
DEADLOCK AVOIDANCE IN AUTOMATED

MANUFACTURING SYSTEMS

By

RALPH A. FERNANDES

Bachelor of Engineering

University of Bombay

Bombay, India

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

tbe requirements for
the Degree of

MASTER OF SCIENCE
December~ 1995

OKLAHOMA STArrE UNIVERSITY

DEADLOCK AVOIDANCE IN AUTOMATED

MANUFACTUlUNGSYSTENffi

Thesis Approved:

Thesis Advisor

~~fl-~

Dean of GradlJRte College

ii

ACKNOWLEDGMENT

This thesis represents a milestone in my career; a personal achievement on one hand,.

as well as the result of several individuals' efforts and encouragement. I extend my

deepest appreciation to Dr. Manjunath Kamath for his consistent encouragement and

bdief in my capabilities as a student, for being a guide as well as a friend, as a true

teacher should, and for supporting me as a research assistant at the Center for Computer

Integrated Manufacturing. Many thanks are due to my other committee members, Dr.

David Pratt, and Dr. Timothy Greene, who were always prepared to offer their

assistance, and who taught me how to succeed within the classroom and beyond it.

Many thanks to my friends at the Center for elM and elsewhere, for helping me feel

31t home in a new world.

Last but not least, my beartfelt gratitude must go to my family; my parents, sisters,

and late uncle; their sacrifices and precious love have helped me reach this milestone,

and will keep me going onwards.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION ". 1

Background of the Problem 1
Strategies Employed i. Deadlock Resolution 3
The Problem Statement 5
Deadlock Avoidance: An NP-Complete Problem 5

n. REVIEW OF THE LITERATURE 8

Deadlock Prevention , 8
Deadlock Avoidance 11
Deadlock Detection and Recovery 14

m. STATE1\1ENT OF THE RESEARCH 17

Research 'Obj,ectives 17
Research Scope And Assumptions 17
Performance Measures 19

IV. RESEARCH APPROACH 23

Design of the Test Systems 23
Synthesis of a Blocking Restricted Petri Net.. 26
Development of the Research: A Preview 34
Elementary Reductio. oftbe BRN modeL 37
Dynamic Reduction 50
Habermann's Algorithm and its Adaptation to Manufacturing Systems 51

The HS3 Algorithm 58
Safe State Seeking Heuristic , 62
A Procedure for Obtaining the Minimal Requirements for a Process 68
Incorporating Processes with Alternate Routings into tbe Claim Matrix 72

iv

Chapter Page

V. CONTRIBUTIONS, FUTURE RESEARCH, AND SUMMARy 84

Research Contributions 84
Future Rese,arch 87
Summary 89

BIBLIO,GRAPHY 91

APPENDICES '" 94

APPENDIX I: GLOSSARY 94
APPENDIX IT: TABLES OF MARKINGS 99
APPENDIX lIT: PROOF OF HABERMANN'S SECOND THEOREM 104

v

LIST OF TABLES

Table Page
1. Bit operations used for various problem sizes and algorithmic

complexities ,..... 21

2. Interpretation ofplaces in Figures 5 and 6.. 31

3. Interpretation ofplaces for BRN of System B in Figure 7.. 32

4. Interpretation of plac,es for e-BRN ofSystem A........................ 46

5. Interpretation ofplaces for e-BRN of System B........ 48

6. Comparison of HS3 algorithm to otber published avoidance 86
algorithms...

Al Markings for e-BRN Model of System A in Figure 17. 99

A2 Deadlock Markings for e-BRN Model of System A in Figure 17... 100

A3 Markings for e-BRN Model of System B in Figure 18............................. 101

A4 Deadlock Markings for e-BRN Model of System B in Figure 18.... 102

vi

LIST OF FIGURES

Figure Page
1. Automated Manufacturing System A... 24

2. Alternate process plans for a raw p.m........ 25

3. Layout for System B.. 27

4. Routing for part in System B......... 27

5. Resource Activity Subnets for System A... 29

6. Synthesis of a BRN for System A from a union of resource activity
subnets in Figure 5... 30

7. BRN for System B.. 33

8. A one machine AGV system.................................... 38

9. A blocking restricted net for the system in Figure 8.............................. 38

10. The reacbability graph for Figure 9... 40

11. Removal of subnets for reducing the blocking restricted neL....... 40

12. Controller net for Figure 9.. 41

B. Re.achability graph for Figure 11........................... 42

14. Deadlock free reachability graph for Figure 11...................................... 42

15. Type I reductioD.. 44

16. Type II reduction............................. 44

17. e-BRN ofSystem A obtained from the net in Figure 6........................... 45

vii

Figure Page

18. e-BRN of System B... 49

19. Deadlock Avoidance Controller Scheme.. 59

20. The HS3 Algorithm... 60

21. Concept behind heuristic.. 61

22. A process plan with alternate routes represented as an OR digraph........ 72

Ai. Reachability graph for e-BRN for System B in Figure 18...................... 103

viii

CHAPTER I

INTRODUCTION

Background of the Problem

Automated manufacturing systems (AMSs) provide the flexibility needed for

producing a wide variety of parts. These systems are characterized by limited resources

which are shared among jobs. One of the problems arising in the control of such systems

is the possibility of system deadlock. In an unmanned AMS, tbe problem of system

deadlock becomes significant because a deadlocked system can remain in that state

indefinitely, i.e. the system is crippled. Because of the complex sequence of operations

in such systems, deadlocks are difficult to predict. It is clear tbat tbe nature of deadlock

renders automated operation impossible. Once a deadlock occurs, human intervention is

needed to clear buffers and machines and restore the system to a state that is known to

produce deadlock free operation under normal conditions of operation. Designing and

operating an AMS without deadlock considerations can lead to excessive manual

intervention to r,esolve deadlocks and reset the system to a known manufacturing state

[Wysk et 311. 1994]. Such intervention violates the definition of unmanned (automated)

operation, alld the cost in terms of lost production and labor may be high.

The problem of deadlocks bas been studied quite extensively ID computer

sci,ence as it is critical in multiprogramming environments. Here, several processes

compete for a finite number of resources,. e.g. the central processing unit and memory

space. Coffman, Elpbick, and Shosbani (1971) state four necessary and sufficient

1

conditions which lead to a d.eadlock. Tbeseare: mutual exclusion, wait-for condition, no

preemption, and circular w.ait. It foHows that one of the ways in which a deadlock may

be prevented from occurring is by ensuring that the four conditions listed above do not

hold simultaneously.

While the four conditions given above were developed for computer systems,

they are applicable to manufacturing systems as well. However, most of the detailed

implementation of deadlock resolution strategies used for computer systems canDot be

applied to manufacturing systems [Leung and Sheen 1993]. One reason is tbat deadlock

resolutioB algorithms are dependent on tbe topology of tbe system and tbe way the

system operates. Also, resolution procedures which are suited to computer systems may

be inappropriate to manufacturing systems. For example, in a computer syste~ a

program may be "trashed" in order to free space, while "trashing" a part in a

manufacturing system is not desirable [Leung and Sheen 1993]. Most of the resolution

procedures adopted for dealing with deadlocks in distributed systems are of the detection

and recovery type. Once a deadlock is detected, recovery is effected by a roll back to a

prevoius state. This is clearly Dot possible with AMSs. However, Habermann's

algorithm [Habermann 1969J which was the earliest detailed discussion on deadlock

avoidance in the context of operating systems, forms an integral part of the research

developed in this thesis. The adaptability of Habermann's theorem to manufacturing

systems is promoted by the fundamental manner in which he approaches the problem.

While deadlocks have been studied in the computer literature for quite some

time, the same cannot be said of manufacturing. The problem of deadlocking in an

AMS (which is more prone to deadlocks compared to conventional manufacturing

2

topologies) has been ignored by most research in scheduling and control [Wysk et a1.

1991].

Approaches to the deadlock problem in AMSs can be categorized by way of the

strategies employed, or by way of the methodologies employed to resolve deadlocks.

The related literature reveals essentially three different strategies to resolve deadlocks:

(i) deadlock prevention, (ii) deadlock avoidance and recovery, and (iii) deadlock

detection and recovery. Various methodologies are 'Used for implementing these

strategies, including: Petri net models to analyze the system under consideration or to

execute th.ese models in real time for controlling deadlocks, directed graphs to model part

routings, and real time control algorithms. The three strategies employed for deadlock

resolution are defined below.

Strategies Employed in Deadlock Resolution

Deadlock Prevention

Deadlock prevention is concerned with the fonnulation of policies for designing

AMSs so that one or more of the necessary and sufficient conditions for deadlock hold

false while the AMS is in operation. Since deadlock prevention is accomplished by

imposing restrictions during the design stage itself, poor resource utilization results

[Viswanadbam et a1. 1990].

3

1

Deadlock Avoidance

Deadlock avoidance and recovery is concerned with avoiding potential deadlock

situations in real time, and initiating automatic recovery procedures when a deadlock

state could not be avoided.. While deadlock prevention results in static resource

allocation policies, deadlock avoidance results in dynamic resOluce allocation policies;

consequently tbe resource utilization with this approach is expectedly higher.

Deadlock Detection and Recovery

In this apprroach, deadlocks are allowed to occur, i.e. no attempt is made to

avoid deadlocks using any type of look-ahead in real time. Once a deadlock state has

been detected, a correction system is initiated to move one of the deadlocked parts into a

buffer space reserved exclusively for use in such situations [Wysk et a1. 1991]. The rest

of the deadlocked parts are transferred sequentially to their next destination.

As will be seen in the literature review, some of the methodologies employed

for resolving deadlocks guarantee deadlock free operation of the manufacturing system

under consideration, however there are limitations on the types of manufacturing

topologies that can be handled by these approaches. The other set of methodologies are

general enough to be applied to a wide variety of manufacturing topologies; however,

they cannot guarantee deadlock free operation of the system, or in doing so would be

computationally expensive.

4

The Preblem Statement

At this point the idealized version of the problem may be stated: "To operate a

fully automated manufacturing system so that (1) it is guaranteed to be deadlock free, (2)

the control is non-conservative, i.e. only true unsafe states are avoided~ (3) the algorithm

is executable in real-time, and (4) no need for additional resources is imposed.'~

As it turns out, the general problem as stated above does not have a practical

solution. The reasons are discussed in the following section. Instead~ this research will

be restricted to the following version of the general problem: "To operate a fully

automated manufacturing system so that (1) it is guaranteed to be deadlock free~ (2) the

control algorithm has an acceptable level of conservativeness, (3) the algorithm has a

polynomial time solution, (4) no need for additional resources is imposed."

Deadlock Avoidance: An NP-Complete Problem

The class of NP-complete problems is a fairly recent discovery in the

mathematical world. A practical explanation of an NP-complete problem is that no

known polynomial time solution exists for that problem. The first NP-complete problem

was discovered by Stephen Cook in 1970. Cook also discovered certain theorems to

determine whether a problem is NP-complete or not. These theorems are among tbe

most profound discoveries in the mathematical world [Dewdney 1993]. One of these

theorems stat,es that all NP-complete problems are equivalent in the sense tbat anyone

problem in that class can be reduced to any other in polynomial time. This means that if

an efficient algorithm (i.e. an algorithm with polynomial time complexity) is found for

5

any NP-complete pmblem, then every NP-complete problem can also be solved

efficiently [Manber 89]. As of todaYt no one has found an efficient algorithm for any

NP-complete proble~ and it appears unlikely that such an algorithm will ever be found

[Dewdney 1993]. It so happens that most red world problems either faU into the class of

NP-complete problems or they do not. The latter class can generally be solved using

low-degree polynomial time algorithms; hence their solutions are efficient in 3n ordinary

sense. On the other handt the former class of problems generally cannot be solved

practically (leave alone a solution in polynomial time).

The general deadlock avoidance problem as stated above is NP-complete [Gold

1978]. Gold (1978) discusses various restricted classes of problems and classifies them.

as easy (solvable in polynomial time) or difficult (not solvable in polynomial time). The

restrictions developed by him for the former class of problems are abstract, and difficult

to justifY in the context of real world manufacturing systems. Gold also provides proofs

of the NP-complete nature of the general deadlock avoidance problem. In this authorts

opinion, the greatest use of Gold's pap,er is that by proving the NP-complete nature of

deadlock avoidance for the general 'case, Gold has clearly delimited the solutions that can

be expected for this problem. In other words, the fact that deadlock avoidance is NP­

complete in the general case, means that it would be impractical to strive for exact

solutions to this problem. Gold (1978) suggests three directions that research on this

problem can proceed in: (1) fast solutions for restricted cases of this probl~ (2)

heuristic solutions for the general problem, which will usually solve it in polynomial

time, even though exponential time will be required in the worst cases, and, (3) fast

solutions for the general problem which will not always be correct, but will always err on

6

the conservative side: all unsafe system states will be correctly classified, but some safe

system states will be c]assified as unsafe. ,The research approach developed in this thesis

tak,es the tbird direction.

7

CHAPTERll

REVIEW OF THE LITERATURE

The review of tbe related literature is pres,ented under the headings of the

methodologies used for deadlock resolution strategies, as discussed in the introduction

chapter.

Deadlock Prevention

Viswanadbam et al. (1990) use Generalized Stochastic Petri nets (GSPNs) to

model a hypothetical FMS. Petri nets are well suited to modeling systems which exhibit

concurrency and conflict, which are characteristic ofAMSs. The model is used for both

prevention, and avoidance and recovery strategies. For the prevention strategy, a

reachability tree is obtained from the GSPN model. The reachability tree depicts all the

reachable markings from a given initial marking. Terminating states in the reachablility

tree expose the deadlock states. An exhanstive path analysis of the reachability tree is

then done to derive a set of resource allocation policies that prevent the occurrence of

deadlocks. In arriving at these policies, one or more of the four necessary and sufficient

conditions to deadlock are falsified. It is necessary to do such an analysis just once in

order to devise the policies.

A major problem with the method ontlined above is that the reachability tree

grows explosively with the system size, thus practically ruling out this method for real­

world systems.

8

Agerwala (1979) and Kamath and Viswanadham (1986) demonstrate the use of

net invariants to determine whether a net bas the potential for deadlocking. An efficient

method of computing the invariants of a net during its synthesis is provided by Narabari

and Viswanadham (1985). Once aU the invariants are obtained, certain iuvariants are

intuitively selected to analyze certain states for deadlocks. The disadvantages with such

an approach are 1) the use of intuitive reasoning does not lend itself to the use of

conventional computer algorithms, and 2) an exhaustive search would be Deeded in order

to determine all possible deadlock states in the net Since such a search process has an

exponential time complexity, this approach essentially faces the same problem of state

space explosioll of a basic reachability graph analysis.

D'SouZ8I (1994) developed a Petri net control model from a list of

programmable logic controller events. The programmable logic controller (PLC) was

developed for a simple automated cell in the Manufacturing Automation Laboratory at

Rutg,ers University, comprising a CNC latbe, a pick-and-place robot, and an input buffer

of raw parts. The Petri net control model is represented in a matrix definitional form

(MDF). Uis is tbe graphical form of the Petri net recast in vector and matrix terms as:

MDF = (C+, c-, Mo)

where C+ = tbe output incidence matrix,

C = the input incidence matrix,

Mo = the initial marking.

The purpose of developing tbe Petri net model is to validate the programmable

logic controller, i.e. to ensure that tbe controller does not permit the cell to enter a

deadlock state. In validating the PLC, the Petri net model is used to generate all possible

9

states tbat the aU10mated cell is capable of entering. A deadlock detection algoritbm

cbecks for the presence of a terminating state (i.e. a deadlock state). The algorithm

defines a goal state which it aUempts to reach from any giv,en state by firing an

appropriate sequence of transitions. The state equation defined below is used for this

purpose.

M' =Mo + Uo'C

where Mo is the initial state,

C is the incidence matrix; C =c+ + C-, and

Uo is the control vector which defines the transitions to be fired.

The metbodology discussed above is essentially identical to a reachability tree

analysis, and hence suffers from the same major problem of state-space explosion. Since

the controller developed for the system results in static resource allocation policies, poor

resource utilization may result.

Another approach to deadlock prevention is the synthesis of a class of live nets

using a bottom-up approach. Zhou and DiCesare (1991) use two types of elemental net

structures to synthesize a live net. These structures are referred to as parallel mutual

exclusion (PME) and sequential mutual exclusion (SME). A P'ME models a resource

shared by distinct independent processes, while an SME models a sequential composition

of PMEs. Sufficient conditions are obtained for synthesizing live nets from these

structures. The restrictions imposed during the synthesis stage are translated into

restrictions at tbe design stage. This means that scbeduling policies designed

independently of deadlock considerations may not be freely applied to the system.

10

Deadlock Avoidance

Deadlock avoidance policies are by definition executed in real-time.

Viswanadham et at (1990) use the generalized stochastic Petri net referred to earlier and

define a look-ahead of en' steps to construct a real-time controller for deadlock

avoidance. When the state of the Petri net is defined by a vanishing marking (at least one

immediate or zero-time transition is enabled), potential deadlock situations can be

detected in advance. By selecting the appropriate immediate transition to fire, the

deadlock can be avoided if the set of look-ahead markings had a non-deadlocked

marking. Otherwise, if the look-ahead set had only deadlocked markings, then deadlock

recovery procedures will be initiated in advance. Such a strategy would require the

r,eservation of a buffer case for such occasions.

The number of look-ahead steps needed for complete deadlock avoidance

cannot be computed. It can be seen that only infinite look-ahead can guarantee deadlock

avoidance for general systems. This wOlJld result in an exponential time cost, which is to

be expected given that avoidance in the general case is an NP-complete problem.

Banaszak and Krogh (1990) developed a framework for modeling flexible

manufacturing systems using classical Petri nets. The net type developed is referred to as

a Production Petri Net (PPN). The set of places in the PPN is divided into two disjoint

sets; one representing the set of operations within a process plan,. and referred to as

operation places, and another for the resources of the system, referred to as resource

places. The PPN models the production sequence for a product. The resource

requirements are modeled separately. A deadlock state in the system is defined in terms

11

places. The PPN models the production sequence for a product The resource

requirements are modeled separately. A deadlock state in the system is defined in terms

of two types of transition enablings; process-enabled transitions and resource-enabled

transitions. A process-enabled transition represents a job that is currently in the

production step preceding the process-enabled transition. A resource is modeled using a

pair of places, one to show the number of available units of that resource type, and

another to show the number ofbusy units of that type. It is assumed that each production

step in the sequence requires only one resource in the system. When a set of process-

enabled transitions can never become resource-enabled, the set of transitions is said to

be deadlocked.

The principle behind tbe authors' algorithm is tbat deadlocks are caused by

shared resources (resources which are revisited in the course of a process plan) in the

system. Hence their approach consists of restricting the number of parts tbat ,can enter

into certain zones delineated by such sbar,ed resources. The production sequence is

divided into a sequence ofzones of the type

where Pq(O) represents a production order, pq(Lq+l) represents the completion of an

order, L~ is the length of the production sequence, and n(pq) is the Dumber of unique sets

of sub-zones of the form

k k k
Zq = Sq u~, k = 1,2, ..., R(Pq)

12

The deadlock avoidance algorithm consists of two rules, DDAI and DDA2.

DDAI states that a token can enter a n.ew zone in the production sequence only when the

capacity in the unsbared subzone exceeds the number ofjobs currently in the zone. Rule

DDA2 requires that if a shared resource is being requested by tbe job, then all of the

shared resources in tbe remainder of the zone must be available at the time. The .autbors

then follow the deadlock avoidance algorithm with a proof to show tbat the restriction

policy guarantees that restricted deadlock will not occur.

Although the algorithm guarantees that all deadlocks are avoided, there are

many limitations imposed on the type of systems that can be modeled. A major

limitatioll is that it restricts the definition of an FMS to those systems without alternative

part routings, which is not in k,eeping with trends towards real-time scheduling and

control of FMSs (tbus permitting greater flexibility of the systems). Only sequential

production proc,esses are modeled; thus branching and merging cannot be included.

Another assumption is that a production step requires only one resource in the system for

a given part type. The algorithm is quite conservative. For example, when applied to tbe

system used by the authors to demonstrate the algorithm, not more than 10 parts are

permitted in one of the production zones, while up to 19 parts could be safely allowed (as

this author determined). The algorithm becomes increasingly conservative as the

proportion of shared resources in the system increases. The algorithm fails (does not

allow the system to start) in the limiting case, when all the system resources are shared

among processes. Given tbat it is not uncommon for aU resources in an AMS 10 be

shared, by virtue of the fact that tbey are "flexible" resources, it follows that the above

limitation is a severe one.

13

Hsieh and Chang (1994, 1992) extend the methodology developed by Banaszak

and Krogh (1'990) to include processes holding muUiple resources. Although this is a

significant extension, the other major limitations remain, i.e. aUernat.e routings or

branching cannot be modeled. The algorithm is conservative, since it is based OD a

sufficient condition for liveness (rather tban a necessary and sufficient condition). The

authors claim that their algorithm permits high resource utilization levels; however, tbeir

algoritbm is based on tbe same idea tbat Banaszak and Krogh use, and it follows that the

algorithm will become increasingly conservative as the proportion of sbared resources in

th.e system increases.

Leung and Sheen (1993) developed a real-time control algorithm for avoiding

deadlocks. The principle us,ed in their algorithm is that if one of the four necessary and

sufficient conditions for a deadlock (discussed earlier) is relaxed, then a deadlock

situation can be avoided.

The authors claim tbat the algorithm is general enough 10 be applied to a wide

variety ofFMS's, however, they state that the algorithms cannot be proved to be optimal

in any sense. Furthermore, the deadlock avoidance strategy requires buffer spaces to e

specially reserved if all deadlocks are to be avoided.

Deadlock Detection and Recovery

Wysk et a1. (1991) developed a graph based method to detect deadlocks. Part

routings are represented as directed graphs, where nodes represent machines and directed

arcs represent flow sequences through tbe machines. Directed arcs are labeled with the

part numbers contributing to the arc. The presence of a circuit in the graph is a necessary

14

but not sufficient condition for deadlocking. Circuits in the graph are detected using

string arithmetic. Additional inspection is then used to determine if the circuit satisfies

the sufficiency conditions ofa deadlock.

Given a graph G = (V, A), the following conditions 8l'e sufficient for a system

deadlock.

a) There exists at l,east one circuit C = (Vc , Ac).

b) The number ofjobs contributing arcs to C must be equal to the number of arcs in C.

c) The number of machines in C must be equal to the number of arcs in C.

To implement the deadlock avoidance approach, a deadlock detection procedure

is activated whenever a new part attempts to enter the system. Routing information for

the new part as well as for remaining routes for all parts currently in the system is

converted into a graph and examined for cir,cuits. If a potential deadlock is detected, the

part is not allowed to enter the system until such time tbat its entry does not cause a

deadlock situation.

While the aim of this approach is to entirely avoid deadlocks (i.e. there should

be no need for recovery procedures), tbis necessitates detecting combinations of circuits

which could lead to deadlocks, whH,e the individual circuits in themselves would DOt. A

higher level circuit bas lower level circuits as its nodes. For example, a second-level

node is actually a circuit with machines as its nodes. It is clear then, that if deadlocks are

to be entirely avoided, then all such higher-level circuits that could lead to a deadlock

need to be examined. The level upto which such circuits would have to be examined is

indeterminate.

15

As an alternative strategy, only the next immediate destination of parts in the

system is used to form a graph. When a system deadlock is detected, a correction system

is initiated to move one of the deadlocked parts (chosen at random) to a speci.al reserved

storage. The rest of the deadlocked parts. are then transfe:rred sequentially to their next

destination. It is dear that routing beyond tbe immediate destination cannot produce a

system deadlock, hence it is ignored in the graph construction. This approach

corresponds to the deadlock detection and recovery strategy.

A major limitation in the graph-theoretic approach is that the part routing has to

be fixed, Le. alternate routings cannot be treated. Other limitations of this approach are

that false deadlocks may be detected on the one hand, while true deadlock states may not

be detected, on the other hand. Furthermore, a resolution from the deadlock state

requires that a buffer space be reserved for slJch occasions.

A common limitation with all these strategies is that a complete resource

allocation policy which optimizes resource utilization bas not been defined, rather, the

deadlock resolution algorithms have as their goal only the resolution of deadlocks. This

limitation will be maintained in tbe development of tbis thesis.

16

CHAPTER ill

STATEMENT OF THE RESEARCH

Research Objectives

Objective I To develop an understanding of the various approaches to the

resolution ofdeadlocks in unmanned flexible manufacturing systems and related systems,

as presented in the literature.

Objective II To develop a new approach to the problem that attempts to (1)

guarantee deadlock free operation of an AMS, while (2) maintaining an acceptable level

of cons,ervativeness; further, (3) it should be solvable in polynomial time, and (4) it

should not reqllire tke reservation of resources as an aid to deadlock resolution. These

criteria formed the structure of the practical problem statement. Given the NP-complete

nature of the problem, we have opted to use the verb "attempts" in defining this

objective.

Obiective III To stimulate further research on the deadlock avoidance problem

in unmanned flexible manufacturing systems, given the limited body of literature in the

area.

Research Scope And Assumptions

A widely studied problem in the flexible manufacturing systems literature is

concerned with dynamically determining the part routing. By its very nature, an FMS is

17

flexible, allowing for several alternate routings for a part type. In developing heuristics

for part routings, the researchers have ignored the deadlock problem. This research does

not propose to develop deadlock control strategies or a set of resource allocation policies

that at the same time also result in an optimal or near optimal operation of the automated

manufacturing system by design.

The following conditions will be assumed to hold for the automated

manufacturing systems under consideration:

1. Mutual exclusion: A customer (part) requires the exclusive use ofa resource.

2. Hold while waiting: A part holds on to resources while waiting for additional

resources to become available.

3. No preemption: Parts holding resources determine when they will be released.

4. Availability of raw parts: For convenience in modeling, rather than as a necessity, it

will be assumed that raw parts are always available, and consequently the availability

of raw parts win not be modeled.

5. A machine that fails comes up in finite time.

The above conditions are not to be viewed as restrictions fiom the viewpoint of

the deadlock problem. Conditions (1) through (3) are necessary for a system to

deadlock, i.e. if any of these conditions were not true for a given system, tben that system

would not experience deadlocks in the sense that a recovery could be affected from any

"deadlock" state.

18

f
Performance Measures

The primary objective of this research is to study the efficacy of any approach

developed by this author in avoiding deadlocks in the operation of the AMS under

control. Since the scope of this research does not include development of optimal

resource allocation policies, traditional performance measures like throughput and

resource utilization are not considered. The performance metrics tnat are of relevance in

this research include (1) the proportion of deadlocks avoided, (2) tbe time complexity of

tbe algorithm, and (3) the conservativeness of the algoritbm.

Proportion of Deadlocks Avoided

The performance measure defined below will be used to determine the efficacy

of the algorithms developed:

Proportion of Deadlocks Avoided =1 - No. of deadlock states that tbe AMS entered
Total no. ofdeadlock states in tbe state space of

tbe AMS

If the above performance measure is 1, then the algorithm has guaranteed

deadlock free opeJation of the AMS under its control. If the performance measure is less

than 1, then the algorithm did not guarantee deadlock free operation of the AMS. In this

case the next logical step would be to compare the computational complexity of tbe

algorithm (which affects the time needed to execute the algorithm in real-time), with that

of another algorithm applied to tbe same system configuration. To make a proper

comparison of the computational complexity, not only should the performance of the

algorithm (i.e. th,e proportion of deadlocks avoided) in the control experiment be the

19

same, but also the deadlock states avoided/visited should be the same. For example,

identical avoidance performance measures can be achieved in the finite look-ahead

algorithm of Viswanadham et at. (1990) by varying the look-ahead parameter, however

this will not ensure that the deadlock states avoided/visited will be the same as with the

proposed algorithm.

For this reason, tbe computational complexity of the algorithm will be estimated

based on the number of computational steps to be executed in the algorithm. This

approach. will be preferred rather than using simulation to compare the execution speed

of the algorithm with that of a comparable algorithm, because of the difficulty in

obtaining id,entical results in the control experiment so that a meaningfUl comparison

may be made, as discussed above.

Comparison of the computational complexities of the new algorithms with those

of established algorithms would help in establishing guidelines on the use of tbe various

approaches for different AMS types.

Time Complexity

The time complexity of an algorithm is represented by the big '0' notation, for

example, a polynomial complexity is written as O(nb
) , wh.ere b is the degree of the

polynomial. The relation between the big-Oestimate and the time complexity fen) is:

f(l1) = O(g(n» => fen) < C.g(n) when 11 > k; C and k are constants.

The table [Rosen 1988] below displays the time required for solving problems

ofvarious sizes using algorithms of varying complexities.

20

Bit operations used
,

Problem Size Complexity

n2 :
n 2D I n!

10 10-7 sec. 10-6 sec. 3(10.3) sec.
I
I

102 10-5 sec. 4(1013
) yr. >10100 yr.

104 10-1 sec. >10HIO yr. >10100 yr.

Table 1: Bit operations used for various problems sizes and algorithmic complexities.

From the table, it is easy to see the great disparity between the time complexities

of polynomial solutions versus exponential and factorial solutions, and also the reason

why exponential and factorial solutions are impractical for large problems. One of the

requirements of the problem statement is that the algorithm developed in this research

have a polynomial time complexity.

Conservativeness

The conservativeness of the algorithm determines how restrictive it is in

execution. If an algorithm is too conservative, then it may result in poor resource

utilization, and will interfere with tbe execution of scheduling policies when these are

designed independently ofdeadlock considerations (as will usually be the case).

Let the state space of the system be S. Let the set of unsafe states in S be SII'

Let the state space of the system when controlled by the deadlock avoidance algorithm be

Sa. Then a logical metric for conservativeness can be expressed as:

Co . 1 ISalnservatIveness = - --'-~-

IS-Sui

21

Zero conse.rvativeo.ess means that the algorithm correctly avoids only true

unsafe states. The metric defined above is approp,riate only when the algorithm always

errs on the safe side. If this were not true, then it is possible that some of tbe undetected

unsafe states would count for some of the incorrectly avoided safe states. For such

algorithms, the only way to establish the true conservativeness would be to compare

every state in the original and controlled state space sets.

22

CHAPTER IV

RESEARCH APPROACH

Design of the Test Systems

Issues Related to the Design of the Test Systems

In order to test any algorithm that would be developed in tbe course of this

thesis, two test systems were designed. System A was designed as an example of a

system with concurrent processes, alternate process plans, and multiple resource holdings

by a single process, which is modded by the synchronization of a set of resources (which

in tum eRn also be interpreted as assembly). System B was designed with a view to

testing the algorithm for processes with alternate routings. Botb these systems were

designed prior to the development of the algorithms presented in this thesis; thus there

could have been no bias towards any algorithm when the systems were designed.

The sizes of the test manufacturing systems were limited by the following: 1)

the availability of appropriat,e software and hardware to develop the reachability tree

corresponding to the state space of the system, and 2) tbe requirement that any algorithm

developed would have to be tested over the entire state space to determine how

conservative it was, and whether it would avoid all unsafe states. The frrst limitation is

du.e to the fact that any software code (external) used to develop tbe reachability graph

will have an exponential time and space complexity (due to the phenomenon of the state

space explosion); tbus tbere is a limit on the system size that can be bandIed when

developing the reachability graph. The second limitation arises since the scope of this

23

thesis does not include the implementation of the algoritbm in a machine executable

language. As will be seen later, the algorithm that this author developed was tested over

tbe entiJ"e state space manually. The layout of System A is shown in Figure (I). The

layout of System B is shown in Figure (3).

Description ofSystem A

The test System A has three types of resources, viz. machining centers M1 and

M2, automated guided vehicles (AGVs), and fixtures A and B. There are two units of

MI, one unit ofM2, two AGVs, and two fixtures of each type (A and B). The routing of

tbe AGV is determined by the process plan, which is shown in Figure (2).

Load Unload
Station Station

6 I~G~I I.~G~ I

~
~ rB ru IF;·I ~iB

II

Figure (1): Automated Manufacturing System A

Two alternate process plans are modeled. The alternate process plans require that

two machining operations be carried out on a part. Any operation may precede tbe other;

however, each operation may be performed on only one type of machine. For e.g., MI

24

may perform drilling operations, while M2 may perform milling operations. The

functions of the two machines cannot be exchanged, so that a part bas to be routed

through botb machine types. A fixture of type A is used when tbe first operation is being

performed on a part, while fixture B is used when the second operation is performed on

the part.

MI + fixture A M2 + fixture B

M2 + fixture A MI + fixture B

Figure (2): Alternative process plans for a raw part

The AGV is loaded with raw parts at the load station, carries them to either Ml

or M2, where it awaits unloading. The AGV is unloaded only when both a fixture and

machine are free, otherwise it remains blocked. The AGV also transports semi-finished

parts to either machine Ml or M2, depending on which operation was completed on the

semi-finished part. When a finished product (a part which has been processed on both

Ml and M2) is available, the AGV can be assigned to carry it to the unload station.

Description of System B

System B is shown in the layout diagram in Figure (3). A single process plan

with two alternate routings is modeled in this system. The routi,og is shown in Figure

25

(4). There are two shared resources (resources which are revisited in the course of a

process plan), M2 and tbe AGV.

Assumptions in the systems

The conditions defined earlier in the section "Research Scope and Assumptions"

hold. In addition:

1. The unload station is assumed to have infinite capacity. (Such assumptions are

necessary to define the boundary of the system model.)

Note that we have not explicitly assumed that the load station is of infinite

capacity. This is not required, since th.e system boundary does not include the process of

loading the load stalion. Hence, a load station filled to its capacity with raw parts would

Dot have any impact on the potential of the system to enter into a deadlock. Having

described the two systems, a framework is now presented for modeling tbe systems.

Syn thesis of a Blocking Restricted Petri Net

Deadlocks are defined by a circular blocked state, where each blocked resource

in a set is awaiting another blocked resource in that set. A blocking operation can be

viewed as a state in which a resource is waiting to be unloaded (by transferring its load
'.

00 to another resource). From the definition of a deadlock as a circular blocked state, it

follows that only the blocking operations are of relevance to the deadlock phenomenon.

Hence it suffices to model the blocking operations only in the Petri Net (PN) model.

When the scope of a PN model of the system is restricted thus, then the model is

26

~ Load
Stu

I

~ ~G~
I

Unload
M2

Stn

~]

Figure (3): Layout for System B

Load Stn 1----.(

~_-.I Unload Stn

Figure (4): Routing for part in System B

27

referred to as a Blocking Restricted Net (BRN). The BRN is synthesized from a union of

subnets, where each subnet models the cycle of blocked activities that a resource may go

through. Uese subnets are referred to as resource activity nets (RANs), and are shown.

in Figure (5) for the three types of resources in System A. The interpretation of the

places is given in Table 2. The set ofplaces can be classified into two types: (1) resource

places, which model the availability of resources, and (2) operation places, which model

the loading or unloading operations, ie. the blocking operations of a process. The

transitions have a dual interpretat.ion, in that tbey represent the commencement or

completion ofa particular activity.

The synlhesis of the com.plete BRN model is achieved through a union of tkese

subnets, and is shown in Figure (6) for System A. The interpretation ofplaces is given in

Table 2. The union process essentially combines tbe identical places and transitions in

the full PN model. The advantage of this bottom-up approach is clear: the modeler

needs to deal with only one resource type at a time.

The synthesis of the BRN for System B is accomplished in a similar manner,

and is shown in Figure (7). The interpretation ofplaces is given in Table 3.

Having obtained the BRN of the system, we can identify the properties that give

it tbe potential for deadlocking. These are: 1) sequential mutual exclusion (SME), and 2)

parallel mutual exclusion (PME) [Zhou and DiCesare 1991]. In ordinary words, tllese

concepts can be explained through examples as follows. An AGV can either load Ml, or

it can unload MI, but it cannot cOllcurrently do both operations. This is an example of

28

(a) Activity subnet for MI (b) Activity subnet for M2

T2

T4 T8

(c) Activity subnet for fix. A

T7

(d) Activity subnet for fix. B

TI

P2

T3

Figure (5): Resource activity subnets for system A

29

Figure (6). Synthesis ofblocking restricted net (BRN) for System
A from a union of resource activity subnets in Figure. (5)

30

RESOURCE PLACE INTERPRETATION

PI MI available

P4 M2 available

P9' AGV available

PIO Fixture A available

PH Fix.ture B aV3liiabie

OPERATION PLACE INTERPRETATION

P2 Ml processing semi-finished part on Fix. B

P3 MI processing raw part on Fix. A

P5 M2 processing semi-finished part on Fix. B
,

P6 M2 processing raw part on Fix. A

P7 AGV with semi-finished part awaiting MI

I
pg AGV with semi-finished part awaiting M2

Pl2 AGV with raw part awaiting Ml

P13 AGV with finished product unloaded from M2

Pl4 AGV with raw part awaiting M2

PI5 AGV with finished product unloaded from Ml

Table 2: Interpretation ofplaces for Figures (5) and (6).

31

RESOURCE PLACE I INTERPRETATION
!

I PI MI available

P4' AGV available I

P6 M2 available

PIO M3 available

Pll M4 available I
I

!

OPERAIJON PLACE INTERPRETATION

P4" AGV with raw part

P2 MI busy

P3 AGV carrying WIP from MI

P5 M2 busy

P7 AGV carrying WIP from M2

PT AGV moving WIP from M2 to M3

P7" AGV moving WIP from M2 to M4

P8 M3 busy

P9 M4 busy

P12' AGV moving WIP to M2

P13 M2 processing operation # 4.

Table 3: Interpretation of places for BRN ofSystem B in Figure (7)

32

Figure (7): BRN for System B

33

SME. Second, an AGV can either load Ml, or it can load M2; but it cannot do both

concurrently. This is an example of PME. There are many other instances of SMEs and

PMEs in tkis system.

It may be noted tbat althougb these properties are undesirable, no attempt is

made to synthesize the net without these properties. An approach where this is done falls

into tbe category of synthesis of live nets, and is critiqued in the literat:uJ'e review chapter.

Development of the Research: A Preview

In an initial approach to the problem, tbis author developed a framework for

modeling an automated manufacturing system from the perspective of the deadlock

phenomenon. The framework uses classical Petri nets to model the blocking operations

within the AMS, and was used to model two test systems in the preceding section. This

framework is appropriate since any deadlock state can be de'fined in terms of a set of

blocked resources, with. each resource in tbe set waiting indefinitely for th.e other to

become available. Petri nets was chosen 8!S the modeling tool because of its suitability

for modeling characteristics like concurrency and synchronization which are prevalent in

an AMS. The resulting net is referred to as a Blocking Restricted Net (BRN). An

example of synthesizing a BRN for System A was described in tbe preceding section.

Once a framework had been developed for modeling tbe deadlock phenomenon,

the next step in the evolution of this research was the identification of a set ofelementary

reductions to be applied to the net model. The resulting reduced model is referred to as

an e-BRN, for elementary blocking restricted net. The concept of reduction was

motiv81ed by tbe finite look-ahead algorithm of Viswanadham et al. (1990) (referred to

34

as the VNJ algorithm). Such a concept was appealing because the state space of a Petri

net is exponentially proportional to its, size (number of nodes), except for simple nets

such as marked gr,apbs. Thus tbe state space of a reduced net would be significantly

smaller than tbe state spac'e of the original net. It foHows that the average number of

look-ahead steps needed to avoid the same subset of deadlocks as the VNJ algorithm (for

the same system) would be lower.

Hence the improvements of this approach over the VNJ algorithm were

achieved in two phases: (I) by restricting tbe scope of the Petri net model 10 only those

operations of relevance to the deadlock phenomenon, a first reduction in the state space is

implicit (the PN model used for tbe VNJ algorithm is not restricted to blocking

operations), and (2) by further reducing the net model, tbe state space is further reduced.

However, as was the case witb the VNJ algorithm, all deadlock states were n01 avoided.

The next transition in the development of this research was the process of

dynamic reduction. Such a reduction was performed on the e-BRN for every new

marking that was entered. The concept behind dynamic reduction was the same as that

behind elementary reduction, i.e. to reduce the state space of the net, and thereby reduce

the average size of the look-ahead needed in order to avoid a certain proportion of

deadlocks. With dynamic reduction, a greater number of deadlock states could be

avoided tban with elementary reduction alone. However, it still could not avoid aU

deadlocks. A study of the successful cases of deadlock avoidance revealed a parallel

with the principle behind Habermann's algorithm [Habermann 1969].

This research culminated in the HS3 algorithm, which used Habermann's

algorithm to guarantee deadlock avoidance, and a heuristic to reduce tbe

35

conservativeness of Habermann's algorithm when adapted to manufacturing systems.

Habermann's algorithm essentially determines whether a process can be assigned its

share of resources so that it may continue without interruption to termination. If all such

processes can be sequeutially cleared, then the state of the system as defined by the set of

active processes and the resources allocated to that set is safe. If this is not true, then the

system state as defined above is declared unsafe. Since an unsafe state may be falsely

declared thus, it makes the algorithm conservative. The structure of the HS3 algorithm is

designed to reduce the conservativeness ofHabermann's algorithm.

The following discussion is divided into sections corresponding to the

evolutionary steps outlined above. A discussion of the elementary reduction (ER)

approach is presented first, followed by a presentation of the dynamic reduction

algorithm, and finally the HS3 algorithm, which is presented as the solution to the

pratical version of the deadlock problem. The elemeutary reduction approach is not a.

necessary step in the application of the HS3 algorithm. However, such a reduction has

the advantage of resulting in a significantly reduced state space for tbe given system;

hence the frequency of invoking the HS3 algorithm is reduced. Both the BRN models of

tbe test systems were reduced to their e-BRN versions prior to testing the HS3 algorithm

over the state spaces (of the e-BRNs). The dynamic reduction approach does not form

any part of the HS3 algorithm. The purpose served by presenting the dynamic reduction

algoritlun in itself is that it provides the reader with a gist of the transition to the HS3

algorithm from the elementary reduction approach, which was the first approach to be

developed in this thesis.

36

Elementary Reduction of the BRN Model

In tbe course of a preliminary study of the problem., the author had developed an

elementary reduction (ER) approach that is demonstrated for the simple system shown in

Figure (8). The system consists of a load-unload station, a single machine station, and an

AGV. This system has been used as an example by Viswanadham et a1. (1990) for their

deadlock detection algorithm. The AGV transports raw parts from the load-unload

station to the machine, as well as finished parts from the machine to the load-unload

station. There are no buffers in the system. It is assumed that raw parts are always

available. Two states of deadlock are evident in this system. In one such state, the AGV

is waiting to load the raw part it has onto the machine, which has a finished part on it.

The machine in tum is waiting for the AGV to carry off the finished part and load a fresh

raw part on .it. This represents tbe circular 'wait-for' state discussed in the literature.

The second deadlock state occurs when the empty AGV is assigned 10 carry a

finished part from the machine, while the empty machine is waiting for tbe AGV to load

a raw p.art onto it. This again represents a cycle of requests which cannot be fulfilled, i.e..

the system is frozen.

The elementary reduction approach uses Petri nets to model the 'wait-for' or

blocking relationships between the resources. Thus the scope of the modeling view is

restricted to blocking pnenomena only. This modeling scope differs from that adopted

by Viswanadham et al. (1990), who use generalized stochastic Petri nets to develop a

general purpose model of the system. The restricted scope model results in a

37

=====

ILoad-unload
Istation

Machine
station

Figure (8). A one-machine-AGV system

Ai

t4

11
WI .J..
Q GAl
t2~

A3

Figure (9). A blocking-restricted. net for
the system in Figure (8)

EXPLANATION OF PLACES

WI - machine waiting for AGV to load raw part
W2 - machine waiting for AGV to unload finished part

Al - AGV waiting for raw part
A2 - AGV waiting at machine to load raw part
A3 - AGV waiting for resource allocation decision
A4 - AGV waiting to unload finished part from machine

38

simpler net stmcture.; consequently the modeling proc,ess is made simpler. The 'wait-for'

or blocking-restricted Petri net model is shown in Figure (9).

The n.ext step in the approach is to further reduce the blocking-restricted net

model by eliminating those portions of the net which represent fixed, deterministic paths

for the flow of tokens.

More formally, let G = (P, T, IN, OUT) be tbe blocking-restricted Petri net

mode] of the system. Let Gs =(Ps, Ts, INs, OUTs) be a sub-net, Ps c P,. Ts C T, such

that:

\i t E Ts

\i PEPs

I·t I= 1

I t 1=1

I·p 1= 1

Ip·1 =1

where:

.p is set of input transitions to place p;

p. represents the set ofoutput transitions ofpla.ce p;

.t is the set of input places to transition t; and,

'- t. denotes the set of output places from transition t.

The net reduction procedure consists of removing aU such sub-nets (see Figure

(11» from the original net If the Petri net of Figure (9) is reduced in accordance with

the method outlined above" then the net in Figure (12) is obtained. This wHl be referred

39

to as the "control1er-net'~,which will determine those transitions to be fired in order 10

avoid a deadlock state.

t5

t4

P = {WI, W2, AI, Al, A3, A4}

MO=(l,O, 1.0,0,0)

Ml =(1,0,0, 1.0,0)

M2 =(0. 1, 0,0, 1, 0)

M3 =(0,1,0,0,0, 1)

M4 =(1, 0, 0,0, 1,0)

M5 =(0, 1, 1, 0, 0, 0)

M6 =(0, 1.0, 1,0,0)*

M7 =(1,0,0,0,0, 1)*

Figure (10). The leachability graph for Figure (9)

u

t4

j;3
A40

Figure (l n. Removal of subnets for reducing
the blocking restricted net

40

In the controUer-net, place A~ represents the set of places {AI, Al, A3, A4} ill

the original net. A token in places {AI, Al, A3, A4} in the original net puts a

corresponding token in place A' in the controller net. The controller net is decision-ftee,

even though place A' has two out-going arcs to transitions t2' and t5'. This gives the

appearance of conflict, but as can be seen from the reachability tree of the con1l'oller Bet

in Figure (13), there is no conflict. FurtoertDore, tbe net is reinitializable, i.e. there is no

terminating state (or deadlock state). It can be seen from Figure (14) that if the controller

net is interfaced with the original net model, tben it will ensure tbat no transition is fired

in the original net which will lead to a deadlock, thus ensuring deadlock free operation of

the system.

WI'

o
W2,?6iJ. 12'

/lA'
15'

A' = {AI, Al, AJ, A4, AS}

W]' = {WI}

W2' = (W2)

t2' =(tI, 12, 14}

t5' = (13, tS}

Figure (12). Controller net for Figure 9

41

MO =(1,0, 1)

1 Q'

MI =(0,1, 1)

1 ~'
MO =(1,0, 1)

places = {WI', W2', A'} ,

Figure (13). Reachability graph'for Figure (1)

t1

Figure (14). Deadlock free leachability tree for

original net interfaced with controller net
2

1t3

~
t4

t5

42

To observe how a dead[ockstate is avoided using the controner net, consider the

marking M2 for the original net (l token in M2 and I token in A3). This marking

enables two transitions, viz. t3 and t4. If transition t4 is fired, then the net will ultimately

reach a deadlock state (corresponding to marking M6 in Figure (10». Now, the marking

M2 puts tokens in places WI' and A' in tbe controller net, resulting in marking MI' for

the controUer net. This marking enables transition 15', which repres,ents tbe set of

transitions {t3, t5} oftbe original net. This means that either transition 13 or t5 should be

fired in the original net in order to avoid a deadlock state. Since t5 is not enabled in the

original net, it cannot be fired. Thus t3 is fir,ed, and tbe deadlock state of M6 is avoided.

The elementary reduction ap'proach is now described for the BRN of System A.

Elementary Reduction of tbe BRN for System A

Let G be tbe 4 tuple (P, T, IN,. OUT) r,epres,enting a BRN. The process of

reducing subnets of the type Gc , where Gc =(Pc, Te, INc, OUTe); "itpEPc, I.pl = ,lp.1 = I;.

\;ftETc, 1.1/ = It. I = 1; "it(P,t)E(Pc X Te), INc = IN; OUTc =OUT; into macro places and

macro transitions is referred to as an elementary reduction. The reduced net is referred to

as an e-BRN (elementary Blocking Restricted Net).

There are two types of elementary reductions. A type I reduction involves a

subnet consisting of a resource place followed by its operation place. For example, tbe

subnet shown below consists of a resource place P9' and an operation place PI2. This

subnet is merged to form the macro place P9 = {P9', P12, ... } and macro transition T2 =

43

{T2', T9}. The ellipses indicate that other places are also included in the macro place

P9, through the merging ofother subnets.

P9:(P9', PI2,...}

o
J. U={U', T9}

Figure (15): Type I reduction

A type IT reduction involves a subnet consisting of an operation place followed

by a resource place. For example, the subnet below consists of an operation place PI5

and a resource place P9'. This subnet is merged to form tbe macro place F9 = {P9'. PIS,

... } and the macro transition T3 = (T3', T12}.

P9={P9', PIS,.. ·1

oJ. n={TI',Tl2}

Figure (16): Type II reduction

Since the reduced net is used to control tbe original net, any disabled macro

transition requires that any transition in tbe original net making up the macro transiton

should not be fired, with an exception. The exception is tbat macro transitions derived

from type II reductions are excluded from this rule. Consider a subnet corresponding to a

type II reduction. A token in tbe operation place enables the trausition preceding tbe

44

resource place. Thus the only effect of firing tke transition which has the operation place

as its input place is to make a resource available. It is intuitive that when the only effect

of an action is to increase the availability of a resource, then the resulting state cannot

have progressed towards a deadlock. Therefore, although the macro transition r,eslll1ing

from a type II reduction may not be enabled, it is safe to fire the individual transitions

comprising that macro transition.

The e-BRN for System A is shown in Figure (17). There are 369 markings in

the original BRN, of which 61 are deadlock markings. III tbe e-BRN, there are 71

markings, ofwhich 9 are deadlock markings. Hence, the elementary reduction algorithm

does not avoid aU deadlocks. The performance measure defined earlier can be applied

P1

Figure (17): e-BRN for System A obtained from the net in Figure (6)

45

RESOURCE PLACE INTERPRETATION

PI Ml available

P4 M2 available

P9 AGV available

PIO Fixture A available

Pll Fixture B available

OPERATION PLACE INTERPRETATION

P2 Ml processing semi-finished pm on Fix. B

P3 Ml processing raw part on Fix. A

P5 M2 processing semi-finished part 00 Fix. B
I

P6 M2 processing raw part on Fix. A
I
:

P7 AGV with semi-finished part awaiting MI

P8 AGV with semi-finished part awaiting M2

Table 4: Interpretation of places for e-BRN of System A

46

for this case. The value is:

1 - 9/61 =0.85

i.e. 85% ofthe deadlock states are avoided. At this point, it would be pertinent 10 inquire

why the reduction algorithm does not avoid all deadlock states. The reason can be fouod

in the motivation behind the algorithm, which derives from the finite look ahead

algorithm of Viswanadham et 811 (1990). Just as a finite number of look-ahead steps

cannot guarantee avoidance of all deadlock Slates, so also the finite look-ahead built into

the reduced net cannot guarantee avoidance of aU deadlock states. The advantage of

building look-ahead in the net through reduction is that the state space of the reduced net

is significantly reduced, hence the number of steps needed to check whether a state is

safe (there is at least one sequence of transitions which can be fired from a safe state to

initialize the system) will be less on tbe average. However, the number of steps needed

for complete avoidance is stiU indeterminate.

This implies that look-ahead would still be needed to guide the reduced net

away from potential deadlocks.. Thus, the reduction algorithm with look-ahead would

conti.nue to have an exponential time complexity.

The e-BRN for System B is shown in Figure (18) and can be obtained in a

similar manner by performing the elementary reduction on the BRN of System B. The e­

BRN model of this system is only used as a model for the other approaches as a test

whether the approaches are general enough to handle alternate routings. The

interpretation of places in the e-BRN is given in Table 5.

47

RESOURCE PLACE INTERPRETATION

PI Mlavailable

P4 AGV available

P6 M2 available

PIO M3 available

Pll M4 available

OPERATION PLACE INTERPRETATION

P2 Ml busy

P3 AGV carrying WIP from Ml

P5 M2 busy

P7 AGV carrying WIP from M2

P8 M3 busy

P9 M4 busy

PI2 AGV moving WIP to M2

P13 M2 processing operation # 4.

Table 5. Interpretation of places of e-BRN of System B

48

Figure (18), e-BRN of System B

49

Dynamic Reduction

Dynamic Reduction of the BRN seemed to be a natural step in the evolution of

this thesis. Henceforth, all development is directed at guaranteeing avoidance in the e­

BRN. It follows that if any algorithm avoids the deadlock states in the e-BRN, then it

would also accomplish the same for the original BRN, when used in conjunction with the

elementary reduction algorithm.

In dynamic reduction, a reduced net is obtained every time a new marking is

obtained, as opposed to a static elementary reduction. The subnets reduced in dynamic

reduction depend on tbe marking. Th.e dynamic reduction algorithm is preseDted below

and is restricted to systems witbout alternate routings.

Dynamic Reduction Algorithm

]. Let S denote the ,current marking corresponding to the actual system state.

2. Let POe be the set of empty operation places in S. Delete pePoe . Merge.p with p.

Repeat 'r/ pePoe .

3. Fire a transition teTde , where Tde represents tbe set of enabled macro transitions in

the dynamically reduced net.

Testing of this algorithm sbowed! that it avoided more deadlock states than an

elementary reduction, however, it still would not avoid all deadlocks. In the special case

where there is only one resource of each type, the dynamic reduction process avoided aU

deadlocks. However, there appeared to be a similarity in the way the algorithm was

50

--- - -- -

avoiding deadlocks with the theory developed by Habermann (1969), which. is now

discussed in detail.

Habermann's Algoritbm aad its AdaptatioD to Manufacturing Systems

The process of dynamic reduction enables a macro-transition when all the

resource places needed for thst macro trsnsition are marked. This reflects the principle

behind Habermann's algorithm (also referred to as the H-algorit'bm). The H-algorithm

was developed for computer operating systems; thus the algorithm does not directly

apply to manufacturing systems. This section summarizes Habermann's algorithm aDd

discusses the issues related to the adaptation of the algorithm to manufacturing.

The H-algorithm was intended for avoiding deadlocks due to improper resource

allocation among processes that satisfy certain assumptions. The following assumptions

are stated [Habermann 1969].

1. While a resource A is allocated to process Pi , no other process Pj can seize A .

2. An allocated resource is not released until it has fulfilled its task.

Both the above assumptions require that no resource in use by a process can be

pre-empted by another resource. It may be recaUedthat this assumption corresponds to

one of the four necesary conditions for a deadloc.k to occur [Coffman et at. 1971], i.e. the

assumption of no preemption is not strictly necessary for the algorithm to work; however

if a system did allow preempt'on of resources, then a recovery could be easily be effected

from a deadlock state. Habermann further states the distinction between the conception

of a process as opposed to a resource: A resource works by order of a process P or

another resource, while a process does not. This distinction leads to the following

51

definitions: An independent process is one 1) which releases all the resources allocated

to it upon completion, and 2) whose termination does not require the commencement of

another process. A dependent process, on the other hand,. can be defined as one 1) which

releases a subset of tbe resourc,es allocated to it upon completion, and 2) whose

termination requires the commencement of another process. This cOJilceptualization of

dependent versus independent processes is specifically relevant to manufacturing

systems, as it determines the applicability of the H-algorithm to manufacturing systems.

The following terms are defined in context of the algorithm.

1. The resource availability vector a states tbe availability of eacb type of resource when

the system is initializ,ed.

2. The claim vector b defines the minimum number of resources of each type tbat a

process will need in order to terminate. The matrix of claim vectors is denot·ed by B

and is called the claim matrix.

3. The allocation vector c defines tbe number of resources currently allocated to a

pmcess. Tbe matrix of allocation vectors is called tbe allocation matrix and is

denoted by C.

4. r =a - LC is tbe free resource vector.

The following relations are defined:

5. RI: 'if k , bk ~ a, i.e. no process claims more resources than are initially available in

tbe system.

6. R2: C ~ B, i.e. no process will try to seize more resources tban it bas claimed.

7. R3: :LC ~ a, i.e. at most all resources are allocated.

52

8. R4: Let S be an ordered set of active processes. The state defined by S is safe if and

only if: VPlc E S, b k :S r + LS(l) sS(k) C, where Pk is a process in S; 8(1) is the

rank of the ltb process PI; C is the allocation matrix; r is tbe free resource vector; and

bk is the claim vector for Pt. Further details are provided in Habermann (1969).

The relations Rl, R2, and R3 must hold for a state to be realizable. The relation R4

becomes a condition for a realizable state to be safe, when the set S includes all tbe

participating processes in that state. Habermann derived three theorems in the course of

arriving at his algorithm. These are reproduced below.

Theorem I

Theorem I states tbe necessary and sufficient condition for declaring a given

state as safe. "When no process wiu release its resources until it bas been allocated all its

claimed resources, the process will not get into a deadlock if and on'ly jf tbe allocation

state is safe."

Note that there is an explicit assumption in this theorem, which is later discussed

in the context of the NP-complete nature of tbe generalized deadlock problem.

Theorem IT

The most significant of the three theorems, theorem II makes possible the exact

solution ofthe deadlock problem in. polynomial time, given the restrictions mentioned in

theorem 1. "If thealIocation state is safe and a subsequence S fulfills the condition for

safeness (R4), then S can be extended into a full safe sequence."

53

In more logical terms, this theorem can be stated as foHows. Let P be the

assertion 'The state S is safe". Let Q be the assertion "Any subsequence q fulfillillg

relation R4 can be extended into a full sequence". Then theorem II states that P --)0 Q.

The converse of this theorem is equally important: -,Q --)0 --.P ("not Q implies Dot P"). In

words, the converse of theorem II states that if a subsequence cannot be extended into a

safe sequence, then the given state is ullsafe, and there is no need for backtracking. If n

is the number of active processes in a given state, theorem II says tha1 in the worst case,

we do not have to check aU n! possible sequences to find a safe sequence; instead we

would lle,ed only n(n+l}12 checks. This is a remarkable reduction in the worst case

computational complexity.

Although a detailed proof of the theorem is reproduced in 1he Appendix TIl, the

success of theorem II may be intuitively explained as follows. Whenever an independent

process is terminated by allocating its claim to it, tben it will release aU the resources

allocated to it. It is intuitive that if the only effect of an action is to make resources

available, then tbat action could not be possibly constraining tbe system to move in the

direction of a deadlock. It does not matter which process we chose to terminate from a

set of active processes, since the only effect of any termination action is to make more

resources available.

Note that although a state may be declared safe by an application of theorem IT,

there can still be transitions that take that state into a deadlock. However, theorem II

does say that there is at least one sequence of transitions from the given state that can

take the system back to its initial state.

54

Theorem III

This theorem states tbat any subsequence satisfying condition R4 and containing

tbe most recently introduced process can be extended into a full safe sequence. "If a safe

state is transformed by allocating resources to process Pk and if any subsequenc,e can be

found containing Pk and ful1iUing condition R4, then the transformed state is also safe."

Having defined the concept of independent vs. dependent processes, we will

now proceed to show why it is not possible to apply Habermann's theorems (II and ill)

to dependent processes.

Consider the e-BRN in Figure (17). At a first inspection, there are two ways to

define a process:

1) The places P2, P3, P5, P6, P7, P8 may be considered as distinct processes which

need certain sets of reSOU1~ces to terminate. For example, the process P3 needs MI,

Fixture A, and an AGV to terminate; this is its claim. By virtue of being active, it win

already possess one unit each of MI and Fixture A. Thus it would require just one unit

of an AGV to terminate. However, the manner in which we have defined P3 as a process

makes it a dependent process. This is because the termination of P3 requires the

initiation of the proc,ess P8. Further, P3 releases only Ml and Fixture A UPOD

termination, willIe the AGV is assigned to P8.

2) The sets ofplaces PI = {P3, P8, P5}, P2 = {P6, P7, P2} P3 = fP8, P5}, P4 ={P7,

P2},]>5 = {P5}, and P6 = {P2} are defined as processes. The manDer in which the above

processes ar,e identiJfied corresponds to the definition of independent processes. For

example, PI needs the following resources (one each) to proceed to termination: {MI,

55

Fixture A, AGV, M2, Fixtur,e B}. It is obviolls tbat upon termination of Ph this set of

resources would be available for use. Further, the tennination of PI does not imply the

initiation of a subsequent process, since no process follows from PI. Similarly, tIte

definition of all the other processes P2, ... , P6 can be seen to correspond to independent

processes. The resource vector a and the claim matrix ofP" ..., P6 can be written as:

a =[PI P4 P9 PIO Pll]T =[2 1 22 2]T

B = [bi b2 b3 b4 bs b6]

bl = [1 I I I 1]T

b2 = [] 1 1 1 1]T

b3 = [0 I 1 0 1]T

b4 = [1 0 1 0 1]T

bs = [0 1 1 0 1]T

b6 = (10 I 0 I]T

Note: Henceforth, the transpose symbol 'T' will be left out for convenience.

If Habermann's algorithm could be applied to dependent processes, then an

exact solution oftbe above system would be possible in polynomial time (and the class of

NP-complete problems solved'!). Unfortunately, this is not possiMe, the reason being that

theorem II breaks down when applied to dependent processes. Since theorem mdepends

on theorem II, tbe former breaks down as well. We have provided a mathematical

explanation showing precisely how theorem II degenerates in Appendix III along with

the proof.

56

Having set the stage for the application for the H-algorithm in a manufacturing

setting, the sub-problems arising from such an application are now discussed. The above

definition of an independent process is not in concordance with the restriction in theorem

I. This restriction requires that a process not release any of its allocated resources until it

has been allocated its full claim of resources. The independent processes defined here do

release some of their allocated resources at intermediate steps, i.e. it is not necessary that

an independent process be allocated its full claim before releasing some if the resources it

bolds. For example, PI releases MI and Fixture A when it bas been allocated an AGV,

although its full claim requires tbat it be allocated M2 and Fixture B in addition to the

AGV. The consequence of applying tbe H-algoritbm to independent processes is that the

algorithm now becomes conservative, i.e. tbe solution is not exac~, but whenever tbe

algorithm errs, it will always err on the conservative side, i.e. it will declare some safe

states as unsafe. Hence, the H-algorithm can still be used to guarantee avoidance of all

deadlocks. A metric for conservativeness was defined in the section titled "Performance

Measures" (chapter ill). The sub-problem is: "given that an algorithm conservatively

guarantees that all deadlock states in a system will be avoided, bow can the

conservativeness be reduced?".

This sub-problem completely transforms the focus of the original problem,

which was to guarantee avoidance of deadlocks. With the application of the H­

algorithm, the focus is now on reducing its conservativeness when applied to

manufacturing systems. It may be noted that in defining the sub-problem, we have used

the word "reduced", and not "eliminated". To eliminate the conservativeness (with a

polynomial time solution) would be to solve the class of NP-complete problems. Given

57

that a solution to NP-completeness is improbable [Dewdney 1993], the sub-problem is

appropriately stated as above.

The HS3 Algorithm

At this j"Uncture, th'e algorithmic structure that we have conceptualized for

solving the deadlock problem can be depicted as in Figure (19), in the larger context of a:

deadlock avoidance controller scheme, and in the high level scheme of Figure (20). This

structure was based on the discovery tbat if the system state is allowed to advance after

being incorrectly classified as unsafe by the H-algorithm, then it is likely that the

advanced state will be correctly recognized as safe. Note that the H-algorithm always

correctly declares a state to be safe (SAFE), while it may falsely declare a state as "Unsafe

(labeled as UNSAFE?).

In tbe figure (19), the elementary Blocking Restricted Net (e-BRN) model of the

Automated Manufacturing System determines the control points at which the deadlock

avoidance algorithm win be invoked. The avoidance algorithm bas two procedures. The

first procedure is tbe H-algorithm, which determines whether a process can be safely

introduced in addition to tbe current set of active processes. The H-algorithm will

declare the given state as safe or unsafe. If the state is declared as safe, then tbeprocess

is aUowed. If the state is declar'ed unsafe, then the second procedure, viz. tbe S3 heuristic

is invoked. The objective of the S3 heuristic is to reduce tbe conservativeness of the

avoidance algorithm. It achieves this by advancing the given unsafe state to a future

state, which is tested. for safeness by the H-algorithm. If the origioal state was

incorrectly classified as unsafe, then it is possible that tbe H-algoritbm will correctly

58

1
control

I Petri Net Model

AMS

Physical System

BRN*ofAMS

1'---. ..----'

<process>

control

H-algorithm

Deadlock
avoidance
algorithm

<unsafe

state>

<modified

state>

Heuristic

Note: *BRN = Blocking Restricted Net

Terms in angular brackets represent input variables

Figure (19): Deadlock avoidance control scheme

59

start

input 3, B

input C

set C=C'

procedure H-algorithm

N

C=UNSAFE?

procednre SJ heuristic

:N

C=UNSAFE

stop

C=SAFE

Fi!rure 20: The HS3 At oritbm

60

classifY the derived state as safe. When the state can no longer be advanced by the

heuristic, then the state is classified as UNSAFE.

The concept behind the algorithm can be explained with the help of Figure (21).

Suppose that Ma is a safe state which is incorrectly classified as unsafe by the H-

algorithm. Then the S3 heuristic advances Ma to Mh, where it is again checked by the H-

algorithm. It is possible that the H-algorithm now recognizes Mb as a safe state. Then

theorem IV (a simple proof and explanation are provided later) says that Ma is also safe.

It is also possible that the states Mb, Me are Dot recognized as safe. Suppose that the S3

heuristic advances Me to Mn instead of taking the left p.ath. Then Ma would be

incorrectly classified as unsafe, and the heuristic exited. The H-algorithm is presented

below in pseudocode, and the structure of the S3 heuristic is later discussed.

Ma

Mb

o

o
o

MD =deadlock

Figure (21): Concept behind

heuristic

61

Pseudocode for Habermann's Algorithm [adapted from Habermann (1969)]

In the algorithm below, S* represents the complement of S, and Pk is tbe proposed

process.

Initialize

S = <1>.

T=S *.

while not (Pk in SorT = <1» do

begin if Pk in T

tben Pcandidate = Pk

else Pcandidate = 1st member ofT; T =T - {Pcandidate}

if b[candidate] - c[candidate] S; r + LC[i] then
PieS

begin S = S u {P"ouelidate} ; T =S* end

end

SAFE =Pit in S.

Safe State Seeking Heuristic

The Safe State Seeking Heuristic (S3 heuristic) was developed by this autllor as an

embellishment to tbe H-algorithm developed by Habermann. The function of the S3

heuristic is to reduce the conservativeness of the H-algorithm. It achieves tbis by

evolving a future state from a given state which is proclaimed unsafe by the H-algoritbm.

62

Thus, the S3 heuristic is executed only when the H-algorithm declares a given state as

unsafe. If the new state thus generated is safe, then the given state is ,also safe.

To achieve its purpose, the S3 heuristic first determines the unavailable resource

requirements of the shortest process (measured in terms of remaining resource

requirem,ents). Then it attempts to move tbe load of one of the busy resources needed by

the shortest process into an available resource (thereby seizing tbat resource), preferably

one that is not needed by the shortest process. If a transfer is accomplished, then the

resultant state is checked for safeness by the H-algorithm. If this state is safe, then it is

intuitive that the predecessor state is also safe. A simple proof is provided in theorem

IV. If this state is not safe, then the S3 heuristic is executed again. This process is

repeated till the S3 heuristic cannot evolve a state any further. The S3 heuristic is written

in algorithmic form below.

Algorithm for S3 Heuristic

Note: Use of existing notation is consistent with its use in the section on tbe H-

algorithm.

1. Let Cg be the given state (as the allocation matrix), where Cg = UNSAFE? (as

..
declared by the H-algorithm alone). Let C = Cg.

2. Let {P} be the set of active processes in C. Select the shortest active process say Ps,

in terms of the size of Ibs - csl, where bs and Cs are treated as sets.

63

3. Let the set of resources needed to finisn Ps be bs. Let the set of free resources be r.

Let Us be the set of unavailable resources needed by Ps' Try to advance some process

Pi where Pi satisfies the following: (1) Pi :;t:. Ps , (2) Ci nus :;t:. 4>, (3) the resource set

held by Pi is released upon seizing another resource set w, where (i) w c r, and (ii) w

II bs =~. If there is no w such that w (\ bs = <1>, then only condition (i) need be

satisfied. If th,ere is no Pi satisfyin.g tbe above conditions, then exit the heuristic,

setting C =UNSAFE. If a transformation is achieved, let the new state be C.

4. Check C for safeness using the H-algorithm.

5. If C = UNSAFE?, go back ~o step 2.

6. IfC =SAFE, then Cg is also safe, i.e. Cg =SAFE.

Theorem IV

Let M be the current marking (state). If there exists a sequence of enabled

transitions (firing vector) G such that M [0' > M', and M' is a safe state, then M is also

safe.

Proof: Since M' is safe, it follows from the definition of a safe state that there

exists a firing vector 0" such that M' [0" > ·Mo , where Me is the initial marking

corresponding to the initial system state where aU reSOlJrces are available.

Let 0'* =0' + 0"; where the operator '+' means "extend the operand cr by the argument

cr' ". Then it follows that:

M [cr* > Mo. Hence M is safe.

64

A Demonstration of the 83 Heuristic

The utility of the S3 heuristic is demonstrated in the following situation.

Consider two processes represented as a routing of workstations, PI = {WI, W2, W3,

W4} and P2 = {W4, W3, WI}. PI is currently allocated workstation WI, while P2 is

currently allocated workstation W4. When this state is checked for safeness by the H­

algorithm, it will be classified as unsafe (UNSAFE?). The S3 heuristic is now invoked.

The shortest process is Pz, since it needs two resources to finis,h, while PI needs three. In

keeping with the notation used in the heuristic, Ps = P2; Pi = Pt; r = {W2, W3}; US =

{WI}; bs = {WI, W3, W4}; Cs = {W4}; bl = {WI, W2, W3, W4}; Ci = {WI}. The

current state is [Ct, c2l = [Ci, csJ. In accordance with the hellristic, PI is selected to be

advanced (Pi::l' Psi Cj nus, * <1). To advance PI, the reSOllfce set w = {W2} needs to be

acquired. The set w satisfies the condition w n bs = <1) in this case. After advancement,

the transformed state is Pt' = {W2, W3,. W4}; Ct' = {W2}; C2 = {W4}. The new state

defined by [Ct',C2] is correctly detected as a safe state. Hence the original state [Ct, c2l is

also declared safe.

Application orthe HS3 Algorithm to System A

The HS3 algorithm successfully avoids all deadlock states in the state space of the e­

BRN model of System A in Figure (17). Further, it does so with zero conservativeness,

i.e. only true unsafe states of the e-BRN are avoided. Since the e-BRN can be controlled

65

to avoid all deadlocks, it can be interfaced with the original BRN to avoid aU deadlocks

in the larger state space of the original BRN, i.e. the physical system can run indefinitely

(as long as any resources that fail in the course of a processing operation comes up in

finite time).

That tbe HS3 algorithm avoids aU deadlock states is to be expected. since it is based

on the H-algorithm, which in tum ensures that the necessary and sufficient condition for

safeness is always satisfied. With regards to the conservativeness metric, the HS3

algorithm could not have performed better (mathematically and literally speaking).

Later. the HS3 algorithm is applied to System B, which includes alternate routings. For

System B. the HS3 algorithm again performs witb zero conservativeness (of course, all

true unsafe states are avoided). The application of the HS3 algorithm will be

demonstrated below for two states, a safe state and an unsafe one.

Consider marking M46 in Table Al (Appendix II). The fact that this state is active

implies that it was found to be safe by HS3
. Suppose that we want to verify whether the

state M47 is safe, where M47 is derived from M46 by firing transition T6. The marking

ofM47 = [0 2 0 0 0 I 101 1 0], where all places are ordered according as PI, P2....,

PI1. There are 4 active processes in M47, viz. P6. P6, P4, and P2 (note: two of these

processes are identically defined). These processes were earlier defined in the section

"Habermann's Algorithm and its Adaptation to Manufacturing Systems"). The claim

matrices, allocation matrices, and free resource vector are:

66

b4 =[1 0 I 0 I]

b2 = [1 I I 1 I]

C = [C6 C() C4 C2]

Cc; = [I 000 1]

C4 = [0 0 1 00]

C2 = [0 I 0 1 0]

r =a - L:C =[2 1 2 2 2] - [2 1 1 1 2] =[0 0 1 1 0]

According to the H-algorithm procedure in HS3
, the most recently introduced

process is first checked to see whether it can be terminated. The most recently

introduced process in this case is P2, by virtue of firing T6 from M46. It can be seen that

relation R4 is not satisfied, i.e. b2 - C2 = [1 0 1 0 1] is not less than or equal to r (note:

this does not necessarily mean that b2 - Cz > r). The next step is to check whether some

other process can satisfY R4. It can be seen that P6 satisfies R4, and can be deallocated.

The new value of r is:

r t = [1 0 1 I 1]

Now, the relation R4 holds for P2, and the state is SAFE. Note that there is no need

to check whether the other two remaining processes P6 and P,* can be terminated; this is

by virtue of Habermann's third theorem.

Consider the second state M70 =[02 0 I 002 0020]. This state is reached from

M47 by firing T8. There are 4 active processes in this state, viz. P6, P6, P4, P4. The

67

claim and allocation vectors for these processes are given above. The value of the free

resource vector is recomputed

r = a - LC = [2 1 2 2 2] - [2 0202] =[0 I 0 2 0]

It can be seen that no process satisfies R4. Hence the state M70 is labeled

UNSAFE? This invokes the S3 heuristic. The shortest process is P6 in terms of th.e size

of its remaining resource requirements (it needs only the AGV to terminate). Hence, S3

will search for a process which can release an AGV (viz. place P9). The resources P9 are

held by the two processes P4, P4. Neither of these can release the AGV (P9) till they

obtain Ml (PI) and fixture B (PIl). Since S3 is unsuccessful in releasing P9, the state is

labeled UNSAFE by HS3
. Indeed, M70 is a deadlock marking as can be seen from tbe

marking set in Table A2 in Appendix II.

In the following section, a systematic method of computing tbe claim vector b

for a process is described.

A Procedure for Obtaining the Minimal Requirements for a Process

A systematic way of obtaining the minimal resource requirements for an

independent process is developed in this section. Initially, only processes without

alternate routings are considered. Later, the procedure is extended to include processes

with alternate routings.

68

Proc,esses without Alternate Routings

A blocking restricted net of a process without alternate routings isa marked

graph, the transitions of which form a unique T-invariant [Desrochers and Al-Jaar 1995]

corresponding to that process. When the T-invariant is ordered according to the

appearance of its transitions. in the elementary path, the T-invariant is referred to as an

ordered T-invariant. The procedure developed here is first described with the help of an

example. Consider the independent process Pi = {P3, P8, P5} in the e-BRN in Figure

(17). The elementary path describing Pi is {T2, P3, T4, P8, T5, P5, T7}. The ordered

T-invariant corresponding to p. is T2T4T5T7. In the example, the minimal requirement

of the AGV (represented by P9) in PI is computed.

T-invariant P9 (2)

T2 -1+1(1,2)

T4 -1 (I)

T5 +l (2)

17 -1 + 1 (1,2)

In the table above, the first column contains the transitions of the ordered T­

invariant. In the second column, the numbers in brackets represent the number of

resources available after firing the transition in tbat row. If a transition is associated with

a self loop, then there will be two numbers in the brackets; the first represents the

quantity available upon firing tbe transition and ignoring the output arc to the resource

place; the second quantity rep1resents the quantity available upon firing tbe transition witb

69

all arcs preserved. The signed numbers represent tile change in availability of the

resource. The minimal resource requirement, denoted as min(Pi , Ra,;), where RIl; is the lib

resource type, is:

min(PI , P9) = Imin(change vector) I=Imin(-I, I, -1, I, -I, J) I=1.

Let tbe ordered T-invariant of P be written as T = UIUZ, .•. , Ul(p), where Ui

represents the itb transition in T, and 1(P) is the length of the T-invariant Let A- be the

output incidence matrix corresponding to the ordered T-invariant of an independent

process P and a given resource place. Let A+ represent the input incidence matrix

corresponding to th.e ordered T-invariant of an independent process P and tbe given

resource place. The pseudocode for obtaining tbe minimal resource requirement is given

below.

Algorithm for Computing min(P, R)

In the algorithm below, T =UI, Uz, ... , UI(p) is tbe ordered T-invariant, and the 1 x l(p)

row unit vector ej corresponding to transition Uj is defined as:

ei = [Zh Z2, ... , ZI(p)]; Zj = 0 for j *' i ; Zj = 1 for j = i

Input: P, T, R (set of system resources types)

Initialize: j = I

do while (R *' <I»

A- [j] =A- (T-invariant of P X resource place representing Rj)

A+ [j] = A+ (T-invariant of P X resource place representing Rj)

70

Initialize: Cj =x = 0; i = 1

do while (i ~ 1(P)

begin Cj = Cj + ei . Alj]

If Cj < x then x = Cj

Cj =Cj + ei . A+[j]

i = i + 1

ead

min(P, Rj) =Ixl

R= R- {Rj}

j = j + 1

end

The vector min(P~ R) is the claim vector for P~ i.e. for process Pk , we can write bk =

min(Pk, R).

71

Incorporating Processes with Alternate ROBtings into tbe Claim Matrix

...9.p.~rMjgJl I

.............._ 9.P.~~~'9~ 2

..(;>p~~tiQ:n 4

Figure (22): A process plan with alternate routes
represented as an OR digraph

Alternate routings in a process may be represented. by the OR digraph in Figure

(22) [Wysk 1995]. Note that the digrapgh is strictly OR; an AND digraph would

represent alternate process plans [Wysk 1995], i.e. alternate processes. The OR digraph

is Dot an integral part of tbe approaches developed below; rather, it is used as a scheme to

clearly present the concept ofaprocess with alternate routes. We can see tbat the process

represented in Figure (22) above can take 1.2.3.1.2 = 12 different routes.

Let P be a process defined as the ordered set of operations in the e-BRN of the

given system, i.e. P = {PI, Pz, ..., PI(p)}, where PI(p} represents tbe last operat.ion in P, and

1(P) is tbe number of distinct operations needed to produce tbe end product. Hence Pi can

be considered as a set of one or more operation places in the e-BRN ofP. Each Pi can be

72

mapped onto one or more operation places in the e-BRN. IfPi can be mapped on to two

or more operation places, then it is interpreted as an operation with alternate sets of

concurrently needed resources available for its processing, and represents alternate routes

in P. Let Pa = {Pi} be such an ordered set of operations (witb alternate sets of

concurrendy needed resources available for its processing) in P. The distinction between

an operation (e.g. a drilling operation) and an operation place representiDg that operation

will be maintained in tbe ,exposition below.

Define a function f: a ~ P, where 0 is tbe set of operation places that define P

in its e-BRN. Define the set U ={0i If (Oi)"* f(oj) ; i "* j }. Define the set V =a - u.

The function f maps every operation place in 0 to an operation I' in P. The set U is the

set of operation places corresponding to operations in P without alternate resources

available for processing that operation. Thus if the domain of f is restricted to {o I 0 E U

}, then f is a one-to-one fuDction~ since every operation place in U can be mapped on to a

unique operation in P, and vice-versa. The set V is the set of operation places

corresponding to operations in P with alternate resources available for processing that

operation. When the domain of f is restricted to the set { 0 IOEV }, then fis not a one­

to-one function. For example~ refer to the e-BRN of System B in Figure (18). There is a

single process with two alternate routes. The process can be defined as P = {Ph 1'2, 1'3,

P4,p5,p6}. The set of operation places that defme Pin tbe e-BRN shown is a ={P2, P3,

PS, P7, PS, P9, P12}. We have f(P8) =f(P9) =1'5. The set U = {P2, P3, PS, P7, P12}.

The set V = {P8,· P9}.

73

Furtber, define z" = { 0i II f(oi) = {(OJ) = P'i; i:;t:j , Pi EPa }, where k = S(Pi), and

s(pJ) is the rank of Pi in. Pa. Zk defines the set of operation places that map on to a single

operation p in Pa' It can be seen that V =v Zk over aU k. In the above example, Zl =

{P8, P9}.

Having defined tbe terms above, we will proceed to develop twoapproacbes to

incorporating processes with alternate routes into the claim ma1lrix. The first approacb

does not impose a~y furtber restrictions on tbe system being modeled. The second

approacb is more refined, however it requires a further restriction on the system types

allowed.

Approach J

This approach computes one claim vector for each route that a process can take in

the course of its exeution. For the OR digraph shown in Figure (22), there are 12 claim

vectors for the process represented by the digraph. For the process modeled in Figure

(18), there are 2 claim vectors. In general, a claim vector must be computed for each

route tbat a process can take. For a process P,. let Pa be defi.ned as abov1e. Let v = IP'al.

Let c be the number of claim vectors for P. Thene = number of routes for P = Izd x Izz'l

.... Izvl. The method of obtaining the claim vector corresponding to a route of P is the

same as obtaining the claim vector by treating that route as tbe only route for P. Let bJ(=

[bk l
, ... , bke

] be the claim sub-matrix tbus obtained for P. Then tbe H-algorithm is

modified as follows.

74

Pseudocode for the H-Algorithm Extended to Processes with Alternate Routings.

Step 1.

Input 3, B, C, Pk (most recently introduced process)

Step 2.

Initialize

S = <1>.

T =S *. II S* is tbe complement of S

Step 3.

while not (Pk in S or T = <I>) do

begin if Pk in T

then P candidate =Pk

else Pcandidate = 1st member ofT; T = T - {Pcandidate}

j =1

while G~ c) do /I c is the no. ofroutes that Pk can take, as computed earlier

b[candidate] =})i [candidate]

begin if b[candidate] - c[candidate] ~ r + Lc{i}
PieS

then begin S =S v {PeaudiuIC} ; T =S* ; j =c + 1 end II set j =c+1 to exit

elsej = j + 1

end

end

SAFE =Pk in S. UNSAFE? = Pk not in S.

75

Approach II

The concept behind tbis approach is to define an equivalent (hypothetical)

resource as a logical (as in the use of logic operators OR., AND) combination of the

alternate resource sets that are available for performing an operation. The claim vector

thus computed is refered to as an equivalent claim vector. The size of the claim vector is

increased by the Dumber of equivalent resources defined. This approach results in having

to define a single claim vector for a process with alternate routings, as against 'c'

different claim vectors as defined in approach I.

For a process P with alternate routings, let 0, U and V be sets as defined above.

Let R(O), R{U)and R(V) be the set of resource places needed to initialize the operation

places in 0, U and V respectively. In this discussion, to "initialize" an operation place

means to begin the operation corresponding to that operation place. In the Petri net

model, this would be translated as the placement of a token into the operation place. In

order to develop this approach, tbe following restriction is needed: the maximum claim

by P of a resource type belonging to tbe set R(V) is limited to one unit. There is no

restriction on the set of distinct resource types that a process can concurrently claim, as

long as the maximum claim for each resource typ"e belonging to R(V) is one unit. Many

realistic AMSs can satisfy this restriction.

Consider a process P with alternate routings and confirming to the restriction

above. Let the set Zj be defined as above. Zj represents an operation in P which can be

performed on IZil alternate resource sets. We can write Zi = {Zj I , ... ,Zjlzd} , wb.ere Zik

76

represents the k
th

operation place in Zi. Define R(Zi
k
) as tbe set of resourc,es needed to

initialize Zi
k

. The procedure for obtaining the claim matrix is as described below.

Procedure For Obtaining The Equivalent Claim Vector

The minimal claim for a resource r by process P can be written as min(P, rER

u Req), where R is the set of system resources, Req is tbe set of equivalent reSOUfices

defined as follows:

1. min(P, r) = 0 V r E R- R(O)

2. min(P, r) = min(P, r) as computed using algoritbm for processes witbout alternate

routings, for any rout,e ofP; V r E R(U)

3. min(P, r) = 0 V r E R(V) - {R(U) (\ R(V)}

4. min(p, Teq) =] V req E R.eq, wbere R.eq = { Req1,... , Req
v

}" wbere v is tbe number of

operations in P with ahernate resource sets tocboose from, and Req is defined below.

Reqi(P) = OR[AND R(zt)], where the operators OR and AND are logical operators
Zj R(Zjk)

with their conventional definitions. As tbe above expression sbows, the AND operator is

applied over the set R(Zi
k
), and represents the fact tb.at for the jth alternative, the

operation place must have one unit of each type of resource contained in tbe set R(Zik).

The OR operator is applied over tbe set Zi, and represents th,e choice between the sets

{R(Zik)} to perform the operation. For ,example, consider the net in Figure (18). Here, zm

.1 2. 1. 2 I= {P8, P9}, l.e. Zl = P8 and Zl =P9. R(ZI) = {FlO},. R(ZI) = {Pill. Then Req (P) =

77

PIO OR PI l. Thus Req
I is TRUE (boole.an value of 1) when PIO OR Pll is TRUE, i.e.

when there is at least one unit of PIOIP11 available (or both PIO and PII available). In

this example, the AND operator is not used, since both IR{Z1 1)1 = I and IR(zI 2)1 = I. To

see the use of the AND operator, suppose that an additional r,esource type represented by

a resource place PI4 is needed for transition T5 (refer Figure (18» to fire. Then R(zt l
) =

{PIO, PI4}, and JReql(p) = (PlO AND P14) OR (PI I). In words, ReqICP) = I when PIO

and P11 are both available, or when PH is availaMe, or all three resource typ,esare

available. However,. if only PIO is avaHable, or if only PI4 is available, tbe expression

does not evaluate to 1, i.e. the claim min(P, Req
1(P» is not satisfied.

In determining the allocation vector c for a process, all r,esources that are

physically allocated to the process are entered as usual into the vector. All equivalent

resources tbat bold true (i.e. evaluate to I) for the process are also entered as such into

the allocation vector for the process.

In determining tbe r, free resource vec1or, we first compute the free resource

vector ignoring the set of equivalent resources; let tb.is partial vector be r'. Next, using

the partially computed free Iesource vectOI, we obtain tbe free equivalent resource

vector, say f eq by evaluating tbe expressions for tbeequivalent resources. The

combination of r' and req gives the free resource vector.

78

Ap,plication OfHS3 To System B

System B is represented by its e-BRN in Figure (18). A single process plan

with two alternate routes is modeled. The HS3 algorithm will be applied to this system

using the second approach developed for process plans with alternate routings to compute

the claim matrix. The sets 0, U, V, R, R(O), R(U), R(V) are listed below.

0= {P2, P3, P5,. P7, P8, P9, PI2}

U = {P2, P3, P5, P7, P12}

V ={P8, P9}

Zl = {PS, P9}

R = {PI, P4, P6, PIO, PI I}

R(O)=R

R(U) = {PI, P4, P6}

R(V) = {PIO, PIl}

R(U) - RM = {PI, P4, P6}; min(P, PI) =min(P, P4) =min.(P, P6) =1

Since there is only one operation with alternate resource sets to choose from,

there is correspondingly only one equivalent resource defined:

Req
1 =PIO OR PIl.

The above expression for Req I is derived in the discussion on approach II for

processes wiith alternte routings. The minimal requirement for all equivalent resources

is olle unit, i.e. min(P, iReq
1
) = 1.

79

Consider marking MI2 for th.is example. Let the set of places be otrdered as

(PI, P2, ..., PI2). The marking M12 =[0 1 000 I 1 I 00 1 0], i.e. there is a token in

each of the places P2, P6, P7, P8, and PIl.

At this state, three active independent processes can be defined. The three

processes can be defined by their header operation places, viz. P2, P8, and P1, and will

be referred to as PI, P2, and P3. The most recently introduced process was that headed

by place P7. This can be seen from the reachability graph in Figure (23), where MIO [

T4 > MI2, and tbe firing of T4 initializes P7, which implies the initiation of P3. In

applying the HS3 algorithm to s,ee whether the allocation state C is safe, what is checked

for is wbether the claim of the process P3 can be satisfied.

The resource vector a and the claim vector B are shown below. The allocatioll

vector C and free resource vector r for marking M12 are also shown.

a =[PI, P4, P6, PIO, PH, Req
I
] =[1 1 1 I 1 1].

B =[bl bz b3]

bl =[I 1 1 00 1]

b2 = [0 1 I 0 0 I]

b3 = [0 1 1 0 0 1]

C =[CI Cz C3]

Cl = [1 0 0 0 0 0]

Cz = [0 0 0 1 0 1]

C3 = [0 1 0 0 0 I]

&0

r = a - L C, where the summation over C is a vector summation~

= r' + req; where i ' is toe free resource vector for the physical resources, and req is the

free resource vector for the equivalent hypotbetical resources.

r' = [1 1 I 1 1] - [1 I 0 I 0]

= [0 0 I 0 I]

req = Reql = PIO OR PH = I (since PH is available)

r =[0 0 1 0 I 1]

According to the HS3 algorithm~ we first use the H-algoritbm to label a state as

SAFE or UNSAFE?~ and if the label is UNSAFE?, then the S3 heuristic is applied to

modify the allocation state. The cycle is then repeated tin the state is eitber declared

SAFE or no further modification is possible, when the state is labeled UNSAFE.

In the H-algorithm procedure, tbe candidate process is P3 (most recently introduced

process):.

b[candidate] =b3; c[candidate] =C3.

b3 - C3 =[01 1 00 I] - [0 1 0000] = [00 I 00 1] ~ [00 I 0 1 1]

Since the condition b[candidate] - c[candidate] ~ r is true, the allocation state is SAFE.

The HS3 algorithm will now be tested 0111 marking M14, which is unsafe~ i.e.

every path from Ml4 leads to a deadlock marking. Using a straigbtforwaI'd look-ahead

approach~ the look-ahead parameter would have to be a minimum of 4 to avoid M14, and

several states would have to be checked before concluding that M14 is an unsafe state.

81

The marking M14 = [1 0 1 00 1 0 [1 000]. There are three active processes

viz. Ph P2, P3 in this marking, and are defined by their header operation p,laces P3, P8,

and P9. The resource vector was defined above. The claim vectors for these processes

are:

bt = [0 1 1 1 1 q

b2 =[0 1 1 00 1]

b3 = [0 I I 001]

The allocation vectors are:

Ct =[0 1 0 0 0 0]

C2 = [0 00 I 0 1]

C3 = [0 0 0 0 1 1]

The free resource vector is:

r =[I 0 1 0 0 0] (as computed from r' + req)

It can be seen that condition R4 is not satisfied in the H-algorithm, hence the

state is labeled UNSAFE? This invokes the S3 heuristic, which selects P2 as the shortest

process, and in accordance with the heuristic, modifies the allocation state CI as foHows:

Ct' =[00 1 0 0 0]

bt' =[0 1 1 1 1 1]

r = [11 0000]

82

The modification is actually a transformation of one independent process into

another shorter independent process. The new allocation state is again UNSAFE? The

83 heuristic modifies C)' to c)" as follows:

Ct" = [0 10000)

bt"=[O 11111]

r = [1 0 1000]

The new allocation state is UNSAFE? At this point, the 83 heuristic cannot

modify the allocation state any further. hence the state is UNSAFE.

Application of the HS algorithm to this system results in the avoidance ofall

deadlock states, with zero conservativeness, i. e. only true unsafe states are avoided.

83

CHAPTER V

CONTRIBUTIONS, FUTURE RESEARCH, AND SUMMARY

Research Contributions

The primary contribution of this research is tbe development of an algorithm

that (1) meets the criteria stated in the practical version of the problem. (the statement can

be found in the introduction), and (2) can be applied to real world systems. As the first

statement implies, the HS3 algorithm (1) guarantees deadlock avoidance, (2) has an

acceptably low conservativeness (for the systems tested, the conservativeness metric was

zero), (3) has a low order polynomial complexity, of the order of O(n(0+1)/2), and (4)

does not require the reservation of resources for the purpose of avoiding deadlocks.

The processes that can be modeled include: concurrently active processes,

alternate process plans,alternate :routings, processes bolding multiple units of one or

more resource types (including finite buffers), resources tbat are revisited, and assembly

operations. The broad spectrum of processes that can be dealt with is a consequence of

the fundamental manner in which the deadlock: problem is approached. Failures are

permitted on the assumption that a machine comes up in finite time. The HS3 algorithm

was not designed for a restricted class of systems; rather, it evolved by conceptualizing

the notion of an independent p:rocess, and adapting Habermann's algorithm to the

formalized scheme of that concept. The formali.sm used to represent the concept of an

independent process was a Blocking Restricted Petri net model of the physical and

control elements that define the automated manufacturing system. An elementary

84

._......_...u ..

reduction can be performed on the net in order to reduce the frequency of checking

whether a given system state is safe or unsafe. However, it is not necessary th.at the BRN

be reduced to the e-BRN in order to apply the HS3 algorithm. This author chose 10 apply

the HS3 algorithm to the e-BRN simply because the concept of reduction was an integral

part of his early work on the deadlock problem; therefore it was natural to continue the

development of the research from that point on.

Table 6 summarizes the contributions of this research. The other research th.at is

selected for tbis comparison is restricted to the area of avoidance, and does not include

detection and recovery or prevention strategies. The HS3 algorithm satisfies all nioe

criteria. The reason is that no assumptions were made regarding the type of system that

could be handled by the algorithm, with the exception of the four necessary and

sufficient conditions for deadlock (without which the system would not experience

deadlocks), and the assumption that any machine that faHed would come up infinite

time. The HS3 algorithm is based on Habermann's algorithm which guarantees

avoidance ofdeadlocks in polynomial time. The S3 heuristic was designed for reducing

the conservativeness of Habermann's algorithm. The conservativeness for the systems

tested was zero for both cases. Alternate process plans, which are modeled in System A,

are a special case of concurrent processes, and hence can be handled without specially

adapting Habermann's algorithm for these cases. Haberman.n's algorithm was adapted

for alternate routings, and using this adaptation the HS3 algorithm was successfully tested

on System B, which modeled a process plan with two alternate routes. No restrictions

were made regarding the number of resources that a process couLd concurrently seize.

85

The legend for the criteria used in this table is given below.

A. Guarant,ees avoidalJ.ce of deadlocks

B. Acceptable cons,ervativeness

C. Polynomial time complexity (worst case)

D. Con,current processes

E. Alternate process plans

F. Multiple resources can be allocated to a process

G. Alternate routings

H. Assembly operations

I. All resources in system can be shared

Algorithm A B C 0 E F G H I

Viswanadbam's finite lookahead (1990) N * N IY y .y y y y

Banaszak & Krogh's algorithm (1990) Y N Y Y Y N N N N

Heish & Chang's algorithm (1994, 1992) Y Y Y Y Y .y N Y N

nsJ algorithm y Y Y Y Y Y Y y Y

Table 6: Comparison of HS3 algorithm to other published avoidance algorithms

Notes:

(l)N=no;Y=yes

(2) (*) The conservativeness of this algorithm depends on the degree of lookahead, and

cannot be judged for this algorithm. In general, the term "acceptable conservativeness"

is open to question. In this comparison, the authors' examples were used for judging

whether their algorithm was "acceptably conservative". Banaszak and Krogh's algorithm

was pronounced "No" for this metric; the reasons were discussed in the literature review

chapter.

86

Since the modeling of ,concurrent resource acquisitions ad assembly are very similar

from the view point of a Petri nd model (iboth are modeled tlu'ough SYnchronization of

multiple resources), it fonows that assembly operations can also be treated by the

algorithm. System A demonstrated the modeling of concurrent resource acquisitions (for

example, Ml and fixture A are concurrently acquired). Finally, the HS3 algorithm does

not require separating the set of resources into shared and unshared resources, hence all

resources in the system can be shared.

Future Research

Three future research directions were suggested by Gold (1979) upon proving

that the exact solution of the deadlock avoidance problem was NP-complete: (1) fast

solutions for restricted cases of the problem; (2) heuristic solutions for tbe general

problem which will usually solve it in polynomial time, even though exponential time

will be required in the worst case; and (3) fast algorithms for the general problem which

will not always be correct,. but will always err on the conservative side: all unsafe states

will be correctly detected, but some safe states will be incorrectly classified as unsafe.

A review of the important algorithms witbin the area of manufacturing systems

shows that not all of the algorithms fit into any single category. The finite lookahead

algorithm presented by Viswanadham et a1. (1990) is best classified in the second

category. The elementary reduction procedure developed in tbe early part of this thesis

also fits into the second category. The algorithms by Banaszak and Krogh (1990) and

Heish and Chang (1992, 1994) are fast solutions for restricted cases (category), but also

err on the conservative side (category 3).

87

The HS3 algorithm developed here clearly fits into the third category, and in.

fact was motivated by this classification. Hence, it is logical that any future research

development of this algorithm will proceed in' the third direction. The future research

directions that are recommended are:

1. The HS3 algorithm needs further testing to be able to more accurately judge the

,conservativeness metric.

2. The S3 heuristic needs to be refined on the following points: (a) When more than

two processes meet the criteria of a shortest process the tie is broken arbritarily. A

selection rule needs 10 be developed which breaks the tie. (b) The current criteria for

deciding that a process is the shortest is based on the total number of remaining

resources that is needed to complete the process. There is no distinction between two

resources of different types, and two resources of the same type.

3. Other adaptations of Habermann's algorithm within the realm of computer science

need to be explored for th,eir possible adaptatioll to manufacturing systems. Gold

(]979) adapts HabeIDlann's algorithm to the abstract notion of linearly ordered

processes, while Hansen (1973) adapts the algorithm to hierarchically ordered

processes. This author found it difficult to adapt these notions to real-world

manufacturing systems, nevertheless, further research along these tines is

recommended.

4. Other developments on deadlock avoidance algorithms as applied to operating

systems need to be reviewed. Such algorithms could be used in lieu of tbe H-

88

algoritbm procedure of the HS.3 algorithm if they are less conservative than the H­

algorithm.

5. The refined approach developed for incorporating processe.s with alternate routings

incurred a restriction. Future research could be directed towards developing other

approaches which do not incur this restriction.

Summary

The HS3 algorithm developed in this thesis meets all the criteria in the statement

of the practical version of the problem. The structure of the HS3 algorithm comprises

two procedures: (1) Habermann's algorithm, and (2) the S3 heuristic. The H-algorithm

guarantees that all deadlocks are avioded. In doing so, it can incorrectly classify some

safe states as unsafe. This makes it a conservative algorithm. In order to reduce the

conservativeness, the structure of the HS3 algorithm was conceptualized. This structure

was based on the discovery that if the system state is allowed to advance after being

incorrectly classified as unsafe by the H-algorithm, then it is likely that the advanced

state will be correctly recognized as safe. The S3 heuristic is used for th,e purpose of

advancing the system state whenever the H-algorithm declares it as unsafe. Hence the

function of the S3 heuristic is to reduce the conservativeness of the H-algorithm. Since

the algorithm is applied to general systems (no restrictions on the system type are

necessary for applying tbe algorithm), it is not possible to eliminate conservativeness and

guarantee avoidance at the same time. The reason is that deadlock avoidance for the

general case is NP-complete.

89

When applied to the e-BRN models of tb.e two systems (A and B), the HS3

algorithm avoids all deadlock states wbile preserving all the safe states (Fernandes 1995).

Hence, for these systems, the conservativeness metric is zero. The systems were

developed before the HS3 algorithm was conceived, hence there could have been no bias

towards the algorithm while designing the systems. The systems A and B possessed the

cbaracteristics of real world systems, i.e. concurrent processes, alternate plans and

routings, multiple resource allocations (the modeling ofwhich is similar to the modeling

of assembly processes); thus the HS3 algorithm has the elements of a realistic solution to

tbe problem.

90

BffiLIOGRAPHY

Agerwala T. (1979») "Putting Petri Nets to Work," Computer, v12n12, pp.. 85-94.

Banaszak, Z.A. and B.ff. Krogh (1990), "Deadlock Avoidance in Flexible Manufacturing

Systems with Concurrently Competing Process F10ws/' IEEE Transactions on

Robotics and Automation, v6n6, pp. 724-734.

Coffman, G., M.l Elphick, and A. Shoshani (1971), "System Deadlocks," Computing

Surveys, v3n2, pp'. 67-78.

D'Souza, K.A. (1994), "A Control Model For Det,ecting Deadlocks in an Automated

Machining eel}," Computers and Industrial Engineering, v26nl, pp. 133-139.

Desrochers, A.A. and R.Y. AI-Jaar (1995), "Analysis of Petri Nets," In Applications of

Petri Nets in Manufacturing Systems, IEEE Press, New York, NY, pp. 116-117.

Dewdney, A.I<. (1993), "NP-Completeness," In The New Turing Omnibus, Computer

Science Press,. NY, pp. 276-281.

Fernandes, R.A. (1995), "Application of the HS3 Algorithm to Manufacturing System

Examples)" Technical Report, CIM-TRS-95-RFl) Center for Computer

Integrated Manufacturing, Oklahoma State University, Stillwater) OK.

Gold, M.E. (]978), "Deadlock Prediction: Easy and Diffi,cult Cases," SIAM Journal of

Computing, v7n3, pp. 320-336.

Habermann) A.N. (1969), uPrevention of System Deadlocks," Communications of the

ACM, v12n7, pp. 373-385.

Hansen) P.B. (1973), "Deadlocks," In Operating System Principles,. Prentice Hall Inc.,

Englewood Cliffs, NJ, pp. 122-129.

91

Hsieh, F.S. and S.C. Chang (1992), "Deadlock. Avoidance Controller Synthesis for

Flexible Manufacturing Systems," In Proceedings of the Third International

Conference on Comp.uter Integrated Manufacturing, IEEE, Troy, NY, pp. 252­

261.

Hsieh, F.S. and S.C. Chang (l994), "Dispatching Driven Deadlock Avoidance ControUer

Synthesis for Flexible Manufacturing Systems,11 IEEE Transactions on Robotics

and Automation, vlOn2, pp. 196-208.

Kamatb, M. and N. Viswanadbam (1986), "Applications of Petri Net Based Models in

the Modeling and Analysis of Flexible Manufacturing Systems," Proceedings of

the 1986 IEEE International Conference on Robotics and Automation, pp. 312­

317.

Leung, Y.T. and G. Sheen (1993), "Resolving Deadlocks in Flexible Manufacturing

Cells," Journal ofManufacturing Systems, v12n4, pp. 291-301.

Manber, U. (1989), "NP-Completeuess,n In Introduction to Algorithms, Addison Wesley

Publishing Company Inc., Reading,~ pp. 341-374.

Narahari, Y. and N. Viswanadham (1985), "A Petri Net Approach to Modelling and

Analysis of Flexible Manufacturing Systems," Annals of Operations Research,

v3, pp. 330-345.

Rosen, KH. (1988), "Complexity of Algorithms," In Discrete Mathematics and its

Applications, Random House, NY, pp. 84-90.

Viswanadham~ N., Y. Narahari~ and T.L. Johnson (1990), "Deadlock Prevention and

Deadlock Avoidance in Flexible Man1lfacturing Systems Using Petri Net

Models,'~ IEEE Transactions on Robotics and Automation, v6n6, pp. 713-722.

92

Wysk, RA.. and 1.S. Smith (1995), flA Formal Functional Characterization of Shop floor

Control," Computers and Industrial Engineering, v28n3, p'p. 631-643.

Wysk, R.A, N.S. Yang, ,and S. Joshi (1991), "Detection of Deadlocks in Flexible

Manufacturing Cells/' IEEE Transactions on Robotics and Automation, v7n6,

pp. 853-859.

Wysk, RA, N.S. Yang, and S. Joshi (1994), "Resolution of Deadlocks in Flexible

Manufacturing Systems: Avoidance and Recovery Approaches," Journal of

Manufacturing Systems, v1302, pp. 128-138.

Zbou, M. and F. DiCesare (1991), "Parallel and Sequential Mutual Exclusions for Petri

Net Modeling of Manufacturing Systems with Shared Resources," IEEE

Transactions on Robotics and Automation, v7n4, pp. 515-526.

93

APPENDICES

APPENDIX I: GLOSSARY

Classical Petri nets

A Petri net is a 4-tuple (P, T, IN, OUT) where

P = {PI, P2, , Pu}

T ={tt, t2, , tm }

is a set ofplaces

is a set of transitions

PuT :t: <fl, P (\ T = </>

IN : (P X T) ~ N IS an input function that defines directed arcs from places to

transitions, and

OUT : (P X T) ~ N is an output function that defines directed arcs from transitions to

places, and N is tke set ofnon-negative integers.

Input and output places

Given a transition t, the set of input places of t is denoted by .1, and the set of output

places oft is denoted by t., where

.t = {p E P : IN(p,t):t: </> }

t. = {p E P : OUT(p,t):t: </> }

Input and output transitions

Given a place p; the set of input transitions of p is denoted by .p, and the set of output

transitions of p is denoted by p., where

94

·p = {t E T : OUT(p, t):;:. q. }

p. = {t E T : IN(p,t)":F- 41}

M8!fking of a Petri net

A m8!fking of a Petri net is a function M : P ~ N. A marking of a Petri net with n places

associates with each place a certain number of tokens represented by dots, and represents

a stat,e of the Petri net. An initial marking Mo is always associated with a Petri net. The

terms state and marking may be used interchangeably.

Reachability set

The set of all markings reachable from the initial marking Mo. It is denoted by R[Mo).

Enabling of a transition

A transition t is said to be enabled in a m8!fking M if:

M(pi) ~ IN (pj, tj) 'if Pi E .tj

Blocked Marking

A marking M E R[M.>] is said to be blocked if there exists a transition such that: 1) t bas

two or more input places, i.e. I .t I> 1, and 2) there exists apE .t such that M(p) ~ IN(p,

t), and, 3) t is disabled in M.

95

Deadlocked marking

A marking in which no transition is enabled is said to be a deadlocked marking.

Safe marking

A marking which is :neither deadlocked Dor blocked is called a safe marking.

Immediate transition

A transition with no time associated with it. i.e. a transition that takes zero time to

execute.

Vanishing marking

A marking in which at least one immediate transition is enabled.

Timed transition

A transition which takes a finite amount of time to fire.

Tangible marking

A marking in which only timed transitions are enabled.

Net invariant

A net invariant is a set of places I such that L M(P), pEl. is a constant for each reachable

marking M, and I does not have any p,roper sub-sets that are invariants.

96

Safe State

A state from which there is at least one sequence of transitions that leads to the initial

state.

Unsafe State

A state from which all sequences of transitions will lead to a terminating state, i.e a

deadlock. An unsafe state may be a deadlock state itself, or it may be live in the sense

that limited further evolutions are possible from that state.

Allocation State

A state defined by the sets of resources allocated to a number of concurrent processes.

Safe Sequence

An ordered set ofprocesses which can be completed sequentially in the given order.

Claim of a Process

The set of resources that an initiated process would require in order to terminate without

interruption.

Process Plan

A sequence of material transformation operations (including assembly with another part)

needed to makJe a product, in accordance with a set of precedence constraints.

97

Alternate Process Plans

A choice of two or more sequences of material transformation operations necessary for

producing a product, with the sequences satisfYing all the precedence constraints for the

set of operations for that product.

Alternate Routing

A choice of an alternative resource set for performing a material transformation

operation.

Blocking operation

An operation in which a resource is waiting to transfer its load on to an available

resource which can hold or further process that load.

Resource Place

A place which represents the availability of a resource. It is distinguished from an

operation place by an initial store of one or more tokens.

Operation Place

A place which represents a resource activity. It is distinguished from a resource place by

not being initially marked.

98

APPENDIX II: TABLES OF MARKINGS

...
'"

.........

...
NO

M'.
Mil

"'3

M'II

"'17

hI'Ie

M'11

"."

IC.
IC'

"'"

"'"
""."".""....,...............,
...,
...3...............,............
"'""'3...................,
.............

....

....

..........,.

" '" " '.. ,pO ,.
" pO pO "~a p"1,

,
"

, I

, I

Table AI: Markings for e-BRN Model of System A in Figure (17)

Note: The author acknowledges the use of PES1M, a shareware package, for generating

the reachability sets and graphs for the Petri net models in this thesis.

99

Table A2: Deadlock Markings for e-BRN Model of System A in Figure (] 7)

I

PI P2 P3 : P4 P5 P6 P7 P8 P9 PIO I Pll
I ! I

I

I

M8 1 I 1 I 1 I I
I

M9 2 1
I

2 I,
I

I I

MI8 2 I I 1 I 2 1 2

M24 1 1 1
I

2 2 1

M54 1 1 1 2
I

1 1
I

i

M57 I I 1 I I 2

M62 2 I I I I 2

M66 1 ! I I 2 1 I
I

M70 2 1 2 2
[I

I

100

pI p2 p3 p4 115 p6 p7 p8 p9 pl0 pl1 pl2

MO 1 1 I 1 I 1:
I

1.11 1 1 I I 1,
"12 1 1 I I I l

I

1.13 1 '1 1 1 1

M4 1 1 1 1 1

M5 1 1 I 1 1 1

MI6 1 1 1 1 1

1.17 1 1 1 1 1

1.18 1 1 1 1 1

1.19 1 1 1 1 1

1.110 1 I 1 1 1

MIl 1 1 1 1 1

1.112 1 1 1 1 1

1.113 1 1 I 1 1

M14 1 I 1 I 1

M15 1 1 1 1 1

M'16 1 1 1 1 I

M17 1 1 1 1 1

M18 1 1 1 1 1

M19' 1 1 1 1 1

1.120 1 1 1 1 1

1.121 1 1 1 1 1

"'22 1 1 1 1 1

1.123 1 1 1 1 1

1.124 1 1 1 1 I

1.12.5 1 1 1 1 1

M26 1 1 I 1 1

1.127 1 1 1 1 1

1d28 1 1 1 1 1

M29 1 1 1 1 1

1.130 1 1 1 , 1

M31 1 1 1 1 1

M32 1 1 1 1 1

M3J 1 1 1 1 1

MJ4 1 1 I 1 1

MJS I 1 1 I I

MJ6 1 1 I 1 1

MJ7 1 1 1 1 1

'1136 1 1 1 I 1

1.139 1 1 1 1 1

1.140 I 1 1 1 I

1.141 I
I

1 1 1 1

1.142 1
~

1 I 1 I

M43 1 1 I 1 I

Table A3: Markings for e-BRN Model ofSystem B in Figure (J 8)

lOt

Table A4: Deadlock Markings for e-BRN Model of System B in Figure (I8)

PI P2 P3 P4 '5 P6 P7 ! P8
,

P9 PIO PH PI2,
I ,

M5 I
,

1I I I I I
i
i

Mll I I I ! 1 1

M17 1 1 1 . I 11
MI8 I 1 1 I I,

I

M19 1 I 1 I 1 II

M20 I 1 i I 1 I

M2I 1 I 1 I I

M22 1 1 1 1 1

M23 1 I : I 1 1

M29 1 1 ! 1 I 1 1
I
I

M31 1 i I I 1 1
I

I

M39 1 ' 1 1 1 1
I

102

...)----------------------------------...

.....

Figure At: Reachability Graph for e-BRN for System B in Figure OS)

103

±5± l.~ ..._:JIIi£IiIIi

APPENDIX llI: PROOF OF HABERMANN'S SECOND THEOREM (1969)

(and its incompatibility with dependent processes)

A state is safe when all the participating processes in that state can be

s,equentiaUy completed in the ''worst case", i.e. when each process Pic asks for aU tbe

resources it has claimed, and does not release any resources until it has been allocated aU

its claimed resources. Tbeor,em. n tells us tbat in such a case, there is no possibility of

making tbe mistake of incorrectly ordering the processes for termination. Thus the worst

case complexity of n! (there are oJ ways in which we can rank a set of n processes) is

reduced to n(n+1)/2.

Note: The notation used below is consistent with that used elsewhere, unless explicitly

stated.

Let Qbe a safe sequence, i.e. Q is an ordered set of processes which caD be sequentially

completed, tben condition R4 holds tor Q, Le.

'rI PkeQ bit ::;; r + LeJ (1)
q(I)Sq(k)

Let S be a subsequence, which fulfills R4, i.e.

'rIPkeS b k ::;; r + Lel (2)
s(1):S;s(k)

i.e., S is a partial ordering ofprocesses which can be sequentially completed.

Define S' as follows:

(a) s'(k) =s(k) for Pk E S;

(b) q(l) ::;; q(k) ~ s' (1) ::;; s'Ck) for Pk, PI E Q- S;

104

This ordering implies that for Pk E Q - S,

L ci ~
q(I):sq(k)

LCI (3)
s'(I):ss'{k)

since every PI tbat precedes Pk in Q precedes also Pk in S'.

From (1) and (3) it follows tbat

'ifPJceQ-S b k S; r + LC i (4)
s'(I):S;s'(k)

From (2) and (4) it follows that S' is a safe sequence. Since Sf is defined as an

extension of S, and S was any subsequence satisfYing R4, the theorem follows. To prove

that the theorem is not true when applied to dependent processes, we re-write expression

(3) as follows:

LCI > Lei (5)
q(l»q(k) s'(l»s'(k)

The above expression balds for independent processes since the right hand term

is Don-increasing. Since the completion of a dependent process implies tbe initiation of a

subsequent process, it follows that the right band term is not non-increasing, i.e. it is

possible that Lei < Lei' Hence the theorem does not hold for dependent
q(l}>q(k) s'(I»s'(k)

processes.

105

VITA

Ralph A Fernandes

Candidate for the Degree of

Master of Science

Thesis: DEADLOCK AVOIDANCE IN AUfOMATED MANUFACTURlNG
SYSTEMS

Major field: Industrial Engineering and Management

Biographical:

Education: Graduated from St. Xavier's College ofArts and Sciences, Bombay,
India, in June 1988; received a Bachelor of Engineering degree in
Automobile Ellgineering from the University of Bombay, Bombay, India,
in July 1992. Completed the requirements for the Master of Science
degree in Industrial Engin,eering and Management in December 1995.

Experience: Employed as a research assistant at the Center for Computer
Integrated Manufacturing, Oklahoma State University, June 1994 to
December 1995.

Professional Memberships: Alpha Pi Mu, lDstitute of Industrial Engineers.

