
PORTING OF AN EXISTING SOFTWARE

FROM THE SUN WORKSTATIONS TO A

PERSONAL COMPUTER ENVIRONMENT

By

LAKSHMANAPAMARTHY

Bachelor of Technology

Andhra University

Waltair, India

1994

Submitted to the Faculty of the
Graduate College ofthe

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1996

PORTING OF AN EXISTING SOFTWARE

FROM THE SlJN WORKSTATIONS TO A

PERSONAL COMPUTER ENVIRONMENT

Thesis Approved:

ii

I

L

PREFACE

The purpose of this study was to port an existing software component, which has

been designed for Sun workstations, to a Personal Computer environment. The software

component involves the access of remote objects through Java networking. The ported

software was tested on various machines housing different file servers of the Oklahoma

State University Computing and Information Services Department. A new user interface

was developed for the ported software component and a number of enhanced features

were introduced.

The software worked fairly well on all of the test machines. The new feature (i.e.,

finding out the time taken to look for a remote server) resulted in a more user-informative

environment. Other user friendly features such as information about the current server,

the reset feature, and the option of returning to the default server were also introduced.

The amount of time taken to look for a method located on a specified server is more when

the server is searched for the first time compared to the time taken to relocate the same

server. This can be attributed to the Registry mechanism of Java, which is like a simple

register containing the information of all the successfully located servers. This

mechanism makes a record of all the servers that are accessed, and every lookup for a

remote server is first searched across the registry. Thus, it reduces the total lookup time

for already accessed servers.

lll

ACKNOWLEDGMENTS

I take this opportunity to express my sincere gratitude to Dr. Mansur Samadzadeh

for his guidance and encouragement. He is a constant source of inspiration through his

intelligent supervision, constructive criticism, and moral support. I appreciate him greatly

for this personal and intellectual relationship. My appreciation extends to my other

committee members Drs. Mayfield and Ratcliff for agreeing to be on my thesis

committee, and for their comments and advice.

I would also extend my special appreciation to my friends and family for their

friendship and support.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

II. LITERATURE REVIEW .. 3

2.1 Introduction ... 3
2.2 Software Portability .. 5

2.2.1 History and Past Research Efforts ... 5
2.2.2 Portability Concepts .. 6
2.2.3 Reuse Economy ... 7

2.3 Data Transfer Mechanisms ... 8
2.4 Remote Procedure Call ... 9

2.4.1 The Client-Server Model ... 9
2.4.2 Concept ofRPC ... 9
2.4.3 Implementation OfRPC .. 10
2.4.4 Drawbacks OfRPC ... 11
2.4.5 Advances in Using RPC .. 12

III. JAVA REMOTE METHOD INVOCATION .. 14

3 .1 Introduction ... 14
3.2 Java Distributed Object Model ... 15

3 .2.1 RMI Interfaces and Classes .. 16
3 .2.1.1 Remote Interface ... 16
3.2.1.2 Remote Exception Class .. 17
3.2.1.3 Remote Object Class ... 18
3 .2.1.4 Remote Server ... 18
3.2.1.5 Unicast Remote Server .. 18

3.2.2 Implementing a Remote Interface .. 18
3.2.3 Parameter Passing in Remote Method Invocation20

3.2.3.1 Passing Non-Remote Objects20
3.2.3.2 Passing Remote Objects .. 20

3.2.4 Exception Handling in Remote Method Invocation 21

v

L

3.2.5 Locating Remote Objects ... 21
3.3 An Overview ofRMI Architecture ... 22

3.3 .1 Stub/Skeleton Layer ... 24
3.3.1.1 Dynamic Stub Loading .. 25

3.3.2 Remote Reference Layer .. 26
3.3.2.1 Client-side Component. ... 26
3.3.2.2 Server-side Component ... 26

3.3.3 Transport Layer .. 27

IV. IMPLEMENTATION ISSUES ... 29

4.1 Implementation Platform and Environment .. .29
4.1.1 Present Day Personal Computers ... 29
4.1.2 Windows Environment .. 30

4.2 Java Programming Environment .. 30
4.3 Implementation Details .. 32

4.3 .1 Client Interfaces ... 36
4.3.1.1 Remote Interface ... 36
4.3 .1.2 RemoteException Class .. 3 7
4.3 .1.3 RemoteObject Class .. 3 7
4.3 .1.4 Naming Class .. 3 8

4.3.2 Server Interfaces .. 39
4.3.2.1 Remote Server Class ... 39
4.3 .2.2 UnicastRemoteServer Class40
4.3.2.3 Creating a New Remote Object41
4.3.2.4 Exporting A Remote Object..41

4.3.3 The Registry Interfaces41
4.3.3.1 Registry Interface42
4.3.3.2 Locate Registry Class .. .43
4.3.3.3 Registryimpl Class43

4.4 Usage Details .. 44

V. EVALUATION ... 48

5.1 Sample Tests Done with the Program48
5.2 Observations .. 52
5.3 User Appraisal ... 56

VI. SUMMARY AND FUTURE WORK ... 58

REFERENCES .. 60

APPENDICES ... 63

VI

A. GLOSSARY ... 63

B. TRADEMARK INFORMATION .. 65

C. USER GUIDE .. 66
1. Introduction .. 66
2. Setting Up ... 66

2.1 Hardware and Software Requirements .. 67
2.2 Running the Program .. 67

D. PROGRAM LISTINGS ... 83

vii

LIST OF TABLES

Table

I. Sample Remote Method Lookup Times in Milli Seconds - I

II. Sample Remote Method Lookup Times in Milli Seconds - II

III. Comparison ofthe Versions

viii

Page

49

51

53

LIST OF FIGURES

Figure Page

3-1. Interface and Class Relationships in RMI.. .. 16

3-2. Overview of the RMI system architecture22

4-1. Overview of RMI Interfaces ... 34

4-2. Overview of RMI Interfaces .. 34

4-3. Overview ofRMI Interfaces (continued) .. 35

4-4. Overview ofRMI Interfaces .. 36

5-1. Sample Remote Method Lookup Data Graph- 1.. .. 50

5-2. Sample Remote Method Lookup Data Graph- II .. 51

C-1. Initial DeskTop Screen ... 68 ,

C-2. Initial Setup Screen .. 69

C-3. Running the Server. ... 70

C-4. Applet Loaded on Server Machine .. 71

C-5. Invoking a Method on a Local Host. .. 72

C-6. Using the Default Option ... 73

C-7. Using the Reset Option .. 7 4

C-8. Using Lookup Method with no Active Server. ... 75

C-9. Using the Invoke Method with no Active Server.. ... 76

IX

------------- ----------

C-1 0. Looking for another Method on the same Host.. .. 76

C-11. Invoking another Method on the same Host. ... 77

C-12. Looking for another Method (Echo5) on the same Host.. 77

C-13. Remote Exception during Client Lookup .. 78

C-14. Looking for a Remote Client. .. 79

C-15. Status of the current Client using the Applet.. ... 80

C-16. Looking for another Method on a Remote Host.. .. 81

C-17. Multiple Clients using a Remote Host ... 82

X

CHAPTER I

INTRODUCTION

Software reuse is rece1vmg increasing attention [Hooper and Chester 91]

[Krueger92] [Wolberg 83]. Reusable software is widely believed to be the key to the

general overall increase in productivity in developing new software [Mareddy and

Samadzadeh 95]. The development of new software almost always involves the

deployment of previously existing software components in addition to developing new

code fragments. Portability is one important aspect of reusability. Most software currently

being developed is designed in a way to work on almost all the available platforms. This

is a rather difficult task as the underlying architecture, hardware, or operating system

varies from one platform to another.

Software reuse can be defined as the process of using existing components to

create new programs [Karlsson 95]. A component can be defined as any software

configuration item, such as a code module or documentation, that can be a candidate for

reuse. The major factor that favors this concept of reuse is the efficiency and productivity

of the programmers who are involved in the development of the target software [Frakes et

al. 91].

Traditionally, the idea of porting of software has been approached with an air of

skepticism [Wolberg 83]. Software that is developed for a particular system may contain

1

2

components which may not be essential when the same software is made to run on

another system. Thus before trying to work on a porting problem, the developer needs to

understand the purpose served by the software and determine how best to simulate the

same running conditions in the new environment.

As the main objective of this thesis, a software component that was designed for

Sun Workstations was modified to run on a personal computer. The software, Java

Remote Method Invocation, was developed by Sun Microsystems, Inc., as part of its

ongoing effort to develop techniques for accessing remote objects using the Java

programming language. The thesis work involved integrating the various relevant

executable code modules, and testing and evaluating the modified version on different

personal computers.

The rest of the thesis report is organized as follows. Chapter II reviews the current

literature on software reuse. It also defines some of the basic terminology, discusses the

past and present efforts in software reuse, and provides a brief background on software

porting. Chapter III discusses the software under consideration for porting, i.e., Java

Remote Method Invocation. It involves giving a brief insight into the various classes that

are used in the new version and how to put together all the classes. Chapter IV involves

the implementation details. It describes the criterion of implementation and how to use

the software on a personal computer. Chapter V summarizes the software testing done

and tabulates the observations made. Chapter VI briefly discusses the work done and

provides insight into some future work in this area. Appendix D contains the source code

used for testing the software program.

L

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This section contains a number of basic definitions of software porting, software

reuse, and various other terminology that is used in the remaining sections of this thesis.

Most of the definitions are taken from recent technical papers in the software engineering

field and from the reference material that is available on the Internet.

Software reuse can be generally defined as utilizing an existing software artifact

m building a new software system [Krueger 92]. A software artifact can be a code

fragment, a specification module, a documentation item, a module-level implementation

structure, a program design document, etc.

Software porting is the reuse of complete applications on new platforms [Mooney

93]. Portability is concerned with the act of producing an executable version of an

existing software unit or system in a new environment. While reuse research has typically

concentrated on building and maintaining collections of reusable components and reusing

them effectively in new environment, portability is concerned with the reuse of complete

applications on new platforms [Krueger 92] [Prieto-Diaz 93].

Abstraction refers to hiding the working details of source code and providing

3

4

only the pertinent information to the end user about the functionality of the code

[Mareddy and Samadzadeh 95]. Abstraction is an important aspect of software reuse

because other user might need to spend more time trying to understand the functionality

of each software artifact while trying to correlate different artifacts in reuse.

Selection refers to choosing a particular artifact from a collection of artifacts in

accordance to a reuser's need [Mareddy and Samadzadeh 95]. This is a major issue in

most types of reuse. In porting there is no selection, the artifact is fully determined at the

start [Mooney 93].

Specialization refers to adapting an artifact to suit the requirements of a specific

use [Mareddy and Samadzadeh 95]. In many reuse situations, it is expected that the

artifacts be parameterized to allow developers to make choices in both functionality and

implementation, such as data representation and performance strategies [Mooney 93].

Specialization in such situations becomes limited to selecting the appropriate parameters.

In the case of porting, specialization is the heart of the problem [Mooney 93]. A

well designed portable software may still contain some environment dependent variables

that need to be changed. Specialization is then achieved by choosing an appropriate set of

modules. A program ported at the source level is further specialized by processing it with

a language processor compatible with the target environment [Mooney 93].

Integration refers to adding an existing software artifact to the system that is being

developed. Module interconnection languages are examples of integration frameworks

[Mareddy and Samadzadeh 95]. In traditional reuse strategies, this activity was

straightforward as the artifacts were both conceived and constructed with integration in

5

mind [Mooney 93]. In porting, there is typically only one seperate artifact. If

specialization is achieved, integration poses no difficulty [Mooney 93].

2.2 Software Portability

2.2.1 History and Past Research Efforts

The goal of research in software portability is to facilitate reuse of existing

applications in new environments [Mooney 93]. Recent reviews of reuse issues have

characterized reuse very broadly as any case in which any artifact associated with a

software system could be used in more than one situation [Krueger 92] [Prieto-Diaz 93].

Thus, software portability is clearly a form of reusability. However, according to

Mooney, "the objectives of enhancing and supporting portability are not often addressed

by reuse research" [Mooney 93].

Portability is concerned with the reuse of complete applications on new platforms,

while reuse concentrates on building and maintaining collections of reusable components

or similar artifacts, and reusing them in entirely new applications.

Portability is increasingly being identified as a desirable attribute of software

systems [Mooney 93]. Most software which is intended for a wider utility will face the

situation of being ported to new environments over the course of their lifetime [Lewis and

Oman 90] [Sommerville 96]. Portability is often cited as a goal even for special purpose

software categories [Mooney 93].

Despite the accepted need for better portability, published research on portability

issues is meager. A variety of porting experiences have been reported, leading to many

L

6

types of anecdotal advice [LeCarme et al. 89). A few limited areas, such as parallel

software conforming to certain models, have been studied more extensively [Skillicorn

94] [Alverson and Notkin 93). However, a systematic framework to guide developers in

maximizing portability in the general software development process is not available

[Mooney 93).

The Portability Research Group at West Virginia University is working on a

variety of issues related to portability. This includes classification of applications for

portability, specifying portability requirements, enhancing portability in the design

process, measuring portability, and portability costs [Sitaraman 91] [Eichmann 92].

2.2.2 Portability Concepts

This subsection discusses some concepts related to portability, and introduces

some commonly used terminology. Most of the ideas that follows are taken from the

recent technical papers on software porting [Mooney 90) [Mooney 93] [Eichmann 92).

Porting, as mentioned before [subsection 2.1], is the act of producing a new,

modified software based on an existing software version [Mooney 90]. A software unit

can be an application program, a system program, or a single component of a program. A

software system is a collection of software units.

The term environment refers to the range of elements in an installation that

interact with the ported software. This typically includes a processor and an operating

system, Input/Output devices, libraries, networks, etc. The term platform can also be used

to refer to the context of an environment.

7

The term portability refers to the ability of a software unit to be ported to a given

environment [Wolberg 83]. A program is portable if and to the degree that the cost of

porting is less than the cost of redevelopment. A software unit is perfectly portable if the

job can be done with zero cost, though this is rarely possible. Instead, a software unit can

be characterized by its degree of portability, which is a function of the porting and

development costs with respect to a specific environment [Mooney 90].

The principal types of portability usually considered are binary portability, which

IS porting the executable form, and source portability, which is porting the source

language program or the source code [Mooney 93]. Binary portability is desirable but it is

possible only for very similar environments. Source portability assumes the availability

of the source code and facilitates the flexibility of porting to heterogeneous environments.

Most porting projects assume a source portability approach.

2.2.3 Reuse Economy

The reason behind the interest in software reuse is the increase in the cost

of developing complex software. A simple cost model proposed by John Gaffney (as

cited in [Mareddy and Samadzadeh 95] and [Barnes et al. 87]) of the Software

Productivity Consortium predicts that

C = (1-R) * L + b * R

where C is the cost of developing new software, R is the percentage of code reused, b is

the cost of reusing a line of code, and L is the cost of developing a new line of code.

From the above relation, the cost will be less when more code is reused. Reuse is

necessarily a characteristic of an entire organization [Abdel-Hamid 93] [Prieto-Diaz 91].

L

8

Thus the entire design process in developing a new project must be oriented toward

finding and using existing components. If the components are not comprehensive or are

not suited to an application, the cost of reuse tends to outweigh the benefits.

2.3 Data Transfer Mechanisms

The internet has emerged as an amorphous ocean of data stored in various formats

on different hosts [Arthur 96]. During this infant stage, various data storage and

transmission protocols have evolved to impose some order into this chaos. Different data

transmission methods were developed for speedy access to data lying on some remote

host. The fastest growing area of the net is the World Wide Web (WWW), which uses a

hypertext-based markup system to navigate across data [Hannah 96].

The concept of hypertext, as described by Vannevar Bush m 1945 and

evangelized by Theodre (Ted) Nelson in 1960, involves creating inter-document links

across multiple host computers on the network [Java-Spec 96]. The first practical

implementation of a network based hypertext system was created by Tim Bemers-Lee at

CERN, using the NEXTSTEP development environment which later was developed into

the Hyper Text Markup Language (HTML), the Hyper Text Transport Protocol (HTTP),

and the World Wide Web (WWW or W3) [Java-Spec 96].

Web browsers combine the functions of fetching data with figuring out what the

data consists of and displaying the same if possible. One of the most prevalent file

formats browsers is the Hyper Text Markup Language or HTML, which embeds simple

text formatting commands within text [Hannah 96]. The main advantage of this concept

---~--~-----------------~-----------------

9

is the ability to use links to other HTML data either on the same host or elsewhere on the

internet.

2.4 Remote Procedure Call

Since the Remote Method Invocation is a refinement of the original concept of

Remote Procedure Call (RPC), it is apropos to discuss the implementation of RPC.

2.4.1 The Client-Server Model

According to Tanenbaum, "a client-server model is a network of diskless personal

computers or workstations, referred to as clients, that communicate across a network with

a file server which serves as a database for the clients" [Tanenbaum 92]. In this system, a

request for accessing data is initiated by a client and is satisfied by the server.

Communication is two-way, carried through in the form of request-reply, always initiated

by the client and never by the server.

2.4.2 Concept of RPC

The RPC mechanism is based on the client server-model though the approach is

from a different perspective [Tanenbaum 92]. In this view, a client sending a message to a

server and getting a reply is like a program calling a procedure and getting a reply. In

either case, the request is initiated by the caller who waits on the message sent by the

callee. But the variance in this approach is the case when the called procedure is not on

the local machine. In RPC, the calling program has no knowledge about the actual

10

location where the requested procedure is located. This can be abstracted by

implementing RPC in a program and calling a remote procedure.

For instance, consider the case in which a local procedure called get info is

used by a client residing on a file server. This call can take as its arguments a file name, a

buffer for storing the data, and a count to specify the number of bytes read [Tanenbaum

92]. A call such as

get info (filename, buffer, count)

is a call to a local client procedure. This procedure in tum calls the file server for access

to the data in the form of sending a message. Thus the client-server interaction is carried

in the form of procedures rather than Input/Output or interrupts [Tanenbaum 92]. The

details of how the network processes these requests can be hidden from the application

program by placing them in local procedures, for instance get info in the above case.

These procedures are defined as Stubs. A remote procedure is abstracted as a local

procedure by using Stubs.

2.4.3 Implementation of RPC

RPC is typically implemented in ten steps [Tanenbaum 92]. Step I consists of the

client program calling the stub procedure linked in its address space, in which the

parameters are passed as in the case of a local procedure call. The client stub collects the

parameters and packs them into a message, which is often termed Parameter

Marshaling. Step2 consists of handling the message from the client stub to the

transport entity. The message is transferred from the client side transport entity to the

server side entity in Step3. The message is passed to the server side stub in Step4. The

11

Server stub then invokes the server procedure in Step5. Since this is abstracted as a local

procedure call, the server procedure accepts the parameters passed by the server side stub.

The result of the server procedure is returned in Step6. This result is packed by the server

side stub and is passed to the server side transport entity in Step7. The message is passed

to the client side entity in Step8, and the same is handed over to the client side stub in

Step9. Finally, the stub returns the result of the server procedure to its caller, the client

procedure in Step 10.

Thus the main purpose of the whole mechanism is to facilitate a client to call a

procedure on a remote server. The mechanism tends to be more transparent if the client

has the abstraction that the result of its request is satisfied by the local procedure though

the real work is done by the remote server.

2.4.4 Drawbacks ofRPC

The principal problem faced by Remote Procedure Call is Parameter Passing

[Tanenbaum 92]. Integers, floating point numbers, and character strings pose no problems

as the client stub can easily convert the same into a message and pass it to the server.

Passing structures, records, or arrays is also direct.

The passing of pointers creates a discrepancy as the remote stub does not have

access to the local address space, and thus the concept of RPC fails. In the case of local

procedure calls, the local procedure loads the parameter specified at the given address

space and any changes that are made are reflected in the address space. But for a remote

procedure, updating of a local address space item is not feasible [Tanenbaum 92].

------------------------------------~------------------------L

12

Another important front in which RPC fails is the fact that the utility of RPC is

limited to the passing of parameters. In the advanced case of method passing across a

network, RPC fails.

2.4.5 Advances in Using RPC

Based on the failures of RPC, the problem of using reference parameters is

reduced by eliminating the use of reference parameters, pointers, and procedure or

function parameters on remote calls [Tanenbaum 92]. This tends to defeat the purpose as

the implementation rules for local and remote procedure calls become different and the

transparency is endangered.

One possible solution to this paradigm is the use of a call-by-copy/restore

mechanism [Tanenbaum 92]. With this, the client stub finds the item being pointed to and

passes it to the server stub. The server stub puts it in its local memory and passes a

pointer to it to the server procedure. The server procedure is able to access the parameter

and returns control to the stub. The server stub packs the modified parameter to the client

stub, which in tum overwrites the parameter in its address space with the modified

parameter. This method has some potential problems of parameter overwriting in the

wrong sequence [Tanenbaum 92].

A different scheme has been developed in which the server and clients interact

through a database system [Birrell and Nelson 84]. The server sends an initial message to

the database system letting its identity be known through a string of ASCII characters, as

well as its network address, and a random 32-bit integer. This registration is done by

having the server call a procedure export, which is handled by the server stub. The

L

13

clients make the call to the server by first sending the server name to the database system

and obtaining the network address and the unique identifier of the server. This operation

is defined as Binding. Every transaction with the server is carried through using the

unique identifier. This helps the client in finding out whether the server is alive. If the

server crashes, it registers a new unique identifier with the database system. Thus the

clients can rebind with the database system.

The above features are included in Java Remote Method Invocation (RMI) in

which a central registry is maintained and the clients are bound with the servers. A crash

on the server side forces a client to rebind. The initial drawback of the inability of passing

methods in RPC is overcome in RMI.

L

CHAPTER III

JAVA REMOTE METHOD INVOCATION

3 .1 Introduction

Distributed systems require that computations running in distinct address spaces,

potentially on different hosts, be able to communicate [Tanenbaum 92]. For a basic

communication network, the Java language supports sockets, which are flexible and

sufficient for general communication [Rmi-Spec 96]. However, sockets require the client

and server to engage in applications-level protocols to encode and decode messages for

exchange. Thus the design of such protocols is cumbersome and error prone.

An alternative to sockets is the Remote Procedure Call (RPC), which abstracts the

communication mechanism to procedure level. Instead of working on sockets, the

programmer has the illusion of calling a local procedure, when in fact the arguments of

the call are packed and transmitted to a remote target of the call [Tanenbaum 92].

RPC is not suitable for distributed object systems where communication between

program level objects residing in different address spaces is needed. In order to match the

semantics of object invocation, distributed systems require Remote Method Invocation

(RMI), where a local surrogate object (Stub) manages the invocation on a remote object

[Rmi-Spec 96].

14

-----------------------------------~------------------------- L

15

3.2 Java Distributed Object Model

A Java Distributed Object Model primarily consists of a Remote Object and

Remote Interfaces. A Remote Object is one whose methods can be invoked from

another Java Virtual Machine, running on a different host. An object of this type is

usually defined by Remote Interfaces which are Java interfaces that define the methods of

the Remote Object.

Remote Method Invocation (RMI) is the action of invoking a method of a remote

interface on a remote object [Rmi-Spec 96]. The important aspect of RMI is that the

syntax for method invocation on the remote object has the same syntax as a method

invocation on a local object.

The main features of the Java Distributed Object Model can be described as

follows [Rmi-Spec 96]:

(i) A reference to a remote object can be passed as an argument or returned as a

computation result in any method invocation (either local or remote).

(ii) The built-in Java instance of operator can be used to verify the remote interfaces

supported by a remote object.

(iii) The clients of remote objects interact with the remote interface and not with the

implementation classes of the remote interface.

(iv) A remote object is passed by reference.

(v) Arguments to and results from a remote method invocation are passed by copy rather

than by reference.

3 .2.1 RMI Interfaces and Classes

The relation between interfaces and classes is depicted in Figure 3-1.

Interfaces

Remote

Remote Server

Unicast Remote Server

Denotes Implementation

Denotes Extension

Classes

Remote
Exception

Figure 3-1. Interface and Class Relationships in RMI (source: [Rmi-Spec 96])

16

In the above figure, the object being pointed to by the blocked arrow is an

extension of the object from which the arrow is originating. The object that is being

pointed to by the other arrow implements the methods defined in the object from which

the arrow originates.

3.2.1.1 Remote Interface All remote interfaces extend, either directly or indirectly,

the Java remote interface. The remote interface defines no methods and is initialized

as follows [Rmi-Spec 96]:

________ L

17

interface Remote {}

For example, the following code fragment defines a remote interface for a

common Linked List problem that contains methods for inserting data, deleting data, and

copying data [Rmi-Spec 96].

public interface linked list extends remote

{
public void insert (int data)

throws RemoteException;

public void delete (int data)

throws RemoteException;

public void copy (int data)

throws RemoteException;

Each method defined in the remote interface needs to throw a RemoteException as

one part of its implementation. It can throw multiple exceptions at the same time like

Null Pointer Exception and Input/Output Exception [Rmi-Spec 96].

3 .2.1.2 Remote Exception Class The Remote Exception class can be broadly

classified as the super class of all exceptions in the RMI system [Rmi-Spec 96]. Each

method declared in the remote interface throws a remote exception in its throws clause.

The remote exception occurs when the Remote Method Invocation fails (owing to a

network failure or when the server does not responds to a client call or, in the worst case,

when the requested method is not found on the specified host). This allows the

application making the remote method invocation to determine how to cope with the

remote exception [Rmi-Spec 96].

-~------~~----~---·

18

3.2.1.3 Remote Object Class The Remote Object Class provides the semantics of

objects for implementing methods for equals, toString, and hashcode [Rmi

Spec 96]. The equals method compares whether the references to two objects are

equal. The toString method returns a string which represents a reference to an object.

The information includes the hostname and the port number of the referred object. The

hashcode method returns the same value for all remote references that refer to the same

underlying remote object. It is an extension of the Java language hashcode, where

references to the same object are considered to be equal [Rmi-Spec 96].

3.2.1.4 Remote Server The routines needed to create objects and export them

(make them available remotely) are carried out by the remote server [Rmi-Spec 96]. The

subclasses of the remote server identify the remote reference semantics, for instance the

server is a single object or a replicated object requiring communication with multiple

locations.

3.2.1.5 Unicast Remote Server It defines a non-replicated remote object whose

references are valid only when the server is alive. The routine Echoimpl. java in

Appendix D is an illustration for this type of server.

3.2.2 Implementing a Remote Interface

Any class that implements a Remote Interface needs to observe the following set

of rules [Rmi-Spec 96]:

(i) The class must extend the Unicast RemoteServer so that it inherits the remote

behavior that is provided by the RemoteObj ect and RemoteServer classes.

------------'-

19

(ii) The class can implement multiple remote interfaces at the same instance. This

facilitates multiple clients from different locations to use different interfaces to look

up the methods of the remote object.

(iii) The class can also extend another remote implementation class that is compatible to

the Unicast RemoteServer.

(iv) The class can define other methods which do not appear in the remote method, but

these methods cannot be remotely invoked.

For instance, the same Linked List example can be defined as follows [Rmi-Spec 96]:

package linked_list_package;

import java.rmi.*;

import java.rmi.server.UnicatRemoteServer;

public class linked_list_impl extends UnicastRemoteServer

implements linked list

{

}

public void insert (int data)

throws RemoteException{

public void delete (int data)

throws RemoteException

public void copy (int data)

throws RemoteException {

20

The Linked List package might contain other methods such as print (),

delete front (), and insert front () which are not defined in the remote

interface and hence they cannot be invoked remotely.

3 .2.3 Parameter Passing in Remote Method Invocation

Passing of parameters can be of three basic types, namely Java data types, Non

remote objects, and Remote objects [Rmi-Spec 96]. This may lead to a failure of the

remote method invocation with an exception.

3.2.3.1 Passing Non-remote Objects Non-remote objects, either passed as an

argument for a remote method invocation, or obtained as a result of a remote method

invocation, are passed by copy [Rmi-Spec 96]. That is. when a non-remote object is

figured out in a remote method invocation, a copy of it is made before the call is invoked.

In the same way, when a non-remote object is returned as a result of remote method

invocation, a new object is created in the calling machine.

3.2.3.2 Passing Remote Objects When passing a remote object, only the stub for

the remote object is passed. Thus on receipt of a remote object, only the remote interfaces

that are implemented by the object are available for usage [Rmi-Spec 96]. Any local

interfaces that the remote object might have implemented are not usable. Trying to use

the local interfaces leads to run-time exception.

~--~---------~ ------

21

3.2.4 Exception Handling in Remote Method Invocation

Exceptions m Remote Method Invocation are derived from the

RemoteException superclass. Hence any exception that might result in the process of

invoking a method of a remote object might include the exception messages obtained as a

result of the application along with those thrown due to a remote exception [Rmi-Spec

96]. The remote exceptions include failure during the process of invoking, before

invoking, or after invoking a remote method of a remote object. To alleviate the problem,

system messages are introduced in the remote interfaces and the calling methods to

pinpoint the exact exception that is responsible for a failure [Rmi-Spec 96].

3.2.5 Locating Remote Objects

For a client to invoke a method on a remote object, the client must obtain a

reference to the object. This can be achieved as a return value in a method call. The

java. rmi. Naming interface provides Uniform Resource Locator (URL) based

methods to look up, bind, rebind, unbind, and list the name and object pairings

maintained on a specific host and port [Rmi-Spec 96].

For instance, to bind and look up for the Linked List example can be done as

[Rmi-Spec 96]:

linked list list =new linked_list_impl() i

String url = "rmi:llcishlpdsk3llink"i

II Create a Reference (URL)

II Bind the Url to the remote object.

java.rmi.Naming.bind(url,list) i

II Look up for the list (obtain a reference).

list = (linked_list)java.rmi.Naming.lookup(url);

3.3 An Overview ofRMI Architecture

22

The Remote Method Invocation (RMI) system consists of three layers: the

Stub/Skeleton layer, the Remote Reference layer, and the Transport layer. The perimeter

of each layer is independent of its corresponding sub-layer/super-layer. This leads to an

opportunity of implementing a part of a layer by any other alternative. For example, the

transport implementation used in this version is TCP-based (which uses Java sockets), but

a transport based on other transmission protocol can also be used without replacing either

the stub/skeleton layer or the remote reference layer. Figure 3-2 shows the relationship

between the different hierarchies of the RMI system.

Application

RMI
System

Stubs Skeletons

Remote Reference La er

Figure3-2. Overview of the RMI system architecture (source: [Rmi-Spec 96])

23

The Stub/Skeleton layer essentially consists of client side stubs (proxies) and

server side skeletons.

The Remote reference layer deals with the remote reference behavior of objects

(e.g., invocation to a single object or to a replicated object).

The Transport Layer is concerned with the connection set-up, and the

management and tracking of the remote objects. The application layer sits on top of the

RMI system.

A remote method invocation from a client to a remote server object travels down

through the layers of the RMI system (which includes the Stub layer and the client side

Remote Reference layer) down to the client side, the Transport layer, then up to the server

side Transport layer to the server (passing through the server side Remote Reference layer

and the Skeleton layer).

A client invoking a method on a remote object, actually creates a local stub or

proxy for the remote object and makes use of it as a means of communication with the

remote object [Rmi-Spec 96]. A client reference to a remote object is actually a reference

to a local stub. This stub is implemented by using the remote interface of the remote

server object and forwards all invocation requests to the remote object using the Remote

Reference layer.

The semantics of the remote method invocation are carried through the Remote

Reference layer [Rmi-Spec 96]. For instance it is the responsibility of the remote

reference layer to determine whether the server is a single object or is a replicated object

needing communications with multiple locations. In the latter case, each replicated object

communicates with the remote reference layer for choosing its own semantics.

24

The Remote Reference layer is responsible for reference semantics for the server.

The remote reference layer, for example, defines the way for referring to objects that are

implemented in:

(i) Servers that are always running on a machine

(ii) Servers that run only when some method invocation is made on them.

These abstractions are not seen in layers above the remote reference layer.

The Transport layer is concerned with setting up network connection, managing

the connection, and keeping track of remote objects residing in the transport's address

space.

3.3.1 Stub/Skeleton Layer

The Stub/Skeleton layer is the interface between the application and the rest of the

RMI system. This layer does not have any information about the specifics of the

transport, but communicates the data to the remote reference layer. The data is transferred

via the abstraction of Marshal streams. Marshal streams employ a mechanism,

called Object Serialization, which enables java objects to be transmitted

between address spaces [Rmi-Spec 96]. Objects transmitted using the serialization

mechanism are passed by copy to the remote address space, unless they are remote

objects, in which case they are passed by reference.

A Stub for a remote object is the client side proxy for the remote object. Such a

stub implements all the interfaces that are implemented by the server side remote object.

The client side stub is responsible for initiating a call to the remote object (by sending a

25

request to the remote reference layer), marshaling objects to a marshal stream (obtained

from the remote reference layer), informing the remote reference layer that a call needs to

be invoked, unmarshaling the return value or exception from a marshal stream, and

informing the remote interface layer that the call is complete [Rmi-Spec 96].

A Skeleton is a server side entity for the remote object that contains a method

which dispatches calls to the actual remote object. The skeleton carries out the

Unmarshaling arguments from the marshal stream, making the call to the actual remote

object implementation, and marshaling the output of the call (including a possible

exception) to the marshal stream [Rmi-Spec 96].

The Stub and Skeleton classes are determined at the run-time and are dynamically

loaded as required. This is referred to as Dynamic Stub Loading.

3.3 .1.1 Dynamic Stub Loading In Remote Procedure Calls (RPC), a client code

needs to be linked either statically or dynamically during run-time via dynamic link

libraries (dll 's). In either case, specific compiled code needs to be available to handle

RPC. RMI generalizes the above technique by loading the exact stub code (in the

bytecode format) at run-time to handle method invocations on a remote object. This is

called as Dynamic Stub Loading which uses the Java mechanism for downloading code

either from the local file system or from the network [Rmi-Spec 96]. Dynamic Stub

Loading is used only when the code for a needed stub is not readily available. When a

remote object reference is passed as a parameter, the marshal stream that transmits the

reference includes the information as to where the stub class for the remote object can be

loaded, provided the Uniform Resource Locator is known.

___ L

26

3.3 .2 Remote Reference Layer

The remote reference layer deals with the lower level transport interface. This

layer carries out specific remote reference protocol which is independent of the client

stubs and server skeletons [Rmi-Spec 96].

Various protocols that can be carried using Java in the remote reference layer

include, unicast Point-to-Point Protocol (PPP), invocation to replicated object groups,

support for persistence reference to the remote object (which enables activation of the

remote object), and reconnection strategies (the case when remote object becomes

inaccessible) [Rmi-Spec 96].

The remote reference layer essentially consists of two components, Client-side

Component and the Server-side Component, which co-operate with each other.

3.3.2.1 Client-side Component This component contains information specific to

the remote server (or servers in the case of a replicated object) and communicates via the

transport layer to the server-side component. During each method invocation, the client

and server-side components exchange specific remote reference semantics. For instance,

if a remote object is a part of a replicated object, the client-side can forward a request to

each replica rather than to a single remote object.

3.3. 'J .2 Server-side Component This component implements the specific remote

reference semantics prior to delivering a remote method invocation to the skeleton. This

component, as an example, can handle ensuring of unique multiple delivery by

communicating with other servers in the replica group.

27

The remote reference layer transmits data to the Transport Layer.

3.3.3 Transport Layer

The transport layer takes care of the implementation details of connections. The

transport layer ofRMI is responsible for [Rmi-Spec 96]:

(i) Setting up connections to the remote address space.

(ii) Managing connections.

(iii) Monitoring connection "liveness".

(iv) Listening for incoming calls.

(v) Maintaining a history of remote objects that reside in the address space.

(vi) Setting up a connection for an incoming call.

(vii) Finding the dispatcher for the target of the remote call and passing the connection to

this dispatcher.

The transport layer of the RMI system consists of four basic abstractions,

Endpoint, Channel, Connection, and Transport [Rmi-Spec 96]. These abstractions are

briefly explained below.

EndPoint It is an abstraction used to denote an address space or a Java virtual machine. In

the implementation, an endpoint can be mapped to its transport. That implies, given an

endpoint, that a specific transport instance can be obtained.

Channel It is an abstraction for a link or conduit between two address spaces. As such, it

is responsible for managing connections between the local address space and the remote

address space for which it is a channel.

28

Connection Is the abstraction for transferring data (input/output).

Transport Manages channels. Each channel is a virtual connection between two address

spaces. Within a transport, only one channel exists per pair of address spaces, the local

address space and a remote address space. Given an endpoint, the transport sets up a

channel to that address space. The transport abstraction is also responsible for accepting

calls on incoming connections to the address space, setting up a connection object for the

call, and dispatching to higher layers in the system.

CHAPTER IV

IMPLEMENTATION ISSUES

4.1 Implementation Platform and Environment

The testing of the program was done on IBM compatible personal computers

running the Microsoft Windows95 operating system. Microsoft Windows95 is the latest

version of the windows operating systems developed by Microsoft, Inc., for IBM

compatible personal computers. Though Windows95 does not support the MS-DOS

operating system, there is a provision in the start menu for the user to switch back and

forth between MS-DOS and MSWindows95.

4.1.1 Present Day Personal Computers

Currently the software industry has two completely different standards for

personal computers: the IBM compatible personal computers that were developed

originally by the International Business Machines, Inc., and the Macintosh personal

computers developed by the Apple Computers, Inc. The latest additions to the personal

computer family include the PowerMacs and PowerPCs based on the Reduced Instruction

Set Computer (RISC) processors jointly developed by IBM, Apple, and Motorola. Digital

Equipment Corporation (DEC) and Hewlett Packard (HP) are also in the with DEC

developing its DEC 3000 Model and with HP developing its HP 9000/755, in response to

29

30

IBM 580 [DEC 96].

4.1.2 Windows Environment

Microsoft Windows is a graphical operating environment designed to run on top

of the Microsoft Disk Operating System (MS-DOS). The initial versiOns

(MSWindowsl.x and MSWindows2.x) of the software failed to achieve the desired

success mainly due to lack of supporting hardware during their release time. Version 3.0

followed by Versions 3.1 and 3.1.1 had good reception as they supported multi-media

and Object Linking and Embedding (OLE).

Inspired by the success of Versions 3 .1 and 3 .1.1, Microsoft released

WindowsNT, which is a high-end operating system and has MS-DOS as its underlying

operating system. The latest release from Microsoft is Windows95. This is like a regular

operating system but has MS-DOS running in the background. Windows95 comes with

some enhanced features such as custom networking, security, and internet support

(through Microsoft Internet Explorer). The user interface is a blend of the previous

windows operating environment and that of Apple Macintosh. Applications that use MS

DOS are not supported by Windows95 as Windows95 has its own helper applications.

4.2 Java Programming Environment

The rapid development of Internet and World Wide Web (WWW) has led to a

new way of developing and distributing software. Any software that is currently

developed is designed in a way to run on almost all available platforms. But the context

31

of heterogeneous operating systems and underlying architectures tends to defeat the

purpose.

Java was developed by Sun Microsystems Inc., as a part of their ongoing research

to cater to the need of creating a new language which can satisfy the current market

demands for solving some of the above said problems. Java has the following basic

features [Arthur 96] [Walrath and Campione 96]:

(i) It is architecture neutral. Thus any program written in Java can be run on almost all of

the existing architectures, though application-specific programs needs to be modified.

(ii) It is best known for its security. Java provides extensive compile time checking

followed by a second level of run time checking. This is a useful feature while

developing network applications where the invasion of file systems and spread of

virus is more prevalent.

(iii) It is simple and object oriented. Java is considered to be a refinement of the C++

programming language. Hence developing new applications is easier as a programmer

needs to manipulate existing libraries which range from Input/Output functions to

network and graphical user interface toolkits.

(iv) Java is dynamic. Though the Java compiler 1s strict during compile time static

checking, the language and run time system are dynamic in their linking stages.

Classes are linked only as needed. Code modules can be linked across different

sources and even through the network.

(v) The Java interpreter can execute bytecodes directly on any machine on which the

interpreter and the run time system are installed. Java's multithreading capability

- --~~----------------------·

32

provides the means to build applications with many concurrent threads of activity,

thus resulting in a high degree of interactivity from the end user.

The most common Java programs are applications and applets. Applications are

stand alone programs, and run on their own without the assistance of any browser.

Applets are similar to applications, but they don't run on their own. Instead, applets

conform to a set of standard rules that let them run only within a Java compatible

browser. Applets can be embedded into an html file and can be viewed using an

appletviewer. Applications can be compiled using a Java compiler and the compiled

. class files can be used as a source for an applet, and the execution of the program can

be visualized using an appletviewer. The Java Developers Kit is a freeware software from

Sun Microsystems Inc., that contains the java compiler, interpreters, and appletviewers.

Currently, Java is released for Spare Solaris, Windows95, WindowsNT, and Macintosh.

Since Java runs only on 32-bit instruction set machines, the earlier versions of

MSWindows are not compatible with Java.

4.3 Implementation Details

The work was mainly carried out on IBM compatible personal computers. All the

computers that were used for testing and running the program were loaded with Microsoft

Windows95. The RMI software runs in parallel with the Java Developers Kit (JDK), so

JDK Version 1.0.2, which is a freeware was also used. Initially, the user needs to make

sure that the hard drive has enough memory to hold JDK and RMI, which together

occupy almost three Mega Bytes of memory. The Java Developers Kit is available in a

zipped format. After unzipping it creates Java as the parent directory with four sub

directories bin, lib, include, and demo. The bin directory has the javac

compiler for personal computers and the ineterpreters j avaw and j avap, as well as

the appletviewer. One of the network drives (the H drive) of the Oklahoma State

University Computing and Information Services Department File server (UCC-FSl) was

used for installing all the components of RMI and JDK.

RMI has a parent directory named RML and has three other subdirectories named

bin, lib, and examples. The bin directory contains thermic stub compiler and also

the . dll files for creating applet windows for personal computers. The lib directory

contains the rmi properties. The examples directory contains the test example. The

example subdirectory contain another subdirectory named echo, which has all the source

files that are used for checking the demo. The compiled classes are kept in a subdirectory

named test from which all the . class files are loaded when running the example. The

original example, Echo, is written for Sun workstations and the testing was done in

windows along with some of the new features that are included.

Any application written using RMI needs to have three basic interfaces, the client

interfaces, the server interfaces, and the registry interface. Figure 4-1 shows the relation

between the different interfaces.

Client
Interface

An RMI Application

Registry
Interface

Server
Interface

Figure 4-1. Overview ofRMI Interfaces (source: [Rmi-Spec 96])

34

Client Interface J

L.....-------r--.---------.---1
This includes all the methods that are used in
an RMI Client. This interface is implemented
on the Client machine.

' ! I !
T* Remote interface !

I

i I I

~
I I

I I

i I

I !
The RemoteExcfption Cla$s

I I

~
I

I

i

The RemoteObject Clas~
I

The Naming Class

~

~

~

This is a part of the client interface and is used
to distinguish the methods that are used in RMI
with the other local methods of the client
interface.

This is implemented as part of the client
interface and its main purpose is to differentiate
the RMI exceptions from the local exceptions.

Its main purpose is to compare different
Remote Object references. It is used in
comparing Client references to remote objects.

It is used for resolving the Protocol format for
obtaining the remote method. It IS

implemented using locally defined methods.

Figure 4-2. Overview ofRMI Interfaces (source: [Rmi-Spec 96])

--- ---------- -- ----------------------

Server Interface \

~-,------,-----'1

' I I I

The 1RemoteS~er Class'
f----.-I I I

i I I

I I

I I

I I

! !
The UnicastRemo~eServer qass

~ . .
! I

I

I

I

I

I

Creating a New Remote Obj¢ct
f----.-I

•
Exporting a Remote Object

~

35

This includes all the methods by the RMI
server. This interface is implemented on the
server machine.

It is implemented by using the getClientHost
and getClientPort methods and is used to get
information about the client which invoked
RMI.

This is implemented to inherit the remote
behavior. Other remote implementation
classes that are compatible can also be
extended.

This is used for implementing another
replicated object, which can be used for
satisfying simultaneous Client requests.

This is used for exporting objects that are
not compatible with UnicastRemoteServer.

Figure 4-3. Overview ofRMI Interfaces (source: [Rmi-Spec 96]) (continued)

The Registry Interface I

~--'
' ! i

' I

The Reg~stry Interf~ce
~ I

!

I

I

I

!
The Locate Registry <';lass ----..

I

The Registryimpl Class
~

This interface is used to register and
retrieve objects.

This interface is implemented for
storing and retrieving information
from the registry.

Used for locating a registry residing on
a different port for getting information
about a particular object.

This is used for implementing the
registry interface by providing a name
for the registry.

Figure 4-4. Overview ofRMI Interfaces (source: [Rmi-Spec 96])

36

In the above figures, i.e., Figure 4-1 through Figure 4-4, the side text explains the

functionality of the different components of each interface. Each component that forms a

part of an interface is denoted by a dashed arrow from the corresponding interface. The

flow graph is an overview of how each interface component is associated with another,

and envisages an overview of the important interfaces and their components of an RMI

application.

4.3 .1 Client Interfaces

4.3.1.1 Remote Interface The remote interface is used to identify all remote

objects. Any object that is a remote object must implement this interface directly or

indirectly [Rmi-Spec 96].

package java.rmii

public interface remote

II Tags the included methods as
II remote

37

All methods that are used in accessing and exchanging information with a remote server

should be declared remote in the client interface, so that they would be differentiated

from other local methods which are not supported during Remote Method Invocation.

4.3.1.2 RemoteException Class All remote exception classes are a subclass of

java. rmi. RemoteException. This enables interfaces to distinguish local

exceptions from remote exceptions [Rmi-Spec 96].

public class RemoteException
extends java.lang.Exception

II This declaration tags the exceptions that are defined as
II remote, thus distinguishing them from local exceptions.

{

public RemoteException (String s) i

public RemoteException (String S, Exception e) i

4.3.1.3 RemoteObject Class This class implements the java. lang. Object

behavior for remote objects. The hashcode method is an extension of the Java language

hashcode, where references to the same object are considered to be equal. The equals

method is implemented to allow remote object references to be stored in hashtables to be

compared. The equals method returns true if two references are made to the same remote

object. The toString method returns a string that defines the remote object [Rmi-Spec

96].

package java.rmi.serveri

public abstract class RemoteObject implements Remote
{

public int hashCode();

public boolean equals(Object obj);

public String toString();

38

4.3.1.4 NamingClass The Naming interface allows remote objects to be retrieved

and defined using the Uniform Resource Locator (URL) syntax. The URL usually

consists of a protocol, host, port, and name fields. The Registry service on the specified

host and port is used to perform the specified operation. The protocol should be specified

like rmi://host/test_method, where test method is the object bound with the remote

interface [Rmi-Spec 96].

package java.rmi;

public class Naming {

}

public static Remote lookup(String url)

throws RemoteException, NotBoundException

AccessException, UnknownHostException;

public static void bind(String url, Remote obj)

throws RemoteException, NotBoundException

AccessException, UnknownHostException;

public static void rebind(String url, Remote obj)

throws RemoteException, NotBoundException

AccessException, UnknownHostException;

public static void unbind(String url)

throws RemoteException, NotBoundException

AccessException, UnknownHostException;

public static String[] list(String url)

throws RemoteException, AccessException,

UnknownHostException;

.L

39

The lookup method returns the remote interface associated with the file portion

of the name, which m the above test protocol 1s test method. The

NotBoundException is thrown if the name has not been bound to an object. The

bind method binds the specified name to the remote object. It throws

AlreadyBoundException if the name is already bound to another object. The

rebind method always binds the name to the object even though the name is already

bound. The previous binding is lost in this case. The unbind method in the same way

releases a binding between a name and the remote object. It throws the

NotBoundException ifthere was no binding. The list method returns an array of

strings containing information about the URLs bound in the Registry [Rmi-Spec 96].

4.3.2 Server Interfaces

When implementing the server, the client interfaces need to be available [Rmi

Spec 96]. These interfaces must be able to be extended to allow for the creation,

definition, and export of remote objects. The server interfaces consist of four major

classes which extend RemoteObject and Remote Server. The rule of thumb is that a client

interface should be existing when a server interface is started, otherwise a

ServerNotActi veException is thrown.

4.3 .2.1 Remote Server Class The remote server class is the superclass for all types

of server implementations. It provides the framework to support a wide range of remote

reference semantics [Rmi-Spec 96].

package java.rmi.server;

L..

40

abstract class RemoteServer extends RemoteObject

static String getClientHost()

throws ServerNotActiveException;

II This is a Java method that is used for obtaining
II information about a specific client which invoked an RMI.

static int getClientPort()

throws ServerNotActiveException;

II This provides the port information about the client which
II invoked the RMI.

}

The two methods getClientHost and getClientPort allow the active

method to find the host and the port that made the remote method active in the current

thread. If no remote method is active, the ServerNotActi veException is thrown.

4.3.2.2 UnicastRemoteServer Class The UnicastRemoteServer class provides

point-to-point active object references using TCP streams. Thus, the TCP connection

based transport is used and references that are made are valid only for the lifetime of the

process that creates the remote object [Rmi-Spec 96].

package java.rmi.server;

public class UnicastRemoteServer extends RemoteServer {

II Create new object whose life time is the process

II life time.

public UnicastRemoteServer()

throws RemoteException;

II Create a new remote object on the specified port.

public UnicastRemoteServer(int port)

throws RemoteException;

II Export a remote object.

public static RemoteStub exportObject(Remote obj)

throws RemoteException;

II Export a remote object on a specified port.

}

41

public static RemoteStub exportObject(Remote obj, int

port)
throws RemoteException;

4.3.2.3 Creating a New Remote Object Remote objects are created by the server

application. When these remote classes extend the UnicastRemoteServer, two

constructors are available to create and export the new remote objects. The first

constructor creates the remote object on the server port and the second constructor

exports the remote object to the specified port.

4.3.2.4 Exporting a Remote Object Two methods, exportObj ect (Remote

obj) and exportObj ect (Remote obj, int port), are available to export

remote objects that are not implemented by extending UnicastRemoteServer. The

exportObj ect is called with the object on the default port. The second form is used to

export object on the specified port number. The return value of exportObj ect is a

stub object that clients will use to refer to the remote object.

In remote method calls, always the stub object is passed as the return value. If the

remote object itself is passed, a lookup is performed to find the stub for the remote object,

and is passed as the result of the remote call.

4.3.3 The Registry Interfaces

The registry interfaces are used to register and retrieve objects by simple names.

Any server can support its own registry or a simple registry can be used for a host. The

interface consists ofthe LocateRegistry and Registryimpl classes.

·--~-----------------

42

The java. rmi . Naming interface uses the registry interface to provide URL

based naming.

4.3.3.1 Registry Interface The Registry interface provides methods for lookup,

binding, rebinding, unbinding, and listing the contents of a registry. The general syntax

for the registry interface is [Rmi-Spec 96]:

package java.rmi.registry;

public interface Registry extends Remote {

public Remote lookup(String name)

throws RemoteException, NotBoundException,

AccessException;

II This method is used for looking up a remote server in the
II registry by means of the server name provided as a
II string.

public void bind(String name, Remote obj)

throws RemoteException, AlreadyBoundException,

AccessException;

II This method is defined to bind a specific remote object
II with a given string for future references.

public void rebind(String name, Remote obj)

throws Remote Exception, AccessException;

II This method is used for rebinding a remote object with a
II different string.

public void unbind(String name)

throws RemoteException, NotBoundException,

AccessException;

II This method unbinds a remote object from its associated

II name.

public String[] list()

throws RemoteException, AccessException;

II This method returns a list of strings that contain
II information about the URL bound in the registry.

}

43

4.3.3.2 Locate Registry Class This class contains static methods that retrieve a

registry on the current host, current host at a specified port, a specified host, or at a

particular port on a specified host [Rmi-Spec 96].

package java.rmi.registry;

public class LocateRegistry

}

public static Registry getRegistry()

throws RemoteException;

public static Registry getRegistry(int port)

throws RemoteException;

public static Registry getRegistry(String host)

throws RemoteException, UnknownHostException;

public static Registry getRegistry (String host, int port)

throws RemoteException, UnknownHostException;

4.3 .3 .3 Registrylmpl Class This class implements the Registry interface with a

simple naming syntax. The name and remote object bindings are not remembered across

server restarts. In other words, the bind, unbind, and rebind methods are allowed only

from clients on the same host as the server [Rmi-Spec 96].

package java.rmi.registry;

public class Registryimpl extends

java.rmi.server.UnicastRemoteServer implements Registry

public Registryimpl()

throws RemoteException;

public Registryimpl(int port)

throws RemoteException;

public static void main(String args[]);

44

A Registryimpl can be created using the default port or by using a specified

port. For stand-alone applications, Regsitryimpl defines a main method to which the

port number can be passed as an argument. The main method also sets the security

manager to check the loading of unnecessary remote objects into the process. Then it

creates a Registryimpl on the specified port.

Clients access the registry with the LocateRegistry class and the Registry

interfaces.

4.4 Usage Details

The program reqmres the following: Microsoft Windows95 installed on the

personal computer, Network chord attached to the personal computer, and Java

Developers Kit 1.0.2 installed.

The main software program has two directories, rmi and java. The directory java

has the Java Developers Kit 1.0.2 installed. It is used for compiling source files and using

the appletviewer for executing html files. The directory rmi has the RMI software loaded.

The software was tested using an Echo example to test some of the new features. The user

interface for the original program was changed to include some enhanced features such as

estimating the total time taken to find out a remote host and finding the method desired

on the remote host. This is achieved using the java. lang. Thread class. The thread

runs in parallel with the main program. The precision of the timer is one millisecond. For

implementing this feature, the personal computer must support multi-threading. Since

installation of Windows95 is set as a basic criterion, the personal computer should be

supporting multi-threaded programs (as Windows95 is an example of a multi-threaded

program).

~-------------- L

45

There are two batch files, load.bat and start.bat. These files contain the necessary

setup procedures needed before attempting to test the example program. All the source

files are in the subdirectories included in rmi. The two batch files are listed in Appendix

D.

To run the executable file, make changes in the file load.bat as follows:

if the drive used is say the C drive, then the classpath line should something like:

SET CLASSPATH=c:\rmi\examples\echo\test;c:\rmi\lib\rmi.zip

SET RMIHOME=c:\rmi

PATH=c:\java\bin;c:\rmi\bin;c:\windows\command;PATH%;

the rest of the commands are the same. Essentially, change the drive from H:\, as given in

the file, to the drive under use.

When running the batch file, if any of the statements gives the error "Out Of

Environment Space", this message means that the available environment is insufficient to

hold the new variable definition. The suggested solution is to increase the environment

space by including the command:

shell=c:\windows\command.com /e:1024

in the config. sys file ofthe computer and reboot the machine.

In order to run the echo example on two machines:

(i) run "j avaw java. rmi. registry. Registryimpl" on hostA

(ii) run "j avaw java. rmi. examples. echo. Echoimpl" also on hostA

(iii) run "appletviewer rmi/ examples/ echo/ index. html" on hostB

the address to be typed in the URL field of hostB to look up an echo object located on

hostA should be:

rmi://hostA/Echol

rmi://hostA/Echo2

46

When running the echo example on one machine, the URL that needs to be typed

is rmi: I /hostA/Echol, provided the host also runs the server.

There are five buttons, Look, Inv, Reset, Default, and Status.

Look is used to find the remote host given in the Hostfield.

Inv is used to invoke the Echo call on the remote host.

Reset is used to disconnect the remote host.

Default sets the host to the local host, i.e., the host name of the machine used.

stat us gives an indication of which host methods are used at a given instance.

When the Inv button is used, the Clock thread is activated and there is display of

the clock counter on the user window. This gives the estimated time taken to connect to

the mentioned site.

The Echo program implements five echo servers on every host it runs. So the

syntax of the hostname is thus: rmi://hostname/Echol through rmi://hostname/Echo5.

The new source files for the Echo program are in the subdirectory, rmi/examples/echo.

The compiled classes are Ill the subdirectory

rmi/examples/echo/test/java/rmi/examples/echo.

The original source files were developed by Sun Microsystems, Inc., which has

given a free usage permission. The source files for the sample program are listed as:

Echo. java: Containing the Standard Interface that defines the remote behavior.

Echoimpl. java: Containing the Implementation and sample Main that creates several

echo servers and registers them with the registry on the local host.

_______ L

47

EchoClient. java: Containing a client that looks in the local registry for named echo

servers and invokes its call method.

EchoApplet. java: An applet that finds a named echo server and lets a user invoke

the remote interface. This applet uses the java Threads to calculate the lookup time.

Index. html: Web page with EchoApplet embedded.

CHAPTER V

EVALUATION

5.1 Sample Tests Done with the Program

This chapter gives a brief outline of the testing done with the windows version of

the RMI software. As part of testing, a test program was used to test the utility of the

software. The program echoes the input string that has been passed as the output. The

input string is passed by the client and the method that does the echoing is located on the

server machine. The server is looked up by the client interface and the input string is

passed. The server has a local method (that has been previously declared remote), which

returns the same string back to the client machine. The program was tested on several

machines of the Oklahoma State University Computing and Information Services

Department.

The different method lookup times taken by the test program for different run

conditions were noted and are tabulated in Tables I and II. To simulate the invocation of

remote objects across networks, file servers were used as a network medium. Most of the

machines mentioned in Table I are connected to the University Computer Center File

Sever (UCC-FSI) of Oklahoma State University. To check the performance of the

program on different network servers, another file server, HELPDESK-FSl, was used.

By connecting the same machines to different file servers, a behavior of how the program

48

49

works on invoking methods across networks was determined.

The difference in the times taken to retrieve the same method across different file

servers was noted. The initial time to look up any given host was observed to be more

when compared to subsequent lookups to the same host, as the java. rmi. Naming

interface makes a note of the host during the initial lookup and this interface is searched

in the registry for any future lookups.

Table I. Sample Remote Method Lookup Times in Milli Seconds - I

Methods on Remote Server

Echo1 Echo2 Echo3 Echo4 Echo5

Clients Cishlpdsk1 73 19 14 32 18

Running Cishlpdsk2 104 37 33 30 18

on Cishlpdsk3 1 15 9 10 12

Different Cishlpdsk4 78 20 18 15 19

Hosts Cismmpc 506 14 15 19 14

Cisrobin 90 38 38 36 30

In Table I, a remote server was run on machine Cishlpdsk3 and different clients

were run on machines Cishlpdskl,

Cishlpdsk4, Cismmpc, and Cisrobin.

Cishlpdsk2, Cishlpdsk3,

The first column in the above table specifies the name of the machine on which

the client was residing. The server was located on the machine Cishlpdsk3. The

remaining columns reflect the amount of time (in milliseconds) taken by the client in the

~~~-~-------~--------------------------~-----------~ 



50 

first column to look up for the method, denoted in the first row of the specified column, 

that was residing on the server. The amount of time that each client took to look up for a 

method was noted. Figure 5-1 provides a time/method data graph for Table I. 

Ui' 
E 

Time/Method Data Graph 
600 ,~ ------ ---------- ----------------~- ------

500 -+-----

400 ---- ----~-J:l1;J 

--;;;300 ----
E 
I= 

200 -----

100 -~ 

0 
Echo1 

. •-- ,• .• 
Echo2 Echo3 

Methods Looked 

Legend 

--· Echo4 

[_j Clshlpdsk1 B Clshlpdsk2 B Clshlpdsk3 

B Clshlpdsk4 lifil Clsmmpc B Clsrobln 

Figure 5-1. Sample Remote Method Lookup Data Graph - I 

• 
Echo5 

The sample lookup times that have been obtained when the remote server was run 

on the file server HELPDESK-FSI, and the clients were running on the file server UCC-

FS I, were tabulated and were given in Table II. 



Table II. Sample Remote Method Lookup Times in Milli Seconds - II 

Methods on Remote Server 

Echol Echo2 Echo3 Echo4 

Clients Cishlpdsk1 75 15 13 38 

Running Cishlpdsk2 128 32 39 42 

on Cishlpdsk3 2 11 7 12 

Different Cishlpdsk4 70 12 14 15 

Hosts Cismmpc 586 34 31 28 

Cisrobin 108 58 45 57 

Time/Method Data Graph 

-u;
E 

600 

500 ~-----

400 -,--

'G;300 ----~ -
E 

Echo5 

12 

15 

10 

25 

24 

40 

~ ~:: -ii=: .--~Ill;--=:.--~~~ 
Echo1 Echo2 Echo3 

Methods Looked 

Legend 

Echo4 

LJ Clshlpdsk1 llllll Clshlpdsk2 • Clshlpdsk3 

• Cishlpdsk4 illj Cismmpc • Cisrobin 

Figure 5-2. Sample Remote Method Lookup Data Graph - II 

Echo5 

51 



52 

In Table II, the server was run on machine Cishlpdsk3 runnmg on file server 

HELPDESK-FSl, and different clients were run on machines Cishlpdskl, 

Cishlpdsk2, Cishlpdsk3, Cishlpdsk4, Cismmpc, and Cisrobin, 

running on the file server UCC-FSl. The amount of time that each client took to look up 

a method was noted. 

5.2 Observations 

The following observations were made when runnmg the Remote Method 

Invocation using the Echo interface. 

• When the program is run for the first time, the amount of time to look up for any 

given host (including the server) is more. This can be attributed to the fact that the 

program needs to implement the registry interface and the server interface. This may 

take a few seconds. 

• The amount of time taken to lookup a remote method lying on the same file server is 

less when compared to the amount of time taken to look up the same method residing 

on a different file server. This is due to the amount of time taken to load a stub from 

the network. Loading a stub from the same file server takes less time than loading 

from a network server. 

• The success rate is very high for this program while looking for a remote object. The 

program almost always successfully identified all the hosts in various test suits. 

• When compared to the sun alpha version, the program is more user friendly and gives 

useful information regarding the connecting time and network failures. The exception 

messages are an advantage when trying to debug the source of the exception. 

- ~----~-- ~ -----



53 

Some ofthe limitations can be cited as: 

• the program runs only under the Windows95 environment. 

• the amount of memory used by the program is fairly high. around 2MB. 

When compared to the initial Alpha version. this application has more user friendly 

features. These are tabulated in Table III. The usage of Graphical User Interfaces and the 

introduction of multi-threaded objects tend to make the present version more informative 

than the previous version. 

Table III. Comparison ofthe Versions 

Properties Previous Version Modified Version 

Accessibility The access is limited to Sun Compared to the Sun Work 
Workstations and IS not Stations, Personal 
always possible to get Computers are more easy to 
access to them. access. 

User Friendliness The absence of Graphical A more user friendly 
User Interfaces (GUis) environment due to the use 
makes them less user ofGUis. 
friendly. 

Means of Accessing the The clients run on Clients run on the user 
Server mainframe and the server is machine and the server IS 

accessed by using Netscape. looked up usmg 
appletviewer. 

Features Gives information about the More information including 
total number of the amount of time taken to 
connections. access the remote object, 

the ability to disconnect 
from a server. server 
information, and system 
errors are introduced. 

The test program involved both binary porting and source code porting. Binary 

porting involved the use of class libraries that were also in use by the existing version. 



54 

Most of these libraries were linked dynamically during the execution of the program. 

Source code porting consisted of using selected procedures for making network 

connections between clients and remote servers. The code developed for the new user 

friendly features was not based on the existing version and hence did not come under the 

rubric of software reuse. 

Considering the above aspects, an estimate of the percentage of code that was 

reused was obtained. The original version consisted of 649 lines of code that were in 

direct use by the test program. In the new environment, the same application required 290 

lines of the original code and an additional 500 lines of code for developing the new user 

friendly features for the program. 

From the above data, the percentage of source code that was reused can be 

calculated as follows: 

Amount of code in the existing version = 649 lines 

Amount of code in the new version = 790 lines 

Amount of actual code developed = 500 lines 

Amount of code reused = 790 - 500 = 290 

Percentage of code reused = Amount of code reused/ Amount of code in the new 

version= 290/790 = 36.7% (ofthe existing code) 

The above estimate involved only the source code aspect of the porting 

application. It did not take into account the various class libraries that were used in both 

versions, as they fall into the category of binary porting. The actual percentage of code 

reuse would have been more than the amount projected if there was no addition of the 

----- ------ -----



55 

timer process and the new Graphical User Interface. Thus, it can be inferred that instead 

of developing 1 00% new code, the original code was reused to the extent of 3 7%. 

Considering the reuse economy. the potential development cost can be calculated 

using the equation proposed by John Gaffney (as cited in [Mareddy and Samadzadeh 95] 

and [Barnes et al. 87]) of the Software Productivity Consortium which predicts that 

C = (1-R) * L + b * R 

where C is the total cost of developing new software, R is the percentage of code reused, 

b is the cost of reusing a line of code, and L is the cost of developing a new line of code. 

For the projected case, where it is assumed that there was no reuse of the existing code, 

the potential development cost can be calculated as: 

C1 =(I - 0) * L + b * 0 = L (R=O for no reuse) 

In the actual case, the amount of reuse was 3 7%, hence the potential development cost 

can be calculated as: 

C2 =(I - 0.37) * L + b * 0.37 = 0.63L + 0.37b 

Assuming that the potential cost of reusing a line of code is less than the cost of 

developing a new line of code, C2 is less than C1• According to Karlsson [Karlsson 95], 

the current industry standard for software reuse is limited to a maximum of 55% of the 

source code while the average is around 23% under a 90% confidence level. Hence, by 

reusing 3 7% of the source code, there was a significant savings in the potential total 

development cost. 



56 

5.3 User Appraisal 

The program was shown to eight Computer Science Department Graduate 

students. Some of the suggestions are listed below: 

• The precision of the original timer was one second. Since the time taken to look for a 

server was rather fast (on the order of one hundredth of a second), it was suggested to 

increase the precision. The timer currently in use has a precision of one millisecond. 

• There was a suggestion of mentioning a very detailed report of what the remote 

exceptions look like. The exception message in the message textfield is a result of 

different failure paradigms. Provision has been given to display the entire contents of 

the remote exceptions in the background screen. The messages are usually long with 

the entire router mentioned along with the point where the exception occurred. 

• Suggestion to display the current server that the client is accessing was given. This is 

provided by means of a Status field which provides the information about the current 

server m use. 

• The time is displayed in the background MS-DOS screen. Suggestion was given to set 

up a different text field to display the same. This idea is not implemented as it does 

not hold good when looking for different servers from the same client machine. 

• The idea of invoking remote methods on different hosts at a given time was 

suggested. The applet cloning facility was used to connect each clone to a different 

host which resulted in an abstraction of invoking methods on remote hosts. 

• There were some ideas of changing the original screen by changing the font to the 

current size, increasing the window size, and changing the background color. The 



j 
_j 

57 

initial background color was changed from dark blue to the present color to enhance 

the appearance of the program. 



CHAPTER VI 

SUMMARY AND FUTURE WORK 

This thesis work involved the porting of an application, which has been originally 

written for Sun Workstations, to a personal computer environment running under 

Microsoft Windows 95. The work included identifying the necessary building blocks that 

are required for the program during its execution, writing a new user interface for the 

program, along with introducing some enhanced and user friendly features. 

The application was tested with a test suite and was executed on multiple file 

servers of the Oklahoma State University Computing and Information Services 

Department, and its performance was analyzed. The ported application worked efficiently 

on local file servers. The amount of time taken for accessing objects on remote hosts 

located on network file servers was rather high (of the order of 1000 milli seconds). This 

can be attributed to the network traffic when a specified object is acquired. 

The ported application was able to locate all the valid hosts in the test suite. In the 

case of invalid hosts (hosts which did not implement the client interface), the application 

always came up with a pertinent error message as programmed. 

The future work includes extending the ported application from different 

perspectives. Java Soft Inc., has introduced new additions to RMI libraries in which a 

58 



59 

user can introduce multi-threaded operations in the existing version. Multi-threading was 

used in determining the time taken to access a given host by running a timer parallel to 

the search routine. Similar features such as running various servers in parallel on the 

same machine by cloning servers using a thread process for each server, and introducing 

multimedia applications in parallel with the main application can be undertaken as part of 

the related future work. 



REFERENCES 

[Abdel-Hamid 93] T. K. Abdel-Hamid, "Modeling the Dynamics of Software Reuse", 
Proceedings of the Sixth Annual Workshop on Software Reuse, Owego, NY. pp. 
1-5, November 1993. 

[Alverson and Notkin 93] G.A. Alverson and D. Notkin, "Program Structuring for 
Effective Parallel Portability", IEEE Transactions on Parallel and Distributed 
Systems, Vol. 4, No.9, pp. 1041-1059, September 1993. 

[Arthur 96] Vanhoff Arthur, Hooked on Java, Creating Hot Web Sites with Java Applets, 
Addison-Wesley Publishing Company, Inc., Reading, MA, 1996. 

[Barnes et al. 87] B. Barnes, T. Durek, J. Gaffney, and A. Pyster, "A Framework and 
Economic Foundation for Software Reuse", Proceedings of the Rocky Mountain 
Institute of Software Engineering (RMISE) Workshop in Software Reuse, Rocky 
Mountain Institute of Software Engineering, Boulder, CO, pp.77-88, October 
1987. 

[Birrell and Nelson 84] A. D. Birrell and B. J. Nelson, "Implementing Remote Procedure 
Calls", ACM Transactions on Computer Systems, Vol. 2, No. L pp. 39-59, 
February 1984. 

[Boehm 87] B. Boehm, "Improving Software Productivity", IEEE Software, Vol. 4, No. 
5, pp. 43-57, September 1987. 

[DEC 96] Internet site ofthe Digital Equipment Corporation, Inc., http://www.dec.com. 

[Eichmann 92] D. Eichmann, "Selecting Reusable Components Using Algebraic 
Specifications", Algebraic Methodology And Software Technology (AMAST) 91, 
Workshops in Computing Series, Springer-Verlag Ltd., London. UK, 1992. 

[Frakes et al. 91] W. B. Frakes, T. J. Biggerstaff, R. Prieto-Diaz, K. Matsumura, and W. 
Schaefer, "Software Reuse: Is It Delivering?", Proceedings of the International 
Conference on Software Engineering, Austin, TX, pp. 52-62, May 1991. 

[Hannah 96] Michael Hannah, HTML Reference Manual, Sandia National Laboratories, 
Albuquerque. NM, 1996. 

[Harms et al. 96] David Harms, Barton Fiske, and Jeffrey Rice, Web Site Programming 
with Java, McGraw-Hill, New York, NY, 1996. 

[Hooper and Chester 91] James Hooper and Rowena Chester, Software Reuse: Guidelines 
and Methods, Plenum Press, Inc., New York, NY, 1991. 

60 



I 

J 

61 

[Jackson and McClellan 96] Jerry R. Jackson and Alan L. McClellan. Java by Example. 
Sunsoft Press, Sun Micro Systems, Inc., Mountain View, CA, 1996. 

[Java-Spec 96] ] Java Programming Language Specifications, Javasoft Corporation, 
Mountain View, CA, 1996. 

[Jones 84] T. C. Jones, "Reusability in Programming: A Survey of the State of the Art", 
IEEE Transactions on Software Engineering, Vol. 10, No. 5, pp. 488-494, 
September 1984. 

[Karlsson 95] Even Karlsson, Software Reuse: A Holistic Approach, John Wiley & Sons, 
New York, NY, 1995. 

[Krueger 92] Charles W. Krueger, "Software Reuse", ACM Computing Surveys, Vol. 24, 
No.2, pp. 131-179, June 1992. 

[Lanergan and Poynton 79] Robert Lanergan and Brian Poynton, "Reusable Code: The 
Application Development Technique for the Future", Proceedings of the IBM 
Share/Guide Software Symposium, IBM Users Group, IBM Corporation, Armonk, 
NY, June 1979. 

[LeCarme et al. 89] 0. LeCarme, Pellisier Gart, and M. Gart, Software Portability with 
Microcomputer Issues, McGraw-Hill, New York, NY, 1989. 

[Lewis and Oman 90] T. G. Lewis and P. Oman, "The Challenge of Software 
Development", IEEE Software, Vol. 7, No.6, pp. 9-12, November 1990. 

[Mareddy and Samadzadeh 95] R. Mareddy and Mansur H. Samadzadeh, "An 
Implementation of the Faceted Classification System for Software Reuse", in 
Intelligent Systems, Volume I, pp. 181-194, Edited by: E. A. Yfantis, Theory and 
Decision Library - Series D: System Theory, Knowledge Engineering, and 
Problem Solving, Kluwer Academic Publishers, The Netherlands, 1995. 

[Mooney 90] J. Mooney, "Strategies for Supporting Application Portability", IEEE 
Computer, Vol. 23, No. 11, pp. 59-70, November 1990. 

[Mooney 93] J. Mooney, Issues in the Specification and Measurement of Sr~ftware 
Portability, Technical Report TR 93-6, Department of Statistics and Computer 
Science, West Virginia University, Morgantown, WV, 1993. 

[Prieto-Diaz 93] R., Prieto-Diaz, "Status Report: Software Reusability", IEEE So_ftware, 
Vol. 10, No.3, pp. 61-66, May 1993. 

[RMI-Spec 96] Remote Method Invocation Specifications, Javasoft Corporation, 
Mountain View, CA, 1996. 



62 

[Sitaraman 92] M. Sitaraman, "Towards a Modular Approach for Real-Time 
Specification and Verification of Reusable Software Components", Proceedings 
9th IEEE Workshop on Real-Time Operating Systems and Software, May 1992. 

[Skillicorn 94] David Skillicorn, Foundations of Parallel Programming, Cambridge 
University Press, Cambridge, NY, 1994. 

[Sommerville 96] I. Sommerville, Software Engineering (Fifth Edition), Addison-Wesley 
Publishing Company, Inc., Reading, MA, 1996. 

[Stevens 90] Richard Stevens, UNIX Network Programming, Prentice-Hall, Englewood 
Cliffs, NJ, 1990. 

[Tanenbaum 92] Andrew Tanenbaum, Modern Operating Systems, Prentice-Hall, 
Englewood Cliffs, NJ, 1992. 

[Walrath and Campione 96] Kathy Walrath and Mary Campione, The Java Tutorial, 
Addison-Wesley Publishing Company, Inc., Reading, MA, 1996. 

[Wolberg 83] John Wolberg, Conversion of Computer Software, Prentice-Hall, 
Englewood Cliffs, NJ, 1983. 



_j 

Application Programming 
Interface 

Bytecode 

Class path 

HTML 

Java 

Javac 

Marshal Stream 

Native Method 

Parameter Marshaling 

APPENDIX A: GLOSSARY 

An API is a library of programming routines 
which assist in the execution of user defined 
problems. 

An intermediate assembled code that is used by 
the Java run time system for checking the 
integrity of Java source code. This is the 
usual way of transmitting compiled source code 
in Java. 

Specifies the path used by the javac compiler 
for compiling source files. 

Hyper Text Markup Language, used to 
construct documents which can be viewed by 
World Wide Web browsers. 

An object-oriented programming language for 
writing applications on the Internet. 

Basic java compiler used for compiling Java 
source files. 

An abstraction of how messages are passed 
between clients and remote servers. 

A native method is a Java method (either an 
instance method or a class method) whose 
implementation is written in another 
programming language such as C. 

A method of preserving the changes that are 
made to an object by another function to which 

63 



Remote Object 

Remote Interfaces 

Remote Procedure Call 

RMI 

Rmic 

Software Component 

Stub File 

Transport Classes 

Transport Layer 

URL 

64 

the object has referenced. 

An object whose methods can be invoked from 
another machine running on a different host. 

These are Java Interfaces which defines the 
methods ofthe remote object. 

Mechanism for distributing application 
processing across a distributed computing 
network. 

Remote Method Invocation, a process of 
connecting clients running on user machines to 
a network server. 

A stub generator tool that produces client and 
server stubs which handle the details of 
transmitting calls over the network. 

A Code fragment meant for a specified function. 

The stub file contains C code that is responsible 
for holding the Java class and its parallel C 
structure together in a native method. 

A set of C++ class routines that are organized 
as an object-oriented software toolkit for 
distributed, message-passing based 
programmmg. 

The highest of the lower layer protocols in the 
OSI protocol stack, concerned with the 
transmission of data between end systems 
across a communication facility. 

Uniform Resource Locator (URL) or Uniform 
Resource Identifier (URI), a reference (an 
address) to a resource on the Internet. 

L 



APPENDIX B: TRADEMARK INFORMATION 

Hot Java 

Java 

Java Developers Kit-1.0.2 

Java Remote Method Invocation 

MS-DOS 

MSWindows95 

MSWindows3.X 

Nets cape 

Sun Solaris 

UNIX 

A registered trademark of Sun 
Microsystems, Inc. 

A registered trademark of Sun 
Microsystems, Inc. 

A registered trademark of Sun 
Microsystems, Inc. 

A registered trademark of Sun 
Microsystems, Inc. 

A registered trademark of Microsoft 
Corporation, Inc. 

A registered trademark of Microsoft 
Corporation, Inc. 

A registered trademark of Microsoft 
Corporation, Inc. 

A registered trademark ofNetscape 

Corporation, Inc. 

A registered trademark of Sun 

Microsystems, Inc. 

A registered trademark of UNIX System 
Laboratories, Inc. 

65 

L 



APPENDIX C 

USER GUIDE 

1. Introduction 

This is a brief description of the various details that can be obtained using the 

Remote Method Invocation running under MicrosoftWindows95. This software involves 

accessing remote methods that are implemented by remote objects by using the Java 

network primitives. The initial version of the software was developed for Sun 

workstations and later some of the components were modified for running under the 

Windows95 environment. The following sections describe the setting up and using the 

software along with going through the test example that is used to demonstrate the 

enhanced features that were introduced. 

2. Setting up 

The mam requirements for this program are a properly installed Microsoft 

Windows 95 operating system on a personal computer. If Windows95 is not installed 

properly, the program gives run time exceptions like socketCreation error and 

ThreadException error. There needs to be a network chord attached to the computer as the 

program tends to access the network when trying to load some of the files dynamically 

over the network. Using a modem to run the program is not feasible as modems do not 

support TCP/IP stacks like network chords. 

66 



67 

2.1 Hardware and Software Requirements 

The computer on which the program can be tested needs to meet the following 

hardware and software requirements. 

• Any IBM-compatible machine with an 80386 or higher processor. 

• A hard drive with at least 4MB of free space. 

• A VGA monitor or better. 

• Two megabytes of memory. 

• A network. The network can be an ordinary file server that is connected to the internet 

at the far end or a direct network chord connecting to the network. 

• A mouse. 

• Microsoft Windows95 installed. 

• MS-DOS running as a background process. 

2.2 Running the Program 

The following steps help the users run the program on their computer. The Java 

Developers Kit Version1.0.2 is a freeware and hence the user can download it from the 

internet and install it. The program makes use of the components to compile the source 

files (using the j avac compiler), interpret the bytecode format (using the j avaw 

interpreter, which simulates running of a background process), and run the applets (using 

the appletviewer). When MicrosoftWindows95 is installed, the desktop looks 

somewhat like Figure C-1. 



68 

Figure C-1. Initial DeskTop Screen 

Before starting the program, the initial setup program needs to be run. I have 

loaded all the setup commands in a batch file named run. bat. Once the user starts the 

MS-DOS mode, the user can run the batch file by typing the name of the file, i.e. , run 

in this case. I have run all the applications on my home drive on the UCC-FSl. Ifthe user 

wants to run the program in the C drive, the user needs to change the drive from H to C. 

The initial setup program checks whether the path has been set to all the executable files, 

like the j avac, j avaw, and appletviewer that are present in the java \bin 

subdirectory. 

Figure C-2 depicts the different commands that run on the MS-DOS screen when 

the user runs the batch file. 



69 

Figure C-2. Initial Setup Screen 

Once the first batch file is run, the user needs to run another batch file, 1.e., 

start. bat. This file contains the following commands: 

SET CLASSPATH=h:\rmi\examples\echo\test;h:\rmi\lib\rmi.zip 

The classpath variable looks for the compiled classes and sets the path to the directory 

hierarchy mentioned. When the program runs, it looks for the CLASSP ATH variable and 

fetches the required classes from the site mentioned in the classpath. I have compiled the 

source files and kept the classes in a different subdirectory named test. So the program 

looks for the compiled classes in the subdirectory test while it executes. 

The server is started by calling the j avaw interpreter and running the registry on 

the local file server, which is the remote host. The registry needs to be run on the machine 

which can be visualized as the remote host, so that the clients can be run from other 

machines connected through a common network. 



70 

Figure C-3 shows how to run the server on a client machine. 

Figure C-3. Running the Server 

Once the server is started, the clients can be started by runmng the client 

interfaces. The client interface in this example program is named Echoirnpl. So this is 

run using the j avaw interpreter. 

Once the client interface is run, the application can be looked up using an 

appletviewer. I used another batch file, named start. bat, which calls the appletviewer 

to load the application named EchoApplet. The appletviewer loads all the classes from 

the path mentioned in the code base parameter. Since all the compiled classes for this 

example are located in the subdirectory test, the codebase for the applet was named 

test so all the compiled classes are loaded. Once the appletviewer is started, the applet 

is loaded. The application comes up with the hostname of the local machine on which the 



71 

applet is running in the hostfield of the applet. Figure C-4 shows the screen that pops up 

when the applet is loaded. 

Figure C-4. Applet Loaded on Server Machine 

The applet is loaded on the user desktop and the MS-DOS screen runs in the 

background. Once the applet is loaded, the timer starts automatically and gives the 

amount of time the application took to search for any host mentioned in the MS-DOS 

screen. Since the initial host is the same machine, the amount of time taken is mentioned 

as the initial lookup time. This is a small fraction of time, usually a few milliseconds. The 

default method that is looked up is named Echo 1. So the URL is called 

HostName/Echol. In the figure above, cismmpc (which stands for Computing and 

Information Services Multi Media Personal Computer) is the name of the machine on 

which the application was running. The Status field shows the present status of the host. 



72 

If the application finds the remote host, then the message shown m Figure C-4 1s 

displayed. 

Once the program finds the host, we can run the Remote Method Invocation. In 

the testing case, the application is checked on the local host, which is cismmpc in this 

case. Since the example is an echo, the program takes a string as the argument for the 

method of the remote object, which is the method Echol in this case. The result is 

displayed in the return field of the applet (see Figure C-5). 

Figure C-5. Invoking a Method on a Local Host 

One of the features added to the existing version is the facility of going back to 

the default host that is implemented in the form of a pushButton. The Default button is 

part of the user interface which reconnects to the default host as the user invokes the 

button. In the example above, the default host is considered as I /cismmpc/Echol. 

So, invoking the default button results in changing the host to the initial host which is 



73 

displayed in the status field. Figure C-6 illustrates the result obtained by invoking the 

default button. 

Figure C-6. Using the Default Option 

Another feature that was implemented is the Reset option. The Reset button is 

used to disconnect from a remote host. The network connection that is set up is broken 

and all the references that are made by the client to the server host are lost. The name of 

the server host is maintained in the java . rmi . Naming interface for a faster lookup in 

the future. When this button is used, the application waits for a new hostname in the 

hostfield for searching. Figure C-7 shows the applet when the Reset button is invoked. 



74 

Figure C-7. Using the Reset Option 

When the Reset button is used, the client interface functions are disabled. So some 

of the user interface buttons invoke error messages when they are used. This is displayed 

in Figure C-8. 



75 

Figure C-8. Using Lookup Method with no Active Server 

When the lnv button is used, the application gives an error message as the named 

object is not an Echo server. Figure C-9 gives the program behavior when the Inv button 

is used when there is no active server. Figure C-1 0 shows the program behavior when 

trying to invoke another method on the same host. 



76 

Figure C-9. Using the Invoke Method with no Active Server 

Figure C-10. Looking for another Method on the same Host 



77 

Figure C-11. Invoking another Method on the same Host 

Figure C-12. Looking for another Method (Echo5) on the same Host 

Figures C-11 and C-12 illustrate the different method invocations on the same 

host. 



78 

The application creates five different objects, each having a method which 

implements the remote interface. So, when the client invokes any of the five methods, 

they are displayed on the screen in the status field. 

Before a client can look up for any server or a server can look up for a client, the 

client needs to implement the client interface. This is the Echoimpl interface in the 

example program. If the client does not implement this interface, it leads to a 

remoteException. 

When a server looks up for a client that implements a client interface, the 

hostname of the client is noted in the registry, which uses the java. rmi . Naming 

interface. Thus, in the future, lookups for the same host are done faster as the hostname is 

first searched in the registry. 

Figure C-13. Remote Exception during Client Lookup 



- - - - ~ - - --- -~-- -

79 

Figure C-13 shows an exception that occurs when a server looks up for a client 

that does not implements a client interface. 

But when the client implements the interface, the application finds the client and 

comes up with the hostname. Figure C-14 displays the applet when it finds a host 

mentioned in the hostfield. 

Figure C-14. Looking for a Remote Client 

All the methods that are declared remote by the remote object and which 

implement the remote interface can be accessed by the client. A remote object can 

implement other methods but these cannot be accessed as long as they are not declared 

remote. 

Once the client is looked up, the Status button displays the current client that is 

using the application through the applet. Figure C-15 shows that the client on machine 

cishlpdsk3 is using the server methods on machine cismmpc. Looking for another 



80 

host changes the status to the latest user. Thus, at any particular moment, an idea as to 

who is using the remote application can be obtained. 

Figure C-15. Status ofthe current Client using the Applet 



81 

Figure C-16. Looking for another Method on a Remote Host 

Figure C-16 displays an access to another method of a remote object. The server 

in the example has five methods declared remote. So any of the five can be invoked 

successfully by a client. 

Multiple clients can use a remote object at the same time. This is possible by 

having the remote object create a Skeleton object for each of the client that tried to invoke 

the methods. Figure C-17 depicts how multiple clients can be abstracted by the clone 

property of an applet and how each applet runs as an independent application. 



82 

Figure C-17. Multiple Clients using a Remote Host 

In the above figure, each applet is independent and runs as a single entity. The Active 

Server label shows that each of the methods have been remotely accessed and are used by 

the client machine. 

Before a client interface is started, the server interface must be executed. That 

implies an active server should exist before a client can make a reference to it. Otherwise, 

the reference leads to a remoteException. 

The details of the client interfaces and the server interfaces, and the 

troubleshooting procedures about the program are mentioned in a file README. 



APPENDIXD 

PROGRAM LISTINGS 

83 



_ .......... 

84 

------------------------------------------------------------------------------------------
File Name: 
Type: 
Parameters: 
Description: 

Author: 

Run.bat 
Batch File 
None 

Initializes the path for the various executable files that are later 
used by the program. 
Lakshmana Pamarthy 

------------------------------------------------------------------------------------------

SET CLASSPATH=h:\rmi\examples\echo\test;h:\rmi\lib\rmi.zip 

SET RMIHOME=H:\RMI 

PATH=H:\java\bin;H:\RMI\BIN;C:\WINDOWS\COMMAND;PATH%; 

DOSKEY /INSERT 

------------------------------------------------------------------------------------------
Name: Start.bat 
Type: Batch File 
Parameters: None 

Description: Runs the server in the background and starts the client on the 
host machine, along with starting the applet. 

Source: Sun Micro Systems, Inc., 

------------------------------------------------------------------------------------------

javaw java.rmi.registry.Registryimpl 
javaw java.rmi.examples.echo.Echoimpl 
appletviewer index.html 

------------------------------------------------------------------------------------------
File: Echo. java 
Type: Method Declaration File 
Parameters: None 

Description: This package defines the interface. The method which is defined as remote can 
be accessed remotely by any other client running on a different Java Virtual 
Machine. 

Source: Sun Micro Systems, Inc., 

------------------------------------------------------------------------------------------

package java.rmi.examples.echo; 

II This is the standard way of mentioning the interface. It should extend the 
java.rmi.Remote and should have a throw remote 
II exception in its methods. 

public interface Echo extends java.rmi.Remote { 
String call(String message) throws java.rmi.RemoteException; 

------------------------------------------------------------------------------------------
File: EchoApplet.java 
Type: Interface Description File 
Parameters: None 

Description: This package defines the user interface. It contains the code for the 
different graphical user interfaces along with the code for calculating the 
lookup time for any server mentioned. 

Author: Lakshmana Pamarthy 

------------------------------------------------------------------------------------------

package java.rmi.examples.echo; 

/** 
This is the main part of the program which defines the interface of one of the software 
examples. This code fragment implements the applet interface. Along with extending the 
Java.applet.Applet interface, the program extends runnable ( which is used for calculating 



85 

the lookup time by implementing threads). The code consists in implementing the user 
interface along with calling the main routines from the other source files. The compiled 
class file is in the sub directory named "test". The code imports various rmi object files 
for its compiling. 
*I 

import java.io.*; 
import java.awt.*; 

import java.util.Date; 
import java.rmi.registry.Registry; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.registry.Registryimpl; 
import java.rml.registry.Registryimpl Stub; 
import java.rmi.registry.Registryimpl_Skel; 
import java.rmi.NotBoundException; 
import java.rmi.UnexpectedException; 
import java.rmi.UnknownHostException; 
import java.rmi.AlreadyBoundException; 
import java.rmi.AccessException; 
import java.rmi.NoSuchObjectException; 
import java.rmi.RemoteRuntimeException; 
import java.rmi.RemoteException; 
import java.rmi.Remote; 
import java.rmi.StubSecurityException; 
import java.rmi.Naming; 
import java.rmi.UnknownServiceException; 
import java.rmi.StubNotFoundException; 
import java.rmi.examples.util.FlexGridLayout; 
import java.net.*; 

I** 
The following routine is similar to the main routine. It declares all the Alternative 
window Toolkits, like the TextFields, Buttons, and Layouts. 
*I 

public class EchoApplet extends java.applet.Applet implements Runnable { 
TextField hostfield; 
TextField argfield; 
TextField resultfield; 
TextField statusfield; 
TextField serverfield; 
Thread clockThread; 
int search_time = 0; 
int initial_time = 0; 

II Initiates the Thread class. 

Button lookupbutton; 
Button invokebutton; 
Button Reset; 
Button Default; 
Button Status; 
Echo echo; 

public synchronized void init() 

start(); II This starts the thread for initial lookup time. 

String url = getParameter("url"); II gets the text from the hostfield 
if (url == null) ( 

try 

SecurityManager mgr = System.getSecurityManager(); 

Object context; 
String host; 

II Get information about the Installed Security Manager. 

if (mgr != null && 
(context= mgr.getSecurityContext()) !=null && 
context instanceof URL) { 

host= ((URL)context) .getHost(); II Case where given URL already in 



II The Echo context. 
else { 

String prot = getCodeBase() .getProtocol(); II Get the hostname. 
if (prot.equals("file")) 

host 
else 

host 

InetAddress.getLocalHost() .getHostName(); 
II Get the local host name. 

getCodeBase() .getHost(); 

url "//" +host+ "/Echol"; //Standard rmi lookup format. 

clockThread.suspend(); II Stop the thread since lookup is over 
System.out.println("Inltlal Lookup Tlme:"+(search t1me-1n1t1al t1me)); 

86 

II Compute the time for the initial lookup. 
catch (java.net.UnknownHostException ex) { 
showStatus("Default host is unknown."); II Unexisting Server name 

II Create the url label and textfield as panel using the default flowlayout. 

setLayout(new FlexGridLayout(0,3)); 

add (new Label ( "URL: ", Label. RIGHT)) ; 
hostfield = new TextField(30); 
hostfield.setText(url); 
add(hostfield); 
add(lookupbutton =new Button("Look")); 

II Create the values group 
add (new Label ("Message:", Label. RIGHT)) ; 
argfield = new TextField(30); 
add(argfield); 
add(invokebutton =new Button("Inv")); 

add(new Label ("Return:", Label.RIGHT)); 
resultfield = new TextField(40); 
resultfield.setEditable(false); 
add(resultfield); 
add(Reset =new Button("Reset")); 

add(new Label("Status:", Label.RIGHT)); 
statusfield =new TextField(40); II 
statusfield.setEditable(true); 
add(statusfield); 
add(Default =new Button("Default")); 

II Layout required for aligning all the 
II toolkits 

II Label for entering host address 
II Text area for entering host address 

II add the text area to the panel 
II create the Lookup button 

II Label for entering message 
II Text area for entering message 
II add the text area to the panel 
II create the Invoke button 

II Label for getting result 
II Text area for getting message 

II add the text area to the panel 
II create the Reset button 

II Label for displaying the default host 
Text area for displaying the default host 

II add the text area to the panel 
II create the Default button 

add(new Label("Active Server:", Label.RIGHT)); II Label for getting status 
serverfield = new TextField(40); II Text area for getting Server status 

panel 

serverfield.setEditable(true); 
add(serverfield); 

add(Status =new Button("Status")); 
getEchoServer(hostfield.getText()); 

II add the text area to the 

II create the Status button 

II this is a routine written for all layout programs for removing all the window toolkits 

public void destroy() 
removeAll(); 

II this is the action routine which invokes different actions for different user 
II responses. There are four buttons and two text fields which are sensitive to user 
II actions. Each action in turn calls different routine. 



public boolean action(Event ev, Object obj) 
if (ev.target == hostfield) { 

getEchoServer((String)ev.arg); //If user types 
II it calls the 

{ 

something and hits return, 
getEchoServer routine. 

else if (ev.target == lookupbutton) 
start(); II If the user wants to lookup a host, 

// the timer thread starts. 
getEchoServer(hostfield.getText()); II Searches for the host 
stop(); II this indicates the end time for looking 

II for the host. 
else if (ev.target == argfield) 

doEcho((String)ev.arg); II Perform the echo funct~on 
else if (ev.target == invokebutton) { 

doEcho(argfield.getText()); II do the same thing as above 
else if (ev.target Reset) { 

showcommand(); II Disconnect the host 
}else if ( ev.target Default) 

setHost(); 
}else if (ev.target == Status) { 

87 

showServer(hostfield.getText()); II Brief description of the current server 

return true; 

//Common window routine for handling extreme conditions where the control is returned 
II to the operating system. 

public boolean handleEvent(Event ev) 
boolean rc = super.handleEvent(ev); 
return rc; 

//This routine does the function of getting the mentioned server. the host mentioned 
II needs to run the rmi server. If the host is already looked once, the program checks its 
II context for getting it, else it throws the remote exceptions. 

public void getEchoServer(String where) 
try { 

Remote obj = Naming.lookup(where); //search the name server 
if (obj instanceof Echo) { 

echo= (Echo)obj; 
showStatus ("Found: " + where + " . ") ; 

else { 
showStatus("Named object is not an Echo server."); 

catch (NotBoundException ex) 
showStatus("Name not Bound."); 

catch (java.net.UnknownHostException ex) 
showStatus("Host " +where+ "unknown."); 

} catch (RemoteException ex) { 
II ex.printStackTrace(); 

showStatus("RemoteException during lookup."); 
catch (java.net.MalformedURLException ex) { 

showStatus ("Malformed URL " + where); 

II this routine performs the echo. It gets the message from the host. If no host is 
II specified, it comes up with an error message else it calls the echo instance at the 
II host and displays the result. 

public void doEcho(String arg) 

String test = hostfield.getText(); 

_l 



-

if(test.equals("")) 

else 

showStatus("No Host Specified"); 

try { 
String result = echo.call(arg); 
resultfield.setText(result); 
showStatus(""); 

catch (RemoteException ex) 
II ex.printStackTrace(); 

showStatus("RemoteException during echo."); 

II This is a small routine which displays the server status at any given instance. 

public void showStatus(String arg) 
statusfield.setText(arg); 

II It gives the information about the active server in use. 

public void showServer(String arg) 
if (arg.equals("")) 
serverfield.setText(" No Server Active."); 
else 
serverfield.setText("rmi:" + arg); 

II This routine sets the different textfields when a reset button is used. 

public void showCommand() 
hostfield.setText(""); 
resultfield.setText(""); 
argfield.setText(""); 
statusfield. set Text ("Host Disconnected, Type New URL") 
serverfield.setText(""); 

II This routine disconnects the host when the reset button is used. 

public void setHost() 
String url = getParameter("url"); 
hostfield.setText(url); 

if (url == null) 
try { 

SecurityManager mgr 
Object context; 
String host; 
if (mgr != null && 

System.getSecurityManager(); 

(context= mgr.getSecurityContext()) !=null && 
context instanceof URL) { 
host= ((URL)context) .getHost(); 

else { 
String prot = getCodeBase () . getProtocol () ; 
if (prot.equals("file")) 

host InetAddress.getLocalHost() .getHostName(); 
else 

host getCodeBase () . getHost () ; 

url "II"+ host+ "IEchol"; 
hostfield.setText(url); 
getEchoServer(url); 
showStatus ("Default URL: " + url + " . ") ; 

88 



catch (java.net.UnknownHostException ex) 
showStatus("Default host is unknown."); 

else 
getEchoServer(hostfield.getText()); 

II This starts the thread and initializes the thread. The thread once started runs until 
II it is either suspended or stopped. The thread is still in the start state and is 
II changed to the running stage in the run() routine. 

public void start() 

if(clockThread ==null) 
clockThread =new Thread(this, "EchoApplet"); II constructor 
clockThread.start(); 

II In this run method we overload the threads run() and write our own code. Here i have 
II used the thread to sleep for a milli second so that it acts like a counter whose 
II precision is one milli second. 

public void run() { 
clockThread.resume(); 
while (clockThread != null) 

try { 
search_time++; II Increment the search time 
clockThread.sleep(l); II sleep for one milli second 
System. out .println (search_time) ; 

catch( InterruptedException e) { 

II This routine stops the thread and cleans the garbage. It also gives the total search 
II time. 

public void stop() 

if( clockThread !=null && clockThread.isAlive() ) 
System.out.println("Total Search Time: "+(search_time-initial time)); 
initial time = search_time; 

clockThread.stop(); 
clockThread = null; 

---------------------------------------------------------------------------------------
File: 
Type: 

EchoClient.java 
Client Program 

Parameters: None 

89 

Description: Looks up for the remote object in the Naming.lookup() class and comes up with 
an exception if the host is not found. 

Source: Sun Micro Systems, Inc., 
------------------------------------------------------------------------------------------

package java.rmi.examples.echo; 

/* This is the client program which looks up the remote object using the naming class and 
invokes the methods on the remote object. It include looking up for the named server in 
the Naming.lookup() class and catching any exceptions. 

*I 



II The following are the library classes. 

import java.rmi.registry.Registry; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.registry.Registryimpl; 
import java.rml.registry.Registryimpl Stub; 
import java.rmi.registry.Registryimpl_Skel; 
import java.rmi.NotBoundException; 
import java.rmi.UnexpectedException; 
import java.rmi.UnknownHostException; 
import java.rmi.AlreadyBoundException; 
import java.rmi.AccessException; 
import java.rmi.NoSuchObjectException; 
import java.rmi.RemoteRuntimeException; 
import java.rmi.RemoteException; 
import java.rmi.Remote; 
import java.rmi.StubSecurityException; 
import java.rmi.Naming; 
import java.rmi.UnknownServiceException; 
import java.rmi.StubNotFoundException; 
import java.rmi.examples.util.FlexGridLayout; 
import java.rmi.server.StubSecurityManager; 

public class EchoClient ( 

public static void main(String args[]) 
{ 

II Create and install the security manager. 
System.setSecurityManager(new StubSecurityManager()); 

try { II Search for the given hostname in the Naming.lookup() 

for(int i=l; i<=5; i++) 
String name= "Echo" + i· 
System. out. println ( "EchoClient: lookup " + name) ; 
Echo echo = (Echo)Naming.lookup(name); 

String message= echo.call\"Hi #" + i); 
System.out.println("EchoClient: message from"+ name+":"); 
System.out .println ( "\t" + message + "\n"); 

catch (Exception e) II Exception occurred. 
System.out.println("EchoClient: an exception occurred: " + 

e.getMessage()); 
e.printStackTrace(); 

System.exit(O); 

90 

------------------------------------------------------------------------------------------
File: Echoimpl.java 
Type: Interface File 
Parameters: None 

Description: Defines the standard interface for the methods which are declared remote. 
Specifies the necessary syntax for declaring a method remote. 

Source: Sun Micro Systems, Inc. 

------------------------------------------------------------------------------------------

package java.rmi.examples.echo; 

II This is used to create the echoimpl interface. This must extend the standard 
II UnicastRemoteServer and should implement the standard echo. The following are the 
II library classes. 



import java.rmi.registry.Registry; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.registry.Registryimpl; 
import java.rmi.registry.Registryimpl Stub; 
import java.rmi.registry.Registryimpl_Skel; 
import java.rmi.NotBoundException; 
import java.rmi.UnexpectedException; 
import java.rmi.UnknownHostException; 
import java.rmi.AlreadyBoundException; 
import java.rmi.AccessException; 
import java.rmi.NoSuchObjectException; 
import java.rmi.RemoteRuntimeException; 
import java.rmi.RemoteException; 
import java.rmi.Remote; 
import java.rmi.StubSecurityException; 
import java.rmi.Naming; 
import java.rmi.UnknownServiceException; 
import java.rmi.StubNotFoundException; 
import java.rmi.examples.util.FlexGridLayout; 
import java.rmi.server.UnicastRemoteServer; 
import java.rmi.server.StubSecurityManager; 

public class Echoimpl 
extends UnicastRemoteServer 
implements Echo 

private String name; 

91 

II The standard form of the Implementation interface is to have a no arg constructor which 
II throws a RemoteException or a constructor which calls super() and throws Remote 
II Exception. 

public Echoimpl(String s) throws RemoteException { 
super(); 
name ::;;:; s; 

public String call(String message) throws RemoteException 
{ 

return name +"Message Transmitted:"+ message; 

public static void main(String args[)) 
{ 

II Create and install the security manager 
System.setSecurityManager(new StubSecurityManager()); 

try 
for(int i=l; i<=S; i++) II create five echo implements and name them Echol 

II through EchoS 

System.out.println("Echoimpl.main: create an Echoimpl"); 
String name = ''Echo'' + i; 
Echoimpl echo= new Echoimpl(name); 

System.out.println("Echoimpl.main: bind it to name: " + name); 
Naming.rebind(name, echo); 

System.out.println("Echo Server ready."); 

catch (Exception e) 

System.out.println("Echoimpl.main: an exception occurred: " + 
e.getMessage()); 

e.printStackTrace(); 

I 
L 



92 

------------------------------------------------------------------------------------------
File: 
Type: 
Parameters: 
Description: 

Author: 

Index.html 
Interface File 
EchoApplet.class 

This file is used as the input to the appletviewer. The appletviewer looks 
for the file named in the code part mentioned, which in this case is 
java.rmi.examples.echo.EchoApplet. The file is looked in the sub directory 
mentioned in the codebase part of the file. 
Lakshmana Pamarthy 

------------------------------------------------------------------------------------------
capplet codebase="test• 

code="java.rmi.examples.echo.EchoApplet• 
width=SOO height=l20> 

c/applet> 

------------------------------------------------------------------------------------------
File: Readme.txt 
Type: Documentation File 

Description: Provides information about setting up the software and trouble shooting the 
problems faced while running the program., 

Author: Lakshmana Pamarthy 

------------------------------------------------------------------------------------------

The program requires the following: 
- Microsoft Windows95 installed in the computer 
- Network chord attached 
- Java Developers Kit 1.0.2 installed( optional 

The program has two directories: 
- rmi. 
- java 

There are two batch files: 
- load.bat 
- start.bat 

All the source files are in the sub directories included in rmi. 

The java directory consists of JDK1.0.2. It is used for compiling source files and using 
the appletviewer for executing html files. 

To run the executable file make changes in the file load.bat as follows: 

if the drive used is, say C drive, then the classpath line should be similar to! 
SET CLASSPATH=c:\rmi\examples\echo\test;c:\rmi\lib\rmi.zip 
SET RMIHOME=c:\rmi 

PATH=c:\java\bin;c:\rmi\bin;c:\windows\command;PATH%; 

the rest of the commands are same. Essentially, change the drive from 
H:\, as given in the file, to the drive under use. 

When running the batch file, if any of the statements gives an error "Out Of Environment 
Space•, then there would be a problem while loading the applet. The suggested solution is 
to restart the machine and try again. 

In order to run the echo example on two machines: 

- run "javaw java.rmi.registry.Registryimpl" on hostA 
- run "javaw java.rmi.examples.echo.Echoimpl" also on hostA 
- run "appletviewer rmi/examples/echo/index.html" on hostB 

the URL that to type into the URL field to look up an echo object is the following: 

l 



rmi://hostA/Echol 
rmi://hostA/Echo2 

93 

When running the echo example on one machine, the URL that needs to be typed is 
rmi://hostA/Echol, provided the host also runs the server. 

There are five buttons, Look, Inv, Reset, Default, Status. 

Look is used to find the remote host given in the Hostfield. 
Inv is used to invoke the Echo call on the remote host. 
Reset is used to disconnect the remote host. 
Default sets the host to the local host, i.e., the host name of the machine used. 
Status gives an indication of which host methods are used at the instant of time. 

When the Inv button is used, the Clock thread is activated and there is display of the 
clock counter on the user window. This gives the estimated time taken to connect to the 
mentioned site. 

Echo program implements five echo servers on every host it runs. So the syntax of the 
hostname is thus: rmi://hostname/Echol through rmi://hostname/Echo5. 

The new source files for the Echo program are in the sub directory, rmi/examples/echo. The 
compiled classes are in the subdirectory 
rmi/examples/echo/test/java/rmi/examples/echo. 

The source files for the example are listed as follows: 

Echo. java: 

Standard Interface that defines the remote behavior. 

Echoimpl . java: 

Implementation and sample Main that creates several echo servers and registers 
them with the registry on the local 

host. 

EchoClient.java: 

A client that looks in the local registry for named echo servers and invokes its 
call method. 

EchoApplet. java: 

An applet that finds a named echo server and lets a user invoke the remote 
interface. This applet uses the java Threads to calculate the lookup time. 

index.html: 
Web page with EchoApplet embedded. 

l 



VITA 

Lakshmana Pamarthy 

Candidate for the Degree of 

Master of Science 

Thesis: PORTING OF AN EXISTING SOFTWARE FROM THE SUN 
WORKSTATIONS TO A PERSONAL COMPUTER ENVIRONMENT 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Bhadrachalam, Andhra Pradesh, India, on May 23, 1974, 
son ofLakshmi Narayana and Varalakshmi Pamarthy. 

Education: Graduated from St. Mary's Junior College, Hyderabad, India in August 
1990; received Bachelor of Science in Mechanical Engineering, Andhra 
University, Waltair, India in August 1994. Completed the requirements for the 
Master of Science Degree in Computer Science at the Computer Science 
Department at Oklahoma State University in December 1996. 

Experience: Client Services Support Group, Computing and Information Services, 
Oklahoma State University, September 1995- November 1996. 


