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CHAPTER I 

INTRODUCTION 

Motivation 

Hashing is a well-known scheme for organizing direct 

access files. In hashing, retrieval, insertion and deletion 

of records are very fast except when there is a long over

flow chain of records [Enb88]. There are 2 different 

storage allocation schemes: (1) Static Storage Allocation: 

In this scheme, the size of the file must be estimated in 

advance and physical storage space must be allocated for the 

whole file. In other words, the amount of allocated storage 

space is fixed and cannot be altered without reorganizing 

the whole file. This scheme performs well only if a file or 

a table is relatively static in its size. (2) Dynamic 

Storage Allocation: This scheme allocates the storage space 

dynamically, i.e., allocate only as needed. Hence there is 

no need to estimate the storage space in advance. 

In most situations, the storage requirements are diffi

cult to estimate in advance. Also, if there exist a few 

records currently and rapid growth is expected in future, 

huge amount of extra space will have to be allocated in the 

static scheme. Dynamic storage allocation scheme saves the 

space and also overcomes the difficulty of estimating the 

1 
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file size in advance. 

Literature Review 

Hashing schemes which allow dynamic storage allocation 

without total reorganization of the hash table are called 

dynamic hashing schemes. Over the past few years, a number 

of dynamic hashing schemes have been proposed. With limited 

reorganization, the files can be expanded and contracted 

according to the number of records. The dynamic hashing 

schemes include dynamic hashing [Lar78], dynamic hashing 

with deferred splitting [Sch81][Cha85], spiral storage 

scheme [Mul81], extendible hashing [Fag79] and linear hash

ing [Lit80][Lar80,82,83,85,88][Mul81][Ram84]. 

Chang [Cha85] compared "dynamic hashing" scheme with 

"dynamic hashing with deferred splitting." Dynamic hashing 

with deferred splitting is found to have improved space 

utilization but shows poor average retrieval time per 

record. This is attributable to the existence of overflow 

buckets to defer the splitting. Both the schemes are dis

cussed in detail in Chapter II. 

Fagin et al. [Fag79] analyzed and compared extendible 

hashing scheme with B-tree. Extendible hashing scheme is 

algorithmically simple and guarantees no more than 2 secon

dary storage accesses to retrieve the data associated with a 

given key. Patel [Pat87] replicated the above study using 

B+ tree in place of B-tree and concluded that the average 

storage utilization for both the schemes is about 69%. A B+ 
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tree has more consistent storage utilization than extendible 

hashing. Extendible hashing performs much better in terms 

of random access cost and insertion cost. This scheme is 

discussed in detail in Chapter III. 

Larson [Lar88] compared linear hashing scheme, 

developed by Litwin [Lit80], with spiral storage scheme. 

Interestingly, both the schemes are directoryless, meaning 

that they do not use directory data structure which most 

other dynamic hashing schemes do. In spiral storage scheme, 

expansion process and address calculations were found to be 

slower and more complex than in linear hashing. 

Objective 

As discussed above, Fagin [Fag79] found extendible 

hashing fairly efficient. Litwin [LitBO] and Larson [Lar85] 

showed that linear hashing is algorithmically simple and 

computationally fast. Both the schemes are claimed to be 

very efficient by the respective authors. So far, however, 

no attempt has been made to compare extendible hashing and 

linear hashing schemes. Hence the objective of this thesis 

is to compare the performance of these two schemes by way of 

simulation. A number of performance factors have been 

evaluated. Definition of the performance factors, simplify

ing assumptions, and simulation details are contained in 

Chapter v. The simulation will lead us to conclude which 

hashing scheme is more efficient than the other in terms of 

these performance factors. 



4 

Thesis Organization 

The organization of this thesis is as follows. Chapter 

I introduces the concept of dynamic hashing, reviews the 

past work and lays down the thesis objective. 

Chapter II briefly reviews various dynamic hashing 

schemes that have been proposed over the past few years. 

The schemes, other than linear hashing and extendible hash

ing, include dynamic hashing, dynamic hashing with deferred 

splitting, and spiral storage. 

Chapter III is devoted to extendible hashing and linear 

hashing schemes. This chapter includes examples illustrat

ing directory and bucket structures, address computations, 

insertion of records, and expansion process. 

Chapter IV discusses random number generation and its 

behavior, hash functions used and the expected behavior of 

the extendible and linear hashing schemes. 

Chapter V lays down the simulation implementation 

details. The details include data structures for directory 

and bucket; algorithms to find and insert a record; simple 

assumptions for simulation; and the performance comparison 

factors. 

Chapter VI embodies empirical results and observations. 

The observations pertain to space utilization, search costs, 

overflow area etc. Tables and figures are contained in the 

Appendix. At the end, conclusions are drawn and future 

'research directions are suggested. 



CHAPTER II 

AN OVERVIEW OF DYNAMIC HASHING TECHNIQUES 

A number of dynamic hashing techniques [Enb88] have 

been proposed over the past few years. In this chapter, we 

discuss some popular hashing techniques: dynamic hashing, 

dynamic hashing with deferred splitting, and spiral storage. 

Extendible hashing and linear hashing techniques are dis

cussed in more detail in the next two chapters. 

Dynamic Hashing 

In dynamic hashing [Lar78], the index resides in main 

memory and can be organized as a forest of binary trees. 

Consider an example where pseudokeys are generated by the 

hash function on the actual keys. Each key is converted into 

a 7-bit binary number. The pseudokeys and their correspond

ing 7-bit binary numbers are given below 

Key 7-bit binary number 

052 0 101 010 
134 1 011 100 
176 1 111 110 
005 0 000 101 
123 1 010 011 

Figure 1 shows a binary tree corresponding to the set 

of keys given above. The 9-bit binary representation for 

5 
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the key 123 is 001 010 101. However, the key should be con

verted into 7 bits only. Assuming that only right-most bits 

are considered, the 7-bit binary representation of the key 

123 is 1 010 101. Notice that we have truncated the 2 left-

most bits. To access the key 123, follow the tree starting 

at the root. Process the bits from left to right. Follow 

left subtree when 0 is encountered and follow right subtree 

when 1 is encountered until an external node is reached. In 

1 010 101, the leftmost bit is 1. So we follow the right 

subtree out of the root. Then follow left for bit 0, right 

for bit 1 and left for bit 0. Now we have reached an exter-

nal node which contains the desired key. If the desired key 

is not there, the search is considered unsuccessful. 

0 

0 

olb116 * Undefined Node 
D 

005 052 0 Internal Node 

~~\ D External Node 

123 134 

Figure 1. Binary Search Tree in Dynamic Hashing 

Sometimes an external node can be undefined. In Figure 
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1, for example, the external node for the keys corresponding 

to the 7-bit binary numbers prefixed with 100 is undefined. 

Search is considered unsuccessful if an undefined node is 

encountered. Figure 2 shows a file structure as used in 

dynamic hashing. Data file which consists of the buckets 

resides on the secondary storage. Number of buckets changes 

according to the number of records in the file. Buckets are 

accessed by the index. 

INDEX 

DATA FILE 

Source: Larson, P. "Dynamic Hashing." BIT, 18(1978), 
p. 185. 

Figure 2. File Structure in Dynamic Hashing 

Insertion involves finding the relevant bucket X which 

contains the key. The key is inserted, if bucket X is found 

and is not full. In case bucket X is full, a split is per

formed to distribute the keys between bucket X and a new 

bucket. The splitting of the bucket increases the internal 

path by one. Consider the tree in Figure 3(a) for the 

bucket size of 2. On inserting the key 050, the bucket 

corresponding to the search path 0 overflows. This necessi

tates a split operation on that bucket. The updated tree is 
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shown in Figure 3(b). Sometimes more than 1 split operation 

is necessary to break the overflow. 

Dynamic hashing has an advantage over the static hash

ing scheme in that onlj partial reorganization of the hash 

file is required. However, storage utilization remains low 

in this scheme. In order to improve the storage utiliza

tion, splitting of a bucket should be deferred. Such a 

scheme is discussed next. 

Dynamic Hashing With Deferred Splitting 

In conventional dynamic hashing discussed so far, 

splitting occurs as soon as the primary bucket becomes over

full. In dynamic hashing with deferred splitting [Sch81], 

overflow buckets are allowed to contain additional keys with 

a few restrictions. This is illustrated below. 

Let b be the maximum bucket size and y be the "factor 

of b" defining maximum number of overflow keys in the over

flow bucket(s). Bucket is not split until y*b keys have 

been inserted into it. This involves 2 cases: one when y<=2 

and the other when y>2. 

Let y=l.5 and b=lO, then y*b=l5. This implies that a 

maximum of 15 keys can be inserted with 10 keys into the 

primary bucket and 5 keys into the overflow bucket. Assume 

that both the primary bucket and the overflow bucket are 

full now. The next key will necessitate a split operation 

since total number of keys has exceeded 15. As a part of 

split operation, a new bucket is allocated and all keys in 



003 
020 

(a) Before Split 

003 050 
020 

(b) After Split 

Figure 3. Example of "Split" in Dynamic 
Hashing 

9 



the primary bucket and the overflow bucket are distributed 

between the primary bucket and a new bucket. The overflow 

bucket is released. This is shown in Figure 4. 

• II Primazy Bucket Overflow Bucket 

(a) Before Split 

• II - II 1'---;:;---:-,:---::--1-111 
Primazy Bucket New Bucket Freed Bucket 

(b) After Split ~ Filled with Records 

Source: Scholl, M. "New File Organizations Based on 
Dynamic Hashing." ACM Transactions on Database 
Systems, 6, l(Mar.-r981), p. 199. 

Figure 4. Bucket Structure 

10 

For y>2, when the primary bucket becomes full, the 

first overflow bucket is allocated. When the first overflow 

bucket becomes full, another overflow bucket is allocated. 

Overflow buckets are allocated until y*b keys have been 

inserted. Thereafter, the bucket chain has to be split in 

the same manner as for y<2. 

The objective of deferred splitting is to defer the 

growth of the index and to improve the storage utilization. 

The small index results in faster search for the bucket. 

Space utilization can be further improved by using the 

shared overflow buckets [Sch81]. 
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We have noticed that the dynamic hashing involves a lot 

of pointers. The search time under this scheme is rela-

tively high. This is due to an index associated with the 

keys. The hashing scheme we discuss next does not use 

indices at all. 

Spiral Storage 

In a few hashing schemes, particularly linear hashing 

which shall be discussed later, the retrieval cost of a 

record increases and decreases in cycles [Lar88]. Such 

cyclic variations can be largely eliminated by using a hash

ing scheme called spiral storage scheme in which records are 

unevenly distributed to seek uniform performance [Mul85]. 

To be more specific, the address space at the beginning of 

the table has higher load than at the end. 

I (a) Before Growth 

""' 
moved 

.... 

I ~ 
(b) After Growth 

moved . . 

" (c) More Growth 

Source: Mullin, J.K. "Spiral Storage: Efficient Dynamic 
Hashing with Constant Performance." Computer 
Journal, 28, 3(1985), p. 330. 

Figure 5. File Growth with Spiral Storage 
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Figure 5 shows three stages of expansions. Figure 5(a) 

shows an address space before growth. Due to growth in 

records, the address space needs to be expanded. In such a 

situation, the records contained in the leading space in 

Figure 5(a) are moved to the trailing space in Figure 5(b). 

Notice that the trailing space in Figure 5(b) is larger than 

the leading space in Figure 5(a). The difference implies 

additional address space. Figure 5(c) shows more growth in 

records. 

The following notations and formulas [Lar88] will be 

used in the example below: 

H(K) 
d 
[A,B) 

A hash function for key K, O<=H(K)<l. 
Growth factor. 

: Hash interval for the entire address space. 
FRACT(S) is a fractional value of s. 
A=FRACT(S), B=FRACT(S+l) if FRACT(S) =/= 0 
A=O.OOOO, B=l.OOOO if FRACT(S)=O 

x A real number for the key K, O<=x<l. 
y=d**x : Growth function. 
yl=Floor(2**S) : Start bucket address for expansion 
y2=Ceil(2**(S-l)) : End bucket address for expansion 

Hash interval [A,B) can be computed by finding S in 

(d**S)(d-l)=required_address_space where d and the required 

address space are known. Let us illustrate the above by an 

example for d=2. 

Let us start off with 1 bucket whose address space and 

hash intervals are given below 

bucket 1 [0.0000,1.0000) 

Now suppose we have to increase the address space to 2. 

So we need 2 buckets such that all the keys mapped into 



bucket 1 can be relocated to the 2 buckets. Hence 

(d**S) (d-1) = 2 
2**S = 2 
s = 1.0000 

For S=l.OOOO, [A,B)=[O.OOOO,l.OOOO). To relocate the 

13 

keys, [A,B) must be spread over the 2 buckets. The address 

of the starting bucket, yl, and the last bucket, y2, would 

be 

yl = Floor(2**S) 
= Floor(2**1.0000) 
= 2 

y2 = Ceil(2**(S+l)) - 1 
= Ceil(2**2.0000) - 1 
= 3 

Hash interval for bucket 2 would be [O.OOOO,FRACT(r)) 

where r is obtained as 

2**r = last address 
2**r = 3 
r = 1. 5849 
So, FRACT(r) = .5849 

Thus hash interval for buckets 2 and 3 would be 

[0.0000,.5849) and [.5849,1.0000) respectively. The address 

space and the hash intervals are shown below. 

bucket 2 
bucket 3 

[0.0000,0.5849) 
[0.5849,1.0000) 

Now suppose the address space needs to be increased to 

3. So we need 3 buckets such that all the keys mapped into 

bucket 2 are relocated to 2 new buckets. Hence 

2**5 = 3 
s = 1.5849 

For S=l.5849, [A,B)=[0.5849,0.5849). To relocate the 

keys of bucket 2, [A,B) must be spread over the 2 buckets. 

The address of the starting bucket, yl, and the last bucket, 

y2, would be 



yl = Floor(2**1.5849} 
= 3 

y2 = Ceil(2**2.5849} - 1 
= 5 

14 

Now the address space ranges from bucket 3 to bucket 5 

giving us 3 buckets. The hash interval for bucket 3 would 

be the same as before. The hash interval for buckets 4 and 

5 (the last 2 buckets in the current address space} can also 

be obtained in a similar fashion. 

2**r = 5 
r = 2.3219 
FRACT(r} = .3219 

Now we have the following address space and hash inter-

vals: 

bucket 3 
bucket 4 
bucket 5 

[0.5849,1.0000} 
[0.0000,0.3219} 
[0.3219,0.5849} 

Similarly for 4 buckets, the address space and the hash 

intervals would be: 

bucket 4 
bucket 5 
bucket 6 
bucket 7 

[0.0000,0.3219} 
[0.3219,0.5849} 
[0.5849,0.8074} 
[0.8074,1.0000} 

If there is a key K of which, for example, H(K} = 

.6219, then this key will fall in address space 6. Note 

that every time a hash table is expanded, the first bucket 

from the current address space is freed and 2 new buckets 

are allocated at the end of the table. In practice, how

ever, the old bucket is reused and only one new bucket is 

allocated. 

Mullin [Mul85] analyzed and simulated the spiral 

storage allocation method in order to study its behavior. 

The major advantage of this method is that performance does 
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not vary cyclically during file growth or shrinkage. A high 

growth factor increases search time but results in less work 

during file expansion. However, Larson [Lar88] found this 

process to be very expensive. Further, he claimed that the 

expansion procedure of this scheme is very complex and slow. 

Summary 

All the hashing schemes discussed so far suffer from 

some disadvantages. Original "dynamic hashing" scheme gives 

poor storage utilization due to non-existence of overflow 

buckets. "Dynamic hashing with deferred splitting" needs a 

long index to access the required bucket, which increases 

the search time considerably. Spiral storage suffers from 

very complex and slow expansion procedure. In view of these 

demerits, we need a hashing scheme which: 

(1) has a short search path so that the retrieval time is 

acceptable; 

(2) has simplicity in terms of address computation and 

expansion procedure; and 

(3) can use overflow buckets, if needed, to further improve 

storage utilization. 

In the next chapter, we discuss two such dynamic hash

ing schemes called extendible hashing and linear hashing 

which broadly satisfy the above requirements. 



CHAPTER III 

EXTENDIBLE HASHING AND LINEAR HASHING 

Extendible Hashing 

De!~loped by Fagin [Fag79], extendible hashing is 

dependent on the n~mber of bits extracted from the pseudo

keys. A pseudokey consists of O's and l's. This key is 
........ ..-·--· 

used in indexing into the bucket which contains the actual 

key. Given a random hash function Hand an actual key K,Jt 

pseudokey K' can be computed•ith K'=H(K). Pseudokey must 

be of fixed length. 

The data structure consists of a set of buckets and a 

directory. Usually a partial or the whole directory 

(depending on its size) is kept in the primary storage. 

Buckets must reside on the secondary storage. The buckets 

contain keys and the associated information. 

Directory 

The global depth of the directory, call it d, changes 

as file grows and shrinks. The directory size is computed 

to be 2**d. The directory contains an array of pointers to 

the buckets. Figure 6 shows an example of an extendible 

hash file for d=3. 

16 
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d 

000 d' 

001 ~ I BuckotO 

010 

~ ~B~otl 
011 

100 

IB-2 101 

110 

IB-3 
111 

Buckets 
Directory 

Figure 6. Directory Entries = 2**3 
and 4 Buckets 

Buckets 

Each bucket has a local depth d' which must always be 

less than or equal to the global depth d. All the keys con-
/ 

tained in a particular bucket ~gree in the number of bits 

--~qual to d' . If d' <d, then there exist at least 2 pointers 

indexing into the same bucket. To be more precise, 2**(d

d') entries point to the same bucket. In Figure 6, bucket 3 

should agree only on the first (most significant) bit. 

Hence there are 2**(3-1)=4 entries indexing into bucket 3. 

When a bucket splits into two due to an overflow, the 
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local depth of the two buckets involved is incremented by 1. 

Suppose bucket 3 of Figure 6 overflows. Hence, bucket 3 

shall be split into two buckets - bucket 3 and bucket 4 as 

shown in Figure 7. All pseudokeys starting with 10 will 

hash to bucket 3 and those starting with 11 to bucket 4. 

d 
d' 

()()() 
§9 IBu-0 

001 ~ IB~l 
010 

Sl 1"~2 011 

100 

\""""'' ~ 101 

110 ~ 1"~~4 
111 

Buckets 

Directory 

Figure 7. After Splitting Bucket 3 of Fig-
ure 6 into Buckets 3 and 4 

When a bucket overflows and the local depth of the 

bucket equals the depth of the directory, the directory size 

has to be doubled. Suppose bucket 2 of Figure 7 overflows. 
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The local depth d' currently equals the global depth. To 

accommodate a new bucket resulting from the split operation, 

the directory size will have to be doubled by increasing the 

global depth d to 4. This is shown in Figure 8. The pro

cess of doubling the directory size is not expensive since 

no buckets other than the ones which caused the split are 

touched [Fag79]. It is claimed that no more than 2 accesses 

are required in extendible hashing - one access in locating 

the appropriate directory bucket (only if a partial direc

tory is kept in the primary storage) and the other access in 

obtaining the appropriate bucket. This claim holds only 

when no overflow buckets are used. If overflow buckets are 

used, more than 2 accesses may be required. 

Linear Hashing 

Linear hashing scheme, developed by w. Litwin [Lit80], 

is a directoryless scheme. Non-existence of directory 

implies a need for less main memory. In this scheme, the 

address space undergoes a smooth growth with the addition of 

one bucket on each split at the end of the table. When a 

new bucket is added at the end of the address space, only a 

limited local reorganization is performed [Lar88]. Address 

computations and expansion process are illustrated in the 

following sections. 

Example 

Let N be the minimum number of buckets before any 
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4 
d' 

0000 

E9 IB~tO 0001 

0010 

0011 

b1 IB~«l 0100 
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1000 

n 1001 
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1011 

~ I Buckot4 1100 
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Directory 
Buckets 

Figure 8. Hash Table Doubled After Splitting 
Bucket 2 of Figure 7 

20 



21 

expansion, L be the number of times the address space has 

doubled and p be the bucket to be split next. Address space 

is expanded in a linear order i.e. from bucket 0 to bucket 

N*(2**L)-l. After splitting the last bucket during the 

current expansion, pointer p is reset to bucket 0. 

(a) 

(b) 

(c) 

(d) 

p 

cbc=J0 
p 

c:Jc±Joo 
p 

[~CJdJG~ 
p ' 

cbCJC2JD~D 
Figure 9. Expansion Process in Linear 

Hashing 

Figure 9 illustrates the splitting process for N=3 i.e. 

for 3 buckets. Suppose one of the buckets overflows. So 

bucket 0 is split into bucket 0 and bucket 3. The updated 

status is depicted in Figure 9{b). Notice that p has moved 

to bucket 1 now. 

Now suppose after a few more splits, we arrive at the 

situation as depicted in Figure 9(c) and bucket 2 is split 
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into bucket 2 and bucket 5. In such a situation pointer p 

is reset to bucket 0 i.e. first expansion cycle has been 

completed. An expansion cycle is defined to be a cycle 

which starts when p=O and ends when [N*(2**L)-l]st bucket is 

split. Each expansion cycle results in doubling the table 

size relative to the size when p=O. 

Address Computation 

Linear splitting of buckets results in simple~ddress 

calculations. The address space consists of 2 parts - split 

and unsplit. Both the parts are accessed using 2 different 

hash functions. The address is computed with the assumption 

that the record belongs to the unsplit part. When the com

puted address, on comparison with pointer p, is found to be 

in the split part, second hash function is used to determine 

whether the record is contained in the old bucket or the 

newly allocated bucket. In general, the current address of 

any record with key K can be computed as follows [Lar88]: 

Split Operation 

address := H(L,K) 
if address < p then 

address := H(L+l,K) 

This section discusses the timing and methodology for 

splitting a bucket. There are 2 schemes to split a bucket. 

The first scheme is called a controlled split. In a con

trolled scheme, a bucket is split only when an overall load 
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factor is violated. The overall load factor, call it @, is 

defined as the number of records inserted divided by the 

number of buckets allocated. 

The overall load factor @ ·has lower and upper bounds 

called @(L) and @(U) respectively. If @>@(U), the bucket 

pointed to by pis split. If @<@(L), the bucket prior to 

the bucket pointed to by p shduld be merged with the last 

bucket and p should move back to the previous bucket. Fig

ure 10 illustrates both split and merge operations. 

s 
p 
L 
I 
T 

'V 

P~--------------------l 

tJc=:JCJDDt::J ~M 
I P r-------------------~ . I ~ 
[J~CJDDD8E 

Figure 10. Split and Merge Operation 

The second scheme is called uncontrolled split. In 

such a scheme, a bucket is split regardless of the overall 

load factor. The bucket size, call it b, must be prede

fined. A bucket 1s split when the current bucket size 

exceeds b. The name "uncontrolled split" is derived from 

the fact that there is no control over the space utiliza

tion. We have considered the second scheme in our simula-

tion. 
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Figure 11 illustrates the splitting process of bucket 1 

for N=5. Bucket 0 has already been split in Figure 11. Now 

assume that some bucket overflows. This implies a split 

operation on the bucket 1 pointed to by p. The entries in 

bucket 1 are 121, 456, 676, 831, 841 as shown in Figure 

ll(a). All these entries are separated by the hash function 

H(l,K)=(K mod 10). The entries with H(l,K)=l are retained 

in bucket 1 and the entries with H(l,K)=6 are hashed to 

bucket 6 which is allocated at the end of the hash table. 

This situation is shown in Figure ll(b). Notice that 

pointer p has moved to the bucket 2. That means bucket 2 

shall be split next time. 

Summary 

In this chapter, we studied extendible hashing and 

linear hashing schemes. Both the schemes allow smooth 

growth in address space by allocating one bucket at a time. 

However, there are some differences between the two schemes, 

which are mentioned below: 

(1) Extendible hashing uses directory but linear hash

ing does not. 

(2) Overflow space requirement is mandatory in linear 

hashing while this can be avoided in extendible hashing by 

propagating split operation until the overflow space is 

released. 

(3) In extendible hashing, split operation is performed 

on the bucket which overflows. In linear hashing, split 
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operation is performed on the bucket pointed to by pointer p 

regardless of where the overflow has occurred. 

Despite the above mentioned differences, the address 

computation and the expansion process are simple to under

stand and easy to implement in both the schemes. The 

relevant data structures, algorithms and simulation imple

mentation details of both the schemes are discussed in 

Chapter v. 
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experimentation, it was discovered that the results were 

almost identical across different random functions. Hence, 

"lrand48" was arbitrarily selected for simulation. However, 

the choice of "lrand48" does not imply any bias against 

"drand48" and "lcong48". In other words, the simulation 

results will remain the same with any of the three random 

functions. 

Hash Function 

There are several hashing methods which can be poten

tially better than random. These methods include key

folding method; division method; mid-square method; and 

radix transformation method. Folk [Fol87] found radix 

transformation method to be more reliable than the others. 

1t Radix transformation method involves transforming _t_h_e_~.ctual 
•· ~~ - ·~ · --· 

key into some decimal or hex number, and then taking its 

modulo. In our simulation, we simply consider the modulo 

arithmetic to find the bucket address since the keys are 

already transformed into hex numbers. r n linear hashing , 

only two hasQ _ func~io~s HASHl and HASH2 are used at any 

-------given time. HASHl deals with the unsplit buckets, whereas 
------

HASH2 deals with the split buckets. When a bucket is split, 

HASH2 hash function is used in separating the keys between 

the old bucket and the new bucket. 

In extendible hashing, the prefix d (global depth of 

the directory) bits of the keys are extracted from the keys 

and used in indexing into the directory location which 



29 

points to the relevant bucket. When a bucket is split, the 

local depth of that bucket is used. The keys are separated 

by looking at (local depth+l)st bit. If that bit is 0, 

retain that key in the old bucket: otherwise move it to the 

new bucket. 

Analysis 

The expected behavior of extendible hashing and linear 

hashing can be mathematically analyzed [[Fag79] [Ram82] 

[Lar82,83,85]. The simulation results discussed in Chapter 

VI are mostly consistent with the mathematical analysis. In 

this section, we simply outline the work done by others. 

For elaborate derivations and details, refer to the litera

ture cited above. The costs are calculated in terms of 

secondary storage accesses. 

Extendible Hashing 

It is assumed that the entire directory is kept in main 

memory. The following notations have been used: 

b Bucket Capacity 
n Total number of records 
ln Logarithmic value with base 2 
e Inverse of ln 

Some important costs are (Sources: [Men82] and 

[Fla83]): 

Insertion Cost = 1 + [1/(b ln 2)] 

Search Cost = 1 

Directory Size= [e n**(l+l/b)] I (b ln 2) 



Storage Utilization = ln 2 

Number of Buckets = n I (b ln 2) 

Linear Hashing 

The following notations have been used: 

y Number of records/bucket 
b Primary bucket capacity 
c Secondary bucket capacity 
z Load factor = y/b 
P(i,z) probability that i records hash to a bucket, 

given the load factor z. This implies binomial 
probability. For infinite number of records 
and buckets, binomial probabilities converge to 
Poisson probabilities [Lar83]. Hence 
P(i,z) = [e**(-zb) * (zb)**i] I i! 

k Number of buckets on a bucket chain, k>=l 
j Number of overflow records in the last overflow 

bucket only if overflow bucket exists 
s(z),S(z,x) Cost for successful search 
u(z),U(z,x) cost for unsuccessful search 
a(z),A(z,x) Cost for insertion 
t(z),T(z,x) Number of slots allocated per bucket 
E(z,x) Cost for expansion 
V(z,x) Overflow space per record 
$$ Sign for infinity 

Some important costs are (Sources: [Mul81] and 

[Lar85]): 

$$ c 

s(z) = 1+(1/zb) ~k 
I_ 

~[(k-1)c/2+j]P(b+(k-1)c+j,z) 
f._ 

k=1 ]=1 

$$ c 

u(z) = 1 + ~k ~P(b+(k-1)c+j,z) 
!_ I 
k=1 j=1 

$$ c 

t(z) = b + c ~k ~P(b+(k-1)c+j,z) 
I_ f._ 
k=1 ]=1 
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$$ 

a(z) = 1 + u(z) + ~P(b+(k-l)c+j,z) 
I_ 
k=O 
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A linear hash table consists of 2 parts: (1) the buck

ets that have not yet been split during the current expan

sion, and (2) the buckets that have been split during 

current expansion (see Figure 12). Split part and newly 

allocated part should be considered identical. 

Split II Unsplit Newly 
Allocated 

Fraction x/2 1-x x/2 

Expected no. 
of records z/2 z z/2 

Figure 12 Representation of split, unsplit 
and newly allocated parts. 

Let x indicate the proportion of the file which has 

been split. Hence 

S(z,x) = xs(z/2) + (1-x)s(z) 

U(z,x) = xu(z/2) + (1-x)u(z) 

T(z,x) = [2xt(z/2)+{1-x)z]/(zb) 

V(z,x) = [2x(t(z/2)-b)+(l-x)(t(z)-b)]/(zb) 

A(z,x) = xa(z/2) + (1-x)a(z) 

E(z,x) = [u(z)+2u(z/2)](1-x)/b 



CHAPTER V 

IMPLEMENTATION DETAILS 

This chapter describes how the extendible hashing 

scheme and the linear hashing scheme are simulated. The 

description includes data structures, algorithms and the 

performance factors for both schemes. 

Extendible Hashing 

Data Structures 

There are 2 main data structures to be used to imple

ment the extendible hashing scheme. 

1. Directory 2. Bucket 

The directory contains pointers to the bucket which 

holds the records. Some consecutive entries in the direc

tory may have the same value. 

Bucket has a fixed capacity in terms of number of 

records. We assume that the keys are stored in a sequential 

fashion without any order. Each bucket is linked to the 

next bucket except the last bucket. 

Algorithms 

Notations. The following notations have been used in 

the algorithms: 
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K Key 
P Bucket 
T New bucket 
A Temporary storage area 
d : Global depth of the directory 
d': Local depth of P 

Algorithm 1: Find. 1. Get the key K. 

2. Extract the first d bits of the key. 

3. Determine the entry in the directory based on the bits 

extracted. 

4. Follow the bucket pointer to a bucket P. 
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5. Search the keys in bucket P in a sequential fashion. If 

key K is found, return "successful" - else (i) set P to the 

next bucket pointer, and (ii) if P is nil, return "unsuc-

cessful" - else go to step(5). 

Algorithm 2: Insert. 1. Apply "Find" to search the key 

K. 

2. If key K exists (successful search), then 

- Print message: key K already exists. 

- Return. 

3. If bucket P is full, go to step 5. 

4. Insert key K and increment the counter for number of 

records in bucket P by one and then return. 

5. The bucket P will overflow if the key K is inserted. 

Obtain new bucket T. 

6. Obtain a temporary area A and store all the records of 

bucket P along with the new record associated with key K in 

A. 
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7. Set the local depth of bucket P and T to d'+l. 

8. If the new local depth of bucket P exceeds the directory 

depth d, then do the following: 

- Double the size of the directory. 

- Increment the depth d of the 

directory by 1. 

- Update the pointers in the directory. 

- Set the count for the number of 

records on bucket P and T to 0. 

9. Insert all records one at a time from the temporary area 

A into bucket P or bucket T depending upon the key. Note 

that no "Find" operation is needed for these records and 

only bucket P and bucket T are going to be affected. To 

insert, repeat step 4 as many times as the number of records 

in A. 

Linear Hashing 

Data Structures 

Unlike extendible hashing, the linear hashing can be 

implemented using only the bucket structure. It should be 

noted that no directory is used in linear hashing since it 

is a directoryless scheme and the relevant buckets can be 

accessed directly by the hash functions. 

Bucket has a fixed capacity in terms of number of 

records. The keys are stored in a sequential fashion 

without any order. There is a pointer p which points to the 



bucket to be split next when the overflow occurs. 

Algorithms 

Notations. The following notations have been used in 

the algorithms: 

K Key 
L Number of times the table size has doubled 
N Minimum number of initial buckets in the linear 

hash table 
P Bucket of a fixed size 
T New bucket 
A Temporary storage area 
p Pointer to the next bucket to be split 

Algorithm 1: Find. 1. Get the key K. 

2. Hash key K according to P=H(L,K). Key K may reside in 

bucket P. 
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3. If P<p, then bucket P has already been split. Hence hash 

key K using P=H(L+l,K). 

4. Search the keys in bucket P in a sequential fashion. If 

key K is found, return "successful" - else (i) set P to the 

next bucket pointer, and (ii) if P is nil, return "unsuc-

cessful" - else go to step(4). 

Algorithm !: Insert. 1. Apply "Find" to search key K. 

2. If key K exists (successful search), then 

- Print message: key K already exists. 

- Return. 

3. Insert key K in bucket P, increment the ~ounter for 

number of records in bucket P by 1. 

4. Return if bucket P does not overflow. Otherwise, obtain 



a temporary area A and store all the records contained in 

the bucket pointed to by p. 

5. Obtain a new bucket T. 
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6. Insert all the records one by one from the temporary area 

A into the bucket pointed to by p and bucket T by using a 

hash function H(L+l,K) where K refers to the keys in A. If 

necessary, use overflow buckets chained with the bucket 

pointed to by p or with bucket T. 

7. Increment the pointer p by 1. 

8. If p = N*(2**L), reset p to 0 and L to L+l. Return. 

Assumptions 

The performance comparison factors for simulation are 

based on the following assumptions: 

(1) The keys are uniformly distributed, meaning that each 

key has equal probability of being accessed. 

(2) Records are of fixed length. 

(3) Bucket capacity is fixed in terms of number of records 

that it can hold. 

(4) Expansion takes place as soon as a bucket overflows. 

(5) Enough main memory is available to handle the expansion. 

(6) Extendible Hashing: (a) Most significant bits are 

extracted from the key to find the directory entry. 

(b) Overflow bucket is split only once. In other words, 



second split is not attempted even though the first 

split may fail to release the overflow bucket. 

(c) Main memory can hold a maximum of 1024 directory 

entries. The rest of the directory must reside on the 

secondary storage. 

(7) Linear Hashing: A simple division method with modulo 

arithmetic is used to find the relevant bucket. 
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According to assumption (1), we use a random function 

"lrand48" (discussed in Chapter IV) that broadly satisfies 

the properties of a minimal ranqom function. Given a minimal 

random function "f(z) = az mod m", the value of "a" should 

pass the three tests as defined in [Par88] such that f(z) 

should (i) be a full period generating function; (ii) be 

random for all the sequences generated; and (iii) be imple

mented efficiently with at least 32-bit arithmetic. Further, 

the hash functions used in simulation also satisfy the basic 

properties listed in [Car79] [Knu73]. 

Comparison Factors 

The following factors are used to compare the linear 

hashing and the extendible hashing schemes: 

(1) Average Space Utilization: Divide the current 

number of records in all the buckets by the maximum number 

of records that these buckets can hold. Here the buckets 

include primary as well as overflow buckets. 
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(2) Number of Buckets: Number of both primary and over

flow buckets used in inserting the records. This factor is 

tied to average space utilization. The higher the space 

utilization, the fewer the buckets. 

(3) Average Unsuccessful Search Cost (in terms of 

bucket accesses): Reading a primary or an overflow bucket 

amounts to 1 bucket access. Hence, add the number of buck

ets, both primary and overflow, that are accessed to search 

a non-existent record. Divide that sum by the total number 

of unsuccessful search operations. The cost for a single 

unsuccessful search is equal to the number of buckets on a 

particular chain i.e. 1 for the primary bucket plus 1 for 

each additional overflow bucket attached to the primary 

bucket. 

(4) Average Successful Search Cost (in terms of bucket 

accesses): Reading a primary or an overflow bucket amounts 

to 1 bucket access. Hence, add the number of buckets, both 

primary and overflow, that are accessed to search an exist

ing record. Divide that sum by the total number of success

ful search operations. Only 1 access is required to 

retrieve the record contained in the primary bucket. If the 

record belongs to the overflow bucket, 2 or more accesses 

are required. 

(5) Cost of Expansion: Expansion cost and split cost 

are synonymously used. Since the expansion process for both 



extendible and linear hashing is different, the expansion 

cost calculations also differ. 

Extendible Hashing: 1 or more accesses to write the 
old bucket 
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+ 1 or more accesses to write the new bucket 
+ 1 access to update the directory pointer 

(if directory is on secondary storage) 
+ Accesses to update the directory pointers 

in case of doubling the directory size 
(if directory is on secondary storage) 

Linear Hashing: 1 or more accesses to read the bucket 
to be ~plit 

+ 1 or more accesses to write the old bucket 
+ 1 or more accesses to write the new bucket 

(6) Cost of Insertion: Cost of insertion is based on 

the number of accesses needed to insert a new record. Cost 

of connecting a record to the bucket and cost of allocating 

a new bucket in case of split are being ignored in our 

analysis. Such costs are system dependent and stay constant 

for all the records and the buckets. Further they are 

identical for both the hashing schemes. 

Cost of insertion consists of unsuccessful search cost 

and cost of expansion in case of split. The unsuccessful 

search cost is the same as (3) above. In case of split, all 

the records contained in the bucket have to be redistributed 

between the old bucket and the newly allocated bucket. In 

linear hashing, 1 extra access is required to update the 

next pointer if the last bucket on the chain is full. 

(7) Size of the Overflow Area: Count the overflow buck-

ets chained with the primary buckets. 
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(8) CPU time for insertion: System dependent functions 

are used to derive the CPU time for inserting the keys. 

The above performance factors are plotted on the line 

chart against the number of records currently in the table. 

Also average, maximum and minimum values have been generated 

for space utilization, search cost, split cost, and inser

tion cost. Tables and figures are contained in the Appen

dix. 



CHAPTER VI 

SIMULATION RESULTS AND CONCLUSIONS 

In this chapter, LINHASH and EXHASH mean linear hashing 

and extendible hashing, respectively. All the figures and 

tables referred to are contained in the Appendix. 

Simulation Results 

For all the bucket sizes, EXHASH has produced con

sistently better storage utilization than LINHASH. LINHASH, 

as mentioned before, gives cyclic storage utilization since 

the buckets are split linearly regardless of their load. In 

both EXHASH and LINHASH, as the bucket size rises, the 

storage utilization becomes more fluctuating (see Figures~ ------------ ~ 

13,14,15,16 and Table I). EXHASH has an advantage of 

approximately 5% over LINHASH in storage utilization. 

a performance is wholly attributable to the way the buckets 

are split under the two schemes. The corollary is that 
_, ·-------- -- " -~'--·~--/· ·" 

LINHASH needs more buckets to hold the same number of 

records than EXHASH does (see Figures 17,18,19,20). 

LINHASH, for all the bucket sizes, has done better as 

to unsuccessful search cost than EXHASH. In general, unsuc

cessful search becomes less costly as the bucket size rises. 

It is interesting to note that on an average unsuccessful 
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search cost stays close to 1 for all the bucket sizes in 

LINHASH (see Figures 21,22,23,24 and Table II). Similar 

observations hold true for successful search cost (see Fig

ures 25,26,27,28 and Table III). It is observed that the 

successful search and the unsuccessful search are equally 

costly in EXHASH. This is due to the fact that the overflow 

buckets are almost non-existent in EXHASH. Note that over

flow buckets are mandatory in LINHASH. In EXHASH, the 

search cost can be kept close to 1 regardless of the bucket 

size if the entire directory can be kept in the main memory. 

Splitting of a bucket or table expansion is costlier in 

LINHASH. This is due to the fact that an extra read access 

is needed to read the bucket to be split (see Figures 

29,30,31,32 and Table IV). Insertion cost is slightly 

higher in EXHASH for the bucket sizes 10, 20 and 30. How

ever, for the bucket size 50, this cost is slightly less in 

EXHASH (see Figures 33,34,35,36 and Table V). 

As expected, LINHASH performed poorly as to the number 

of overflow buckets. The number of overflow buckets 

decreases as the bucket size increases. The simulation 

shows that a maximum of 10 percent of the total space should 

be marked as an overflow area in LINHASH. Overflow buckets 

are almost non-existent in EXHASH (see Figures 37,38,39,40). 

As mentioned before, overflow buckets are mandatory in 

EXHASH. 

LINHASH is definitely superior to EXHASH as far as cpu 

time for insertion is concerned. However, it is warned that 
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the cpu time referred here is not the actual time. The 

better way to evaluate Figures 41,42,43,44 is to compute the 

difference between the two curves. The difference can be 

interpreted as the time spent on directory doubling and 

additional address computations in EXHASH. Obviously, the 

time spent on directory doubling is enormous and it has 

increased very sharply with increasing directory size. With 

the bucket size 10 and 50,000 records, the directory size 

grows to 2**16, which implies that the directory is doubled 

16 times during file expansion. 

Based on the simulation results, linear hashing scheme 

is recommended if the main memory is at a premium since it 

does not need any directory. Address computations and 

expansion process are also simple and efficient. This 

scheme is particularly useful in a small computer environ

ment. However, this scheme is not devoid of its pitfalls. 

Since there is no control over the length of an overflow 

chain, the access time may sometimes be high. Extendible 

hashing scheme could be useful if sufficient main memory is 

available to hold the directory. If the file size grows and 

shrinks frequently, doubling and halving the directory size 

may become very expensive. In both the schemes, the bucket 

size has not affected the performance significantly. How

ever, a bucket size of 30 seems to be a good choice since it 

gives fairly reasonable storage utilization and access 

times. 
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Conclusion 

Dynamic hashing is a well-known scheme for organizing 

direct access files. Dynamic hashing schemes include 

dynamic hashing, dynamic hashing with deferred splitting, 

spiral storage scheme, extendible hashing, and linear hash

ing. Both extendible hashing and linear hashing schemes are 

considered algorithmically simple and efficient. Hence, we 

have simulated both the schemes to evaluate their relative 

performance. 

Simulation has been performed on Perkin-Elmer 3230 run

ning under XELOS operating system. We have assumed that the 

keys are uniformly distributed: records and buckets are 

fixed in size: and main memory can hold upto a maximum of 

1024 directory entries in extendible hashing. The perfor-, _______ _ 
mance comparison factors include average space utiliza~i()Q_, 

average successful and unsuccessful search cost in terms of 

bucket accesses, cost of eipansion, cost of insertion, size 

of the overflow area, and CPU time for insertion. 

Simulation results have suggested that extendible hash

ing scheme uses the space more efficiently while linear 

hashing produces better search times. It has been observed 

that with large number of keys (e.g. 50000) and a small 

bucket size (e.g. 10), the directory size in extendible 

hashing may grow very large. Insertions and expansion are 

less costly in linear hashing. However, linear hashing 

suffers from the problem of large overflow area. 
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Approximately 10 percent of the total space is needed for 

overflow purposes. Because of simplicity in address compu

tation and absence of directory, linear hashing gives better 

CPU time for insertion. Based on these observations, linear 

hashing scheme is recommended if main memory is at a prem

ium. This scheme can be particularly useful in a small com

puter environment. 

Suggested Future Work 

The following suggestions are made for the future work: 

(1) Use a non-uniform distribution of keys [Enb88]. 

(2) Use frequency counts of the records in hashing. 

(3) Consider splitting more than one bucket in LINHASH 

to reduce the storage fluctuations. Some work has 

already been done on partial expansion of table in 

LINHASH [Ram84]. 

(4) Consider the existence of cache memory. Also, use 

different sizes of buffer to see how the performance 

is affected. 
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TABLE I 

Storage Utilization 

Bucket Size Avg. Min. Max • 

EXHASH 10 • 693 .667 .732 
20 .692 .664 .741 
30 .694 .625 .769 
50 .703 .500 .788 

LINHASH 10 .639 .556 .714 
20 .621 .522 .833 
30. .637 .51.5 .786 
50 .653 .500 .791 

TABLE II 

Unsuccessful Search Cost 

Bucket Size Avg. Min. Max. 

EXHASH 10 1.83 1.00 1.99 
20 1.61 1.00 1.88 
30 1.41 1. 00 1.75 
50 1.17 1. 00 1.50 

LINHASH 10 1.15 1.00 1.25 
20 1.08 1.00 1.18 
30 1.04 1.00 1.20 
50 1.04 1.00 1.14 

TABLE III 

Successful Search Cost 

Bucket Size Avg. Min. Max. 

EXHASH 10 1.83 1.00 1.98 
20 1.61 1.00 1.88 
30 1.41 1.00 1.75 
50 1.17 1.00 1.50 

LINHASH 10 1.03 1.00 1.06 
20 1.01 1.00 1.03 
30 1.00 1.00 1.02 
50 1.00 1.00 1.01 
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TABLE IV 

Split Cost 

Bucket Size Avg. Min. Max. 

EXHASH 10 3.34 2.00 3.77 
20 2.83 2.00 3.44 
30 2.41 2.00 2.99 
50 2.05 2.00 2.46 

LINHASH 10 3.29 3.23 3.43 
20 3.26 3.20 4.00 
30 3.25 3.19 4.00 
50 3.23 3.00 4.00 

TABLE v 

Insertion Cost 

Bucket Size Avg. Min. Max. 

EXHASH 10 2.93 2.10 3.23 
20 2.46 2.03 2.79 
30 2.22 2.01 2.50 
50 2.06 2.00 2.21 

LINHASH 10 2.67 2.44 2.75 
20 2.34 2.10 2.40 
30 2.22 2.05 2.27 
50 2.13 2.00 2.16 
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