
PERFORMANCE COMPARISON OF LINEAR

HASHING AND EXTENDIBLE

HASHING

By

ASHOK K. RATHI
\\

Bachelor of Commerce
University of Rajasthan

Jaipur, India
1982

Master of Business Administration
Oklahoma State University

Stillwater, Oklahoma
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

Master of Science
May, 1989

Dldaliom S a tate Uni~ Lib • rary

PERFORMANCE COMPARISON OF LINEAR

HASHING AND EXTENDIBLE

HASHING

Thesis approved:

Dean of the Graduate College

ii

1331775

ACKNOWLEDGEMENTS

This thesis simulates extendible hashing and linear

hashing schemes to evaluate their relative performance in

terms of storage utilization, search cost, insertion cost,

overflow requirements etc. The study includes a design and

implementation of these schemes under XELOS (a version of

UNIX) operating system on Perkin-Elmer 3230. The empirical

results obtained from simulation are discussed.

I thank Drs. H. Lu, M. Samadzadeh, and S. Turner for

serving on my graduate committee. Additionally, I would

like to express my sincere appreciation and gratitude to my

principal advisor Dr. H. Lu for her guidance, motivation and

assistance. I am also thankful to Dr. M. Samadzadeh for his

useful and constructive suggestions.

Finally, I thank my family members for their love,

understanding and sacrifices throughout my studies.

iii

TABLE OF CONTENTS

Chapter Page

I •

II.

I I I.

IV.

v.

INTRODUCTION

Motivation •...•••
Literature review
Objective •.••••.•.
Thesis Organization

AN .OVERVIEW OF DYNAMIC HASHING
TECHNIQUES ••...••.•..•.••••.•.

.
.

Dynamic Hashing
Dynamic Hashing
Spiral Storage

.
with Deferred Splitting.

Summary ••..••••

EXTENDIBLE HASHING AND LINEAR HASHING
--Extendible Hashing

/Directory •••
-Buckets

Linear Hashing
/Example

.. ...
. . .

~Address Computation •••••.
~Split Operation •••••

Summary -.........•..

ANALYSIS OF EXTENDIBLE HASHING AND

.

LINEAR HASHING .
.Random Function
Hash Function
Analysis •••••

Extendible Hashing ••
Linear Hashing •••.•.

.
IMPLEMENTATION DETAILS .

Extendible Hashing
Data Structures
Algorithms

Notations

iv

.
...

.
. . . .

1

1
2
3
4

5

5
8

11
15

16

16
16
17
19
19
22
22
25

27

27
28
29
29
30

32

32
32
32
32

Chapter

Algorithm 1:
Algorithm 2:

Find
Insert

Linear Hashing •••••••••
Data Structures ••••••••
Algorithms .•••••••••

Notations
Algorithm 3:
Algorithm 4:

Find •••••
Insert

Assumptions ••...•••
Comparison Factors •••

••

.
.

VI. SIMULATION RESULTS AND CONCLUSIONS
Simulation Results ••
Conclusion .•••••••••••• . . .
Suggested Future Work ••

BIBLIOGRAPHY .
APPENDIX .

v

Page

33
33
34
34
35
35
35
35
36
37

41

41
44
45

46

48

Table

I •

II.

I I I •

IV.

v.

LIST OF TABLES

Storage Utilization .
. Unsuccessful Search Cost

Successful Search Cost .
Split Cost

Insertion Cost

.

.

vi

Page

49

49

49

50

50

LIST OF FIGURES

Figure Page

1. Binary Search Tree . 6

2. File Structure of Dynamic Hashing ••••.•••••.••••. 7

3.

4.

Example of Split

Bucket Structure

in Dynamic Hashing ••••••••••••••

.
9

10

5. File Growth with Spiral Storage .••••••••••••••••• 11

6. Directory Entries=2**3 and 4 Buckets •••••••.••••• 17

7.

8.

After Splitting Bucket 3 into Buckets 3 and

Hash Table Doubled after Splitting Bucket 2

4 ••••

.
18

20

9. Expansion Process in Linear Hashing •••••••••••••• 21

10. Split and Merge Operation •.•••••••••••••••••••••• 23

11. Example of Split in Linear Hashing............... 24

12. Representation of Split, Unsplit and Newly
Allocated Parts • . • . • . • • • • • • . • • • • • . • • • • • • • • • • • • • 31

13. Storage Utilization vs. Number of Records
Bucket Size=lO • . . . • • • • 51

14. Storage Utilization vs. Number of Records
Bucket Size=20 •••••.•••••••.••••••••••••••••••• 52

15. Storage Utilization vs. Number of Records
Bucket Size=30 ;................................ 53

16. Storage Utilization vs. Number of Records
Bucket Size=SO • 54

17. Number of Buckets vs. Number of Records
Buc·ket Size=lO •.............•..••.••..........• 55

18. Number of Buckets vs. Number of Records
Bucket Size=20 ••••••••••••••.•••••••••••••••••• 56

vii

Figure Page

19. Number of Buckets vs. Number of Records
Bucket Size=30 •••.••••••••••••.•••.•••••••••••• 57

20. Number of Buckets vs. Number of Records
Bucket Size=50 •.•••••••.••••.•••••••..••••••••• 58

21. Unsuccessful Search Cost vs. Number of Records
Bucket Size= 1 0 • 59

22. Unsuccessful Search Cost vs. Number of Records
Bucket Size=20 ••••••••••••••••••••••••••••••••• 60

23. Unsuccessful Search Cost vs. Number of Records
Bucket Size=30 ••••••••••••••••••••••••••••••••. 61

24. Unsuccessful Search Cost vs. Number of Records
Bucket Size=50 .••••••.••••••••••••.•••••••••••• 62

25. Successful Search Cost vs. Number of Records
Bucket Size=lO •.••••••••••••••••.••.••••••••••• 63

26. Successful Search Cost vs. Number of Records
Bucket Size=20 •.••••.•••••••••••••••.•••.•••••• 64

27. Successful Search Cost vs. Number of Records
Bucket Size=30 ••.••••••..••.••••••••••••.•••.•• 65

28. Successful Search Cost vs. Number of Records
Bucket Size=50 ••••.•••.•••.•••.•••••••••••.•••• 66

29. Split Cost vs. Number of Records
Bucket Size=lO •••••••••••.•• ~.................. 67

30. Split Cost vs. Number of Records
Bucket Size=20 ••••••••••••••••••••••••••.•••••• 68

31. Split Cost vs. Number of Records
Bucket Size=30 •..•••.••••••.••••••••••••.•.•.•• 69

32. Split Cost vs. Number of Records
Bucket Size=50 •.•••••••.••••••••.•••.•••••••••• 70

33. Insertion Cost vs. Number of Records
Bucket Size=lO • . • • • • • . • . • . . • • . • • 71

34. Insertion Cost vs. Number of Records
Bucket Size=20 •••••••••.••••••••.•••••••.•••.•• 72

35. Insertion Cost vs. Number of Records
Bucket Size=30 •••••••••.•••..•••.•••••••••••••• 73

viii

Figure Page

36. Insertion Cost vs. Number of Records
Bucket Size=50 ••••••••••••.•.•••••••••••••••••• 74

37. Number of Overflow Records vs. Number of Records
Bucket Size=lO . 75

38. Number of Overflow Records vs. Number of Records
Bucket Size=20 ..••••••••••••••••.••...••..••••• 76

39. Number of Overflow Records vs. Number of Records
Bucket Size=30 ••.•••.•••••••••••.•••••••••••••• 77

40. Number of Overflow Records vs. Number of Records
Bucket Size=50 ••••••••••••..•••••••••••••.••••• 78

41. CPU Time vs. Number of Records
Bucket Size=10 •••.•.••..••••••••..••••••••••••• 79

42. CPU Time vs. Number of Records
Bucket Size=20 •.•.•••.••••••••••••••..••••••••• 80

43. CPU Time vs. Number of Records
Bucket Size=30 •••••••••.••••••••••••••••••••••• 81

44. CPU Time vs. Number of Records
Bucket Size=50 .••••••••••••••••••••••.•.•.•.•.• 82

ix

CHAPTER I

INTRODUCTION

Motivation

Hashing is a well-known scheme for organizing direct

access files. In hashing, retrieval, insertion and deletion

of records are very fast except when there is a long over

flow chain of records [Enb88]. There are 2 different

storage allocation schemes: (1) Static Storage Allocation:

In this scheme, the size of the file must be estimated in

advance and physical storage space must be allocated for the

whole file. In other words, the amount of allocated storage

space is fixed and cannot be altered without reorganizing

the whole file. This scheme performs well only if a file or

a table is relatively static in its size. (2) Dynamic

Storage Allocation: This scheme allocates the storage space

dynamically, i.e., allocate only as needed. Hence there is

no need to estimate the storage space in advance.

In most situations, the storage requirements are diffi

cult to estimate in advance. Also, if there exist a few

records currently and rapid growth is expected in future,

huge amount of extra space will have to be allocated in the

static scheme. Dynamic storage allocation scheme saves the

space and also overcomes the difficulty of estimating the

1

2

file size in advance.

Literature Review

Hashing schemes which allow dynamic storage allocation

without total reorganization of the hash table are called

dynamic hashing schemes. Over the past few years, a number

of dynamic hashing schemes have been proposed. With limited

reorganization, the files can be expanded and contracted

according to the number of records. The dynamic hashing

schemes include dynamic hashing [Lar78], dynamic hashing

with deferred splitting [Sch81][Cha85], spiral storage

scheme [Mul81], extendible hashing [Fag79] and linear hash

ing [Lit80][Lar80,82,83,85,88][Mul81][Ram84].

Chang [Cha85] compared "dynamic hashing" scheme with

"dynamic hashing with deferred splitting." Dynamic hashing

with deferred splitting is found to have improved space

utilization but shows poor average retrieval time per

record. This is attributable to the existence of overflow

buckets to defer the splitting. Both the schemes are dis

cussed in detail in Chapter II.

Fagin et al. [Fag79] analyzed and compared extendible

hashing scheme with B-tree. Extendible hashing scheme is

algorithmically simple and guarantees no more than 2 secon

dary storage accesses to retrieve the data associated with a

given key. Patel [Pat87] replicated the above study using

B+ tree in place of B-tree and concluded that the average

storage utilization for both the schemes is about 69%. A B+

3

tree has more consistent storage utilization than extendible

hashing. Extendible hashing performs much better in terms

of random access cost and insertion cost. This scheme is

discussed in detail in Chapter III.

Larson [Lar88] compared linear hashing scheme,

developed by Litwin [Lit80], with spiral storage scheme.

Interestingly, both the schemes are directoryless, meaning

that they do not use directory data structure which most

other dynamic hashing schemes do. In spiral storage scheme,

expansion process and address calculations were found to be

slower and more complex than in linear hashing.

Objective

As discussed above, Fagin [Fag79] found extendible

hashing fairly efficient. Litwin [LitBO] and Larson [Lar85]

showed that linear hashing is algorithmically simple and

computationally fast. Both the schemes are claimed to be

very efficient by the respective authors. So far, however,

no attempt has been made to compare extendible hashing and

linear hashing schemes. Hence the objective of this thesis

is to compare the performance of these two schemes by way of

simulation. A number of performance factors have been

evaluated. Definition of the performance factors, simplify

ing assumptions, and simulation details are contained in

Chapter v. The simulation will lead us to conclude which

hashing scheme is more efficient than the other in terms of

these performance factors.

4

Thesis Organization

The organization of this thesis is as follows. Chapter

I introduces the concept of dynamic hashing, reviews the

past work and lays down the thesis objective.

Chapter II briefly reviews various dynamic hashing

schemes that have been proposed over the past few years.

The schemes, other than linear hashing and extendible hash

ing, include dynamic hashing, dynamic hashing with deferred

splitting, and spiral storage.

Chapter III is devoted to extendible hashing and linear

hashing schemes. This chapter includes examples illustrat

ing directory and bucket structures, address computations,

insertion of records, and expansion process.

Chapter IV discusses random number generation and its

behavior, hash functions used and the expected behavior of

the extendible and linear hashing schemes.

Chapter V lays down the simulation implementation

details. The details include data structures for directory

and bucket; algorithms to find and insert a record; simple

assumptions for simulation; and the performance comparison

factors.

Chapter VI embodies empirical results and observations.

The observations pertain to space utilization, search costs,

overflow area etc. Tables and figures are contained in the

Appendix. At the end, conclusions are drawn and future

'research directions are suggested.

CHAPTER II

AN OVERVIEW OF DYNAMIC HASHING TECHNIQUES

A number of dynamic hashing techniques [Enb88] have

been proposed over the past few years. In this chapter, we

discuss some popular hashing techniques: dynamic hashing,

dynamic hashing with deferred splitting, and spiral storage.

Extendible hashing and linear hashing techniques are dis

cussed in more detail in the next two chapters.

Dynamic Hashing

In dynamic hashing [Lar78], the index resides in main

memory and can be organized as a forest of binary trees.

Consider an example where pseudokeys are generated by the

hash function on the actual keys. Each key is converted into

a 7-bit binary number. The pseudokeys and their correspond

ing 7-bit binary numbers are given below

Key 7-bit binary number

052 0 101 010
134 1 011 100
176 1 111 110
005 0 000 101
123 1 010 011

Figure 1 shows a binary tree corresponding to the set

of keys given above. The 9-bit binary representation for

5

6

the key 123 is 001 010 101. However, the key should be con

verted into 7 bits only. Assuming that only right-most bits

are considered, the 7-bit binary representation of the key

123 is 1 010 101. Notice that we have truncated the 2 left-

most bits. To access the key 123, follow the tree starting

at the root. Process the bits from left to right. Follow

left subtree when 0 is encountered and follow right subtree

when 1 is encountered until an external node is reached. In

1 010 101, the leftmost bit is 1. So we follow the right

subtree out of the root. Then follow left for bit 0, right

for bit 1 and left for bit 0. Now we have reached an exter-

nal node which contains the desired key. If the desired key

is not there, the search is considered unsuccessful.

0

0

olb116 * Undefined Node
D

005 052 0 Internal Node

~~\ D External Node

123 134

Figure 1. Binary Search Tree in Dynamic Hashing

Sometimes an external node can be undefined. In Figure

7

1, for example, the external node for the keys corresponding

to the 7-bit binary numbers prefixed with 100 is undefined.

Search is considered unsuccessful if an undefined node is

encountered. Figure 2 shows a file structure as used in

dynamic hashing. Data file which consists of the buckets

resides on the secondary storage. Number of buckets changes

according to the number of records in the file. Buckets are

accessed by the index.

INDEX

DATA FILE

Source: Larson, P. "Dynamic Hashing." BIT, 18(1978),
p. 185.

Figure 2. File Structure in Dynamic Hashing

Insertion involves finding the relevant bucket X which

contains the key. The key is inserted, if bucket X is found

and is not full. In case bucket X is full, a split is per

formed to distribute the keys between bucket X and a new

bucket. The splitting of the bucket increases the internal

path by one. Consider the tree in Figure 3(a) for the

bucket size of 2. On inserting the key 050, the bucket

corresponding to the search path 0 overflows. This necessi

tates a split operation on that bucket. The updated tree is

8

shown in Figure 3(b). Sometimes more than 1 split operation

is necessary to break the overflow.

Dynamic hashing has an advantage over the static hash

ing scheme in that onlj partial reorganization of the hash

file is required. However, storage utilization remains low

in this scheme. In order to improve the storage utiliza

tion, splitting of a bucket should be deferred. Such a

scheme is discussed next.

Dynamic Hashing With Deferred Splitting

In conventional dynamic hashing discussed so far,

splitting occurs as soon as the primary bucket becomes over

full. In dynamic hashing with deferred splitting [Sch81],

overflow buckets are allowed to contain additional keys with

a few restrictions. This is illustrated below.

Let b be the maximum bucket size and y be the "factor

of b" defining maximum number of overflow keys in the over

flow bucket(s). Bucket is not split until y*b keys have

been inserted into it. This involves 2 cases: one when y<=2

and the other when y>2.

Let y=l.5 and b=lO, then y*b=l5. This implies that a

maximum of 15 keys can be inserted with 10 keys into the

primary bucket and 5 keys into the overflow bucket. Assume

that both the primary bucket and the overflow bucket are

full now. The next key will necessitate a split operation

since total number of keys has exceeded 15. As a part of

split operation, a new bucket is allocated and all keys in

003
020

(a) Before Split

003 050
020

(b) After Split

Figure 3. Example of "Split" in Dynamic
Hashing

9

the primary bucket and the overflow bucket are distributed

between the primary bucket and a new bucket. The overflow

bucket is released. This is shown in Figure 4.

• II Primazy Bucket Overflow Bucket

(a) Before Split

• II - II 1'---;:;---:-,:---::--1-111
Primazy Bucket New Bucket Freed Bucket

(b) After Split ~ Filled with Records

Source: Scholl, M. "New File Organizations Based on
Dynamic Hashing." ACM Transactions on Database
Systems, 6, l(Mar.-r981), p. 199.

Figure 4. Bucket Structure

10

For y>2, when the primary bucket becomes full, the

first overflow bucket is allocated. When the first overflow

bucket becomes full, another overflow bucket is allocated.

Overflow buckets are allocated until y*b keys have been

inserted. Thereafter, the bucket chain has to be split in

the same manner as for y<2.

The objective of deferred splitting is to defer the

growth of the index and to improve the storage utilization.

The small index results in faster search for the bucket.

Space utilization can be further improved by using the

shared overflow buckets [Sch81].

11

We have noticed that the dynamic hashing involves a lot

of pointers. The search time under this scheme is rela-

tively high. This is due to an index associated with the

keys. The hashing scheme we discuss next does not use

indices at all.

Spiral Storage

In a few hashing schemes, particularly linear hashing

which shall be discussed later, the retrieval cost of a

record increases and decreases in cycles [Lar88]. Such

cyclic variations can be largely eliminated by using a hash

ing scheme called spiral storage scheme in which records are

unevenly distributed to seek uniform performance [Mul85].

To be more specific, the address space at the beginning of

the table has higher load than at the end.

I (a) Before Growth

""'
moved

....

I ~
(b) After Growth

moved . .

" (c) More Growth

Source: Mullin, J.K. "Spiral Storage: Efficient Dynamic
Hashing with Constant Performance." Computer
Journal, 28, 3(1985), p. 330.

Figure 5. File Growth with Spiral Storage

12

Figure 5 shows three stages of expansions. Figure 5(a)

shows an address space before growth. Due to growth in

records, the address space needs to be expanded. In such a

situation, the records contained in the leading space in

Figure 5(a) are moved to the trailing space in Figure 5(b).

Notice that the trailing space in Figure 5(b) is larger than

the leading space in Figure 5(a). The difference implies

additional address space. Figure 5(c) shows more growth in

records.

The following notations and formulas [Lar88] will be

used in the example below:

H(K)
d
[A,B)

A hash function for key K, O<=H(K)<l.
Growth factor.

: Hash interval for the entire address space.
FRACT(S) is a fractional value of s.
A=FRACT(S), B=FRACT(S+l) if FRACT(S) =/= 0
A=O.OOOO, B=l.OOOO if FRACT(S)=O

x A real number for the key K, O<=x<l.
y=d**x : Growth function.
yl=Floor(2**S) : Start bucket address for expansion
y2=Ceil(2**(S-l)) : End bucket address for expansion

Hash interval [A,B) can be computed by finding S in

(d**S)(d-l)=required_address_space where d and the required

address space are known. Let us illustrate the above by an

example for d=2.

Let us start off with 1 bucket whose address space and

hash intervals are given below

bucket 1 [0.0000,1.0000)

Now suppose we have to increase the address space to 2.

So we need 2 buckets such that all the keys mapped into

bucket 1 can be relocated to the 2 buckets. Hence

(d**S) (d-1) = 2
2**S = 2
s = 1.0000

For S=l.OOOO, [A,B)=[O.OOOO,l.OOOO). To relocate the

13

keys, [A,B) must be spread over the 2 buckets. The address

of the starting bucket, yl, and the last bucket, y2, would

be

yl = Floor(2**S)
= Floor(2**1.0000)
= 2

y2 = Ceil(2**(S+l)) - 1
= Ceil(2**2.0000) - 1
= 3

Hash interval for bucket 2 would be [O.OOOO,FRACT(r))

where r is obtained as

2**r = last address
2**r = 3
r = 1. 5849
So, FRACT(r) = .5849

Thus hash interval for buckets 2 and 3 would be

[0.0000,.5849) and [.5849,1.0000) respectively. The address

space and the hash intervals are shown below.

bucket 2
bucket 3

[0.0000,0.5849)
[0.5849,1.0000)

Now suppose the address space needs to be increased to

3. So we need 3 buckets such that all the keys mapped into

bucket 2 are relocated to 2 new buckets. Hence

2**5 = 3
s = 1.5849

For S=l.5849, [A,B)=[0.5849,0.5849). To relocate the

keys of bucket 2, [A,B) must be spread over the 2 buckets.

The address of the starting bucket, yl, and the last bucket,

y2, would be

yl = Floor(2**1.5849}
= 3

y2 = Ceil(2**2.5849} - 1
= 5

14

Now the address space ranges from bucket 3 to bucket 5

giving us 3 buckets. The hash interval for bucket 3 would

be the same as before. The hash interval for buckets 4 and

5 (the last 2 buckets in the current address space} can also

be obtained in a similar fashion.

2**r = 5
r = 2.3219
FRACT(r} = .3219

Now we have the following address space and hash inter-

vals:

bucket 3
bucket 4
bucket 5

[0.5849,1.0000}
[0.0000,0.3219}
[0.3219,0.5849}

Similarly for 4 buckets, the address space and the hash

intervals would be:

bucket 4
bucket 5
bucket 6
bucket 7

[0.0000,0.3219}
[0.3219,0.5849}
[0.5849,0.8074}
[0.8074,1.0000}

If there is a key K of which, for example, H(K} =

.6219, then this key will fall in address space 6. Note

that every time a hash table is expanded, the first bucket

from the current address space is freed and 2 new buckets

are allocated at the end of the table. In practice, how

ever, the old bucket is reused and only one new bucket is

allocated.

Mullin [Mul85] analyzed and simulated the spiral

storage allocation method in order to study its behavior.

The major advantage of this method is that performance does

15

not vary cyclically during file growth or shrinkage. A high

growth factor increases search time but results in less work

during file expansion. However, Larson [Lar88] found this

process to be very expensive. Further, he claimed that the

expansion procedure of this scheme is very complex and slow.

Summary

All the hashing schemes discussed so far suffer from

some disadvantages. Original "dynamic hashing" scheme gives

poor storage utilization due to non-existence of overflow

buckets. "Dynamic hashing with deferred splitting" needs a

long index to access the required bucket, which increases

the search time considerably. Spiral storage suffers from

very complex and slow expansion procedure. In view of these

demerits, we need a hashing scheme which:

(1) has a short search path so that the retrieval time is

acceptable;

(2) has simplicity in terms of address computation and

expansion procedure; and

(3) can use overflow buckets, if needed, to further improve

storage utilization.

In the next chapter, we discuss two such dynamic hash

ing schemes called extendible hashing and linear hashing

which broadly satisfy the above requirements.

CHAPTER III

EXTENDIBLE HASHING AND LINEAR HASHING

Extendible Hashing

De!~loped by Fagin [Fag79], extendible hashing is

dependent on the n~mber of bits extracted from the pseudo

keys. A pseudokey consists of O's and l's. This key is
........ ..-·--·

used in indexing into the bucket which contains the actual

key. Given a random hash function Hand an actual key K,Jt

pseudokey K' can be computed•ith K'=H(K). Pseudokey must

be of fixed length.

The data structure consists of a set of buckets and a

directory. Usually a partial or the whole directory

(depending on its size) is kept in the primary storage.

Buckets must reside on the secondary storage. The buckets

contain keys and the associated information.

Directory

The global depth of the directory, call it d, changes

as file grows and shrinks. The directory size is computed

to be 2**d. The directory contains an array of pointers to

the buckets. Figure 6 shows an example of an extendible

hash file for d=3.

16

17
d

000 d'

001 ~ I BuckotO

010

~ ~B~otl
011

100

IB-2 101

110

IB-3
111

Buckets
Directory

Figure 6. Directory Entries = 2**3
and 4 Buckets

Buckets

Each bucket has a local depth d' which must always be

less than or equal to the global depth d. All the keys con-
/

tained in a particular bucket ~gree in the number of bits

--~qual to d' . If d' <d, then there exist at least 2 pointers

indexing into the same bucket. To be more precise, 2**(d

d') entries point to the same bucket. In Figure 6, bucket 3

should agree only on the first (most significant) bit.

Hence there are 2**(3-1)=4 entries indexing into bucket 3.

When a bucket splits into two due to an overflow, the

18

local depth of the two buckets involved is incremented by 1.

Suppose bucket 3 of Figure 6 overflows. Hence, bucket 3

shall be split into two buckets - bucket 3 and bucket 4 as

shown in Figure 7. All pseudokeys starting with 10 will

hash to bucket 3 and those starting with 11 to bucket 4.

d
d'

()()()
§9 IBu-0

001 ~ IB~l
010

Sl 1"~2 011

100

\""""'' ~ 101

110 ~ 1"~~4
111

Buckets

Directory

Figure 7. After Splitting Bucket 3 of Fig-
ure 6 into Buckets 3 and 4

When a bucket overflows and the local depth of the

bucket equals the depth of the directory, the directory size

has to be doubled. Suppose bucket 2 of Figure 7 overflows.

19

The local depth d' currently equals the global depth. To

accommodate a new bucket resulting from the split operation,

the directory size will have to be doubled by increasing the

global depth d to 4. This is shown in Figure 8. The pro

cess of doubling the directory size is not expensive since

no buckets other than the ones which caused the split are

touched [Fag79]. It is claimed that no more than 2 accesses

are required in extendible hashing - one access in locating

the appropriate directory bucket (only if a partial direc

tory is kept in the primary storage) and the other access in

obtaining the appropriate bucket. This claim holds only

when no overflow buckets are used. If overflow buckets are

used, more than 2 accesses may be required.

Linear Hashing

Linear hashing scheme, developed by w. Litwin [Lit80],

is a directoryless scheme. Non-existence of directory

implies a need for less main memory. In this scheme, the

address space undergoes a smooth growth with the addition of

one bucket on each split at the end of the table. When a

new bucket is added at the end of the address space, only a

limited local reorganization is performed [Lar88]. Address

computations and expansion process are illustrated in the

following sections.

Example

Let N be the minimum number of buckets before any

d

4
d'

0000

E9 IB~tO 0001

0010

0011

b1 IB~«l 0100

0101

0110

~ IB~2 0111

1000

n 1001

1Buokot3 1010

1011

~ I Buckot4 1100

1101

9
1110 IB~S 1111

Directory
Buckets

Figure 8. Hash Table Doubled After Splitting
Bucket 2 of Figure 7

20

21

expansion, L be the number of times the address space has

doubled and p be the bucket to be split next. Address space

is expanded in a linear order i.e. from bucket 0 to bucket

N*(2**L)-l. After splitting the last bucket during the

current expansion, pointer p is reset to bucket 0.

(a)

(b)

(c)

(d)

p

cbc=J0
p

c:Jc±Joo
p

[~CJdJG~
p '

cbCJC2JD~D
Figure 9. Expansion Process in Linear

Hashing

Figure 9 illustrates the splitting process for N=3 i.e.

for 3 buckets. Suppose one of the buckets overflows. So

bucket 0 is split into bucket 0 and bucket 3. The updated

status is depicted in Figure 9{b). Notice that p has moved

to bucket 1 now.

Now suppose after a few more splits, we arrive at the

situation as depicted in Figure 9(c) and bucket 2 is split

22

into bucket 2 and bucket 5. In such a situation pointer p

is reset to bucket 0 i.e. first expansion cycle has been

completed. An expansion cycle is defined to be a cycle

which starts when p=O and ends when [N*(2**L)-l]st bucket is

split. Each expansion cycle results in doubling the table

size relative to the size when p=O.

Address Computation

Linear splitting of buckets results in simple~ddress

calculations. The address space consists of 2 parts - split

and unsplit. Both the parts are accessed using 2 different

hash functions. The address is computed with the assumption

that the record belongs to the unsplit part. When the com

puted address, on comparison with pointer p, is found to be

in the split part, second hash function is used to determine

whether the record is contained in the old bucket or the

newly allocated bucket. In general, the current address of

any record with key K can be computed as follows [Lar88]:

Split Operation

address := H(L,K)
if address < p then

address := H(L+l,K)

This section discusses the timing and methodology for

splitting a bucket. There are 2 schemes to split a bucket.

The first scheme is called a controlled split. In a con

trolled scheme, a bucket is split only when an overall load

23

factor is violated. The overall load factor, call it @, is

defined as the number of records inserted divided by the

number of buckets allocated.

The overall load factor @ ·has lower and upper bounds

called @(L) and @(U) respectively. If @>@(U), the bucket

pointed to by pis split. If @<@(L), the bucket prior to

the bucket pointed to by p shduld be merged with the last

bucket and p should move back to the previous bucket. Fig

ure 10 illustrates both split and merge operations.

s
p
L
I
T

'V

P~--------------------l

tJc=:JCJDDt::J ~M
I P r-------------------~ . I ~
[J~CJDDD8E

Figure 10. Split and Merge Operation

The second scheme is called uncontrolled split. In

such a scheme, a bucket is split regardless of the overall

load factor. The bucket size, call it b, must be prede

fined. A bucket 1s split when the current bucket size

exceeds b. The name "uncontrolled split" is derived from

the fact that there is no control over the space utiliza

tion. We have considered the second scheme in our simula-

tion.

140
350

140
350

121
456
676
831
841

121
831
841

Figure 11.

222
432
537
682

(a) Before Split

222
432
537
682

(b) After Split

245
495
505
985

245
495
505
985

456
676

Example of "Split" in Linear
Hashing

24

25

Figure 11 illustrates the splitting process of bucket 1

for N=5. Bucket 0 has already been split in Figure 11. Now

assume that some bucket overflows. This implies a split

operation on the bucket 1 pointed to by p. The entries in

bucket 1 are 121, 456, 676, 831, 841 as shown in Figure

ll(a). All these entries are separated by the hash function

H(l,K)=(K mod 10). The entries with H(l,K)=l are retained

in bucket 1 and the entries with H(l,K)=6 are hashed to

bucket 6 which is allocated at the end of the hash table.

This situation is shown in Figure ll(b). Notice that

pointer p has moved to the bucket 2. That means bucket 2

shall be split next time.

Summary

In this chapter, we studied extendible hashing and

linear hashing schemes. Both the schemes allow smooth

growth in address space by allocating one bucket at a time.

However, there are some differences between the two schemes,

which are mentioned below:

(1) Extendible hashing uses directory but linear hash

ing does not.

(2) Overflow space requirement is mandatory in linear

hashing while this can be avoided in extendible hashing by

propagating split operation until the overflow space is

released.

(3) In extendible hashing, split operation is performed

on the bucket which overflows. In linear hashing, split

26

operation is performed on the bucket pointed to by pointer p

regardless of where the overflow has occurred.

Despite the above mentioned differences, the address

computation and the expansion process are simple to under

stand and easy to implement in both the schemes. The

relevant data structures, algorithms and simulation imple

mentation details of both the schemes are discussed in

Chapter v.

28

experimentation, it was discovered that the results were

almost identical across different random functions. Hence,

"lrand48" was arbitrarily selected for simulation. However,

the choice of "lrand48" does not imply any bias against

"drand48" and "lcong48". In other words, the simulation

results will remain the same with any of the three random

functions.

Hash Function

There are several hashing methods which can be poten

tially better than random. These methods include key

folding method; division method; mid-square method; and

radix transformation method. Folk [Fol87] found radix

transformation method to be more reliable than the others.

1t Radix transformation method involves transforming _t_h_e_~.ctual
•· ~~ - ·~ · --·

key into some decimal or hex number, and then taking its

modulo. In our simulation, we simply consider the modulo

arithmetic to find the bucket address since the keys are

already transformed into hex numbers. r n linear hashing ,

only two hasQ _ func~io~s HASHl and HASH2 are used at any

-------given time. HASHl deals with the unsplit buckets, whereas

HASH2 deals with the split buckets. When a bucket is split,

HASH2 hash function is used in separating the keys between

the old bucket and the new bucket.

In extendible hashing, the prefix d (global depth of

the directory) bits of the keys are extracted from the keys

and used in indexing into the directory location which

29

points to the relevant bucket. When a bucket is split, the

local depth of that bucket is used. The keys are separated

by looking at (local depth+l)st bit. If that bit is 0,

retain that key in the old bucket: otherwise move it to the

new bucket.

Analysis

The expected behavior of extendible hashing and linear

hashing can be mathematically analyzed [[Fag79] [Ram82]

[Lar82,83,85]. The simulation results discussed in Chapter

VI are mostly consistent with the mathematical analysis. In

this section, we simply outline the work done by others.

For elaborate derivations and details, refer to the litera

ture cited above. The costs are calculated in terms of

secondary storage accesses.

Extendible Hashing

It is assumed that the entire directory is kept in main

memory. The following notations have been used:

b Bucket Capacity
n Total number of records
ln Logarithmic value with base 2
e Inverse of ln

Some important costs are (Sources: [Men82] and

[Fla83]):

Insertion Cost = 1 + [1/(b ln 2)]

Search Cost = 1

Directory Size= [e n**(l+l/b)] I (b ln 2)

Storage Utilization = ln 2

Number of Buckets = n I (b ln 2)

Linear Hashing

The following notations have been used:

y Number of records/bucket
b Primary bucket capacity
c Secondary bucket capacity
z Load factor = y/b
P(i,z) probability that i records hash to a bucket,

given the load factor z. This implies binomial
probability. For infinite number of records
and buckets, binomial probabilities converge to
Poisson probabilities [Lar83]. Hence
P(i,z) = [e**(-zb) * (zb)**i] I i!

k Number of buckets on a bucket chain, k>=l
j Number of overflow records in the last overflow

bucket only if overflow bucket exists
s(z),S(z,x) Cost for successful search
u(z),U(z,x) cost for unsuccessful search
a(z),A(z,x) Cost for insertion
t(z),T(z,x) Number of slots allocated per bucket
E(z,x) Cost for expansion
V(z,x) Overflow space per record
$$ Sign for infinity

Some important costs are (Sources: [Mul81] and

[Lar85]):

$$ c

s(z) = 1+(1/zb) ~k
I_

~[(k-1)c/2+j]P(b+(k-1)c+j,z)
f._

k=1]=1

$$ c

u(z) = 1 + ~k ~P(b+(k-1)c+j,z)
!_ I
k=1 j=1

$$ c

t(z) = b + c ~k ~P(b+(k-1)c+j,z)
I_ f._
k=1]=1

30

$$

a(z) = 1 + u(z) + ~P(b+(k-l)c+j,z)
I_
k=O

31

A linear hash table consists of 2 parts: (1) the buck

ets that have not yet been split during the current expan

sion, and (2) the buckets that have been split during

current expansion (see Figure 12). Split part and newly

allocated part should be considered identical.

Split II Unsplit Newly
Allocated

Fraction x/2 1-x x/2

Expected no.
of records z/2 z z/2

Figure 12 Representation of split, unsplit
and newly allocated parts.

Let x indicate the proportion of the file which has

been split. Hence

S(z,x) = xs(z/2) + (1-x)s(z)

U(z,x) = xu(z/2) + (1-x)u(z)

T(z,x) = [2xt(z/2)+{1-x)z]/(zb)

V(z,x) = [2x(t(z/2)-b)+(l-x)(t(z)-b)]/(zb)

A(z,x) = xa(z/2) + (1-x)a(z)

E(z,x) = [u(z)+2u(z/2)](1-x)/b

CHAPTER V

IMPLEMENTATION DETAILS

This chapter describes how the extendible hashing

scheme and the linear hashing scheme are simulated. The

description includes data structures, algorithms and the

performance factors for both schemes.

Extendible Hashing

Data Structures

There are 2 main data structures to be used to imple

ment the extendible hashing scheme.

1. Directory 2. Bucket

The directory contains pointers to the bucket which

holds the records. Some consecutive entries in the direc

tory may have the same value.

Bucket has a fixed capacity in terms of number of

records. We assume that the keys are stored in a sequential

fashion without any order. Each bucket is linked to the

next bucket except the last bucket.

Algorithms

Notations. The following notations have been used in

the algorithms:

32

K Key
P Bucket
T New bucket
A Temporary storage area
d : Global depth of the directory
d': Local depth of P

Algorithm 1: Find. 1. Get the key K.

2. Extract the first d bits of the key.

3. Determine the entry in the directory based on the bits

extracted.

4. Follow the bucket pointer to a bucket P.

33

5. Search the keys in bucket P in a sequential fashion. If

key K is found, return "successful" - else (i) set P to the

next bucket pointer, and (ii) if P is nil, return "unsuc-

cessful" - else go to step(5).

Algorithm 2: Insert. 1. Apply "Find" to search the key

K.

2. If key K exists (successful search), then

- Print message: key K already exists.

- Return.

3. If bucket P is full, go to step 5.

4. Insert key K and increment the counter for number of

records in bucket P by one and then return.

5. The bucket P will overflow if the key K is inserted.

Obtain new bucket T.

6. Obtain a temporary area A and store all the records of

bucket P along with the new record associated with key K in

A.

34

7. Set the local depth of bucket P and T to d'+l.

8. If the new local depth of bucket P exceeds the directory

depth d, then do the following:

- Double the size of the directory.

- Increment the depth d of the

directory by 1.

- Update the pointers in the directory.

- Set the count for the number of

records on bucket P and T to 0.

9. Insert all records one at a time from the temporary area

A into bucket P or bucket T depending upon the key. Note

that no "Find" operation is needed for these records and

only bucket P and bucket T are going to be affected. To

insert, repeat step 4 as many times as the number of records

in A.

Linear Hashing

Data Structures

Unlike extendible hashing, the linear hashing can be

implemented using only the bucket structure. It should be

noted that no directory is used in linear hashing since it

is a directoryless scheme and the relevant buckets can be

accessed directly by the hash functions.

Bucket has a fixed capacity in terms of number of

records. The keys are stored in a sequential fashion

without any order. There is a pointer p which points to the

bucket to be split next when the overflow occurs.

Algorithms

Notations. The following notations have been used in

the algorithms:

K Key
L Number of times the table size has doubled
N Minimum number of initial buckets in the linear

hash table
P Bucket of a fixed size
T New bucket
A Temporary storage area
p Pointer to the next bucket to be split

Algorithm 1: Find. 1. Get the key K.

2. Hash key K according to P=H(L,K). Key K may reside in

bucket P.

35

3. If P<p, then bucket P has already been split. Hence hash

key K using P=H(L+l,K).

4. Search the keys in bucket P in a sequential fashion. If

key K is found, return "successful" - else (i) set P to the

next bucket pointer, and (ii) if P is nil, return "unsuc-

cessful" - else go to step(4).

Algorithm !: Insert. 1. Apply "Find" to search key K.

2. If key K exists (successful search), then

- Print message: key K already exists.

- Return.

3. Insert key K in bucket P, increment the ~ounter for

number of records in bucket P by 1.

4. Return if bucket P does not overflow. Otherwise, obtain

a temporary area A and store all the records contained in

the bucket pointed to by p.

5. Obtain a new bucket T.

36

6. Insert all the records one by one from the temporary area

A into the bucket pointed to by p and bucket T by using a

hash function H(L+l,K) where K refers to the keys in A. If

necessary, use overflow buckets chained with the bucket

pointed to by p or with bucket T.

7. Increment the pointer p by 1.

8. If p = N*(2**L), reset p to 0 and L to L+l. Return.

Assumptions

The performance comparison factors for simulation are

based on the following assumptions:

(1) The keys are uniformly distributed, meaning that each

key has equal probability of being accessed.

(2) Records are of fixed length.

(3) Bucket capacity is fixed in terms of number of records

that it can hold.

(4) Expansion takes place as soon as a bucket overflows.

(5) Enough main memory is available to handle the expansion.

(6) Extendible Hashing: (a) Most significant bits are

extracted from the key to find the directory entry.

(b) Overflow bucket is split only once. In other words,

second split is not attempted even though the first

split may fail to release the overflow bucket.

(c) Main memory can hold a maximum of 1024 directory

entries. The rest of the directory must reside on the

secondary storage.

(7) Linear Hashing: A simple division method with modulo

arithmetic is used to find the relevant bucket.

37

According to assumption (1), we use a random function

"lrand48" (discussed in Chapter IV) that broadly satisfies

the properties of a minimal ranqom function. Given a minimal

random function "f(z) = az mod m", the value of "a" should

pass the three tests as defined in [Par88] such that f(z)

should (i) be a full period generating function; (ii) be

random for all the sequences generated; and (iii) be imple

mented efficiently with at least 32-bit arithmetic. Further,

the hash functions used in simulation also satisfy the basic

properties listed in [Car79] [Knu73].

Comparison Factors

The following factors are used to compare the linear

hashing and the extendible hashing schemes:

(1) Average Space Utilization: Divide the current

number of records in all the buckets by the maximum number

of records that these buckets can hold. Here the buckets

include primary as well as overflow buckets.

38

(2) Number of Buckets: Number of both primary and over

flow buckets used in inserting the records. This factor is

tied to average space utilization. The higher the space

utilization, the fewer the buckets.

(3) Average Unsuccessful Search Cost (in terms of

bucket accesses): Reading a primary or an overflow bucket

amounts to 1 bucket access. Hence, add the number of buck

ets, both primary and overflow, that are accessed to search

a non-existent record. Divide that sum by the total number

of unsuccessful search operations. The cost for a single

unsuccessful search is equal to the number of buckets on a

particular chain i.e. 1 for the primary bucket plus 1 for

each additional overflow bucket attached to the primary

bucket.

(4) Average Successful Search Cost (in terms of bucket

accesses): Reading a primary or an overflow bucket amounts

to 1 bucket access. Hence, add the number of buckets, both

primary and overflow, that are accessed to search an exist

ing record. Divide that sum by the total number of success

ful search operations. Only 1 access is required to

retrieve the record contained in the primary bucket. If the

record belongs to the overflow bucket, 2 or more accesses

are required.

(5) Cost of Expansion: Expansion cost and split cost

are synonymously used. Since the expansion process for both

extendible and linear hashing is different, the expansion

cost calculations also differ.

Extendible Hashing: 1 or more accesses to write the
old bucket

39

+ 1 or more accesses to write the new bucket
+ 1 access to update the directory pointer

(if directory is on secondary storage)
+ Accesses to update the directory pointers

in case of doubling the directory size
(if directory is on secondary storage)

Linear Hashing: 1 or more accesses to read the bucket
to be ~plit

+ 1 or more accesses to write the old bucket
+ 1 or more accesses to write the new bucket

(6) Cost of Insertion: Cost of insertion is based on

the number of accesses needed to insert a new record. Cost

of connecting a record to the bucket and cost of allocating

a new bucket in case of split are being ignored in our

analysis. Such costs are system dependent and stay constant

for all the records and the buckets. Further they are

identical for both the hashing schemes.

Cost of insertion consists of unsuccessful search cost

and cost of expansion in case of split. The unsuccessful

search cost is the same as (3) above. In case of split, all

the records contained in the bucket have to be redistributed

between the old bucket and the newly allocated bucket. In

linear hashing, 1 extra access is required to update the

next pointer if the last bucket on the chain is full.

(7) Size of the Overflow Area: Count the overflow buck-

ets chained with the primary buckets.

40

(8) CPU time for insertion: System dependent functions

are used to derive the CPU time for inserting the keys.

The above performance factors are plotted on the line

chart against the number of records currently in the table.

Also average, maximum and minimum values have been generated

for space utilization, search cost, split cost, and inser

tion cost. Tables and figures are contained in the Appen

dix.

CHAPTER VI

SIMULATION RESULTS AND CONCLUSIONS

In this chapter, LINHASH and EXHASH mean linear hashing

and extendible hashing, respectively. All the figures and

tables referred to are contained in the Appendix.

Simulation Results

For all the bucket sizes, EXHASH has produced con

sistently better storage utilization than LINHASH. LINHASH,

as mentioned before, gives cyclic storage utilization since

the buckets are split linearly regardless of their load. In

both EXHASH and LINHASH, as the bucket size rises, the

storage utilization becomes more fluctuating (see Figures~ ------------ ~

13,14,15,16 and Table I). EXHASH has an advantage of

approximately 5% over LINHASH in storage utilization.

a performance is wholly attributable to the way the buckets

are split under the two schemes. The corollary is that
_, ·-------- -- " -~'--·~--/· ·"

LINHASH needs more buckets to hold the same number of

records than EXHASH does (see Figures 17,18,19,20).

LINHASH, for all the bucket sizes, has done better as

to unsuccessful search cost than EXHASH. In general, unsuc

cessful search becomes less costly as the bucket size rises.

It is interesting to note that on an average unsuccessful

41

42

search cost stays close to 1 for all the bucket sizes in

LINHASH (see Figures 21,22,23,24 and Table II). Similar

observations hold true for successful search cost (see Fig

ures 25,26,27,28 and Table III). It is observed that the

successful search and the unsuccessful search are equally

costly in EXHASH. This is due to the fact that the overflow

buckets are almost non-existent in EXHASH. Note that over

flow buckets are mandatory in LINHASH. In EXHASH, the

search cost can be kept close to 1 regardless of the bucket

size if the entire directory can be kept in the main memory.

Splitting of a bucket or table expansion is costlier in

LINHASH. This is due to the fact that an extra read access

is needed to read the bucket to be split (see Figures

29,30,31,32 and Table IV). Insertion cost is slightly

higher in EXHASH for the bucket sizes 10, 20 and 30. How

ever, for the bucket size 50, this cost is slightly less in

EXHASH (see Figures 33,34,35,36 and Table V).

As expected, LINHASH performed poorly as to the number

of overflow buckets. The number of overflow buckets

decreases as the bucket size increases. The simulation

shows that a maximum of 10 percent of the total space should

be marked as an overflow area in LINHASH. Overflow buckets

are almost non-existent in EXHASH (see Figures 37,38,39,40).

As mentioned before, overflow buckets are mandatory in

EXHASH.

LINHASH is definitely superior to EXHASH as far as cpu

time for insertion is concerned. However, it is warned that

43

the cpu time referred here is not the actual time. The

better way to evaluate Figures 41,42,43,44 is to compute the

difference between the two curves. The difference can be

interpreted as the time spent on directory doubling and

additional address computations in EXHASH. Obviously, the

time spent on directory doubling is enormous and it has

increased very sharply with increasing directory size. With

the bucket size 10 and 50,000 records, the directory size

grows to 2**16, which implies that the directory is doubled

16 times during file expansion.

Based on the simulation results, linear hashing scheme

is recommended if the main memory is at a premium since it

does not need any directory. Address computations and

expansion process are also simple and efficient. This

scheme is particularly useful in a small computer environ

ment. However, this scheme is not devoid of its pitfalls.

Since there is no control over the length of an overflow

chain, the access time may sometimes be high. Extendible

hashing scheme could be useful if sufficient main memory is

available to hold the directory. If the file size grows and

shrinks frequently, doubling and halving the directory size

may become very expensive. In both the schemes, the bucket

size has not affected the performance significantly. How

ever, a bucket size of 30 seems to be a good choice since it

gives fairly reasonable storage utilization and access

times.

44

Conclusion

Dynamic hashing is a well-known scheme for organizing

direct access files. Dynamic hashing schemes include

dynamic hashing, dynamic hashing with deferred splitting,

spiral storage scheme, extendible hashing, and linear hash

ing. Both extendible hashing and linear hashing schemes are

considered algorithmically simple and efficient. Hence, we

have simulated both the schemes to evaluate their relative

performance.

Simulation has been performed on Perkin-Elmer 3230 run

ning under XELOS operating system. We have assumed that the

keys are uniformly distributed: records and buckets are

fixed in size: and main memory can hold upto a maximum of

1024 directory entries in extendible hashing. The perfor-, _______ _
mance comparison factors include average space utiliza~i()Q_,

average successful and unsuccessful search cost in terms of

bucket accesses, cost of eipansion, cost of insertion, size

of the overflow area, and CPU time for insertion.

Simulation results have suggested that extendible hash

ing scheme uses the space more efficiently while linear

hashing produces better search times. It has been observed

that with large number of keys (e.g. 50000) and a small

bucket size (e.g. 10), the directory size in extendible

hashing may grow very large. Insertions and expansion are

less costly in linear hashing. However, linear hashing

suffers from the problem of large overflow area.

45

Approximately 10 percent of the total space is needed for

overflow purposes. Because of simplicity in address compu

tation and absence of directory, linear hashing gives better

CPU time for insertion. Based on these observations, linear

hashing scheme is recommended if main memory is at a prem

ium. This scheme can be particularly useful in a small com

puter environment.

Suggested Future Work

The following suggestions are made for the future work:

(1) Use a non-uniform distribution of keys [Enb88].

(2) Use frequency counts of the records in hashing.

(3) Consider splitting more than one bucket in LINHASH

to reduce the storage fluctuations. Some work has

already been done on partial expansion of table in

LINHASH [Ram84].

(4) Consider the existence of cache memory. Also, use

different sizes of buffer to see how the performance

is affected.

BIBLIOGRAPHY

'L--f-[Car79] Carter, J.L. and Wegman, M. "Universal Class of Hash
Functions." Journal of Computer & System Sciences,
18, 1(1979), pp. 143-154.

~[Cha85] Chan9, H •. ~ Study of Dynamic Hashing and Dfnamic
Hash1ng w1th Deferred Splitting. M.S. Thes1s,
Oklahoma State Un1versity, Stillwater, OK 74074,
1985 •

....._,....._--.y:.__[Enb88] Enbody, R.J. and Du, H.C. "Dynamic Hashing Schemes."
ACM Computing Surveys, 20, 2(June 1988), pp. 85-113.

~ [Fag79] Fagin, R., Nievergelt, J., Pippenger, N., and
Strong, H.R. "Extendible Hashing - A Fast Access
Method for Dynamic Files." ACM Transactions on
Database Systems, 14, 3(Sep:-I979), pp. 315-344.

"-..._[Fla83] Flajolet, P. "On the Performance Evaluation of
Extendible Hashing and Trie Searching." Acta
Informtica, 20, (1983), pp. 345-369. ----

A[Fo187] Folk, M.J. and Zoellick, B. File Structures: A
Conceptual Toolkit. Reading,--w;;-: Addlson-Wesiey
1987.

[Knu73] Knut~, D. The Art~ Computer Programmins, vol. III:
Sort1ng and Search1ng. Reading, MA : Addlson-Wesley
1973.

~[Lar78] Larson, P. "Dynamic Hashing." BIT, 18(1978),
pp. 184-201.

[Lar80] Larson, P. "Linear Hashing with Partial Expansions."
Proc. of the 6th International Conference on Very
Large Databases, 1980, pp. 224-232.

----.._[Lar82] Larson, P. "Performance Analysis of Linear Hashing
with Partial Expansions." ACM Transactions on
Database Systems, 7, 4(198~ pp. 566-587.

No [Lar83] Larson, P. "Analysis of Uniform Hashing."Journal of
ACM, 30, 4(1983), pp. 805-819.

,[Lar85] Larson, P. "Performance Analysis of a Single-file
Version of Linear Hashing." Computer Journal, 28,
3(1985), pp. 319-326.

46

47

~[Lar88] Larson, P. "Dynamic Hash Tables." Communications of
the ACM, 31, 4(April 1988), pp. 446-457. --

~ [Lit80] Litwin, w. "Linear Hashing: A New Tool for File and
Table Addressing." Proc. of the 6th Conference on
Very Large Databases;-198~ pp. 212-223. --

"---,[Men82] Mendelson, H. "Analysis of Extendible Hashing."
IEEE Transactions on Software Engineering, SE-8,
6(Nov. 1982), pp. 661-619.

~[Mul81] Mullin, J.K. "Tightly Controlled Linear Hashing
Without Separate Overflow Storage." BIT, 21,
4(1981), pp. 389-400. -

' ~[Mul85] Mullin, J.K. "Spiral Storage: An Efficient Dynamic
Hashing with Constant Performance." Computer
Journal, 28, 3(1985), pp. 330-334.

'Y [Pat87] Patel, H.D. Analysis and Comparison of Extendible
Hashing and !+ Trees Access Methods. M.S. Thes1s,
Oklahoma State Un1vers1ty, St1llwater, OK 74074,
1987.

~ [Ram82] Rammohanrao, K. and Lloyd, J.K. "Dynamic Hashing
Schemes." Computer Journal, 25, 4(1982),
pp. 478-485.

"' [Ram84] Rammohanrao, K. and Sachs-Davis "Recursive Linear
Hashing." ACM Transactions Q!! Database Systems,
9, 3(1984), pp. 369-391.

[Sch81] Scholl, M. "New File Organizations Based on Dynamic
Hashing." ACM Transactions on Database Systems, 6,
l(Mar. 198IT; pp. 194-211. --

[XEL85] XELOS: Programmer Reference, (60-183F04). Ocean
port, New Jersey: Perkin-Elmer Corporation, 1985.

APPENDIX

48

49

TABLE I

Storage Utilization

Bucket Size Avg. Min. Max •

EXHASH 10 • 693 .667 .732
20 .692 .664 .741
30 .694 .625 .769
50 .703 .500 .788

LINHASH 10 .639 .556 .714
20 .621 .522 .833
30. .637 .51.5 .786
50 .653 .500 .791

TABLE II

Unsuccessful Search Cost

Bucket Size Avg. Min. Max.

EXHASH 10 1.83 1.00 1.99
20 1.61 1.00 1.88
30 1.41 1. 00 1.75
50 1.17 1. 00 1.50

LINHASH 10 1.15 1.00 1.25
20 1.08 1.00 1.18
30 1.04 1.00 1.20
50 1.04 1.00 1.14

TABLE III

Successful Search Cost

Bucket Size Avg. Min. Max.

EXHASH 10 1.83 1.00 1.98
20 1.61 1.00 1.88
30 1.41 1.00 1.75
50 1.17 1.00 1.50

LINHASH 10 1.03 1.00 1.06
20 1.01 1.00 1.03
30 1.00 1.00 1.02
50 1.00 1.00 1.01

50

TABLE IV

Split Cost

Bucket Size Avg. Min. Max.

EXHASH 10 3.34 2.00 3.77
20 2.83 2.00 3.44
30 2.41 2.00 2.99
50 2.05 2.00 2.46

LINHASH 10 3.29 3.23 3.43
20 3.26 3.20 4.00
30 3.25 3.19 4.00
50 3.23 3.00 4.00

TABLE v

Insertion Cost

Bucket Size Avg. Min. Max.

EXHASH 10 2.93 2.10 3.23
20 2.46 2.03 2.79
30 2.22 2.01 2.50
50 2.06 2.00 2.21

LINHASH 10 2.67 2.44 2.75
20 2.34 2.10 2.40
30 2.22 2.05 2.27
50 2.13 2.00 2.16

1.0

s T 0.9
0
R
A
G 0.8
E

u
T 0.7
I
L
I
z 0.6
A
T
I
0 N 0.5

BUCKET SIZE = 10

-- -..........
'''V \./~ -- ~ --..--..-- --- . ,. ,..
I ,... --. _, ... - "" .. ., J' ~ _ ,r
.. .. ' .-1 ,... 1}11.) ... ,_/ _.4" _,..

~·~ ,.1
I \

.... _,. ... __ J. __ ...,.,..

0.~ ~~~~~a-,;~Ti-,l~i~Ti~l~~l-,i~i~Ti~I~Ti-,I~I~~I~I~Ti-,i~ir-~t~ia-Tt-,I~Ti-,i~ra-,a-,a~Ti-,l~rt-,l--rl-,l~l~~i~i~Ti-,l-,i~~l~ir-Tt-,l~lr-~t~i~~i-,l~
0 10000 20000 30000 ~0000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 13. STORAGE UTILIZATION VS. NUMBER OF RECORDS
(11

.......

1.0

s T 0.9
0
R

~ 0.s-=-•
E

u
T 0.7
I
L
I
2 0.6
A
T
I
0 N 0.5

1\
\ I 11 I \

V1 1\ I \
pll I I \
•v \' h ~
~

BUCKET SIZE = 20

... -..
'-,

' ~ _, .,. -....,..__ ___

-...__ __________ ,.
.J"' ...

I \'
(\

I 1,.
\. I a. ...~ \. / .,... ...

0.4 I
iii I ill IIIIi I ill Iilli I ill Iiiii till 1111 IIIII I ill till

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 14. STORAGE UTILIZATION US. NUMBER OF RECORDS U1
N

1.0

s T 0.9
0
R
A
G 0.8
E

u
T 0.7
I
L
I
z 0.6
A
T
I
0 N 0.5

I

I \
I l

tjjlll ••
Ill fl I I I
·~II \ I I

'I \1
I

BUCKET SIZE = 30

i'
.... .,

'11, "' _,. ---

,.,
,.

; .,
_..,.,.

.,. ---

0.4 I
iii I iii IIIII I ill IIIII I iii IIIII iii I I ill IIIII I ill I ill

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 15. STORAGE UTILIZATION US. NUMBER OF RECORDS U1
w

1.0

s
T 0.9
0
R
A
G 0.8
E

u
T 0.7
I
L
I
z 0.6
A
T
I
0 N 0.5

\ ;'

\ ('
._J

BUCKET SIZE = 50

\.

\
\
\
~
\ ... /

... -

'1
.......__..- /

/" _,
/ ,

.,1'

~
\.

...
l
\

' \
'

0.'J ~·ir-T;-,;~Ti-,l~ir-Ti--ir-Tt-,i~ir-T;--r;-y;-,;~r;-,;~r;-y;~i~Ti~i~Ti-,i~ir-,;~;r-TI-,i~lr-,;~lr-TI-,i~Ti-,i~lr-Ti~ir-Tl-,l~lr-TI--ir-Ti-,l~ir-~;~;r-,;-,;~
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 16. STORAGE UTILIZATION US. NUMBER OF RECORDS
0'1

"'"

9000

8000

N
u 7000
M

~ 6000
R

0 5000
F
B 4000
u
~ 3000
E
T 2000
s

1000

0
T

0 10000

HASHING

.,.
;_""

BUCKET SIZE = 10

"" .,.""
;""

20000

;""'

30000

NUMBER OF RECORDS

--EXTEND ----LINEAR

,., ./ ,.,
.,.

; ,

40000

FIGURE 17. NUMBER OF BUCKETS US. NUMBER OF RECORDS

,., , -"
,.J

;

50000

U1
U1

9000

8000

N u 7000
M

~ 6000
R
0 5000
F
B 4000
u
~ 3000
E
T 2000
s

1000

0
T

0 10000

HASHING

BUCKET SIZE = 20

20000 30000

NUMBER OF RECORDS

.,.r
_,."'

.,'

,.,,...

40000

--EXTEND ----LINEAR

FIGURE 18. NUMBER OF BUCKETS VS. NUMBER OF RECORDS

,._...,.,..,.,--'

50000

U1
0'1

9000

8000

N u 7000
M

~ 6000
R

0 5000
F
B 4000
u
~ 3000
E
T 2000
s

1000

0
T

0

BUCKET SIZE = 30

-....

10000 20000 30000 40000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 19. NUMBER OF BUCKETS VS. NUMBER OF RECORDS

50000

<.11
-....J

9000

8000
N u 7000
M

~ 6000
R

0 5000
F
B 4000
u
~ 3000
E
T 2000
s

BUCKET SIZE = 50

-I , :;::..::...-1000
0..f- : ·r _.-~ m ~~~,..~-=--------1'"~

--• I 1 ; 0 ., ••••••• .. , I I I I I I 1 I I I • I I ; ·I''''''' . . I 10000 20000 30000 40000 50000
NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 20. NUMBER OF BUCKETS VS. NUMBER OF RECORDS Ul
OJ

BUCKET SIZE = 10
A

~ 2.8 ~ -
I

*'\,1

• 1.9
I u

N 1.8
s
u 1.7 c
c E 1.6
s s 1.5
F
u 1.4
L
s 1.3
E .~{1 J ,,, ~- ~-·-·· A 1.2 1 /Y ,r - r '-&.. \11 \ \ r' \ r '""' .- -
R \1 1 r ., .1 -

Ill \ \. "- .. ,.. .,..., ... r .. -.. ,..
c 1.1 I I J I \ J lo. _. ., _.. ._

·~... " .,~ "- _., _
H , --
C 1.0 I

0 s 0.9
T

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING EXTEND ----LINEAR

FIGURE 21. UNSUCCESSFUL SEARCH COST VS. NUMBER OF RECORDS
(J1

\0

A
~ 2.0

• 1.9
u
N 1.8
s g 1.7

c
E 1.6
s s 1.5
F
u 1.4
L
s 1.3
E
A 1.2
R
c 1.1
H
c 1.0
0 s 0.9
T

BUCKET SIZE = 20

-
-

J ~ .. ---r' - ~ \, .. t\ ,- ., J -.... .,..r ._
p I \ (\ r ' rJ '~ ,.lJ .. .J \ ~ ' ~ " t" ... , r ~ ... "-.... \- ,_} lw ~ ,.. -._

- J "-- - ...

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 22. UNSUCCESSFUL SEARCH COST VS. NUMBER OF RECORDS 0'\
0

A
~ 2.0

• 1.9
u
N 1.8·
s g 1.7

c
E 1.6
s s 1.5-
F
u 1.4-
L

s 1.3
E
A 1.2
R
c 1 1• H •
c 1.0
0 s 0.9
T T

0

BUCKET SIZE = 30

I
,, t " ~~... r' .. , .. '-

~ 1\ ,., (\ I .. I_

~~ I t r \ r'- '\ 1..
IL I , \ -~~' ____ ...,-- .. ________________ ..

I --.---. T -~---.---. --T I I

10000 20000 30000 40000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 23. UNSUCCESSFUL SEARCH COST VS. NUMBER OF RECORDS

I

50000

0'1
.......

A
~ 2.0·

• 1 .9
u
N 1.8
s
u 1.7 c
~ 1.6
s s 1.5·
F
u 1.4
L
s 1.3
E A 1.2·
R
~ 1.1 ~

to

/\
.. 1, _,

BUCKET SIZE = 50

~~ ..
,J ..

,. '" -~ ... I. ------ ~-

J to .. _
c 1 .0 ~ -&..,.___;,--~~:,_
0
s 0.9,1 I' I

T 0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 24. UNSUCCESSFUL SEARCH COST US. NUMBER OF RECORDS
0'\
N

A 2.0
IJ
G 1.9
•

s 1.8
u
c 1.7 c
E s 1.6
s
F 1.5
u
L 1.4

s E 1.3
A
R 1.2
c
H 1.1

BUCKET SIZE = 10

' r

~
,.. - ...

-~-----,-~------~-----------~-----g 1.0
s
T 0.9,1 I

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS
HASHING --EXTEND ----LINEAR

FIGURE 25. SUCCESSFUL SEARCH COST IJS. NUMBER OF RECORDS
m
w

A 2.0 u
G 1.9
•

s 1.8
u
c 1.7 c
E s 1.6
s
F 1.5
u
L 1.4

s E 1.3
A
R 1.2
c
H 1.1

g 1.0
s
T 0.9

Jl ... "

0

BUCKET SIZE = 20

--

-

_, - ----~-r---~---------~---~-----~---,--·

10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 26. SUCCESSFUL SEARCH COST US. NUMBER OF RECORDS
0'\
II=-

BUCKET SIZE = 30

e 2.0

G 1.9
•

s 1.8
u g 1.7
E s 1.6
s
F 1.5
u
L 1.4

s
E 1.3
A
R 1.2
c
H 1.1

) n ., r ., ,: - - I '- - - - - - {" - - - - - - - ... - - - - - - - - - - - - - - -g 1 .0 I .

s
T 0.9

I

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 27. SUCCESSFUL SEARCH COST US. NUMBER OF RECORDS
0"1
U1

A 2.0
IJ
G 1.9
•

s 1.8
u
c 1.7 c
~ 1.6
s
F 1.5
u
L 1.4

~ 1.3
A
R 1.2
c
H 1.1

BUCKET SIZE = 50

-----------~----8 1.0
s
T 0 •9 ' 1t-r•~·~·-·~•-r•~·~·~·~~-·~•-r•~·~•-r•~•-r•~•-rt-·~·-•~•-r•~•~·-·~•-rt~•-r•~·~·-·~•-r•~·~·~t~·-·~•-r•~•~•~•~•~•~t

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS
HASHING --EXTEND ----LINEAR

FIGURE 28. SUCCESSFUL SEARCH COST IJS. NUMBER OF RECORDS
m
m

4.00

3.75
A v 3.50
E
R A 3.25
G
E 3.00

s p 2.75
L
I 2.50
T

c 2.25
0
s 2.00
T

1.75

BUCKET SIZE = 10

I

"!' --.,..._/ _ ... _, ~~~---~~- ----~-
_________ .,

1.50~ ~~~·~•~•~•~•~•~•~•~•~j~•~•~•~•r-T;-r;-r;-r;-r;-rl-r;-r;-r;-r;-,,-,,_,,_,,_,,_,,_,,_,,_,,~,~·~•~•~•~•~j~•~•~•~•~•~•~•~•~•r-ir

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 29. SPLIT COST VS. NUMBER OF RECORDS
0'1
-....]

A

4.00-u
I

3.75 I
I
I

E t

BUCKET SIZE = 20

v 3.50] .. 1

R .. \ -- A 3.25 .,-._,.,- ---- ------
G
E 3.00

s p 2.75
L
I 2.50
T

c 2.25
0
s 2.00
T

1.75

, __ Ja __ ,_

1 .~~ ~'•r-••~•r-••~•r-•a-r;~;r-r;~;r-r;~;r-r;~;r-r;--r;-.;--;r-•a--ar-•a--ar-•a~r;-.;~••~•r-••~•r-••~•r-••~•r-•a--r;~;r-ra~;r-r;~;r-ra~;r-r;~;r-••~•r-•a~ar-•a-ar-•a•
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 30. SPLIT COST VS. NUMBER OF RECORDS
0"1
(X)

BUCKET SIZE = 30

4.00

3. 75 . ~
\ A

~ 33.25051 \-,r- ~-- ~-------- ------------------A • ~ ,...,...,... -._.-.,.. -.-._
G
E 3.00

s p 2.75
L
I 2.50
T

c 2.25
0
s 2.00
T

1.75

1 -~" ~~i~Ti-,i~i~Ti-,i~Ti-,i~i~TI-,I~I~~I~I~r;~;~r;-,;~;~TI-,I~I~Ti-,i~i~,;~;~Ti-,i~i~~i~l~i~~i--i~~i~i~i~~i~l~rl-,i~l~~i~l~r;-,;~i~Ti-,;~j~
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS
HASHING --EXTEND ----LINEAR

FIGURE 31. SPLIT COST VS. NUMBER OF RECORDS
0'1
w

BUCKET SIZE = 50

4.001 I
I

3-~r A \
u 3.50 \
E \
~ 3.25 y-"' -....----.. _,------.. , __ ,_ ____________ _ --..... ~ _,.,.,... --._..,.,._-
G
E 3.00

s p 2.75
L
I 2.50
T

c 2.25
0
s 2.00

___________ __/
T

1.75

1.50, ~~~·~•~•~•~•~r;-r;-r;-r;-rj-rl-rl-ri-ri-Ti-Ti~i-Ti~i~j~•-r•~•-r•-,•-,•-,•-,•-,;-,l-,'-,'-,'-,'-,'-,'-,'-,'-,'-,i-,'-,'~'~'~'~'~'~'~'~1~
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 32. SPLIT COST US. NUMBER OF RECORDS
--.J
0

4.00

c 3.75
E
R 3.50
A
~ 3.25

I 3.00
N

~ 2.75
R
T 2.50
I
0 N 2.25

c 2.00
0

i 1.75

BUCKET SIZE = 10

--~-~-~--~~-~~-v-- ---

1.50 ~·.~·~·~·~·~·~·~·~·~·~·~·~·~·~·~·~·~·~·-·~·~·~·~·~·~·~·~·-·~·-r·
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 33. INSERTION COST US. NUMBER OF RECORDS
-...J
......

4.00

6 3.75
E
R 3.50
A
~ 3.25

I 3.00
N

~ 2.75
R
T 2.50
I
0
N 2.25

c 2.00
0
s T 1.75

BUCKET SIZE = 20

~-----~~-~~----------~----~-~

1 .50-,
~·-·~·~·~·~·~·~·~·~·~·-·~·-·~·~·~·~·~·~·~·~·~·-·~·~·~·~·~·~·~·-·~·-·~·~·~·~·~·-·~·-·~·~·~·~·~·~·~·-·~·
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 34. INSERTION COST US. NUMBER OF RECORDS
-...J
N

4.00

e 3.75
E
R 3.50
A
~ 3.25

I 3.00
N

~ 2.75
R
T 2.50
I
0 N 2.25

c 2.00
0
s T 1.75

BUCKET SIZE = 30

'11\t"..._f'..., -'r- - ... __ ..,...,-- .. ----~

• ---------

1 .50-,
~.-.~·~·~·~·~·~·-r·~·-·~·~·~·~·~·~•-r•~•-r·~·~·~·~·-r·~·~·~•-r•~·~·~·~·~·~·~·~·-r•~·~·~·~·~·~·~·~•-r•~·-·~·-r·

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 35. INSERTION COST US. NUMBER OF RECORDS
--...)

w

4.00

~ 3.75
E
R 3.50
A
~ 3.25

I 3.00
N
s E 2.75
R
T 2.50
I
0
N 2.25

c 2.00
0
s T 1.75

BUCKET SIZE = 50

_...,...,------ .., ____ _.-- ---- ... ----- r ~--__ _.. _,.-___.

1.50 ~··~·~·~·~·~·~•-r•~•-r•~•-r•~•-r•~•-r•~•-r•~•-r•~•-r•~·~·~•-r•~•-r•~•-r•~•-r•~·-·~•-r•~•-r•~•-r•~·~·~•-r•~•-r•~•-r•~•-r•~·
0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 36. INSERTION COST VS. NUMBER OF RECORDS -...]

""'

1000
N

900 0
•

0
800

F
700

0
u 600 E
R
F 500
L
0 400 w
B 300
u
c 200 K
E
T 100
s

0

BUCKET SIZE = 10

I

- J
,. """, I

t ~)
/ ~ J ~~ I ~ J

J
(

r~

I
I ,

.......
I ""' J

, \ I ' I
L '- .,1 '\ I

_,. .I ' ~ I _ ... ' ' ~ ' ~·' ' ~ . ,
0 10000 20000 30000 40000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 37. OUERFLOW BUCKETS US. NUMBER OF RECORDS

.....
\
'\ ..

\

' ' ...
\.

....
\

...
.....

50000

"""' 01

1000
N
0 900
•
0 800
F

700
0
u 600
E
R
F
L
0
w

500

400

B 300 u
200

BUCKET SIZE = 20

.,..
J'

t" ...
r '\ c

K
E
T
s

..,.. J '
,1" ._ ~

~ ' / ~ __ , ~ " ; ' 0~-"'-' ~ ~ " ' ~ '" ''' - ~-- ~ , " ' - ~ " -~-- ~~
100

._

0 10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ---- LINEAR

FIGURE 38. OUERFLOW BUCKETS US. NUMBER OF RECORDS
-...I
m

1000

N
0 900
•
0 800
F

700
0
v 600
E
R
F
L
0 w

500

400

B 300 u
c
K
E
T
s

200

100

0-i ...,,_..
i I I ; ;

0

BUCKET SIZE = 30

_
,. -....

I ""'
~- ~ '

- .,., 'I., ,.,.,. ' ... , '--..- ~ ..__-- .-.. -~-
_____ .., _ __,,.

10000 20000 30000 40000 50000

NUMBER OF RECORDS

HASHING --EXTEND ----LINEAR

FIGURE 39. OVERFLOW BUCKETS VS. NUMBER OF RECORDS
-...J
-...J

1000
N

900 0
•

0
800

F
700

0
u 600 E
R
F 500
L
0 400 w
B 300
u
c 200 K
E
T 100 s

0
T

0 10000

HASHING

BUCKET SIZE = 50

_,-
...... -"" - -J' __

20000 30000

NUMBER OF RECORDS

_, ___ ..,.,,..-
40000

--EXTEND ----LINEAR

FIGURE 40. OVERFLOW BUCKETS US. NUMBER OF RECORDS

~.-~ ,. ...

50000

...:I
(X)

100000

90000

80000
A v 70000
G
• 60000
c
p 50000
u
T 40000
I
M 30000
E

20000

10000

0
•••••••••••••
0 10000

HASHING

BUCKET SIZE = 10

-------,J-
-_ - ._, - ,J,. -

20000 30000

NUMBER OF RECORDS

,
,J -"'

--EXTEND ----LINEAR

,.
"' "" ,

40000

FIGURE 41. CPU TIME VS. NUMBER OF RECORDS

r

"' "' ""

...
.tl , ,

50000

-....)

1..0

100000

90000

s0000
A
l) 70000
G
• 60000
c
p 50000
u
T 40000
I
M 30000
E

20000

10000

0
T

0 10000

HASHING

BUCKET SIZE = 20

__ ,..

20000

__ .,--~
_,..,.., ...

30000

NUMBER OF RECORDS

_,....
;--'

--EXTEND ----LINEAR

..,.,.,.

.,."
,"

.,"'

40000

FIGURE 42. CPU TIME VS. NUMBER OF RECORDS

,.,
,

;o ,

50000

00
0

100000

90000

80000
A
u 70000
G
• 60000
c
p 50000
u
T 40000
I
M 30000
E

20000

10000

0
T

0 10000

HASHING

BUCKET SIZE = 30

,..-,.,..-_, ..

20000 30000

NUMBER OF RECORDS

,..,.
,.,.,.. ,..,

.,..,..

40000

--EXTEND ----LINEAR

FIGURE 43. CPU TIME US. NUMBER OF RECORDS

,.,.

,. ...
....... ,...,

50000

(X)
......

100000

90000

80000
A
v 70000
G . 60000
c
p 50000
u
T 40000
I
M 30000
E

20000

10000

0
T

0 10000

HASHI~G

BUCKET SIZE = 50

,.,-.--___ ,..

20000

..,- ... -.,..-

30000

~UMBER OF RECORDS

--

-- EXTE~D ---- LI~EAR

-,,.
"' -"

40000

FIGURE 44. CPU TIME VS. ~UMBER OF RECORDS

" " "'

,
"' "'

50000

OJ
N

?
VITA

Ashok K. Rathi

Candidate for the Degree of

Master of Science

Thesis: PERFORMANCE COMPARISON OF LINEAR HASHING AND
EXTENDIBLE HASHING

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Ajmer, India, December 4,
1962, the son of Mr. and Mrs. C.K Rathi. Single.

Education: Graduated from O.J.H.S. School, Ajmer,
India, in July, 1980; received Bachelor of
Commerce degree in Accounting and Business
Statistics from the University of Rajasthan,
India, in July, 1982; received Chartered
Accountancy (Intermediate) certificate from the
Indian Institute of Chartered Accountancy in July,
1984; received Master of Business Administration
from Oklahoma State University, Stillwater,
Oklahoma, USA in May, 1987; completed the
requirements for Master of Science degree at
Oklahoma State University in May, 1989.

