
DESIGN AND IMPLEMENTAnON OF A WORLD

WIDE WEB BASED DISTRIBUTED

COMPUTING MODEL

By

WENXIAPENG

Master of Arts
Peking University

Beijing, China
1995

Bachelor of Arts
East China Normal University

Shanghai, China
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2000

DESIGN AND IMPLEMENTAnON OF A WORLD

WIDE WEB BASED DISTRIBUTED

COMPUTING MODEL

Thesis Approved:

--~-----

--E-..&-~~,---.

De~Graduate~

ii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor Dr. K. M.

George for his intelligent supervision, constructive guidance, and encouragement through

my M. S. thesis work. My sincere appreciation extends to my thesis committee members,

Dr. G. E. Hedrick and Dr. Nohpill Park for their valuable assistance and encouragement.

I wish to give my special appreciation to my husband, Qing Li, for his love,

encouragement, and precious assistance in my study and life. I also wish to express my

gratitude to my mother-in-law, Guohua Liu, for her significant support and understanding

throughout the whole process. Finally, I would like to give my thanks to my darling baby

girl, Grace Jiayun Li, and my precious newborn boy, Benjamin Jiayi Li, sinc they

brighten my life.

III

TABLE OF CONTE TS

Chapter Pag

I. INTRODUCTION " I

1.1 Distributed Computing and Implementation Model 1

1.2 A ew Model , 3

1.3 Objectives of This Thesis 4

1.4 Outline of Thesis 5

II. REVIEW OF LITERATURE AND RELATED WORK 6

2.1 Review of Distributed Systems and Distributed Computing 6

2.1.1 CORBA 8

2.1.2 Java RMI. 9

2.1.3 DCOM 11

2.1.4 Mobile Agents 12

2.2 Review of Software Reuse and its Models 13

2.3 Review ofWWW Applications 16

III. W'DCM MODEL 18

3.1 WDCM Model Overview 18

3.2 WDCM Configuration 19

3.3 Composition Rules 19

3.3.1 Sequential Composition 21

3.3.2 Parallel Composition 21

iv

Chapter Page

3.3.3 Pipeline Composition 22

IV. WDCM PROGRAMMING SYSTEM DESIGN 24

4.1 Basic Operations of the WDCMPS 28

4.2 WDCMPS Web Server 31

4.3 Server Manager. 31

4.4 Software Meta Library and the Library Manager 32

4.5 Application Managers and Application Programs 34

V. WDCMPS IMPLEMENTATION........................•...........................35

5.1 WDCMPS Web Server 35

5.2 Server Manager 37

5.2.1 Implementation of Composition Rules .40

5.2.1.1 Sequential Composition .40

5.2.1.2 Parallel Composition .41

5.2.1.3 Pipeline Composition .43

5.2.2 Remote Call 44

5.3 Software Meta Library and Library Manager. .45

5.4 Application Manager and Application Programs .46

5.4.1 Get Remote Input Data .46

5.4.2 Execution of Application Programs .47

5.4.3 Send Remote Output File 48

5.4.4 Return Execution Results to Server Manager. .49

5.5 An Example 49

v

Chapter Page

VI. CONCLUSION AND FUTURE WORK 58

REFERENCES 60

APPENDICES 63

APPENDIX A--Source Code for composer P1.cgi 63

APPENDIX B--Source Code for Final Composer P2.cgi 64

APPENDIX C--Source Code for Sequential Execution

Subroutine seqSub. cgi 65

APPENDIX D--Source Code for Parallel Execution

Subroutine parSub.cgi 66

APPENDIX E--Source Code for Pipeline Execution

Subroutine pipeSub.cgi 68

APPENDIX F--Source Code for Application Manager run.cgi 71

VI

LIST OF TABLES

Table Pag

4.1 WDCMPS Six Components and Methods of Communication 26

4.2 Responsibilities of Each Component of WDCMPS 27

vii

LIST OF FIGURES

Figure Page

4.1 The System Architecture ofWDCMPS 25

4.2 Template Structure in the Software Meta Library 33

5.1 Program Registry Form 36

5.2 Program Registry Continuation Form 37

5.3 Composition Selection Form 38

5.4 Sequential Program Build Form 39

5.5 Parallel Program Build Form 52

5.6 Run Form 53

:::'.7 Program Execution Results 54

5.8 out1: Remote Output File for Program TestSort.class 55

5.9 out2: Remote Output File for Program SumNum.class 56

5.10 outJ: Remote Output File for Program Average 57

viii

CHAPTER I

INTRODUCTION

1.1 Distributed Computing and Implementation Models

Distributed computing is an application of distributed systems. A distributed

system is a set of autonomous computers linked by a network and equipped with

distributed system software [1]. Distributed system software coordinates the activities

of the computers in the network, and lets them share the resources of the system

including hardware, software and data. In a well-designed distributed system, a user

feels he/she is using a single integrated computer even though the system is

implemented by many computers in different locations.

The usefulness and key characteristics of distributed systems include resource

sharing, openness, concurrency, scalability, fault tolerance and transparency [1]. Users

of a distributed system can share resources (hardware, software and data) in different

machines in the distributed system through a resource manager, which is a software that

manages a set of particular resources. Openness of a distributed system enables the

distributed system to be extended in various ways. Concurrency provides the

mechanism to allow several processes in the system to execute concurrently. Scalability

indicates that distributed systems operate effectively and efficiently at many different

scales. Fault tolerance means that the computer systems have the ability to deal with the

system failure. Transparency enables the system to be viewed as a whole rather than as

a collection of independent components even though components in a distributed system

are separate.

There are two major types of distributed computing models: client/server model

and object-based model [I]. A client/server model consists of servers and clients. A

server acts as a resource manager, and a client requests access to re ources. All

resources are held and managed by servers.

Object-based model views every entity in a program as an object with an

interface providing access to its operations [1]. Each shared resource is viewed as an

object. Objects are uniquely identified and may be moved anywhere in the network

without changing their identities. Therefore, in the object-based model, resource users

can refer to all resources in a uniform manner. The interfaces of objects provide two

useful properties: interchangeability, the ability of components to interchange, and

interoperability, the ability ofcomponents to work together. CORBA (Common Object

Request Broker Architecture), Java RMI (Remote Method Invocation), and DCOM

(Distributed Component Object Model) are object-based models. These models will be

reviewed in detail in Chapter II.

The three object-based models mentioned above have disadvantages in differ nt

aspects. CORBA and DCOM do not provide World Wide Web (WWW) based access

or interface. Currently, the WWW is one of the major knowledge dissemination

systems. It is an interactive hypermedia system built upon the Internet. It provides

users convenient ways to access the information at anytime from anywhere. Although

Java RMI does have the web-based access and interface because of its inheritance from

Java's web language property, it lacks the capability of using legacy programs, which

are implemented in programming languages other than Java. Therefore, Java RMI is not

an ideal model for reusing legacy software.

2

1.2 A New Model

As the WWW becomes popular, there have been several approaches to hame s

the computing power of the Internet. Mobile agents are among the popular models.

This thesis proposes a programming model called WDCM based on the World Wide

Web (WWW). WDCM stands for WWW based Distributed Computing Model.

WDCM consists of four components:

(1) An underlying network, which is WWW

(2) Executable programs residing in the nodes of the network

(3) Data distributed in the nodes of the network

(4) A set of rules to compose new programs using existing ones

The existing programs may be written in any programming language, such as

Java, C++, C, Ada, Fortran, etc. WDCM provides the accessibility to the remote input

and output files. The input to each program can be located in any web-accessible

machine. And the output file may be sent to a different machine. WD M has the

advantages of distributed computing and contains the web-based accessibility and

software reusability.

In this thesis, we also design and implement a programming environment based

on the WDCM called the WDCM programming system (WDCMPS) to (l) enhance the

reusability of the existing, well-developed application programs located on different

machines, (2) combine these distributed application programs to accomplish new tasks,

and (3) make these existing distributed programs accessible to remote clients via WWW.

3

-

1.3 Objectives of This Thesis

This thesis aims to enhance the reusability of the existing programs by making

them accessible to remote clients. Most application programs are designed to be us d

locally, usually not intended to be accessible and usable to remote clients. This thesis is

to extend its usability to remote programs. It also aims to enhance the reusability of the

existing programs to other programs written in different languages. Many stand-alone

application programs have been well-developed and tested. They were written in the

languages that are well suited to their specific problems. Other programs written in

other programming languages usually cannot use these programs because they were

written in different languages. This thesis enables the programs written in different

languages to cooperate to accomplish new tasks.

WDCM simplifies the invocation of remote existing application programs by

using WWW.This thesis will use common WWW browsers (Microsoft Internet

Explorer, Netscape Navigator/Communicator, etc) to invoke remote existing program .

A web browser allows users to access the information managed by a web server anytime

and anywhere without worrying about shifting from protocol to protocol and software

incompatibility. WDCM combines the existing program's functionalities to create new

tasks and perform new tasks easier by using existing programs on the WWW.It

provides a mechanism to let the executing programs communicate with the input data

files located at different machines, so that it looks, as if the input files were local. And

the output files can be sent to any where on the web automatically.

4

1.4 Outline of Thesis

This thesis consists of six chapters. Chapter I introduces the basic concepts of

distributed computing and several implementation models, provides the objectives and

brief description of the proposed model, WDCM, and also gives the outline of this

thesis. Chapter II reviews the literature and related work, including distributed systems

and distributed computing, software reuse, and WWW applications. Chapter III

describes the WDCM model, including the model overview, configuration, composition

rules, and their Petri net representations. Chapter IV illustrates the WDCMPS system

design issues, such as the basic operations of the system, and the responsibilities of its

six components. Chapter V focuses on the implementation issues, and presents the

implementations of three composition rules, and the implementations of each component

of the WDCMPS system. Finally, conclusion and future work are included in Chapter

VI. Some source code written in Perl scripts are listed in appendices.

5

CHAPTER II

REVIEW OF LITERATURE AND RELATED WORK

In this section, we review previous works that are related to this thesis topic,

including distributed computing, software reuse, and WWW applications. Several

models are studied.

2.1 Review ofDistributed Systems and Distributed Computing

A distributed system consists of a set of autonomous computers linked by a

network and equipped with distributed system software [1]. The software enables

computers to coordinate their activities and share the resources (hardware, software, and

data) of the system. Resources in a distributed system are physically located in one of

the computers, and other computers can only access them via communication. These

resources are managed by resource managers, which constitute an important compon nt

of a distributed system. Therefore, in a distributed system, resource users communicate

with resource managers to access the shared resources of the system [2].

The World Wide Web is a good example of a distributed system. Many web

servers run on various computers, and server software is available for all operating

systems, such as UNIX, Windows 95/98/NT, Macintosh and OS/2. Each server has a

wide range of documents and information. These web servers act as resource managers

[2]. Therefore, a web server is an appropriate communication media between resource

users and the shared resources of a distributed system.

6

A web browser is the client in a WWW based distribut d system. Its main

function is to request a document available from a specific seIVer through the Internet by

using the URL (Uniform Resources Locator). The seIVer on a remote machine returns

the docwnent to the web browser. Common Gateway Interface (CGI) supports

execution of programs at the seIVer side and returning result to the client web brows r.

The two most widely used browsers today are Microsoft's Internet Explorer (IE) and

Netscape's Navigator/Communicator.

Distributed computing is one of the major types ofapplications of distributed

systems [2]. Distributed computing has two basic implementation models: clientJseIVer

model and object-based model.

The first technology, clientJseIVer, is a means for separating the functions of an

application into distributed parts, each of which operates on a different computing

platform. The client/seIVer is a two-tiered architecture developed during the 1980s [3].

The client/seIVer model is a fonn of distributed computing in which one program (the

client) communicates with another program (the server) for the purpose of exchange of

information. In client/seIVer computing, the client communicates with the s rver

through a protocol - a common language that they both understand. A protocol is a set

of rules that computers in the distributed system must follow to exchange information.

The second technology, object-based model, includes CORBA, DCOM, and Java

RMI. They treat pieces of software located in remote nodes in the network as objects.

Currently, they are the major standard distributed computing models used by

applications [4-6]. The three basic elements of distributed architectures are: a

communication protocol, an interface language, and a naming service [4].

7

The three object-based distributed models mentioned abo e and th .ir thr e basic

elements are reviewed below.

2.1.1 CORBA (Common Object Request Broker Architecture)

CORBA was developed as a distributed computing architecture in 1991, by the

Object Management Group (OMO), a consortiwn ofover 800 members that was

founded in 1989 [4]. It was used by many large organizations for complex and large

scale distributed computing with UNIX servers and proprietary mainframes.

The interface language for CORBA is the Interface DefInition Language (lOL).

In a CORBA application, the IDL is written fust, and then it is compiled into code in

one of the supported languages. CORBA provides different translation tools for

different languages from IOL. For example, idltojava is a translation tool from IOL

module to java package. The supported languages for CORBA are C, C++, Smalltalk,

Ada, Cobol, and Java [4].

Because of the IOL, CORBA is language neutral, which mans that CORBA

clients and servers may be implemented in any of the supporting languages and still be

able to communicate with each other [4].

CORBA uses Internet Inter-ORB Protocol as its communication protocol.

Everything in CORBA depends on an Object Request Broker (ORB), which serves as

the object manager for CORBA. The ORB enables location transparency, which means

that it allows objects to send and receive messages without worrying about whether they

are local or remote [4]. Each CORBA server object has an interface and a set of

methods. When a CORBA client requests a service, it acquires an object reference to a

8

CORBA server object, and then it can invoke the methods ofthe server objects by using

the object reference. The ORB is responsible for finding the implementation of the

CORBA server object. Then it returns the reply back to the client [7].

CORBA's naming service is composed of a pair of proxies for the client and the

server. The proxy for the server is called skeleton and the proxy for the client is called

stub. They are both generated when the IDL is started. The stub and skeleton can be in

different languages, since all communication is done through the ORB [4].

CORBA has the property of interoperability for heterogeneous platforms.

Interoperability means that distributed objects can invoke each other's methods even if

such underlying platforms are different. Interoperability is significant because we

cannot assume that every computing site in a distributed environment uses the same

platforms [8]. CORBA can be used on various operating system platforms such as

UNIX and Windows machines as long as there is an ORB fot that platform.

The disadvantage of CORBA is the complexity of its code. CORBA is an

extremely large and complex collection of specifications and protocols [4].

CORBA is suitable for client/server applications running on conventional local

area networks, such as Ethernet and Token Ring [9]. However, currently, no web based

CORBA applications are found.

2.1.2 Java RMI (Remote Method Invocation)

Sun developed RMl as a Java-based approach to distributed computing. The

Java programming language has included Remote Method Invocation (RMI) as part of

the standard Java libraries beginning with the Java Development Kit 1.1 (JDKl.l) [4].

9

-
RMI is an object-oriented type ofRemote Procedure Call (RPC). RMI inherits the

platform independence from Java programming language.

Java RMI uses TCPIIP (Transmission Control ProtocolJIntemet Protocol), the

most common Internet protocol, as its communication protocol. Therefore, Java RMI is

simpler than CORBA and DCOM in this sense.

Unlike CORBA and DCOM, Java RMI does not have interface language.

Instead, it uses Java's own interface syntax as its interface language [10]. Java RMI

imports the java.rmi.Remote interface as its interface, thus simplifies application design

and implementation.

RMI uses a naming service mechanism called an RMIRegistry, which is

embedded into the java.rmi.registry package. RMIRegistry allows dients to obtain

references to remote server objects. The clients invoke the method implementations by

passing arguments to the server objects as if the method implementations were local.

This is done through Java's serialization facility.

RMI passes a remote stub for a remote server object to the client, rather than

making a copy of the implementation object in the client machine. The stub acts as the

local representative, or proxy, for the remote server object and basically is the remote

reference to the client. When the client invokes a remote method call, it invokes the

method on the local stub. The local stub is responsible for passing the method call on

the remote object. A stub for a remote object implements the same set of remote

interfaces that the remote object implements. This allows a stub to be cast to any of the

interfaces that the remote object implements. That is, RMI uses the technique of

10

invoking a method of a remote object by using the same syntax used in local invocation.

This is the unique characteristic of RMI and it supports the location transparency.

A client acquires a server object reference by using the URL. Since RMI relies

on Java, which is a platform-neutral language, it can be used on diverse op rating

system platforms, such as UNIX, or Windows machines as long as there is a Java

Virtual Machine (JVM) implementation for that platform, and no special software or

drivers are needed to use RMl [7].

Like CORBA, RMI also has the interoperability property among heterogeneous

platforms.

RMI has its limitation as a distributed computing architecture. It is a language

specific approach, and thus limits the extent to which RMI can deal with distributed

objects implemented in languages other than Java. This results in the difficulties in

incorporating legacy programs, which were implemented in other programming

languages [4].

2.1.3 DeOM (Distributed Component Object Model)

DCOM was invented and mainly has been used by Microsoft as a distributed

object system technology. It is heavily integrated with the Windows NT operating

system [11].

DCOM uses ORPC (Object Remote Procedure Call) as its communication

protocol, MIDL (Microsoft Interface Definition Language) as its interlace, and

Windows Registry as registration method for its naming service [5]. In the DCOM

architecture, clients and servers communicate through ORPC protocol. A server object

11

is registered in Windows Registry. When a client wants to connect to a remote server

object, the client specifies a class identifier (CLSID) and an interface identifier (lID) to

obtain an interface pointer. The Service Control Manage (SCM) at the remote node

looks up the registry and returns it a remote object reference. The client then can invoke

methods of that interface [11].

DCOM is supported by many development tools, such as Microsoft's Visual

Basic, Visual C++, C++ Builder, and Delphi [3]. In addition to these tools, Java

integrates well with DCOM. For instance, Java classes can be treated like COM objects.

A DCOM interface MIDL is a collection of methods that define services. In fact,

it uses an interface pointer to point to a vtable, which is a collection of pointers to

methods [3].

The major disadvantage of DCOM is that it is still a Microsoft-only solution, and

it was designed to use Microsoft's Active Directory to find components on the network

[12]. In other words, no WWW based DCOM applications are found so far.

2.1.4 Mobile Agents

"A mobile agent is a program that is able to change its location on its behalf and

keeps its state (identity) across location changes" [13). Mobile agent model provides a

new paradigm for distributed computation, since mobile agents are very efficient

compared with the traditional approaches to distributed computation. Mobile agents can

reduce the network traffic by moving the code that handles the interaction more closely

to the source of the data. Mobile agent model is suitable for large and complex

12

-

distributed applications [13]. One problem in mobile agent model is the security

problem.

The DDAS (Dynamic Distributed Agents Server) System [14] proposes a secure,

and adaptive distributed computation environment based on TCPIIP. It allows a user to

build and to use a dynamic network system, which consists of domains accessible by a

user with read-write-execute privileges. The DDAS system consists of two major parts,

the DDAS and its Manager. The DDAS acts as a tool to distribute and execute subtasks.

The Manager acts as the interface between the DDAS and a program. The DDAS

system only allows the authorized machines to use its services, thus enhancing security

[14].

The DDAS system is a user-centered distributed computing environment. It only

supports the authorized users to do the distributed computing by using all the available

machines in the system. It does not make use of the WWW.

2.2 Review of Software Reuse and its Models

The philosophy behind software reuse is to use the existing programs to build

new useful programs. The goals of software reuse include the following [15]:

• Productivity: less costly than to build the software from scratch.

• Maintainability: error correction in reused components is of benefit to the

software, which uses them.

• Reliability: reliability increases as programs run longer because errors are

corrected.

13

-

• Extensibility: all extensions ofa component must be able to be used without

significant changes.

• Adaptability: capability of being adapted to a new context without affecting its

other uses.

There are various ways for software reuse implementation. Systematic

software reuse is one of them. It is considered to be a very effective way to significantly

improve software reuse [16]. This is because both the creation of reusable components

and their reuse are embedded into the software development processes so that everybody

must adopt it in order to reuse the software components. Systematic reuse requires the

following processes at company level:

• Reuse exploration and planning

• Domain analysis

• Software engineering with reuse

• Procurement of reusable components

• Component identification and extraction

• Component qualification and classification [17]

Another approach to software reuse is object-oriented technique. The object

oriented programming (OOP) languages provide a user with the techniques of reusable

components by using the mechanisms supported by the OOP languages, including the

following:

• Inheritance: a new class inherits all data and methods from its ancestor classes.

Therefore, all the existing ancestor classes (software components) can be reused

by all of the newly created descendant classes.

14

-

• Extension: new instances of a class can be created to communicate with other

objects in the system, which are not affected by the new objects. This makes it

easier for the reuser to adopt and extend a software component.

• Polymorphism: it means that an object can have many forms for method

invocations. Different objects can respond differently to a method call. This

enhances the reusability for the sending and receiving objects.

• Encapsulation: it means that implementation details are hidden from the user.

This makes the reuse of the program easier.

Behle (1998) proposed a software reuse model called Internet-based Software

Component Information System (SCIS) model [18]. It is supported by the WWW, the

Internet, and the corresponding protocols. Internet services may be used to find

software components. SCIS uses a software classification schema to generate HTML

forms dynamically and to store the component data. The comprehensive information on

all available software components is the critical point of the SCI model. Since the

SCIS is accessible to any project at different sites, the SCIS has to be placed in the

Internet and a single Web browser is the only software necessary for access.

Furthermore, only registered users have access to SCIS. The SCIS is able to represent

any information on different kinds of software components at different levels of

granularity, such as classes, class libraries, and binary components. These software

components can be developed using different programming languages.

Therefore, the SCIS can be caned a global information place for software

components. The user interface is completely provided by WWW access and HTML

15

-

forms. There are basically two ways to access the software components: search and

navigation [18].

The proposed model WDCM will adopt parts of the SCIS's concepts to be used

in the reuse model for the existing programs.

2.3 Review of WWW Applications

The Internet is a collection of computers and physical communication links. The

links are operated by a standard set of communication protocols through which the

computers throughout the world are interconnected. It began to be used as a research

project called the ARPAnet (U.S. Defense Advanced Research Projects Agency) in 1969

[19]. Nowadays, the Internet becomes a network ofnetworks. World Wide Web

(WWW) is one part of the global Internet, but it has been growing extremely rapid

because of its easy-to-use interface, graphical nature, and ability to integrate FTP, email,

newsgroups, archie, gopher, and WAIS-type (Wide Area Information Service) ervices

[19]. The Uniform Resource Locators (URLs) allow the WWW to provide access to

tiles, directories, indices, data, email, pictures, audio, video, etc. When requesting

infonnation through the WWW, a web browser makes a request by using URL. HTTP

(Hypertext Transform Protocol) is used to transmit the request from the browser to the

server. The Internet provides the communications between the web browsers and the

web servers [19].

There are various WWW applications regarding the navigation tools for the

information retrieval. Persistent History Navigation Assistant (PHNA) [20] is one

among those. PHNA defines a user-need based model for information retrieval, which

16

is different from the traditional stack based mod 1widely us d in the current browsers

[20]. It maintains a complete list of the history of using BACK and FORWARD

buttons. No sites are lost even if the user goes back or forward several sites. Therefore,

PHNA provides the user with the freedom to move back and forward through the real

sequence that was visited rather than through the route of the tree structure, which does

not represent the user's real visit route. This is an advanced search tool compared with

the current ones.

An advanced WWW based information retrieval technique is another goal for

web application. Efficient search tools have been sought to meet the individuals'

information need. A WWW resource discovery system [21] is to build and maintain an

index database for keyword searching. In contrast to manual indexing, this approach is

suitable for the size and the dynamical nature of the WWW. The index database can

substantially reduce network load since users access only the index data in order to

locate resources [21].

This approach also provides the capability of sharing one user's discovery with

other users. To support such infonnation sharing, the index server allows any user to

save his query statement on the server's side so that other users can reuse it later [21 J.

Although a large number of WWW applications has appeared within these years,

so far no publications on WWW based approaches to do distributed computing are

found.

17

CHAPTER III

WDCMMODEL

WDCM (WWWbased Distributed Computing Model) defines a programming

model based on WWW technology. It consists of an underlying network, executable

programs, data residing in the nodes ofthe network, and a set of rules to build new

programs using existing ones. The WWW is adopted as the network of this model. This

thesis defines three program-combining rules, namely sequential composition, parallel

composition, and pipeline composition.

3.1 WDCM Model Overview

The WDCM distinguishes itself from previous models by being capable of

integrating all the following functionalities:

• Supports the reuse of existing programs independent of their locations.

• Builds new programs by combining existing ones.

• Supports sequential, parallel, and pipeline compositions of programs located on

different machines.

• Provides WWW based access and interfaces. WDCM provides the user with an

HTML form to register the existing executable programs into the software meta

library, and program build fonns to create new programs from existing programs

and previously defined programs named composers.

18

3.2 WDCM Configuration

The network model adopted in WDCM, in this thesis, is the WWW. The

programs reside in nodes, which are the machines distributed in the network. WDCM

provides the rules to combine the existing programs and previously defined composers

to perform a new task. There are three rules: sequential composition, parallel

composition, and pipeline composition. These are discussed in detail in section 3.3.

WDCM deals with input and output data according to the specific program

combining rules. For instance, in the sequential composition and pipeline composition,

the output of one program is the input of another program. Both the input and output

data might be located in remote and different machines distributed in the network.

In this thesis, we build a programming environment based on WDCM called the

WDCM programming system (WDCMPS). WDCMPS consists of WDCMPS Web

server, server manager, software meta library, library manager, application managers

and application programs. The design of the WDCMPS system is presented in hapter

IV, and its implementation is provided in Chapter V.

3.3 Composition Rules

The composition rules, or combining rules, specify the different methods to build

new programs or tasks from existing programs and/or previously defined composers,

which will be defined in Chapter IV. They specify the control flow and data flow of the

computation. As mentioned previously, in this thesis three composition rules are

defrned - sequential composition, parallel composition, and pipeline composition.

Sequential composition is used to specify that the component programs execute in a

19

-

particular order, one after the other. Parallel composition is used to specify that

component programs execute in any order, or simultaneously [22]. Pip line

composition is a combination of the sequential and parallel compositions. The

component programs are executed in parallel as the new program's different stages, but

the flow of data is sequential. Therefore, it is a special type of parallel computing. It is

intended to achieve high perfonnance.

The composition rules are illustrated below using Petri nets [23]. A Petri net is a

bipartite diagram used to represent a flow of control [23]. A Petri net can be represented

by a quadruple: (P, T, E, Mo), where P is a set of places, which represents data for a

program; T is a set of transitions, which represents a computation program; E is a set of

directed edges (arcs) from a place to a transition or a transition to a place, and Mo

denotes an initial token marking. Tokens control data flow and computation. Usually,

places are represented by circles, transitions are represented by bars or rectangles, and

tokens are represented by dots. A transition is enabled to fire or activated if each of its

input places has at least one token. After the transition fired, the number of tokens in

each input place is reduced by one, and the number of tokens in each output place is

increased by one [23].

In the following three Petri net diagrams, Pi is used to denote a place, T i is used

to denote a transition, a dot is used to denote the token which controls the data flow, and

an "x" is used to denote the token which controls the computation. A transition

represents a computation program.

20

3.3.1 Sequential Composition

For sequential composition, assume that Prog3 is a new program constructed from

existing programs Progl and Prog2 by sequential composition. The Petri net diagram

representing the executing order is as follows:

T2 P3

In the diagram above, T, represents Progl, and T2 represents Prog2. Initially,

only P I has a token, thus T[is enabled to fire, since only Prog1 is ready to be run. After

T, fires, the token in PI is consumed and it is passed to P2, so T2 is enabled. After T2

fires, the token is passed to P3, which becomes the output ofProg3. The transition then

stops.

3.3.2 Parallel Composition

For parallel composition, assume that Prog3 is constructed from programs Progl,

and Prog2 by parallel composition rule. The Petri net diagram is as follows:

o

In this diagram, T, represents Progl, and T2represents Prog2. Initially, PI has

two tokens, thus T, and T2are enabled. Both of them can be fired concurrently. After

2\

TI and T2 are fIred, the tokens in PI are consumed, and P3 and P4 each has a token, which

became the outputs of Prog3. The transition then stops.

3.3.3 Pipeline Composition

For the pipeline composition, assume that Prog3 is a new program constructed

from the existing programs Prog1and Prog2. There exist the following relations

between Progl and Prog2: for the flow of computation, they are parallel; for the flow of

data, they are sequential. That is, Progl and Prog2 can be run concurrently as Prog3's

different stages. The biggest advantage for pipelining is that all stages in pipelining can

operate concurrently, thus enhancing the performance of the program. The

corresponding Petri net diagram for pipeline program Prog3 is as follows:

••• • •• x

In this diagram, T) and T2 represent Progl, Prog2 respectively. The dot tokens

control the flow of data, and the "x" tokens control the flow of computation. Initially,

only PI has several dot tokens,. but every place has an "x" token. In this case, the

requirements for a transition to fire is that each input of the transition has at least one dot

token and one "x" token. Only dot tokens are consumable, which means that after

firing, only a dot token is consumed, and "x" token is not consumed. Therefore,

initially, only T) is enabled. After T l fired, the number of dot tokens in PI decreased by

one, and P2 got one dot token. From this moment on, T j and T2 can be fired

22

simultaneously. After T2tired, P3 gets one dot token. TI and T2 fire concurrently until

the dot tokens in PI have been consumed completely.

In the next chapter we describe the WDCM programming system (WDCMPS).

WDCMPS is a programming system based on WDCM and is developed in this thesis.

23

-

CHAPTER IV

WDCM PROGRA1v1MING SYSTEM DESIGN

WDCM Programming System (WDCMPS) has six components: the WDCMPS

web server, server manager, software meta library, library manager, application

managers, and application programs. This chapter describes WDCMPS and its

components.

WDCMPS provides an environment for a user to build new programs (called

composers) using existing executable programs. Information about all component

programs must be available in the software meta library. The system provides ways to

add program information into the library as well as to build new programs using existing

programs.

Figure 4.1 shows the system architecture of WDCMPS. Table 4.1 describes the

six components of WDCMPS and the methods of communication between them. Table

4.2 illustrates the responsibilities of each component of WDCMPS.

24

-

Server Machine

Client 1. HTTP Request
Web ... WDCMPS Web Server
Browser

..
13. Return ~~

2.Call 12.Return Library Machine
,Ir

Software3. Call .. Remote call SoftwareServer Meta.. MetaManager Library
Library

4.Retum Manager
~. Return..

"
Final Composer (contains the

Machine x

~
composition rule)

~~

6. Remote call 10. Return Remote call Return

~~
Remote

I
Remote

Application Input Application Input

Manager

-~
Manager

, ..Remote Remote
Output ~ .. Output

X. Call 9. Return Call Return
,Ir "

Application Application

Program Program
......

Machine 1 Machine n

Figure 4.1 The System Architecture of WDCMPS

25

-

Table 4.1 WDCMPS Six Components and Methods of Communication

(The direction is from row components to column components)

Web Server Software Software Application Applicati
server manager meta meta manager on

library library programs
managers

Web server N/A Call N/A N/A N/A N/A
Server Return N/A Call N/A Remote N/A
manager results call

through
final
composer

Software N/A Return N/A Remote N/A N/A
meta search call
library results
managers
Software N/A N/A Return N/A N/A N/A
meta results
library
Application N/A Return N/A N/A N/A Call to
manager program I invoke

execution execution
results I II

through
final
composer

Application N/A N/A N/A N/A Return N/A
programs execution

results

26

-

Table 4.2 Responsibilities of Each Component ofWDCMPS

Responsibilities
WDCMPS 1. Provide Web accessible interfaces (an HTML registry form
Web server and HTML program build forms) for user inputs.

2. Forward user inputs to server manager for processing.
3. Forward execution results, which are returned from application

managers to the final composer, to the user's web browser
through the server manager.

Server 1. Parse the user inputs from the WDCMPS web se.rver.
manager 2. Call the registry manager of the software meta library to

register and store the existing programs or previously defined
composers into the software meta library's templates.

3. Call the search manager of the software meta library to retrieve
template information about the requested existing programs or
composers.

4. Create a new executable program file (called composer), which
combines the existing programs or previously defmed
composers in the execution order according to composition
rule specified by the user. The composer contains code to
execute the user requested existing programs or composers in
sequential, parallel or pipeline order, and may also contain
code to make remote calls to the remote application managers
to request executions of the remote application programs. The
server manager may send this composer to a remote machine.
Then the server manager calls library registry manager to
register this composer into the software meta library. After
registration, the composer can be called the same way as other
existing application programs in the library.

5. Forward the execution results of the distributed application
programs to the WDCMPS Web server.

Software Store existing and previously defined composers' information into
meta library templates in the library. Each program corresponds to a template

in the library.
Software 1. Library registry manager is responsible for registering the
meta library existing programs and composers into the Iibrary.
mangers 2. Library search manager retrieves the user requested program's

template information from the library and returns it to the
server manager.

Application 1. Receive remote requests from the composer that the server
manager manager creates.

2. Get the remote input data file.
3. Do the data conversion if necessary.
4. Invoke the execution of the application program(s)
5. Return the execution results to server manager and/or send the

output to a remote machine specified by the user.

27

-

Application
program

An application program is an executable program residing in a
node of the network. It is either an existing program or a
composer. It is called by the application manager.

4. I Basic Operations of the WDCMPS

WDCMPS web server provides a user HTML forms as user interfaces which

include a registry form and program build forms. The registry fonn allows the user to

fill in the information about the existing executable programs and register them into the

software meta library. The server manager parses the user-input and caLIs the registry

manager of the software meta library to register these programs into the templates in the

library.

The software meta library stores the information pertaining to the application

programs into templates. A template is an object which contains information about an

application program. Each program corresponds to a template in the library. A template

consists of the following information:

(I) Program name

(2) Program location

(3) Input file name

(4) Input file location

(5) User-specified input data format

(6) Program-required input data format

(7) Output file name

(8) Output file location

(9) User-specified output data format

28

-

(10) Program-required output data format

Among the information above, items (5), (6), (9) and (10) have the same format,

which consist of three pieces of information: number of columns data typ ofeach

column, and the delimiters.

The library has two managers, which are registry manager and search manager.

The registry manager is responsible for registering the programs into the library

according to the template structure, and the search manager is responsible for searching

the program template information from the library.

The web server also provides HTML program build forms to allow the user to

provide information to compose new programs. The user specifies, on the program

build form, the name of the new program being composed, the names of the application

programs (existing programs or previously defined composers) to be used, and the

composition rule to combine them.

The server manager then calls the search manager of the softwar meta library to

search in the library for the template information about each individual application

program requested by the user for composing the new program. After having obtained

the information of each individual program from the search manager, the server manager

combines these individual application programs according to the composition rule, and

creates a new executable program file to store the newly created program. This new

program file contains code to execute each individual existing program or previously

defmed composers in the order specified by the composition rule provided by the user to

perform a new task. Therefore, the new task can be carried out by just calling this newly

created program, which is the composer.

29

-

The server manager may save the composer in local machine or send it to a

remote machine. The server manager then calls the library registry manager to register

the composer into the meta library. The information about the composer is stored in the

meta library with the same template as any other existing program, and therefore can be

called the same way as any other existing program in the library.

This program building process can be repeated a!) many times as the user wants.

After finishing composing all programs on the program build form, the user requests the

server manager to execute the final composer, which may contain several layers of

previously defined composers. By executing the [mal composer, all existing programs

and previously defined composers in all layers will be executed. The composers may

make remote calls to the application managers to execute the application programs in

remote machines.

The application manager first gets input data from the remote input data file.

Then it checks to see whether the user-specified input format matches the program

required input format or not. If they match, which means that both the contents and the

formats match, then the application manager invokes the execution of the application

programs. If they do not match, which means that either the contents or the formats do

not match, then the application manager needs to call a data conversion program to

convert the user-specified input into a format required by the application program to be

executed, and then invokes the execution of the application program. After execution,

the application manager returns the results to the calling composer. It may also send the

results to the remote machine specified by the user.

30

-

The process of the input data fonnat checking and conversion applies to the

output as well. If the program-required output fonnat does not match the u er-sp cified

output fonnat, then the data conversion program is called to convert it into the user

specified fonnat. Otherwise, no conversion will be done. The results will be sent to the

remote machine specified by the user as well as to the server manager and then

forwarded to the user's web browser.

4.2 WDCMPS Web Server

The WDCMPS web server provides the user WWW-accessible interfaces: an

HTML registry fonn to allow the user to fill in the infonnation about the existing

programs, and several HTML program build forms to allow the user to compose

programs. A user can use any web browser from anywhere at anytime to connect to the

WDCMPS, and register existing programs.

The WDCMPS web server passes the user input to server manager for

processing. Finally, it forwards the results of the application programs (from server

manager) to the user's web browser.

4.3 Server Manager

The server manager calls registry manager to register the user specified existing

programs into the templates in the library. Then, after the user have selected a

composition rule by using the composition selection form provided by the web server,

the server manager provides an appropriate HTML program build fonn according to

user's selection to request the user to fill in the names of the executable programs to be

31

-

combined, and the name for the new composed program to be created. The server

manager then calls the library search manager to retrieve the template information about

the user requested programs on the program build forms.

Using the retrieved information of user requested programs and the composition

rule, the server manager creates a new executable program file, called composer, which

combines the executable programs in the execution order according to the composition

rule specified by the user. The composer contains code to execute the user requested

programs in sequential, parallel or pipeline order, and may also contain code to make

remote calls to the remote application managers to request execution of the remote

application programs (see the example composer files Pl.cgi in Appendix A and P2.cgi

in Appendix B). The server manager may send this composer to a remote machine.

Then the server manager calls library registry manager to register this composer into the

template in the software meta library. After registration, the composer can be called the

same way as other existing application programs in the library.

4.4 Software Meta Library and Library Manager

The software meta library stores information about application programs

(existing programs or composers) in templates. The library stores the information about

the application programs rather than the program files themselves. The program files

may reside at different remote machines. All the information is stored as templates,

which contain all the information required to execute programs, such as program names,

locations, input and output locations, names, and format information. Each program

32

-

corresponds to a template in the library. The library may be located in a different

machine from the machine where the web server or server manager r sides.

Th.e structure for a template is as follows:

IPN IPL IInN [InL [UInF IPlnF IOutN IOulL IUOutF IPOutF I

Figure 4.2 Template Structure in the Software Meta Library

In Figure 4.2, PN stands for program name, PL stands for program location, InN

stands for input name, InL stands for input location, UlnF stands for user-specified input

fonnat, PlnF stands for program-required input fonnat, OutN stands for output name,

OutL stands for output location, UOutF stands for user-specified output fonnat, and

POutF stands for program-required output fonnat. In this thesis, we assume that UlnF,

PlnF, UOutF, and POutF have the same fonnat, which consists of the following

infonnation: (1) number of columns (2) data type of each column, and (3) delimiters.

(Implementation of arbitrary fonnats will not be feasible.)

Each template distinguishes itself from others by its program name, which means

that no two templates have the same program name. The software meta library is a

collection of the templates.

The software meta library has two library managers, called registry manager and

search manager, which are located in the same machine as the server manager so that the

server manager can communicate with library managers easily. Through JOBe driver,

the library managers can administrate the meta library remotely. The registry manager

33

-

is responsible for registering the existing programs into the library from the HTML

registry form that the web server provides the user. It is also responsible for registering

the dynamically created programs - composers - into the library. This registration

process is done through the insertion of the templates into the library by the registry

manager.

The search manager is responsible for searching the template information of the

user requested programs in the software meta library. The server manager uses the

retrieved information to create the composers.

4.5 Application Managers and Application Programs

Each machine in the network has an application manager to administrate the

application programs. An application manager is called by the composer, which is

created by the server manager. It executes the application programs located in the local

machine, and returns the results to both a remote machine as an output file and to the

calling composer. Thus, an application manager contains the mechanism to handle the

remote inputs and outputs. For detailed information related to implementation, refer to

the implementation code of application manager, which is called run.cgi in Appendix F.

Application programs are previously compiled programs (existing programs) or

composers. Application programs and data files are the basic elements of the WDCM.

They are physical files located at the machines accessible through the HTTP protocol.

34

-

-

CHAPTER V

WDCMPS IMPLEMENTATION

This chapter describes an implementation of WDCMPS as a proof of concept.

Implementation of each component and interfaces is described. This implementation

asswnes that the User-specified input fonnat matches the program-required input

fonnat, and the User-specified output fonnat matches the program-required output

fonnat, so there is no need to do the data conversion.

5.1 WDCMPS Web Server

An HTTP web server with Common Gateway Interface (CGI) is used as the

WDCMPS web server. In fact, any web server with CGI capacity can be used as the

WDCMPS web server.

When a user wants to use WDCMPS to build programs, he/she uses any web

browser to connect to the WDCMPS web server through a URL address of the

WDCMPS web server. The web server first provides the user with an interface, which

is a HTML registry form to allow the user to register into the software meta library the

existing programs that are being used.

The registry fonn interface contains the following input fields to allow the user

to fill in:

1. Location (URL) ofthe existing application program

2. Name of the program

3. Location of the input data file

35

-

4. Name ofthe input data file

5. Location of the output file

6. Name of the output file

After the user fills in the infonnation about a program and clicks the "Register

now" button, the server manager calls the registry manager of the software meta library

to register the infonnation of the user requested program into its template in the library.

Figure 5.1 displays a registry fonn. Then, the user is presented with the interface shown

in Figure 5.2. The user will have the option to register more programs or go to the phase

of building programs.

5)'; Reg"IrV FOlIO NelsCdl'e "f.1 E3

Registration Form for Program

Program Location:

Program N~:

Input Location:

Input N~:

Output Location:

Output N~:

Ihttp://ch~St~r.cs.o~tat~.~du:BOBO/c~1-b

IT~stSorc.class

Ihttp://vvv.cs.ok~tat~.~du/-pw~nX1a/

Idacal

Ihttp://z . ce. ok!ltat~.~du/-pvenx1al

loucl

R~gl!lt~r nov I R~s~t I

Figure 5.1 Program Registry Fonn

36

Register Program
TestSortclass has been registered into the library

Continue to register program

Build new program

x

Figure 5.2 Program Registry Continuation Fonn

5.2 Server manager

The server manager consists ofseveral CGI programs written in Perl. Those

CGI programs do the following:

1. Register the existing programs' infonnation from registry fonn into the software

meta library. The CGr program calls the registry manager, which is a java

program named Registry, to insert the fields from the registry fonn into the

corresponding columns of the templates in the software meta library.

2. After the user selects a composition rule from the composition selection fonn,

which is illustrated in Figure 5.3, it shows the user an appropriate program build

37

. I
I
I

I

-

form to allow the user to fill in the new program's name the number of th

application programs. and the names of the application programs as i1lustrat din

Figure 5.4.

Select a combination rule

ISequential iJ 'Submit request J

Figure 5.3 Composition Selection Fonn

38

-

Program Build Form -
Sequential

~ewProlP"am'sName llpl. C'11

~tunberorPrognuns E-=-
~uams to be used: 1 IITe!ltSort.cla!l~

~ouams to be used: 2 IlsUll'ilJUIll_. cla!l!l

IPro lV8lDS to be used: 3 II
\Programs to be used: 4 II
IPrOgrams to be used: 5 ~_ -

Continue to buDd or to run

IParallel :::J Submit I Reset I

·m'·
Figure 5.4 Sequential Program Build Form

3. Parse the information obtained from the program build form, and uses th names

of the programs to call the search manager of the software meta library to arch

for template information about the registered programs.

4. After obtaining the template information of the programs from the search

manager, the server manager (the COl program) will use these programs'

information to create a new program file (a composer), which contains the

composition rule. Refer to the example of composer Pl.cgi in Appendix A. A

composer may be sent to a remote machine in the network.

39

..

5. Step 3 to Step 4 can be repeated as many times as the user wants. Eventually,

when he/she wants to stop the program building process, he/she simply presses

the "END" option on the program build form, and the final composer - the lastly

created executable program is created. Refer to the example of final composer

P2.cgi in Appendix B.

6. The server manager executes the fmal composer. This final composer may

contain several layers of previously defmed composers, each of which has its

own composition rule. When the final composer is executed, it may make

remote call to the application manager (also a COl program) to invoke the

execution of the application programs. Each machine containing distributed

programs has one application manager.

7. After the application programs are executed, the results are returned to the

calling composer. The results of the final composer are returned to the server

manager, and the server manager then returns them to the user through the web

server.

5.2.1 Implementation of Composition Rules

This section illustrates the implementation of the three composition rules.

5.2.1.1 Sequential Composition

In sequential composition, the component programs ofa new program are

executed in sequential order, which means they run one after the other. Therefore, a for-

40

-
loop is used to control the execution order of the programs. The following pseudo-code

implements sequential composition:

for($i=li $i<=$numi $i++) {

$results[$iJ='java RemoteCall $pLoc[$i] $pName[$i]

$inLoc[$i] $inName[$i] $outHost[$i] $outName[$i] ';

'java chMode $outLoc[$i] $outName[$i] ';

}#for loop

In this pseudo-code, the $num is the number of the component programs. If a

new program uses three sequential component programs, we will use a for-loop with

three iterations to do the sequential execution. In the first iteration, the first component

program is executed; in the second iteration, the second component program is executed;

in the third iteration, the third component program is executed. RemoteCall is ajava

program which will call the remote application manger run.cgi to invoke the executions

of application programs. Refer to the complete implementation code, seqSub.cgi, the

sequential composition rule in Appendix C.

5.2.1.2 Parallel Composition

In parallel composition, the component programs of a new program are executed

in parallel order. If they are located in different machines in the network, then they can

be executed concurrently without conflict, since they can be executed under different

CPUs. If they are located in the same machine, then they can be executed in any

41

I
· I

I

I
I

-

-

arbitrary order, sharing one CPU with time slices. This can b done through the use of

the system callfork The following pseudo-code illustrates the use offork function:

iff ($n2-$nl)<=1) {#base case

if (fork) {

tin parent ... process PI

$resultsl='java RemoteCall $pLoc[$nl] $pName[$nl]

$inLoc[$nl] $inName[$nl] $outHost[$nl]

$outName[$nl] ';

'java chMode $outLoc[$nl] $outName($nl] ';

wait;

}#if

else{

#in child ... process P2

$results2='java RemoteCall $pLoc[$n2] $pName[$n2]

$inLoc[$n2] $inName[$n2] $outHost[$n2]

$outName [$n2] , ;

'java chMode $outLoc[$n2] $outName[$n2] ';

}#else

}#if base case

The fork call creates a new process which is an exact copy of the original. The

original process is called the parent, and the newly created process is called the child.

The child has the same data and variable values as the parent. In the parent, the return

42

,

. I

I
I

pi

value of the fork call is the process ID of the newly created child. In the child th fork

call returns zero. Therefore, the fork call appears inside an iftest, so that the parent and

child can branch to different places. Both the parent and child processes continue to

execute from a shared copy of the same code. Usually, when we create a child process,

we do so because we want it to execute a totally separate program.

The wait function is used to synchronize the two processes. By using fork

command, the parent and child processes can be executed concurrently. Therefore this

technique can be used to implement the parallel composition. For parallel general case,

which means that there are more than two parallel processes to be executed at 'the same

time, we can use a recursion to call the fork command. For detailed implementation, see

the file called parSub.cgi in the Appendix D.

5.2.1.3 Pipeline Composition

In pipeline composition, the component programs of a new program are executed

in pipeline order. Pipelining is the combination of sequential and parallel compositions.

As for the flow of data, it is sequential, but as for the flow of computation, it is parallel.

The component programs ofthe new program can be executed at the same time as the

different stages of the nl::W program. Therefore, pipeline composition also can use the

fork command to implement the parallel flow of computation.

In addition, it uses a pipe function to implement the sequential flow of data.

Because the forked process is an exact copy of its parent, it inherits the same filehandles

as its parent. The parent sets up a pair of pipe file descriptors using the Perl function

pipe before forking. The pipe has a read-end PRH and a write-end PWH. This pipe is

43

f·....

I

used to establish communications between the parent and child proce es. The child

process will inherit that same pipe file descriptors. The parent is the generator ofdata,

so it calls the Perl function close on the redundant read filehandle PRH. The child is a

reader, so it closes the redundant write filehandle PWH. Parent and child are now linked

by a pipe communication channel. The child then copies the pipe filehandle to its

STOIN filehandle. so STOIN will actually read from the pipe. It accomplishes this by

calling open with PRH as its second argument. STOIN reads data from PRH.

Therefore, the parent process can send its output to the PWH of the pipe, and the child

process then can read its input from the PRH of the same pipe. PRH reads data from

PWH of the same pipe. So, the child process can read its input data from the output of

its parent. By using this technique, the data flow of pipeline program can be controlled.

In general pipeline case, which means that there are more than two component

programs in the pipeline program, the pipelining can be achieved by using recursion to

call the fork command and to create the pipe filehandles. Refer to the file pipeSub.cgi in

the Appendix E for the detailed implementation.

5.2.2 Remote Call

When the final composer is executed by the server manager, all layers of the

previously defined composers contained in this tinal composer are executed according to

their own composition rules. When these composers are executed, the appropriate

subroutines are called according to the composition rules. All three subroutines -

seqSun.cgi, parSub.cgi, and pipeSub.cgi, which are CGI programs written in Perl, make

a system call to ajava program named RemoteCall, which invokes the remote

44

-

I •

. I
I

I

..

application manager - a car program called run.cgi. Through the application manager,

the application programs can be invoked to execute.

5.3 Software Meta Library and Library Manager

The library stores the information about the application programs rather than the

application program files themselves. The program files reside in nodes in the network.

The software meta library is implemented as a relational database by using mysql

database.

All information about the reusable application programs is stored in a table in the

database. Each row in the table represents one template of one program. Each column

stores a specific piece of information about a program, such as its name, its location, the

name of its input, etc.

The library manager consists of two parts: a registry manager and a search

manager, both of which are implemented as Java programs, which load the

mm.mysql.jdbc driver as their JOBC drivers. Through JOBC driver, the library manager

can administrate the library, which is located in a remote machine, where the mysql

database resides.

The registry manager is responsible for inserting the application programs into

templates (rows) in the library. The registry manager is implemented as ajava program

named Registry. Registry inserts the fields obtained from the registry form into their

corresponding columns in the templates. The program name is assigned as the primary

key. So, no two templates with the same program name are allowed.

45

The search manager is responsible for searching the application programs at the

request of the server manager and returning the search results to the server manager.

5.4 Application Manager and Application Program{s)

Each machine containing programs in the software meta library has an

application manager. The application manager is also a COl program called run.cgi.

The parts of application manager implementation are described in the following

sections.

5.4.1 Get Remote Input Data

The application manager connects to a remote input file by calling a Java

program named GetInput, which is able to access a remote text file or a remote database

file. If the remote file is a text file, GetInput will use a URL object to connect to the text

file in a remote machine. The URL class is in the java.net package. When a URL object

is connected to the remote text file, the GetInput program can manipulate the file as if it

were local. In this sense location transparency is achieved. The OetInput program get

the remote text file. If the remote file is a database file, then GetInput will use the

IDBC, which is a standard Java database connectivity API. By using JDBC API and

DBMS specific JDBC drivers, we are able to connect to many relational databases, such

as Oracle, Sybase, Mysql, without rewriting the Java program. This thesis uses

mm.mysql.jdbc driver, which is a Type 4 JDBC, a pure Java IDBC driver with direct

connection to a mysql database. Within the OetInput program, the java.sql package

must be imported in order to use a JDBC driver. These JDBC base classes contain the

46

necessary elements for properly instantiating JDBC driver. The IDBC driver

rnm.mysql.jdbc must be loaded in order to connect to the database mysql. To load the

mysql lOBC driver, just one line ofcode is used:

Class.forName(" org . g jt.mm.mysql.Driver") .newlnstance();

where org.gjt.mm.mysql.Driver is the classpath of the mm.mysql.jdbc driver in the

WDCMPS web server, and the method newlnstanceO is required by the mysql database

connection. Next, the connection object must be explicitly created to connect the driver

with the database, which can be accessed via its URL address. A valid driver must be

registered with the JDBC DriverManager before attempting to create this connection.

[24]

The standard way to establish such a connection with a database is to call the

method DriverManager.getConnection. This method takes a string containing the URL

of the database. Once a connection is established, it is used to pass SQL statements to

its underlying database. Then, the Java program GetInput can retrieve the data we want

from the database.

5.4.2 Execution of Application Programs

After getting the remote input data by using Getlnput program, the application

manager executes the local application program(s) by using the interprocess

communication mechanism pipe. A command of the following type could be used to

pass the input to an executable program:

47

java Get Input

java GetInput

java <name of the java bytecode>, or

<name of the executable program

written in other language than java>.

The application program, which might be written in any programming languag ,

takes the standard output of the java GetInput program as its input. By this means there

is no need to save a local input file for the program. This method also assumes that all

programs read input data from the standard input.

5.4.3 Send Remote Output File

The application manager saves the output, which is a text file, on a remote

machine by using Java RMI technology. The prerequisites for Remote Method

Invocation (RMI) are as follows:

1. The server (the destination machine where the RMI program's output should be

stored) side has to have the sever class, implementation class, which handles the

remote method calls, and the skeleton class, which is the proxy of the server.

The skeleton class is created through running the implementation program by

nnic compiler.

2. The client (the machine where the RMI program resides) side has to have the

interface class of the implementation class of the server class, the client class,

which is to invoke the remote methods located in the server side, and the stub

class, which is the proxy of the client to make request to the server. The stub

48

pi

class in the client side, like the skeleton class in the server side is also created by

using the rmic compiler.

This remote method invocation takes place as follows:

• The server calls the registry to associate or bind a name with a remote

object. Then the server is started up to be ready for the client to connect.

• The client looks up the remote object by its name in the server's registry

and then invokes methods on it.

• The client then saves the output as a file in the server side machine as if it

saves an output file on the local machine.

5.4.4 Return the Results to the Server Manager

The application manager returns the execution results of the application program

to the server manager after the program returns the results to the application manager.

5.5 An Example

This section illustrates the implementation using an example. The user will

compose a new program Pl.cgi, which is constructed from two sequential. programs

TestSort.class and SumNum.class. Then he/she will compose a program P2.cgi, which

is constructed from two parallel programs P1.cgi and Average. Then he/she ends the

program building process. In this case, Pl.cgi is a previously defined composer, and

P2.cgi is the final composer. P2.cgi program file contains the program name ofP1.cgi.

Therefore, when the server manager executes P2.cgi program, P2.cgi calls the parallel

program subroutine parSub.cgi, which allows Pl.cgi and Average to execute at the same

49

..

time. Since Pl.cgi is a composer which has sequential composition rule when Pl.cgi is

executed, the sequential program subroutine seqSub.cgi is called. seqSub.cgi allows

TestSort.class and SumNurn.class to execute sequentially.

The following steps illustrate the process of the implementation of this program

building process:

1. Fill in the registry fonn:

The user is presented with the registry fonn as shown in Figure 5.1. He/she fills

in the information about the TestSort.class program. When the user clicks the "Register

now" button. the server manager calls the registry manager of the library to insert the

TestSort.class program into its template in the library. Then the user is presented with

the interface shown in Figure 5.2. The user also registers program SurnNum.class the

same way. Then the user registers the third program Average into the library. After

having registered these three programs, the user clicks the "Build the program" link to

start building new programs.

2. Select a composition rule:

The composition selection form (Figure 5.3) first appears to allow the user to

select a desired composition rule. Then an appropriate program build form, a sequential

fonn, a parallel form, or a pipeline form appears according to the user's selection. The

sequential program build fonn corresponds to the sequential combination rule, the

parallel program build form corresponds to the parallel combination rule, and the

pipeline program build form corresponds to the pipeline combination rule. All of the

three kinds of forms allow the user to provide the name of the new program, the number

50

pz

of the executable programs, and the names of the executable programs. In this example

the user selects sequential composition rule.

3. Fill in the sequential program build form:

The sequential program build fonn, as Figure 5.4 illustrates, consists of two

parts.

The fIrst part allows the user to fIll in the new program's name, the number of

component programs, and the names of the component programs.

The second part of the form has a drop down list, which allows the user to select

the choices among the four options - Sequential, Parallel, Pipeline, and END. If the

user chooses the "Sequential", and clicks the "Submit" button, the sequential program

build fonn appears again, allowing the user to continue with the sequential program

building process. At this time, a new program (composer) with the user defined name

has been created by the server manager, and the composition rule has been built inside

this composer. This program is available for use as a component program. If the u er

chooses the "Parallel", and clicks the "Submit" button, the parallel program build form

appears, allowing the user to build parallel programs. If the user chooses the "Pipeline",

and clicks the "Submit" button, the pipeline program build form appears, allowing the

user to build pipeline programs. If the user chooses the "END" button, the program

building process will be complete, and the server will execute the lastly created program

- final composer. When the final composer is executed, it calls the corresponding

subroutine, and the subroutine calls the RemoteCall program to invoke the remote

application manager run.cgi to execute the existing programs and the composers.

51

psz

In this example, the user selects the parallel composition rule from the drop

down list. Then Figure 5.5 parallel program build fonn shows up.

Program Build Form -- Parallel

Continue to buDd or to run

1M. 8 Subm~ I Reset I

II II

Figure 5.5 Parallel Program Build Form

4. Fill in the parallel program build form:

The parallel program build form is similar to the sequential one, except that the

fonnats are different. It also consists of two parts. The first part lets the user provide

the new program's name, and the informatiun about the executable programs. The

second part allows the user to continue to build the programs with the three options, or

allows the user to end the program building process with the "END" option. When the

52

user clicks the "END" option, it means that he/she wants the final composer execution to

begin. In this example, the user no longer wants to build new programs so the RUN

option in the drop down list is selected. Then Figure 5.6 appears to allow the user to

click the "RUN" button to execute the final composer, in this case, P2.cgi.

Parallel Composition
P2. cgi has been regtstered mto the library

Figure 5.6 Run Form

53

....

Result ofAverage: 9.5
ResultofPlcgi: Content-type:textlhlmlResultofTestSortclass: 0 1234 5678910 1112131415161718]9
Result ofSumNum.c1ass: 190

x

Figure 5.7 Program Execution Results

Figure 5.7 shows the results after P2.cgi (the final composer) is executed. When

it is executed, the remote application managers are called to invoke the execution of the

remote application programs. After the execution of the programs, the appJication

manager returns the results to the final composer, P2.cgi in this case. P2.cgi returns the

results to the server manager, and the server manager then returns them to the user's web

browser through the web server. Thus the results can be displayed on the user's web

browser.

The program's execution results are also saved as a text file on a public-accessible

remote machine specified by the user. When the user goes to the URL of this remote

54

-

text file, the contents of the file will be displayed on the user s web browser as Figure

5.8, Figure 5.9, and Figure 5.10 illustrate.

5 7 8 9 10 11 12

OOClll'le1t Dcroe

Figure 5.8 outl: Remote Output File for Program TestSort.class

55

190

Figure 5.9 out2: Remote Output File for Program SumNum.class

56

- --

fie tit yo... Go~~

"1IcdmaIks l.oc:*Jol t-.tp:1tz.ca.ol<AlIe.eOJr~

~ .1
Rebed Home SNldl NelIc4pe I'Irt Searil SIqJ

9.5

_ t
'_ Slaf'.t!JIII.;.;.-="~="::=':~~._

Figure 5.10 out3: Remote Output File for Program Average

57

CHAPTER VI

CONCLUSION AND FUTURE WORK

This thesis proposes a WWW based distributed computing model (WDCM).

This model has three major advantages: it (1) provides the user WWW access and

interfaces, which is an improvement over CORBA and DCOM, (2) makes use of the

existing executable programs to perform new tasks through software meta library

templates, and (3) provides the mechanisms to do distributed computing. WDCM

combines all the three techniques - distributed computing, software reuse and WWW

interface together, and makes meaningful contributions to the distributed computing

models.

This thesis designs and implements a programming environment based on

WDCM named WDCMPS. WDCMPS is implemented using two programming

languages: Java and Perl.

The three composition rules defined in WDCM are implemented. However, the

following aspects have not been implemented yet, and are left as future work:

1. A data conversion program

2. An improved software meta library

3. Remote implementation of a composer

4. A performance evaluation scheme. Queuing theory [25] can be used to evaluate

the program performance. Due to the network traffic, the remote calls take

longer time than local calls, and thus the performance measurement evaluation is

58

t ri

-

necessary to judge whether the distributed computing in some context is worth

doing or not.

59

..

REFERE CES

1. Coulouris, G.F., J. Dollimore, and T. Kindberg, Distributed Systems Concepts

and Design. 2nd ed. 1994, Wokingham, England, Reading, Masachusetts:

Addison-Wesley Publishing Company.

2. Mahmoud, Q.H., Distributed Programming with Java. 2000, Greenwich, CT:

Manning Publications Co.

3. McCarty, B. and L. Cassady-Dorion, Java Distributed Objects. 1999,

Indianapolis, Indiana: Sams.

4. Buss, A. and L. Jackson, Distributed Simulation Modeling: A Comparison of

HLA, CORBA, and RM! Proceedings of the 1998 Winter Simulation Conference,

1998.

5. Daniel, 1., B. Traverson, and V. Vallee, Active COM: An Inter-working

Frameworkfor CORBA and DCOM IEEE, 1999.

6. Thompson, D. and D. Watkins, Comparison between CORBA and DCOM:

Architectures for Distributed Computing. IEEE, 1998.

7. Raj, G.S., A Detailed Comparison ofCORBA, DCOM and Java/RMf, .

S. Kono, K. and T. Masuda, Efficient RMI: Dynamic Specialization ofObject

Serialization. IEEE, 2000.

9. Maffeits, S. and D. Schmidt, Constructing Reliable Distributed Communication

Systems with CORBA. IEEE Communications Magazine, 1997.

10. Farley, 1., Java Distributed Computing. 1998, Cambridge: O'Reilly.

60

11. Wang, Y-M., D.P. Damani, and W.-J. Lee, Reliability and Availability Issues In

Distributed Component Object Model (DCOM). IEEE, 1997.

12. Hayes, F., Distributed Component Object Model. computerworld, 1999.33(8).

13. Berghoff, 1., et aI., Agent-based Configuration management ofdistributed

applications. Configurable DIstributed Systems, 1996.

14. George, K.M. and K.-S. Kim, An Adaptive Distributed Computation Support

System. International Conference on Parallel and Distributed Techniques and

Applications, 1999.

15. Coulange, B., Software Reuse. 1998, London: Springer.

16. Griss, M.L., Software Reuse Architecture, Process, and Organization for

Business Success. IEEE, 1997.

17. Doublait, S. and C. Lissoni, Processes for Systematic Software Reuse. IEEE,

1997.

1R. Behle, A., An Internet-based Information System for Cooperative Software

Reuse. IEEE, 1998.

19. Weaver, A.c., Profitingfrom the Internet and the World Wide Web. lEE , 1998.

20. Grayson, R.A. and K.M. George, A Persistent History Navigation Assistant.

Proceedings of the International Conference on Internet Computing IC'2000,

2000.

21. Lam, S.L. Y., A World Wide Web Resource Discovery System. Proc. of the 4th

International World Wide Web Conference, 1995.

22. Chandy, K.M. and S. Taylor, An Introduction to Parallel Programming. 1992,

Boston, MA: Jones and Bartlett Publishers.

61

23. Lawson, H.W., Parallel Processing in Industrial Real-Time Applications. 1992,

EngleWood Cliffs, New Jersey: Prentice Hall.

24. Haecke, B.V., JDBC: Java Database Connectivity. 1997, Foster City, CA: lOG

Books Worldwide, Inc.

25. Singhal, M. and N.G. Shivaratri, Advanced Concepts in Operating Systems.

1994, New York, NY: McGraw-Hill, Inc.

62

APPENDICES

APPENDIX A

Source Code for Composer Pl.cgi

#!lusr/locallbin/perl
require 'seqSub.cgi';
print "Content-type: textlhtml\n\n";

$out[1]= "http://chester.cs.okstate.edu:8080/cgi-bin/ TestSort.c1ass
http://www.cs.okstate.edul-pwenxia/ data1 http://z.cs.okstate.edu/-pwenxia/

out1";
($pLoc[1], $pName[1], $inloc[1J, $inName[1], $outLoc[1].
$outName[1])=split(/\t/, $out[1]);
($outProt[1],$rest[1])=split(/\:W/,$outLoc(1] ,2);

($temp[1], $remain[1])=split(NI,$rest[1]);
($outHost[1], $left[1])=split(/\:I, $temp[1]);

$Out[2]="http://chester.cs.okstate.edu:8080/cgi-bin/ SumNum.class
http://z.cs.okstate.edu/-pwenxial out1 http://z.cs.okstate.edu/-pwenxia/

out2";
($pLoc[2J, $pName[2], $inLoc[2], $inName[2], $outLoc[2],
$outName[2])=split(/\t/, $out[2]);
($outProt[2],$rest[2])=split(/\:W/,$outLoc[2],2);
($temp[2], $remain[2])=spl it(NI, $rest[2]);
($outHost[2], $left[2])=split(/\:/, $temp[2]);

$num=2;

&SL($pLoc, $pName, $inLoc, $inName, $outLoc, $outHost, $outName, $num);

63

.....

Source Code for Final Composer P2.cgi

#lIusr/local/bin/perl
require 'parSub.cgi';
print "Content-type: textlhtml\n\n";

$out[1]= ''http://z.cs.okstate.edu/-pwenxia/ P1.cgi -1 -1 -1 -1":
($pLoc[1], $pName[1], $inLoc[1], $inName[1], $outLoc[1],
$outName[1])=split(l\tI, $out[1]);
($outProt[1],$rest[1])=split(I\:W/.$outLoc[1],2);
($temp[1], $remain[1])=split(N/,$rest[1]);
($outHost[1], $left[1])=split(/\:/, $temp[1]);

$out[2]="http://chester.cs.okstate.edu:8080/cgi-binl Average
http://www.cs.okstate.edu/-pwenxia/ data1 http://z.cs.okstate.edu/-pwenxia/

out3";
($pLoc[2], $pName[2], $inLoc[2], $inName[2], $outLoc[2],
$outName[2])=split(/\t1, $out[2]);
($outProt[2].$rest[2])=split(I\:W/,$outLoc[2],2);
($temp[2], $remain[2])=split(N/,$rest[2J);
($outHost[2], $left[2])=split(/\:I, $temp[2]);

$n1 =1, $n2=2;

&PL($pLoc, $pName, $inLoc, $inName, $outLoc, $outHost, $outName, $n1,
$n2);

64

--

APPENDIXC

Source Code for Sequential Execution Subroutine seqSub. cgi

#!lusr/local/bin/perl
seqSub.cgi
is used to run the sequential programs
It is called by a composer, such as P1.cgi

sub SL{
for($i=1; $i<=$num; $i++){

if($inLoc[$i] eq "-1"H
,./$pName[$ir;

}#if
else{

$results[$i]='java RemoteCall $pLoc[$i] $pName[$i] $inLoc[$i]
$inName[$i] $outHost[$i1 $outName[$ir;
'java chMode $outLoc[$i] $outName[$ir;

print «ETX;
Result of $pName[$i]: $results[$i]

ETX
}#else

}#for loop
}#SL
1-

I

65

--

APPENDIXD

Source Code for Parallel Execution Subroutine parSub. cgi

#!/usr/local/bin/perl
parSub.cgi
is used to run the parallel programs
it is called by a composer, such as P2.cgi

sub PL{
if«$n2-$n1)<=1){#base case

if(fork){
#in parent process P1
if($inLoc[$n1] eq "_1"){

$out[$n1]=' .I$pName[$n1r;
print «ETX;
Result of $pName[$n1]: $out[$n1]

ETX

}#if
else{

$results1='java RemoteCall $pLoc[$n1] $pName[$n1] $inLoc[$n1]
$inName[$n1] $outHost[$n1] $outName[$n1r;
'java chMode $outLoc[$n 1] $outName[$n1r;
print«ETX;
Result of $pName[$n1]: $results1

ETX
}#else
wait;

}#if
else{

#in child ... process P2
if($inLoc[$n2] eq "_1"){

$out2=' .I$pName[$n2r;
print «ETX;
Result of $pName[$n2]: $out2

ETX
}#if
else{

$results2='java RemoteCall $pLoc[$n2] $pName[$n2] $inLoc[$n2]
$inName[$n2] $outHost[$n2] $outName[$n2r;
'java chMode $outLoc[$n2] $outName[$n2r;
print «ETX;

66

Result of $pName[$n2]: $results2

ETX
}#else

}#else
}#if base case
else{#recursion case

if(fork){
#in parent ... process P1
if($inLoc[$n1] eq "_1"){

$out3=' ./$pName[$n1r;
print «ETX;
Result of $pName[$n1]: $out3

ETX
}
else{

$results3='java RemoteCali $pLoc[$n1] $pName[$n1] $inLoc[$n1]
$inName[$n 1] $outHost[$n1] $outName[$n1r;
'java chMode $outLoc[$n1] $outName[$n1r;

print «ETX;
Result of $pName[$n1]: $results3

ETX
}
wait;

}#if
else{

#in child ... call itself recursively
&PL(@pLoc, @pName, @inLoc, @inName, @outLoc, @outHost,
@outName, $n1 ++, $n2};

}#else
}#else recursion case

}#subroutine
1·,

67

--

APPENDIXE

Source Code for Pipeline Execution Subroutine pipeSub.cgi

#!lusr/locallbin/perl
pipeSub.cgi
is used to run the pipeline programs
It is called by a composer

sub PIPE{
pipe("PRH$n1", IPWH$n1") II die "pipe $!";

if«$n2-$n1)<=1){#base case
if(fork){

#in parent ... process P1

Writer close the pipe read side if $n1 !=1
if($n1==1){

c1ose("PRH$n1 ");
}
else{# Redirect STDIN

c1ose(STDIN);
$k=$n1-1 ;
open(STDIN, ">&PRH$k");

}

Redirect STDOUT
c1ose(STDOUT) ;
open(STDOUT, ">&PWH$n1");
select(STDOUT); $1=1;

Pour STDIN down the pipe.
if($inLoc[$n1] eq "_1"){

, .I$pName[$n1r;
}#if
else{

if($n1==1){
$tmpOut[$n1]='java Getlnput $inLoc[$n 1]
$inName[$n1Jljava RemoteCall1 $pLoc[$n 1]
$pName[$n1r;

}#if
else{

$tmpOut[$n1J= 'java RemoteCall1 $pLoc[$n 1]
$pName[$n1]';

}#else
}#else

68

print $tmpOut[$n1];
print "end\n";
c1ose(STDOUT);
wait;
open(STDOUT, ">/dev/tty");
print "$0 existing\n";
exit(O);

}#if
else{

#in child ... process P2
Reader close write side
close("PWH$n1");
Make read side of the pipe our STDIN
c1ose(STDIN);
open(STDIN, ">&PRH$n1");
select(STDIN); $1=1;

if($inLoc[$n2] eq "_1"){
'.I$pName[$n2]' ;

}
else{

'java RemoteCall1 $pLoc[$n2] $pName[$n2]1java
IORMIClient $outHost[$n2] $outName[$n2]';
'java chMode $outLoc[$n2] $outName[$n2]';

}#else
}#else

}#if base case

else{#recursion case
if(fork){
#in parent ... P1

Writer close the pipe read side if $n1 !=1
if($n1==1){

c1ose(IPRH$n1");
}

else{# Redirect STDIN
c1ose(STDIN);
$k=$n1-1 ;
open(STDIN, ">&PRH$k");

}

Redirect STDOUT
c1ose(STDOUT);
open(STDOUT, ">&PWH$n1 ");
select(STDOUT); $1=1;

69

--

Pour STDIN down the pipe.
if($inLoc[$n1] eq "-1 "){

. .I$pName[$n1r;
}#if
else{

if($n1==1){
'java Getlnput $inLoc[$n1] $inName[$n1r;
$tmpOut[$n1]='cat fileljava RemoteCall1 $pLoc[$n1]
$pName[$n1r;

}#if
else{

$tmpOut[$n1]='java RemoteCall1 $pLoc[$n1]
$pName[$n1r;

}#else
}#else

print $tmpOut[$n1];
print "end\n";
close(STDOUT) ;
wait;

}#if
else{

#in child ... call itself recursively
&PIPE($pLoc, $pName, $inLoc, $inName, $outLoc, $outHost, $outName,
$n1 ++, $n2);

}#else
}#else recursion case

}#subroutine
l',

70

APPENDIXF

Source Code for Application Manager run. cgi

#!lusr/locallbin/perl
print "Content-type: textlhtml\n\n";
@lines=<STDIN>;

($prog I $sufix)=split(I\.I, $lines[O], 2);
chop $sufix;

for($j=1; $j<5; $j++){
chop $Iines[$j);

}
if($sufix eq lc1ass"){

$results='java Getlnput $lines[1] $lines[2J1java $progljava IORMIClient
$lines[3] $lines[4]';

}

else{
$results='java Getlnput $lines[1] $lines[2]1./$progljava IORMIClient
$lines[3] $lines[4r;

}

print $results;
exit 0;

71

VITA

Wenxia Peng

Candidate for the Degree of

Master of Science

Thesis: DESIGN AND IMPLEMENTATION OF A WORLD WIDE
WED BASED DISTRIBUTED COMPUTING MODEL

Major Field: Computer Science

Biographical:

Education: Graduated from East China Normal University, Shanghai,
China in July, 1988; received Bachelor of Arts degree in Foreign
Languages and Literatures. Graduated from Peking University, Beijing,
China in July, 1992; received Master of Arts degree in Oriental Language
and Literatures. Studied as Ph.D. Program student at UCLA (Univer ity
of California, Los Angeles). Completed the requirement for the Ma ter
of Science degree at Oklahoma State University in December, 2000.

Professional Experience: Lecturer from 1988 to 1992 at Shanghai
Petrochemical Institute, Shanghai, China. Teaching Assistant from 1995
to 1996 in Department of East Asian Languages and Cultures, UCLA
(University of California, Los Angeles). Teaching Associate from 199610
1997 in Department of East Asian Languages and Cultures, UCLA.
Instructor in 1997 at UCLA Extension. Teaching Assistant from 1999 to
2000 in Department of Computer Science, Oklahoma State University,
Stillwater, Oklahoma.

