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EXISTENCE AND CONTINUATION PROPERTIES OF SOLUTIONS

OF A NON-LINEAR VOLTERRA INTEGRAL EQUATION

1. Introduction. The subject of this paper is an n-dimensional 

non-linear integral equation of Volterra type,

ft
(E) x(t) = f(t) + g(t,s,x(s))ds, t e [0,oo). o

The prime consideration is the study of properties of solutions of equa

tion (E). In particular, there are derived sufficient conditions for 

this equation to possess a solution on a subinterval I^ = [0,T) of [0,»), 

and sufficient conditions for the extensibility of such a solution to an 

interval I containing I^.

Section 2 presents some known results for linear Volterra integral 

equations, which are used to establish a "Gronwall type" inequality for 

integral equations. A device introduced by Tonelli [8] is employed in 

Section 3 to find approximate solutions of (E). Using these approximate 

solutions as the main tool, there are then established certain existence 

theorems for (E). Also within Section 3 there are derived sufficient 

conditions to insure that if x is a solution of (E) on a subinterval Io
of I then x can be extended to be a solution of (E) on I. In Section 4 

it is shown that whenever (E) possesses a unique solution, a certain 

type of stability holds for the set of solutions of a corresponding equa

tion Involving "nearby data". Section 5 is devoted to establishing a
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sufficient condition for a solution x(t) of (E) on its maximal interval 

of existence [0,T) to possess the property that ||x(t)|| -»- + » as t + T“ .

Matrix notation is used throughout; in particular, matrices of one 

column are termed vectors. Lower class letters are used for vectors, 

and capital letters for all other matrices. The real n-dimensional space

is denoted by R*̂ , and for x = (x^) £ the norm ||x|| is given by
2 2 1/2 1 +(x^ + ••• + x^) . For simplicity R is used for R  ; also R is used to

denote {t : t € R, t > 0}. For an m x  n matrix A, the matrix norm ||A||

is defined as the supremum of |Ax || on the unit ball {x : ||x| < 1} of r ’̂.

For a general m x  n matrix M = [M^g] the symbol M • > • 0 signifies

that the elements of M are real, and M^g > 0 for a = l,***,m and

S = l,'"',n. The symbol M  •< *0 denotes the condition -M* >• 0; also,

H* >• N is used to signify M- N* > • 0. The symbol 0 is used indiscrimi

nately for the zero matrix of any dimensions. For x € R° the symbol |x|

is employed for the vector (|x^|) a « l,***,n.

For T 6 (0,®) the set {(t,s) : 0 < t < T, 0 < s i T} is denoted by
2Q^. A matrix function M(t,s) is said to be an element of L (Q^) if M(t,s)

is measurable in the Lebesgue sense on Q^, and M(t,s) is quadratically

integrable in the sense of Lebesgue on the square Q^; the corresponding
2norm of M as an element of L (Q^) is defined as

fT fT \l/2

Since a vector function p(t,s) is a one column matrix function, the above
2also gives the meaning for p 6 L (Q_).

For any interval I contained in R^, and any set B C  R^, we denote 

by C(I;B) the class of all functions f:I r “ such that f is continuous
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on I and f(t) €. B for all t e l ;  in particular, C(l;R“) is abbreviated

to simply C(I). Similar to the notations introduced above for matrix
2functions on the symbol L (I) denotes the set of all functions

f:I ft” such that f is Lebesgue measurable and the integral ||f(s)||̂ ds

exists in the Lebesgue sense.

If M and N are matrix functions defined on a common domain and

such that M is equal to N almost everywhere on vCT, then we write simply

M = N. Correspondingly, if M • < • N almost everywhere on Jff, then we 

write simply M • < • N on ̂ .

A matrix function is called continuous, integrable, measurable, etc., 

when each element of the matrix possesses the specified property.

2. Preliminary results on linear Volterra integral equations. We

shall consider now the linear vector equation

(L) x(t) » h(t) + [ K(t,s)x(s)ds, t > 0,

under the following hypotheses.
2(HI) The function h m  element of L [0,1] for arbitrary 

T e [0,«o>.

2(H2) The matrix function K ̂  ̂  element of L (Q^) for each 

T > 0, and K(t,s) = 0 for s > t.

As is well known from the Fubini theorem, (see, for example, Taylor 

[7; Theorem 7-1, p. 328; Problem 2, p. 333]), upon possibly re-defining 

K on a set of two-dimensional measure zero one has the following point 

properties;
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(i) for each value of t, K(c,s) £  measurable function of s on 

such that

(2.1) k^(t) = [ ||K(t,s) ll̂ ds < “>, t e  [0,“);; o

(11) for each value of s, K(t,s) ^  a measurable function of t on 

R*" such that

. 2 /   f \ II2 .(2.2) b“(s;T) - iiK(t,s)ii at < », se[0,T].

2 + + A function K satisfying (H2) Is called an L Volterra kernel on R x R ,
2but for convenience we shall simply say that K Is an L kernel.

2 2 For an L kernel K and T e [0,»), we define an operator A on L [0,T]
2in the following way. For x e L [0,T] let y = Ax, where

(2.3) y(t) - I K(t,s)x(s)ds, t € [0,T].

2 2 2 The function y is in L [0,1], and the integral operator A:L [0,T] L [0,1]

is compact. For proofs of these statements concerning the operator A, see

Taylor [6; p. 167, p. 277].
2For a given L kernel K we define the iterated kernels as follows:

(2.4) R^(t,8) = K(t,s),

” Is K(t,u)R^(u,s)du, (i = 1,2,'"').

2Also, we shall let c(t,s) = j k (u)du for 0 < t < T, and

c(t) = [ k^(u)du * c(t,0), where k is defined by (2.1).J o

LEMMA 2:1: ^  K satisfies (H2) then the iterated kernels R^(t,s),

1 = 1,2,"'', defined by (2.4) satisfy (H2).
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The proof of Lemma 2.1 follows directly from applying the Schwarz

Inequality and using mathematical Induction.
2A sequence {R^} of L matrix kernels will be said to be "relatively

2uniformly convergent" to R If there Is a non-negative real valued L 

kernel p(t,s) such that for T e (0,®) and e > 0 there Is a positive Integer 

n^(E,T) for which

|jR^(t,s) - R(t,s)jj < e p(t,s), whenever n > n^(e,T), (t,s) e Q^.

2The limit matrix function R Is again an L kernel. An Infinite series of 
2L kernels Is said to be relatively uniformly convergent If the sequence

formed by Its partial sums Is relatively uniformly convergent. Finally,
00 2

an Infinite series ^ R (t,s) of L kernels Is said to be "relatively
n=l ^ ®

uniformly absolutely convergent" If the series ^ ||R(t,s)|| Is relatively
n=l

uniformly convergent. The concept of relatively uniform convergence was 

introduced by E. H. Moore [3].

The following theorem gives the principal properties of relatively 

uniform convergence pertinent for the proofs of results listed In Theorems

(2.2) - (2.5). For a proof of this theorem the reader Is referred to 

Smithies [5; p. 24].

THEOREM 2.1. (1) If R^(t.s) ->• R(t,s), as n^°°, as a relatively
2 2 uniformly convergent sequence of L kernels, and x is ^  L ([0,T])

function for T £ (0,®), then 

fT
o

R^(t,s)x(s)ds -»■ I R(t,s)x(s)ds, as n ->• ®,

relatively uniformly.

(11) If



(2.5) I R (t,s) = R(t,s),
n=l "

the left-hand side being £  relatively uniformly absolutely convergent
2 2 series of L kernels, and x(t) an L ([0,T]> function for T € (0,“),

then

“ fT
I R (t,s)x(s)ds = R(t,s)x(s)ds, 

n=l ■'o Jo

the series being relatively uniformly absolutely convergent.

Proofs for the following lemma and theorem are found in Smithies 

[5; pp. 32-35].
2LEMMA 2.2. ^  K an L kernel. then for T e (0,") we have

II - (MK|l2lï/[(n-l)l]l/^)k(t)b(s;T),(t,s) € Q^, n = 1,2,....

2 ”THEOREM 2.2. If K ̂  ̂  L kernel the series J R is relatively
n=l “

uniformly absolutely convergent.

The function R = ^ R is called the "resolvent kernel" correspond- 
n»l "

ing to the kernel K, and possesses the following well-known properties, 

(see, for example. Miller [2; Chapter IV], Smithies [5; Chapter II], or 

Tricoml [9; Chapter I]).

THEOREM 2.3. If K satisfies (H2) then for T > 0 the function
00

R(t,s) = ^ R. (t,s), where R. ^  defined by (2.4), ^  m  element of
1=1 ^ ^

2L (Q^) and satisfies both equation

(R) R(t,s) - K(t,s) +

and

t
R(t,u)K(u,s)du

s



(R') R(t,s) = K(t,s) + K(t,u)R(u,s)du
s

4*for almost all (t,s) ^  the region R x  R . Moreover, the function R 

satisfies the inequality
oo

||R(t,s)|| < |!K(t,s)|! + k(t)b(s;T) I [( c ( T ) ) V i ! f o r  (t,s) e Q„.
1=2 ^

The matrix equations (R), (R^) are called the "resolvent equations" 

associated with the kernel K. The basic property of the resolvent kernel 

is given in the following theorem.

THEOREM 2.4, Jtf hypotheses (HI), (H2) are satisfied, and x satisfies 

equation (L) on the interval [0,T], then

(2.6) x(t) » h(t) + [ R(t,u)h(u)du, for t € [0,T].
J o

THEOREM 2.5. Suppose that in addition to hypotheses (HI) and (H2), 

we have

(H3) K(t,s)->*0, for (t,s) e  R* x  R+.

2Then for T > 0, and x e L [0,T] satisfying

(2.7) %(t) • <• h(t) + [ K(t,s)x(s)ds, for t £ [0,T],
J o

we have

rt
(2.8) x(t) * < • h(t) + R(t,s)h(s)ds, for t E [0,T],

o

where R is the resolvent kernel defined by (2.5).

If K satisfies (H2) and (H3), then the resolvent kernel R defined
2by (2.5) is an element of L (Q^) for arbitrary T e (0,»), and R(t,s) •>• 0 

for (t,s) £ R^ X  R*". Consequently, if T e (0,») and h £ L^[0,T], then



ror an x c_ satisrying v-t./j we have that there exists a vector
2function r e L [0,T] with r(t) • > • 0 and

x(t) = h(t) - r(t) +
t
K(t,s)x(s)ds, for t e [0,T].o

Then by Theorem 2.4 it follows that

x(t) = h(t) + [ R(t,u)h(u)du - {r(t) + [ R(t,u)r(u)du}.
Jo Jo

and as r(t) •>• 0 on [0,T], and R(t,s) •>• 0 for (t,s) e x  R^, we 

have that x satisfies (2.8).

The inequality of Theorem 2.5 is a "Gronwall type" inequality. For 

a similar inequality under somewhat different hypothesis, see Chu and 

Metcalf [1].

3. Existence theorems for non-linear Volterra integral equations. 

We shall now state scmie hypotheses concerning the vector functions f and 

g occurring in the non-linear Volterra integral equation (E).

(H4) The function f ^  continuous on R**".

(H5) The function g defined for all (t,s,x) € r"*" x  R^ x

g(t,s,x) = 0 whenever s > t and x e r ” ; moreover, g(t,s,x)

is measurable in s on [0,t] for each (t,x) e R^ x  R*̂ , and

g(t,s,x) in continuous in x for each fixed pair

(t,s) e r'*' X r "̂ .

(H6) There exists ^  n x  n matrix function M and an n-dimenaional

vector function p satisfying the following conditions.

(i) M(t,s) • > • 0, p(t,s) * > • 0, for (t,s) e r"*" x  R^, and

M(t,s) = 0, p(t,s) = 0 whenever s > t.



(ii) H £ L^(Qj) and p e L^(Q^), for each x € (0,®).

(iii) For (t,s,x) e x  R^ x  r” we have that

(3.1) lg(t,s,x)1 • < • M(t,s)|x| + p(t,s).

(H7) ^  J ^  compact aubinterval of R^, and B in a compact set

in R^, then the function w(t:x) = f e(t.s.x(s))ds is con

tinuous in t on J; uniformly with respect to x C C(J;B).

(H8) For T £ (0,®), and B a compact set in r” , the function
fu

v(t,u;x) ■ J g(t,s,x(s))ds is continuous in (t,u) on Q^, 

uniformly for x e C([0,T];B).

(H9) For the functions M and p of (H6) we have that;

(i) there exists a kg(T;M) < ® such that

(3.2) ||M(t,s).pds < k2 (T;M), ^  t £ [0,T];

(3.3)

(ii) there exists a k(T;p) < ® such that 

ft
ilp(t,s)|ds < k(T;p), for t £ [0,T].

If hypothesis (H8) is satisfied then it follows that hypothesis (H7) 

is also satisfied. Hypotheses (H7), (H8) hold if certain corresponding 

conditions with "norm" inside the integral sign hold; for example, 

hypothesis (H7) is satisfied if the following condition holds for the 

function g.

(H7') For J a compact subinterval of S a bounded set in ^ , 

and t £ R^, we have that
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sup{j^ |g(t,s,x(s)) - g(t^,8,x(s))iids : x e  C(J;B)> -> 0 as t -> t^.

In Miller [2; Chapter II], hypothesis (H7') is employed to prove 

existence theorems for solutions of equation (E).

Let T € (0,“) be given, and kg(T;M) be the constant of (H9) such that

(3.2) holds on [0,T]. In view of the Schwarz inequality, it follows that

I ||M(t,s)l|ds < (Ik2(T;M))l/2, for t £ [0,T].

Thus as a consequence of (H9), there exists a k^(T;M) < “ such that

£  ||M(t,s)||ds < k^(T;M), for t e [0,T].

Now consider the equation (E) where the vector functions f and g are 

such that hypotheses (H4), (H5), and (H6) are satisfied. By definition 

a "solution” of (E) on an interval I, of the form [0,1] or [0,T), is a 

function which is continuous on I and satisfies (E) on this interval.

For equation (E) all existence theorems involve some sort of limit

ing process to pass from an "approximate" solution to an actual solution 

of this equation. For I of the form [0,1] or [0,1), a function y:I -»■

is said to be an e-approximate solution of (E) on I if y is continuous

on this interval, g(t,s,y(s)) is integrable in s on [0,t] for t €  I, and

(3.4) IIy (t) - f(t) - [ g(t,s,y(s))ds|| < e, for t e  I.
J o

Clearly a solution of (E) on an interval I is also an e-approximate solu

tion of (E) on this interval for every positive real number e.

THEOREM 3.1. Suppose that hypotheses (H4) - (H7) and (H9) are 

satisfied. If {e_} ie _a sequence of positive constants converging to
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zero, and (t)} is ^  corresponding sequence of e^-approxlmate solu

tions satisfying (3.4) for e = on the interval [0,T], then there exists 

Ê. subsequence {y (t)}, (m^ < < • • • ) j which converges uniformly on

[0,T] ^  £  solution y of_ the equation (E).

Define the vector functions r^™^ e C([0,T];r”) as

(3.5) r^“^t) = y^“ ^(t) - f(t) - r  g(t,s,y(*)(s))ds, t e [0,T],
J 0

for m = 1,2,'"'. Equality (3.5), together with the assumption that y^™^ 

is an E^-approximate solution of equation (E) on [0,T], implies that 

||r(®)(t)| < E^ for all t e [0,1]; in particular, the sequence {r^™^(t)} 

converges to zero uniformly on [0,T].

From (3.5) we have that

(3.6) |y(*)(t)| • < • |f(t)| + |r(™)(t)|

|g(t,s,y(™)(s))|ds, for t e [0,T],
o

and thus in view of (H6) it follows that

(3.7) |y(*)(t)| •<• |f(t)| + |r^“^t)|(m),

ft
M(t,s)ly^“^(s)|ds + p(t,s)ds.

Letting ĥ ”̂ (t) = |f(t)| + lr^“^(t)| + p(t,s)ds, and w^“^(t) = |y^“^(t)

for t e [0,T], (3.7) can be written as

ft
(3.8) w^“^(t) •<• h^"^(t)+ (m)M(t,s)w (s)ds, t e [0,T].

Each function h^°^:[0,T] -*■ R.̂  is an element of L^[0,T], and M is an element
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of L^(Q^), while w^^^ € L^[0,T]. Consequently inequality (3.8), together 

with Theorem 2.5, implies that

(3.9) w(*)(t) '<' h(*)(t) + H(t,s)h^™)(s)ds, for t £ [0,T],

where the matrix function H is the resolvent kernel corresponding to the 

kernel M. As was seen in Section 2. the function H Is an element of 

L^(Q,p), and H(t,s) •>• 0 on x  R^.

Concerning the functions h^™\ we have that

l|ĥ “ (̂t)|| < l|f(t)|| + ||r̂ “ (̂t)|| + [ ||p(t,s)|lds
■' o

< sup{||f(t)|| : 0 < t < 1} + + ||p(t,s)||ds, for all t e [0,T].
o

In particular, applying (3.3) of (H9), and noting that {e } converges tom
.(m)zero, it follows that {h (t)} is uniformly bounded on the interval [0,T], 

Let B^(T) be a real number such that ||ĥ ™̂  (t)|| < B^(T) for t e  [0,T], and 

each m = 1 , 2 , * From (3.9) it follows that

(3.10) |y^“ (̂t)|l = I|w'‘“''(t)|| < ||h'‘“‘'(t) II + ||H(t,s)h(s)||ds,
, o

(m)

< B^(T) + B^(T)| ||H(t.s)||ds,

for t e  [0,1], and each m = 1,2,*

Applying the moreover part of Theorem 2.3 to the resolvent kernel 

H, it follows that

(3.11) ||H(t,s)|| < |M(t,s)|| + ([ ||M(t,u)||^du)^^^([ l|M(u,s)||̂ du)̂ /2ct,
' O s

for (t,s) e. Q
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fT fu

where a = Ï ([ ||M(u,s)|i^ds (see Miller [2; p. 197]),
1=2 Jo Jo

Inequality (3.11), together with the Schwarz inequality, yield

t ft
llH(t,s)|d8 < l|M(t,s)|lds

n J n

which implies 

(3.12)

+ a f T  f llM(t.u)!PdudsW^(f*^ r  !!M(u,s)i^duds)^^^,
'Jo Jo ' ' J o J s  /

^ llH(t,s)l|ds < ||M(t,s|ds + ||M(t,u)!|^du)‘-̂ |̂lM||2 .

for t 6 [0,T].

Inequality (3.12) and hypothesis (H9) imply the existence of a positive 

constant Bg(T) such that j |lH(t,s)|ds < Bg(T) for t e [0,1]. From (3.10),

(3.11) it then follows that

(3.13) !|y'’̂'"(t)jj < Bp(T) + B^(T)Bjj(T), for t E [0,1].

In particular, the bound of (3.13) is independent of m. Since inequality

(3.13) holds for each t E  [0,1], it follows that the sequence is 

uniformly bounded on [0,1].

Now consider the sequence of functions defined by

(3.14) z(*)(t) . f(t) + P  g(t,s,y(*)(s))ds, for t E [0,1].J o

For each m = 1,2,'*°, we have that : [0,1] -*■ R~. Also in view of 

(H6) it follows that for each m « 1,2,***, we have

(3=15) !z(*)(t)} jf(t)j + jP M(t,s) |y^“^(s) ids + p(t,s)ds,

for t E  [0,1].
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■Pi— —  fi 1 o\ /q -icq anr: ■̂ nQ'ires (3.13), (3.15), (K4) and (H9) it follows that the sequence iz“} is 

uniformly bounded on [0,T].

If t^,t2  € [0,T] then

^ g(t^,s,y(™)(s))ds - g(t^,s,y(°)(s))ds, for i = 1,2,

since g(t,s,y^®^(s)) = 0 whenever s > t. We now have that for m = 1,2,-

(3.16) !iẑ “ (̂tĵ ) - < iif(tj) - f(t2)ii

+ 11 {g(ti,s,y(™)(s))- g(t2,s,y(*)(s))}ds0.

Inequalities (3.13), (3.16), together with hypotheses (H4), (H7), then imply 

that the sequence {z^™^(t)} is uniformly equicontinuous on the interval 

[0,T]. Hence by the Ascoli selection theorem, (see for example Reid [4; 

p. 527]), there is a continuous function y and a subsequence 

(m^ < m 2  < ••*)» of the sequence such that {z^ converges

uniformly to y on [0,Tj.

For t e [0,T] it then follows that

llŷ ”*'^\t) - y(t)| = Hr (t) + f(t) + g(t,s,y^ ^\s))ds - y(t)|,J o

< llr̂  ^\t)ll + Hz/™^^(t) - y(t)l|,

3 Gm̂  ̂+ ^^(t) - y(t)|l, t e [0,T].

(mjj)
As the sequence } converges to zero, and the sequence {z } con-k • ^
verges uniformly to y on [0,T], the sequence {y } of E^j^-approximate 

solutions converges uniformly to y on [0,T]. From (3.13) it follows that 

there exists a compact set B C R“ such that each function y'”*^^(t) is
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contained in B for t C [0,T], and hence the limit function y(t) is con

tained in B for t € [0,1]; that is, y ec([0,T];B).

Clearly y(0) = f(0), since (0) = f(0) for k = 1,2,*••, and

{z (0)} converges to y(0). Now fix t^ in the interval [0,T], and fix 

in the interval [0,t^]. From (H5) we have that g(t,s,x) is continuous 

in X for any fixed pair (t^,s^) £ Q^, and this, together with the uniform 

convergence of {y to y on [0,t^], implies that {g(t^,s,y^™^^(s))}

converges to g(t^,s,y(s)) for every s £ [0,t^]. In view of hypotheses 

(H6), (H9), and inequality (3.13), we have that g(t,s,y^™^^(8)) is 

bounded by a function integrable in s on the interval [0,t]. As each of

the functions y^™^^ is continuous on [0,T], hypothesis (H6) implies that 
(mb)g(t,s,y (s)) is measurable in s on [0,1], and hence using the Lebesgue 

dominated convergence theorem it follows that for each t £ [0,T] we have

ft (mb) ftg(t,s,y (s))ds — * J g(t,s,y(s))ds, as k + ».

By (3.4) we have

2 ^®k)(t) » f(c) + g(t,8,y^*k^(s))ds, for t £ [0,T],

and hence upon taking the limit as k « it follows that

y(t) = f(t) + [ g(t,s,y(s))ds, for t £ [0,T];
J o

that is, the function y is a solution of equation (E) on [0,T].

THEOREM 3.2. Given T > 0, suppose that hypotheses (H4) - (H9) are 

satisfied. Then we have the following results.

(i) For each real number e > 0 there is corresponding 

e-approximate solution of (E) satisfying (3.4) on [0,T].

(ii) There exists a function y which is _a solution of (E) ^  [0,T].
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In view of Theorem 3.1, conclusion (ii) is a ready consequence of 

conclusion (1). Indeed, if conclusion (1) is valid and for a sequence 

{ e ^ }  of positive constants converging to zero a corresponding approximate 
solution satisfying (3.4) on 10,Tj with e  = is denoted by y = y^°^(t), 

then from Theorem 3.1 it follows that there is a subsequence of these 

approximate solutions that converges uniformly on [0 ,1 ] to a solution y 

of (E).

For 0 < 6  < T define the function y(t;6 ) : [0,T] ->■ r” as

fÇ(t;6)
(3.17) y(t;6 ) = f(t) + g(t,s,y(s;6 ))ds,

 ̂o

where the function ç(t;6 ) : [0,T] -»■ R^ is defined by

(3.18) ç(t;6 ) » 0 for t e [0,6], %(t;6 ) - t - 6  for t € [6 ,T].

Fix 6  e  (0,T), and let r be a natural number such that 

(r-l) 6  < T < r6 . For j = l,***,r-l, the knowledge of y(t;6 ) on the 

interval [0 ,(j-l)6 ] provides the value of y(t;6 ) on the larger interval 

[0 ,j6 ], and the knowledge of y(t;6 ) on the interval [0 ,(r-l)6 ] provides 

the value of y(t;6 ) on the entire interval [0,T]. From (3.17) and

(3.18) we have that y(t;6 ) » f(t) on [0,6], and hence it follows that 

y(t;6 ) is a well defined function on [0 ,1 ].

Clearly y(t;6 ) is continuous on the interval [0,6] in view of 

hypothesis (H4). From (H4), (H8 ) it then follows that y(t;6 ) is con

tinuous on the Interval [6,2A]. Continuing this argument for each of 

the compact subintervals [j6 ,(j+l)6 ], j = l,°°r-2, and [(r-l)6 ,T], we 

establish that the function y(t;6 ) is continuous on each of these 

intervals. Thus it follows that y(t;6 ) is a continuous function on [0,T]. 

Now for the function y(t;6 ) of (3.17) we have that
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fG(t;6 )

iy(t;6)i*<* |f(t)l +  |g(t,s,y(s;6)) Ids,
 ̂o

'j ' |f(c)| +  [ Ig(t,s,y(s;6))jds, for t 6 [0,T],
Jo

where the second Inequality holds since ç(t;6 ) < t for t e [0,T]. Thus 

it follows by hypothesis (H6 ) that

(3.19) |y(t;6 )| •<• |f(t)| + |  M(t,s)|y(s;6 )jds

p(t,s)ds, for t e [0,T],

Inequality (3.19) implies that the functions y(t;6 ) of (3.17) are 

uniformly bounded on [0,1], independent of 6  on (0,T). Indeed, this 

uniform bound may be established by an argument similar to the one used 

to establish a uniform bound for the vector functions y^™^ of Theorem 3.1.

Let B denote a compact set in such that y(t;5) e B for all t 6  [0,T]

and all 6  e (0,T).

Let e > 0 be given. From (H8 ) we have that there exists a real

number p ■ p(e;T;B) > 0 such that if 0 < 6  < p then
ft

(3.20) ||y(t;6 ) - f(t) - g(t,s,y(s;6 ))ds|| < e, for t e [0,T];o
that is, for 6  e (0 ,p) the function y(t;6 ) is an e-approximate solution 

of (E) on [0,T].

The device used in the above determination of approximate solutions 

was introduced by Tonelli [8 ] in the proof of existence theorems for 

functional equations of Volterra type.

Theorem 3.2 establishes the existence of a solution for equation (E) 

that is defined on the Interval [0,T]. Now there may be other solutions
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of (E) that exist on some subinterval, say fO,T^] or [0,T^) of the 

interval [0,T], and for any one such solution there is the possibility 

that it may be impossible to extend its interval of definition to be the 

whole interval [0,T], In Theorem 3.3 below we prove that under the 

hypotheses of Theorem 3.2 such an extension of the interval of definition 

is always possible.

THEOREM 3.3. Suppose that hypotheses (H4) - (H9) are satisfied and 

that T e (Os“) given. If <{> ^  â  solution of equation (E) on the 

interval [O.T^), where 0 < T^ < T, then there exists on [0,T] solution

y of (E) such that y(t) 5  *(t) for t 6  [0,T^).

Hypothesis (H6 ), together with the result of Theorem 2.5, implies 

that the solution 4> is bounded on [0,T^). Let 6  be any real number 

satisfying 0 < 6  < T^, and define the function y(t;6 ) for t e [0,T] as

y(t;6 ) = *(t), for t e [0,T^-6],

y(t;6 ) - f(t) +
fTi-6

g(t,s,(j)(s))ds, for t e [T^-6 ,T^],

rt- 6

y(t;6 ) = f(t) + J g(t,s,y(s;6 ))ds, for t e [T^,T].

Then we have

fn ( t ;6 )
(3.21) y(t;6 ) = f(t) + f g(t,s,y(s;6 ))ds, for t e [0,T],

o

where the real valued function n(t;6 ) is defined as n(t;6 ) = t on 

[0,T^-6], n(t;6 ) = T ^ - 6  on [T^-d.T^], n(t;6 ) = t- 6  on [T^,T]. Since

0 < n(t;6 ) < t on [0,T] and |n(t;6 ) - t| < 6  on [0,T], as in the proof 

of the corresponding results for the vector function (3.17) it follows
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that y(t;6 ) is a continuous function on [0,T], and y(t;6 ) is bounded on 

[0,T] independent of 6  e (0,T^). Let B denote a compact set in such 

that y(t;6 ) e B for all t e [0,T] and all 5  e (0,T^).

Hypothesis H(8 ) then implies that for arbitrary e > 0 there exists 

a real number p(e;T;B) > 0 such that if 0 < 6  < min{T^,p(e;T;B)} then

f t
ijy(t;6 ) - f(t) - g(t,s,y(s;6 ))ds|| < e, for t e [0,T].J o

Let {e^} be a sequence of positive constants converging to zero, and 

choose a sequence {6 ^} which converges to zero, and such that 

0 < 6 ^ < min{Tj^,p(e^;T;B)} for m ■ 1,2,* •*, For each m the function 

y(t;6 ^) is an e^-approximate solution of equation (E) on [0,T], and thus 

as a consequence of Theorem 3.1 there is a subsequence {y(t;6 jĵ )̂},

(m^ < Mg < •••)» which converges uniformly on [0,1] to a solution y of (E), 

As y(t;6 j^) * *(t) on [0,T^-6n^] and {6 ,^} converges to zero, it follows

that the limit function y is identical to the function (p on [0,1^). It 

is to be noted that if * is a solution of (E) on the closed interval 

[0,T^], then by the continuity of the limit function y and the left-hand 

continuity of <p at we have that y(T^) = *(T^), and therefore y is a 

solution of (E) on [0,T] and y(t) = *(t) for t e [0,T^].

The following hypothesis for the function g of (E) is employed in 

the next theorem.

(HIO) There is £  T' > 0 and n > 0 for which there exists a vector 

function -> S.̂  such that ;

(i) p ^ e  L̂ (Q,jj,̂ ), Pg(t,8 ) •>• 0  on and p^(t,s) = 0

> t;
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(ii) jg(t,s,x)i ' < ' p^(t,s) for ( t , s , x ) e A ,  where 

A  = {(t,8,x) : (t,s) £ Qy,, IIX - f(s)| < n>;

(iii) there exists a value k(T',p^) < <*> such that 

|Pç^(t,s)|ds < k(T',p^), for t e [Q,T"].
o

As a consequence of Theorem 3.2 we have the following local exis

tence theorem.

THEOREM 3.4. If hypotheses (H4), (H5), (H8 ) and (HlO) are satisfied 

then there exists ̂  number 6  > 0  and a function y such that y is a 

solution of equation (E) on the interval [0,8] satisfying 

|y(t) - f (t) I < n. Moreover, ij. <l> l£ ̂  solution of (E) on a sub interval 

[0,8^), where 0 < 8 ^ < 8 , then there exists on [0,8] a solution y of (E) 

such that y(t) = *(t) on [0 ,8 ^), and |y(t) - f(t)H < n on [0 ,8 ].

Let T' be the positive constant of hypothesis (HIO), and define the 

vector function h on R* >: x  r” as:

(3.22) h(t,s,x) = g(t,s,x), for (t,s,x)eA; 

and

(3.23) h(t,s,x) - g(t,s,f(s) + n(x-f(s))/||x-f(s)||),

for all (t,s,x)e A° » {(t,s,x): (t,s) e l|x-f(s)l| > n);

h(t,s,x) » 0 , elsewhere.

For (t,s,x) e {(t,s,x) : (t,s) & , ||x-f(s)|| = n }, we have that

g(t,s,x) = g(t,s,f(s) + n(x-f(s))/llx-f(s)|), and for all (t,s,x)eA** 

it follows that

||f(s) - {f(s) + n(x-f (s))/|lx-f (s)|| }|| = n(||x-f (s) ll/llX-f(s)l|) = n.
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In particular, the function h Is well defined on x x and 

satisfies

(3.24) |h(t,8 ,x)| PgCt.s) for (t,s,x) e x  r".

Inequality (3.24) implies that the function h satisfies (H6 ), where M 

is the zero matrix and P “ for (t,s) e  p = 0 elsewhere in 

R^ X  R^. Clearly hypotheses (H4) and (H9) are satisfied for the func

tions f and M i 0, p « p^, respectively. The only non-trivial point in

showing that the function h defined above satisfies (H5) is the measur

ability of h(t,s,x) in the variable s on the interval [0 ,t] for each

(t,x) e iR̂  X  (see Beid [4; Problem 3, p. 99]).

For I > 0 and B a compact set in r", we have that there exists a 

k(B) < <» such that if x 6  C([0,T];B) then ||x(t)|| < k(B) for t e [0,1].

Let r ■ max{k(B), sup(||f(t)|| : t £ [0,1]] + n), and denote by B^ the 

closed ball centered at the origin having radius r. For each function 

x e C([0,T];B) define x as follows for s £ [0,T]; &(s) = x(s) if 

||x(s) - f(s)|| < n; x(s) ■ f(s) +  n(x(s) - f(s))/||x(s) - f(s)j if

jx(s) - f(s)|i > n. Then the function A is an element of C([0,T];B^),

and g(t,8 ,x(s)) « h(t,s,x(s)) for s e [0,T].

Let E > 0 be given. For T > 0 and the compact set B^, hypothesis

(H8 ) implies that there exists a p(e;T;B^) > 0 such that if

(t^,u^),(tj^,u^) e Qj and II (t̂ .̂û ) - (t^,uj)W < p(e;T;B^), then it follows

that

'"o f«l
g(t^,B,x(s))d8 - j g(t^,8,x(s))ds0 < e, for all x e C([0,T];B^). 

Consequently it follows that if u^ = min{u^,T'} and u£ = min{u^,T'l, then
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h(t^,s,x(s))ds - h(tj^,s,x(s))ds||

g(t^,s,3^(s))ds -
Ui

g(t^,s,A(s))ds| < e,

for all X e C([0,T];B) whenever (t^,u^),(t^,u^) e and satisfy

||(to>u^) - (t^,u^)W < p = p(e;T;B^). That is, the function h satisfies 

(H8 ), and thus h also satisfies (H7).

As a consequence of Theorem 3.2 we have that the equation

rt
(EO x(t) - f(t) + h(t,s,x(s))ds

has a solution y on each interval [0,T] for T > 0, and, in particular the 

interval [0,T'].

Let d ■ n + sup{||f(t)|| ; t e [0,T^]} + k(T',p^) where k(T',p^) is the 

positive constant of (HIO), and let B^ denote the closed ball in 

centered at the origin and having radius d. Hypothesis (H7) implies that 

there exists ap(n;T';B^) such that if 0 < B < min{T',p(n;T ;B^)} and

ft fT'
(3.25) II h(t,s,z(s))ds| » || {h(t,s,z(s)> - h(0,s,z(s))}dsll

< n, for t e [0 ,6 ].

Since y is a solution of (E') on [0,T], and (3.24) holds, we have that

|y(t)| •<• |f(t)| +
ft

p (t,s)ds, for t € [0,T^],

which implies that |y(t)| < d for t e [0,T']. Thus y is an element of 

C([0,T'];Bj) and (3.25) holds with z = y. From (3.25), we have that
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iy(s) - f(s)ii < n on [0 ,6 ], and thus h(t,s,y(s)) = g(t,s,y(s)) on the set 

l(L,s,y(s)) : (t,s) e l|y(s) - f(s)| < n). That is.

(3.26) y(t) = f(t) + [ h(t,s,y(s))ds = f(t) +
•' o

g(t,s,y(s))ds,
o

for t e [0 ,6 ],

and hence y is a solution of equation (E) on [0,6]. Application of the 

result of Theorem 3.3 to the equation (E"), and the fact that the result

ing vector function y(t) has the property that {(t,s,y(s)) : (t,s) e Q }P
is i n A , then implies the final conclusion of the theorem.

If g satisfies a Lipschitz condition with respect to x, then the 

local solution of equation (E) is unique, (see, for example, Miller 

[2; Chapter II, Section 1]).

4. Properties of solutions. In this section we shall continue the 

consideration of the non-linear Volterra equation (E).

LEMMA 4.1. Suppose that in addition to hypotheses (H4) - (HIO) the 

following three conditions are satisfied;

(i) {6 ^}, m = 1 ,2 ,'"', is a sequence of non-negative constants

converging to zero;

(ii) {f a sequence of continuous vector functions converging

uniformly on the interval [0,T] ̂  the function f of equation (E);

(iii) {y } 1^  a sequence of continuous vector functions defined on

[0,T] and satisfying

lim ||y^°^(t) - f^”*^(t) - g(t,s,y(™)(s))ds0 = 0, uniformly on [0,T].

Then there exists a subsequence (m^ < < ••*)» that converges



uniformly on [0,T] ^  ̂  solution y of equation (E).

Condition (il) implies that the sequence is uniformly bounded

and equicontinuous on [0,T]. From condition (iii) it follows that there 

exists an Integer k such that if m > k then

t ,(m)
'm

and hence

g(t,s,y (s))ds|| < 1

6 .

(4.1) |y(™^(t)| •<• |f(™)(t)| +  |g(t,s,y(™^(s))|ds +  (1),
m

for t € [0,T],

where (1) denotes the vector with all components equal to 1. From (4.1) 

and hypothesis (H6 ) it follows that for m > k we have

(4.2) |y(*)(t)| ' <- |f(*)(t)| + M(t,s) |y(™) (s) Ids +o
t
p(t,s)ds + (1 )

o

for all t € [0,T]. Using an argument similar to the one employed for 

the corresponding vector functions y(t;5) in the proof of Theorem 3.2, 

and remembering that {f^™^(t)} is uniformly bounded on [0,T], inequality

(4.2) together with the result of Theorem 2.5 imply that the sequence

is uniformly bounded on [0,T]. Since each of the functions 

m = l,2,'"',k-l, is continuous on [0,T] it then follows that {y^^^}, 

m = 1,2,'.., is uniformly bounded on [0,T].

Now for m = 1,2,*•• and t^ytg € [0,T], we have the following inequal

ity

(4.3) Wy(*)(ti) - y(*)(t2 )W < + A 3  + Aj,,

where
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t2

«m
g(t2,s,y(*)(s))ds - y(*)(t2)0,

A3 . - f(*)(t2)W,

f f ̂ 2

A,, •  III 8 (t, ,s,y'”'(s))ds - j g(t,,s,y^"'^(s))ds|.

Condition (111) Implies that uniformly with respect to t the quantities 

A^, A 2  are small for large m. As the sequence {f^™^} Is uniformly equi

continuous on [0,T], A 3  Is arbitrarily small whenever |t^ - t2 l Is

sufficiently small. Hypothesis (H8 ) Implies that A^ can be made small 

by restricting sufficiently small. Thus the sequence

{y(™^}, m = 1,2;'"', Is uniformly equicontinuous on [0,T].

Since Is uniformly bounded and uniformly equicontinuous on

[0,T], the Ascoll selection theorem yields a subsequence, which will also 

be Indexed by m, that converges uniformly on [0,T] to a continuous vector

function y. For t € (0,1], pick m sufficiently large so that 6 ^ < t.

It then follows that

(4.4) ||y(t) - f(t) - g(t,s,y(s))ds|l < +  D2^^ +  03^,

where

°im “ Sy(c) - y^"*^(t)| + |f^®^(t) - f(t)|j,

® 2 m ” -

 ̂ (m)

g(c,s,y(™)(s))ds|,
^m

ft" I I  g(t,s,y (s))ds - g(t,s,y(s))ds J.
6 J om



26

The sequences and converge uniformly on [0,TJ to y and f,

respectively, and hence -> 0 as m Condition (iii) implies that

->• 0 as m Concerning it follows that

-  llj ( g ( t , s , y ( ™ ) ( s ) )  -  g ( t , s , y ( s ) ) ^ d s | |  +  || ™g(t,s,y(*) (s))dsll,

and hence the Lebesgue dominated convergence theorem along with (HS) 

implies that -► 0 as m ->■ “>. Condition (iii) implies that {y^**^(0)} 

converges to f(0), so that y(0) = f(0), and from inequality (4.4) it 

follows that for arbitrary e > 0  we have

ft
lly(t) - f(t) - g(t,s,y(s))dsll < e  for t e (0,Tj.

o

That is, y is a solution of equation (E) on [0,1].

THEOREM 4.1. Suppose that hypotheses (H4) - (HIO) are satisfied. 

and that *(%) ^  the unique solution of equation (E) on the interval 

[0,T]. Then for arbitrary 3 > 0 there are positive constants e^(g), 

Egt#) and Gg(g) such that if

(a) T e [0,T) and t < E^(g),

(b) h is a continuous function defined on [0,T] such that

l|h(t) - f(t)l| < EgO) f££ t € [0,T],

and

(c) y is a. continuous function on [t ,T] satisfying

ft
||y(t) - h(t) - g(t,s,y(s))dsj| < £3 (3 ) for t € [t ,T],

T

then we have that ||y(t) - $(t) I < 3  on [t,T].

The theorem will be established by an indirect argument. If the



27

conclusion of the theorem is not valid then there is at least one 

positive value 3 = 3 ^  for which there are no corresponding values e ^ ( 3 ) ,  
CgXG), Eg(8 ) satisfying the conclusion of the theorem. In particular, 

the conclusion does not hold for e ^ ( 3 )  = ^2 ^̂  ̂ = Eg(B) = 1 /m, m = 1 ,2 ,* 

That is, for each positive integer m there exists a value e [0,1/m] and 

continuous functions h^™\ y^™^ satisfying

(4.5) Mh(*)(t) - f(t)|| < 1/m, for t e  [0 ,1 ],

(4.6) ||ŷ “^(t) - h^“^(t) - j g(t,s,y^“ ^(s))ds|| < 1/m, for t e [x^^T],

while there is a point t 6  [x ,T] such that |y^™^ (t ) - <|>(t )| > 3 .ui in m in o
In particular, the sequence {x^} converges to zero, and from (4.5) 

it follows that the sequence {h^™^} converges uniformly on [0,T] to the 

function f. We shall extend the domain of each y^™^ to the interval [0,T] 

by defining y^”*^(t) = h^™^(t) + y(x^^ - h^™^(x^) for t € [0,x^l, and thus 

extended the sequence {y^™^} satisfies condition (iii) of Lemma 4.1.

From Lemma 4.1 it follows that there exists a subsequence {y^ which 

converges uniformly on [0,T] to a solution y of equation (E). Now by 

hypothesis <() is the unique solution of (E) on [0,T], so that y(t) = (p(t) 

on [0,T], and the uniform convergence on [0,1] of the subsequence

to ÿ(t) contradicts the above condition that for each m there 

is a value t^ on [x^yi] such that Wy^^^(t^) - 4 (t^ ) 0  > 3^.

Contained in the above theorem is the following result.

COROLLARY 4.1. Under the hypotheses of Theorem 4 .1, a continuous 

function y satisfying the equation
't

y(t) = h(t) + g(t,s,y(s))ds, for t e [x,T],
X
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where t and h satisfy conditions (a) and (b), respectively, is such that 

lly(t) - < 8 for t e [t ,T].

COROLLARY 4.2. Under the hypotheses of Theorem 4.1, if condition

(c) ^  replaced by

(c^) y is a continuous function on [0 ,1 ] satisfying

lly(t) - h(t) - g(t,s,y(s))ds|l < for t e [0,T],
T

then it follows that ||y(t) - <j)(t)|| < 3 on the whole interval [0,T].

The proof of Corollary 4.2 differs from that of Theorem 4.1 only by 

the fact that we need not extend the domains of the functions y^™^.

COROLLARY 4.3. Under the hypotheses of Theorem 4.1, a solution y 

of the equation

y(t) = h(t) + g(t,s,y(s))ds, t e [0,T],
o

where h Ls a continuous function satisfying ||h(t) - f (t) || < 25:

[0,T], is such that |y(t) - <|>(t)|| < 3 for t € [0,Tj.

The conclusion follows from Corollary 4.2, since y(t) satisfies

condition (o') of Corollary 4.2 with t = 0.

By definition, an open region of the (t,s,x)-space shall be an

open connected set in R >< R R^, and throughout the remainder of this 

section we shall restrict attention to an open region which contains a 

point of the form (0,0,x) for some x e For an open region (R, we now

state the following hypothesis concerning the vector function g.

(Hll) There exists a function p:R x R such that

(i) p(t,s) •>• 0 , and p(t,s) = 0  whenever s > t;
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(ii) for every T e (0,®), p e L (Q^> and there exists a

value k(T;^) < «> such that for every t e [0,T] we have

||p(t,s)||ds < k(T;p),
o

(iii) |g(t,s,x)| p(t,s) for (t,s,x)£ ( H .

Frcsî the definition of an open region (3. we see that ^  contains 

some points of the form (t.s.x) where t and s are negative: consequently*

we shall extend the domain o£ g ̂  defining g(t,s,x) = g(0 ,0 ,x) either

t or s Is negative. and define f(t) = f(0 ) t ia negative.

THEOREM A.2. Suppose that is an open region in the (t,s,x)-space

and that hypotheses (HA), (H5), (H8 ), (Hll) are satisfied, while *(t) is

the unique solution of equation (E) on [0,T] with

{ (t,s,4(s)) : 0 < s < t < T} i^OL . 2É  ̂As. ̂  positive constant such that 

the set

Sg = {(t,s,x) : 0 < s < t < T, ||x - *(s) || < 6 }

^  ̂  (R,, then there exist positive constants 6 ^(g), GgCS) such that if 

0 < 6 < dgXG) and 0 < t < 6^(6), then the function y = y(t,6 ) ^  (3.17)

satisfies ||y(t;6 ) - (j)(t)|l < 6  on [G,T].

Let the vector function h^(t,s,x) be defined on x  R*" x  R® as 

follows

h (t,s,x) = g(t,s,x) on S ,O p

h^(t,s,x) = g(t,s,*(s) + 8 (x - <J)(s))/||x - *(s)||) 

if (t,s) e and |x - <J>(s)|| > 6 ,

hg(t,s,x) = 0 , otherwise.

Using an argument similar to the one employed in the proof of Theorem 3.A
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for the corresponding vector function h(t,s,x) of (3.21), (3.22), it 

follows that hypotheses (H4) - (H9) are all satisfied for the functions 

f and h^. For a given 3 > 0 we shall denote by e^, and the 

quantities of Theorem 4.1 determined for the equation

(4.7) y(t) = f(t) + [ h (t,s,y(s))ds t £ [0,T].
Jo °

Since h^(t,s,<J>(s)) = g(t,s,*(s)) for 0 < s < t < T, we have that * is a 

solution of (4.7).

Denote by yg(t;5), 0 < 6  < T, the vector functions determined by

(3.17) with g(t,s,y) replaced by h^(t,s,y). It now follows that there 

exists a compact set B such that y^(t;6 ) e C([0,T];B) for each 6  e (0,T). 

Moreover, hypothesis (H8 ) implies that there exists a p = p(Gg;T;B) such 

that if 0 < u < p then for 0 < t < I we have 

fU
(4.8) II h (t,s,y (s))ds|| < e_/2, uniformly for y e  C([0,T];B).

J Q O O J o

Now let 5^(3) = min{G^,p} and 0 < 6 2 (3 ) < p. In view of (4.8) and (3.20), 

it follows that if 0  < t < 6^(3) and 0  < 6  < 6 2 (3 ) then

|y^(t;6 ) - f(t) -
t
h^(t,s,y^(s;6 ))ds|| < g^, for t e [0,T].

Then Corollary 4.2 yields the result that ||yQ(t;d) - $(t)|| < 3 on [0,T], 

and hence the set {(t,s,y^(s;6 )) : 0 < s < t < T} lies in 8  ̂ and 

yo(t;6 ) = y(t;6 ) on [0,T]. Consequently for 6 ^(3 ) and 6 2 (3 ) the values 

determined above, we have that Theorem 4.2 holds.

5. Continuation of solutions. Suppose that hypothesis (Hll) is 

satisfied for the open region (R. of (t,s,x)-space, and ^ is a solution 

of equation (E) on an interval I of the form [0,T] or [0,T), with
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t(c,s,*(s)) : 0 < s < t, £ e 1} In VI . The interval I is said to be a

maximal Interval of existence of (ji if there does not exist a solution

y(t), t e I^, of (E) with i (t,s,y(s)) : 0 < s < t, t ê  in(R,, where

I c I^, y(t) » (J)(t) for t e I, and there is a t^ e such that t < t^

for every t ê  I.

If a half open Interval [0,T) is an interval of existence of a 

vector function y(t) with {(t,s,y(s)) : 0 < s < t, t e  [0,T)} in(R,, then 

y(t) is said to tend to the boundary of (R as t -»• T“ if either T = + “ , 

or T < + 00 and for S an arbitrary compact subset of (R- there is a corre

sponding < I such that if t € (T^,T) then (t,t,y(t)) ^ S. An alternate 

specification of this latter condition is that there is no point (T,T,n) 

in (R, which is a limit point of the set {(t,s,y(s)) : 0 < s < t, t e [0,1)}. 

The following hypothesis is employed in the next theorem.

(H8-(R,) For the open region A  of the (t,s,x)-space, we have that 

for T e (0,“») and B _a compact set in the function

r(t,u;x) “ I g(t,s,x(s))ds
} o

is continuous in (t,u), uniformly for x e C([0,T];B) 

satisfying (t,u,x(u)) E (R for 0 < u < t < T.

THEOREM 5.1. Suppose that (R. sm open region of the (t,s,x)-space, 

hypotheses (H4), (H5), (H8 -(R.) and (Hll) are satisfied, and y^Ct), 

t e [0,Tg), is a solution of (E) with {(t,s,y^(s)) : 0 < s < t < T^}

. Then there exists & solution y(t), t E  [0,T), of (E) which is an 

extension of y^Ct) and such that [0,T) ^  ̂  maximal interval of existence 

for y(t) : moreover, y(t) tends to the boundary of (R as t ->• T“ .
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Let the rational real numbers greater than be ordered as a

sequence {T^^, (m = 1,2,•••)• If [0,T^) is not a maximal interval of

existence of the solution y°(t), then there exists a smallest Integer m̂ ^

such that there is a solution y^^^t), t € of (E) which is an

extension of y^°\t). Now suppose that integers m^, (j = l,2,***,k),

have been determined, where m̂  ̂< m^ < ••• < m^, and there are solutions

y^^^(t), t e [0,Tn,j], of (E) such that y^'^^(t) is an extension of y^^ (t)

for j = l,2,*’*,k. If [0,Tmĵ ) is not a maximal interval of existence of 
(k)y (t), let m^^^ be the smallest integer such that and

there is a solution y^^"*"^\t), t e [0,Tg^^^), which is an extension of 
(k)y (t). Proceeding in this fashion, there is obtained a finite or 

denumerably infinite sequence of solutions y^^^(t), t £ [0,1^^). If 

I = [0,T) is the union of the intervals [0,1^^), then for t^ e I and k 

such that t^ e [0,1^,^), the condition y(tg) = unambiguously

defines a solution y(t) of (E) on [0,T) with {(t,s,y(s)) : 0 < s < t < T} 

in (R . Moreover, the manner of choice of the implies that [0,T) is 

a maximal interval of existence of y(t).

Now if T < + “ it will be shown that the assumption that y(t) does 

not tend to the boundary of (R as t ->• T“ leads to a contradiction. Let 

the point (T,T,x^)e (R. be a limit point of the set 

{(t,s,y(s)) : 0 < s < t < T}.

Hypothesis (Hll) implies that there exists a natural number k 

such that l|y(t)|| < k for all t e [0,T); that is, for t e [0,T) we have 

that y(t) is in the closed ball centered at the origin and having 

radius k.

Let {t^} be an increasing sequence of positive numbers converging
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to T, such that y(t^) as m For each m = 1,2,* •• define the

function y^™^(t) as

(5.1) y(™)(t) = y(t), for t e [0,t^]; y^®^(t) = y(t^), for t e [t^^T].

.(m)For each m = 1,2,*•• the function y is an element of C([0,T];B^). 

Since (T,T,x^) is a point in(R. , there exist constants e' > 0 and B' > 0 

such that the set Sg,(T) = {(t,s,x) : T-e' < s < t < T, jjx-x^jj < B'} is 

inwv . Let k denote a positive integer such that if m > & then 

T- e' < t^ < T and |y^™^(s) - x̂ || < B" for t^ < s < T. It then followso
that for m > fe the set {(t,s,y^™^(s)) : < s < t < T} is in(R .

As a consequence of (5.1), if m > n > t we have that

m

(5.2) lly(tĝ ) - y(t^)|| < ||f(tj - f(t^)

+ II g(t^,s,y(s))ds - 
•'o

'-n g(t ,s,y(8))ds||,n

*Tn
g(t^,8,y^“^(s))ds - g(t^yS,y(™) (s))ds||.

 ̂K(V - f(tn)
fT

+ I {g(t^,s,y^“ ^(s)) - g(t^,s,y^“ ^(s))}d8||,

where the last inequality is a direct consequence of the preceding since 

g(t,s,x) = 0 for 8 > t. As hypotheses (HA) and (H8-^) are satisfied, 

inequality (5.2) implies that ||y(t̂ ) - y(t̂ )|| ->• 0 as m,n and in

view of the arbitrariness of the increasing sequence converging to

T, the limit of y(t) as t ->■ T" exists. When we extend y to be a continuous
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function on the closed interval [0,T] by defining y(T) to be the limit 

of y(t) as t ^ T“ , the function y thus defined on [0,T] is an element of 

C((0,T];Bj^). Hypothesis (H8-01) then implies that y(t) satisfies equa

tion (E) for t = T, and thus y is a solution of (E) on the interval

[0,T]. From the assumption that (T,T,x^) is a limit point of

{(t,s,y(s)) : 0 < s < t < T} it follows that y(T) = and thus 

(T,T,y(T)) is i n .

Since y e C([0,T];B^) and {(t,s,y(s)) : 0 < s < t < T} is in IR. ,

there exists a B > 0 such that the set S„(T) =P
{(t,s,x) : 0 < s < t < T, ||x- y(s)|| < 6} is in(& . Define the function

y: -*■ R^ as y(t) = y(t), for 0 < t s T; y(t) = y(T), for t € [T,«>).

Now we have that there is an e > 0  such that the set S„(T + e ) =o p o
{(t,s,x) : 0 < s < t < T + e^, ||x - y(s)|| < B> is in(R .

Let {5^} m = 1,2,*•• be a decreasing sequence of positive numbers

converging to zero and satisfying 5^ < T for m = 1,2,“  •, and define the 

function h: R^ x  R^ >< R^ as

(5.3) h(t,s,x) = g(t,s,x), for (t,s,x) e S (T + e );p o

h(t,s,x) = g(t,s,#(s) + 6(x-y(s))/|jx-^(s)|j)

for 0 < s < t < T  + e^, ||x - $(s) || > 3

h(t,s,x) = 0, otherwise.

As was seen for the corresponding vector function of (3.22), (3.23), the 

function h satisfies (H5), (H7) and (H8), and hypothesis (Hll) implies 

that h also satisfies (H6) with M(t,s) = 0 and p(t,s) = p(t,s).

Now for each 6^, m = 1 , 2 , * we define
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(5.4) = y(t), for t e [0,T - 6 ^],

y(t;6 ^> = f(t) + h(t,s,y(s;6 m))ds, t e [0,T + e^]
o

where the real valued function n(t;6 ^), (m = l,2 ,***)j is defined by

n(t ; 6  ) = t, for t e [O.T- 6  ], n(t , 6  ) = T - 6  , for t e [T- 6  ,T], andm m m in m
n(t;6 ^) = t - 6 ^, for t e [T,T + e^].

Since {(t,s,y(s)) : 0 < s < t < T} is in (R , we have that

h(t,s,y(s)) « g(t,s,y(s>) for 0 < s < t < T, and thus y(t) is a solution 

on [0,T] of the equation

(5.5) y(t) = f(t) + h(t,s,y(s))ds.o

As a consequence of Theorem 3.3 it follows that there is a subsequence 

< HI2  < •••)» of {6^} such that (y(t;6g^^)} converges uniformly

on [0,1+e^] to a solution y^ of the equation (5.5); moreover,

yg(t) ■ y(t) for t e [0,1].

The function y^(t) is continuous on [0,T+e^], and thus there exists 

an satisfying 0 < < e^, and such that ||yg(C) - ŷ (T)|| < 3/2 for

t e [T,T + G^].

For the function y(t;&Q^), consider the following inequality for 

t e [T.T+E^],

(5.6) lly(t;6̂ ĵ ) - y^C?)! < l|y(t;5mk) - yo(t)ll + lly^Ct) - yo(T)||.

From inequality (5.6) it follows that there exists a positive integer N

such that if k > N and t e  [T,T + then

g y ( E i G Q ^ )  -  y ^(T)ii =  i i y ( t ; 0 „ ^ )  -  y(t)|| < 3.
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l-’rom (5.3), (5.4) it now follows that h(t,s,y(s;4n,j^)) = g(t,s,y(s;6m^)) 

for k > N, 0 2  s 2  t ^ ^ That Is, while

{(t,s,y^(s)) : 0 < s < t < T  + Is In 8^(1 + e^) the vector function 

y^(t) Is a solution of (E) on [0,1 + and yg(t) = y(t) on the Interval 

[0,T]. This contradicts [0,T) being a maximal Interval of existence of 

y(t), and thus y(t) must tend to the boundary o f (%« as t ^ T .

The following result Is clearly contained In the above theorem. 

Corollary 5.1. If hypotheses (H4) - (H9) are satisfied, and x(t)

Is a solution of equation (E) on £  half open Interval [0,T^), where T^

Is finite, then x can be extended as ^  solution of (E) ^  Interval 

[0,T^] where T^ > T^.

From Theorem 5.1 It follows that If (R Is the whole (t,s,x)-space 

and a finite T is such that [0,T) is the maximal Interval of existence 

for a solution y of (E), then |y(t)|| ^ » as t T“.
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