortest
process, and in accordance with the heuristic, modifies the allocation state ¢; as follows:
¢'=[001000]

bi!=[011111]

r=[110000]

82

The modification is actually a transformation of one independent process into

another shorter independent process. The new allocation state is again UNSAFE?. The
S* heuristic modifies c1' to ¢;" as follows:
¢;"=[010000]
bi"=[011111]
r=[101000]

The new allocation state is UNSAFE?. At this point, the S* heuristic cannot
modify the allocation state any further, hence the state is UNSAFE.

Application of the HS’® algorithm to this system results in the avoidance of all

deadlock states, with zero conservativeness, i.e. only true unsafe states are avoided.

83

CHAPTER YV
CONTRIBUTIONS, FUTURE RESEARCH, AND SUMMARY
Research Contributions

The primary contribution of this research is the development of an algorithm
that (1) meets the criteria stated in the practical version of the problem (the statement can
be found in the introduction), and (2) can be applied to real world systems. As the first

statement implies, the HS® algorithm (1) guarantees deadlock avoidance, (2) has an

acceptably low conservativeness (for the systems tested, the conservativeness metric was
zero), (3) has a low order polynomial complexity, of the order of O(n(n+1)/2), and (4)
does not require the reservation of resources for the purpose of avoiding deadlocks.

The processes that can be modeled include: concurrently active processes,
alternate process plans, alternate routings, processes holding multiple units of one or
more resource types (including finite buffers), resources that are revisited, and assembly
operations. The broad spectrum of processes that can be dealt with is a consequence of
the fundamental manner in which the deadlock problem is approached. Failures are
permitted on the assumption that a machine comes up in finite time. The us? algorithm
was not designed for a restricted class of systems; rather, it evolved by conceptualizing
the notion of an independent process, and adapting Habermann’s algorithm to the
formalized scheme of that concept. The formalism used to represent the concept of an
independent process was a Blocking Restricted Petri net model of the physical and

control elements that define the automated manufacturing system. An elementary

[

reduction can be performed on the net in order to reduce the frequency of checking

whether a given system state is safe or unsafe. However, it is not necessary that the BRN

be reduced to the e-BRN in order to apply the HS® algorithm. This author chose to apply

the HS’ algorithm to the e-BRN simply because the concept of reduction was an integral
part of his early work on the deadlock problem; therefore it was natural to continue the
development of the research from that point on.

Table 6 summarizes the contributions of this research. The other research that is
selected for this comparison is restricted to the area of avoidance, and does not include
detection and recovery or prevention strategies. The HS’ algorithm satisfies all nine
criteria. The reason is that no assumptions were made regarding the type of system that
could be handled by the algorithm, with the exception of the four necessary and
sufficient conditions for deadlock (without which the system would not experience
deadlocks), and the assumption that any machine that failed would come up in finite

time. The HS’ algorithm is based on Habermann’s algorithm which guarantees
avoidance of deadlocks in polynomial time. The S* heuristic was designed for reducing

the conservativeness of Habermann’s algorithm. The conservativeness for the systems
tested was zero for both cases. Alternate process plans, which are modeled in System A,
are a special case of concurrent processes, and hence can be handled without specially
adapting Habermann’s algorithm for these cases. Habermann’s algorithm was adapted
for alternate routings, and using this adaptation the HS® algorithm was successfully tested
on System B, which modeled a process plan with two alternate routes. No restrictions

were made regarding the number of resources that a process could concurrently seize.

85

The legend for the criteria used in this table is given below.

A. Guarantees avoidance of deadlocks

B.

" EHommp O

Acceptable conservativeness

Polynomial time complexity (worst case)
Concurrent processes

Alternate process plans

Multiple resources can be allocated to a process
Alternate routings

Assembly operations

All resources in system can be shared

. L)

Algorithm

les)

s>

el

Viswanadham’s finite lookahead (1990)

Banaszak & Krogh’s algorithm (1990)

Heish & Chang’s algorithm (1994, 1992)

HS® algorithm

K=< |=<]|2]|»
2
| =<|=<]|=Z

< | <|<|=<]UC

<= =< =

< | =<2 | =<

K| 22| <]|Q

<|<]|2Z (<] =

< | 2| 2Z | <

Table 6: Comparison of Hs’ algorithm to other published avoidance algorithms

Notes:

(1) N=no; Y =yes

(2) (*) The conservativeness of this algorithm depends on the degree of lookahead, and

cannot be judged for this algorithm. In general, the term “acceptable conservativeness”

is open to question. In this comparison, the authors’ examples were used for judging

whether their algorithm was “acceptably conservative”. Banaszak and Krogh’s algorithm

- was pronounced “No” for this metric; the reasons were discussed in the literature review

chapter.

86

Since the modeling of concurrent resource acquisitions and assembly are very similar
from the view point of a Petri net model (both are modeled through synchronization of
multiple resources), it follows that assembly operations can also be treated by the
algorithm. System A demonstrated the modeling of concurrent resource acquisitions (for

example, M1 and fixture A are concurrently acquired). Finally, the us® algorithm does

not require separating the set of resources into shared and unshared resources, hence all

resources in the system can be shared.
Future Research

Three future research directions were suggested by Gold (1979) upon proving
that the exact solution of the deadlock avoidance problem was NP-complete: (1) fast
solutions for restricted cases of the problem; (2) heuristic solutions for the general
problem which will usually solve it in polynomial time, even though exponential time
will be required in the worst case; and (3) fast algorithms for the general problem which
will not always be correct, but will always err on the conservative side: all unsafe states
will be correctly detected, but some safe states will be incorrectly classified as unsafe.

A review of the important algorithms within the area of manufacturing systems
shows that not all of the algorithms fit into any single category. The finite lookahead
algorithm presented by Viswanadham et al. (1990) is best classified in the second
category. The elementary reduction procedure developed in the early part of this thesis
also fits into the second category. The algorithms by Banaszak and Krogh (1990) and
Heish and Chang (1992, 1994) are fast solutions for restricted cases (category 1), but also

err on the comservative side (category 3).

87

The HS’ algorithm developed here clearly fits into the third category, and in

fact was motivated by this classification. Hence, it is logical that any future research

development of this algorithm will proceed in the third direction. The future research

directions that are recommended are:

1. The HS® algorithm needs further testing to be able to more accurately judge the
conservativeness metric.

2. The S’ heuristic needs to be refined on the following points: (a) When more than

two processes meet the criteria of a shortest process the tie is broken arbritarily. A
selection rule needs to be developed which breaks the tie. (b) The current criteria for
deciding that a process is the shortest is based on the total number of remaining
resources that is needed to complete the process. There is no distinction between two
resources of different types, and two resources of the same type.

3. Other adaptations of Habermann's algorithm within the realm of computer science
need to be explored for their possible adaptation to manufacturing systems. Gold
(1979) adapts Habermann’s algorithm to the abstract notion of linearly ordered
processes, while Hansen (1973) adapts the algorithm to hierarchically ordered
processes. This author found it difficult to adapt these notions to real-world
manufacturing systems, nevertheless, further research along these lines is
recommended.

4. Other developments on deadlock avoidance algorithms as applied to operating

systems need to be reviewed. Such algorithms could be used in lieu of the H-

88

algorithm procedure of the HS® algorithm if they are less conservative than the H-
algorithm.

5. The refined approach developed for incorporating processes with alternate routings
incurred a restriction. Future research could be directed towards developing other

approaches which do not incur this restriction.

Summary

The HS® algorithm developed in this thesis meets all the criteria in the statement
of the practical version of the problem. The structure of the Hs® algorithm comprises
two procedures: (1) Habermann’s algorithm, and (2) the S? heuristic. The H-algorithm

guarantees that all deadlocks are avioded. In doing so, it can incorrectly classify some
safe states as unsafe. This makes it a conservative algorithm. In order to reduce the
conservativeness, the structure of the HS" algorithm was conceptualized. This structure
was based on the discovery that if the system state is allowed to advance after being
incorrectly classified as unsafe by the H-algorithm, then it is likely that the advanced
state will be correctly recognized as safe. The S? heuristic is used for the purpose of
advancing the system state whenever the H-algorithm declares it as unsafe. Hence the
function of the S’ heuristic is to reduce the conservativeness of the H-algorithm. Since
the algorithm is applied to general systems (no restrictions on the system type are
necessary for applying the algorithm), it is not possible to eliminate conservativeness and
guarantee avoidance at the same time. The reason is that deadlock avoidance for the

general case is NP-complete.

89

When applied to the e-BRN models of the two systems (A and B), the Hs®
algorithm avoids all deadlock states while preserving all the safe states (Fernandes 1995).
Hence, for these systems, the comservativeness metric is zero. The systems were
developed before the HS® algorithm was conceived, hence there could have been no bias

towards the algorithm while designing the systems. The systems A and B possessed the
characteristics of real world systems, i.e. concurrent processes, alternate plans and

routings, multiple resource allocations (the modeling of which is similar to the modeling
of assembly processes); thus the HS’ algorithm has the elements of a realistic solution to

the problem.

90

BIBLIOGRAPHY

Agerwala T. (1979), “Putting Petri Nets to Work,” Computer, vi2n12, pp. 85-94.

Banaszak, Z.A. and B.H. Krogh (1990), “Deadlock Avoidance in Flexible Manufacturing
Systems with Concurrently Competing Process Flows,” IEEE Transactions on
Robotics and Automation, v6u6, pp. 724-734.

Coffman, G., M.J. Elphick, and A. Shoshani (1971), “System Deadlocks,” Computing
Surveys, v3n2, pp. 67-78.

D’Souza, K.A. (1994), “A Control Model For Detecting Deadlocks in an Automated
Machining Cell,” Computers and Industrial Engineering, v26nl, pp. 133-139.

Desrochers, A.A. and R.Y. Al-Jaar (1995), “Analysis of Petri Nets,” In Applications of
Petri Nets in Manufacturing Systems, IEEE Press, New York, NY, pp. 116-117.

Dewdney, A.K. (1993), "NP-Completeness," In The New Turing Omnibus, Computer
Science Press, NY, pp. 276-281.

Fernandes, R.A. (1995), “Application of the HS® Algorithm to Manufacturing System
Examples,” Technical Report, CIM-TRS-95-RFI, Center for Computer
Integrated Manufacturing, Oklahoma State University, Stillwater, OK.

Gold, M.E. (1978), "Deadlock Prediction: Easy and Difficult Cases," SIAM Journal of
Computing, vTn3, pp. 320-336.

Habermann, A.N. (1969), "Prevention of System Deadlocks," Communications of the
ACM, v12n7, pp. 373-385.

Hansen, P.B. (1973), "Deadlocks,” In Operating System Principles, Prentice Hall Inc.,

Englewood Cliffs, NJ, pp. 122-129.

91

Hsieh, F.S. and S.C. Chang (1992), "Deadlock Avoidance Controller Synthesis for
Flexible Manufacturing Systems," In Proceedings of the Third International
Conference on Computer Integrated Manufacturing, IEEE, Troy, NY, pp. 252-
261.

Hsieh, F.S. and S.C. Chang (1994), "Dispatching Driven Deadlock Avoidance Controller
Synthesis for Flexible Manufacturing Systems," IEEE Transactions on Robotics
and Automation, v10n2, pp. 196-208.

Kamath, M. and N. Viswanadham (1986), “Applications of Petri Net Based Models in
the Modeling and Analysis of Flexible Manufacturing Systems,” Proceedings of
the 1986 IEEE International Conference on Robotics and Automation, pp. 312-
317.

Leung, Y.T. and G. Sheen (1993), “Resolving Deadlocks in Flexible Manufacturing
Cells,” Journal of Manufacturing Systems, v12n4, pp. 291-301.

Maunber, U. (1989), "NP-Completeness," In Introduction to Algorithms, Addison Wesley
Publishing Company Inc., Reading, MA, pp. 341-374.

Narahari, Y. and N. Viswanadham (1985), “A Petri Net Approach to Modelling and
Analysis of Flexible Manufacturing Systems,” Annals of Operations Research,
v3, pp. 330-345.

Rosen, K.H. (1988), "Complexity of Algorithms," In Discrete Mathematics and its
Applications, Random House, NY, pp. 84-90.

Viswanadham, N., Y. Narahari, and T.L. Johnson (1990), “Deadlock Prevention and
Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net

Models,” IEEE Transactions on Robotics and Automation, vén6, pp. 713-722.

92

Wysk, R.A. and J.S. Smith (1995), "A Formal Functional Characterization of Shop Floor
Control," Computers and Industrial Engineering, v28n3, pp. 631-643.

Wysk, R.AA,, N.S. Yang, and S. Joshi (1991), “Detection of Deadlocks in Flexible
Manufacturing Cells,” JEEE Transactions on Robotics and Automation, vn6,
pp. 853-859.

Wysk, R.A., N.S. Yang, and S. Joshi (1994), “Resolution of Deadlocks in Flexible
Manufacturing Systems: Avoidance and Recovery Approaches,” Journal of
Manufacturing Systems, v13n2, pp. 128-138.

Zhou, M. and F. DiCesare (1991), "Parallel and Sequential Mutual Exclusions for Petri
Net Modeling of Manufacturing Systems with Shared Resources," IEEE

Transactions on Robotics and Automation, vIn4, pp. 515-526.

93

R it kil

APPENDICES

APPENDIX I: GLOSSARY

Classical Petri nets

A Petri net is a 4-tuple (P, T, IN, OUT) where

P = {p1, P2, ---» Pu} is a set of places

T={t, ts, ..., tn} is a set of transitions

PuT#¢, PnT=4¢

IN: (P X T) > N is an input function that defines directed arcs from places to
transitions, and

OUT : (P X T) — N is an output function that defines directed arcs from transitions to

places, and N is the set of non-negative integers.

Input and output places

Given a transition t, the set of input places of t is denoted by .t, and the set of output

places of t is denoted by t., where
t={peP:IN(pt)= ¢}

t.={peP:0UT(p,H)# ¢}

Input and output transitions

Given a place p, the set of input transitions of p is denoted by .p, and the set of output

transitions of p is denoted by p., where

04

Pp={teT:0UT(p,t)= ¢}

p.={teT:IN(p,t)# ¢}

Marking of a Petri net

A marking of a Petri net is a function M : P — N. A marking of a Petri net with n places
associates with each place a certain number of tokens represented by dots, and represents
a state of the Petri net. An initial marking M, is always associated with a Petri net. The

terms state and marking may be used interchangeably.

Reachability set

The set of all markings reachable from the initial marking M,. It is denoted by R[M,].

Enabling of a transition

A transition t is said to be enabled in a marking M if:

M(p;) 2 IN (p;,)V pi € .4

Blocked Marking

A marking M € R[M,] is said to be blocked if there exists a transition such that: 1) t has

two or more input places, i.e. | .t | > 1, and 2) there exists a p € .t such that M(p) = IN(p,

t), and, 3) t is disabled in M.

95

TR T e R

Deadlocked marking

A marking in which no transition is enabled is said to be a deadlocked marking.

Safe marking

A marking which is neither deadlocked nor blocked is called a safe marking.

Immediate transition

A transition with no time associated with it, i.e. a transition that takes zero time to

execute.

Vanishing marking

A marking in which at least one immediate transition is enabled.

Timed transition

A transition which takes a finite amount of time to fire.

Tangible marking

A marking in which only timed transitions are enabled.

Net invariant

A net invariant is a set of places I such that = M(p), p€l, is a constant for each reachable

marking M, and I does not have any proper sub-sets that are invariants.

96

Safe State

A state from which there is at least one sequence of transitions that leads to the initial

state.

Unsafe State

A state from which all sequences of transitions will lead to a terminating state, i.c a
deadlock. An unsafe state may be a deadlock state itself, or it may be live in the sense

that limited further evolutions are possible from that state.

Allocation State

A state defined by the sets of resources allocated to a number of concurrent processes.

Safe Sequence

An ordered set of processes which can be completed sequentially in the given order.

Claim of a Process

The set of resources that an initiated process would require in order to terminate without

interruption.

Process Plan

A sequence of material transformation operations (including assembly with another part)

needed to make a product, in accordance with a set of precedence constraints.

Alternate Process Plans

A choice of two or more sequences of material transformation operations necessary for
producing a product, with the sequences satisfying all the precedence constraints for the

set of operations for that product.

Alternate Routing

A choice of an alternative resource set for performing a material transformation

operation.

Blocking operation

An operation in which a resource is waiting to transfer its load on to an available

resource which can hold or further process that load.

Resource Place

A place which represents the availability of a resource. It is distinguished from an

operation place by an initial store of one or more tokens.

Operation Place

A place which represents a resource activity. It is distinguished from a resource place by

not being initially marked.

98

==

TABLES OF MARKINGS

APPENDIX II

Figure (17)

<
3 e FRFFRRFRFEFT TTFT TFRRFRRFFFFR FFRFTTTTFFRFFFFFTTRF m
m-:.: - - |= = re [os |re |me [= |= === e | | = oo | [|~ |~ - e = - e few -l ro |- | - === | |= |~ Jz::....z:zn\Vu.
S FFFFTFET R FFRFFFT TR FFT FRRFRFFET PR T PR FEER FITFF T TS
g .- |- |- =l=lnl=l=In]=|-In]- - - l=l=l=l=1 =] |- - - |al.u.
5 T T T T T T FRRFR R) I P R e e = e N =
: . TTFFFEFFEFE T
st} 1 EREEEE dlds sEELEE] LLE TEEFEEE el § W
U rrr =1 R el = = b el 4% B = = s T o 1Ll rrrima
| PR T PR L T ERRRE TTFFE FTTFLFFLT 1T b
L T O T T T FRRFFEFFFFR FFFFFFFFITFFFFFFFF FIFATFFLS
4 I 4 o g e 2 O e STERR EREEEE o g e o o g O T e
HEE AN HE A e T] 3 e e e I m_mwn_mm_m_m_mﬂm

=l

=

Table Al

Note: The author acknowledges the use of PESIM, a shareware package, for generating

the reachability sets and graphs for the Petri net models in this thesis.

99

Table A2: Deadlock Markings for e-BRN Model of System A in Figure (17)

Pl | P2 | P3| P4 |P5|P6|P7 | P8 | P9 (P10 | Pl
M8 1 1 1 1 1 1
M9 2 1 2 1
Mig8 | 2 1 2 1 2
M24 | 1 1 1 2 2 1
M54 | 1 1 1 2 1 1
M57 | 1 1 1 1 1 2
M62 2 1 1 1 2
M66 1 1 1 2 1 1
M70 2 1 2 2

100

i

pl

3

p?

pl0

pll

pl2

MO

M1

M2

M3

M4

M5

M6

w7

MB

L

Mo

M1

miz

|] -

|] a| a] =

Mz

-

Mi4

M15

M1

M17

M8

M19

M20

M21

ma2

m23

M24

M25

Mz8

m27

Mz

af = = -

Mm29

-

M3o

M31

M3z

M3z

-

-

|] -

=) Y

- -

2 2] =

Table A3: Markings for e-BRN Model of System B in Figure (18)

101

Table A4: Deadlock Markings for e-BRN Model of System B in Figure (18)

Pl (P2 | P3| P4 | P5|P6|P7|P8 | P9 | PIO| PIl |[PI2
M5 1 1 1 1 1
MI1l |1 1 1 1 1
M17 |1 1 1 1 1
M138 1 1 1 1 1
M19 1 1 1 1 1
M20 1 1 1 1 1
M21 |1 1 1 1 1
M22 |1 1 1 1 1
M23 |1 1 1 1 1
M29 |1 1 1 1 1
M31 1 1 1 1 1
M39 |1 1 1 1 1

102

Figure Al: Reachability Graph for e-BRN for System B in Figure (18)

103

APPENDIX ITII: PROOF OF HABERMANN’S SECOND THEOREM (1969)
(and its incompatibility with dependent processes)

A state is safe when all the participating processes in that state can be
sequentially completed in the “worst case”, i.e. when each process Py asks for all the

resources it has claimed, and does not release any resources until it has been allocated all
its claimed resources. Theorem II tells us that in such a case, there is no possibility of
making the mistake of incorrectly ordering the processes for termination. Thus the worst
case complexity of n! (there are n! ways in which we can rank a set of n processes) is
reduced to n(n+1)/2.

Note: The notation used below is consistent with that used elsewhere, unless explicitly
stated.

Let Q be a safe sequence, i.e. Q is an ordered set of processes which can be sequentially

completed, then condition R4 holds for Q, i.e.

Vo Dy STF Y€ v (1)
a(hsa(k)

Let S be a subsequence, which fulfills R4, i.e.

Vpké bk <r-+ ch(2)
s(1)=s(k)

i.e., S is a partial ordering of processes which can be sequentially completed.

Define S’ as follows:
(a) s’(k) = s(k) for Py € S;

(b) q() qk) > s' () <s'(k) for P, P e Q- S;

104

This ordering implies that for Py € Q - S,

€i & X O smvsvasnervprsoass 3

q(D=q(k) s(Dss'(k)
since every P that precedes Py in Q precedes also Py in S'.
From (1) and (3) it follows that

Vaesbe ST+ e (4)
s'(1)ss'(k)

From (2) and (4) it follows that S' is a safe sequence. Since S' is defined as an
extension of S, and S was any subsequence satisfying R4, the theorem follows. To prove
that the theorem is not true when applied to dependent processes, we re-write expression

(3) as follows:

ey > e cvnnnn(5)

q(h>q(k) s'(I)>s(k)

The above expression holds for independent processes since the right hand term
is non-increasing. Since the completion of a dependent process implies the initiation of a
subsequent process, it follows that the right hand term is not non-increasing, i.e. it is

possible that Y¢ < D¢ . Hence the theorem does not hold for dependent
q(D>q(k) s'(D)>s(k)

processes.

105

VITA
Ralph A. Fernandes
Candidate for the Degree of
Master of Science
Thesis: DEADLOCK AVOIDANCE IN AUTOMATED MANUFACTURING
SYSTEMS
Major Field: Industrial Engineering and Management
Biographical:
Education: Graduated from St. Xavier’s College of Arts and Sciences, Bombay,
India, in June 1988; received a Bachelor of Engineering degree in
Automobile Engineering from the University of Bombay, Bombay, India,
in July 1992. Completed the requirements for the Master of Science
degree in Industrial Engineering and Management in December 1995.
Experience: Employed as a research assistant at the Center for Computer
Integrated Manufacturing, Oklahoma State University, June 1994 to
December 1995.

Professional Memberships: Alpha Pi Mu, Institute of Industrial Engineers.

