
SENSITIVITY OF NEURAL NETWORKS TO RANDOM

CHANGE WITH PERTURBED WEIGHTS AND BIASES

By

MOHAMMAD A. 1tLRAB

Bachelor of Engineering

Yarmouk University

Irbid, Jordan

1988 '

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements fo~
the Degree of

MASTER OF SCIENCE
May, 1992

SENSITIVITY OF NEURAL NETWORKS TO RANDOM

CHANGE WITH PERTURBED WEIGHTS AND BIASES

Thesis Approved:

Thesis Adviser

u ~

/'-\ • -;:; rNV"-o-{5~h ~- /f.

Dean of the Graduate College

ii

ACKNOWLEDGEMENT

I wish to express sincere ,appreciation to Professor

William Miller, my major advisor, for his encouragement and

advice throughout my graduate program. Many thanks also go

to Dr. Mansur Samadzadeh and Dr. Huizhu Lu for serving on my

graduate committee. Their suggestions and support were very

helpful throughout the study.

I am also thankful for the friendship of all my fellow

graduate students who were always there to reassure me that

I would make it. Special thanks goes to Feroze Khalifullah

and Raja Baharuddin for their suggestions and

encouragements.

My parents, Ahmad and Wesal Alrab, encouraged and

supported me all the way and helped me keep the end goal

constantly in sight. Thanks go to them for their prayers.

My wife Muna provided moral support and was a real believer

in my abilities. To my daughter Sarah who gave me the

enthusiasm to approach my goal. I e~tend a sincere thank

you to all of these people.

iii

TABLE OF CONTENTS

Chapter Page

I.

II.

INTRODUCTION 1

LITERATURE REVIEW . • • . . . '• 5

Perfect Learning and Generalization. • • . 5
Monte Carlo Method . • • . • • . • 7

Random Numbers. . • • . • • 7
Monte Carlo Variance and Estimator. 8

Backpropagation Rule • • • 10
Activation Functions••..•• 11
Learning by Pattern or by Epoch . • 13
Implementation. • • • . . • • • 13

III. THE PATTERN CLASSIFICATION PROBLEM .•....• 17

The Training ,Method. • . . . • • 17
Characterization of Input Patterns . • • • 20
Training and Testing Simulation Results .. 33

IV. MONTE CARLO SIMULATION RESULTS AND CONCLUSIONS 43

Implementation . . • . . • . .
Simulation Results and Discussion.
Conclusion • . •

SELECTED BIBLIOGRAPHY

• • • • 4 3
• • 46

• • •.. • 48

• 50

APPENDIX A - THE TRAINING PROGRAM. • • • • • • 53

APPENDIX B - THE TESTING AND MONTE CARLO PROGRAM 65

APPENDIX C - THE RELATIONSHIP BETWEEN WEIGHT
TOLERANCE AND MISCLASSIFICATION RATE. • 80

iv

LIST OF TABLES

Table

1. Input Patterns and Their Neighbors. .

2.

3.

Partition A (zero neighbours)

Partition B (one neighbour) .

Page

. • 21

. 22

. • • 23

4. Partition C (two neighbours). • • • • • • 23

5. Partition D (three neighbours) . • 24

6. Characterization of All Patterns •.. • • 24

7. Input Patterns and Their Neighbors •• 25

8. Partition A (zero neighbours) • • • • • • 26

9. Partition B (one neighbour) .•

10. Partition C (two neighbours).

11.

12.

13.

14.

15.

16.

17.

Partition D (three neighbours).

Characterization of All Patterns. •

Partition A (zero neighbours)

Partition B (one neighbour) . .

Partition C (two neighbours) ••

Partition D (three neighbours) ...

Partition E (four neighbours) .

• • • • • 26

• 27

• • • • 27

• • 28

• 29

• 29

• • • 30

. 31

• 31

18. Characterization of All Patterns. . •.• 32

19. Characterization of All Patterns. • • 33

20. Results for Mixtures of Interior
and Border Patterns • • • • . • . • 34

21. Results Using Only Border Patterns
as Training Sets ..•...•...•... 35

v

Table

22. Results for Mixtures of Interior
and Border Patterns • • • • • • •

23. Results Using Only Border Patterns

Page

. . . . • 35

as Training Sets. • • • • • • • • • • • • • 37

24. Results for Mixtures of Interior
and Border Patterns • • • • • • • • • • • • 38

25. Results Using Only Border Patterns
as Training Sets. • • • • • • • • • • • • • 41

vi

Figure

1.

2.

3.

4.

5.

6.

7.

LIST OF FIGURES

Minimum Effect on Generalization .

Maximum Effect on Generalization .
Classification Difficulty = 22.22 Percent.

Classification Difficulty = 33.33 Percent.

Classification Difficulty = 38.46 Percent.

Classification Difficulty = 42.86 Percent.

Various Classification Difficulties. . . .

vii

Page

. 81

. . 82

83

84

85

86

. . 87

CHAPTER I

INTRODUCTION

Studies have been carried out on neural networks for-a

long period of time in the hope of ~imulating human

behavior. They are called neural networks because they are

composed of computational elements functioning in a way very

similar to the biological neural networks [15].

Neural networks represent a more intelligent approach

to information processing. These models attempt to

accomplish good performance using massively parallel nets

composed of many computational elements attached by links

with variable weights [19]. Compared to the traditional von

Neumann computer which performs a program of instructions

sequentially, neural net models stand superior, because they

work in parallel, because they can learn or be trained about

a certain task, because they can formulate generalizations

[21].

Neural networks typically consist of five principal

components: computational elements, connections between

units, adaptive coefficients of connections, transfer

functions, and learning laws [19].

A useful neural 'network model, especially for

classification tasks, is the multilayered feedforward model.

These general models are called feedforward networks since

1

activations are fed from the input layers through the

network toward the output layer with one or more hidden

layers between the input and output units [25]. These

2

hidden layers are not connected directly to either the input

or output units. Typically in these networks units can have

continuous values between o and 1 as determined by a

sigmoidal transfer function.

A hidden layer allows the neural network to form its

own internal representation of mapping input tooutput. This

network is then independent of the relationships built into

the input data but can determine for itself what is

important in representing the mapping for the particular

decision situation [16]. This provides the neural network

with the flexibility to learn any type of input-output

relationship.

The network is trained using data to recognize or

categorize on the basis of appropriate input data. To use

the network to categorize, the attributes of a particular

object are presented to the network and the unit values are

fed through the network, resulting in the activation at the

output layer. This output activation indicates the

appropriate categorization of the object [6, 23].

The method of backpropagation has become the standard

process used in the training of this type of neural network

[12]. Basically, the backpropagation algorithm attempts to

minimize the sum of the squares of errors at the output

layer during the training process. A training set is

comprised of pairs of input values and the desired output

3

3values which the network should provide by feeding forward

the input data through the network. The algorithm computes

an error for each output unit proportional to the difference

between the obtained network output and the desired output

for a particular training case. Network connection weights

are adjusted so as to minimize the sum of squared error

[19].

The training of a neural network takes place in the

following manner. A training set of input patterns is

made available. The multilayered network is initialized

with random interconnection weights. The input conditions

of the training example are presented to the network and the

activations are fed forward through the network, resulting

in output at the output layer. This output obtained by the

network is compared to the desired output for those

particular input patterns. Network weights are adjusted

such that the difference between the actual output and the

desired output is minimized. Adjustments due to the output

error are propagated backward through the network, starting

at the output layer and moving back toward the input layer.

The procedure is repeated over the training set until the

network converges. This convergence implies that the neural

network has learned the underlying characteristics of the

problem and is able to produce the targeted responses given

the inputs.

Computer simulations of artificial neural networks store

the values of interconnection weights and unit biases in an

internal representation (e.g., an array of floating-point

4

numbers) with accuracies of parts per million or less. In

contrast, in hardware implementations of neural nets,

devices used to implement weights and biases have limited

accuracy, typically specified as a tolerance, such as a

tolerance rate or a percent of the nominal value.

Previously Stevenson and associates described an analytical

study of the sensitivity of layered networks with threshold

logic units [20). They reported that the probability of an

error increased as the weight perturbation ratio increased

to 0.5 as a maximum limit. In the present study, Monte

Carlo techniques are used to investigate the effect of

random weight and bias variation on the performance of a

feedforward neural network pattern classifier trained with

the back propagation algorithm.

In studying the effects of random weight variation we

want a classification problem which we could control and

characterize precisely. To accomplish this, we attempt to

recognize the presence of groups of ones in binary strings.

For this problem, the input patterns can be divided into

groups characterized by their distances from the class

boundary. With various combinations of these groups, we

construct training sets, ranging from those containing only

typical patterns of each class (interior patterns) to those

of border patterns.

CHAPTER II

LITERATURE REVIEW

Perfect Learning and Generalization

Perfect learning and generalization have been considered

as major fields in recent research in the area of adaptive

training. Ahmad and Tesauro [1] have studied neural network

generalization and factors that have influence on it. They

determined relationships between the size of the network,

the size of the training examples, and the performance of

the network. They showed that the output error, in a fixed

size network, decreases exponentially with the increase in

the training set size. They also showed that for a fixed

performance, the size of the training set increases linearly

with the size of the network. They found that the border

patterns were the most important patterns among all training

examples. They showed that if a certain number of random

training examples is used to train a network, and if the

same number of border patterns is used to train a similar

network, then the latter network will generalize better than

the former one.

Baum and Haussler [3] studied the relation between the

size of network and the number of training patterns chosen

at random distribution. They showed that if the number of

5

6

training patterns is greater or equal to O(W/k * log(N/k))

where, k is a constant greater than 0 and less than or equal

to 1/8, N is number of nodes in the network, W is number of

input and output weights, and the network is capable to

classify a fraction (1 - k/2) of the training patterns, then

the network will correctly classify a fraction of (1 - k) of

future test patterns.

Yu and Simmons [24] compared two measures of perfect

learning in a feedforward neural network trained by

specified input patterns. The first one is the sum of the

squared errors. The other one is the correctness ratio

which is the percentage of successfully classified patterns

in the training set. They showed that the two measures are

not similar and they presented the descending epsilon

technique with which the backpropagation method results in a

high correctness ratio.

Perugini and Engeler [17] examined the learning time for

two layer backpropagation networks trained with boolean

training examples to classify boolean equations.

Less work has. been done on the subject of weight

errors. Stevenson and associates [20] analyzed the

sensitivity of feedforward layered networks of threshold

logic unit elements to weight errors. They approximated and

derived a function between the probability of error for a

large network output and the percentage change in the

weights. They reported that when the number of layers in

the network and the change in the weights increases, then

the probability of output error increases. They also

reported that in a network which has a large number of

weights-per unit and units per layer, the output error is

independent of the number of weights and units in that

network.

Monte Carlo Method

Random Numbers

7

The numbers I x, I x2 I ••• I xn in an interval I

constitutes a sequence of random numbers if Xi satisfies

some distribution properties, and if these distribution

properties are invariant for subsequences extracted from the

sequence (Xi), for alliin the interval (1,N). These

numbers can be used to simulate natural phenomenas using

computer, to provide random samples to be examined rather

than examiming too many existing cases, to solve complicated

numerical problems, to make unbiased decisions, and to test

the effectiveness of computer algorithms [13]. For

practical purposes, random numbers are obtained by means of

digital computers according to arithmetical algorithms,

i.e., random numbers generators. Such numbers will not be

genuinely random, since they are produced by some

deterministic sequence of computing operations. They can be

described as pseudorandom numbers.

The basic random numbers sequence is the sequence of

uniform random numbers in the interval (0,1). From a

sequence of uniform random numbers one may obtain random

numbers with any distribution in any interval I. The most

used random numbers generators are the congruential

generators including the multiplicative generators [13]:

Xj+1 = AXj (modula T)

where X1 is given, A is a constant used as the multiplier,

T is a constant used as the modulus.

And the mixed generators:

Xj+1 = (BXj + C) (modula T)

where X1 is given, B is a constant used as the multiplier,

c is a constant used as the increment, T is a constant used

as the modulus.

8

The sequence of random numbers'generated by these

periodic relations has the diffeciency of repeating itself

into cycles of infinite loops. We can achieve maximal cycle

lengths by choosing proper values for the constants.

Monte Carlo Variance and Estimator

The Monte Carlo Method involves a random sampling

process. Samples are drawn from the original source through

sampling procedures governed by specified probability laws

[11]. Statistical data are collected from the samples, and

consequences concer~ing the original source will be

available through analysis of these data. A different

choice of the probability laws and different ways to draw

inferences from the data lead to different Monte Carlo

techniques [11]. Generally, Monte Carlo methods are

designed for the study of complicated systems with many

interacting components. The behavior of the compon~nts is

governed by known probability laws. It is always possible

to incorporate these same laws into the Monte Carlo
,,

9

computational method,, so that· processes occurring during the

simulation will be analogou~. to processes in the original

source [18].
- '

If we use a correctly defined Monte Carlo model to
' '

compute the sampling value X with-an expected value of E,

then in one simulation run ·irte obtain for ·X the value Xi.

' •'
Using another random numbers sequence ·and recomputing the

value of X, we get Xj, where_ X; is not equal to Xj. Through

N simulation runs, the average value of X is AVG:

AVG = (1/N)

AVG becomes concentrated abdut E as N increases, thus the

precision of Monte carlo calculations depends on the value

of N. In practice, this precision is usually estimated by

the sample variances [11]:

N
S = (1/N-1) * i~1 ~Xi - AVG)

-The standard deviation is:

STD = sqrt(S)

The upper limit of calculation result is:

U = E + STD

The lower limit of calculation result is:

L = E - STD

Backpropagation ~ule

In order to apply the backpropagation rule in a

network, we must be able to compute the derivative of the

10

error function with respect to any weight in the network and

then change the weight according to. the rule [19]:

Delta(W ..) = epsilon * e. *'a.
1 J 1 J

The weight on each line should be changed by an amount

proportional to the product ?f the error, e, in the unit

receiving input along that line, times the activation, a,

of the unit sending activation along that line. The

difference is in the exact determination of the "e" term.

The determination of the error is a recursive process that

starts with the output units. I·f a unit is an output unit,

its error is given by

where neti = :E(Wij * aj) + biasi, and f' (neti) is the

derivative of the activation function wit~ respect to a

change in the net input to the unit. The error term for

hidden units for which there is no specified target is

determined recursively in terms of the error terms of the

parent units and in terms of the weights of those

connections between the hidden unit and its parents. It is

11

given by

ei = ~(ej*Wji) * f' (neti)

whenever .the unit is not an output unit.

The application of the rule then involves two phases:

During the first phase the input is presented and propagated

forward through the network to compute the-output value for

each unit. This output is then compared with the desired

one, resulting in an e~ror term for each output unit. The

second phase involves a backwarq pass through the network

during which the error term is computed for each unit in the

network. This backward pass allows the recursive

computation of the errors. once these two phases are

complete, we can compute for' each weight, the product of the

error associated with the unit it sends to times the

activation of the unit it recieves from. These products can

then be used to compute actual weight changes on a pattern

by pattern basis, or on overall patterns.

Activation Functions

After computing the net input to each output unit, the

activation of the output unit is then determined according

to an activation function. Several functions are available

[19]:

- Linear function. In this function, the activation of

output unit is simply equal to the net input.

- Linear threshold. In this function, each of the output

units is a linear threshold unit; that is, its

activation is set to 1 if its net input exceeds o, and is

set to 0 otherwise.

- Stochastic. In this function, the output is set to 1,

with a probability p given by the logistic function:

P(O; = 1) = 1 1 (1 + e**-net;)

12

- Continuous sigmoid. In this function, each of the output

units takes on an activation that is nonlinearly related to

its input according to the logistic function:

0; = 1 I (1 + e ** -net;)

The derivative of the backpropagation learning rule

requires that the derivative of the activation function,

f'(neti), exists. In most works on backpropagation, the

logistic activation function is used, because it is a

continuous nonlinear function. In order to apply the

learning rule, we need to know the derivative of this

function with respect to its net input, net;. It is given

by:

Thus, for the logistic activation function, the error term,

e, for an output unit is given by:

and the error for a given hidden unit is given by:

13

Learning by Pattern or by Epoch

The derivation of the backpropagation supposes that we

are taking the weight changes summed over all patterns. In

this case, we can present all patterns and then sum the

changes before.adding them·to the ·original weights.

Instead, we can. compute weight ·qhanges on each pattern and

add them to the original weights after each pattern rather

than after each' epoch. When there. is a very large set of

patterns, the version in which weights are changed after

each pattern is more satisfying.

I!Uplementation

The program in APPENDIX A lmplements the

backpropagation rule just described~ Processing of a single

pattern occurs as follows:

A pattern is read from tpe input file and is clamped on the

input units; that is, the~r activations are set to 1 or 0

based on the values found in the input pattern. Next,

activations are computed. For each hidden and output unit,

the net input to the unit is computed and then the

activation of the unit is set. The routine that performs

this computation is:

PROCEDURE COMPUTE_OUT;
BEGIN

loop for all hidden and output units
initialize netinput by bias value

loop for all hidden units
begin

loop for all input units
netinput = netinput + (activation * weight)

output = activation function of netinput
end;
loop for_all output units
begin

end;
END;

loop for all hidden units
netinput = netinput + (activation * weight)
output = activ~tion function of netinput

Next, the error and delta :-terms are comp'!lted.

Initially, they are" set to O"for" all units. Then, error
' -

14

terms are cal'culated for each output unit. For these units,

error is the difference between.the desired and the obtained

output of the unit. After the error has been computed for

each output unit, we perform a recursive computation of

error and delta terms for hidden units. The program

iterates backward over the units, starting with the last

output unit. The first thing it does in each pass through

the loop is set delta for the current unit, which is equal

to the error for the·unit .~imes the derivative of the

activation function. Then, once it has deltq. for the

current unit, the program passes this back to all

predecess~r ~ni'ts that have connections a:oming into the

current unit. By the tim~ a particular unit.becomes the

current unit, all of its parents wi~l have already been

processed, and the sum of all its error will have been

accumulated, so it is ready to have its-·delta computed. The

code for this is as follows:

PROCEDURE COMPUTE_ERR;
BEGIN

END;

loop for all hidden and output units
initialize error by zero

loop for all output units·
begin

end;

calculate difference between desired and actual
calculate pattern squared ~rror
accumulate total ~quared error .
calculate output error

loop for all output units
begin

end;

loop for all hidden units
begin

end;

backpropagate the output error
calculate hidden error

After computing errors .and deltas, the weight change

amounts are then computed from the deltas and activations.

The change amounts for the bias terms are also computed.

These computations occur in the following routine:

PROCEDURE COMPUTE ERR MUL~ACTV;
BEGIN

END;

loop for all hidden units
begin

loop for all input nodes
multiply hidden error by input activation

end;
loop for all output units
begin

loop for all hidden units
multiply output error by hidden activation

end;

This routine adds the weight changes caused by the

present pattern into an array where they can potenially be

15

16

accumulated over patterns. These changes actually lead to

changes in the original weights either after processing each

pattern or after each entire epoch of processing.

For each weight, a delta weight is first calculated.

The delta weight is equal to the accumul,ated weight changes

plus a fraction of the previous delta weight, where the size

of the fraction is d~termined by the mom~ntum. Then, this

delta weight is added into the weight, so that the weight's

new value is equal to its old value plus the delta weight.

The same computation is performed for all of the bias terms.

The following routine performs these computations:

PROCEDURE CHANGE_WT;
BEGIN

loop for all hidden units
begin

loop for all input units
begin ·

calculate delta of weight
add delta of weight to original weight

end;
end;
loop for all output unit~
begin

loop for all hidden units
begin

calculate delta of weight
add delta of wefght :to original weight

end;
end;
loop for all hidden and output units
begin

calculate delta of bias

end;
END;

add delta of bias to original bias

CHAPTER III

THE PATTERN CLASSIFICATION PROBLEM

The Training Method

Multilayered feedforward neural networks are powerful

environments which map from a finite dimensional input space

to the output space. One of the most desirable

characteristics ,of such networks is their ability to learn

from examples and to generalize from the training set to

similar data not contained in the training examples. There

are three critical factors that affect generalization in

neural networks [14]: network architecture, training

algorithm, and training set. Architecture determines a

group of mappings from the input space to the output space.

This group of mappings must be broad enough to include the

correct mappings for the problem to be solved. The role of

the training algorithm is to obtain this correct mapping

using appropriate train~ng examples. Training in

feedforward networks can be achieved by gradually changing

the weights according to a backpropagation algorithm to

minimize the error in given inputs according to desired

outputs in the training set. Once the network architecture

and the training algorithm have been chosen, the training

set will ultimately determine the mapping represented by the

17

network and its generalization capability. Thus, how to

select a training set to accomplish maximum generalization

is of central importance for any application.

18

The selection of certain input patterns to be trained

is unlimited. We may choose typicpl patterns from each

class to be used as a training set. The difficulty in this

approach is that there are no obvious ways to define and

select typical patterns of a -class. We may choose patterns

that are close to each other in input space even they bel9ng

to different classes. These patterns have been called

border patterns [1]. Some experimental work has been done,

using this approach, on boolean numbers such as the majority

function (1]. They have shown that with appropriate network

architecture and a backpropagation training algorithm, a

training set containing the complete border patterns is

sufficient to guarantee a perfect generalization.

In particular, we need to determine border and typical

sets. We need to know how the network performs when trained

with typical examples selected from both classes. How it

performs when trained with both· interior,and· border or

incomplete border patterns. We need to know whether it is

necessary to use complete border patterns to get perfect

generalization.

These questions are investigated usin~ classification

in binary strings. The approach will be to partition the

whole set of input patterns into groups such that patterns

within groups have the same distance from the class

boundary, and patterns between groups have a different

19

distance from the class boundary (22]. The border patterns

are those groups near the boundary. On the other hand,

typical patterns of a class are those groups that are in the

interior of a class, or far away from the class border. By

using a combination of these groups~ we can form training

sets of a mixture of various distances from the boundary,

including those of border and typical patterns. 'This method

of selecting the training sets facilitates a systematic

method for accomplishing the required sets of input data for

this work. l

Investigations are per~o,rmed in a series of experiments

that attempt to recognize presence of clumps of ones in

binary strings. The first output is desired to be 0 if

there are two or more clumps of 1's in the input pattern

while the second output is desired to be 1. The first

output is desired to be 1 if there are less than two clumps

of 1's in the input pattern while the second output is

desired to be 0. The networks used are three layer

feedforward networks. The network with 5 input nodes and

three hidden nodes, which are fully connected to the input

and output layers, represents a powerful testing environment

because this architecture is successful to realize boolean

functions. The output is displayed on two output units.

The output function for·nodes in :the hidden and output

layers is a sigmoid.

The network is initialized with random weights. The

backpropagation algorithm with momentum is use~ to train the

network. The learning rate and momentu~ used in all the

20

experiments are 0.5 and 0.9 respectively. The weights are

updated every epoch which consists of all the patterns in

the training set. Continuous cycling through the training

set pr9ceeded until the sum of squared errors reached 0.001.

After training ~the network, .·it is ready for testing with

test set.

Characterization of Input 'Patterns
' '

The network with five inputs~ with the powerful

architecture, will be the major testing environ~ent. There

are 32 possible input patterns that can be clamped on the

input nodes. Exactly half of the patterns shows two or more

clumps of l's and the other half shows zero or one clump.

In the input space, some of these patterns are close to the

border separating the two classes and some are located in

the interior of each class· .. ·To determine which patterns are

near the border and which ones are in the interior of a

class, the nearest neighbors of each pattern are examined.

If a pattern in a given class has at least one nearest

neighbor that belongs to the other class, this pattern

should be characterized as close to the border. Otherwise,

the pattern is characterized to be in the interior of a

class. Further, the distance from a pattern to the class

border will be ranked according to its number of nearest

neighbors in the opposite class.

We can find all the nearest neighbors of a pattern by

calculating the Hamming distances from this pattern to the

other patterns in the input set. Then, the nearest

21

neighbors of a pattern are those patterns that differ by one

bit from the given pattern. With the defined ranking

method, each input pattern can have either o, 1, 2, or 3

nearest neighbors of opposite class. Accordingly, that

pattern can be assigned to one. of four g:r;-oups, A, B, c, or D

corresponding to o, 1, 2, or .3 neighbors respectively.

Table 1 shows each input pattern and its nearest neighbors

in the opposite .class.-

TABLE 1

INPUT PATTERNS AND THEIR NEIGHBOURS

Input pattern Nearest Neighbors in Opposite Class

00000 ----- ----- -----
00001 0010'1 01001 10001
00010 0101,0 10010 -----
00011 0101_1 10011 -----
00100 00101 10100 -----
00101 00100 00001 00111
00110 101),.0 ----- -----
00111 00101 10111 -----
01000 01010 01001 -----
01001 01000 00001 -----
01010 01000 00010 01110
01011 00011 01111 -----
01100 01101 ----- -----
01101 01100 ' ,01111 -----
01110 ()1010 ----- -----
01111 01101 ' 01011 -----
10000 10100 10010 10001
10001 10000 00001 -----
10010 10000 00010 -----
10011 00011 ----- -----
10100 10000 00100 11100
10101 ----- ----- -----
10110 00110 11110 -----
10111 00111 11111 -----
11000 11010 11001 -----
11001 11000 ----- -----

Input pattern

11010
11011
11100
11101
11110
11111

TABLE 1 (Continued)

Nearest Neighbo"rs in Opposite Class

11000 11110 -----
11111 ----- -----
10100 11101 -----
11100 11111 -----
11010 -1.0110 -----
1110l .11011 10111

Table 2 shows partition A which consists of input

patterns that have o neighbors.

TABLE 2

PARTITION A ·(ZERO NEIGHBOURS}

CLASS 1 CLASS 2

00000 10101

Table 3 shows partition B which consists of input

patterns that have 1 neighbor.

22

TABLE 3

PARTITION B (ONE NEIGHBOUR)

CLASS 1

00110
01100
01110

CLASS 2

10011
11001
11011

Table 4 shows partition C which consists of input

patterns that have 2 neighbors.

TABLE 4

PARTITION C (TWO NEIGHBOURS)

CLASS 1 CLASS 2

00010 01001
00011 01011
00100 01101
00111 10001
01000 10010
01111 10110
11000 10111
11100 11010
11110 11101

Table 5 shows partition D which consists of input

23

patterns that have 3 neighbors.

TABLE 5

PARTITION D (THREE NEIGHBOURS)

CLASS 1

00001
10000
11111

''

CLASS 2

00101
01010
10100

Table 6 summarizes all .the characterizations of

input patterns. There are_an equal numbers of patterns

from each class in any given partition.

TABLE 6

CHARACTERIZATION OF ALL PATTERNS

Partition Number o.f Number of
Patterns Neighbors

A 2 0

B 6 1

c 18 2

D 6 3

24

25

To support decisions that can be made from testing

previous characterizations, more binary strings are

partitioned and characterized.

Regarding four input patt~rns, there are 16 possible

inputs that can be clamped on the input nodes. In this case

the patterns in the classes are not even. In the input

space, some of these patterns are close to the border

separating the two classes and some are located in the

interior of each class.

Table 7 shows each input pattern and its nearest

neighbors in the opposite class.

TABLE 7

INPUT PATTERNS AND THEIR NEIGHBOURS

Input pattern Nearest Neighbors in_ Opposite Class

0000
0001 0101 1001
0010 1010
0011 1011 ..
0100 0101
0101 0100 0001 0111
0110
0111 0101
1000 1010 1001
1001 1000 ·ooo1
1010 1000 0010 1110
1011 0011 1111
1100 1101
1101 1100 1111
1110 1010
1111 1101 1011

Table 8 shows partition A which consists of input

patterns that have 0 neighbors.

TABLE 8

PARTITION A (ZERO NEIGHBOURS)

CLASS 1

0000
0110

CLASS 2

Table 9 shows partition B which consists of input

patterns that have 1 neighbor.

TABLE 9

PARTITION B (ONE NEIGHBOUR)

CLASS 1 CLASS 2

0010
0011
0100
0111
0100
1110

26

Table 10 shows partition C which consists of input

patterns that have 2 neighbors.

,TABLE' 10

PARTITION C (TWO NEIGHBOURS)

CLASS 1

0001
1000
1111

CLASS 2

1001
1011
1101

Table 11 shows partition D which consists of input

patterns that have 3 neighbors.

TABLE 11

PARTITION D (THREE NEIGHBOURS)

CLASS 1 CLASS 2

0101
1010

27

Table 12 summarizes all the characterizations of

input patterns. There are different numbers of patterns

from each class in the partitions.

TABLE 12

CHARACTERIZATION OF AL~ PATTERNS

Partition Number of Number of
Patterns Neighbors

A 2 0

B 6 1

c 6 2

D ·2 3

Regarding six input patterns, there are 64 possible
' '

28

inputs that can be clamped on the input nodes. In this case

the patterns in the classes ~re .not even. .In the_ input

space, some of these patterns are close to the border

separating the two classes and some are located in the

interior of each class.

Table 13 shows partition A which consists of input

patterns that have 0 neighbors.

TABLE 13

PARTITION A (ZERO NEIGHBOURS)

CLASS 1 CLASS 2

'000000 010101
------ 100101
------ 101001
------ 101010.
------ 101011
------ 101101
------ 110011
------ 110101

Table 14 shows partition B which consists of input

patterns that have -1 neighbor.

TABLE 14

PARTITION, B (ONE NEIGHBOUR)

CLASS 1 CLASS 2

010011
011001
011011
100011
100110
100111
110001
110010
110110
110111
111001
111011

29

Table 15 shows partition C which consists of input

patterns that have 2 neighbors.

TABLE 15

PARTITION C (TWO NEIGHBOURS)

CLASS 1

000110
001100
001110
011000
011100
011110

CLASS 2

001001
001011
001101
010001
010010
010110
010111
011010
011101
100001
100010
100100
101100
101110
101111
110100
111010
111101

Table 16 shows partition D which consists of input

patterns that have 3 neighbors.

30

TABLE 16

PARTITION D {THREE NEIGHBOURS)

CLASS 1 CLASS 2

000010 000101
000011 001010
000100 .010100
000111 .101000
001000 ------
001111 ------
010000 ------
011111 ------
110000 ------
111000 ------
111100 ------
111110 ------

Table 17 shows partition E which consists of input

patterns that have 4 neighbbrs.

TABLE 17

PARTITION E {FOUR NEIGHBOURS)

CLASS 1

000001
100000
111111

·CLASS 2

31

32

Table 18 summarizes all the characterizations of input

patterns. There are different numbers of patterns from each

class in the partitions.

TABLE 18
' '

CHARACTERIZATION OF ALL P~TTERNS

Partition Number of Number of
Patterns Neighbors

A 9 0

B 12 1

c 24 2

D 16 3

E 3 4

Regarding seven input patterns, there are 128 possible

inputs that can be clamped on the input nodes. In this case

the patterns in the classes are not even. In the input

space, some of these patterns are close to the border

separating the two classes and some are located in the

interior of each class.

Table 19 summarizes all the characterizations of input

patterns. There are different numbers of patterns from each

class in the partitions.

33

TABLE 19

CHARACTERIZATION OF ALL PATTERNS

Partition Number of Number of
Patterns Neighbors

A > 34 0

B 30 1

c 30 , .' 2

D 16 3

E 15 4

F 3 5

Training and Test~ng Simulation Results

In the experiments, the total number of possible input

patterns is divided into two sets: a training set and a

testing set. Training sets: are formed using various

combinations of different groups as defined in the previous

section. Each training set is one of thre~ basic ~ypes.

1. A Subset of border patterns.

2. Interior patterns ·only.

3. A Combination of interior and border patterns.

A series of experiments are performed using these

training sets. In each of these experiments, the network

is tested with a testing set which is the whole or part of

the complement set of the corresponding training set. The

34

classification is considered to be correct if· the outputs of

the network were within 0.2 of the desired value of 1 or o.

Table 20 shows the performance results for the

experiments using the interior and mixtures of interior and

border patterns as training sets for four input networks.

TABLE 20

RESULTS FOR MIXTURES OF INTERIOR AND
' BORDER PATTERNS

Experiment Number Training Set Testing Set % Correct
Ratio

1 A B+C+D 41.23

2 A+B C+D 52.00

3 A+C. B+D 52.00

4 A+D. B+C 10.00

5 A+B+C D 15.50

6 A+B+D c 52.00

7 A+C+D B 100.00

Table 21 shows the results of experiments using subsets

of border patterns as training examples for four input

networks.

TABLE 21

RESULTS USING ONLY BORDER PATTERNS
AS TRAINING SETS

Experiment Number Training Set ~esting Set

8 B 'A+C+D

9 c A+JHD

10 D , A+B+C

11 B+C A+D

12 B+D A+C

13 C+D A+B

14 B+C+D A

% Correct
Ratio

60.55

55.10

15.00

35.10

52.00

100.00

100.00

35

Table 22 shows ~he performance results for the

experiments using the interior c;tnd mixtures of in'terior and

border patterns as training sets for six input networks.

TABLE 22

RESULTS FOR MIXTURES OF INTERIOR AND
BORDER PATTERNS

Experiment Number Training Set

1 A

2 A+B

Testing Set % Correct
Ratio

B+C+D+E 45.00

C+D+E 55.00

36

TABLE 22 (Continued)

Experiment Number Training Set Testing set % Correct
Ratio

3 A+C B+D+E 55.00

4 A+D B+C+E 10.00

5 A+E 'B;i-C+D 60.00

6 A+B+C D+E 14.20

7 A+B+D C+E 40.00

8 A+B+E C+D 60.11

9 A+C+D_. · B+E 70.00

10 A+C+E B+D 60.00

11 A+D+E B+C 100.00

12 A+B+C+D E 60.50

13 A+B+C+E' D 50.00

14 A+B+D+E c 100.00

15 A+C+D+E B 100.00

Table 23 shows the results of experiments using subsets

of border patterns as ~raining examples for six input

networks.

37

TABLE 23

RESULTS USING ONLY BORDER PATTERNS
AS TRAINING SETS

Experiment Number Training Set, Testing Set % Correct
Ratio

16 B 'A+C+D+E 60.55

17 ,C A+B+D+E 55.1'0

18 D A+B+C+E 17.00

19 E A+B+C+D 12.00

20 B+C A+D+E 37.10

21 B+D A+C+E 55.00

22 B+E A+C+D 57.00
,'"

23 C+D A+B+E 50.00

24 C+E A+B+D 70.00

25 D+E A+B+C 100.00

26 B+C+D A+E 75.00

27 B+C+E A+D 50.00

28 B+D+E A+C 100.00

29 C+D+E A+B 100.00

30 B+C+D+E A 100.00

Table '24 shows the performance results for the

experiments using the interior and mixtures of interior and

border patterns as training sets. In the first four

38

TABLE 24

RESULTS FOR MIXTURES OF INTERIOR AND
BORDER PATTERNS

Experiment Number Training Set Testing Set % Correct
Ratio

1 A B 50.00

2 A c 38.89

3 A D 33.33

4 A B+C+D 40.00

5 A+B c 66.67

6 A+B D o.oo

7 A+B C+D 50.00

8 A+C B 100.00

9 A+C D 0.00

10 A+C B+D 50.00

11 A+D B o.oo

12 A+D c 11.11

13 A+D B+C 8.33

14 A+B+C D 16.67

15 A+B+D c 50.00

16 A+C+D B 100.00

experiments, the network was trained exclusively with

interior patterns of both classes. The average result for

the four experiments is 40.55 percent. This result suggests

39

~ that this minimum training set contains little specific

information about the class boundary. Thus typical patterns

are not candidates for optimal generalization. The other

experiments gave more interesting results. In both

experiments 8 and 9, the training set was successful to

classify Group B, but it was unable to classify Group D. In

both experiments 14 and,16, training sets of equal size were

used but they produced two extreme performance in

generalization. The first was failure while the second was

very successful. It can be seen that different training

sets with similar size may produce different performance in

generalization. In fact, the two training sets differ by

only one group; instead of B .. in experiment 14, D was used in

experiment 16. All,of experiments 3, 6, 9, and 14 were

unable to classify Group D. We can observe that all the

trained networks having border groups other than D in their

training sets are incapable ~o classify Group D patterns

correctly. This suggests that Group D, the closest group to

the boundary, contains some vital information about the

class boundary without which a perfect generalization is

impossible.

Table 25 shows the results of experiments using subsets

of border patterns as training examples.

Group B is the group of border patterns that are

closest to the interior of a class. It does not have

precise information about class boundary. On a closer look

at the test data, we see, from experiments 17, 18, 19, that

it is perfect classifier for A, it is an acceptable

40

classifier for c, but it is incapable to classify D.

Group c has the majority number of border patterns and

is second closest to the class boundary. on a closer look

at the test data, in experiments 21 a~d 22, Group c was

perfect classifier for A and' B~ ·· In experiment 23, the

trained networks failed to ~lassify D patterns correctly.

We can see from experiment 24 that networks trained with c

are only average performers.

Group D is the closest group to the border. Alone, it

was incapable to classify any ·group in the complement test

set, experiment 25, 26, 27.

Experiment 31 shows that networks trained with the

training set B+C' are" below average performers. Similarly,

experiment 34 shows that networks trained with the training

set B+D are average performers ..

Networks trained with the.training set C+D were able to

classify Group A, Group B, and 'bhe combination of these two

groups in the complement test set. Addition of B to this

training set in experiment 38 has no effect on the

performance resulted. Similarly, addition of A to this

training set in experiment 16 has no effect on the

generalization. Considering all the above results, we can

see that C+D turned out to be a perfect set.

We see that all the perfect sets of border patterns

(experiments 16, 37 and 38) have Group D as their subset.

Although, D alone is a relatively poor training set for

generalization, we see that networks trained with border

patterns excluding D were completely unable to classify D.

41

Addition of A or B to the perfect training set C+D has

no effect on generalization. We also see that an arbitrary

subset of border patterns except C+D, e.g., experiment 31

and 34, is not n,ecessarily a pow~rful training set for

generalization.

TABLE 25

RESULTS USING ONLY BORD~R PATTERNS
AS TRAINING'SETS

Experiment Number Training Set Testing Set % Correct
Ratio

17 B "' A 100.00

18 B c 77.78

19 B D 0.00

20 B A+C+D 61.54

21 c A 100.00

22 c B 100.00

23 c D, 0.00

24 c A+B+D 57.14

25 D A 0.00

26 D B o.oo

27 D C' 22.22

28 D A+B+C 15.38

29 B+C A 100.00

30 B+C D 16.67

31 B+C A+D 37.50

42

TABLE 25 {Continued)

Experiment Number Training Set Testing Set % Correct
Ratio

32 B+D A 100.00

33 B+D' c 44.44

34 B+D A'+C 50.00

35 C+D A 100.00

36 C+D B 100.00

37 C+D A+B 100.00

38 B+C+D A 100.00

CHAPTER IV

MONTE, CARLO SIMULATION

RESULTS AND CONCLUSIONS,

Implementation

The program in APPENDIX.B ~mplements the testing
I

procedure and then Monte Carlo calculations. Testing of a

single pattern occurs as follows~

First, all input patterns are read and stored in an

array structure to -facilitate communication with patterns.

Second, trained weights and biases are read and stored in a

series of arrays. After that, a single pattern is selected

to be clamped on the input u~its' setting their activations

to 1 or 0 according to the-input pattern. Next, the output

of the network is computed using a routine similar to that

in APPENDIX A. The routine.~s:

PROCEDURE TEST_NET;
BEGIN

END;

for i = first hidden to last~output do
begin

netinput [i] := bias[i);
for j = first_weight_to[i] to last_weight_to[i] do
begin

netinput[i] := netinput[i] +
(activation[j] * W[i][j]);

end;
activation[i] := logistic(netinput[i));

end;

The order of complexity for the procedure above is

43

o [(nunits-ninputs)*nweights]. After computing the output
' of the tested pattern, its contribution to the performance

is calculated using the following routine.

PROCEDURE COMP_PRFRMNC;
BEGIN

END;

if (patterri
pss := (1. o

(0.0
else

in class1) then
- first_out) ~ (1.0 - first_out) +
- second_ou,t)" '* (Q. o -:- ~econd_out) ;

pat_sqrd_err := ((0.0 - first_out) *
(0.0- first out)) +,

((1.0- second~out) *
(1. 0 - second_ out)) ;

tot_sqrd_err := tot_sqrd~err + pss;
if (pattern in class1) then
begin

if (first out between 0.8 and 1.2) and
(second_out between -0.2 and 0~2) then

correct_classf := correct_classf + 1;
else
mis classf := misclassf + 1;

end;

The order of complexity for the procedure above is

44

0(1). After training each network with a specified training

set Monte Carlo techniques were used to define the

relationship between the tolerance and the network's

misclassification rate. Weight and bias tolerance rates

were varied from o to 0.5, as a practical limit, in gradual

steps with each trained network. For each tolerance rate we

select 1000 independent sets of perturbed weights and biases

with individual weights and biases from random number

generator. Using several sets from both classes, ,we measure

the misclassification rate with each set of perturbed

weights and then compute the corresponding mean value and

the standard deviation of the 1000 values. Calculations

above are implemented in the following routine.

PROCEDURE MONTE_CARLO;
BEGIN

y := 1000;
tolerance := o.o;
for i:= 1 to 10 do
begin

end;
END;

tolerance := tolerance + 0.05;
for j:= 1 to trunc(YY do
begin ,

end;

fork:= 1·to weight_num do
begin

temp :=
toleranc,e*train_weight [k] •random;

out_weight[~] := train_weight[k] + temp;
end;
for k:= 1 to (hi~den+out) do
begin

temp2 := tolerance*tbias[k]*random;
outbias[k] := bias[k] + temp2;

end;
for k:= l. to pattern num do
begin -

TEST_NET;
COMP_PRFRMNC;

end;
expmnt_misclassf_, : =

sum of misclassf :=

expmnt misclassf +
(mis_ciassf * (1.0/Y));
sum of misclassf +

- - mis_classf;
sum of sqrd misclassf :=

- - - sum_of_sqrd_misclassf +
(mis_classf * mis_classf) ;

variance of misclassf := (1.0/(Y- 1.0)) *
(sum_of_sqrd_misclassf -
(1. 0/Y) *

(sum_of_misclassf*sum_of_midclassf));

The order of complexity for the procedure above is

O[ntolerance[Y[weight_num+(hidden+out)+
(pattern_num*O[(nunits-ninputs*weight_num)])]]].

45

46

Simulation Results and Discussion

In all the studies two class problems were considered.

After training each network with a training set, the

resulting set of trained weights was taken, after the sum of

total squared errors reached 0.001 or less, and then used

for simulation. Monte carlo studies were performed with

several models using different test sets. All sets were

taken into consideration except sets with performance less

than 50 percent at zero perturbation because, this

performance is considered beyond the theoretical limit,

i.e., 50% in the two class problem.

Examining figures in APPENDIX c, figure 1 shows the

averaged misclassification rate as a function of tolerance

rate for a network trained with patterns from Group B and

tested with patterns from Group A. This network has perfect

performance, zero error, at zero tolerance rate. The data

indicates that the random variations in the weights and

biases did affect the performance of this network, and the

effect increases with the tolerance level. For example, the

misclassification rate increased from o percent with the

unperturbed weights to 0.99 percent with a tolerance rate of

0.25 and then to 6.9 percent with a tolerance rate of 0.5.

This shows an overall increase of 6~9 percent in the

misclassification rate. This increase was the minimum among

all other networks with perfect generalization.

Similarly, figure 2 shows the averaged

misclassification rate as a function of tolerance rate for a

47

network trained with patterns from the set A+C and tested

with patterns from Group B. Also, this network has perfect

performance at zero tolerance rate. The data indicates that

the random variations in the weights and biases did affect

the performance of this network, and the effect increases

with the tolerance level. _For example, the

misclassification rate.increased from 0 percent with the

unperturbed weights to 2 percent with a tolerance rate of

0.25 and then to 25.27 percent with a tolerance rate of 0.5.

This shows an overall increase of 25.27 percent in the

misclassification rate. on the contrary, compared to the

previous network, this increase was the maximum among all

other networks with perfect generalization.

Figure 3 shows the misclassification data for an

imperfect network trained with patterns from Group B and

tested with patterns from'Group c. It has an error of 22.22

percent with the unperturbed weights. Supporting previous

conclusions, the data in the figure indicates that the

random variations in the weights and biases have an effect

on the performance of the network, and the effect increases

when weight and bias error increases. For example, the

output error increased from 22.22 percent with the

unperturbed weights to 25.15 percent with a tolerance rate

of 0.25 and then to 28.52 percent with a· tolerance rate of

0.5. Random variations contributed an overall increase of

6.3 percent to the output error.

Figure 4 shows the output error for more difficult

classification. The network was trained with patterns from

48

the set A+B and tested with patterns from Group c. The

difficulty in classification was 33.33 with correct weights.

This difficulty increased to 35.08 percent with a weight

error of 0.25 and then to 44.84 with a weight error of 0.5.

The data in figure 5 is,very similar to that in the

previous figure. The difficulty in classification is 38.46.

Group B is the trained ~et and Groups A, C, and D are the

test set. 1he difficulty increased to 38.53 percent with a

weight error of 0.25 and then to '43.39 with ·a weight error

of 0.5.

The difficulty of classification in figure 6 was the

most among all considerable networks. The network was

trained with patterns from G~oup C and tested with patterns

in the set A+B+D. Compared to all other networks, it has

the worst output error started at a value of 42.86 percent.

Perturbation in weights an~ biases increased the error to a

value close to the theoretf~al ~pper limit beyond which, the

classification is impossible in 'two class problems.

Conclusion

A method was used to partition input binary patterns

into groups based on their neigqbor numbers which

indicate the distance from the input pattern to the class

boundary. By using various combinations-of these groups,

it is possible to construct a variety of training sets

including interior and border sets. Supporting results

in [1], it was shown that if a certain number of random

training examples was used to train a network, and if the

same number of border patterns was used to train a

similar network, then the latter network will generalize

better than the former one. This suggests that border

patterns are very recommended to be included in input

examples used to train networks. Also, .this approach of

using border patterns facilitates systematic studies in

the contribution of training sets to generalization.

Furthermore, this study showed that errors in the

weights and biases in a neural network classifier affect

its performance, and the magnitude of the effect

increases as the magnitude of the random perturbation

increases. All studies of the relationship between the

weight tolerance and the failure rate, recommend that

weight error should be less than 25 percent. Tests in

which biases were maintained correct and weights were

perturbed, showed that performances of networks were more

sensitive to bias errors than weight errors. Tests in

which one of the input and output weights was fixed and

the other was varied, showed that errors in output

weights have more influence on failure rate than errors

in input weights.

49

SELECTED BIBLIOGRAPHY

[1] Ahmad, s. and G. Tesauro, "Scaling and
Generalization in .Neural Networks: A Case Study",
Advances in Neural Information Processing Systems,
vol. 1,, Morgan Kaufman, 1989, pp. 160-168.

[2] Ahmad, s., G. Tesauro andY. He, "Asymptotic
Converge~ce of Backpropagation: Numerical
Experiments", Advances in Neural Information
Processing Systems, vol. 2~ Morgan Kaufman, 1989,
pp. 606-613.

[3] Baum, E. and D. Haussler,"What Size Net Gives
Valid Generalization?", Advances in Neural
Information Processing Systems, vol. 1, Morgan
Kaufman, 1989, pp. 81-8.9. ·

[4] Brodsky, s.A and c.c. Guest, "Binary
Backpropagation in Content Addressable Memory",
Proceedings of the International Joint Conference
on Neural Networks, vol. 3, 1990, pp. 205-210.

[5) caviglia, D.D, M. Valle, and G.M. Bisio, "Effects
of Weight Discretization on the Backpropagation
Learning Method: Algor~~hm Design and Hardware
Realization", Proceedings of the International
Joint Conference on Neural Networks, vol. 2, 1990,
pp. 631-637.

[6] Cheung, R., I. Lusting and A. Kornhauser,
"Relative Effectiveness of Training Set Patterns
for Backpropagation", Proceedings of the ·
International Joint Conference on Neural Networks,
vol. 1, June 1990, pp. 673-678.,

[7] Faggin, F. and C. Mead, An Introduction to Neural
and Electronic Networks, Academic Press, 1990.

[8] Fogel, D.B., "An Information Criterion for Optimal
Neural Network Selection", IEEE Transactions on
Neural Networks, vol. 2, No. 5, Sept 1991, pp.
490-497.

[9] Fukushima, K., "Neocognitron: A Hierarchical
Neural Network Capable of Visual Pattern
Recognition", Neural Networks, vol. 1, 1988, pp.
119-130.

50

[10] Guyon, L., L. Poujaud, L. Personnaz and G.
Dreyfus, "Comparing Different Neural Network
Architectures for Classifying Handwritten Digits",
Proceedings of the International Joint Conference
on Neural Networks, vol. 2, 1989, pp. 127-132.

[11] Hammersley, J.M. and D.C. Handscomb, Monte Carlo
Methods, Spottiswoode & Co., Ltd., 1964.

[12] Hinton, G.E., "Connectionist Learning Procedures",
Artificial Intelligence, vol. 40, 1989, pp. 185-
234.

51

[13] Knuth, D. E., The Art of .computer Programming, Addison­
Wesley Publishing Company, 1969.

[14] Lippman, R., "An Introduction to Computing with
Neural Nets", IEEE ASSP Magazine, April 1987, pp.
4-22.

[15] Masson, E. and Y. Wang, "Introduction to
Computation and Learning in Artificial Neural
Networks", European Journal of Operational
Research, vol. 47, 1990, pp. 1-28.

[16] Mirzai, A.R., Artifici~l Intelligence Concepts and
Applications in Engineering, T.J. Press(Padstow,
Great Britain), 1990.

(17] Perugini, N. and w. Engeler, "Neural Network
Learning Time: Effects of Network and Training Set
Size", Proceedings of the International Joint
Conference on Neural Networks, vol. 2, June 1989, pp.
395-'401.

(18] Rubinstein, R.Y., Simulation and the Monte Carlo
Method, John Wiley & Sons, Inc., 1981.

[19] Rumelhart, D.E. and J.L. McClelland, Parallel
Distributed Processing, MIT Press, 1986.

[20] Stevenson, M., R. Winter and B. Widrow,
"Sensitivity of Feedforward Neural Networks to
Weight Errors", IEEE Transactions on Neural
Networks, vol. 1, March 1990, pp. 71-80.

[21] Takeda, M. and J.W. Goodman, "Neural Networks for
Computation: Number Representations and Programing
Complexity", Applied Optics, vol. 25, No. 18, Sept
1986, pp. 3033-3046.

[22] Weideman, W.E., M.T. Manry and H. c. Yau, "A
Comparison of A Nearest Neighbor Classifier and A
Neural Network for Numeric Handprint Character
Recognition", Proceedings of the International
Joint Conference on Neural Networks, vol. L, 1989,
pp. 117-120.

[23] Yamada, K., H. Kami, J. Tsukumo and-T. Temma,
"Handwritten Numeral Rec9gnition by Multilayered
Neural Network with Improved Learning Algorithm",
Proceedings of the International--Joint Conference
on Neural Networks, vol. ~, 1989, pp. 259-266.

[24] Yu, Y. and R. Simmons,, "Descending Epsilon in Back'
Propagation: A Technique for Better
Generalization", Proceedings of the International
Joint Conference on Neural Networks, vo,l. 3, June
1990, pp. 167-172.

[25] Yu, Y. and R.F. simmons, "Extra output Biased
Learning" Proceedings of the International Joint
Conference on Neural Networks, vol. 3, June 1990,
pp. 161-166. ,

52

APPENDIX A

THE TRAINING PROGRAM

53

(**)
(* *)
(* THIS PROGRAM IMPLEMENTS THE BACKPROPAGATION *)
(* PROCESS. THE PROGRAM MAKES USE OF THE NETWORK *)
(* SPECIFICATION ENTERED BY THE USER, WHICH INDICATES *)
(* THE ARCHITECTURE OF THE NETWORK. THE NETWORKS ARE *)
(* ASSUMED TO BE FEEDFORWARD NEURAL NETWORKS. *)
(* THE USER SPECIFICATIONS INDICATE HOW MANY TOTAL *)
(* UNITS ARE IN THE NETWORK, AND HOW MANY ARE INPUT *)
(* UNITS, HIDDEN UNITS AND OUTPUT UNITS. *)
(* *)
(**)

PROGRAM TRAIN2(input,output);

const
MAXl = 50;
MAX2 = 1000;

TYPE

outunits =array [l .. MAXl] of real;
(* OUTPUT UNITS *)

inputwts = array [1. . MAX2] of real;
(* INITIAL WTS *)

outputwts =array [l •• MAX2] of real;
(* TRAINED WTS *)

biases =array [l .. MAXl] of real;
(* INPUT BIASES *)

outbiases =array [l .. MAXl] of real;
(*OUT BIASES *)-

t delta bias= array [l .• MAXl] of real;
- (* .DELTA BIAS *)

t err actv b =array [l .• MAXl] of real;
- - (* ERROR MULT BY ACTIVATION *)

t w =array [l .. MAXl,l •. MAXl] of real;
(* WEIGHT ARRAY *)

t err actv w =array [l •. MAXl,l •. MAXl] of real;
- - (* ERROR MULTIPLIED BY ACTIVATION *)

t delta_w =array [l •. MAXl,l •• MAXl] of real;
(* DELTA OF WEIGHTS *)

54

t net =array [l •• MAXl] of real;
(* NET INPUTS *)

terror =array [l .• MAXl] of real;
(* ERROR ARRAY *)

VAR

allpats =array [l .. MAX2] of integer;
(* ARRAY FOR INPUT PATTERNS *)

i,j,k,e,: integer;
count: integer;
curr integer;

pel : integer;(* COUNTER"FOR PATTERNS OF CLASS ONE*)
pc2 integer;(* COUNTER FOR PATTERNS OF CLASS TWO*)
pc integer; (* COUNTER FOR ALL PATT.ERNS *)

pss real; (* PATTERN SUM S,QUARED·ERROR *)
tss real;, (* TOTAL PATTERN SUM SQUARED ERROR *)
strl St:J;:"ing[SO];(* FILE NAME OF INITIAL WEIGHTS *)
str2 string[SOJ;(* FILE NAME OF INPUT PATTERNS *)
str3 string[SO];(* FILE NAME OF OUTPUT WEIGHTS *)
epoch . integer; .
ptrnfl
inwtfl
owtfl

inwts
outwts
w

. .

err actv w
delta w

bias
outbias
err actv b
del ta_bi"as

pats
0
net
error

text; (* FILE. OF INPUT PATTERNS *)
text; (* FILE OF INITIAL WEIGHTS *)
text; (* FILE OF OUTPUT TRAINED WEIGHTS *)

inputwts; (* INITIAL WTS ARRAY *)
outputwts; (* TRAINED WTS ARRAY *)
t w; (* WEIGHT MATRIX *)
t' err actv w;(*ERR MULT BY ACTV FOR WT*)
t=deita_w;- (* WEIGHT CHANGE MATRIX *)

biases; (* INITIAL BIASES ARRAY *)
outbiases;(* OUT TRAINED BIASES ARRAY*)
t err actv b;(*ERR MULT BY ACTV FORBS*)
t=delta_bias;(* BIAS CHANGE ARRAY *)

allpats; (* ARRAY FOR INPUT PATTERNS *)
outunits;(* ARRAY FOR ACTIVATIONS *)
t_net; (* ARRAY FOR NET INPUTS TO NODES *)
t_error;(* ARRAY FOR ERRORS *)

integer; (* NUMBER OF INPUT NODES
integer; (* NUMBER OF HIDDEN NODES
integer; (* NUMBER OF OUTPUT NODES
integer; (* NUMBER OF ALL NODES

*)
*)
*)
*)

ninputs
nhiddens
nouts
nun its
epsilon
momentum

: real;
real;

min tss err : real;

55

(**)
(* P R 0 C E D U R E I N I T I A L I Z E 1 *)
(**)
(* *)
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING THE *)
(* ARRAYS THAT RECORD WEIGHTS AND BIASES CHANGES. IT *)
(* INITIALIZES THE ARRAYS WITH ZERO VALUES. *)
(* *)
(**)

PROCEDURE INITIALIZE1;

var i, j : integer;

BEGIN

epoch := 0;
nunits := ninputs + nhiddens + nouts;

for i:= 1 to MAX1 do
begin

end;

for j:= 1 to MAX1 do
delta_w[i][j] := o.o;

delta_bias[i] := 0.0;

END; (* PROCEDURE INITIALIZE1 *)

(**)
(* P R 0 C E D U R E I N I T I A L I Z E 2 *)
(**)
(* *)
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING THE *)
(* ARRAYS THAT RECORD THE MULTIPLICATION OF ERRORS BY *)
(* ACTIVATION FOR BOTH WEIGHTS AND BIASES. *)
(* IT INITIALIZES THE ARRAYS WITH ZERO VALUES. *)
(* *)
(**)

PROCEDURE INITIALIZE2;

var i, j : integer;

BEGIN

tss := 0.0;

for i:= 1 to MAX1 do
begin

56

end;

for j:= 1 to MAX1 do
err_actv_w[i][j] := 0.0;

err_actv_b[i] := 0.0;

END; (* PROCEDURE INITIALIZE2 *)

(****************************~*~***********************)
(* P R 0 C E D U R E C 0 M P U T E _ 0 U T *)
(**)
(* *)
(* THIS PROCEDURE IS TO CALCULATE THE NET INPUT FOR *)
(* EACH NODE IN THE NETWORK AND THEN USE THE LOGISTIC *)
(*FUNCTION TO CALCULATE THE CORRESPONDING'ACTIVATION *)
(* FOR EACH NODE. *)
(* *)
(**)

PROCEDURE COMPUTE_OUT;

var i, j : integer;

BEGIN

curr := (count-1) * ninputs;

for i:= 1 to nunits-ninputs do
net[i] := outbias[i];

for i:= 1 to nhi~dens do
begin

for j:= 1 to ninputs do
net[i] := net[i] + (pats[curr+j] * w[i][j]);

o (. i.) : = 1. 0/ (1. o + exp (-net (. i.))) ;
end;

for i:= nhiddens+1 to nunits-ninputs do
begin

for j:= 1 to nhiddens do
net [i] : = net [i] + (o [j] * w [i] [j]) ;

o (. i.) : = 1. 0/ (1. 0 + exp (-net (• i.))) ;
end;

END; (* PROCEDURE COMPUTE OUT *)

57

(**)
(* P R 0 C E D U R E C 0 M P U T E _ E R R *)
(**)
(* *)
(* THIS PROCEDURE COMPUTES THE ERROR TERM FOR EACH *)
(* OUTPUT AND HIDDEN UNIT. AFTER THE ERROR HAS BEEN *)
(* COMPUTED FOR EACH OUTPUT UNIT, IT ITERATES BACKWARD*)
(* OVER THE UNITS PASSING THE ERROR OF CURRENT UNIT TO*)
(* ALL UNITS THAT HAVE 'CONNECTI9NS COMING INTO THE *)
(* CURRENT ONE. *)
(* > • *)
(*****************************.***********~************)

PROCEDURE COMPUTE_ERR;

var i, j : integer;

BEGIN

for i:= 1 to nunits-ninputs do
error(i] :~ o.o;

for i:= nhiddens+l to nhiddens+nouts-1 do
begin

end;

if (count <= pel) then
begin

error(i] := 1.0- o[i];
error[i+l] := o.o- o(i+l];

end
else
begin

error[i] := o.o- o[i];
error[i+l] := 1.0- o[i+l];

end;

pss

tss

:= (error[i] * error[i]) +
(error[i+l] * error[~+l]);

:= tss + pss;,

error[i] := error[i] * a(.i.) *
(1.0- o(.i.));

error[i+l] := error[itl] * o(.i+l.) *
(1.0- o(.i+l.));

for i:= nhiddens+l to nunits-ninputs do
begin

for j:= 1 to nhiddens do
error[j] := error[j] + (error[i] * w[i][j]};

end;

58

for i:= 1 to nhiddens do
error (. i.) : = error (• i.) * o (• i.) * (1 • 0 - o (. i .)) ;

END; (* PROCEDURE COMPUTE_ERR *)
(**)
(* P R 0 C E D U R E C 0 M P U T E _ ERR_ MUL_ ACTV *)
(**)
(* *)
(* THIS PROCEDURE IS TO COMPUTE THE MULTIPLICATION OF *)
(* ERROR OF THE RECIEVING NODE BY THE ACTIVATION OF *)
(* THE SENDING NODE FOR ALL NOPES. *)
(* *)
(* * * * * * * *'* ** *)

PROCEDURE COMPUTE_ERR_MUL_ACTV;

var i, j : integer;

BEGIN

curr := (count-1) * ninputs;

for i:= 1 to nhiddens do
begin

end;

for j:= 1 to ninputs do
err_actv_w[i][j] := err_actv_w[i][j] +

(error[i] * pats[j+curr]);

for i:= nhiddens+1 to nunits-ninputs do
begin

end;

for j:= 1 to nhiddens do
err_actv_w[i][j] := err_actv_w[i][j] +

(error[i] * o[j]);

for i:= 1 to nunits-ninputs do
err_actv_b[i] := err_actv_b[i] + (error[i] * 1.0);

END; (* PROCEDURE COMPUTE ERR_MUL_ACTV *)

59

(**)
(* P R 0 C E D U R E C H A N G E W T *)
(**)
(* *)
(* THIS PROCEDURE CHANGES NETWORK'S WEIGHTS TO THE *)
(* NEW SET OF ALTERED WEIGHTS THAT PRODUCE THE FINAL *)
(* VALUES OF TRAINED WEIGHTS TO BE USED IN TESTING *)
(* PHASE *)
(* *)
(**)

PROCEDURE CHANGE_WT;

var i, j : integer;

BEGIN

for i:= 1 to nhiddens do
begin

end;

for j:= 1 to ninputs do
begin

delta w[i][j]:=
+

(epsilon* err_actv_w[i][j])
(momentum* delta_w[i][j]);

:= w[i][j] + delta_w[i][j]; w[i][j]
end; ·

for i:= nhiddens+1 to nunits-ninputs do
begin

end;

for j:= 1 to nhiddens do
begin

end;

delta_w[i][j]:= (epsilon* err_actv_w[i][j])
+ (momentum* delta_w[i][j]);

w[i][j] := w[i](j] + delta_w[i](j];

for i:= 1 to nunits-ninputs do
begin

delta_bias[i] := (epsilon * err_actv_b[i])
+(momentum* delta bias[i]);

outbias[i] := outbias[i] +delta bias[i];
end;

END; (* PROCEDURE CHANGE WT *)

60

(**)
(* P R 0 C E D U R E R E A D _ D A T A *)
(**)
(* *)
(* THIS PROCEDURE IS TO READ INPUT PATTERNS FROM THE *)
(* PATTERN FILE. THEN IT WILL LOAD THE BIAS AND *)
(* WEIGHT ARRAYS BY RANDOM VALUES GENERATED FROM *)
(* UNIFORM RANDOM DISTRIBUTION. *)
(* *)
(**)

PROCEDURE READ_DATA;

var i, j : integer;

BEGIN

pel
pc2
i

·-.-
:=
:=

O;
0;
1;

while not eof(ptrnfl) do
begin

readln(ptrnfl, e);

case e of
1: pel ·- pel + .-
2: pc2 := pc2 +

end;

1;
1;

while not eoln(ptrnfl) do
begin

end;

read(ptrnfl, pats(.i.));
i := i+l;

readln(ptrnfl);

end; (* EOF *)
pc := pel + pc2;

for i:= 1 to nunits-ninputs do
begin

bias(.i.) :=random;
outbias (. i.) : = bias (. i.) ;

end;

for i:= 1 to (nouts*nhiddens + nhiddens*ninputs) do
inwts(.i.) := random;

END; (* PROCEDURE READ DATA *)

61

(**)
(* P R 0 C E D U R E L 0 A D _ N E T *)
(**)
(* *)
(* THIS PROCEDURE IS TO LOAD THE WEIGHT MATRIX FROM *)
(* THE INPUT WEIGHT ARRAY WHICH HAS BEEN FILLED BY *)
(* RANDOM VALUES . *)
(* *)
(**)

PROCEDURE LOAD_NET;

var i, j, k ,: integer;

BEGIN

END;

k := 1;

for i:= 1 to nhiddens do
begin

for j:= 1 to ninputs do
begin

end;
end;

w[i][j] := inwts[k];
k :=,k+1;

for i:= nhiddens+1 to nunits-ninputs do
begin

for j:= 1 to nhiddens do
begin

e.nd;
end;

w [i] [j] : = inwts [k] ;
k := k+1;

(* PROCEDURE LOAD NET *)

(**)
(* P R 0 C E D U R E P R I N T _ T S S *)
(**)
(* *)
(* THIS PROCEDURE IS TO DISPLAY THE TOTAL SQUARED *)
(* ERROR AFTER EACH EPOCH. *)
(* *)
(**)

PROCEDURE PRINT_TSS;

62

BEGIN

writeln('Epoch Counter
writeln;
writeln('TSS After Epoch Above
writeln;
writeln;

END; (* PROCEDURE PRINT TSS *)

= ' 1 epoch: 8) ;

= ' 1 tss : 8 : 4) ;

(******************************~***********************)
(* M A I N P R 0 G R A M *)
(**)

BEGIN

writeln;
writeln('ENTER NUMBER OF INPUT NODES');
writeln;
readln(ninputs);
writeln;
writeln('ENTER NUMBER OF HIDDEN NODES');
writeln;
readln(nhiddens);
writeln;
writeln('ENTER NUMBER OF OUTPUT NODES');
writeln;
readln(nouts);
writeln;
writeln('ENTER VALUE FOR EPSILON');
writeln;
readln(epsilon);
writeln;
writeln('ENTER VALUE FOR MOMENTUM');
writeln;
readln(momentum);
writeln;
writeln('ENTER MINIMUM TSS ERROR REQUIRED');
writeln;
readln(min_tss_err);
writeln;
writeln('ENTER INPUT PATTERN FILE NAME');
writeln;
readln(str2);
writeln;
assign(ptrnfl 1 str2);
reset(ptrnfl);
writeln('ENTER FILE NAME TO SAVE OUPUT WEIGHTS');
writeln;
readln(str3);
writeln;
assign(owtfl,str3);

63

rewrite(owtfl);

INITIALIZE!;
READ_DATA;
LOAD_NET;

REPEAT

BEGIN

END;

INITIALIZE2;

for count:= 1 to pc do
begin

end;

COMPUTE_OUT;
COMPUTE_ERR;
COMPUTE ERR MUL _ ACTV;

epoch := epoch + 1;

PRINT TSS;
CHANGE_WT;

UNTIL (tss <= min_tss_err);

for i:= 1 to nunits-ninputs do
write(owtfl,outbias(.i.):8:2);
writeln(owtfl);

for i := 1 to nhiddens do
begin

for j:= 1 to ninputs do
write(owtfl,w[i][j]:8:2);
writeln(owtfl);

end; ·

for i:= nhiddens+l to nunits-ninputs do
begin

end;

for j:= 1 to nhiddens do
write(owtfl,w[i][j]:8:2);
writeln(owtfl);

writeln(owtfl);

close(ptrnfl);
.close (owtfl) ;

END. (* MAIN PROGRAM *)

64

APPENDIX B

THE' TESTING AND MONTE CARLO PROGRAM

65

(**)
(* *)
(* THIS PROGRAM IS USED TO STUDY THE EFFECT OF RANDOM *)
(* WEIGHT AND BIAS VARIATIONS ON THE SENSITIVITY OF *)
(* FEEDFORWARD NEURAL NETWORKS TRAINED WITH THE *)
(* STANDARD BACKPROPAGATION RULE. AFTER TRAINING EACH *)
(* NETWORK WITH THE REQUIRED TRAINING SET, MONTE CARLO*)
(* METHOD IS USED TO DEFINE THE RELATIONSHIP BETWEEN *)
(* THE TOLERANCE ON THE WEIGHTS AND BIASES AND THE *)
(* NETWORK MISCLASSIFICATION RATE. *)
(* *)
(**)

PROGRAM SENSITIVITY (input,output);

const

TYPE

MAXl = 50;
MAX2 = 1000;

outunits =array [l •. MAXl] of real;
(* OUTPUT UNITS *)

inputwts =array [l •. MAX2] of real;
(* INITIAL WTS *)

outputwts = array [, 1. • MAX2] of real;
(* TRAINED WTS *)

biases =array [l •• MAXl] of real;
(* INPUT BIASES *)

outbiases =array [l .• MAXl] of real;
(* OUT BIASES *) ·

t delta bias= array [l .. MAXl] of real;
- (* DELTA BIAS *)

t_err_actv_b =array [l .• MAXl] of real;
(* ERROR MULT BY ACTIVATION *)

t w =array [l .. MAXl,l .• MAXl] of real;
(* WEIGHT ARRAY *)

t err actv w =array [l •• MAXl,l •• MAXl] of real;
- - (* ERROR MULTIPLIED BY ACTIVATION *)

t delta w =array [l .. MAXl,l •• MAXl] of real;
(* DELTA OF WEIGHTS *)

66

t net =array [l •. MAXl] of real;
(* NET INPUTS *)

terror =array [l .. MAXl] of real;
(* ERROR ARRAY *)

allpats =array [l .. MAX2] of integer;
(* ARRAY FOR INPUT PATTERNS *)

VAR

i,j,k,e : integer;
count: integer;
curr integer;
pel : integer;(* COUNTER FOR PATTERNS OF CLASS ONE*)
pc2 integer;(* COUNTER FOR PATTERNS OF CLASS TWO*)
pc integer;(* COUNTER FOR ALL PATTERNS *)

pss real; (* PATTERN SUM SQUARED ERROR *)
tss real; (* TOTAL PATTERN SUM SQUARED ERROR *)
strl string[SOJ;(* FILE NAME OF INITIAL WEIGHTS *)
str2 string[SOJ;(* FILE NAME OF INPUT PATTERNS *)
str3 string[SOJ;(* FILE NAME OF OUTPUT WEIGHTS *)
str4 string[SOJ;
str5 string[SOJ;

ptrnfl
inwtfl
outfl

inwts
outwts
w
err actv w
delta w -

bias
outbias
err actv b
delta bias

pats
0
net
error

ninputs
nhiddens
nouts
nunits

text; (* FILE OF INPUT PATTERNS
text; (* FILE OF INITIAL WEIGHTS
text; (* FILE OF OUTPUT

*)
*)
*)

inputwts; (* INITIAL WTS ARRAY *)
outputwts; (* TRAINED WTS ARRAY *)
t_w; (* WEIGHT MATRIX *)
t_err_actv_w;(*ERR MOLT BY ACTV FOR WT*)
t_delta_w; (* WEIGHT CHANGE MATRIX *)

biases; (* INITIAL BIASES ARRAY *)
outbiases;(* OUT TRAINED BIASES ARRAY*)
t err actv b;(*ERR MOLT BY ACTV FORBS*)
t=delta_bias;(* BIAS CHANGE ARRAY *)

allpats; (* ARRAY FOR INPUT PATTERNS *)
outunits;(* ARRAY FOR ACTIVATIONS *)
t_net; (* ARRAY FOR NET INPUTS TO NODES *)
terror;(* ARRAY FOR ERRORS *)

integer; (* NUMBER OF INPUT NODES
integer; (* NUMBER OF HIDDEN NODES
integer; (* NUMBER OF OUTPUT NODES
integer; (* NUMBER OF ALL NODES

*)
*)
*)
*)

correct_classf, cc real; (* COUNTER FOR CC *)

67

mis classf, me real; (* COUNTER FOR MC *)
y, u, u2, uJ, u4 real; (* FOR CALCULATIONS *)
exptss, vartss real;
expmis classf real; (* EXPERIMENTAL VALUES *)
varmis-classf real; (* VARIANCE VALUE *)
stdmis-classf real; (* STANDARD DEVIATION *)
stdtss . real; .
mtss, ptss real; (* MINUS AND PLUS·VALUE *)
mmis classf real; (* MINUS VALUE *)
pmis:classf real; (* PLUS VALUE *)
r, lamda real;
temp, temp2 . real; .

(**)
(* P R 0 C E D U R E T E S T _ N E T *)
(**)
(* *)
(* THIS PROCEDURE IS TO CALCULATE THE NET INPUT FOR *)
(* EACH NODE IN THE NETWORK AND THEN USE THE LOGISTIC *)
(* FUNCTION TO CALCULATE THE CORRESPONDING ACTIVATION *)
(* FOR EACH NODE. *)
(* *)
(**)

PROCEDURE TEST_NET;

var i, j : integer;

BEGIN

curr := (count-1) *· ninputs;

for i:= 1 to nunits-ninputs do
net[i] := outbias[i];

for i:= 1 to nhiddens do
begin

for j:= 1 to ninputs do
net[i] := net[i] + (pats[curr+j] * w[i][j]);

o(.i.) := 1.0/ (1.0 + exp(-net(.i.)));
end;

for i:= nhiddens+1 to nunits-ninputs do
begin

for j:= 1 to nhiddens do
net[i] := net[i] + (o[j] * w[i][j]);

o (• i •) : = 1 • 01 (1. 0 + exp (-net (• i •))) ;
end;

END; (* PROCEDURE TEST_NET*)

68

(**)
(* P R 0 C E D U R E R E S E T _ T S S *)
(**)
(* *)
(* THIS PROCEDURE KEEPS INITIALIZING THE TOTAL *)
(* SQUARED ERROR, AND THE MISCLASSIFICATION VALUES. *)
(* *)
(**)

PROCEDURE RESET_TSS;

BEGIN

tss := 0.0;

mis classf := O;

correct classf := O;

END; (* PROCEDURE RESET TSS *)

(**)
(* P R 0 C E D U R E I N I T V A R S *)
(**)
(* *)
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING *)
(* VALUES WHICH ARE NEEDED TO BE RESET EVERY NEW *)
(* CYCLE OF CALCULATION. *)
(* *)
(**)

PROCEDURE INIT_VARS;

BEGIN

nunits := ninputs + nhiddens + nouts;

exptss := 0.0;

expmis_classf := 0.0;

u := 0.0;

u2 := 0.0;

u3 := 0.0;

u4 := 0.0;

RESET_TSS;

END; (* PROCEDURE !NIT VARS *)

69

(**)
(* P R 0 C E D U R E R E A D D A T A *)
(**)
(* *)
(* THIS PROCEDURE IS TO READ INPUT PATTERNS' FROM THE *)
(* PATTERN FILE. THEN IT WILL LOAD THE BIAS AND *)
(* WEIGHT ARRAYS BY THE TRAINED VALUES OBTAINED FROM *)
(* THE RESULTING WEIGHTS AND BIASES PRODUCED BY *)
(* THE BACKPROPAGATION ALGORITHM. *)
(* *)
(**)

PROCEDURE READ_DATA:

var i, j, n : integer:

BEGIN

pel
pc2
n

:=
·-.-
·-.-

o:
o:
1:

while not eof(ptrnfl) do
begin

readln(ptrnfl, e):

case e of
1: pel := pel +
2: pc2 := pc2 +

end:

1:
1:

while not eoln(ptrnfl) do
begin

end:

read(ptrnfl, pats(.n.)):
n := n+l:

readln(ptrnfl):

end: (* WHILE *)

pc := pel + pc2:

for i:= 1 to nunits-ninputs do
begin

read(inwtfl, bias(.i.));
outbias (. i.) : = bias (. i.) :

end:
readln (inwtfl) ,:

70

n := 1;
for i:= 1 to nhiddens do
begin

for j:= 1 to ninputs do
begin

read(inwtfl,inwts(.n.));
n := n+1;

end;.
readln(inwtfl):

end;

for i:= nhiddens+1 to nunits-ninputs do
begin .

end;

for j:= 1 to nhiddens do
begin

end;

read (inwtfl , inwts (._ n.)) ;
n := n+1;

readln(inwtfl):

END; (* PROCEDURE READ DATA *)

(**)
(* P R 0 C E D U R E L 0 A D N E T *)
(**)
(* *)
(* THIS PROCEDURE IS TO LOAD THE WEIGHT MATRIX FROM *)
(* THE INPUT WEIGHT ARRAY WHICH HAS BEEN FILLED BY *)
(* THE TRAINED WEIGHTS RESULTING FROM THE *)
(* BACKPROPAGATION PROCESS. *)
(* *)
(**)

PROCEDURE LOAD_NET;

var i, j, k : integer;

BEGIN

k := 1;

for i:= 1 to nhiddens do
begin

for j:= 1 to ninputs do
begin

end;
end;

w[i][j] := inwts[k];
k := k+1;

71

for i:= nhiddens+l to nunits-ninputs do
begin

for j:= 1 to nhiddens do
begin

w[i][j] := inwts(k];
k := k+l;

end;
end;

END; (* PROCEDURE LOAD NET *)

(***~************)
(* *)
(* THIS PROCEDURE CALCULATES THE SQUARED E~OR FOR *)
(* EACH PATTERN AND THE GLOBAL SUM OF SQUARED ERROR *)
(* FOR ALL PATTERNS. IT ALSO COMPARES THE OBTAINED *)
(* OUTPUT WITH THE TARGET OUTPUT FOR EACH PATTERN. *)
(* IF THE ACTUAL OUTPUT IS CLOSE TO THE DESIRED ONE *)
(* THEN THE PATTERN IS CONSIDERED AS WELL CALSSIFIED. *)
(* IF THE ACTUAL OUTPUT IS NOT CLOSE TO THE DESIRED *)
(* ONE THEN THE PATTERN IS CONSIDERED AS MISCALSSIFIED*)
(* *)
(**)

PROCEDURE COMP_PRFRMNC;

var i, j : integer;

BEGIN

for i:= nhiddens+l to nhiddens+nouts-1 do
begin

if (count <= pel) then
pss := ((1.0- o(.i.))*(l.O- o(.i.))) +

((0.0 -o(.i+l.))*(O.O - o(.i+l.)))

else

pss := ((0.0- o(.i.))*(O.O -.o(.i.))) +
((1.0 -o(.i+l.))*(l.O- o(.i+l.)));

tss := tss + pss; (* GLOBAL SUM OF PSS FOR
~ PATTERN FILE *)

(* THE MISCLASSIFICATION RULE *)

if(count <= pel) then

72

end;

begin

if((o(.i.) >= 0.8) and (o(.i.) <= 1.2) and
(o(.i+1.) <= 0.2) and (o(.i+1.) >= -0.2))

then
correct classf := correct classf + 1

else

mis classf := mis_classf + 1;

end
else
begin

end;

if((o(.i+1.) >= 0.8) and (o(.i+1.) <= 1.2)
and (o (. i.) <= o. 2) and (o (. i.) >= -o. 2))
then ·
correct classf := correct classf + 1

else

mis classf := mis classf + 1;

END; (* PROCEDURE COMP PRFRMNC *)

(**)
(* P R 0 C E D U R E N 0 R M A L I Z E P R I N T *)
(**)
(* *)
(* THIS PROCEDURE NORMALIZES MISCLASSIFICATION RATE *)
(* TO %100 AND THEN IT PRINTS OUT RESULTS FOR TSS *)
(* AND CORRECT CLASSIFICATION RATIO. *)
(* *)
(**)

PROCEDURE NORMALIZE_PRINT;

BEGIN

me ·- mis classf; .-
me := (mc/pc) * 100.0;

cc := correct classf;
cc := (ccjpc) * 100.0;

73

writeln(outfl):
writeln(outfl):
writeln(outfl):

write(outfl 1 1 *'):
writeln(outfl 1 '**************************************'):

write(outfl 1 ' *'):
writeln(outfl 1 ' *1):

write(outfl 1 1 *'):
writeln(outfl 1 '

write(outfl;'
writeln(outfl 1 1

write(outfl 1 1

writ~ln(outfl 1 1

write (outfl 1 '·

writeln(outfl 1 '

write(outfl 1 '

writeln(outfl 1 1

write.(outfl 1 1

writeln(outfl 1 1

write(outfl 1 '

writeln(outfl 1 '

write(outfl 1 1

writeln(outfl 1 1

write(outfl 1 '

writeln(outfl 1 '

write(outfl 1 '

writeln(outfl 1 '

write (outfl 1• '

wri teln (out fl. 1 '

write(outfl 1 1

writeln(outfl 1 '

*') :

*

*') :

*') :

*

*') :
*') :

*
*') :

*') :
*') ;
*') ;

write(outfl 1 ' *'):

*') :

*') :
TRAINING SET =' I

str4:6):
*') :

*I) :

*') :
TESTING SET =I

I

str5:6):
*') :

*I) :

*') :
CORRECT CLASSIFICATION %= 1 1

cc: 8:2) :

*') ;

*') ;

*I) i

writeln(outfl 1 '************************************** 1):

writeln(outfl):

writeln(outfl);
writein(outfl 1 '*************

writeln(outfl); .
writeln(outfl 1 '*************

writeln(outfl);

TRAINING SET = ' I

str4:6);

TESTING SET =' I

str5:6);

writeln(outfl 1 1 ******* START MISSCLASSIFICATION% = 1

1 me: 8:2) ;
writeln(outfl);
write(outfl 1 1 THE MONTE CARLO');
writeln(outfl 1 1 SIMULATION RESULTS');

74

write (outfl, • I) i
writeln (outfl, 1 1) ;
writeln(outfl);---------------------------------
writeln(outfl);

END; (* PROCEDURE NORMALIZE PRINT *)

(**)
(* P R 0 C ED U R E C H.A N G E,_-W EIGHTS*)
(**)
(* *)
(* THIS PROCEDURE CHANGES NETWORK'S WEIGHTS TO THE *)
(*NEW SET OF ALTERED WEIGHTS TO STUDY,THE EFFECT OF *)
(* WEIGHT PERTURBATION RATIO ON THE PERFORMANCE OF *)
(* THE SPECIFIED NETWORK. *)
(* *)
(**)

PROCEDURE CHANGE_WEIGHTS;

var i, j, k : integer;

BEGIN

k := 1;

for i:= 1 to nhiddens do
begin

for j:= 1 to ninputs do
begin

end;
end;

w[i][j] := outwts[k];
k := k+1;

fori:= nhiddens+1 to.nunits-ninputs do
begin

for j:= 1 to nhiddens do
begin

end;
end;

w[i][j] := outwts[k];
k := k+1;

END; (* PROCEDURE CHANGE_WEIGHTS *)

75

(**)
(* M A I N P R 0 G R A M *)
(**)

BEGIN

writeln:
writeln('ENTER NUMBER OF INPUT NODES'):
writeln:
readln(ninputs):
writeln:
writeln('ENTER NUMBER OF HIDDEN NODES'):
writeln:
readln(nhiddens):
writeln:
writeln('ENTER NUMBER OF OUTPUT NODES'):
writeln:
readln(nouts):
writeln:
writeln('ENTER TRAINING SET'):
writeln: ·
readln(str4):
writeln:
wri teln (''ENTER TESTING SET 1) :

writeln:
readln(str5):
writeln:
writeln('ENTER INPUT WEIGHT FILE NAME'):
writeln:
readln(strl):
writeln:
assign(inwtfl,strl):
reset(inwtfl):
writeln('ENTER INPUT PATTERN FILE NAME'):
writeln:
readln(str2): ·
writeln:
assign(ptrnfl,str2):
reset(ptrnfl):
writeln('ENTER OUTPUT FILE NAME'):
writeln:
readln(str3):
writeln:
assign(outfl,str3):
rewrite(outfl):

INIT_VARS: (* MODl
READ_DATA:
LOAD_NET:

NETWORK INITIALIZATION *)

(* MOD2 : TRAINED WEIGHTS PERFORMENCE *)
for count:= 1 to pc do
begin

76

TEST_NET;
COMP_PRFRMNC;

end; (* PATTERN FILE TEST *)

NORMALIZE_PRINT;

(* MOD3 THE MONTE CARLO METHOD *)

y := 1000.0;
lamda := 0.00;

FOR i:= 1 to 10 DO

begin
INIT_VARS;
lamda := lamda + 0.05;

writeln('lamda = ',lamda:8:3);

FOR j:= 1 to trunc(Y) DO
begin

RESET_TSS;

for k:= 1 to
(nouts*nhiddens + nhiddens*ninputs) do

begin.

end;

r := random;
temp := 4 * lamda * inwts(.k.) *

(r -0.5);
outwts(.k.) :=temp+ inwts(.k.);

for k:= 1 to nunits-ninputs do
begin

end;

r := random;
temp2 := 4 * lamda * bias(.k.) *

(r -0.5);
outbias(.k.) := temp2 + bias(.k.);

CHANGE_WEIGHTS;

for count:= 1 to pc do
begin

end;

TEST_NET;
COMP_PRFRMNC;

77

exptss
u

:= exptss + (tss * (1.0/Y));
:= u + tss;

END;

u2

me
me

:= u2 + (tss * tss);

:= mis elassf;
:= (me/pe) * 100.0;

expmis elassf := expmis elassf +
(me* (1.0/Y));

:= u3 + me; u3
U4 := u4 + (me * me);

vartss := (1.0/(Y - 1.0) *
(u2 , - ((1. 0/Y) * (u*u)))) ;

varmis elassf := (1.0/(Y ~ 1.0) *
(u4 - ((l.O/Y).*(u3*u3))));

stdtss : = sqr~ (vartss) ; .

stdmis elassf := sqrt(varmis_elassf);

mtss ·- exptss - stdtss; .-
ptss ·- exptss + stdtss; .-
mmis elassf ·- expmis_ elassf stdmis elassf; .-- -
pmis elas'sf ·- expmis_ elassf + stdmis elassf; .- -

writeln(outfl);
write(outfl,' THIS IS A. NEW TEST WITH');
writeln(outfl,'TOLERANCE RATE=' lamda:8:2);
writeln(outfl);

writeln(outfl, 'E(tss) is

writeln(outfl,'MNS(tss) is
writeln(outfl,'PLS(tss) is
writeln(outfl);

. ' .
,exptss:8:2);
: ' ,·mtss: 8:2) ;
: ' , ptss: 8 : 2) ;

writeln(outfl,'E(mis_elassf) is%:'
,expmis_elassf:8:2);

writeln(outfl,'MNS(mis_elassf) is:'
,mmis elassf:8:2);

writeln(outfl,'PLS(mis_elassf) is :•
,pmis_elassf:8:2);

writeln(outfl);

78

END;

writeln(outfl);
writeln(outfl);

close(inwtfl);
close(ptrnfl);
close(outfl);

END. (* MAIN PROGRAM *)

79

APPENDIX C

THE RELATIONSHIP BETWEEN WEIGHT

TO~RANCE AND MISCLASSIFICATION RATE

80

1,

45

40-

35-

(I) 30-
1ii
a:
.... 25-
~-
'5 20-
0.
::J
0 15-

1Q-

s~

(}
0

I T I I T T 1 1 I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Weight Tolerance Rate

Figure 1. Minimum Effect on Generalization

())

......

4)

1ii
a:
'-g
w
'S
0.
'S
0

45

4C

35

30

25·

20·

10

5

o.
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Weight Tolerance Rate

Figure 2. Maximum Effect on Generalization

4.15

40-

35-

(I) 30-
1ii -a: 25-e
w
..... 2()-::l
Q.
::l
0 15-

1 0·

5-

0. I I I I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Weight Tolerance Rate

Figure 3. Classification Difficulty= 22.22 Percent

....
:~
l:l. s
0

45~~--~

0~+---~----~--~----~----r----r----r----r----r---~

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Weight Tolerance Rate

Figure 4. Classification Difficulty = 33.33 Percent

4)

7ii
a: ,_
g
w ...
:l
0.. ...
:l
0

45

40

35·

30·

25·

20-

15-

10-

5·

0
0

I I I 1 I I I I I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Weight Tolerance Rate

Figure 5. Classification Difficulty = 38.46 Percent
00
l1l

45

40-

35-

<D 30-
1ii
a: ... 25-2 ...
w ... 20-:::J
.9-
:::J
0 15-

1Q-

5-

0 I I I I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Weight Tolerance Rate

Figure 6. Classification Difficulty= 42.86 Percent

4)

1ii
a: ... g
UJ

:s
~
0

45-r-----·

Figure 7. Various Classification Difficulties

VITA d·"
Mohammad Ahmad Alrab

Candidate for the Degree of

Master of Science

Thesis: SENSITIVITY OF NEURAL NETWORKS TO RANDOM
CHANGE WITH PERTURBED WEIGHTS AND BIASES

Major Field: Computer Science

Biographical:

Personal Data : Born in Taulkarm, West Bank in February
11, 1964, the son of Ahmad Alrab and Wesal Alrab.

Education : Graduated from JENIN High School in
1982, received a Bachelor Degree of Engineering
in Electrical and Computer Engineering from
Yarmouk University, Irbid, Jordan in 1988.
Completed requirements for the Master of Science
degree at Oklahoma State University in May, 1992.

Professional Experience: Electrical Engineer,
Telecommunication Association, Irbid, Jordan.

