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PREFACE

The purpose of this work was to establish a reliable experimental apparatus and

procedures for measuring liquid-liquid equilibrium data at ambient and elevated

temperatures and pressures. A continuous flow apparatus has been designed and

constructed to obtain mutual solubilites at temperatures from ambient to 623 K and

pressures up to 13.8 MPa. The accuracy of the apparatus and methods used was

determined by measurements on the well-documented benzene-water system. Mutual

solubility data have also been measured for the aqueous binary systems involving decane

and I-hexene at temperatures up to the three-phase critical end point.
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CHAPTER I

INTRODUCTION

Significance

Phase equilibrium data are essential for the proper design and operation ofmany

chemical engineering processes. Separation processes such as distillation, adsorption and

solvent extraction are some of the more prevalent applications. Where there is a lack of

experimental data, thennodynamic models are used to predict the phase equilibrium. The

accuracy of these models is dependent upon the quality, as well as the quantity, of the

experimental data used in the model development.

Despite the fact that sufficient literature data are available for select binary

systems at ambient or near ambient temperatures, there is still a deficiency in mutual

solubility data at elevated temperatures. Experimental studies such as this one, which are

focused on obtaining the necessary equilibrium data, are needed for this reason.

Objectives

The purpose of this study was to develop an apparatus, with operating procedures

and sampling and analytical techniques, which would yield reliable liquid-liquid

equilibrium data at ambient and elevated temperatures. This required being able to

control the hydrocarbon-water interface, which was difficult to do at elevated pressures

with the apparatus used in the study by Chen and Wagner (lI, 12, 13). An additional
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objective of this study was to perfonn an rror analysis to d.etennme th amouru of

uncertainty in the measurements.

Once the apparatus and methods were established. the objective was to obtain

mutual solubility data for a number ofbinary systems. The three systems studied

included an aromatic (benzene), an alkane (decane), and an olefin (l-hexene). The

benzene-water system was used to verify the data obtained with this apparatus. The

decane-water and I-hexene-water systems were studied to complement the limited

existing data.

Organization of the Thesis

Following this introduction, a review ofthe literature is given in Chapter II. The

literature review was conducted for temperatures extending from 293 K to the three­

phase critical temperature of each system and pressures to the three-phase equilibrium

pressure. The various analysis methods employed and the types of apparatus used are

also considered. A detailed description of the experimental apparatus is given in Chapter

III. The experimental methods and techniques are discussed in Chapter IV, including

sample preparation, sample collection, instrument calibration, and sample analysis. In

Chapter V, the experimental data are presented and discussed, along with the expected

uncertainty in the measured values. Conclusions and recommendations are made in

Chapter VI. The appendices follow. In Appendix A, a standard operating procedure is

given to accompany the new apparatus. The calibration technique and the calibration

data are given in Appendix B, and the propagated error analysis used to weight the

calibration data is shown in Appendix C. A description of how the solubilities were

calculated is given in Appendix D and Appendix E shows how the trace amount ofwater

2
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in the ethanol was accounted for in the sample analysis. A complete propagated error

analysis of the experimental solubility data is presented in Appendix F.

A manuscript format was followed in preparing this thesis, and Chapter V is

written in the fonn of a manuscript, complete with an independent set of tables, figures,

nomenclature, and references.
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CHAPTER II

LITERATURE REVIEW

The amount of liquid-liquid equilibrium data available in the literature varies

among binary systems. There is an abundance of such data for the benzene-water system,

but literature data are limited for the decane-water and I-hexene-water systems. The

majority of the available data have been cCollected at low temperatures, primarily at the

ambient temperature of 298 K. Only a few studies have measured the mutual solubilities

at elevated temperatures and pressures.

Benzene-Water System

Most of the literature data for the solubility of benzene in water at atmospheric

pressure are in agreement. The data ofKudchadker and McKetta (25), Krasnoshchekova

and Gubergrits (24), Schwarz (33), and Sanemasa et a1. (32) disagree significantly with

the other studies.

The reported values of water solubility in benzene at atmospheric pressure are in

fair agreement. The data ofEnglin et a1. (16) and Bittrich et a1. (5) are significantly lower

than the values given by other studies. Hefter (22) notes that the more recent water

solubility in benzene data have a tendency to be higher than the overall average, with

smaner standard deviations.

4



-

The reported mlllual solubility data or the benzene-water system at el va.ted

temperatures and pressures are in fair agreement. Not only is there a limited amount of

literature data on the mumal solubilities ofbenzene and water at elevated temperatures

and pressures, almost all of the data have been collected at different conditions. This

makes it difficult to evaluate the data. The studies of Anderson and Prausnitz (1),

Tsonopoulos and Wilson (38), and Chandler et aI. (9), which are along the three-phase

equilibrillm curve, exhibit fair agreement.

DecaDe-Water System

There is poor agreement among the seven studies reporting the solubility of

decane in water at atmospheric pressure. Three studies report the solubility of water in

decane at atmospheric pressure. The data ofSchatzberg (34) and Ng and Chen (29) are

in agreement, but the datum of Becke and Quitzsch (3)'is significantly higher.

Only Guerrant (21), Ng and Ohen (29) and Economou et a1. (15) have reported

decane solubilites in water at elevated temperatures and pressures, but none of the data

have been collected under comparable conditions. Four studies (Guerrant (21),

Namiot et a1. (28), Skripka (35), and Economou et al. (15) report water solubilities in

decane at elevated temperatures and pressures and they are in reasonable agreement.

I-Hexene-Water System

The available literature data on the l-hexene-water system are severely limited.

Four separate studies exist at ambient temperature for the solubility of l-hexene in water.

The datum ofMcAuliffe (26) appears to be slightly low. Only Economou et a1. (15)

reports measurements at elevated temperatures. For the solubility of water in I-hexene,

5
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Englin et al. (16) and Budantseva et at. (7) each:report a single measurement at ambi J1t

conditions and Economou et al (15) reports several measurements a elevated conditions.

The two studies under similar conditions (Englin et al. (16) and Budants va et al (7)) are

in reasonable agreement.

Experimental Methods

Many different methods have been employed to collect liquid-liquid equilibrium

data. A majority of the studies employ static cells to achieve equilibrium. Those

investigations using a static cell include McAuliffe (26, 27), Karlsson (23), Franks (17),

Franks et al. (18), Goldman (20), Guerrant (2i). Anderson and Prausnitz (1), Polak and

Lu (30), Chandler et al. (9), Krasnoshchekova and Gubergrits (24), Ng and Chen (29),

and Schatzberg (34). Saturated solutions are prepared in the equilibrium cell, agitated for

some time, and then allowed to separate .gravimetrically before analysis. The

investigations by Wang and Chao (40), Chen (10), Chen and Wagner (11, i 2, 13),

Bennett (4), and Stevenson et al. (37) use continuous flow apparatus, similar to the one in

this study, to obtain liquid-liquid equilibrium data.

An advantage a continuous flow apparatus has over a static equilibrium cell is that

phase compositions can be measured much more rapidly (37). Thennal decomposition of

the hydrocarbon is minimized with a continuous flow apparatus, as well (37, 40).

There have been a variety of analysis techniques used to analyze the samples.

The more common techniques include volumetric analysis (Guerrant (2 i) and

Umano and Hayano (39)), Karl Fischer titration (Polak and Lu (3D), Karlsson (23),

Tsonopoulos and Wilson (38), and Stevenson et al. (37)), ultraviolet spectrophotometry

(Bradley et al. (6), Franks et al. (18). and Arnold et al. (2)), and gas chromatography.

6
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The studies that utilized gas chromatography included Chen and Wagner (11, 12, 13),

Chen (10), Bennett (4), Polak and Lu (30), McAuliffe (26.27), Franks et al. (18),

Anderson and Prausnitz (1), Tsonopoulos and Wilson (38), Chandler et aL (9), and

Stevenson et al. (37).

Summary

The availability of liquid-liquid equilibrium data at elevated temperatures is

limited for most systems. The benzene-water system is an exceptiC?n and is used as the

benchmark when testing this new apparatus. The benzene-water system has been

thoroughly investigated, with a majority of the data collected at, or near, 298 K. There

are limited literature data available for the decane-water system and there are very few

literature data available for the l.-hexene-water system.

Many methods have been used to collect liquid-liquid equilibrium data. Static

cells and continuous flow apparatus are two of the most common methods. The analysis

techniques used to analyze the samples have also varied among studies.

7



-

CHAPTERlli

EXPERIMENTAL APPARATUS

A continuous flow apparatus has been designed and constructed to obtain mutual

solubilities of two liquid phases in equilibrium at elevated temperatures and pressures.

This apparatus is similar to the apparatus constructed by Chen and Wagner (12), with a

few improvements. The major improvement is the ability to accurately control the

hydrocarbon-water interface at elevated pressures. This minimizes the possibility of

entrainment and allows mutual solubilities at elevated temperatures and pressures to be

measured.

The experimental apparatus may be described briefly as follows. Two well-mixed

liquids are supplied to a phase separation cell, where the phases separate gravimetrically,

exit the cell, and are collected. The phase separation cell is located in a convection oven

where the final mass transfer between phases takes place. A pressurized nitrogen source

is used to pressurize the apparatus and a backpressure regulator controls the pressure.

The apparatus used in this study consists of four sections: a feed section, an

equilibration section, a separation section, and a sampling section. The feed section

supplies two pure, partially miscible fluids at a constant flow rate to the equilibration

section. In the equilibration section, the two fluids are thoroughly mixed and allowed to

come to equilibrium. The separation section is designed to allow the equilibrium phases

to separate for sample collection. The sampling section is where the two separated

8
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phases are collected. The total volume of the apparatus is approximately 120 cmJ
. A

schematic drawing of the apparatus is shown in Figure 1.

The feed section contains two reservoirs for the pure liquid feed stocks and a LCD

Analytical Type NSI-33R duplex miniPump (OPl, the abbreviations correspond to

Figure 1). The two liquids are a hydrocarbon and water. The duplex miniPump supplies

the liquids at a constant total flow rate of4.0 cm3/min with equal parts (2.0 cm3/min) of

hydrocarbon and water. The flow rate was varied to determine the effect it has on the

solubilities and no significant variation was seen in the solubilities when the flow rate

was between 1.5 and 4.5 em3/min. Flow rates in this range r;duce the formation of

emulsions in the apparatus and allow sufficient time for the two liquids to reach

equilibrium in the equilibration section. The residence time of the system is 30 min.

The equilibration section provides the necessary mixing for the two liquids to

reach equilibrium at the experimental temperature. Immediately following the duplex

miniPump is a Whitey three-way valve (VI). This valve functions as a bypass valve,

should the pump need to be primed. The two liquids then pass through approximately

6.8 m of 0.318 em-o.d. stainless steel tubing followed by 3.1 m of 0.835 em-o.d. stainless

steel tubing packed with 1.0 nun glass beads. Next. the liquid enters a 1.0 m section of

0.318 cm-o.d. stainless steel tubing before entering the oven. The oven is a Hotpack

Digimatic Model 213024, with a maximum temperature rating of 623 K. The

temperature inside the oven is controlled within ±O.1 K of the set point, as determined by

the manufacturer. A J-type thermocouple, calibrated against a Minco platinum resistance

thermometer that is NIST traceable, is used to measure the phase separation cell

temperature. Inside the oven, 15.2 m of 0.318 em-o.d. stainless steel tubing is used to

9
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allow the thoroughly mixed hydrocarbon-water mixture to come to equilibrium at the

experimental temperature before entering the separation section.

The separation section consists. of a phase separation cell (labeled as suoh in

Figure 1) located inside the oven. This cell is a 316 stainless steel Jerguson Model 12T40

Liquid Level Gage with an internal volume of 19 cm3
. The hydrocarbon-water mixture

separates into two phases inside the cell. The water phase exits through tbe bottom of the

cell, and the less dense organic phase exits through the top of the cell. The separated

phases exit the phase separation cell through individual 0.159 cm-o.d. stainless steel

capillary tubing. Capillary tubing is used to minimize dead volume, and thus, minimize

the effects of phase separation on sample composition.

The final section is the sampling section. After exiting the phase separation cell,

the water phase passes through an Autoclave Engineering micrometering valve (MY 1).

This valve is located inside the oven and controls the flow ofthe water phase out of the

phase separation cell. By controlling the water phase effluent rate, equal amounts of

hydrocarbon and water may be maintained in the cell and thus, the hydrocarbon-water

interface may be kept near the center of the cell. This minimizes the possibility of

entrainment. Each phase passes through a water-cooled heat exchanger 20.3 em in length

prior to being collected. Tap water is used on the shell side (0.635 cm-o.d. stainless steel

tubing) to effectively cool each phase to room temperature before collection. This helps

to prevent the sample from volatilizing into the vapor phase.

Elevated pressures in the apparatus are established using pressurized nitrogen gas

to create a backpressure on the system. A Grove Mity Mite S-9IXW backpressure

regulator (BPR) is used to control the pressure in the high-pressure sampling cell (el).

11
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To protect against overpressure, a spring-loaded Nupro relief alve is placed at each

possible source ofpressure. One relief valve (RV I) is located on the liquid mixture feed

line, upstream of the oven, and a second relief valve (RV2) is located on the nitrogen

stream line. The sample is collected in a glass bottle, which is placed in a 300 cm3
,

sightless, high-pressure sampling cell (Cl), pressurized by the nitrogen gas. The cell

pressure is measured at the feed port of the phase separation cell with a Sensotec STJE

pressure transducer and 450D readout. The maximum pressure of the system is limited

by the pressure transducer, which has a pressure limit of 13.8 MPa (2000 psia). The

relief valves are set at 12.4 MPa (1800 psia).

A Whitey three-way valve (V2) is located between the phase separation cell and

C1. This valve is used to divert the flow of the organic phase sample to a 400 cm3
,

sightless, high-pressure, collection cell (C2), used for waste collection. This allows

continuous flow through the system at elevated pressures while changing the sample

bottles. The blanket of nitrogen gas pressurizes C2. Two Whitey three-way valves are

used to isolate CI and C2 from the system so the nitrogen gas may be vented. The valve

V3 is used to close Cl and the valve V4 is used to close C2. This allows CI or C2 to be

lowered to atmospheric pressure while maintaining a constant elevated pressure inside

the apparatus. A detailed description of the standard operating procedures is given in

Appendix A.

12
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CHAPTER IV

EXPERIMENTAL METHODS
AND TECHNIQUES

The experimental procedure includes preparing and collecting the samples,

calibrating the instrument used for analysis, and analyzing the samples. To prepare for

sample collection, and eventual sample analysis, a solvent was added to the sample

bottles. A gas chromatograph (GC) equipped with a thennal conductivity detector (TCD)

was used- for the analysis. This instrument was calibrated by a serial dilution technique.

A weighted-least-squares regression was used to fit the calibration data and generate a

calibration curve. The calibration curve was utilized during the sample analysis to

determine the concentration of the sample.

Sample Preparation

Prior to sample collection, a known amount of solvent, by weight, was added to

the sample bottles in preparation of sample analysis. The solvent used in the water phase

samples was either decane or 2,2,4-trimethylpentane, depending on the system being

studied. Decane was used as the solvent when the hydrocarbon of interest was benzene

or I-hexene and 2,2,4-trimethylpentane was used as the solvent when the decane system

was studied. The purpose of the solvent used in the water phase was to extract the

hydrocarbon from the water so it could be analyzed in the absence of water. A

reproducible analysis was achieved by excluding water from the analysis. Water was the

13



-

solute of interest in the organic phase so it could not be excluded from th organic phase

analysis. Therefore, ethanol was used as the solvent in the organic phase samples. The

purpose of the ethanol was to homogenize the sample and allow the water to be analyzed

in the presence ofthe hydrocarbon.

To determine the amount of solvent to be added to the sample bottles, solutions of

known concentration were prepared and analyzed prior to collecting the samples. For

each system studied, two solutions were prepared for each phase. One mixture had a

composition that would be expected at the low experimental temperatures (a low

concentration solution) and the other had a composition that would be expected at the

elevated experimental temperatures (a high concentration solution). Incremental amounts

of solvent were added to both the low concentration and the high concentration solution.

After each addition, the mixtures were analyzed to.determine the effect of solvent on the

measured mole fractions. The measured concentrations gradually increased until a

plateau was reached, which was near the known concentration of the mixture. The

plateau in concentration demonstrated the optimum amount of solvent to be used.

For the organic phase of each system studied, a solvent-to-sample ratio of0.8 was

sufficient to completely homogenize the solution throughout the temperature range

studied. The fact that the optimum solvent-to-sample ratio is the same for all three

systems may be because the concentration ofwater in hydrocarbon is of the same order

of magnitude for all three systems.

The amount of solvent needed to completely extract the hydrocarbon of interest

from the water phase varied among the systems studied. In the benzene-water system,

the solvent-to-sample ratio used throughout the temperature range studied was 0.7. The

14
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optimum solvent-to-sample ratios for the decane-water system and the I-hexene-water

system were 0.003 and 0.08, respectively.

Sample Collection

The samples were collected after adding the solvent to the sample bottles to

minimize sample contact with the atmosphere and to keep from disturbing the sample

after it was collected. Three samples of each phase were collected successively at each

temperature. The organic and water phases were collected simultaneously and at a

pressure slightly above the three-phase equilibrium pressure.

Instrument Calibration

A Hewlett-Packard 5890A gas chromatograph (GC), equipped with a thennal

conductivity detector (TCD) and a Hewlett-Packard 3392A integrator, was used to

analyze the samples. A 1.8-m x 0.32-m stainless steel column packed with

GasChrom 254 was supplied by Alltech. High purity helium was used as the carrier gas.

The GC was calibrated by a serial dilution technique (see Appendix B for details).

Multiple calibration standards were prepared (by weight) and analyzed with the GC. The

range of calibration standards encompassed the experimental concentration range. The

calibration standards and samples were analyzed at the GC operating conditions listed in

Table 1. A temperature program was used in the GC analysis to provide the most

accurate and reproducible analysis in a reasonable amount oftime. Each set of

parameters was optimized individually. Sample volumes of 0.003 cm3 (3 ~L) were

injected into the Gc.
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Table 1. Gas Chromatograph Operating Conditions

Benzene-Water System

Variable Water Phase Benzene Phase

Detector Temperature, bC 300 300
Injector Temperature, °c 250 250
Initial Oven Temperature, °c 225 150
Initial Time, min. 4.75 1.25
Final Oven Temperature, °c 225 250
Final Time, min. 0.00 1.75
Rate, °C/min. 0.0 40.0
Total Gas Flow, cm3/min. 27.7 27.7

Decane-Water System

Variable Water Phase Decane Phase

Detector Temperature, bC 300 300
Injector Temperature, °c 250 250
Initial Oven Temperature, °c 200 150
Initial Time, min. 0.75 1.25
Final Oven Temperature, °c 250 250
Final Time, min. 1.50 2.00
Rate, °C/min. 40.0 40.0
Total Gas Flow, cm3/min. 27.7 27.7

I-Hexene-Water System

Variable Water Phase I-Hexene Phase

Detector Temperature, be 300 300
Injector Temperature, °e 250 250
Initial Oven Temperature, °c 180 150
Initial Time, min. 1.50 4.50
Final Oven Temperature, °c 250 150
Final Time, min. 2.75 0.00
Rate,oC/min. 40.0 0.0
Total Gas Flow, cm3/min. 27.7 27.7
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The calibration curves were pIiepared from the solute-to-solvent weight ratio as a

function of the solute-to-solvent area ratio. The data were regressed with the nonlinear

weighted-least-squares Marquardt method (8).

The uncertainty in the weight ratio, which was used as the weighting ofeach

datum, was determined by an analysis of propagated error. This is given in detail in

Appendix C. The calibration curves demonstrated good reproducibility. The average

deviation in the predicted weight ratio from the actual weight ratio was 1.7% in the

benzene-decane calibration, 1.0% in the decane-2,2,4-trimethylpentane calibration, 0.2%

in the I-hexene-decane calibration, and 0.3% in the water-ethanol calibration. Any

datum with a deviation greater than two and one half times the standard deviation was not

included in the regression.

Each calibration curve was expressed as a second order polynomial:

WR =a.AR2 + ~AR + Y (1)

-

where WR is the weight ratio, AR is the area ratio, and a., ~, and yare the regressed

parameters. The parameters are listed in Table 2. The calibration curves are shown in

Figures 2, 3,4 and 5. A detailed description of the calibration technique and the

calibration data are given in Appendix B.

Sample Analysis

Sample analyses were performed under the same GC conditions as the

calibrations. The amount of each component in a sample was given in the GC output as

area percent. This refers to the integrated area under the curve for each peak identifying

a component in the analysis and is reported as a percentage of the total area. The solute­

to-solvent area ratio was found by dividing the solute area percent by the solvent area

17
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Table 2. Gas Chromatograph Calibration Parameters

Calibration a p y (lOS)

Benzene-Decane 1.71454 1.16198 0.367
Decane-2,2,4-Trimethylpentane 0.33794 0.54680 -0.470
I-Hexene-Decane 0.61704 1.00002 1.061
Water-Ethanol 1.24061 1.13508 -1.293
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percent. The expression for the calibration curve (Equation 1) was used to detennine the

solute-to-solvent weight ratio. The weight ratio, area ratio, and molecular weight of the

solute and solvent were used to calculate the mole fraction of the sample. The solubility

calculations are explained in Appendix D.

The ethanol, used as the solvent in the organic phase, is hygroscopic and

contained small amounts ofwater. (The ethanol had a water content ofless than 0.015%,

by GC analysis). This could cause the area ratio in the organic phase samples and, in

effect, the calculated water solubility in the organic phase, to be slightly higher than the

equilibrium value; thus, a correction was required. This correction is described in

Appendix E.

A complete description of the sample preparation, sample collection, and sample

analysis is given as part of the standard operating procedures in Appendix A. The

instrument calibration is given in detail in Appendix B.

23



r

-

"

\ .
CHAPTER V

LIQUID-LIQUID PHASE EQUILffiRlA AT ELEVATED

TEMPERATURES FOR BINARAY AQUEOUS

SYSTEMS CONTAINING BENZENE,

DECANE,ANDl-HEXENE

Abstract

A continuous flow apparatus was designed and constructed to obtain liquid-liquid

mutual solubilites at temperatures from ambient to 623 K and pressures up to 13.8 MPa.

Mutual solubility data have been measured at temperatures from ambient to near the

three-phase critical end point for three hydrocarbon-water systems: benzene-water,

decane-water, and l-hexene-water. The expected uncertainty in the measurements,

determined by error propagation, was typically less than 5%. The well-documented

benzene-water system was used to benchmark the proper operation of the apparatus used.

The mutual solubilities measured for the benzene-water system deviated from the

literature values by less than 10%.

Introduction

Liquid-liquid mutual solubility data for hydrocarbon-water systems are essential

for the proper design and operation of many chemical engineering separation processes.

A common application is in the removal of water from hydrocarbon process streams in
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refineries. Environmentally harmful organic substances are remQved from wastewater

streams in refineries and petrochemical plants through the use 'Of sour water strippers

(60). Liquid-liquid extraction processes, based on the equilibration ofhydrocarbon-rich

and water-rich liquid streams, are also used (1). Increasing environmental concerns have

also led to using supercritical water, instead of organics, as the solvent in some reaction

processes and extraction methods. These processes include the destruction ofhazardous

wastes in supercritical water (55) and chemical processing in supercritical and near

critical water (30).

Many of these processes occur at elevated temperatures and pressures. While

there are sufficient data in the literature for most binary system& at ambient or near

ambient temperatures, only limited data exist at elevated temperatures.

Liquid-liquid mutual solubilities for the benzene~water, decane-water and

l-hexene-water systems were measured from ambient femperatures to near their three­

phase critical end points, as reported in the literature. Roof (51) reports the three-phase

critical end point to be at 542.6 K for the benzene-water system and at 569.3 K for the

decane-water system. For the l-hexene-water system, the three-phase critical end point is

reported by Economou et a1. (20) to be at 493.3 K.

Experimental Section

Materials. The 2,2,4-trimethylpentane (99.9+ mole %), benzene (99+ mole %),

and decane (99+ mole %) were supplied by Aldrich Chemical Co. The I-hexene

(98+ mole %) was supplied by Phillips Petroleum Co. No further purification of these

chemicals was done. Ethanol (USP grade, Absolute-200 Proof), supplied by Pharmco

Products, was dehydrated and stored over 4A molecular sieves from Fisher Chemical
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Company for at least two months prior to use. The Oklahoma State University

Biochemistry and Molecular Biology Department supplied the nanopure, deionIzed

water. High purity helium (99.997 %) and ultra-high purity nitrogen (99.999 %) were

obtained from Sooner Airgas, Inc.

Alltech supplied the screw top bottles, with open-hole caps and Teflon liners,

used for sample collection. Hamilton 10 em3 syringes, from Allteeh, were used to

prepare the calibration standards. They were thoroughly rinsed between uses with

acetone (99.7 mole %) from Fisher Scientific. Hamilton 0.01 cm3 (10 J!L) syringes were

used to inject the calibration standard and samples into the gas chromatograph. Phannco

Products provided the ACS grade methanol, used at times in combination with acetone to

clean the apparatus.

Apparatus. A continuous flow apparatus was designed and constructed for

liquid-liquid equilibrium measurements at ambient and elevated temperatures and

pressures, up to 623 K and 13.8 MPa. A schematic diagram of this apparatus is shown in

Figure 1. The apparatus consists of four sections: a feed section, an equilibration section,

a separation section, and a sampling section. The feed section supplies two pure,

partially miscible fluids at a constant flow rate to the equilibration section. In the

equilibration section, the two fluids are thoroughly mixed and allowed to come to

equilibrium. The separation section is designed to allow the equilibrium phases to

separate for sample collection. The sampling section is where the two separated phases

are collected. The total volume of the apparatus is approximately 120 cm3
•

In the feed section, a LCD Analytical Type NSI-33R duplex miniPump (DP1, the

abbreviations correspond to Figure 1) was used to pump the hydrocarbon and water
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through the apparatus, each at a constant flow rate of2.0 cml/min. These low flow rates

reduce the fonnation of emulsions in the apparatus and allow sufficient time for the two

liquids to reach equilibrium prior to reaching the phas-e separation cell.

The equilibration section provides the necessary mixing for the two liquids to

reach equilibrium at the experimental temperature. (A Whitey three-way valve (VI) is

located directly after the pump and may be used as a bypass valve when priming the

pump.) The two liquids pass through approximately 6.8 m of 0.318 cm-o.d. stainless

steel tubing followed by 3.1 m of0.835 cm-o.d. stainless steel tubing packed with

1.0 mrn glass beads. Next, the mixture enters a 1.0 m section of0.318 em-o.d. stainless

steel tubing before entering the Hotpack Digimatic Oven, Model 213024. The maximum

temperature of the oven is 623 K and it is controlled within to.1 K of the set point, as

detennined by the manufacturer. A I-type thennocouple, calibrated against a Minco

platinum resistance thennometer that is NIST traceable, is used to measure the phase

separation cell temperature. Inside the oven, 15.2 m of 0.318 cm-o.d. stainless steel

tubing is used to allow the thoroughly mixed hydrocarbon-water mixture to come to

equilibrium at the experimental temperature before entering the separation section.

The separation section consists of a phase separation cell (labeled as such in

Figure 1) located inside the oven. The cell is a stainless steel Jerguson Model 12T40

Liquid Level Gage and has an internal volume of 19 em). The hydrocarbon-water

mixture separates into two phases inside the cell, and the phases exit the cell through

individual 0.159 cm-o.d. stainless steel capillary tubing. Capillary tubing is used to

minimize dead volume, and thus, minimize the effects of phase separation on sample

composition.
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The final section is the sampling section. An Autoclave Engineering

micrometering valve (MV 1), located inside the oven, is used to control the flow of each

phase out of the phase separation cell. By directly controlling the water effluent with

MV1, equal amounts of hydrocarbon and water may be maintained in the cell and thus,

the hydrocarbon-water interface may be kept near the center of the cell. This is necessary

to prevent entrairunent. Each phase then passes through a water-cooled heat exchanger

20.3 em in length prior to being c011ected. Tap water is used on the shell side

(0.635 cm-o.d. stainless steel tubing) to effectively cool eaoh phase to room temperature

before collection. This helps to keep the sample from vapori.zing when it is collected.

Two spring-loaded Nupro relief valves are used to prevent overpressure, one at each

possible source of pressure. One relief valve (RV1) is located on the liquid mixture feed

line, upstream of the oven, and the other valve (RV2) is located on the nitrogen stream

line. The organic phase sample is collected in a glass bottle placed inside a 300 cm3
,

sightless, high-pressure sampling cell (el), which is pressurized by the nitrogen gas. The

cell pressure is measured at the feed port of the phase separation cell with a Sensotec

STm pressure transducer and 450D readout. The maximum allowable working pressure

of the system is limited by the pressure transducer, which has a pressure limit of

13.8 MPa (2000 psia). The relief valves are set at 12.4 MPa (1800 psia).

A Whitey three-way valve (V2) is located between the phase separation cell and

Cl. This valve is used to divert the flow of the organic phase sample to a 400 cm3

sightless, high-pressure collection cell (C2), used for waste collection. This allows for

continuous flow through the system at elevated pressures while changing the sample

bottles. C2 is pressurized with the nitrogen gas. Two Whitey three-way valves are used
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to isolate C I and C2 from the system so the nitrogen gas may be vented. The nitrogen

gas is vented when the sample bottle is removed from Cl or when C2 is emptied. The

Whitey three-way valve (V3) is used to close CI and the Whitey three-way valve (V4) is

used to close C2. This allows C1 or C2 to be lowered to atmospheric pressure while

maintaining a constant elevated pressure inside the apparatus.

Methods and Procedures. To prepare the samples for analysis, a known amount

of solvent, by weight, was added to the sample bottles prior to sample collection. The

organic phase sample was mixed with a nearly equal amount of ethanol. The ratio of the

ethanol to the sample, by weight, was 0.8. The ethanol functioned as a homogenizing

cosolvent for the sample and assured the sample was a single phase when analyzed. The

ethanol contained a small amount ofwater (less than 0.015%), which was accounted for

in the sample analysis.

The water phase sample was mixed with a known amount, by weight, of either

decane or 2,2,4-trimethylpentane, depending on the system being studied. Decane was

used as the solvent when the hydrocarbon of interest was benzene or I-hexene and

2,2,4-trimethylpentane was used as the solvent when the decane system was studied. The

solvent-to-sample weight ratios of the systems studied were 0.7 for the benzene-water

system, 0.003 for the decane-water system, and 0.08 for the I-hexene-water system. The

purpose of the solvent used in the water phase was to extract the hydrocarbon from the

water so it could be analyzed in the absence of water.

The samples were collected after adding the solvent to the sample bottles in order

to minimize sample contact with the atmosphere and to keep from disturbing the sample

after it was collected. At each temperature, three successive samples of each phase were
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collected. The organic and water phases were collected simultaneously and at a pressl.lre

slightly above the three-phase equilibrium pressure.

A Hewlett-Packard 5890A gas chromatograph (GC), equipped with a thennal

conductivity detector (TCD) and a Hewlett-Packard 3392A integrator, was used to

analyze the samples. A 1.8-m x 0.32-m stainless steel column packed with

GasChrom 254 was supplied by Alltech. High purity helium was used as the carrier gas.

Sample volumes of0.003 cm) (3 J,lL) were analyzed.

The GC was calibrated by serial dilution techniques and a calibration curve was

generated. The calibration curves were prepared from the solute-to-solvent weight ratio

as a function of the solute-to-solvent area ratio. The data were regressed with the

nonlinear weighted-least-squares Marquardt method (12). The weighting of each datum

was determined by an analysis of propagated error. Each calibration curve was expressed

as a second order polynomial:

·.
•· ~
•··.·

to-solvent weight ratio. The solute-to-solvent weight ratio, WR, solvent-to-sample

weight ratio, SSR, and the molecular weights of the solute, MW I, and solvent, MW2,

parameters. This expression was utilized in the sample analyses to detennine the solute-

(1)WR = aAR2 + ~AR + 'Y

where, WR is the weight ratio. AR is the area ratio, and a, ~, and 'Yare the regressed

were used in the following expression to calculate the mole fraction of the solute in the

sample.

(2)
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A complete description of the apparatus and the operating procedures and t chniques is

given by Ratzlaff (47).

The parameters for each system were determined by a weighted-least-squares regression,

in which all the measured data points were included in the initial regression. The results

were then analyzed and any data point with a weighted deviation greater than 2.5 times

the standard deviation was rejected from the data set. The final regression was performed

on the reduced set of data to yield the parameters shown in Table 2. The weighting of

each datum during the regression was determined by an analysis of propagated error.

For very dilute solutions (where the activity coefficient for water in the aqueous

phase and hydrocarbon in the organic phase may be taken as equal to one), the heat of

solution may be expressed by the Gibbs-Duhem equation (58):

Results and Discussion

The mutual solubility data are reported in Table I and are presented graphically in

Figures 2-19. The uncertainties associated with the data are presented as error bars when

the error bar is larger than the symbol. By propagated error analysis, the maximum

uncertainty in the water phase measurements ranges from 5 to 20% in the three systems

studied. The maximum uncertainty in the organic phase measurements ranges from 2 to

32%. The highest uncertainties are seen in the very slightly soluble decane-water system.

Hydrocarbon Solubility in Water. The hydrocarbon solubility data are correlated

by an expression previously evaluated by Benson and Kraus (7) and used by Chen and

Wagner (16). This expression correlates the mole fraction of hydrocarbon, Xi, as a

function of temperature, T, as follows:

In X; = A+BT-1 +CT-2 (3)
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(
aln x;) == Mf;

aT p RT2 (4)

where Mf;. the heat of solution, is the difference between the partial molar enthalpy of

component i in solution and the pure molar enthalpy of i. Thus, Mf; is the excess

enthalpy of component i. The heat capacity of solution. IiCp, , may be defined as:
I

(aMi;J = IiC
aT p,

p

(5)

where !i.Cp, is the difference between the partial molar heat capacity of component i in

298.15 K and the estimated minimum solubility temperatures of the various systems

and solving for the temperature. The enthalpies and heat capacities of solution at

studied are listed in Table 2. Derivative data, such as those calculated in this study from

(6)(
alnX;) =0

aT p

compared to the calorimetric data only to determine the general quality of the solubility

Equations 4 and 5 are very sensitive to the solubility measurements and are, thus,

Thus, the minimum temperature may be estimated by setting Equation 4 equal to zero

solution and the pure molar heat capacity of i. This is the excess heat capacity. The

minimum solubility of hydrocarbon in water is determined when:

data.

Water Solubility in Hydrocarbons. The data for the water solubility in

hydrocarbons were also correlated by an equation expressing the mole fraction of water

in hydrocarbon, xw, as a function of temperature, as follows:

lnxw =A + BT-1 + CloT (7)
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This empirical equation is a generalized form ofthe Valentiner equation (7) and has been

used by many investigators, including Franks et at (22) and Moule and Thurston, (40).

The water parameters of each system were detennined in the same fashion as the

hydrocarbon parameters. A weighted-least-squares regression was used and all the

measured data points were included in the initial regression. After analyzing the results,

any data point with a weighted deviation greater than 2.5 times the standard deviation

was rejected from the data set. The parameters shown in Table 3 were detennined from

the final regression performed on the reduced set ofdata. The weighting of each datum

was determined by an analysis ofpropagated error.

The heat of solution of water in hydrocarbon can be calculated from Equation 4

and the specific heat of solution from Equation 5, at 298.15 K. These derivative data are

presented in Table 3 with the solubility parameters. Water solubilities in the

hydrocarbons do not display a minimum solubility temperature.

Benzene Solubility in Water. The measured benzene solubility in water is shown

in Figure 2. The abundance of benzene-water data allows for detailed comparisons at

temperatures near ambient, but the upper temperature range (>373 K) has not been

investigated as thoroughly. The evaluations ofHefter (28) and Wagner (62) have been

used to determine the quality of the data.

Equation 3 was used to correlate the benzene solubility measurements. The

measurement taken at 492.8 K was not included in determining the equation parameters

since it had a weighted deviation greater than 2.5 times the standard deviation. The

weighted deviations are shown in Figure 3, with the exception of the measurement at

492.8 K since it was not included in the regression.
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The solubility measurements .£rom this study have an uncertainty 'of 1.5% or less,

as estimated by error propagation, and agree within 10% of the literature data at the lower

temperature measurements. In the higher temperature range, where fewer solubility

studies exist and there are no "recommended" values, the measurements from this study

are within 10% ofAnderson and Prausnitz (1). The percent deviations from the

correlation are shown in Figure 4.

From Equation 4, the heat of mixing at 298.15 K is 0.96 kJ/mole. This does not

agree within uncertainty limits with the calorimetric heat 'Of solution reported by

Reid et al. (49), (0.80 ± 0.12) kJ/mole, or with the value reported by Gill et al. (24),

(2.08 ± 0.04) kJ/mole. The second derivative property, the specific heat of solution, is

287.0 J/mole-K. This does not agree within uncertainty limits with the calorimetric

specific heat of solution reported by Gill et at. (24), (225 ± 5) J/mole-K. From

Equations 3 and 6, the temperature at which the minimum solubility of benzene in water

occurs is 295 K. This is not consistent within the uncertainty limits with the minimum

temperature reported by Gill et al. (24), (289.0 ± 0.2) K.

Water Solubility in Benzene. The solubility ofwater in benzene is shown in

Figure 5. An abundance of solubility data for water in benzene exists in the literature at

atmospheric pressures. Hefter (28) notes the more recent studies tend to be slightly

higher in solubility than previous studies and with considerably smaller uncertainty.

The water solubility measurements were correlated with Equation 7. The

measurements taken at 388.0 K and 474.2 K were not included in the regression because

their weighted deviations were greater than 2.5 times the standard deviation. The
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weighted deviations are shown in Figure 6. The weighted deviations at 388.0 K and at

474.2 K are not shown since they were not included in the regression.

The measurements from this study have an expected uncertainty ranging from

1.5 to 10.5%. The low temperature measurements from this study agree within ~% of th

single measurements ofPolak and Lu (45), Kirchnerova and Cave (31), and Singh and

Sah (56) at 298 K and are within 8% of the measurements of Goldman (25). At higher

temperatures, the measurements of this study are 8% higher, on average, than those of

Tsonopoulos and Wilson (60) and 13% higher, on average, than those of Anderson and

Prausnitz (1). The percent deviations from the correlation are shown in Figure 7.

From Equation 4, the heat of solution is detennined to be 21.8 kJ/mole, at

298.15 K. This agrees well with the theory stated by Franks (23) that liquid water

dissolving into a non-polar hydrocarbon liquid phase is essentially a process of breaking

hydrocarbon bonds. The energy associated with a hydrogen bond is 21-29 kJ/mole. The

heat capacity of solution at 298.15 K is estimated to be 77.3 J/mole-K, from Equation 5.

This is consistent with the solubility derivative datum ofChen and Wagner (16) at

298.15 K, which is reported as 78.3 J/mole-K, based on the common uncertainty in heat

capacity estimates of at least ±1 J/mole-K.

Decane Solubility in Water. Decane is four orders of magnitude less soluble in

water than benzene is. According to Tsonopoulos and Wilson (60), the least soluble

hydrocarbons in water are the paraffins and Franks (23) reports the solubility of

hydrocarbons in water decreases with an increase in paraffin chain length. This low

solubility makes it difficult to make accurate measurements. The data from this study are
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shown in Figure 8. The solubility parameters. were regressed using Equation 3. The

weighted deviations are shown in Figure 9.

The solubility measurements from this study have an expected uncertainty ofless

than 3%, with the exception of the four lowest temperature measurements. which have an

uncertainty of 10 to 32%. These new data show more scatter about the correlating line

and lack the quality and reproducibility the other binary systems demonstrated during this

study. This is due to the very low solubilities. The percent deviations from the

correlation are shown in Figure 10. The datum of Mackay et aL (36) at 298.2 K and the

data ofNg and Chen (43) at 310.9 K and 394.3 K deviate by more than 500% from the

correlation and are not shown in Figure 10.

The heat of solution, at 298.15 K, is 4.41 kllmole and the specific heat of solution

is estimated to be 722.5 J/mole-K. The minimum solubility is calculated to be at 292 K.

There are no literature calorimetric data for comparison.

Water Solubility in Decane. The solubility data for water in decane are shown in

Figure 11. These measurements have a maximum uncertainty of almost 20% at the

lowest temperature and less than 4% uncertainty at the elevated temperatures. Equation 7

was used to regress the solubility parameters. The weighted deviations and the percent

deviations are shown in Figures 12 and 13. respectively. The measurements recorded at

363.2 K and at 440.3 K had weighted deviations greater than 2.5 times the standard

deviation and were neither included in the regression nor included in the plot of weighted

deviations in Figure 12. The elevated temperature data of Guerrant (26) deviate less than

6% from the correlating line. The datum ofBecke and Quitzsch (5) at 298.15 K deviates

from the data of this study by more than 350% and is not shown in Figure 13.
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The heat of solution at 298.15 K is calculated to be 26.6 kl/mole. This value is

expected if the energy is a result of the hydrogen bond breaking, but is low compar d to

the calorimetric heat of solution reported by Nilsson (44) of (37.1 ± 1.9) kl/mole. The

heat capacity of solution at 298.15 K, from Equation 5, is 84.1 J/mole-K. There is not a

calorimetric comparison in the literature.

I-Hexene Solubility in Water. The literature contains four measurements at

ambient temperatures (11, 34, 39, 42) and one investigation (20) reports several

measurements at elevated temperatures. As shown in Figure 14, the measurements of

this study are in agreement with the literature data at ambient temperatures and verify the

trend in solubility reported by Economou et a1. (20). The solubility parameters were

regressed using Equation 3. The datum at 434.9 K was not included in the regression

since it had a weighted deviation greater than 2.5 times the standard deviation. The

weighted deviations are shown in Figure 15, with the exception of the datum at 434.9 K

since it was not used in the regression. The maximum uncertainty in the reported

measurements is 2%. The percent deviations from the correlating line are shown in

Figure 16.

From Equation 4, the estimated heat of solution is -1.38 klIma Ie and the specific

heat of solution is 443.1 J/rnole-K at 298.15 K. The minimum solubility temperature is

301 K. There are no literature calorimetric data for comparison.

Water Solubility in I-Hexene. The solubility of water in l-hexene is shown in

Figure 17. Equation 7 was used to correlate the solubility data and all the measurements

were used in the regression. No measurement was reported at 353.5 K because it was in

obvious error. The weighted deviations are shown in Figure 18. The percent deviations
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from the correlation are presented in Figure 19. The maximum uncertainty in the

solubility measurements is 5%. At 298.15 K, the heat of solution is 23.1 kllmole and the

specific heat of solution is 77.5 J/mol-K. There are no literature calorimetric data for

companson.

Conclusions

A continuous flow apparatus was designed and constructed to measure mutual

solubilities at temperatures ranging from ambient to 623 K and pressures up to 13.8 MPa.

Mutual solubilities for the binary systems ofbenzene-, decane- and 1-hexene-water have

been measured at temperatures from ambient to near the three-phase critical end point.

Experimental pressures were slightly above the three-phase values. The measurements

were compared with reliable literature data for the well-documented benzene-water

system to demonstrate the accuracy of the solubility measurements obtained with the new

apparatus; agreement is within 10%. A propagated error analysis was performed and the

maximum expected uncertainty in the solubility measurements is about 30%. The

maximum expected uncertainty is less than 5% for the majority of the experimental

conditions.

Enthalpies of solution for the hydrocarbons dissolving in water, which are

estimated from the solubility measurements, do not agree within uncertainty limits with

calorimetric measurements from the literature. The enthalpies of solution for the water

dissolving in the hydrocarbons were within the range of the hydrogen bonding energies.
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Nomenclature

a, ~,y constants in calibration correlations

WR weight ratio

AR area ratio

A,B,C constants in solubility correlations

Xj mole fraction hydrocarbon i

Xw mole fraction water

T temperature (K)

R ideal gas constant
~•

/).JI; heat of solution (kJ/mole) ..
l..

!1Cp specific heat of solution (J/mole-K),

J.. ,.
I)....
t)

~ .."."',
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Table 1. Mutual Solubilities for Hydrocarbon-Water Systems

Benzene-Water System
Temperature Pressure

(K) (MPa) Xbenune (104
) % Uncertainty Xwater (1 0

2
) % Uncertainty

296.4 0.139 4.10 0.676 0.289 10.4
328.5 0.139 4.90 1.54 0.656 6.09
358.8 0.217 7.29 0.782 1.59 4.92
388.0 0.555 11.2 0.524 3.66' 3.87
416.8 1.019 18.8 0.704 6.00 2.21
445.8 2.018 30.8 0.535 12.3 2.40
474.2 3.454 52.5 1.27 20.1' 1.34,
492.8 6.823 76.2 1.15 33.7 1.59

..
Decane-Water System ..

~,..
Temperature Pressure ~

(K) (MPa) Xdecane (1 0
6
) % Uncertainty Xwater (102

) % Uncertainty 3
)

295.5 0.173 0.0324 32.1 0.0568 19.2 ~'I
323.5 0.150 0.0242 18.7 0.155 14.6
363.2 0.160 0.0549 19.3 0.324' 8.42 ;.
402.9 0.367 0.469 10.2 1.35 6.11 ,.

4.78'
)

440.3 0.967 2.14 2.49 1.56 ....
477.3 2.350 11.8 2.19 9.14 2.85

..,
513.8 4.762 61.6 1.70 18.3 1.51

~...
)

542.3 7.857 195. 1.35 34.9 3.34 \,..
t·..

I-Hexene-Water System ..•
Temperature Pressure

\
)

(K) (MPa) Xl-hexene (105
) % Uncertainty Xwater (102

) % Uncertainty
296.4 0.154 1.19 1.07 0.176 5.11

328.4 0.156 1.44 2.04 0.347 2.31

353.5 0.294 2.20 1.77
383.5 0.607 3.92 0.810 1.44 3.25

407.2 1.049 6.88 0.914 2.43 4.16

434.9 2.025 14.4' 0.867 5.07 1.99

463.5 3.518 29.2 1.05 9.99 3.80

486.7 5.676 52.5 1.18 17.3 1.71

* Not used in the regression of the solubility parameters because it contained a weighted
deviation of greater than 2.5.
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Table 2. Derivative Data for Hydrocarbon Solubilities

tJI. 6Cp•

Parameters in Equation 3 kllmole J/mole-K Tmin•

Solute A B,K C.K2 at 298.15 K at 298.15 K K
Benzene 9.852 -1.041E+04 1.534E+06 0.96 287.0 295
Decane 27.099 -2.644E+04 3.863E+06 4.41 722.5 292
I-Hexene 14.758 -1.573E+04 2.369E+06 -1.38 443.1 301
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Table 3. Derivative Data for Water Solubilities

Hydrocarbon
Benzene
Decane
l-Hexene

Parameters in Equation 7
A B,K C,K2

-93.000 1853.0 14.217
-64.435 -18.385 10.112

-124.40 3483.0 18.661
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. A continuous flow apparatus has been designed and constructed to facilitate

liquid-liquid equilibrium measurements at temperatures from ambient to 623 K and at

pressures from ambient to 13.8 MPa. This is significant, since only a limited number of

investigations in the literature report solubility data at both ambient and elevated

conditions.

2. A standard operating procedure was developed, along with accurate sampling

and analytical techniques, which produced consistent data.

3. Mutual solubilities were measured for three binary systems: benzene-water,

decane-water, and I-hexene-water. The measurements were made near the three-phase

equilibrium curve from ambient temperature to near the three-phase critical end point of

the mixture of interest. A comparison of the benzene-water data to well-documented

literature data verified the accuracy of the data obtained with this apparatus and

experimental procedure.

4. An error analysis was performed to determine the reliability of the apparatus

and procedure. The error associated with the gas chromatograph analysis accounted for a

majority of the total uncertainty. The maximum expected uncertainty was about 30% for
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the very low decane solubility in water. For the majority of the experimental dat th

expected uncertainty was less than 5%.

Recommendations

A functional apparatus, the associated operating procedures, and sampling and

analytical techniques have been developed for future liquid-liquid equilibrium studies at

ambient and elevated temperatures and pressures. To continue to progress in this field of

research, a few recommendations are given below:

1. Succeeding studies should focus on obtaining mutual solubility data for binary,

ternary, and multicomponent systems that have not been completely investigated. The

primary focus should be on obtaining liquid-liquid equilibrium data at elevated

temperatures, since this is often the area that has not been studied.

2. To allow investigators to spend time on more challenging tasks, the analysis

could be set up to accommodate an autosampler for GC analysis of the calibration

mixtures. This automation would allow for multiple analyses of each mixture without

requiring the investigator to spend the time to perform this tedious task.

3. A recycle stream would be an environmentally conscious addition to the

apparatus. This would reduce the amount ofwaste generated and would help to keep

chemical costs down.

4. The apparatus in its current configuration provides sufficient mixing for

accurate mutual solubility measurements, but a more effective means of mixing would be

for all the mixing to take place inside the oven at the experimental temperature. This

would require the nearly 10m of initial mixing, currently outside the oven, to be
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relocated inside the oven. The relief valve (RVl) should remain outside the oven and be

placed directly after the Whitey three-way valve (VI).
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APPENDIX A

STANDARD OPERATING PROCEDURES

As part of this study, a set ofoperating procedures and sampling and analytical

techniques has been developed to accompany the apparatus used in this study to obtain

liquid-liquid equilibrium data. These procedures and techniques are described here.

I. Start-Up

A. Load the Backpressure Regulator

Before sampling at elevated temperatures and pressures, the hydrocarbon-water

system must be raised to a pressure greater than the mixture vapor pressure. This is

accomplished by applying a nitrogen blanket to the system, controlled by a backpressure

regulator (BPR). To control the pressure, BPR must be "loaded" to the desired system

pressure by the following steps:

1. Tum the Whitey three-way valve (V9) so the nitrogen gas flows to BPR.

2. Tum the setscrew on BPR labeled "load" counterclockwise to allow the nitrogen to

fill the diaphragm of BPR.

3. To reach the desired pressure in BPR, increase the pressure from the nitrogen source.

The pressure gauge (P4) will reflect the change in pressure.

4. When the desired control pressure is reached, isolate the diaphragm by turning the

setscrew on BPR labeled "load" clockwise until resistance is met.
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B. Isolate the Apparatus

Before pressurizing the system, the apparatus must be isolat d from the

atmosphere. The following accomplishes this:

5. Close the Parker CPI needle valves (V6 and V7) and tum the Whitey three-way valve

(V4) so nitrogen is not vented to the atmosphere.

6. Tum the Whitey three-way valve (V2) to direct the organic phase sample flow to the

waste collection cell (C2).

7. Connect the water phase sample line to the Whitey three-way valve (V8) via a

0.318 cm-o.d.-tubing sleeve.

8. After tightening the Swagelok fittings on the connection, turn V8 so the sample

tubing is opened to the system pressure. This acts as a shutoff-valve for the water

phase sample.

C. Pressurize the System

The system may now be pressurized. The apparatus is designed so BPR is set at

the desired experimental pressure. The nitrogen source regulator must be set at a slightly

higher pressure so a small amount of nitrogen will flow past BPR to the atmosphere.

This effectively controls the system pressure by allowing a constant flow of nitrogen to

pressurize the apparatus while the excess nitrogen is vented to the atmosphere. The

fo llowing steps should be taken to pressurize the system:

9. Tum V9 so the nitrogen flows to the system.

10. The system pressure may be adjusted by turning the regulator on the nitrogen source.

The Sensotec 450D pressure readout (PI) will reflect the change in pressure.
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11. If BPR has been set too high initially I it may need to be reset to a lower pressure in.

order for the system pressure to be accurately controlled.

12. To lower the pressure in BPR, tum the setscrew on BPR labeled ''vent''

counterclockwise. The pressure gauge (P4) will reflect the change in pressure.

13. When the desired system pressure has been reached, close the vent by turning the

setscrew clockwise until resistance is met.

D. Prepare to Collect the Sample

Once the desired pressure has been set, additional preparation steps should be

followed:

14. Set the oven temperature to the desired temperature.

15. Once the desired temperature has been reached, tum on the duplex pump (DP1) and

flush the system with at least one system volume (120 cm3
) of the hydrocarbon-water

mixture. The pump should never be started against pressures in excess of6.9 MPa

(1000 psi) and should never be run dry.

16. Vent the 0.159 cm-o.d. stainless steel tubing (water phase sample) by opening V8 to

the atmosphere.. This may allow some water phase sample to exit from V8 so a waste

bottle should be placed under this valve when venting to collect the small amount

released.

17. Remove the water phase sample line from V8. This will allow the water phase to exit

from the bottom of the phase separation cell and through the water phase sample

tubing.

18. Adjust the Autoclave Engineering micrometering valve (MVl) inside the oven to

control the hydrocarbon-water interface level in the phase separation cell. The
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hydrocarbon-water interface should be kept near the level of the iniet, which. i.s the

center of the phase separation celL If this is accomplished, the water phase outlet

flow rate will be equal to the water feed rate. Never use MVl as a shutoff valve;

closing the valve beyond the zero position will damage the stem and/or the Teflon

packing inside the valve.

E. Prepare the Sample Bottles

Before collecting the samples, the sample bottles should be prepared in the

following manner:

19. Number and weigh each empty sample bottle, including the cap and Teflon liner.

20. Add the solvent to the sample bottles. Ethanol is the solvent used in the organic

phase samples. Decane or 2,2,4-trimethylpentane is the solvent used in the water

phase samples.

21. Weigh the capped sample bottle with the solvent to detennine the weight of the

solvent.

22. Place the water phase sample bottle in an ice bath. The ice bath is used to minimize

vaporization of the volatile hydrocarbon.

23. Uncap the organic phase sample bottle and place the bottle in the sampling cell (Cl).

24. Close Cl with the bottle in it and the organic phase sample tubing inserted into the

bottle.

25. Close the Parker CPI needle valve (V5) and tum the Whitey three-way valve (V3) so

the nitrogen flows to Cl. This will pressurize Cl. The pressure differential between

the system pressure and the pressure in CI will cause nitrogen to flow from the rest of

the apparatus, along with the nitrogen from the nitrogen source; thus, causing the
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system pressure to drop when Cl is pressurized. Therefore, the flo ofnitr.og n into

Cl should be controlled with V3 so the system pressure does not drop below the

mixture vapor pressure when pressurizing C 1.

II. Sampling

F. Collect the Sample

After placing the organic phase sample bottle in Cl and pressurizing it to the

elevated system pressure, the sample may be collected by taking the following steps:

26. Turn V2 so the organic phase sample is directed to the sample bottle in Cl.

27. Direct the water phase sample tube through the Teflon liner and cap and into the

bottle in the ice bath. The bottle is capped to prevent any contact with the

atmosphere.

28. Fill the bottles to the neck to reduce headspace and to keep mass transfer to the vapor

phase at a minimum. The liquid level in the water phase bottle can be detennined by

sight. The liquid level in the organic phase bottle is detennined from the organic

phase flow rate, since it is collected in a sightless cell ..

29. When the water phase sample bottle is full, remove the sample tubing from the bottle

and cap it with the original cap and Teflon liner.

30. When the organic phase sample bottle is determined to be full, tum V2 to direct the

organic phase sample flow to C2.

31. Tum V3 so C I is closed off from the flow of nitrogen.

32. Open V5 so Cl depressurizes slowly. Venting too quickly could lead to vaporization

of the sample.

33. Once CI has been completely vented, open C1.
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34. Remove the organic phase sample bottle and cap it with the original cap and Teflon

liner.

III. Shut Down and Preventive Maintenance

G. Shut down the Apparatus

After sampling has been completed, the apparatus should be shut down and left in a

state ready to begin sampling with minimal preparatory time.

35. Connect the water phase sample line to V8.

36. Pressurize this line by opening V8 to the system pressure. This prevents liquid from

leaking out of the apparatus via the water phase sample line.

37. Turn V2 to direct the flow of the organic phase to either Cl at system pressure or C2

at system pressure.

38. Turn offDPl.

H. Preventive Maintenance

As preventive maintenance, C2 should be emptied periodically to keep from

overfilling it by following this procedure:

39. Make sure Cl is closed, then turn V2 to direct the organic phase sample flow to CI.

40. Turn the Whitey three-way valve (V4) so C2 is isolated from the flow ofnitrogen.

41. Open the Parker CPI needle valve (V6) to vent C2.

42. Once C2 has been vented, open the Parker CPI needle valve (V7) to empty the

contents of C2 into a waste bottle.

43. After emptying C2, close V7 and V6.
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44. Tum V4 so the nitrogen flows to C2. This will pressurize C2. The pressure

differential between the system pressure and the pressure in C2 will cause nitrogen to

flow from the rest of tbe apJUU1ltus, along with the nitrogen from the nitrogen source;

thus, causing the system pressure to drop when C2 is pressurized. Therefore, the flow

ofnitrogen into C2 should be controlled with V4 so the system pressure does not drop

below the mixture vapor pressure when pressurizing C2.

IV. Sample Analysis

1. Prepare to Analyze the Sample

After the samples have been collected, the following procedure should be employed:

45. Weigh the organic phase and water phase sample bottles to determine the sample

weight.

46. Shake the sample bottles vigorously. The organic phase is shaken to homogenize the

hydrocarbon/water/ethanol mixture, while the water phase is shaken to extract the

hydrocarbon from the water.

47. Refrigerate the water phase for several hours to allow the less dense extractant to

separate from the water. The chilled environment helps to prevent the volatile

hydrocarbon from vaporizing.

J. Analyze the Sample

The samples are analyzed as follows:

48. The organic phase may be analyzed immediately after collection.

49. Inject 0.003 cm3 (3 J.1L) of the homogenous organic phase into the gas chromatograph

(GC) for analysis. The only peaks of interest in the GC analysis of the organic phase
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are those of water and ethanol, since the calibration curve is prepared from the water­

ethanol weight ratio as a function of the water-ethanol area ratio.

50. After the water phase sample has separated into two phases (extractant phase and

water phase), inject 0.003 crn] (3 I-lL) of the extractant phase into the GC for analysis.

The peaks of interest in the GC analysis of the water phase are those of the solute and

solvent, since the calibration curve is prepared from the solute-to-solvent weight ratio

as a function of the solute-to-solvent area ratio.

51. Rinse the syringe with the solution to be analyzed to prevent cross-contamination

between sample bottles.
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APPENDIXB

CALIBRATION TECHNIQUE AND DATA

The gas chromatograph (GC) is calibrated by a serial dilution technique. This

entails diluting a fixed amount oftbe solute with increased proportions of the solvent

through a series ofdilutions. The weights of the solute and solvent are recorded to

determine the solute-to-solvent weight ratio of each dilution. The mixtures are analyzed

to obtain the corresponding solute-to-solvent area ratio. A calibration curve is then

produced yielding the weight ratio as a function of the area ratio. A schematic diagram

of the calibration technique is shown in Figure B-1.

Procedure

Dilutions of the organic in either decane or 2,2,4-trimethylpentane are prepared to

calibrate the GC for the water phase samples and dilutions of water in ethanol are

prepared to calibrate the GC for the organic phase samples. All solutions are prepared

gravimetrically in 16 cm3 vials. First, the empty vial is weighed. Next, the solvent is

added to the vial and the vial is reweighed to get the weight of the solvent. After this, the

pure solute is added if the dilution is the first in the series of dilutions; otherwise, a

portion of the previous dilution, the diluent, is added to the solvent in the vial. The vial is

weighed again to get the weight of the solute. Immediately after preparing the dilution, it

is analyzed by gas chromatography. The vial is placed in an ice bath to reduce
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Figure B-l. Schematic Diagram of the Calibration Technique
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evaporation while analyzing the dilution. When analysis is complete, the next dilution is

made in the same fashion (weigh the empty vial, weigh the vial with solvent, weigh the

vial with solvent and diluted solute) and analyzed.

The same Hamilton 10 cm3 syringe is used to make each serial dilution so it is

rinsed with acetone between dilutions and allowed to dry in air. The syringe is then

flushed with the solution to be transferred before making the next dilution. This

eliminates cross-contamination. The vials are filled to the neck to reduce the effects of

headspace evaporation.

Material Balance

A material balance is used to determine the mass of the solute and the mass of the

solvent in each calibration mixture. The weight ratio of the i lh dilution, WR;. is the

weight of the solute in the mixture, A;, divided by the weight ofthe solvent in the

mixture. B;:

WR.=A;
I B.

I

(8-1)

The dilution is made up of pure solute, A, and pure solvent, Bi , if it is the initial

dilution in the series; otherwise, the solvent is mixed with the diluent, Di . The diluent,

D;, is a fraction, x, of the previous mixture and consists of solute from the previous

dilution, A.I, and solvent from the previous dilution, B;.1:

D. = x(A. I + B. I)I J- ,-
(B-2)

As the series of dilutions progress, the amount of solute in each dilution decreases; hence,

serial dilution. Equation B-1, may be written as:
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Equation B-2 is rearranged to express it in terms ofAi-I:

but, from Equation B-1 :

so,

In terms of AI_I, Equation B-6 is:

x(A_ )= D( WRi _ 1
)

I I I 1+ WR
I
_

1

Equation B-2 is rearranged to express it in terms ofB i -1:

but, from Equation B-1 :

D,

(
, ) = WRi _1 + 1

X B
i
_1

In tenns ofBi- l , Equation B-9 is:

X(B;_I) = D;( 1 )
I+WR;_I

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B-IO)

•

t

Combining Equations B-3, B-7, and B-I0 results in a general equation for the

calibration weight ratio:
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A. + D.( WRi _1 )
I I l+WR.

WRj = (1 '-1)
B.+D. ---

I I 1+ WR;_I

This expression is rearranged:

{
(A;Xl + WR;_I)+(D;XWR;_I)}

WR. = 1+ WR;_I

I {(BiXl+WRi_t)+Di}
l+WRi_1

or,

WR = (A; Xl +WRj-J)+ (DJWR j _ 1 )

I (BJ1 + WRi-I)+ Dj

(B-ll)

(B-12)

(B-13)

where, WR,. is the solute-to-solvent weight ratio, Ai is the weight of the pure solute, Bi is

the weight of the pure solvent, WRi-1 is the solute-to-solvent weight ratio of the previous

dilution, and D,. is the weight of the diluent from the previous dilution added to the /h

dilution.

The calibration data are listed at the end of the appendix in Table B-l. The

uncertainty in the weight ratio was detennined by an analysis of propagated error, which

is described in Appendix C. This uncertainty was used as the weighting of each data

point in the nonlinear weighted-least-squares regression of the calibration data.
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Sample Calculation (Benzene-Decane)

1st Mixture

Al = 2.6180 grams B) = 8.6591 grams ~ = 0.0000

WR.. =~ = 2.6180 =0.302
B] 8.6591

2nd Mixture

A z = 0.0000 grams B2 =5.4221 grams WR) = 0.3023

WR = (O.OOOOXI+ 0.3023)+ (5.5531XO.3023) = 1.6787 =0.1331
2 (5.4221Xl+0.3023)+5.5531 12.6143

3rd Mixture

A3 = 0.0000 grams B3 T 5.4063 grams WRz = 0.1331

W~ = (O.OOOOXI + 0.1331)+ (5.4198X0.1331) = 0.7214 = 0.0625
(5.4063Xl + 0.1331)+ 5.4198 11.5457

4th Mixture

~ = 0.0000 grams B4 = 5.4058 grams WR3 =0.0625

WR = (O.OOOOXI + 0.0625)+ (S.4691XO.062S) = 0.3418 = 0.0305
4 (5.4058Xl + 0.0625)+ 5.4691 11.2128

5th Mixture

As = 0.0000 grams Bs = 5.4173 grams ~ = 0.0305

WR = (0.0000Xl + 0.0305)+ (5.3574XO.0305) = 0.1634 = 0.0149
5 (5.4173Xl+ 0.030S)+S.3574 10.9399
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6th Mixture

A6 = 0.0000 grams B6 = 5.4232 grams WRs = 0.0149

WR = (O.OOOOXI + 0.0149)+ (5.2467XO.0149) = 0.0782 = 0.0073
6 (S.4232X1 +0.0149)+ 5.2467 10.7507

7th Mixture

A7 = 0.0000 grams B7 = 5.4115 grams ~ =0.0073

WR = (O.OOOOXI + 0.0073)+ (5.2S00XO.0073) = 0.0383 = 0.0036
7 (S.411SXl + 0.0073)+ 5.2500 10.7010

8th Mixture

Ag = 0.0000 grams Bg = 5.7647 grams WR7 = 0.0036

WRg = (0.OOOOX1+0.0036)+(4.9804XO.0036) = 0.0179 =0.0017
(5.7647X1 + 0.0036)+ 4.9804 10.7659
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Table B-1. Calibration Data

Benzene-Decane Calibration

Area Ratio
0.2003
0.0502
0.0253
0.0126
0.0062
0.0030
0.0014

Weight Ratio
0.3023
0.0625
0.0305
0.0149
0.0073
0.0036
0.0017

Uncertainty in the
Weight Ratio

0.00274
0.00027
0.00014
0.00005
0.00003
0.00003
0.00002

Decane-2,2,4-Trimethylpentane Calibration

Area Ratio
0.0601
0.0203
0.0102
0.0051
0.0026
0.0013
0.0006
0.0003
0.0002

Area Ratio
0.1703
0.0809
0.0397
0.0197
0.0098
0.0049
0.0024
0.0012

Weight Ratio
0.0341
0.0113
0.0056
0.0028
0.0014
0.0007
0.0004
0.0002
0.0001

I-Hexene-Decane Calibration

Weight Ratio
0.1882
0.0849
0.0406
0.0200
0.0099
0.0049
0.0025
0.0012
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Uncertainty in the
Weight Ratio

0.00017
0.00008
0.00006
0.00004
0.00003
0.00003
0.00003
0.00003
0.00002

Uncertainty in the
Weight Ratio

0.00115
0.00020
0.00019
0.00005
0.00003
0.00003
0.00002
0.00G02



Area Ratio
0.2131
0.1060
0.0527
0.0273
0.0130
0.0065
0.0033
0.0017

Water-Ethanol Calibration

Weight Ratio
0.2990
0.1335
0.0631
0.0307
0.0152
0.0075
0.0037
0.0019

, '
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Uncertainty in the
Weight Ratio

0.00215
0.00145
0.00147
0.00039
0.00012
0.00023
0.00016
0.00009



APPENDIXC

PROPAGATED CALffiRAnON ERROR

In the calibration of the gas chromatograph, the solute-to-solvent weight ratio is

measured and given as a function of the solute-to-solvent gas chromatograph area ratio.

Thus, the weight ratio is a function of the weight measurements and the area ratio. The

weight ratio, as a function of the weight measurements, is shown in the governing

material balance equation:

WR. = (A,-XI+WRi_J+(DiXWRi_J
( (BtXI + WRi_J + Dj

(C-I)

where, WR is the solute-to-solvent weight ratio, Ai is the weight of the pure solute, B; is

the weight of the pure solvent, WR;_I is the solute-to-solvent weight ratio of the previous

dilution, and D; is the weight of the diluent from the previous dilution added to the i1h

dilution. The dependence of the weight ratio on the area ratio is described by the

calibrating equation:

(C-2)

where, WR; is the solute-to-solvent weight ratio, ARj is the solute-to-solvent area ratio,

and a, ~, and 'Yare the regressed parameters.

The propagated uncertainty in the weight ratio can be expressed in tenns of

variances below:
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( J
2 ( J2 ( J22 BWR; 2 aWR; 2 BWR; 2

a =--a+--O'+ a
WR

, BA; A, BS; S, BWR;_, WR,_,

(
BWR;J2 2 (BWR;J2 2+--0'+--0'aD. D, BAR. AR

,
I I

This may be expressed in terms of fractional uncertainty:

(C-3)

+(BWR;J2(. O'Di J2 +(BWR;J2(O'AR
i J2

BD; WR; BAR; WR;

The final term in Equation C-4 accounts for the fact that, even if the weight ratios were

exact, the value calculated from the calibration relation would be uncertain due to the

uncertainty ofthe area ratio at which the calibration relation was read. The last term in

the relation is independent of any previous measurements; therefore, the uncertainty

associated with the area ratio is not propagated.

Uncertainty Associated with the Weight of Pure Solute

The partial derivative of WR; with respect to AI is given below:

(C-5)

This equation is divided by WR? (from Equation C-I) to find the fractional uncertainty

associated with the weight of pure solute added to the lh dilution. Thus, the first tenn in

Equation C-4 becomes:
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Uncertainty Associated with the Weight of Pure Solvent

The p-arrial derivative ofWR; with respect to B; is given as:

(C-7)

Dividing this equation by WR/ to get the fractional uncertainty associated with the

weight of pure solvent added to the lh dilution results in the second term ofEquation C-4:

Uncertainty Associated with the Weight Ratio of the Diluent

The partial derivative ofWR; with respect to WRi-1 is:

(C-8)

To find the fractional uncertainty associated with the weight ratio of the i_I 1h diJution, the

third term in Equation C-4, this equation is divided by WRl:

Uncertainty Associated with the Weight of Diluent

The partial derivative ofWR; with respect to D; is:
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The fractional uncertainty associated with the weight of the i_l 1h dilution added to the i lh

dilution, the fourth tenn of Equation C-4, is detennined by dividing this equation by

WR 2 .
I •

(C-12)

Uncertainty Associated with the Gas Chromatograph Area Ratio

The partial derivative of the calibration equation, C-2, is given by taking the

partial derivative of WRi with respect to ARj, as shown here:

BWRj = 2aAR. + f3
BAR. I

I

(C-13)

This expression is divided by WRi to detennine the fractional uncertainty associated with

the gas chromatograph area ratio, the [mal tenn in Equation C-4:

(
BWRj J2( (jAR, J2 = {2aARj + f3}2 a2
BAR. WR WR.! AR,

" I

Total Fractional Uncertainty

(C-14)

Combining equations C-6, C-8, C-IO, C-12 and C-14 gives the total propagated

fractional uncertainty in the weight ratio:

(C-15)
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+{2aAR; + f3}2 (J'2

WR. AR,
I

This uncertainty expression was used to weight the calibration data in the

weighted-least-squares regression for the calibration equation, Equation C-2. (Values of

a, ~, and'Y were initially estimated from unweighted regression and used in

Equation C-15. An iterative approach was used to determine the final values of the

calibration constants and the weighting of the calibration data). The variance in the

weight measurements, (J'A, ' (J'8( , and (J'D" was determined from repeated measurements

and the variance in the area ratio, (J'AR, ' was determined from multiple analyses. The

uncertainty associated with the area ratio, the last term in Equation C-15, is independent

of any previous measurements and is, thus, not propagated. Therefore, this term was not

included when determining the variance in the weight ratio of the i-I th dilution, (J'WR •
I-I

The total uncertainty is largely dependent upon the uncertainty associated with the

gas chromatograph area ratio, the last term in Equation C-15. For the initial calibration

dilutions, all other terms are negligible. For the final dilutions, or the mixtures lowest in

concentration, the uncertainty associated with the gas chromatograph area ratio is

approximately one-half the total uncertainty.

96



Sample Calculation (Benzene--Dec3ne)

Dilution #1

AI = 2.6180 grams B I = 8.6591 grams WRo = 0.0000

(TAl =0.0002 a 8, = 0.0002 a WR
o

= 0.0000 aD, = 0.0000

WR1 = 0.3023

Cl = 1.7145

AR I = 0.2003

p= 1.1620

(TAR
I

= 1.48£ -03

r =3.67£-06

( J
2 { }2a WR I _ 1 0 OOO? :!

WR\ - (2.6180XI) (. -)

+{( 1 X)}2 (0.0002)2
8.6591 1

{ }

2

+ 2.6180 _ 8.6591 00000
(2.6180Xl) (8.6591Xl) (. r

+{ 0.0000 _ 1 }'2(00000)
(2.6180Xl) (8.6591 Xl) .

+ {(2X1.7145XO.2003)+ 1.1620}2(1.48£ _ 03)
0.3023

( a WR1 J2 =5.836£-09 + 5.335£-10 + 0.000 + 0.000 + 8.193£-05
WR\

= 8.194£-05

or,

a WR , =(9.052E-03XWR,)

=(9.052£ -03XO.3023)

= 2.736£-03

This is the total uncertainty for the first dilution in the calibration. This value is used to

weight the first point in the weighted-least-squares regression of the calibration curve.
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Dilution #2

A2 = 0.0000 grams 8 2 = 5.4221 grams WR1 = 0.3023 D2= 5.5531 grams

WR2 = 0.1331

a = 1.7145

AR2 = 0.0963

p= 1.1620

0'AR
1

= 6.25£ - 04

r =3.67£-06

(
O'WR2)2 ={ 1+0.3023 }2(0.0002

Y
WR2 (5.5531X0.3023)

{ }

2

1+ 0.3023 00002 2
+ (5.4221X1+0.3023)+5.5531 (. )

{ }

2

+ 5.5531 _ 5.4221 2 559E -05
(5.5531XO.3023) (5.4221Xl+0.3023)+5.5531 (. )

+{ 0.3023 _ 1 }~(00002)
(5.5531X0.3023) (5.4221 Xl + 0.3023) + 5.5531 .

+ {(2X1.7145XO.0963)+ 1.1620}2 (6.25£ _ 04Y
0.1331

(
0'WRI)2 =2.407£-08 + 4.263E-l 0 + 5.425E-09 + 4.065£-10 + 4.910E-OS
WR,

= 4.913E-05

or,

=(7.009£ - 03XO.1331)

= 9.329E-04

This is the total uncertainty for the second dilution in the calibration. This value is used

to weight the second point in the weighted-least-squares regression of the calibration

curve.
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APPENDIXD

SOLUBILITY CALCULATION

The mutual solubilities are expressed as the mole fraction of solute in the sample.

Since the weight of the solute in the sample is not known, the solute-to-solvent weight

ratio (WR) and the solvent-to-sample weight ratio (SSR) are used, along with the

molecular weights (MW) of the two species of interest, to calculate the mole fraction.

The resulting expression for the mole fraction of a binary system is:

(D-I)

The solute-to-solvent weight ratio is given in the calibration equation as a

function of the solute-to-solvent area ratio, which is determined by gas chromatography.

The solvent-to-sample weight ratio is a ratio of the weight of the solvent added (ethanol

in the organic phase and decane, or 2,2,4-trimethylpentane, in the water phase) to the

weight of the sample collected.

Each solubility measurement reported is an average of nine to twelve

measurements. At each temperature studied, three samples were collected of each phase.

Each phase was analyzed three to four times. An example calculation is shown below.
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Sample Calculation (Benzene-Water)

Temperature = 296.4 K
Pressure =0.139 MPa

Water Phase:

MWBcnzenc = 78.114
MWWatcr = 18.015

Bottle # Solvent-to- Solute-to- Weight Ratio Mole Fraction
Sample Weight Solvent Area From Eqn. 1 Benzene

Ratio (SSR) Ratio (WR) (XI)
W-l 0.3802 0.00414 0.00484 4.242E-04
W-l 0.3802 0.00413 0.00483 4.232E-04
W-l 0.3802 0.00412 0.00482 4.222E-04
W-2 0.4013 0.00374 0.00438 4.051E-04
W-2 0.4013 0.00371 0.00434 4.018E-04
W-2 0.4013 0.00371 0.00434 4.018E-04
W-3 0.8458 0.00178 0.00208 4.059E-04
W-3 0.8458 0.00180 0.00210 4.104E-04
W-3 0.8458 0.00178 0.00208 4.059E-04

Mole FractIOn ofBenzene = 4.100E-04

Organic Phase:

Bottle # Solvent-to- Solute-to- Weight Ratio Mole Fraction
Sample Weight Solvent Area From Eqn. 1 Water

Ratio (SSR) Ratio (WR) (X2)
0-1 1.0340 0.00053 0.00060 2.688E-03
0-1 1.0340 0.00058 0.00066 2.93IE-03
0-1 1.0340 0.00059 0.00067 2.992E-03
0-1 1.0340 0.00059 0.00067 3.000E-03
0-2 1.4964 0.00048 0.00053 3.431E-03
0-2 1.4964 0.00042 0.00047 3.060E-03
0-2 1.4964 0.00040 0.00042 2.730E-03
0-2 1.4964 0.00042 0.00045 2.906E-03
0-3 0.8713 0.00064 0.00074 2.792E-03
0-3 0.8713 0.00061 0.00070 2.651E-03
0-3 0.8713 0.00061 0.00070 2.653E-03

Mole Fraction of Water = 2.894E-03
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APPENDIXE

ORGANIC PHASE
SAMPLE ANALYSIS CORRECTION

Ethanol, used as the cosolvent to homogenize the organic phase samples, is

hydroscopic and contains a small amount ofwater (less than 0.015% by GC analysis). If

this water is not accounted for, the measured water solubilities may be in error by as

much as 15%. Thus, a correction for the water introduced to the sample by the ethanol is

made in the sample analysis, as described below.

The total weight of an ethanol aliquot, We, is the sum of the weight of the water

fraction of the ethanol, Ww,e, plus the weight of the ethanol fraction, We.e:

(E-l)

The total weight of the sample, Ws. from the experiment is the sum of the weight of the

water in the sample, Ww,s, plus the weight of the hydrocarbon in the sample, Wh,s:

Before beginning the mass balance, several terms are defined:

(E-2)

ERw-e = Ww.efWe,e; weight ratio of the water fraction of the ethanol, Ww.e, to the

ethanol fraction of the ethanol, We,e

ERw= Ww,elWe; mass fraction ofwater in the ethanol

WRs-s = WslWe; weight ratio of the sample, Ws, to the solvent, We
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WRw-h = Ww,JWh,s; weight ratio of the water in the sample, Ww. to the

hydrocarbon in the sample, Wh,s

MFw = Ww)Ws; mass fraction ofwater in the sample

Material Balance

The total weight of the ethanol in a given analysis mixture (sample mixed with

ethanol) is given as:

w
W=W +~

e "',e ER
"'-e

=W ( 1+ ERw_ e J
w,e ER

w-e

Wwe=--'
ER",

The total weight of the sample is expressed as:

=W (1 +WRw_h )
W.J W:R

. w-h

WW,J
=

MF",
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(E-6)

(E-7)

(E-8)

(E-9)

(E-IO)
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(E-12)



The equation used in the calibration of the GC is:

(E-lJ)

where, WRw~ is the weight ratio of the total amount of water to the total amount of

ethanol, ARw-e is the area ratio of the total amount of water to the total amount of ethanol,

and a, p and yare the calibration parameters.

Thus, a sample analyzed by GC is handled in the following manner:

WR",_e =aAR; + PAR, +r (E-14)

where, ARs is the area ratio of the total amount of water to the total amount of ethanol in

the sample. By mass balance, this becomes:

MF",(W:)+ ~(ERJ WR,.,(MFJ ERw
---"-''---7-''-----=--7-~ = + ----::..-
~ (1- ERJ 1-ERw 1- E~

= WR'.J (MFJ + ERw

I-ERw

=aAR; + PAR, + r

so,

MF = (aAR; + PAR, + rXl- ERJ- ERw

.... WR,.,

The measurable variables in Equation E-18 are ARs and WRs-s, while the

(E-15)

(E-16)

(E-17)

(E-18)

calibration parameters, a, ~ and y, are regressed from the plot of the calibration data. The

mass fraction of water in the ethanol, ERw, is determined from the calibration and a GC

analysis of the hydroscopic ethanol source.

The calibration is performed by analyzing a series ofdistilled water and ethanol

mixtures. Equation E-18 applies to the calibration in the following fonn:

103



but, in the calibration

WR = W,..
s-s W

e

and

MF,. =1

so,

WRs_ r + ERw =aAR 2 + f1~R +
1- ER C C r,..

(E-19)

(E-20)

(E-21)

(E-22)

where, ARc is the area ratio of the total amount of water to the total amount of ethanol in

the calibration mixture.

The mass fraction of water in the ethanol, ERw, is unknown and is determined

from a GC analysis of the ethanol source. The area ratio of this ethanol blank is applied

to Equation E-22 and the mass fraction of water in the ethanol, ERw, is solved for. As it

is applied in this case, Ww, the total weight of water from an additional source, is zero.

So,

(E-23)

where, ARe is the water-to-ethanol area ratio from the ethanol blank. Solving for ERw ,

this becomes:

ER = aAR: + PARe +r
IV 1+aAR: + PARe +r

104

(E-24)



To account for the water introduced to the sample from the ethanol source

Equations £-20 and £-24 are combined to get the corrected mass fraction of water in the

sample:

(E-25)
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APPENDIXF

EXPERIMENTAL ERROR ANALYSIS

The expected uncertainties in the solubility data presented in this study are

estimated by error propagation. In general, where R is a function of the measured

variables x\, X2 • ..Xn, the expected variance (0';) is given by Equation F-l (19).

The mole fraction of a component in a binary mixture is expressed by

Equation F-2.

(F-l)

(F-2)

The number of moles of component 1 is nl, the number of moles of component 2 is n2,

and XI is the mole fraction of component 1. Component I is considered to be the solute.

Ifn I and n2 are replaced in terms of the weight ratio of solute to solvent, WR, the weight

ratio of solvent to sample, SSR, and the molecular weight of component 1, MW I, and of

component 2, MW2, the result is the mole fraction ofthe solute, XI :

X I = [WR (SSR ) + 1 ]

MW 1 MW 2
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Liquid-liquid mutual solubilities at equilibrium increase with temperature; thus

the mole fraction is a function of temperature, T, as well. The uncertainty in XI can be

expressed in terms of variances as:

but,

WR=j{AR)

therefore,

( )

2
2 aWR 2

a WR = aAR a AR

(F-4)

(F-S)

where, AR is the gas chromatograph area ratio of solute-to-solvent. The expression, thus,

becomes:

( )2 ( )2( )2 ()22 ax, 2 aX1 aWR 2 Oxl 2
(j---a +-- --a+-a

x, - aSSR SSR aWR aAR AR aT T

This may be expressed in terms of fractional uncertainty:

(F-6)

(aXI J2 =(~)2((jSSR J2 +(~)2(aWR)2((J"AR J2 +(ax1)2(aT)2 (F-7)
XI aSSR ~ aWR aAR XI aT Xl

Uncertainty Associated with the Solvent-to-Sample Weight Ratio

The partial derivative ofXI with respect to SSR is given below:

Combining terms, this becomes:
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o~--=
oSSR

(WR) (SSR) WR (WRy (SSR)
(~) +(~XMWJ (MW;Y

[
(WRXSSR) +_1_]2
M~ MW2

(F-9)

After canceling tenns, the partial derivative is:

WR

(F-I0)

Dividing this equation by X1
2 to get the fractional uncertainty associated with the solvent-

to-sample weight ratio in relative tenns results in:

2

1

[
(WRXSSR) + _1_](MW;XSSR)

Mfr; MW2

(F-ll )

but, from Equation F-3,

[
(WRXSSR) + _1_] = (WRXSSR)
~ MW2 (MW; XXI)

so,

2

(F-12)

(a:RJtJ =
(F-13)

and, thus, the fractional uncertainty associated with the solvent-to-sample weight ratio

becomes:
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(F-14)

To find the variance in the solvent-to-sample weight ratio, the ratio is given by the

weight of the solvent divided by the weight of the sample, as shown in Equation F-15.

SSR=(~Jmsom

(F-15)

SSR is the solvent-to-sample weight ratio, msal is the average solvent mass, and mSDm is

the average sample mass. The propagated uncertainty in the solvent-to-sample ratio,

expressed in terms of variances, is a function of the solvent mass and the sample mass:

2 _ ( oSSRJ2

2 ( oSSR J2 2
(J'SSR - -- am + -- a",omsol "" omsom "'"

The partial differentials are:

and

oSSR - (- msol J
om

som
- m:

om

(F-16)

(F-17)

(F-18)

The variance associated with the solvent-to-sample weight ratio, after combining terms,

is. thus,

a 2 =(_1J2 (]'2 +(~J2 (]'2
SSR m.., 2 m_msom msom

(F-19)

Combining Equations F-14 and F-19, the propagated fractional uncertainty associated

with the solvent-to-sample weight ratio, which is the first term in Equation F-7, is:
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Uncertainty Associated with the Weight Ratio

The partial derivative ofXI with respect to WR is given below:

(
SSR )((WRXSSR) +_l_)_((WRXSSR))( SSR)

ax, MW; ~ MWz MW; MW;

aWR = [(WRXSSR) +_1_]2
Mw; MWz

Combining terms, this becomes:

(F-20)

(F-21)

(WRXSSR'j + I SSR (WRXSSR'j
(MW;r (Mw; XMWz ) (MW; 'j

[
(WRXSSR) + _1_]2

. ~ MWz

(F-22)

After canceling terms, the partial derivative is:

SSR

[
(WRXSSR) + _1_]2

MW; MWz

(F-23)

Dividing this equation by Xj2 to get the fractional uncertainty associated with the weight

ratio results in:

but, from Equation F-3,

1

[
(WRXSSR) + _1_.](MW

2XWR)
MW; MWz
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so,

(F-12)

1
(F-25)

thus, the fractional uncertainty associated with the weight ratio becomes:

(F-26)

The weight ratio is a function of the area ratio; thus, the variance in the weight

ratio is a function of the variance in the gas chromatograph area ratio, as seen in

Equation F-5.

( )

2
2 aWR 2

(J"WR = aAR (J" AR

The derivative of the weight ratio with respect to the area ratio can be estimated

from the slope of the calibration curve. The calibration curve is expressed as a second

order polynomial:

WR = aAR2 + pAR +y (F-27)

where, WR is the weight ratio, AR is the area ratio and a, p, and yare the regressed

calibration parameters. The slope of the calibration curve is shown in Equation F-28.

aWR =2aAR + f3
BAR

Thus, combining Equations F-26, F-5 and F-28, the propagated fractional

(F-28)

uncertainty associated with the weight ratio, which is the second term in Equation F-7. is:
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(F-29)

The variance in the area ratio was determined from repeated measurements.

Uncertainty Associated with the Temperature

The uncertainty associated with the temperature is a result of thermometer

imprecision and fluctuation in the oven temperature control. The deviation in the mole

fraction with respect to temperature is determined by finding the slope of the solubility

curve. The variance in the temperature was estimated to be ±O.3K. Using non-linear

regression, the solubility curves are fit to an equation of the form:

Thus, the slope of the solubility curve is:

ax, = B + 2CT + 3DT2 + 4ET3 + 5FT4

aT

This expression is divided by X,2 to express it in terms of fractional uncertainty:

(:i),(~J = (B+2CT +3DT' +4ET' +SFT'r(~J

(F-30)

(F-31)

(F-32)

Shown in terms of variance, the fractional uncertainty associated with the temperature,

which is the final term in Equation F-7, is:

(:~)'(:j = (B +2CT+ 3DT' +4ET' + SFT'r(:J
Total Fractional Uncertainty

(F-33)

Combining Equations F-20, F-29, and F-33, the total fractional uncertainty is:
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( J
2 { ( X) }2 {( J2 ( J2 }ax, MW. XI 1 2 mso1 2

~ = (MW
2

XWRXSSR2) m
J

.am am"" + m;am a m_

+(B+2CT+3DT' +4£T' +5FT'r(~ J'

(F-34)

The first term represents the uncertainty associated with the solvent-to-sample

weight ratio, the second term represents the uncertainty associated with the solute-to-

solvent weight ratio, and the final term represents the uncertainty associated with the

temperature.

The uncertainty estimates used to calculate the uncertainty in the measured mole

fractions were determined by repeated measurements. The uncertainties in the solvent

mass, am' and sample mass, am' are the standard deviation of twenty measurements
"" """

of an empty, capped vial. The uncertainty in the temperature, aT' is the standard

deviation often ice point measurements of distilled water. The uncertainty in the area

ratio, a AR , is the standard deviation in the GC analyses. The uncertainties in the solvent

mass (0.0002), sample mass (0.0002), and temperature (0.3) are constant throughout the

entire study. The uncertainties in the area ratio are shown at the end ofthe appendix in

Table F-l.
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Sample Calculation (Benzene-Water)

( J
2 { ( X) }2{[ J2 ( J2 }a XI MWt X I 1 2 . nJ sot 2

~ = (MW
2

XWRXSSR 2 ) m
sam

G m.+ m;am a m
_

{ }

2

(MW; XX, ) 2aAR 2 2

+ (MW;XWRY(SSR) { + p} GAR

+(B+2CT+3DT' +4ET1 +5FT'Y[~)'

The values given below are for the solubility of benzene in water at 296.4 K. The

uncertainty estimates are expressed as standard deviations.

am =0.0002 grams (Tm = 0.0002 grams
sol ....

GAR =1.743£ -05 G T =0.3 K

Xl =4.100£ -04 T =296.4 K

MW1 = 78.114 grams/mole MW2 = 18.015 grams/mole

WR =0.0046 SSR =0.4013 AR= 0.00374

ffisol = 7.2426 grams msam = 18.0482 grams

B = 8.095£-03

E =-1.639£-10

a = 1.7145

C = -4.429£-05

F =8.912£-14

p= 1.1620

D = 1.206£-07
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According to Equation F-34 the total fractional propagated uncertainty in the solubility

measurements is:

(
0"1:1 J2 ={ (78.114X4.100E - 04) }2{( 1 )\00002Y ( 7.2426 J(O 0002Y}
Xl (18.0l5XO.0046X0.4013Y 18.0482' + (lS.0482Y .

{
(78.114X4.100£-04) }2{( X X ) }2( )2

+ ( X )2( ) 2 1.7145 0.00374 +1.1620 1.743£-05
18.015 0.0046 0.4013

+ {(S.095£ - 03)-(2X4.429E - 05X296.4)+ (3Xl.206£ - 07X296.4Y

_ (4X1.639£ -10X296.4Y + (5X8.912E -14X296.4t }2( 0.3 )2
4.100£ - 04

= 5.829£-09 + 1.838E-05 + 2.837£-05

= 4.676£-05

or,

=(0.0068X4.100E -04)

= 2.798E-06

The percentage of uncertainty in the mole fraction of benzene at 296.4 K is detennined

by dividing the uncertainty by the mole fraction, as shown below:

% uncertainty = (2.798E-06 /4.100£-04 =0.68%)

The percentage of uncertainty associated with each term is determined by dividing the

individual fractional uncertainty by the total fractional uncertainty, as shown below:

% uncertainty associated with SSR = (5.829£-09 / 4.676£-05 < 1%)

% uncertainty associated with WR = (1.838£-05 / 4.676E-05 = 39%)

% uncertainty associated with T = (2.837£-05 /4.676£-05 = 61%)
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The uncertainty associated with the solvent-to-sample weight ratio is negligible.

For the hydrocarbon solubility in water measurements, the uncertainty associated with the

weight ratio is roughly proportional to the uncertainty associated with the temperatur .

For the water solubility in hydrocarbon measurements, the uncertainty associated with the

weight ratio accounts for approximately 75% of the total uncertainty.
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Table F-1. Uncertainty Estimates for the Area Ratio

Temperature
(K)

296.4
328.5
358.8
388.0
416.8
445.8
474.2
492.8

Temperature
(K)

295.5
323.5
363.2
402.9
440.3
477.3
511.8
542.3

Temperature (K)

296.4
328.4
353.5
383.5
407.2
434.9
463.5
486,7

Benzene-Water System
Benzene Solubility Area Ratio

Uncertainty (105
)

1.120
3.045
0.7613
1.555
3.291
6.278

24.31
33.05

Decane-Water System

Decane Solubility Area Ratio
Uncertainty (105

)

1.054
1.005
1.529
0.5783
3.425
18.97
16.30

161.3

1-Hexene-Water System

I-Hexene Solubility Area Ratio
Uncertainty (105

)

0.5265
1,475

1.083
0.8278
1.902
3.571
9.415

23.64
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Water Solubility Area Ratio
Uncertainty (105

)

1.743
7.644
8.908

23.25
28.76
61.10
54.61
73.47

Water Solubility Area Ratio
Uncertainty (105

)

61.56
3.205
2.669
8.769
9.662
25.15

26.06
101.2

Water Solubility Area Ratio
Uncertainty (105

)

1.624
0.5033

8,556
23,13

19.18
10.23
70.33



VITA

Douglas Wade Ratzlaff

Candidate for the Degree of

Master of Science

Thesis: HYDROCARBON-WATER SOLUBILITIES AT ELEVATED
TEMPERATURES NEAR THE THREE-PHASE EQUILffiRIUM PRESSURE

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Enid, Oklahoma, November 15, 1972.

Education: Graduated from Kremlin-Hillsdale High School, Kremlin, Oklahoma in
May, 1991; Received Bachelor of Arts degree in Chemistry from Tabor
College, Hillsboro, Kansas in May, 1995; Completed the requirements for the
Master of Science degree in Chemical Engineering at Oklahoma State
University in December, 1999.

Experience: Field Chemist, Plains Environmental Services, Salina, Kansas, June,
1995 to June, 1996; Engineering Intern, Ultramar Diamond Shamrock,
Ardmore, Oklahoma, June, 1998 to August, 1998; Teaching Assistant, School
of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma,
August, 1996 to May, 1998; Research Assistant, School of Chemical
Engineering, Oklahoma State University, Stillwater, Oklahoma, August, 1998
to August, 1999; Black & Veatch Pritchard, Inc., Overland Park, Kansas,
August, 1999 to present.


