
DEEP MULTILAYER CONVOLUTION FRAMEWORKS FOR

DATA-DRIVEN LEARNING OF NONLINEAR DYNAMICS IN

FLUID FLOWS

By

Shivakanth Chary Puligilla

Bachelor of Technology in Aeronautical Engineering
JNTU
2010

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

August 2, 2018

DEEP MULTILAYER CONVOLUTION FRAMEWORKS FOR

DATA-DRIVEN LEARNING OF NONLINEAR DYNAMICS IN

FLUID FLOWS

Thesis Approved:

Dr. Balaji Jayaraman

Thesis Advisor

Dr. He Bai

Dr. Omer San

Dr. Rushikesh Kamalapurkar

ii

Dedicated to

my mother Suryamani

and

father Satyam Chary

Acknowledgments reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

ACKNOWLEDGMENTS

I thank Dr. Balaji, for providing support through my research work. Providing me

with feedback that helped me to work efficiently and focus on improving knowledge.

He would always say ”Do the karma (deed) and the results will follow”. I would

like to thank my committee members Dr. He Bai, Dr. Rushi Kamalapurkar and Dr.

Omer San for providing helpful feedback. I would like to thank Dr. San for all the

ideological discussions on research ranging from machine learning to Turbulence.

Further, I would like to thank all my lecturers for imparting a great deal of knowl-

edge without which my research would not have been successful.

I thank my friends and colleagues in lab, Romit, Chen Lu, Matt Mitchell, Saadbin,

Prashant, Saurab, Vivek, Mansoor and Abdullah for all the time spent together

learning and discussing ideas. Romit Maulik for the discussions on Machine learning

theories and ideas we thought about.

I thank the MAE staff Beth, Chelsea, Diane and Daleene who have been very

friendly and helpful. Special thanks to Beth for helping me swiftly at times of need.

I thank my partner in crime (life and research) my wife Vagbharathi for being

there for me in every aspect of my life and providing me unconditional love and

encouragement. I thank my parents and siblings for there love and support which

gave me strength and courage to pursue my dreams. Especially, my mother who

passed away an year ago during my study here, who against all odds took care of me

and motivated me to follow my dreams. Helped me fulfill my ambitions and made

me come to USA to pursue my graduate studies.

Acknowledgments reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

iv

Name: SHIVAKANTH CHARY PULIGILLA

Date of Degree: JULY, 2018

Title of Study: Deep Multilayer Convolution Frameworks for Data-Driven Learning
of Nonlinear Dynamics in Fluid Flows

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abundance of measurement and simulation data has led to the proliferation of
machine learning tools for model-based analysis and prediction of fluid flows over the
past few years. In this work we explore globally optimal multilayer convolution mod-
els such as neural-networks(NNs) for learning and predicting dynamics from transient
fluid flow data. While machine learning in general depends on data quality of the
system, it is important for a given data-driven learning architecture to make the most
of this available information. To this end, we cast the suite of recently popular data-
driven learning approaches that approximate Markovian dynamics through a linear
model in a higher-dimensional feature space as a multilayer architecture similar to
neural networks, but with layer-wise locally optimal convolution mappings. As a
contrast, we also represent the traditional neural networks with some slight modifi-
cations as a multilayer architecture, with convolution maps optimized to minimize
the global learning cost. We show through examples, that globally optimal NN-like
methods owe their success to leveraging the extended learning parameter space avail-
able in multilayer models to achieve a common goal of minimizing the cost function
while incorporating nonlinear function maps between layers. While locally optimal
methods allow for forward-backward convolutions, the standard globally optimal NNs
can only handle forward maps which prevent their use as Koopman approximation
tools. To this end, we developed novel deep learning neural network architecture,
deep Koopman network which overcomes this limitation of symmetry by addition of
penalty network. Further, we explored the feasibility of deep autoencoder networks
(DAENs) as data-driven mappings into the observable space where the dynamics can
be approximated as a linear time-invariant (LTI) system. The eigenmodes and the
eigenvalues of the Koopman operator provide information about the structures in the
data that are associated with their unique growth rate and frequency. The relevance
of these structures and eigenvalues to the real system is tied to how closely the Koop-
man operator-based model approximates the real dynamics, which, in turn depends
on the choice of observable. Traditional approaches for non-local optimization such
as those in neural networks and deep learning are gradient-based and hence, limited
to convolution basis functions whose derivatives are either known or computed ac-
curately using numerical means. To realize the full potential of this deep learning
framework, these algorithms need to be extended to arbitrary choice of convolution
basis. To this end, we explored the use of gradient free optimization techniques for
learning using a wider choice of functions. We illustrated these ideas by learning
the dynamics from snapshots of training data and predicting the temporal evolution
of canonical nonlinear fluid flows including the transient limit-cycle attractor in a
cylinder wake and the instability-driven dynamics of buoyant Boussinesq flow.

v

Journal Publications

• Neural Networks as Globally Optimal Multilayer Convolution Architectures for

Learning Fluid Flows, SC Puligilla, B Jayaraman - arXiv preprint arXiv:1806.08234,

2018

• Spectral Analysis of Nonlinear Fluid Flows using Deep Autoencoder Network-

based Convolutions, SC Puligilla, B Jayaraman, (Manuscript in preparation)

• Deep Koopman Multilayer Networks for Data-driven Modeling and Spectral

Analysis of Fluid Flows., SC Puligilla, B Jayaraman, (Manuscript in prepara-

tion)

Conference Proceedings

• Deep Multilayer Convolution Frameworks for Data-Driven Learning of Fluid

flow Dynamics, SC Puligilla, B Jayaraman - 2018 Fluid Dynamics Conference,

AIAA AVIATION 2018

• A convolution and Artificial Neural Network enabled Machine learning frame-

work for fluid flows, P Shivakanth Chary, B Jayaraman, 37th Oklahoma AIAA/ASME

Symposium

vi

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Markov Models . 4

1.2.1 Symmetric Markov Linear Model: Koopman 5

1.3 Deep Neural Networks . 6

1.4 Objectives and Scope of this Study 9

1.5 Fluid Flows and Data Generation . 12

1.5.1 Transient Wake Flow of a Cylinder 12

1.5.2 2D Buoyant Boussinesq Mixing Flow 14

2 Linear vs. Nonlinear Modeling for Prediction 17

2.1 Introduction . 17

2.2 Data-driven Markov Models for Transient Dynamical Systems 20

2.2.1 Koopman as Markov Linear Model 21

2.2.2 Markov Model using Multilayer Locally Optimal Convolution

(MLOC) . 24

2.2.3 Markov Model using Multilayer Globally Optimal Convolution

(MGOC) . 31

2.3 Numerical Experiments and Discussion 35

2.3.1 Experiments . 36

2.3.2 Analysis Framework . 38

2.3.3 Prediction Framework and Error Metrics 39

2.3.4 Learning and Predicting Limit-cycle Cylinder Wake Dynamics 41

2.3.5 Learning and Prediction of a Transient Cylinder Wake Dynam-

ics . 45

2.3.6 Learning and Prediction of a Transient 2D Buoyant Boussinesq

Mixing Flow . 57

2.4 Summary . 60

vii

3 Deep Koopman Networks: Predictions 61

3.1 Methodology . 65

3.1.1 Forward Propagation for a 6 Hidden Layer Network 68

3.1.2 Penalty Network for Symmetry 68

3.1.3 Cost Functions . 69

3.1.4 Proof of Symmetry . 69

3.1.5 Back Propagation for 6 Hidden Layer Network 69

3.1.6 Conjugate Gradients . 70

3.2 Results . 70

3.2.1 Validating with Limit-cycle Dynamics 73

3.2.2 Learning and Prediction of a Transient 2D Buoyant Boussinesq

Mixing Flow . 77

3.2.3 Transient Cylinder Wake Dynamics Predictions 83

3.3 Summary . 86

4 Deep Koopman Networks: Spectral Analysis 88

4.1 Spectral Analysis . 90

4.1.1 Koopman Modes and Eigenvalues 92

4.2 Results . 92

4.2.1 Limit Cycle Dynamics of Cylinder Flow 93

4.2.2 Identification of Dominant and Allied Structures via Dynamic

Mode Decomposition . 96

4.3 Spectral Analysis of Transient Dynamics of Cylinder Flow 98

4.3.1 Effect of Input Features vs Hidden Features Increase on Spec-

tral Information . 106

4.3.2 Significance of Accurate Predictions on Spectral Information . 109

5 Genetic Algorithm based Global Optimal Convolution 111

5.1 Introduction . 111

5.2 Methodology . 112

5.2.1 Modified MGOC-1 . 113

5.2.2 Inverse Mapping Transfer Function: Tansigmoid 114

5.2.3 Non-dominated Sorting Genetic Algorithm 115

5.3 Test Bed: Flow over a Cylinder . 115

5.4 Results . 117

viii

5.4.1 Modeling Fluid Flow: Multi-Objective Problem 117

5.5 Summary . 120

6 Conclusions and Recommendations 124

6.1 Summary . 124

7 Appendix 136

7.1 Effect of Bias on Predictions . 136

7.2 Spectral Analysis of the Transient 2D Buoyant Boussinesq Mixing Flow 139

7.3 Tutorial on Inhouse Deep Koopman Network Code and Backpropaga-

tion Algorithm . 144

7.3.1 Weights: Random Initialization 146

7.3.2 Gradient Checking: Validating Backpropagation Algorithm . . 147

7.3.3 P - HL Network for FFNN and DKN 147

7.3.4 Post Processing Codes . 154

ix

LIST OF TABLES

Table Page

2.1 Overview of the methods used as part of this analysis. The dimensions

of the different layers correspond to that used for cylinder wake flow

model. 39

2.2 Prediction error estimates for layer-wise local (MLOC) and global op-

timization methods (MGOC) for Re = 100. 47

2.3 Prediction error estimates for layer-wise local (MLOC) and global op-

timization methods (MGOC) for Re = 1000. 56

3.1 Overview of the methods used as part of analysis in this chapter. The

dimensions of the different layers correspond to that used for learning

the model. 73

3.2 Prediction error estimates for layer-wise local (MLOC) and global op-

timization based Koopman networks for Re = 100. 82

4.1 Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies

(Im(λ)) obtained from Limit cycle dynamics of cylinder wake flow. . 95

4.2 Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies

(Im(λ)) obtained from Transient region - I. 102

7.1 Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies

(Im(λ)) obtained from 2-D Boussinesq Bouyant mixing flow. 141

x

LIST OF FIGURES

Figure Page

1.1 Engineering flows . 2

1.2 A schematic of the overview, describing the research approach used in

developing the methodology for this work. 4

1.3 Velocity field snapshots of Re100 flow field. 14

1.4 Time evolution of the isocontours of the temperature field in the 2D

buoyant Boussinesq mixing layer is shown over a 32 sec time period. 16

2.1 Schematic of a six-layer representation of the multilayer locally optimal

convolution (MLOC) framework to approximate the Koopman opera-

tor. X, Y represent state space matrices and C+
i , Ci, represent the

convolution and reconstruction operations respectively. The arrows in-

dicate direction of the convolution, i.e., C+
1 acts on X to yield X̄ and

C1 acts on Ȳ to yield Y . Θ represents an approximate Koopman op-

erator shown in Eq. (4.6). The size of data matrices in the high (X)

and low dimensional(X̄ or ¯̄X) space is also shown. 26

2.2 A four-level Koopman approximation LOC framework with linear maps. 27

2.3 A six-level Koopman approximation LOC framework with nonlinear

maps (N , N−1) with I representing identity convolution operation. 29

2.4 A six-level Multi layer GOC (6-MGOC) framework inspired from feed

forward neural network architectures in machine learning and artificial

intelligence, where Θl, Nl with arrow represents a convolution opera-

tion followed by a nonlinear mapping (see Eq. (2.32)) respectively. . . 32

2.5 A representative comparison of architectures (a)6-MLOC-P (EDMD-

P) and (b)6-MGOC (FFNN) methods which use local and non-local

optimization, respectively . 35

2.6 Energy content in POD features selected (a) 3 coefficients (b) eigen

modes/functions corresponding to 3 POD features (c) phase portrait

of Re = 100 flow. 37

xi

2.7 Energy content in POD features selected (a) 3 coefficients (b)eigen

modes/functions corresponding to 3 POD features (c) phase portrait

of Re = 1000 flow. 37

2.8 Time evolution of the POD weights, ati for the buoyant mixing flow. . 38

2.9 Schematic showing the different training regions chosen for prediction

using the different models. 42

2.10 Times series of predicted POD features () obtained from (a) 4-

MLOC-I1, (b) 6-MGOC-I1, (c) 6-MLOC-TS1 and (d) 6-MGOC-TS1

are plotted with their respective original data () in the limit cycle

regime. 44

2.11 Times series of predicted POD features obtained from (a) 4-MLOC-I1,

(b) 6-MLOC-TS1 and (c) 6-MGOC-TS1 for TR-I as training region. . 48

2.12 Times series of predicted POD features obtained from (a) 6-MLOC-P2,

(b) 6-MGOC-TS3 for TR-I as training region. 50

2.13 Times series of predicted POD features obtained from (a) 6-MLOC-P7,

(b) 6-MGOC-TS9 and (c) 6-MGOC-TS20 for TR-I as training region. 50

2.14 Times series of predicted POD features obtained from (a) 6-MLOC-P2,

(b) 6-MGOC-TS3 for TR-II data. 53

2.15 Times series of predicted POD features obtained from an extended LP

space (a) 6-MLOC-P7, (b) 6-MGOC-TS9 and (c) 6-MGOC-TS20 for

TR-II data. 53

2.16 Reconstruction of Re100 flow field based on predicted POD features

obtained from (a) Actual data, (b) 4-MLOC-I1 (c) 6-MLOC-TS1 (d) 6-

MLOC-P2 (e) 6-MLOC-P7 (f) 6-MGOC-TS1 (g) 6-MGOC-TS3 (h) 6-

MGOC-TS9 comparison with 15 equally spaced contour levels ranging

between (−0.2645, 1.2963) . 54

2.17 Times series comparison plot of the predicted POD features with the

original data for TR-I data using different MLOC and MGOCmodeling

frameworks. (a) 6-MLOC-P2 (EDMD-P2) and (b) 6-MGOC-TS3. . . 55

2.18 Time series comparison plot of the predicted POD features with the

original data for TR-I data using different MLOC and MGOCmodeling

frameworks. (a) 6-MLOC-P7 (EDMD-P7), (b) 6-MGOC-TS9 and (c)

6-MGOC-TS20. 56

xii

2.19 Time series comparison plot of the predicted POD features with the

original data for TR-II data using different MLOC and MGOC model-

ing frameworks. (a) 6-MLOC-P7 (EDMD-P7), (b) 6-MGOC-TS9 and

(c) 6-MGOC-TS20 . 56

2.20 Visualization of the first three POD basis (in decreasing order of energy

content) used to model the dynamics with the data-driven models. . . 58

2.21 Times series comparison plot of the 3 POD weights with the original

data with entire data used for training (a)4-MLOC-I1 (DMD or 6-

MLOC-P1) , (b) 6-MLOC-TS1 and (c) 6-MGOC-TS1 59

2.22 Times series comparison plot of the 3 POD weights with the original

data with complete data used for training (a) 6-MLOC-P3 (EDMD-P3)

, (b) 6-MGOC-TS3 and (c) 6-MGOC-TS5 59

2.23 Times series comparison plot of the 3 POD weights with the original

data with half data used as training (a) 6-MLOC-TS1 , (b) 6-MLOC-

P2 and (c) 6-MGOC-TS3 . 60

3.1 Deep Koopman Network (DKN) where the red bounding box repre-

sents encoder and the orange bounding box the decoder. 67

3.2 Two set Autoencoder Network (AEN) where the red bounding box

represents encoder and the orange bounding box the decoder. 67

3.3 A schematic representation of the inner loop and outer loop prediction

in Koopman networks (DKN and AEN) 72

3.4 Comparison of inner loop predictions based POD weights, where (1st

and 2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and

4th row): 4 - HL and 6 - HL Deep Koopman Network (DKN) 74

3.5 Comparison of outer loop predictions of POD weights, where (1st and

2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th

row): 4 - HL and 6 - HL Deep Koopman Network (DKN) 75

3.6 Comparison of inner loop vs outer loop predictions in Koopman space

from 7- H L Auto-Encoder (AEN) . 76

3.7 Comparison of inner loop vs outer loop predictions in Koopman space

from 6 - HL Deep Koopman Network (DKN) 77

xiii

3.8 Comparison of inner loop predictions based POD weights, where (1st

and 2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th

row): 4 - HL and 6 - HL Deep Koopman Network (DKN)for Buoyant

Boussinesq Mixing Flow . 78

3.9 Comparison of outer loop predictions of POD weights, where (1st and

2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th

row): 4 - HL and 6 - HL Deep Koopman Network (DKN) for Buoyant

Boussinesq Mixing Flow . 79

3.10 Plot of cost function minimization with respect to number of iterations,

(top:left) 5 - HL AEN, (top: right) 4 - HL DKN , (bottom:left) 7 - HL

AEN and (bottom: right) 6 - HL DKN for Buoyant Boussinesq Mixing

Flow . 80

3.11 Comparison of inner loop vs outer loop predictions in Koopman space

of 7 - HL Auto-Encoder (AEN) for Buoyant Boussinesq Mixing Flow 81

3.12 Comparison of inner loop vs outer loop predictions in Koopman space

of 6 - HL Deep Koopman Network (DKN)for Buoyant Boussinesq Mix-

ing Flow . 81

3.13 Plot of cost function minimization with respect to number of iterations,

(top:left) 5 - HL AEN, (top: right) 4 - HL DKN , (bottom:left) 7 - HL

AEN and (bottom: right) 6 - HL DKN 84

3.14 Comparison of inner loop predictions based POD weights, where (1st

and 2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and

4th row): 4 - HL and 6 - HL Deep Koopman Network (DKN) 84

3.15 Comparison of outer loop predictions of POD weights, where (1st and

2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th

row): 4 - HL and 6 - HL Deep Koopman Network (DKN) 85

3.16 Comparison of the Koopman operator obtained from the 6 - HL - DKN

and 7 - HL - AEN (first row) Buoyant Boussinesq Mixing Flow and

(second row) Cylinder flow . 85

3.17 Comparison of outer loop predictions of POD weights, where (1st and

2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th

row): 4 - HL and 6 - HL Deep Koopman Network (DKN) 86

3.18 Comparison of the Koopman operator obtained from the 6 - HL - DKN

and 7 - HL - AEN of Cylinder flow 86

xiv

4.1 Comparison of outer loop and MLOC predictions of POD weights,

where (1st and 2nd row): DMD and EDMD with 55 POD weights, (3rd

and 4th row): 6 - HL DKN and 7 - HL AEN with 3 POD weights . . 93

4.2 Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN . . . 96

4.3 Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN . . 97

4.4 Comparison of growth rate and frequencies of (1st row)7 - HL Auto-

Encoder(AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN)

. 97

4.5 Comparison of select growth rate and frequencies of (1st row)DMD and

(2nd row): EDMD for understanding the Koopman mode structures. . 98

4.6 Koopman Eigen functions obtained using DMD with 55 POD weights 99

4.7 Koopman Eigen functions obtained using EDMD with 55 POD weights

and 2nd order polynomial mapping 99

4.8 Comparison of the Koopman operators from DMD, EDMD, DKN and

AEN methods. 103

4.9 Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN . . . 104

4.10 Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN . . . 104

4.11 Comparison of growth rate and frequencies of (1st row) 7 - HL Auto-

Encoder (AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN) 105

4.12 Koopman Eigen functions obtained using 7 - HL AutoEncoder Network

(AEN), with 3 POD weights . 105

4.13 Koopman Eigen functions obtained using 6 - HL Deep Koopman Net-

work (DKN), with 3 POD weights . 106

4.14 Comparison of predictions (1st row)5 - HL Auto-Encoder (AEN) and

(2nd row): 4 - HL Deep Koopman Network (DKN) 107

4.15 Ritz plot of eigenvalues(µ) spectrum obtained from 4 - HL DKN . . . 107

4.16 Comparison of growth rate and frequencies of (1st row)5 - HL Auto-

Encoder (AEN) and (2nd row): 4 - HL Deep Koopman Network (DKN) 108

4.17 Koopman Eigen functions obtained using 5 - HL Autoencoder Network

(AEN), with 10 POD weights . 108

4.18 Koopman Eigen functions obtained using 4 - HL Deep Koopman Net-

work (AEN), with 10 POD weights 109

4.19 Comparison of predictions (1st row) 7 - HL Auto-Encoder (AEN) and

(2nd row): 6 - HL Deep Koopman Network (DKN) 110

xv

4.20 Comparison of growth rate and frequencies of (1st row) 7 - HL Auto-

Encoder (AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN) 110

5.1 A schematic representation of the Modified Feed Forward Neural Net-

work with N−1 used for symmetric architecture. 113

5.2 Schematic of the NSGA-II algorithm process 116

5.3 Velocity field snapshots of Re100 flow field. 117

5.4 POD modes and their corresponding time series weights are plotted . 119

5.5 Pareto front of apriori error vs. aposteriori error 121

5.6 Prediction results from the Rank 1 pareto front from NSGA-2 122

5.7 Comparison of prediction results between (a) DMD, (b) EDMD, (c)

MFFNN-BP and (d) MFFNN-GA (best of the Rank 1 pareto front

from NSGA-2). 123

7.1 Times series of predicted Re100 POD features obtained from (a) 6 -

MGOC -TS1 (b) 6 - MGOC - TS3 and (c) 6 - MGOC - TS9 compared

with their respective original coefficients for TR-I region. 137

7.2 Times series of predicted Re100 POD features obtained from (a) 6 -

MGOC - TS3 and (b) 6 - MGOC - TS9 compared with their respective

original coefficients for TR-II region. 137

7.3 Times series of predicted Re1000 POD features obtained from (a) 6 -

MGOC - TS1 (b) 6 - MGOC - TS3 and (c) 6 - MGOC - TS9 compared

with their respective original coefficients in the TR-I. 137

7.4 Times series of predicted Re1000 POD features obtained from (a) 6 -

MGOC - TS3 and (b) 6 - MGOC - TS9 compared with their respective

original coefficients in the TR-II. 138

7.5 Comparison of Koopman operators obtained, where (1st row): from

DMD and EDMD and (2nd row): 6 - HL Deep Koopman Network

(DKN) and Auto-Encoder Network for 2-D Boussinesq Bouyant mixing

flow . 139

7.6 Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN for

2-D Boussinesq Bouyant mixing flow 140

7.7 Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN for

2-D Boussinesq Bouyant mixing flow 142

xvi

7.8 Comparison of growth rate and frequencies of (1st row)7 - HL Auto-

Encoder(AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN)

for 2-D Boussinesq Bouyant mixing flow 143

xvii

CHAPTER 1

Introduction

1.1 Overview and Motivation

Fluid flows are predominantly multiscale phenomena occurring over a wide range of

length and time scales such as transition (Edstrand et al. 2018), turbulence (Wu et al.

2017) and flow separation (Deem et al. 2018). Direct numerical simulation (DNS) of

such realistic high Reynolds number flows even in their canonical forms is a challenge

even with current computing capacity. On the other hand, advances in experimental

techniques for visualization and data acquisition have led to an abundance of fluid

flow measurement data, but these measurements are often sparse and in many cases

the underlying phenomenology or governing model is not known. In both these cases,

there is a need for efficient data-driven models to serve the twin goals of system

modulation to achieve desired effects, i.e. flow control (Kim & Bewley 2007, Brunton

& Noack 2015) or forecasting for improved and informed decision making (Cao et al.

2007, Fang et al. 2009, Benner et al. 2015) or both. Additionally, data-driven models

also allow for extraction of dynamical and physical characteristics to generate novel

insight (Bagheri 2013, Rowley et al. 2009) of the system behavior. A schematic

of the general practice/methodology used in data driven techniques is illustrated in

Fig. 1.2. Wherein, a full order model/experimental data can be used for learning

data via unknown data driven basis or known basis. Learning using unknown basis

generally are focused on predictive modeling, while the central point of learning via

known basis is to improve the knowledge of the underlying physics or phenomenology.

In flow control applications linear operator based control is often preferred due to

1

(a) Flow with multiple scales [In-house]

(b) Flow separation over airfoil [www.dlr.de-
Imprint]

(c) Flow structures in Atmosphere boundary
layer [www.bmeafl.com-AFL]

Figure 1.1: Engineering flows

the sheer volume of available expertise and their past success (Rowley & Dawson

2017) although nonlinear operator based flow control is an emerging area of research.

Consequently, learning a linear system model from data is often preferred. The vast

amount of recent literature (Schmid 2010, Williams et al. 2015) including that from

our team (Lu et al. 2018) addresses this broad area of need, but do not perform

adequately in data-sparse situations. In this work, we explore nonlinear machine

learning frameworks that are capable of overcoming this limitation for canonical fluid

flows which are inspired from the engineering flows presented in Fig. 1.1.

A good data-driven model should perform well in both system identification and

2

prediction using limited amounts of data. In addition, these models need to be com-

putationally tractable which makes dimensionality reduction essential. System iden-

tification enables learning of stability and flow characteristics such as unstable modes

and coherent structures for the purposes of understanding the flow. For example,

proper orthogonal decomposition (POD) (Lumley 2007) via singular value decompo-

sition (SVD) (Trefethen & Bau III 1997) and its close cousin, the Dynamic mode

decomposition (DMD) (Schmid 2010) are well known methods to extract such rele-

vant spectral information. However, the capacity of DMD for long-term prediction is

underwhelming (Lu & Jayaraman 2017). POD-based methods that use Galerkin pro-

jection onto the flow governing equations are more successful, but require knowledge

of the system. In this study, we focus on purely data-driven scenarios without knowl-

edge of governing equations. By long-time predictions, we imply evolving the system

model over multiple characteristic time-scales beyond the training regime. The other

type is to employ the model to predict different system trajectories which is com-

monly referred using the generic term forecasting. Obviously, the precise definition of

the ‘long-time’ prediction or forecasting depends on the flow physics of interest. For

example, a limit-cycle system evolving on a stable attractor will be more amenable

to forecasting from limited data as compared to more complex nonlinear mixing dy-

namics. In the case of cylinder wake flow explored in this study, forecasting represent

predicting the limit cycle (Berkooz et al. 1993, Noack et al. 2003) dynamics using

limited data in the transient region. We explore such cases as they are sensitive to

error growth and hence, used to evaluate a given model. Errors in model learning

can be attributed to limited training data, measurement noise, model over-fitting and

insufficient validation (Bishop et al. 1995, Christopher 2016).

3

Full-order space

Reduced-order space

inputs

inputs

Outputs

Outputs

Numerical/

Experiment

Data

ROM

Operating Conditions

Operating Conditions

Data

Phenomenology

functional

(Wide range of validity)

(Restricted range of validity)

Figure 1.2: A schematic of the overview, describing the research approach used in
developing the methodology for this work.

1.2 Markov Models

There are two classes of approaches for modeling dynamical systems from limited

data, namely Markov and non-Markov models. For a given current state xxxt and

future state xxxt+T of a dynamical system, a Markov model (Wu & Noé 2017), under

some transformation g, h, evolves the system state as g(xxxt+T) = Kh(xxxt). Learning

such an operator K is a key component of building such a model. We consider

a Markovian process to be minimally memory dependent and popular approaches

for modeling such systems include dynamic mode decomposition (DMD) (Schmid

2010, Rowley et al. 2009) and Feed forward neural networks (FFNN). Recently, many

of the linear operator (Rowley & Dawson 2017, Mezić 2005, Williams et al. 2015,

Lu et al. 2018) methods for modeling nonlinear dynamics have been shown to be

generalizable into a Koopman operator (Koopman 1931) theoretic framework. The

Koopman approximation-based methods can be considered as a special case of Markov

models if the transformations (g = h) to the feature space are identical. On the

4

other hand, if the model incorporates history (or copious amounts of memory) of

the state variables to predict a future state, then it is considered non-Markovian.

Recurrent neural networks(RNN) are good examples of non-Markovian models and

have been employed for learning dynamical systems both in the past (Hopfield 1982,

Hochreiter & Schmidhuber 1997) and in recent times (Soltani & Jiang 2016, Yu et al.

n.d.). Although these have shown success, they are very hard to build and train

(Bengio et al. 1994) as compared to standard feed forward neural networks (FFNNs)

(Bengio et al. 2015). This is because, the standard backpropagation-based algorithms

introduce over-fitting and the longer training times can lead to exploding or vanishing

gradient problems.

1.2.1 Symmetric Markov Linear Model: Koopman

While Markov models are popular, especially the linear variants, their success is

often tied to two aspects: (i) the ability of the projection or convolutions to the fea-

ture space (Rowley & Dawson 2017, Taira et al. 2017, Lu et al. 2018) to accurately

map data without loss of information while incorporating the appropriate degree of

nonlinearity and (ii) their ability to capture the evolution of the dynamics in the

feature space (Lu et al. 2018). This renders many such learning methodologies into

an exercise in identifying the optimal ‘magic’ feature maps. A common approach to

building such nonlinear convolution operators is to layer multiple ‘elementary’ con-

volutions (Lu et al. 2018). While DMD (Schmid 2010, Rowley et al. 2009) employs

a single-layer convolution operator based on singular value decomposition (SVD) of

the training data, its multilayer variant EDMD (Williams et al. 2015) incorporates a

second convolution (over a layer of SVD convolution) by embedding nonlinear func-

tions. This approach is effective if one knows the nature of the nonlinearity a priori,

but often results in a very high-dimensional function dictionary to approximate the

data accurately. The kernel variant of this method, KDMD (Williams et al. 2014)

5

helps with dimensionality reduction, but is once again limited by the choice of the

kernel function. A major limitation of all the above multi-layer methods is that the

feature maps are treated independent of each other and obtained using local criteria,

i.e. by direct function evaluation or projection onto a basis space that is optimal with

respect to local features. To overcome these limitations there have been efforts to use

deep neural networks (DNNs) to identify multilayer convolution maps (Puligilla &

Jayaraman 2018a, Otto & Rowley 2017, Lusch et al. 2017) that embed the nonlinear

dynamical system into a Koopman basis space with linear dynamics (Mezić 2005).

The success reported from the use of such deep learning-based Koopman observables

as nonlinear convolution operators to build linear Markov models can be attributed

to finding the optimal transformation using multilevel convolution by identifying the

appropriate combinations among the different layers in the architecture using an ef-

ficient algorithm. While the above work focuses on learning the optimal nonlinear

convolution or feature map followed by the linear operator, the work in this article

explores learning the overall dynamics using a nonlinear Markov model for the given

architecture. Contrasting the two, the former enables prediction of nonlinear dynam-

ics via a linear operator by learning the appropriate map, the latter learns a nonlinear

model for the dynamics as a whole for a given multilayer convolution architecture.

Both these Markovian approaches leverage multilayer convolution and deep learning

in different ways and have broad implications for data-driven modeling.

1.3 Deep Neural Networks

Data-driven learning algorithms are being used successfully in many engineering ap-

plications ranging from optimal sensor placements (Manohar et al. 2017) and recon-

struction (Brunton et al. 2013, Lu et al. 2018) to real time active flow control of flow

separation over an airfoil (Deem et al. 2018), and also applications in identification

of phenomenology or governing models. Specifically, in the realms of flow control and

6

system identification, Koopman theory has emerged as an important research direc-

tion of interest as a generalized framework for modeling nonlinear dynamics. This is

generally accomplished through mapping to the Koopman invariant subspaces where

the system dynamics can be approximated as linear. Dynamic mode decomposition

(Schmid 2010, Rowley et al. 2009) and its variants (Williams et al. 2014, Williams

et al. 2015) are popular Koopman approximation methods and typically employ data-

driven proper orthogonal decomposition (POD) convolutions. These methods have

had varying success in modeling dynamics of fluid flows and have proven to be suc-

cessful as long as the convolution map is optimal, i.e. produces a mapping that both

sparse and appropriately nonlinear. This has motivated the need to find the optimal

convolution maps (Lusch et al. 2017, Otto & Rowley 2017, Williams et al. 2015, Wu

et al. 2018) for a given nonlinear fluid flow physics.

In addition to learning the system dynamics, the primary goal of data driven

methodologies is to extend relevant information from a given set of training mea-

surements to an unknown state as a predictive modeling framework. Such predictive

data driven modeling has great relevance in fields like weather forecasting, where the

dynamics are multi-scale and turbulent (highly nonlinear) for which there exists no

reliable low-order representation capable of capturing the dynamics. In many such

cases, either the underlying governing model is unknown or the direct computation

of these physics is far fetched, even with current computing power. Our goal through

this effort is to develop data-driven models that allow for system identification and

also provide reliable predictions of dynamics.

In particular, a Koopman theory based model should incorporate the following:

1. A convolution map that accurately projects the state data to and from the

feature space without loss of information, while incorporating the appropriate

degree of nonlinearity.

2. A system identification framework to capture the evolution of the dynamics in

7

the feature space.

While many learning algorithms try to find/identify the optimal ’magic’ feature maps,

a common practice is to build nonlinear convolution operators that are composed of

multiple elementary convolutions layered on top of each other and generalized as a

multilayer convolution framework (Lu et al. 2018). However, these operators often

are an assumed form or optimized locally. The framework presented here utilizes

Multilayer Global Optimal Convolution (MGOC) to identify the optimal combination

of the convolution operators for an improved Koopman approximation of the dynamics

(Puligilla & Jayaraman 2018c).

The learning process in MGOC framework is based on back-propagation algorithm

(Rumelhart et al. 1988), which is widely used and helped in popularizing artificial

neural networks. Artificial neural networks have been widely used as shallow networks

that have universal approximation capabilities. The deep variant have demonstrated

excellent accuracy in image classification and regression. More recently, artificial neu-

ral networks have been used in fluid dynamics community as model order reduction

methods with main emphasis on extracting underlying physics (Raissi et al. 2017).

Furthermore, artificial neural networks are used for regression and prediction. Neural

networks extract the underlying physics or patterns with the help of activation or

transformation functions, which are vital to this process. While back-propagation

needs gradient information to optimize the weights connecting the neurons. Gener-

ally, conventional activation functions used in the machine learning community are

not enough to model fluid flows or help in extracting the underlying physics. Methods

like proper orthogonal decomposition (Schmid 2010), wavelet and Fourier transfor-

mation functions have been found to be optimal to varying degrees for modeling fluid

flows. These transformation functions do not have derivative information based on

which back-propagation works. There is a need for an optimization technique that

potentially replaces back propagation and aid in the usage of physics based transfor-

8

mations which enable efficient modeling. To accomplish this, we have used genetic

algorithm which is a global optimizer and do not require gradient information to op-

timize the system. There have been attempts to use genetic algorithm based methods

to optimize neural networks with limited success (Yen & Lu 2003, Montana & Davis

1989), while review articles by Yao (Yao 1999) and Ding (Ding et al. 2013) have

provided various possibilities using genetic algorithm in neural networks. This ranges

from designing the neural network architecture by optimizing the hyper parameters

involved while using back-propagation to optimize weights to both designing and opti-

mizing the hyper parameters, weights and number of layers. In this article, we present

our initial efforts into using genetic algorithm to train weights using non–dominated

sorted genetic algorithm (Deb et al. 2002) with conventional transformation functions.

We have investigated this framework on canonical flows like flow over cylinder.

The objectives of this study are as follows:

1. Identify convolution maps that can represent the dynamics to find linear koop-

man operator.

2. Modify to MGOC frameworks to find Koopman invariant subspaces and linear

operator simultaneously.

3. Explore feasibility of genetic algorithm as a substitute for back propagation in

MGOC frameworks.

1.4 Objectives and Scope of this Study

In chapter 2, we build accurate Markov models of complex nonlinear dynamics from

limited data using feature maps whose layers are treated as dependent on each other

and computed simultaneously by solving a ‘global’ or ‘non-local’ optimization prob-

lem such that the overall learning objective is realized. The aim then is to compare

and contrast these approaches with ideas the employ local optimization. To this

9

end, we focus on the ability of a narrow class of SVD-based multi-layer convolution

Markov models to capture nonlinear dynamics using globally or non-locally optimized

features that we term as globally optimal convolution (GOC) models as against locally

optimal convolution (LOC) . A popular example of multilayer GOC Markov models

are feed forward neural networks (FFNN), a robust approach for learning the embed-

ded nonlinearity in the dynamics from data. While shallow NN are known to possess

universal function approximation properties (Hornik et al. 1989), it usually requires

exponentially large number of neurons (features) for accurate prediction. To overcome

this, deep neural networks (DNNs) offer a low-dimensional (short) and layered (deep)

alternative for high (almost exponential) representational capacity of complex data.

This low-dimensional feature space also helps reduce overfitting in a relative sense.

In Chapter 3 and 4, we will present MGOC based modifications of neural networks

that are symmetric networks which can learn Koopman subspace and linear operator.

Deep Koopman Network (DKN) and Autoencoder Networks as way of learning the

g and the Koopman operator for prediction and analysis of the flow. In doing so, we

will highlight the important observations. In Chapter 5, we will present an alternate

way to optimize the weights via Genetic algorithm (GA). Here the primary goal is

to explore possible ways to incorporate derivative free activation functions (physics

based) that can help learn the model. Further, to assess impact of the global vs

local error used in the learning process. Finally in chapter 6, we will outline the key

messages and important conclusions obtained from this study, further we will provide

the future directions.

The contribution of this thesis is to explore feed forward DNN-like globally opti-

mal multilayer convolution (multilayer GOC or MGOC) as an alternative to locally

optimal multilayer convolution (multilayer LOC or MLOC) approaches. We focus

our assessment on the following popular model architectures:

1. a 4 - level multi-layer LOC framework that mimics dynamic mode decomposition

10

(DMD);

2. a 6 - level multi-layer LOC with a nonlinear mapping that mimics extended

DMD (EDMD);

3. a multi-level multi-layer GOC including nonlinear transfer functions that mimic

a feed forward neural network (FFNN).

(a) 6 - level multi-layer GOC (feed forward neural network)

(b) 6 - level multi-layer symmetric markov GOC (Modified feed forward neural

network)

(c) Two step 9, 11 - level multi-layer symmetric markov GOC + LOC (Auto-

Encoder network)

(d) 8, 10 - level multi-layer symmetric markov GOC (Deep Koopman network)

(e) 6 - level multi-layer symmetric markov GOC (Modified feed forward neural

network) via derivative free optimization

In all of the above models, the convolution maps are carefully chosen so as to minimize

variability so that we can focus purely on the effect of the local versus global opti-

mization on the learning of the dynamics. Proper orthogonal decomposition (POD)

is used as the first layer in all the above architectures so that we can operate in a

low-dimensional feature space.

Through this work, we will show that MGOC models are accurate even with very

limited input data as compared to MLOC models with both similar and dissimilar

architectures for modeling dynamically evolving fluid flows. We will illustrate that the

success of the MGOC architectures can be attributed to extending the dimension of

the learning parameters and learning them concurrently using nonlinear optimization.

This helps improve robustness and accuracy of the resulting predictions over short

and long times as long as sufficient quality data is available. From the analysis

11

in the following sections, we show that MLOC models also benefit from the above

design, but behave similar to two-layer shallow learning architectures requiring high-

dimensional intermediate layers with slower convergence to the accurate result. On

the other hand, MGOC being a ‘deep learning’ architecture produces more efficient

learning. These ideas will be illustrated using different flow case studies including

transient dynamical evolution of a cylinder wake towards a limit-cycle attractor and

a transient buoyancy-driven mixing layer.

1.5 Fluid Flows and Data Generation

To assess the different modeling architectures and the learning algorithms, we build

a database of snapshots of transient flow field data generated from high fidelity CFD

simulations of a bluff body wake flow and also buoyancy-driven mixing layer. Both

these flows are transient in their own way. The cylinder wake flow evolves on a sta-

ble attractor and approaches limit-cycle behavior rather quickly while the buoyancy-

driven flow is a transient mixing problem with dynamics that dies out in the long-time

limit. The former is an example of data-rich situation where the training data re-

quirement to predict the dynamics is limited. On the other hand, the latter represents

a data-sparse situation where the training data may not be sufficient to predict the

future evolution. We explore the performance of the MLOC and MGOC architec-

tures for both these situations with different combinations of training and prediction

regimes. In the following section, we detail the data generation process for both these

flows.

1.5.1 Transient Wake Flow of a Cylinder

Studies of cylinder wakes Roshko (1954), Williamson (1989), Noack et al. (2003),

Rowley & Dawson (2017) have attracted considerable interest from the flow system

learning community for its particularly rich flow physics content, encompassing many

12

of the complexities of nonlinear dynamical systems, while easy to simulate accurately

on the computer using established CFD tools. In this exploration into the perfor-

mance of different data-driven modeling frameworks we leverage both the unstable

transient (evolution towards a limit cycle) and the stable limit-cycle dynamics of

two-dimensional cylinder wake flow at two Reynolds numbers, Re = 100, 1000. To

generate two-dimensional cylinder flow data, we adopt the spectral Galerkin method

Cantwell et al. (2015) to solve incompressible Naiver-Stokes equations, as shown in

Eq. (1.1) below:

∂u

∂x
+

∂u

∂y
= 0, (1.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂P

∂x
+ ν∇2u, (1.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂P

∂y
+ ν∇2v, (1.1c)

where u and v are horizontal and vertical velocity components. P is the pressure

field, and ν is the fluid viscosity. The rectangular domain used for this flow problem

is −25D < x < 45D and −20D < y < 20D, where D is the diameter of the cylinder.

For the purposes of this study, a reduced domain, i.e., −2D < x < 10D and −3D <

y < 3D, is used. The mesh was designed to sufficiently resolve the thin shear layers

near the surface of the cylinder and transit wake physics downstream. For the case of

Re = 100 the grid includes 24, 000 points whereas for Re = 1000 the grid is refined to

include approximately 95, 000 points for the sampled flow region. The computational

method employed is fourth order spectral expansions within each element in each

direction. Each data snapshot output was sampled at ∆t = 0.2 non-dimensional time

units.

13

Figure 1.3: Velocity field snapshots of Re100 flow field.

1.5.2 2D Buoyant Boussinesq Mixing Flow

The above discussion pertains to a nonlinear wake flow dynamical system that tran-

sitions from a steady wake into a stable limit-cycle attractor. Such systems have

seen success in predcition from data-driven models with the availability of limited

data as demonstrated in Lu et al. (2018) . The instability-driven Bousinesq buoyant

mixing flow Weinan & Shu (1998), Liu et al. (2003) exhibits strong shear and Kelvin-

Helmholtz instability driven by thermal gradients. The convective dynamics in such

a system cannot be compactly represented by POD modes. Further, the data-driven

basis representing the low-dimensional manifold itself evolves temporally indicative

of highly transient and data-sparse system. Such systems are sensitive to noise in the

initial state that produce very different trajectories and conseuqently, a very different

dynamical system with its own basis space. This renders such dynamical systems

hard to predict even if one were to leverage equation-driven models such as POD-

Galerkin Noack et al. (2003). In the corresponding author’s earlier work Lu et al.

(2018) it was shown that such problems are hard to predict accurately using MLOC

methods. In this work, we explore this case to determine if MGOC methods can

perform better.

The data set is obtained by modeling the dimensionless form of the two-dimensional

incompressible flow transport equations Liu et al. (2003) augmented with buoyancy

terms and thermal transport equations, as shown in Eq. 1.2 on a rectangular domain

that is 0 < x < 8 and 0 < y < 1. To achieve this,we use a 6th-order compact scheme

Lele (1992) in space and 4th-order Runge-Kutta method for the time-integration Got-

14

tlieb et al. (2001).

∂u

∂x
+

∂u

∂y
= 0, (1.2a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂P

∂x
+

1

Re
∇2u, (1.2b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂P

∂y
+

1

Re
∇2v +Riθ, (1.2c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

RePr
∇2θ, (1.2d)

(1.2e)

In the above system, u, v, and θ represent the horizontal, vertical velocity, and tem-

perature field, respectively. The system is characterized by the following dimension-

less parameters: Reynolds number, Re, Richardson number Ri, and Prandtl number,

Pr with values of 1000, 4.0, and 1.0 respectively. The grid resolution employed is

256×33. The initial condition for the simulation is designed by vertically segregating

the fluids at two different temperatures (uniformly distributed) at the middle of the

domain. All the boundaries are adiabatic and friction generating walls. The thermal

field evolution over the simulation duration of 32 seconds as shown in Fig. 1.4 illus-

trates the highly transient dynamics. To represent the system in a low-dimensional

feature space, POD modes were computed from the entire 1600 snapshots.

The reduced feature set consisting of three POD features (capturing nearly 80%

of the total energy) representing a low resolution measurement is shown in Fig. 2.8 is

used to train the model and predict the trajectory.

15

(a) Time = 0s (b) Time = 4s

(c) Time = 8s (d) Time = 12s

(e) Time = 16s (f) Time = 20s

(g) Time = 24s (h) Time = 28s

(i) Time = 32s

Figure 1.4: Time evolution of the isocontours of the temperature field in the 2D
buoyant Boussinesq mixing layer is shown over a 32 sec time period.

16

CHAPTER 2

Linear vs. Nonlinear Modeling for Prediction

2.1 Introduction

A good data-driven model should perform well in both system identification and

prediction using limited amounts of data. In addition, these models need to be com-

putationally tractable which makes dimensionality reduction essential. System iden-

tification enables learning of stability and flow characteristics such as unstable modes

and coherent structures for the purposes of understanding the flow. For example,

proper orthogonal decomposition (POD) Lumley (2007) via singular value decompo-

sition (SVD) Trefethen & Bau III (1997) and its close cousin, the Dynamic mode

decomposition (DMD) Schmid (2010) are well known methods to extract such rele-

vant spectral information. However, the capacity of DMD for long-term prediction is

underwhelming Lu & Jayaraman (2017). POD-based methods that use Galerkin pro-

jection onto the flow governing equations are more successful, but require knowledge

of the system. In this study, we focus on purely data-driven scenarios without knowl-

edge of governing equations. By long-time predictions, we imply evolving the system

model over multiple characteristic time-scales beyond the training regime. The other

type is to employ the model to predict different system trajectories which is com-

monly referred using the generic term forecasting. Obviously, the precise definition of

the ‘long-time’ prediction or forecasting depends on the flow physics of interest. For

example, a limit-cycle system evolving on a stable attractor will be more amenable

to forecasting from limited data as compared to more complex nonlinear mixing dy-

namics. In the case of cylinder wake flow explored in this study, forecasting represent

17

predicting the limit cycle Berkooz et al. (1993), Noack et al. (2003) dynamics using

limited data in the transient region. We explore such cases as they are sensitive to

error growth and hence, used to evaluate a given model. Errors in model learning

can be attributed to limited training data, measurement noise, model overfitting and

insufficient validation Bishop et al. (1995), Christopher (2016). The contributions

from this paper are highly relevant within this context as we systematically explore

and assess how nonlinear regression-based data-driven models perform relative to

commonly used linear regression-based models for dynamically evolving fluid flows.

As a first step in this chapter, we build accurate Markov models of complex non-

linear dynamics from limited data using feature maps whose layers are treated as

dependent on each other and computed simultaneously by solving a ‘global’ or ‘non-

local’ optimization problem such that the overall learning objective is realized. The

aim then is to compare and contrast these approaches with ideas the employ local

optimization. To this end, we focus on the ability of a narrow class of SVD-based

multi-layer convolution Markov models to capture nonlinear dynamics using glob-

ally or non-locally optimized features that we term as globally optimal convolution

(GOC) models as against locally optimal convolution (LOC) . A popular example

of multilayer GOC Markov models are feed forward neural networks (FFNN), a ro-

bust approach for learning the embedded nonlinearity in the dynamics from data.

While shallow NN are known to possess universal function approximation properties

Hornik et al. (1989), it usually requires exponentially large number of neurons (fea-

tures) for accurate prediction. To overcome this, deep neural networks (DNNs) offer

a low-dimensional (short) and layered (deep) alternative for high (almost exponen-

tial) representational capacity of complex data. This low-dimensional feature space

also helps reduce overfitting in a relative sense. The contribution of this paper is

to explore feed forward DNN-like globally optimal multilayer convolution (multilayer

GOC or MGOC) as an alternative to locally optimal multilayer convolution (multi-

18

layer LOC or MLOC) approaches. We focus our assessment on three popular model

architectures:

1. a 4 - level multi-layer LOC or 4-MLOC framework that mimics dynamic mode

decomposition (DMD);

2. a 6 - level multi-layer LOC of 6-MLOC with a nonlinear mapping that mimics

extended DMD (EDMD);

3. a 6 - level multi-layer GOC or 6-MGOC including nonlinear transfer functions

that mimic a feed forward neural network (FFNN).

In all of the above models, the convolution maps are carefully chosen so as to minimize

variability so that we can focus purely on the effect of the local versus global opti-

mization on the learning of the dynamics. Proper orthogonal decomposition (POD)

is used as the first layer in all the above architectures so that we can operate in a

low-dimensional feature space.

Through this work, we will show that MGOC models are accurate even with very

limited input data as compared to MLOC models with both similar and dissimilar

architectures for modeling dynamically evolving fluid flows. We will illustrate that the

success of the MGOC architectures can be attributed to extending the dimension of

the learning parameters and learning them concurrently using nonlinear optimization.

This helps improve robustness and accuracy of the resulting predictions over short

and long times as long as sufficient quality data is available. From the analysis

in the following sections, we show that MLOC models also benefit from the above

design, but behave similar to two-layer shallow learning architectures requiring high-

dimensional intermediate layers with slower convergence to the accurate result. On

the other hand, MGOC being a ‘deep learning’ architecture produces more efficient

learning. These ideas will be illustrated using different flow case studies including

19

transient dynamical evolution of a cylinder wake towards a limit-cycle attractor and

a transient buoyancy-driven mixing layer. The organization of this paper is as follows.

In section 2.2 we present an overview of data-driven Markov models for transient

dynamical systems and their connections to Koopman theoretic methods (section

2.2.1). In section 2.2.2, we introduce the concept of locally optimal convolution

(MLOC) Markov modeling framework and describe the two variants that we con-

sider in this study in subsections 2.2.2 and 2.2.1. In section 2.2.3 we introduce the

feed forward DNN-like globally optimal convolution (MGOC) framework for building

Markov models. The numerical examples and discussion of the modeling performance

is presented in section 2.3 and the various outcomes are summarized with discussion

in section 2.4.

2.2 Data-driven Markov Models for Transient Dynamical Systems

Extraction of high-fidelity Markov models from snapshot (time) data of nonlinear

dynamical systems is a major need in science and engineering, where measurement

data can be the only available piece of information. It is advantageous to learn

the model in a low-dimensional feature space to both simplify the learning process

and also improve efficiency. Most Markov models that are generally learned in the

feature space, use linear operators/convolutions to take advantage of the powerful

linear systems machinery for control Kim & Bewley (2007), optimization and spec-

tral analysis Rowley et al. (2009). A Markov model, for given a current state xt and

future state xt+T can be stated as g(xt+T) = Kh(xt) where g and h are typically

finite-dimensional transformations to the feature space and K represents the transi-

tion operator that can be linear or nonlinear. Without loss of generality, here we

will use first order Markov process approximation of the dynamical system. That

said, the algorithms presented here can easily be generalized to nth order processes

such as g(xt+T) = Kh(xt,xt−T ,xt−2T ,xt−3T ...xt−(n−1)T). In section 2.2.1 we explore

20

the connections between the popular Koopman approximation-based methods and

Markov linear models. Subsequently, in section 2.2.2, we introduce a class of locally

optimal convolution (MLOC) based Markov models and draw similarities to exist-

ing popular models like DMD and EDMD. Finally, in section 2.2.3 we introduce the

globally optimal convolution (MGOC) Markov models.

2.2.1 Koopman as Markov Linear Model

Linear, first order Markov models can be represented through the class of Koopman

operator-theoretic methods Mezić (2005), Koopman (1931) as a framework for mod-

eling nonlinear dynamics. In fact, a Markov process can approximate the Koopman

operator Mezić (2005), Koopman (1931), Rowley et al. (2009) under certain condi-

tions, namely, g = h and K is linear. This representation is exact when g, h and K

are infinite-dimensional. Given a discrete-time dynamical fluid system that evolves

as below:

yyy = xxxt+T = FFF (xxxt) = FFF (xxx) (2.1)

where xxx,yyy ∈M are N -dimensional state vectors, e.g., velocity components at discrete

locations in a flow field at a current instant t, and separated by an appropriate unit

of time T . To be precise, x , xt and yyy , xxxt+T . Operator FFF evolves the dynamical

system nonlinearly from xxx to yyy, i.e. FFF :M→M. This representation can easily be

made relevant to continuous time systems as well as in the limit T → 0. A general

linear Markov description of such a dynamical system is:

g(yyy) = g(xxxt+T) = Kh(xxx). (2.2)

Here, g(yyy) and h(yyy) are vector-valued transformations (components of g, h are scalar-

valued) to a feature space. In general, g, h ∈ F (where F is a function space) are

infinite-dimensional, but approximated into a finite-dimensional vector in practice.

21

Consequently, the linear transition operator K is also a finite-dimensional approxi-

mation. In the Koopman framework, the feature space is the observable space and

the feature maps are observable functions. The operator theoretic view interprets K

as operating on the observable space Williams et al. (2015) K : F → F . When g

and h are identical, then the linear operator K evolves the Markovian dynamics in

Eq. (2.2) as a Koopman evolutionary model given by:

Kg(xxx) = g(yyy) = g(FFF (xxx)). (2.3)

Since, the Koopman operator has the effect of operating on the functions of state

space as shown in Eq. (4.1), it is commonly referred to as a composition operator

where ◦ represents the composition between g and FFF .

Kg = g◦FFF. (2.4)

Being a linear operator, the products of Koopman spectral analysis such as the eigen-

functions (φj), eigenmodes (vj) and eigenvalues (µj) can be leveraged to reconstruct

the transformation g(xxx) as shown in Eqs. (4.3) - (4.4). This suggests that the trans-

formation g should be spanned by Koopman eigenfunctions φφφ.

g(xxx) =

∞∑

j=1

φjvvvj (2.5)

g(yyy) = Kg(xxx) =
∞∑

j=1

φjvvvjµj (2.6)

In this discussion, we consider sequential snapshots of data separated by a constant

time-step and denoted by (xxxi,xxxi+1 . . .) such that the dynamical system is given by:

xxxi+1 = FFF (xxxi) (2.7)

22

The corresponding Koopman representation is:

g(xxxi+1) = g(FFF (xxxi)) = Kg(xxxi) (2.8)

where, g is some convolution operator yet to be identified (or assumed for a given

model). We can split this sequence of snapshots into pairs asX = (xxx1 . . . xxxM−2,xxxM−1)

and Y = (xxx2 . . . xxxM−1,xxxM) such that (X, Y) ∈ R
N×M , then the dynamical system in

Eq. (4.5) can be represented as

Y = FFF (X) (2.9)

and its quasi-linear form is

Y ≈ AAA(X)X. (2.10)

Here, AAA(X) ∈ R
N×N is the quasi-linear operator describing the evolution of the

discrete dynamical system that we are trying to approximate from data. Where

N, M represent the dimensions of the instantaneous system state and the number of

available snapshots respectively. Typically, N ≫ M and for a nonlinear system AAA(X)

evolves with X . The observable function g is usually unknown and approximated

with a finite-dimensional convolution map C that can have a functional or data-

driven form. We define a convolution operation as a projection of the input state

onto an appropriate basis such that the dynamics evolves in a feature space that is

often low-dimensional. This would require xxxi be spanned accurately by the choice

of basis used to construct the columns of C. To build a finite-dimensional K in

Eq. (4.6) we define a finite-dimensional convolution C ∈ R
N×Ksuch that g(xxxi) ≈ Cxxxi

and generalized as:

X = CX̄, (2.11)

Y = CȲ , (2.12)

where X̄ ∈ R
K×M and Ȳ ∈ R

K×M are the corresponding features for X and Y in the

23

feature space, and K is the feature dimension. Note that C is truly nonlinear and

should evolve with X as C(X). Eq. (4.8) can be rewritten as:

AAA(X)CX̄ = CȲ . (2.13)

Rearranging Eq. (2.13) gives the relationship below with C+, where ()+ is the Moore-

Penrose pseudo-inverse

C+AAA(X)CX̄ = Ȳ . (2.14)

Defining Θ , C+AAA(X)C as the linear finite-dimensional Koopman operator in the

feature space we get:

ΘX̄ = Ȳ . (2.15)

The fidelity of the above approximation to the dynamical system in Eq. (4.5) depends

on the choice of C as an approximation to observable g. For Θ to be truly linear, C

will have to evolve with the state X as C(X) and C+(X) needs to exist. For detailed

discussion on the architecture and choice of convolution maps we refer to Lu and

Jayaraman Lu et al. (2018). Given C,X and Y , we can learn Θ by minimizing the

frobenius norm of ‖Ȳ − ΘX̄‖F via Θ = Ȳ X̄+. In principle one could minimize the

2-norm ‖Ȳ − ΘX̄‖2 at the risk of added complexity, but the Frobenius norm serves

an efficient alternative.

2.2.2 Markov Model using Multilayer Locally Optimal Convolution (MLOC)

The basis vector onto which the convolution projects the input state needs to be

a function acting on the instantaneous state i.e., C should be C(X) so that Θ can

be linear. However, this often leads to a futile search for ‘magic’ functions when

the nature of AAA(X) is not known. Alternative approaches Williams et al. (2015),

Williams et al. (2014) include approximating the functional form of the convolution

24

map from data using a dictionary of basis functions. However, the dependence of C

on the choice of functions populating the dictionary and the relative ease with which

the feature dimension can grow, limits these approaches. Lu and Jayaraman Lu et al.

(2018) propose an alternate approach of building complex and efficient convolution

maps through layering of elementary operators based on the hypothesis that deeper

and shorter is better than taller and shallow operators. This is also the key motivation

behind the recent boom in deep learning ideas for artificial intelligence Bengio (2007).

It is worth noting that both strategies increase the number of model parameters to

be learned, but deep layering offers a sequential way to build model complexity and

learn complex patterns much more efficiently than shallow architectures from limited

data. A generalized way of building C is to layer recursively multiple convolution

operators such as:

X = C1C2
¯̄X = CML

¯̄X, (2.16)

Y = C1C2
¯̄Y = CML

¯̄Y, (2.17)

where ¯̄X and ¯̄Y represent the features at the 2nd layer and CML represents the multi-

layer convolution operator, a schematic of such process is presented in Fig. 2.1. Where

a state vector X is operated by two convolution operators C+
1 , C+

2 respectively to

yield ¯̄X . Similarly, C+
1 , C

+
2 operate on Y , Ȳ respectively to yield ¯̄Y . An approximate

linear Koopman operator Θ is then learned using ¯̄X and ¯̄Y . Substituting Eq. (2.16)

and (2.17) into Eq. (4.8), we have:

ACML
¯̄X = CML

¯̄Y. (2.18)

Pre-multiplying the pseudoinverse of CML, we have:

CML
+ACML

¯̄X = Θ ¯̄X = ¯̄Y, (2.19)

25

X Y
C+

1 C+

2
Θ, I C2 C1

X̄ ¯̄X ¯̄Y Ȳ

NxM

KxM KxM

NxM

RxM RxM

Figure 2.1: Schematic of a six-layer representation of the multilayer locally optimal
convolution (MLOC) framework to approximate the Koopman operator. X, Y rep-
resent state space matrices and C+

i , Ci, represent the convolution and reconstruction
operations respectively. The arrows indicate direction of the convolution, i.e., C+

1

acts on X to yield X̄ and C1 acts on Ȳ to yield Y . Θ represents an approximate
Koopman operator shown in Eq. (4.6). The size of data matrices in the high (X) and
low dimensional(X̄ or ¯̄X) space is also shown.

with Θ defined as:

Θ = CML
+ACML. (2.20)

In Eq. (2.20) the convolution can be generalized and consolidated into an effective

map given by CML
+ = C+

L ...C
+
1 C

+
2 C

+
3 and CML = C3C2C1...CL to include sufficient

number of elementary operators such that an optimal Θ is realized. L represents the

number of layers in the design. The forward map or encoder CML
+ can be computed

as long as the elemental convolution maps, Ci, are invertible in a generalized sense.

We note that although the multilayer formulation above is built from a Koopman

approximation point of view, i.e. g = h = CML, one can have a generalized Markov

version of this model i.e. g = CML1 & h = CML2. Further, Ci and consequently

CML are usually predetermined convolution maps (or functions) or computed using

only the locally available information. Hence, we call this class of methods as locally

optimal convolution or LOC for short. In the following subsections 2.2.2 and 2.2.1 we

will view the popular Koopman approximation methods in the context LOC class of

methods.

26

X Y
C+

POD
Θ, I CPOD

X̄ Ȳ

NxM

KxM KxM

NxM

Figure 2.2: A four-level Koopman approximation LOC framework with linear maps.

A Four - level Multilayer Locally Optimal Convolution (4-MLOC) Map

There exist many methods to approximate the Koopman tuples including DMD Row-

ley & Dawson (2017), Schmid (2010), EDMD Williams et al. (2015) and its kernel

variants Williams et al. (2014) and generalized Laplace analysis (GLA) Mezić (2005).

DMD Schmid (2010) employs a linear identity map between the observable and input

state spaces and hence, also represents a linear model in the original input space.

The architecture for DMD is shown in Fig. 2.2 as a four-level architecture (4-MLOC)

with a single POD convolution map obtained via SVD Trefethen & Bau III (1997)

from snapshots of data (X). Given data snapshots separated in time X, Y as before,

we can apply the convolution operator as:

X = CPODX̄ ; Y = CPODȲ . (2.21)

Substituting the above in Eq. (2.19), we get the linear model below

ΘX̄ = Ȳ (2.22)

where X̄ and Ȳ are snapshots of POD coefficients evolving in time and represent the

dynamics of the nonlinear fluid flow in the feature space. Θ is a finite dimensional

approximation of the Koopman operator, a linear transition operator governing the

27

dynamics of the flow in the feature space. The pairs X̄ and Ȳ are setup as follows:

X̄ =

a11 a21 aM−1
1 aM1

a12 a22 aM−1
2 aM2

.

.

a1K a2K aM−1
K aMK

(KxM)

and

Ȳ =

a21 a31 aM1 aM+1
1

a22 a32 aM2 aM+1
2

.

.

a2K a3K aMK aM+1
K

(KxM)

(2.23)

Knowing Θ allows one to model the evolution of this dynamical system through the

weights. Within the context of a multilayer framework, DMD can be viewed as a

4-level set-up (or 2−layer without the POD-convolution) with the first and last layers

mapping in and out of the POD feature space respectively. Given that the convolution

operator CPOD is independent of X , we can treat this model as a local optimization

between the two layers in the middle as seen in Fig. 2.2. This local optimization

problem tries to find an optimal mapping between all pairs of features aaat, aaat+1 which

are column vectors in X̄, Ȳ as shown below,

Ȳ =

[

aaa2 aaa3 . . . aaat+1 . . . aaaM+1

]

= Θ

[

aaa1 aaa2 . . . aaat . . . aaaM
]

= ΘX̄

(2.24)

28

X Y
C+

POD
I, N Θ, I I, N−1 CPOD

X̄ ¯̄X ¯̄Y Ȳ

NxM

KxM KxM

NxM

RxM RxM

Figure 2.3: A six-level Koopman approximation LOC framework with nonlinear maps
(N , N−1) with I representing identity convolution operation.

such that (Ȳ − ΘX̄) Trefethen & Bau III (1997) is minimized. While there exists

many approaches to solving this optimization problem, we minimize the Frobenius

norm of ‖Ȳ −ΘX̄‖F via,

Θ = Ȳ (X̄ + λI)+ (2.25)

where ()+ denotes the generalized Moore-Penrose pseudo-inverse Trefethen & Bau III

(1997) and λ is regularization Scholkopf & Smola (2001) parameter used to generate

a unique solution from the pseudo-inverse and also avoid overfitting. In this 4−layer

architecture, the convolution maps between any two layers are treated independently ,

i.e. CPOD does not depend on Θ which also implies that minimization of ‖Ȳ −ΘX̄‖F

is not the same as minimizing ‖Y − AX‖F . The equivalence between these two

minimization problems depend on the choice of the convolution C.

A Six - level Multilayer Locally Optimal Convolution (6-MLOC) Map

Dynamic mode decomposition (DMD) being a linear model with a fixed POD features

has difficulties predicting transient nonlinear fluid flows Rowley & Dawson (2017), Lu

et al. (2018). Extensions to DMD such as EDMD Williams et al. (2015), Rowley &

Dawson (2017) help alleviate this problem to some extent by introducing nonlinear

convolution layer(s) as a wrapper to the POD-layer in DMD. It can also be viewed as

combining POD convolution with a transfer function (TF) that creates an extended

polynomial basis up to a desired order. In this way, it is a multilayer convolution

29

framework with nonlinear transfer functions as shown Fig. 2.3. This architecture

can be viewed as a 6−level framework (4− layer without the POD-convolution) or

6-MLOC with the first and fifth pair of layers representing a POD-convolution while

the 2nd and 4th pair of layers representing the nonlinear feature maps. Because, the

architecture represented in Fig. 2.3 has a ‘forward’ depiction, the nonlinear mapping

in the 4th layer is denoted with an inverse function N−1. It is worth noting that

in practice, N−1 may not be well behaved and hence the backward operation is

preferred. This is another way of representing Koopman approximation methods

which are intrinsically forward-backward maps. The linear Koopman operator is then

approximated through a least squares minimization problem, ‖ ¯̄Y − Θ ¯̄X‖F solved in

a similar way as Eqn. (2.25).

In this study, we present two variants of this method, namely 6-MLOC-P (EDMD-

P) Williams et al. (2015) which uses polynomial basis dictionary for incorporating

nonlinearity into the convolution map and 6-MLOC-TS (EDMD-TS) which uses tan-

sigmoid as a nonlinear feature map. An illustrative representation of the 6-MLOC-P

(EDMD-P) with 2nd order polynomial is presented in Fig.2.5(a), where aaa and āaa rep-

resent the columns of X̄, ¯̄X and are related as

āaai = N (aaai) (2.26)

Here N is the nonlinear operator representing both polynomial generation for 6-

MLOC-P (2nd order or higher) and tansigmoid function evaluation for 6-MLOC-TS

(EDMD-TS) as the choice may be. A mathematical representation of polynomial

with P = 2 and tansigmoid operators are presented in Eqns. (2.27) & (2.28),

āaa = N (aaa) =

aaa

aaa⊗ aaa

 (2.27)

āaa = N (aaa) = tanhaaa (2.28)

30

where āaa represent the features in the N space. It can be easily seen from above that

MLOC-P (EDMD-P) leads to a quadratic growth in the dimension of the features

for 2nd order nonlinearity. This will be even worse for higher order polynomial basis.

On the other hand, MLOC-TS (EDMD-TS) does not lead to increase in the number

of features. A key aspect of both the DMD and EDMD-type architectures is that

the different convolution operators (layers) are independent of each other, i.e. CPOD,

N and Θ do not depend on each other and hence classified as ‘local’ operators. As

a consequence of this layer-wise independence, we can perform both backward and

forward convolutions which allows for learning the Koopman operator and allows

one to solve for Θ directly (non-iteratively). In the following section, we will focus

on globally optimal convolution (GOC) operators with dependent convolutions that

forces one to solve for Θ collectively (globally).

2.2.3 Markov Model using Multilayer Globally Optimal Convolution (MGOC)

In principle, multilayer convolution increases the number of hyperparameters in the

model. In the earlier discussion on layer-wise LOC models, we bypassed this addi-

tional complexity by learning the convolution map offline (i.e. learning CPOD from

training data) or assumed a functional form of the convolution (N). To constrain the

model to the data, we still had to solve the local optimization problem via Eq. (2.25)

within a single-layer. While this approach makes MLOC methods efficient but they

do not take advantage of the extended hyperparameter space for learning the system.

Consequently, such methods work only for predicting select dynamics and fails to cap-

ture highly nonlinear transient dynamical systems. To truly take advantage of the

extended hyperparameter space offered by the multilayer convolution framework, the

convolution maps relating each layer need to be optimized for improved learning and

prediction. Further, this optimization needs to be performed in a coordinated fashion

so that a global objective can be minimized. This framework can be interpreted as a

31

X Y
C+

POD
Θ1, N1 Θ2, N2 Θ3, N3 CPOD

X̄ ¯̄X
¯̄̄
X Ȳ

NxM

KxM KxM

NxM

RxM RxM

Figure 2.4: A six-level Multi layer GOC (6-MGOC) framework inspired from feed
forward neural network architectures in machine learning and artificial intelligence,
where Θl, Nl with arrow represents a convolution operation followed by a nonlinear
mapping (see Eq. (2.32)) respectively.

multilayer globally optimal convolution (MGOC) based Markov model. It turns out

that the MGOC architectures are like neural networks which allows us to leverage

the various algorithmic advancements Bengio et al. (2015) . In this study we present

a MGOC architecture inspired from feedforward neural networks (FFNN) as shown

in Fig. 2.4. Fig. 2.5(b) presents this architecture as is commonly observed in the ma-

chine learning except for the absence of a bias term. We deliberately removed the bias

term in order to facilitate better comparison with conventional MLOC architectures

such as DMD and EDMD.

We chose a 6−layer architecture to compare with the 6-MLOC in section 2.2.1

so that a fair assessment of the different models can be made. Further, we retain

the POD-based map as the first and last convolution operators so that the feature

dimensions remain manageable for the fluid flow examples considered in this study.

Each interior convolution map includes a linear map Θl and a nonlinear transfer

function Nl that is predetermined for each version of the model. To mimic the 6-

MLOC model exactly, one will need to set Θ1 = Θ3 = I, the identity tensor &

N1 = N , N3 = N−1 along with Θ2 = Θ & N2 = I as an identity map. For

this FFNN-like MGOC architecture that only supports forward maps, building a

convolution map with N−1 is not explored currently. This is because, for many

common choices of N , N−1 is not always bounded. It is for this reason, even in the

32

MLOC architectures, the backward operation is preferred. However, in general the

various Θl are computed simultaneously by solving a coupled optimization problem.

As before, X̄, Ȳ represent the time snapshots of POD weights of the data separated

by the same unit of time as shown in Eq. (2.24) with columns made of aaat and aaat+1

respectively. In this case, we predict Ȳ using X̄ as shown below:

¯̄X = N1(Θ1X̄), (2.29)

¯̄̄
X = N2(Θ2

¯̄X), (2.30)

Ȳp = N3(Θ3
¯̄̄
X). (2.31)

In general, we have for a general multilayer network

Xl = Nl(ΘlXl−1). (2.32)

where Ȳp is the predicted data and Xl,Θl,Nl represents the mapped features, linear

operator and nonlinear map relating the lth and l + 1th layers. The linear operator

Θl, with l = 1 . . . (L − 3), for a L−layer framework is computed by minimizing the

overall cost function defined as:

J (Θ) =
1

2M

N∑

i=1

M∑

j=1

(Ȳp(j, i)− Ȳ (j, i))2

︸ ︷︷ ︸

Feed forward Cost

+

(

λ

2M

L−3∑

l=1

S∑

s=1

Q
∑

q=1

(Θl(s, q))
2

)

︸ ︷︷ ︸

Regularization term

(2.33)

where Ȳ is the original data, S,Q represent the dimension of the features in lay-

ers l and l + 1 respectively. In this architecture, we number the layers of features,

l from 0 . . . L − 2. For example, in the 6-MGOC network shown in Fig. 2.4 we have

33

L = 6 including the first (l = 0) and last (l = 5) POD convolution and deconvolu-

tion layers. This architecture will consist of Θl, l from 0 . . . 4 with Θ0 = C+
POD and

Θ4 = CPOD while Θ1,Θ2 and Θ3 are computed simultaneously. The optimal solution

for Θl is obtained using backpropagation algorithm with a gradient descent framework

employing a Polack-Ribiere conjugate gradient algorithm Golub & Van Loan (2012)

that employs a Wolfe-Powell stopping criteria. The use of back propagation to find

Θ’s is the most important distinction between MLOC and MGOC methods. This gra-

dient descent framework requires Nl to be infinitely differentiable which is not always

guaranteed when choosing Nl = N−1. Consequently, we choose the nonlinear func-

tions Nl in 6-MGOC as N1,2 = N and N0,3,4 = I. To avoid overfitting in Eq. (2.33),

we use L2 norm based regularization while computing Θ’s, with λ as the tuning pa-

rameter similar to that used in the MLOC architectures. In the case of learning

linear operators, this l2 penalty boils down to the well known Tikhonov regulariza-

tion. For assessment purposes, we use two intermediate layers in the MGOC (when

learning the dynamics between X̄ and Ȳ) as illustrated in figure 2.5 to resemble the

construct of 6-MLOC (EDMD). Standard FFNN employs a bias term in Eq. (2.29),

but is not considered here for this comparison study. To determine the dimension

of the intermediate layer features in MGOC we use a factor (Nf) that is multiplied

with the input feature dimension, i.e., S,Q = Nf × input feature dimension. The

key distinction between MLOC and the FFNN-like MGOC is the lack of a forward-

backward mapping in the latter which does not support the learning of the Koopman

operator. To accomplish this, the MGOC framework (FFNN) needs to be modified

with feedback loops that have similarities to RNNs. Such a modified architecture is

presented in Puligilla & Jayaraman (2018a).

34

ΘΘΘ2

a
t

i
a

t
ia
t

i a
t+1

i
a

t+1

i
a

t+1

i

ā
t+1

ā
t+1

ā
t+1

ā
t

ā
t

ā
t

(a) A six-level MLOC (EDMD) with P = 2

ΘΘΘ1

ΘΘΘ2

ΘΘΘ3

a
t

i
a

t
ia
t

i a
t+1

i
a

t+1

i
a

t+1

i

â
t

â
t

â
t

ā
t

ā
t

ā
t

(b) A six-level MGOC (FFNN) with Nf = 3

Figure 2.5: A representative comparison of architectures (a)6-MLOC-P (EDMD-P)
and (b)6-MGOC (FFNN) methods which use local and non-local optimization, re-
spectively

2.3 Numerical Experiments and Discussion

In this section, we compare the predictive capabilities of MLOC framework that uses

local optimization with FFNN-like MGOC frameworks based on global optimization.

Our hypothesis is that learning an extended hyperparameter space by minimizing the

training error-based cost function allows for improved predictions of time-series flow

data. Consistent with the earlier sections, we adopt the nomenclature ‘L-Method-

NM ’ to denote the different architectures and their respective parameters, where the

’L’ represents the total number of layers used to map from state space to state space

(X → Y), N defines the intermediate (nonlinear) convolution and M represents any

specific parameters that supplement N . For example, we describe a 6-level multilayer-

locally optimal convolution (EDMD) with a polynomial convolution of 2nd order as 6-

MLOC-P2, while a 6-level MLOC (EDMD) with a tansigmoid function is described as

6-MLOC-TS1 where the number followed by TS represents the feature growth factor

(Nf). A 4-level MLOC representing the DMD architecture is denoted as 4-MLOC-

I1, where I defines identity mapping and M = 1 defines the feature growth factor.

35

In this study, we have used four MGOC architectures with different feature growth

factors so as to compare and assess the abilities of the GOC framework over their LOC

counterparts. The MGOC methods used are 6-MGOC-TS with Nf = 1, 3, 9, 20.

The various model possibilities are delineated in section 2.3.2. Section 2.3.1 details the

generation of flow data from high fidelity computations for use in this study, namely

the cylinder wake flow (Sec. 2.3.1) and the buoyancy-driven mixing flow (Sec. 2.3.1).

2.3.1 Experiments

Transient Wake Flow of a Cylinder

With the velocity data arranged as described in section 2.2.1, a SVD of state vectors

was performed to obtain POD coefficients and their respective modes. The most

dominant POD coefficients corresponds to eigenvalues at St = 0.16 and 0.23 for

Re = 100 and 1000, from which we have deduced the number of data points that

encompass one limit cycle. Each limit cycle contains approximately 31 and 21 data

points of POD coefficients. In this study we have used the convention of cycles

to specify the training region, so as to provide a better physical representation to

the training data used, while this also helps in making observations on long time

predictions (cycles) based on limited number of data(cycles) provided.

Although, a minimum > 15 POD modes are required for nearly 100% energy

reconstruction of cylinder flows at Re = 100 and 1000, the large scale coherent struc-

tures which govern the flow dynamics are represented by the first 3 modes and account

for approximately 95% and 90% energy respectively, see Figs. 2.6(a) and 2.7(a). The

eigenfunctions corresponding to these three modes are presented in Figs.2.6(b) and

2.7(b) respectively and show qualitatively similar flow structures for both Re = 100

and Re = 1000. In Figs. 2.6(c) and 2.7(c) we show the phase portrait for the flow

dynamical system, wherein the flow transitions from a steady wake through an insta-

bility and settles on a limit cycle attractor.

36

0 3 10 20 30 40 50
0

25

50

75

95
100

-20

20

-10

20
0

0

0
-20 -20

Figure 2.6: Energy content in POD features selected (a) 3 coefficients (b) eigen
modes/functions corresponding to 3 POD features (c) phase portrait of Re = 100
flow.

0 3 10 20 30 40 50
0

25

50

75

90

100

-150

100

-100

100

-50

0

0

0

-100-100

Figure 2.7: Energy content in POD features selected (a) 3 coefficients (b)eigen mod-
es/functions corresponding to 3 POD features (c) phase portrait of Re = 1000 flow.

37

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Figure 2.8: Time evolution of the POD weights, ati for the buoyant mixing flow.

2D Buoyant Boussinesq Mixing Flow

Similar to the previous section, a low-dimensional feature space of 2D Buoyant Boussi-

nesq Mixing Flow are obtained, POD modes were computed from the entire 1600

snapshots.

The reduced feature set consisting of three POD features (capturing nearly 80%

of the total energy) representing a low resolution measurement is shown in Fig. 2.8

is used to train the model and predict the trajectory.

2.3.2 Analysis Framework

In this section, we summarize the different candidate model architectures and the cor-

responding learning algorithms. Table 2.1, lists the different MLOC architectures and

their corresponding MGOC architectures with the total number of learning param-

eters (LP) used. The first sub-column under each local (LOC) and globally (GOC)

architecture in table 2.1 represents the choice of nonlinear part of the convolution

map and the second sub-column represents the different layers with the correspond-

ing feature dimension. For readability and conciseness, we have excluded the first

and last layers corresponding to the input and output state vectors acted on by a

POD-convolution. The rightmost column represents the total number of learning

parameters (LP) in a model. For example, when using 6-MLOC-P2 in table 2.1 we

learn an operator (Θ) with 81(9x9) parameters to model the flow and similarly, us-

ing 6-MGOC-TS for TS3 we learn operators([Θ1,Θ3,Θ3]) totaling 135(27 + 81 + 27)

parameters.

The six-level 6-MLOC-P2 (quadratic polynomial features) method produces 9 fea-

38

Local optimization LP Global optimization LP

1 4-MLOC-I 6-MGOC-I

I1 3-3 9 I1 3-3-3-3 27

2 6-MLOC-TS 6-MGOC-TS

TS1 3-3-3-3 9 TS1 3-3-3-3 27

3 6-MLOC-P 6-MGOC-TS

P2 3-9-9-3 81 TS3 3-9-9-3 135

P7 3-125-125-3 15,625
TS9 3-27-27-3 891

TS20 3-60-60-3 3960

Table 2.1: Overview of the methods used as part of this analysis. The dimensions of
the different layers correspond to that used for cylinder wake flow model.

tures in the intermediate layer which is then used to learn a locally optimal mapping

between the 9 features at the next intermediate layer followed by reverse map to the

penultimate layer with 3 POD features. A similar construct can be observed in glob-

ally optimal framework using 6-MGOC-TS with Nf = 3. However, the 6-MLOC-P2

consists of 81 paramters while the 6-MGOC-TS has 135. In our following analysis of

the various predictions, we find that using just 3 POD features with a 2nd order poly-

nomial expansion in 6-MLOC-P2 does not produce accurate results. So, in addition

to P2, we also explore higher order polynomial basis to ascertain if better predictions

can be realized. In the following subsection, we describe the prediction and analysis

methodology.

2.3.3 Prediction Framework and Error Metrics

The data generated from the computer simulations described above are separated into

training and prediction regimes. The training data set is used for learning the optimal

Θ’s using which future time predictions are computed with input specified from the

39

previous time step alone to mimic a practical usage of the model. In this study , we

assess model performance based on both qualitative representation of the dynamics

and prediction errors. We quantify model errors using the L2 norm of the prediction

error from the data-driven model relative to the truth using only the initial condition

aaa0 specified. To bypass the complexities of computing the 2−norm, the Forbenius

norm of the error is computed instead as below.

Ei =
1

2Mi

∣
∣Ȳp − Ȳ

∣
∣
2

2
. (2.34)

In the above equation Ȳp represents the data-driven model predictions and Ȳ the true

data. We separately quantify the errors in the training region where the data-driven

model is more of an interpolation and in the prediction region where model performs

an extrapolation role. The prediction error in the training region is denoted by Et and

combined error in both the training and prediction regions is denoted by Ep. As a way

to assess the robustness of the different models discussed in table 2.1 we explore their

ability to predict the flow dynamics given an initial condition in any part of the flow

dynamics, for example, in transient or limit cycle regions for the cylinder wake flow.

To this end, we designed three training regions (see Fig. 2.9a) corrresponding to three

different time windows. In Figs. 2.9a and 2.9b we show these three training regions

used for data with Re = 100 and Re = 1000 respectively, shaded in grey. The figures

in row (a) represent the training region in the limit-cycle regime and rows (b) and

(c) show two regions in the transition part of the dynamics and denoted by region I

(TR-I) and region II (TR-II). A challenging test for a model is to learn the dynamics

in the steady wake flow as shown in Figs. 2.9a and 2.9b and predict the instability

growth that ultimately results the limit cycle. In our experience using training data

that only contains information of the steady wake produces models that are highly

unstable. Consequently, we designed two different training regions where the flow

40

transitions across flow regimes, but with different proportions of limit-cycle (vortex

shedding) and steady wake content. In the following sections we will highlight and

discuss the key results from our data-driven predictions.

2.3.4 Learning and Predicting Limit-cycle Cylinder Wake Dynamics

The focus of this section is to learn from limit-cycle training data and predict the

corresponding limit-cycle physics over long-times. Successful prediction of this case is

considered a benchmark for data-driven models. The underlying theme in this article

is to explore whether globally optimal learning of the model parameters (LP) can out-

perform locally learnt model parameters for predictions. To verify this we compare the

following four models namely: 4-MLOC-I1 (DMD), 6-MGOC-I1 (compares favor-

ably with FFNN-linear), 6-MLOC-TS1 (EDMD-TS1) and 6-MGOC-TS1 (compares

favorably with FFNN-TS). It is well known that 4-MLOC-I1 or DMD performs well

in the limit cycle region as shown in Lu et al. (2018), Rowley & Dawson (2017) and

under performs in the strongly nonlinear transition regimes on account of being a lin-

ear model. In Fig. 2.10, the time series predictions of the first three POD features are

shown. with rows 1 − 4 (top-to-bottom) representing the prediction outcomes from

the learned parameters (Θ) obtained using the 4-MLOC-I1 (DMD), 6-MGOC-I1

(FFNN-linear), 6-MLOC-TS1 (EDMD-TS1) and 6-MGOC-TS1 (FFNN-TS1) archi-

tectures respectively. It is worth noting that 4-MLOC-I1 (DMD) and 6-MGOC-I1

are a pair of local and global models with a linear transfer (convolution) function.

In the same vein, 6-MLOC-TS1 (EDMD-TS1) and 6-MGOC-TS1 (FFNN-TS1) are

a pair of linear and global models with a nonlinear tansigmoid transfer function.

Specifically, we assess the role of local(LOC) versus global (GOC) optimization of the

parameters as well as the impact of nonlinear mapping on model prediction.

The first major observation is that both the GOC as well as the LOC models with

linear mapping predict the overall dynamics relatively accurately while the LOC

41

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

(a) Times series plot of the weights corresponding to the three most energetic POD modes
with different training regions (a) Limit cycle (16 − 20): 124 data points, (b) transient
region-I (8 − 20): 372 data points and (c) Transient region-II (4 − 16): 372 data points,
where each cycle consists of 31 data points.

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

(b) Times series plot of the weights corresponding to the three most energetic POD modes
with different training regions (a) Limit cycle (14−18): 84 data points, (b) transient region-
I (6− 18): 252 data points and (c) Transient region-I (2− 14): 252 data points, where each
cycle consists of 21 data points.

Figure 2.9: Schematic showing the different training regions chosen for prediction
using the different models.

42

model with nonlinear sigmoid mapping damps the POD features over time. The

second observation is that all the models show gradual error growth with time except

the 6-MGOC-TS1 architecture which is closer to a FFNN-TS. The plots in Fig. 2.10

convey that a nonlinear mapping is not essential to capture the limit-cycle dynamics,

but if used, should be carefully designed. For example, it was shown in Lu et al.

(2018) that EDMD-P2 (6-MLOC-P2) can predict such dynamics very well while the

current results (Fig. 2.10(c)) show that the same architecture with a tansigmoid

function produces errors. The TS function is primarily used in machine learning for

classification and has a squashing nature to it, i.e. it has the effect of compressing

the features which explains its inability to predict the dynamics. This occurs in

spite of using N−1 as the ‘reverse squashing’ map in the architecture as discussed

in section 2.2.2. A plausible reason could be that the TS nonlinearity does not

extend the space of learning parameters in contrast to polynomial basis. Nevertheless,

when the TS nonlinearity (using the N) is combined with a GOC framework such

as in 6-MGOC-TS1, the prediction drastically improves as learning the mapping

parameters in Θ1,Θ2,Θ3 simultaneously while applying the TS nonlinearity produces

a compensatory and powerful outcome. Further, this FFNN-like 6-MGOC-TS1 model

can predict over long times without growth in error as seen from the evolution of third

POD feature (shift mode) in Fig. 2.10(d).

We had mentioned earlier that the success of the MGOC frameworks comes from

learning an extended parameter (LP) space, but the following discussion shows that

this is true only in the presence of a nonlinear function as part of the mapping. In

the DMD (4-MLOC-I1) framework, there are 9 learning parameters in Θ to predict

the limit cycle dynamics as compared to 27 parameters for 6-MGOC-I1 architecture.

However, in the absence of an nonlinear function in the convolution maps, the linear

operator computed from the two methods are the same, i.e. the product of the

different Θl for l = 1− 3 in the 6-MGOC will trivially turn out to be the same as Θ

43

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.10: Times series of predicted POD features () obtained from (a) 4-
MLOC-I1, (b) 6-MGOC-I1, (c) 6-MLOC-TS1 and (d) 6-MGOC-TS1 are plotted
with their respective original data () in the limit cycle regime.

learned from the DMD (4-MLOC-I1) framework. In Fig. 2.10, we use 4-cycles of (124

points) data in the limit cycle region for training and predict upto 17 cycles (527 data

points). We see that the predictions obtained using 4-MLOC-I and 6-MGOC-I in

Fig. 2.10(a) and (b) are similar as the same linear transition operator Θ is estimated.

However, with limited training data, the predictions start to diverge from the truth

over large times as is clearly seen from the evolution of the third POD feature, a3.

While the addition of nonlinear functions in the convolution map aids the pre-

diction of nonlinear dynamics, employing this formulation with a local optimization

of the LP does not always guarantee good results. We see an illustration of this in

the performance of the 6-MLOC-TS1 architecture as seen from Fig. 2.10(c), where

all the three input features are incorrectly predicted in contrast to predictions by

the 6-MGOC-TS1 in Fig. 2.10(d). The prediction error quantifications for the limit-

cycle regime in the training and prediction regions are shown in the first two rows

of the table 2.2. These show that the linear DMD (4-MLOC-I) architecture and

the FFNN-like 6-MGOC-TS architecture produce error magnitudes of 7.4 × 10−3

and 1.6 × 10−2 respectively outside the training region. However, these errors are

higher than the O(1e−4) errors in the training region as one would expect. In spite

of being inaccurate in the prediction regime, the MGOC models do not allow for

44

growth in error which is a desirable feature. As additional benchmarks we also in-

clude prediction errors for other architectures including 6-MLOC-P2, 6-MGOC-TS1

and 6-MGOC-TS3 which generate comparable prediction accuracy with 6-MLOC-P2

being the smallest.In summary, except for the EDMD-TS (6-MLOC-TS1) all the other

models display reasonable accuracy for this limit-cycle dynamics in both the training

and prediction regimes. However, we observe a gradual growth of the third feature

in all the models except the 6-MGOC-TS architectures which can impact long-time

predictions. It is for this reason we consider the MGOC architectures to perform the

best within this regime.

2.3.5 Learning and Prediction of a Transient Cylinder Wake Dynamics

In the earlier section, we highlighted the role of the choice of nonlinearity and the

importance of combining this with a GOC framework for stable long-time predictions.

In this section, we focus on learning from transient wake flow data and predict the

resulting limit-cycle system. It is well known that DMD (4-MLOC-I) performs better

on limit cycle problems and under performs in the transient regime due to its inability

to handle the enhanced nonlinearity of the underlying dynamical system. In particu-

lar, if the limit-cycle dynamics represents a nonlinearity of order k then the transient

wake regime corresponds to a nonlinearity of order ≥ k+1 Noack et al. (2003). Con-

sequently, models that incorporate nonlinearity in the convolution maps such as the

EDMD with polynomial basis Williams et al. (2015) (or equivalently the 6-MLOC-P

as adopted in this article) or the corresponding kernel representation Williams et al.

(2014) perform better for such problems, but only when using significant number of

input features. In this section, we show that global optimization with nonlinear mul-

tilayer convolution provides much better learning and prediction capabilities from as

little amount of input data as three features which the minimum amount of data one

needs to capture the wake instability behind a cylinder Noack et al. (2003).

45

For this analysis, we used two training regions in the unstable transition regime,

namely transient region-I (TR-I) and transient region-II (TR-II) as shown in Fig. 2.9a

corresponding to 8 − 20 and 4 − 16 cycles respectively with both regions consisting

of 372 data points.

46

Train 4-MLOC-I 6-MLOC-TS 6-MLOC-P 6-MGOC-TS

cycles E Nf = 1 Nf = 1 p = 2 p =7 Nf = 1 Nf = 3 Nf = 9 Nf = 20

16− 20(LC)
Et 1.6e−4 3.3e−2 6.7e−5 −− 2.7e−4 2.1e−4 −− −−

Ep 7.4e−3 0.269 3.5e−4 −− 1.6e−2 8.1e−3 −− −−

08− 20(TR-I)
Et 0.417 0.467 0.475 6.4e−6 0.320 3.7e−2 1.9e−2 2.1e−2

Ep 0.513 0.483 0.776 3.9e−4 0.686 0.146 0.153 0.148

04− 16(TR-II)
Et 0.246 0.238 0.223 0.191 −− 0.106 0.182 0.385

Ep 0.551 0.530 0.683 0.977 −− 0.883 0.948 0.720

Table 2.2: Prediction error estimates for layer-wise local (MLOC) and global optimization methods (MGOC) for Re = 100.

47

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.11: Times series of predicted POD features obtained from (a) 4-MLOC-I1,
(b) 6-MLOC-TS1 and (c) 6-MGOC-TS1 for TR-I as training region.

TR-I is relatively less challenging as almost all of the training data incorporates

vortex shedding, but with an amplitude that is growing. In TR-II the first 30% of

the training data includes a stable wake with symptoms of instability that grows

in amplitude all through the regime. This has implications for predictions using

machine learning models where the training data almost always determines what

kind of dynamics the model can predict. If one were to rank the level of difficulty in

predicting the resulting limit-cycle dynamics from different sets of training data then

the most difficult would be TR-II followed by TR-I and lastly, the limit-cycle training

data used in the previous section.

Figure 2.11 shows the predictions obtained from the different locally optimal 4-

MLOC-I1 (DMD), 6-MLOC-TS1 (EDMD-TS1) and the FFNN-like globally optimal

6-MGOC-TS1 methods for the TR-I training region. We can see that, all these

methods fail to learn the nonlinear dynamics and predict the resulting limit-cycle

system to varying levels of inaccuracy - MGOC being the closest. This can be at-

tributed to the lack of sufficient nonlinearity in the models and insufficient learning

parameters to represent the dynamics. It is worth pointing out that the EDMD-TS

(6-MLOC-TS1) does not extend the LP space as against its polynomial basis variant,

EDMD-P2 (6-MLOC-P2). Also, the choice of P2 basis is physics-driven to account

for the quadratic nonlinearity of the POD features as embedded within the Navier-

48

Stokes equations that describe the flow. On the other hand, for the MGOC methods,

a logical way to extend the LP space is to increase the number of features in the inter-

mediate layers by increasing Nf . Consequently, we use 6-MLOC-P2 (EDMD-P2) as

the baseline case and design a MGOC architecture with similar sized LP space with

feature factor, Nf = 3. This approach of choosing Nf based on the dimension of the

quadratic polynomial features is a logical way to design FFNN-like MGOC architec-

tures as against more ad hoc choices. A schematic comparing the four intermediate

layers in the 6-MLOC-P2 and the 6-MGOC-TS3 architectures is shown in Fig. 2.5.

For 6-MLOC-P2, the three input POD features are mapped onto a polynomial basis

space with nine features. In 6-MGOC-TS3, the three input features are mapped onto

an unknown basis space, but guaranteed to be optimal for the chosen architecture.

In this spirit of exploration, we also try a a 7th-order polynomial feature map, i.e.

a 6-MLOC-P7 and corresponding MGOC architectures with an expanded LP space

(Nf = 9 and 20) to assess the effect of LP dimensionality on the predictions.

Figure 2.12 shows the predictions from 6-MLOC-P2 and 6-MGOC-TS3 using TR-

I data. In spite of the embedded quadratic nonlinearity, the 6-MLOC-P2 framework

fails to the predict the correct limit-cycle dynamics using just three input features.

On the other hand, 6-MGOC-TS3 with a similar architecture with global optimization

learns and predicts the flow dynamics more accurately. These prediction error trends

are quantified in table 2.2. This is consistent with our earlier discussions that a

larger LP dimension improves predictions as 6-MGOC-TS3 learns 135 parameters

compared to 81 for the 6-MLOC-P2 case. Although these numbers are not vastly

different, the 6-MLOC-P2 fails to even predict qualitatively accurate results. It is

also worth noting that 6-MGOC-TS3 predicts the first two POD features accurately

(see Fig. 2.12), but the third coefficient is biased towards a zero magnitude. We

have found that this is due to the absence of bias term which when incorporated into

the MGOC architectures corrects for this error as discussed and shown in Dig. 7.1

49

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.12: Times series of predicted POD features obtained from (a) 6-MLOC-P2,
(b) 6-MGOC-TS3 for TR-I as training region.

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.13: Times series of predicted POD features obtained from (a) 6-MLOC-P7,
(b) 6-MGOC-TS9 and (c) 6-MGOC-TS20 for TR-I as training region.

included in Appendix 7.1.

As a reference, prior work Lu et al. (2018) on locally optimal architectures (6-

MLOC-P2) has shown that 50 input features, 1325 quadratic nonlinear features with

LP dimension of 1.7e6 can generate accurate predictions, thus indicating the need for

a much larger LP dimension. Here, we explore whether expanding the LP dimension

with just 3 input features improves the model performance. We accomplish this by

increasing the order of polynomial to 7th-degree i.e. we consider a 6-MLOC-P7 archi-

tecture method with 3 POD features and a LP dimension of 15, 625- a nearly ≈ 200

factor increase. Increasing the LP dimension by a couple of orders of magnitude

produces accurate predictions of the nonlinear dynamics as shown in Fig. 2.13a. We

note that choices of polynomial smaller than degree seven did not produce accurate

predictions. We also explore the effect of increasing the LP dimension for the MGOC

architectures by changing Nf as shown in table 2.1. The predictions obtained using

6-MGOC-TS9 and 6-MGOC-TS20 (see Figs. 2.13(b) and (c)) with LP dimensions

50

of 891 and 3960 respectively (factors of ≈ 10 & 40) also showed improved perfor-

mance and compare favorably to the 6-MLOC-P7 architecture. However, both these

GOC variants show similar results indicating that performance improvements have

saturated, possibly due to the non-inclusion of the bias term (Appendix 7.1). Sum-

marizing, for both the MLOC and MGOC architectures, increasing the LP dimension

improves learning and prediction performance. However, MGOC requires relatively

modest increases in LP dimension as compared to MLOC methods which provides

them an advantage. In a way, this result reinforces the underlying principles be-

hind the success of deep learning architectures Bengio et al. (2015). The MLOC can

be viewed as a two-layer shallow learning architecture requiring larger intermediate

layer dimensions while the MGOC is its deep learning counterpart requiring smaller

number of intermediate layer features, but layered over each other.

We use the same modeling architecture’s 6-MLOC-P2, 6-MLOC-P7 along with

with 6-MGOC-TS3,-TS9, -TS20 on the more challenging TR-II data and the resulting

predictions of the POD features are shown in figures 2.14 and 2.15. In this case both

the MLOC architectures, i.e. 6-MLOC-P2 and 6-MLOC-P7 perform inadequately

in spite of the extended LP space. On the other hand, predictions obtained using

6-MGOC-TS offer better qualitative results and predict the limit cycle dynamics, but

display perceptible quantitative inaccuracy without a bias term and is insensitive to

extension of learning parameter space (see table 2.2). However, as before, we observe

that this quantitative inaccuracy, especially in the third POD feature is mitigated

through the inclusion of a bias term as the plots clearly show in Fig. 7.2 in Appendix

7.1.

We note that computing the error metrics using a simple L2 norm do not always

represent the observed qualitative nature of the predictions accurately for such repet-

itive limit-cycle dynamics. For example, the predictions which qualitatively learn

the dynamics but with a phase error tend show larger errors than some of the non-

51

qualitative predictions. The other aspect worthy of mention is that learning of all

the MLOC/MGOC models is based on learning the ’local’ errors and not the global

errors that takes into account error propagation using predictions. Such a ‘local’

cost function misleads the learning process as the minimization of (J) does not re-

flect minimization in prediction errors. To illustrate, in table 2.2, although the cost

functions (J) in most of the methods considered here are reduced to O(1e−6), the

associated prediction errors are of O(1e−1). Improved regularization methods that

use Jacobian of the cost function have been proposed in Pan & Duraisamy (2018)

and will need to be explored.

To relate the observed deviation in the POD features to the predicted flow field of

interest, we show in Fig. 2.16 the reconstructed solution (i.e. the actual predicted state

vector) for Re = 100 obtained using the different methods considered in this paper.

These plots are generated based on learning and prediction using TR-I (cycles : 8−20)

data, and shown at ≈ T = 86.2 (first column) which is the midpoint of the training

region. Columns 2 and 3 in Fig. 2.16 represent predictions at T = 124, the last point in

TR-I and T = 205, the last point in the prediction regime. These results clearly show

that the MLOC methods with low LP dimension such as 4-MLOC-I1, 6-MLOC-TS1

and 6-MLOC-P2 show delayed onset of wake instability and incorrect vortex shedding

while the 6-MGOC-TS1 predicts the instability growth more accurately.

In summary, one or more strategies of extending the LP space, learning the pa-

rameters using a global optimization and improved regularizations help enhance the

efficiency of the learning process and accuracy of the resulting predictions only when

sufficient data is available. These strategies work much better with the TR-I data as

against the TR-II. For the TR-II regime, the limited quantity of information about

the limit-cycle dynamics in the training data is harder to overcome by the design of

the machine learning architecture. Fortunately, in this case the MGOC architectures

offer a significant improvement over MLOC, for a given LP dimension (computational

52

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.14: Times series of predicted POD features obtained from (a) 6-MLOC-P2,
(b) 6-MGOC-TS3 for TR-II data.

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 2.15: Times series of predicted POD features obtained from an extended LP
space (a) 6-MLOC-P7, (b) 6-MGOC-TS9 and (c) 6-MGOC-TS20 for TR-II data.

cost), especially with the inclusion of a bias term.

So far, we explored the importance of training data quality (i.e. relevance to

the data we are trying to predict) for MLOC methods while MGOC methods are

relatively more robust to the data regime chosen for training. In this section, we

briefly explore the impact of the inherent dimensionality of the system by considering

a different flow Reynolds number, Re = 1000. In this case the first three POD features

represent 90% of the total energy (Fig. 2.7(a)) as against 95% for Re = 100 flow. The

phase portrait for the first three modes is shown in figure 2.7(b) which indicates the

dynamics transitioning into a limit cycle much faster than observed for Re = 100.

For the data-driven modeling assessment, we once again choose two different training

regimes with different proportion of transient and limit-cycle information in the data

as shown in Fig. 2.9b. The predictions for the different MLOC and MGOC models

for both TR-I and TR-II regimes are shown in Figs. 2.17, 2.18 and 2.19 with

quantifications reported in table 2.3. As observed for the low Reynolds number case,

53

Figure 2.16: Reconstruction of Re100 flow field based on predicted POD features
obtained from (a) Actual data, (b) 4-MLOC-I1 (c) 6-MLOC-TS1 (d) 6-MLOC-P2
(e) 6-MLOC-P7 (f) 6-MGOC-TS1 (g) 6-MGOC-TS3 (h) 6-MGOC-TS9 comparison
with 15 equally spaced contour levels ranging between (−0.2645, 1.2963) .

54

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 2.17: Times series comparison plot of the predicted POD features with the
original data for TR-I data using different MLOC and MGOC modeling frameworks.
(a) 6-MLOC-P2 (EDMD-P2) and (b) 6-MGOC-TS3.

the MGOC architectures perform better than the MLOC architecture in the TR-I

regime for the similar LP dimensions as shown in Fig. 2.17. With increase in the LP

dimension, the 6-MLOC-P7 or EDMD-P7 framework shows much improved accuracy

(in Fig. 2.18 relative to the 6-MLOC-P2 while the MGOC performance improvement

has saturated. The bias that shows up in the third POD feature for the MGOC

models goes away when adopting a non-zero bias term in the architecture as shown

in Fig. 7.3 in Appendix 7.1.

Moving on to the more challenging TR-II regime in Fig. 2.19, the 6-MLOC-P7

framework performs poorly although it made accurate predictions for the TR-I data.

The different MGOC with large number of learning parameter,LP , also perform

poorly (see Fig. 2.19), but capture the overall qualitative behavior such as the dy-

namics settling into a limit cycle. However, predicted growth of the wake instability

is faster than that for the true data. This is easily seen from table 2.3 where the pre-

diction errors for the MGOC methods is greater than or comparable to the prediction

errors. Unlike in the previous instances, these predictions do not improve with the ad-

dition of a bias unit as shown in Fig. 7.4 in Appendix 7.1. The prediction inaccuracies

for this high Reynolds number case points to the possibility of the data missing dy-

namically relevant information contained in the lower energy containing POD modes.

However, in practice, this is a realistic representation of the available data quality

with the smaller scale features often not resolved with sufficient resolution.

55

Train 6-MLOC-P (EDMD-P) 6-MGOC-TS

cycles E p = 2 p =7 Nf = 3 Nf = 9 Nf = 20

06− 18
Et 0.373 2.6e−4 1.5e−2 2.6e−2 3.8e−2

Ep 0.851 2.6e−4 0.330 2.2e−2 9.7e−2

02− 14
Et 0.320 0.191 0.379 0.695 0.606

Ep 3.414 0.375 0.183 0.395 0.654

Table 2.3: Prediction error estimates for layer-wise local (MLOC) and global opti-
mization methods (MGOC) for Re = 1000.

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 2.18: Time series comparison plot of the predicted POD features with the
original data for TR-I data using different MLOC and MGOC modeling frameworks.
(a) 6-MLOC-P7 (EDMD-P7), (b) 6-MGOC-TS9 and (c) 6-MGOC-TS20.

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 2.19: Time series comparison plot of the predicted POD features with the
original data for TR-II data using different MLOC and MGOC modeling frameworks.
(a) 6-MLOC-P7 (EDMD-P7), (b) 6-MGOC-TS9 and (c) 6-MGOC-TS20

56

2.3.6 Learning and Prediction of a Transient 2D Buoyant Boussinesq

Mixing Flow

Unlike the low-dimensional limit-cycle attractor modeled in the earlier sections, here

we explore a non-stationary and higher-dimensional buoyant Boussinesq mixing flow

discussed in section 2.3.1. In fact, we observed previously that prediction of the tran-

sient evolution of the cylinder wake dynamics before it stabilizes into a limit-cycle is

highly sensitive to the choice of training data. In addition, learning and predictability

of these dynamics are also dependent on the flow data capturing sufficient dynamics

for accurate prediction. For this study, we chose to retain just 80% of the total en-

ergy of the system captured in the CFD generated data (similar to a low resolution

measurement) resulting in just 3 POD features in the 2nd layer of the MLOC/MGOC

architecture. Sensitivity to these aspects is stronger when trying to predict non-

stationary phenomena that may settle into an unknown attractor over long times.

The training data is almost always sparse for such dynamics and may not overtly

show any evidence of the existence of such an attractor. Such instability-driven non-

stationary problems are challenging for data-driven techniques that do not leverage

knowledge of the underlying governing system and employ black box machine learn-

ing. Even if one were to diversify the training data-set with multiple realizations

of the system, performance improvements are not guaranteed as the underlying dy-

namics will be different. We choose a single realization of such a data-sparse and

low-dimensional representation of system for assessment of the MLOC and MGOC

architectures .

For this case study, we consider the following locally optimal methods 4-MLOC-I

(DMD), 6-MLOC-TS (EDMD-TS) and 6-MLOC-P (EDMD-P). We contrast these

with the following globally optimal 6-MGOC-TS with growing LP dimensions for

Nf = 1, 3, 5. As a preliminary step, we use the entire available data for training

and assess the reconstruction performance of these models. Figure 2.21 compares

57

Figure 2.20: Visualization of the first three POD basis (in decreasing order of energy
content) used to model the dynamics with the data-driven models.

the results for the linear 4-MLOC-I (DMD) model with the nonlinear 6-MLOC-TS1

(EDMD-TS1) and 6-MGOC-TS1 (EDMD-P) models with small number of learning

parameters (9 and 27 respectively). Contrary to findings from the earlier section, all

the LOC models including the linear DMD and EDMD with tansigmoid nonlinearity

(EDMD-TS1) compare favorably to the GOC models with Nf = 1. All three models

fail to predict the dynamics of the third POD feature which represents the secondary

eddies from the Kelvin-Helmholtz instability generated by the mixing layer dynamics

(see bottom plot in Fig. 2.20). The LOC models generate slightly better outcomes

as compared to the MGOC(FFNN) for the first two POD features that represent

transverse and vertical mixing (top two plots in Fig. 2.20). To improve the predictions

of the third POD feature, we expand the learning parameter (LP) dimension by

comparing 6-MLOC-P3 (EDMD-P3), 6-MGOC-TS3 and 6-MGOC-TS5 as shown in

Fig. 2.22. Consistent with earlier observations, this increase in LP improves the

prediction of the third feature for both the MLOC and MGOC methods with MLOC

performing better. Similar performance was also realized with the EDMD-P2 (6-

MLOC-P2) architecture and is not reported here for brevity. This shows that for

58

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Figure 2.21: Times series comparison plot of the 3 POD weights with the original
data with entire data used for training (a)4-MLOC-I1 (DMD or 6-MLOC-P1) , (b)
6-MLOC-TS1 and (c) 6-MGOC-TS1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Figure 2.22: Times series comparison plot of the 3 POD weights with the original data
with complete data used for training (a) 6-MLOC-P3 (EDMD-P3) , (b) 6-MGOC-TS3
and (c) 6-MGOC-TS5

reconstructing the dynamics, MLOC methods are more accurate as compared to the

globally optimal FFNNs. This can be attributed to the choice of nonlinear mapping

involved in MGOC architectures and exploration of other transfer functions is beyond

the scope of this study.

To assess the ability of the models to learn the underlying system dynamics, we

split the dataset equally into training and prediction regimes. Figure 2.23 compares

the predicted output of the three POD features for 6-MLOC-TS1, 6-MLOC-P2 and

6-MGOC-TS3. For all the models, we clearly observe that reconstruction is better

than prediction performance. So we focus on the latter in this discussion. The glob-

ally optimal FFNN (6-MGOC-TS3) outperforms the two LOC model architectures

considered here in terms of stability and accuracy. Particularly, the MGOC predic-

59

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

-1

0

1

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Figure 2.23: Times series comparison plot of the 3 POD weights with the original
data with half data used as training (a) 6-MLOC-TS1 , (b) 6-MLOC-P2 and (c)
6-MGOC-TS3

tion using 50% data (Fig.2.23c) is highly similar to that using the entire dataset

as the reconstruction experiment shown in Fig. 2.22c. This shows that these models

offer robust and stable performance even with limited data. In summary, we see that

MLOC methods offer competitive reconstruction performance, but MGOC models

across the different architectures offer stable and robust model performance for long

time predictions using limited data.

2.4 Summary

We explored the role of local (MLOC) versus global optimization (MGOC) of the

multilayer convolution maps through the lens of learning parameter dimensionality

and nonlinear transfer functions on their ability to reconstruct and predict over long

times the transient, nonlinear dynamics of canonical fluid flows. The success of both

the MLOC and MGOC architectures are tied to the nonlinearity in the mapping

and the size of the learning parameter space in the multilayer architecture design.

We observe that for prediction of limit-cycle dynamics and transient from different

regions of data where all the different models show reasonable success, FFNN-like

MGOC models control the growth of long-time prediction errors better than MLOC

models.

60

CHAPTER 3

Deep Koopman Networks: Predictions

Deep Neural networks are very good universal function approximators (LeCun et al.

2015), even a shallow network given high number of neurons can approximate any

given function to a very good accuracy. The deep neural networks advantage from the

nonlinear transfer functions embedded in multiple hidden layers (Raissi et al. 2017).

DNN have had a lot of success with classification problems, while using DNN for

predictions dynamical systems have had very little success. DNN works very well for

the classification problems very well, this is due to the fact that the transfer function

like Rectified linear unit, log-sigmoid mainly focus to separate or distinguish the image

pixels from zero intensity and higher intensity. This distinguished approach work

very well for classification. But, if we use the same transfer functions for function

approximation the transfer functions don’t really get excitepd or provide any help

with predictions, they are designed to work better in separation of intensities for

classification problem, which indeed leads to lose of information that is critical physics

in function approximation.

But we see that DNN are still providing in some cases accurate results, so when

the lose of information happens during the manifold change, the weights have to do

a lot of work to decompress the data to the exact physics. This puts a lot of onus on

the weights for accurately prediction and this causes over fitting of the physics. Most

function approx problems are predictive in nature and the input and output features

are in the same manifold, but a general feed forward network does not guarantee the

reverse mapping of the features. This motivated us to explore network architectures

61

that maps data into the original manifold using inverse transfer functions in a feed

forward network. This approach retains the advantages of nonlocal optimization of

a feed forward networks, but acknowledges the reverse mapping to the original man-

ifold. This reverse mapping of manifold lies at the core of Koopman theory, wherein

the identification of the optimal mapping from input space feature in which the dy-

namics can be approximated using a linear operator. Dynamic mode decomposition

(Schmid 2010, Rowley et al. 2009) and its variants (Williams et al. 2014, Williams

et al. 2015) are popular Koopman approximation methods and typically employ data-

driven proper orthogonal decomposition (POD) convolutions. These methods have

had varying success in modeling dynamics of fluid flows and have proven to be suc-

cessful as long as the convolution map is optimal, i.e. produces a mapping that both

sparse and appropriately nonlinear. This has motivated the need to find the optimal

convolution maps (Lusch et al. 2017, Otto & Rowley 2017, Williams et al. 2015, Wu

et al. 2018) for a given nonlinear fluid flow physics. This allows for the predictions to

happen in the feature space and evolved features are back to the original manifold.

We present the results that illustrate the performance in comparison to the linear

models and multilayer convolution models with local optimization.

Our goal through this effort is to develop data-driven models that allow for system

identification and also provide reliable predictions of dynamics.

In particular, a Koopman theory based model should incorporate the following:

1. A convolution map that accurately projects the state data to and from the

feature space without loss of information, while incorporating the appropriate

degree of nonlinearity.

2. A system identification framework to capture the evolution of the dynamics in

the feature space.

While many learning algorithms try to find/identify the optimal ’magic’ feature maps,

62

a common practice is to build nonlinear convolution operators that are composed of

multiple elementary convolutions layered on top of each other and generalized as a

multilayer convolution framework (Lu et al. 2018). However, these operators often are

an assumed form or optimized locally. The framework presented here utilizes Mul-

tilayer Global Optimal Convolution (MGOC) to identify the optimal combination of

the convolution operators for an improved Koopman approximation of the dynamics

(Puligilla & Jayaraman 2018c). As shown in (Puligilla & Jayaraman 2018b), this

severely limits the ability of the convolution map to represent the dynamics for a

given layer dimension. Feedforward neural networks (FFNNs) provide an intriguing

alternative as global optimal convolution architectures and are effective Markovian

prediction tools (Puligilla & Jayaraman 2018b), but are purely forward maps, i.e

they do not use symmetric convolutions which prevents learning of a Markov linear

operator. To address this, the authors have developed a modified neural network ar-

chitecture termed as Deep Koopman Neural Networks (DKN) (Puligilla & Jayaraman

2018a, Jayaraman & Puligilla 2018) that enforce symmetry and learn the Koopman

operator simultaneously by combining two FFNNs trained in sync. An alternative is

to leverage deep neural networks (DNNs) to learn multilayer convolution maps from

data through the use of symmetric deep autoencoder networks or AENs (Hinton &

Salakhutdinov 2006) that invariably allow for dimensionality reduction and encoding

data into a transformed ‘feature’ space. Both these approaches are similar in using

deep learning to compute data-driven embeddings, but the former learns the corre-

sponding Koopman operator approximation simultaneously while learn the mapping.

g. In the second approach, the Koopman (Markov linear) operator is learned in a

separate step. Both these approaches perform similarly in most cases, but the DKN

produced robust long-time predictions that has implications for data-driven modeling.

The objectives of this study are as follows:

1. Identify convolution maps that can represent the dynamics to find linear koop-

63

man operator.

2. Modify to MGOC frameworks to find Koopman invariant subspaces and linear

operator simultaneously.

64

3.1 Methodology

In our previous efforts, it was observed that a MGOC framework enables learning of

the dynamical system more efficiently compared to MLOC frameworks for a given

hyper-parameters span (Puligilla & Jayaraman 2018c). But, the MGOC based on

neural networks architectures are limited by the forward propagation which does not

allow for the forward-backward (Puligilla & Jayaraman 2018c) convolutions which

MLOC method leverage to approximate linear Koopman operator via least squares.

In Eq. (4.1), the g map provides a forward and backward convolution of the state vec-

tors and is important for coordinate transformation which are invariant. The forward

and backward convolution is tied to the symmetry of the framework used to learn

a dynamical system. For example, an optimal convolution set that helps linearize

the dynamics maps the inputs to a manifold spanned by Koopman subspaces which

should then be ’reverse mapped’ to the original manifold. Autoencoders (Hinton &

Salakhutdinov 2006) are a good example of MGOC frameworks that are widely used

in dimensionality reduction. Recent efforts to use autoencoders in the context of

Koopman theory have had interesting conclusions (Lusch et al. 2017, Otto & Rowley

2017). Where in, an autoencoder is used to map input data to itself to find lower

dimensional representation of the input data. Using this knowledge of the convolution

operators and maps once can build encoders which transforms the data in the origi-

nal manifold to a lower dimensional embedding. Similarly a decoder can be built to

transform the data back into the original manifold. Here the process of finding linear

koopman operator is a two step process, wherein first an autoencoder is used to find

the koopman embeddings and then a koopman operator is computed. We believe, this

two step process will render learning process into an excise in identifying the optimal

’magic’ convolutions. Here again, the convolution and Koopman operator are treated

65

independently. We have observed that by modifying the MGOC framework we can

use the learning capabilities of back propagation to find both the convolution maps

and Koopman operator simultaneously.

With this in mind, we have used two strategies that help ensure symmetry of the

MGOC frameworks. There are three processes that enable learning of the dynamics

efficiently, namely, the convolution operators (Θ), the nonlinear convolution maps

(N) and the back-propagation algorithm. The following strategies used to ensure

symmetry in MGOC frameworks:

1. Deep Koopman Network: Constraining convolution operators (Θ)’s using an

penalty network(Puligilla 2018) that ensures symmetry via encoder-decoder net-

works(see Fig. 3.1)

2. Auto-Encoder Network: A two step process involving MGOC to learn the

encoder-decoder networks and using MLOC to learn the Koopman operator

(see Figure 3.2).

In the following sections, we will present the two modified MGOC frameworks that

have helped improve the learning and representational capabilities of the underlying

nonlinear dynamics.

66

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

x
i+1
t

x
i+1
p

Θ0

Θk

Θl

Θ0

x̂
i+1

Koopman constraint (Encoder)

Reverse map (Decoder)

Forward map (Encoder)

x
i
t

x̂
i

JpJck

Figure 3.1: Deep Koopman Network (DKN) where the red bounding box represents
encoder and the orange bounding box the decoder.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

.

.

.
.
.
.

Θ0 Θl

Reverse map (Decoder)Forward map (Encoder)

x
i
t

x̂
i

x
i
t

Figure 3.2: Two set Autoencoder Network (AEN) where the red bounding box rep-
resents encoder and the orange bounding box the decoder.

67

3.1.1 Forward Propagation for a 6 Hidden Layer Network

z1 = θ0a0 = θ0X

a1 = g1(z1)

(3.1)

z2 = θ1a1

a2 = g2(z2)

(3.2)

a3 = g3(z3)→ [X̂] (3.3)

z4 = θ3a3 → [Ŷ]

a4 = g4(z4)

(3.4)

z5 = θ4a4

a5 = g5(z5)

(3.5)

z6 = θ5a5

a6 = g6(z6)

(3.6)

z7 = θ6a6

a7 = g7(z7)

(3.7)

Here the final layer has No squashing function g.

3.1.2 Penalty Network for Symmetry

cz1 = θ0Y

a1CKT = g1(cz1)

(3.8)

cz2 = θ1a1CKT

a2CKT = g2(cz2)

(3.9)

a3CKT = g3(cz3) ∼ Ŷ (3.10)

68

3.1.3 Cost Functions

Jff =
∑ 1

2m
(a7 − Y)2 (3.11)

JCKT =
∑ 1

2m
(Z4 − a3CKT)

2 (3.12)

J = Jff + JCKT (3.13)

where

Jff = f(θ6, θ5.θ4, θ3, θ2, θ1, θ0, g) (3.14)

JCKT = f(θ3, θ2, θ1, θ0, g) (3.15)

3.1.4 Proof of Symmetry

JCKT is the Koopman constrain on the Network. If JCKT = 0, then the network is

symmetric.

Z4 = a3CKT =⇒ θ3g(θ2g2(θ1g1(θ0X))) = g3(θ2g2(θ1g1(θ0Y))) (3.16)

=⇒ θ3g (θ2g2(θ1g1(θ0X)))
︸ ︷︷ ︸

F

= g3(θ2g2(θ1g1(θ0Y)))
︸ ︷︷ ︸

F

(3.17)

θ3F(X) = F(Y) (3.18)

while Jff is for the convergence to the solution.

Y = g7(θ6g6(θ5g5(θ4g4(z4)))) = a7 (3.19)

3.1.5 Back Propagation for 6 Hidden Layer Network

dJ

dθ6
=

1

m
(a7 − Y)

dg7
dẑ7
·
dẑ7
dz7

︸ ︷︷ ︸

δ7

·a6 + 0 (3.20)

69

dJ

dθ5
= θ6δ7

dg6
dẑ6
·
dẑ6
dz6

︸ ︷︷ ︸

δ6

·a5 + 0 (3.21)

dJ

dθ4
= θ5δ6

dg5
dẑ5
·
dẑ5
dz5

︸ ︷︷ ︸

δ5

·a4 + 0 (3.22)

dJ

dθ3
= θ4δ5

dg4
dẑ4
·
dẑ4
dz4

︸ ︷︷ ︸

δ4

·a3 +
1

m
(z4 − a3CKT)a3

︸ ︷︷ ︸

δCBP4

(3.23)

dJ

dθ2
= θ3δ4

dg3
dẑ3
·
dẑ3
dz3

︸ ︷︷ ︸

δ3

·a2+θ3δCBP4
dg3
dẑ3

dẑ3
dz3

︸ ︷︷ ︸

δCBP3

·a2+(−
1

m
)(z4 − a3CKT)

dg3
dcz3

)

︸ ︷︷ ︸

δEBP3

·a2CKT (3.24)

dJ

dθ1
= θ2δ3

dg2
dẑ2
·
dẑ2
dz2

︸ ︷︷ ︸

δ2

·a1 + θ2δCBP3
dg2
dẑ2

dẑ2
dz2

︸ ︷︷ ︸

δCBP2

·a1 + θ2δEBP3
dg2
dcz2

︸ ︷︷ ︸

δEBP2

·a1CKT (3.25)

dJ

dθ0
= θ1δ2

dg1
dẑ1
·
dẑ1
dz1

︸ ︷︷ ︸

δ1

·a0 + θ1δCBP2
dg1
dẑ1

dẑ1
dz1

︸ ︷︷ ︸

δCBP1

·a0 + θ1δEBP2
dg1
dcz1

︸ ︷︷ ︸

δEBP1

·a0CKT (3.26)

3.1.6 Conjugate Gradients

dt = ∇θJ(θ) + βtdt−1 (3.27)

Fletcher - Reeves:

βt =
∇θJ(θt)

T∇θJ(θt)

∇θJ(θt−1)T∇θJ(θt−1)
(3.28)

Polak - Ribiere:

βt =
(∇θJ(θt)−∇θJ(θt−1))

T∇θJ(θt)

∇θJ(θt−1)T∇θJ(θt−1)
(3.29)

3.2 Results

In this section, we will discuss the predictive capabilities of Deep Koopman Net-

work(DKN) and Auto-Encoder Network. From the design of the architecture, we

70

Algorithm 1 The conjugate gradient method

Require: Initial parameters θ0
Require: Training set of m examples

Initialize ρ0 = 0
Initialize g0 = 0
Initialize t = 1

1: while stopping criterion not met do
Initialize the gradient gt = 0
Compute gradient: gt ←

1
m
∇θ

∑

i L(f(x
i; θ), yi)

Compute βt =
(gt−gt−1)T gt

gTt−1
gt−1

(Polak - Ribiere) (Nonlinear conjugate gradient: op-

tionally reset βt to zero, for example if t is a multiple of some constant k, such as
k = 5)
Compute search direction: ρt = −gt + βtρt−1

Perform line search to find: ǫ∗ = argminǫ
1
m

∑m
i=1 L(f(x

i; θt+ ǫρt), y
i) (On a truly

quadratic cost function, analytically solve for ǫ∗ rather than explicitly searching
for it)
Apply update: θt+1 = θt + ǫ∗ρt
t← t+ 1

2: end while

can perform predictions in two ways as seen in Fig. 3.3. The inner loop predic-

tions described in algorithm 2, here the decoding is performed once we perform the

all predictions/time marching in the hidden features space. The inner loop depicts

conventional way of predictions adopted in reduced order models like DMD, POD

etc, where in the flow dynamics are evolved in a feature space. In case of the outer

loop predictions, the encoding, prediction and decoding are all performed for each

time step as described in algorithm 3. This approach depicts a forward propagation

prediction employed in neural networks. The need for these predictions comes from

the fact that, for a given problem, we would like to evaluate the performance of the

Koopman networks for robustness in encoding and predictions. In the section also,

we will use the cylinder flow dynamics and the 2D Boussinesq mixing flow to evaluate

the performance of the Koopman networks. To this end, we have used a four hidden

layer(4 - HL) and six hidden layer(6 - HL) Deep Koopman Networks and five(5 -

HL) and seven(7 - HL) AutoEncoder networks for this study. The choice of the 4

71

- HL and 6 - HL is derived from the experience wherein we have found that deeper

networks perform better than shallower networks. The architecture, nonlinear maps,

optimization methodology and number of learning parameters for each network is

detailed in table 3.1 In the following section, we will present the validation of the

inner and outer loop predictions obtained from AEN and DKN methods.

Algorithm 2 Inner loop predictions

Require: Initial parameters X̄(1)

Encode X̄(1)
EN
−−→ ¯̄X(1)

1: while i < Np do

Perform predictions from ¯̄X(i)
Θk−→ ¯̄X(i+ 1)

i = i + 1
2: end while

Decode the ¯̄X(1 : Np)
DEC
−−−→ X̄(1 : Np)

Inner loop error Ep−i =
∑

(Ȳa − Ȳp)
2/(2m)

Algorithm 3 Outer loop predictions

1: while i < Np do

Encode X̄(i)
EN
−−→ ¯̄X(i)

Perform predictions from ¯̄X(i)
Θk−→ ¯̄X(i+ 1)

Decode the ¯̄X(i+ 1)
DEC
−−−→ X̄(i+ 1)

i = i + 1
2: end while

Outer loop error Ep−o =
∑

(Ȳa − Ȳp)
2/(2m)

Figure 3.3: A schematic representation of the inner loop and outer loop prediction in
Koopman networks (DKN and AEN)

72

Architecture N Optimization LP

1 DMD
55-55 I1 2-MLOC 3025

10-10 I1 2-MLOC 100

3-3 I1 2-MLOC 9

2 EDMD
55-1595-1595-55 P2 4-MLOC 2.5e6

10-55-55-10 P2 4-MLOC 3025

3-9-9-3 P2 4-MLOC 81

3 DKN
3-9-9-9-9-3 TS 6-MGOC 297

3-9-9-9-9-9-9-3 TS 8-MGOC 459

4 AEN
3-9-9-9-9-9-3 TS 7-MGOC 378

3-9-9-9-9-9-9-9-3 TS 9-MGOC 540

Table 3.1: Overview of the methods used as part of analysis in this chapter. The
dimensions of the different layers correspond to that used for learning the model.

3.2.1 Validating with Limit-cycle Dynamics

Before performing analysis on more challenging data sets, we have used simple limit

cycle data to validate the performance of the DKN and AEN networks. In Figs. 3.4

and 3.5, we have presented the results obtained from the inner and outer loop pre-

dictions, the first two rows in both figures are from the two step AEN, while the 3

and 4 rows are DKN results. In all the cases the long time predictions of first two

POD weights are in good agreement with the actual data, but the third POD weight

seems to diverge in DKN architecture. To asses the performance the prediction errors

of these methods are compared with respect to the MLOC methods which perform

excellently in limit cycle dynamics in table 3.2(16-20 cycles). In this table, we have

also included the prediction errors obtained MLOC methods with POD weights which

amounts to 100% energy content for analyzing the actual spectral content which is

topic of next chapter and to assess the predictive capabilities of MLOC methods

73

even when high fidelity data is available. The architecture, features and optimization

techniques used for MLOC methods (DMD and EDMD) are presented in table 3.1.

In case of flow over the cylinder roughly ≈ 55 POD weights and for 2D Boussinesq

Buoyant flow ≈ 10 accumulate > 97% of the flow energy. In table 3.2, the AEN and

DKN methods are performed as better as the MLOC methods and this provides a

good indication of the capability of DKN and AEN methods in predictions.

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 3.4: Comparison of inner loop predictions based POD weights, where (1st and
2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and
6 - HL Deep Koopman Network (DKN)

74

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 3.5: Comparison of outer loop predictions of POD weights, where (1st and 2nd

row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and 6 -
HL Deep Koopman Network (DKN)

Further, in Figs. 3.6 and 3.7, we have presented the predictions in the Koopman

space where the POD weights dynamics can be evolved or predicted linearly, obtained

from AEN and DKN respectively. In both the figures the predicted dynamics using

inner loop and outer loop seems to agree excellently with actual encoded data using

the learned encoder. From the predictions plots for the AEN and DKN methods,

both the inner loop and outer loop predictions seems to learn the dynamical behavior

of the flow.

75

1

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

2

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

3

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

4

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

5

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

6

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

7

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

8

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

9

0 50 100 150 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-AEN-O

YK-AEN-I

Figure 3.6: Comparison of inner loop vs outer loop predictions in Koopman space
from 7- H L Auto-Encoder (AEN)

76

1

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

2

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

3

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

4

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

5

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

6

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

7

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

8

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

9

0 50 100 150 200

-0.5

0

0.5

TR

YK

YK-DKN-O

YK-DKN-I

Figure 3.7: Comparison of inner loop vs outer loop predictions in Koopman space
from 6 - HL Deep Koopman Network (DKN)

3.2.2 Learning and Prediction of a Transient 2D Buoyant Boussinesq

Mixing Flow

In the chapter 2, we have seen that predictions in Fig. 2.22 fromMLOCmethods where

in good agreement, while the MGOC method did not perform very well. In the case of

MGOC, the method under performed due to the choice of nonlinear mapping (transfer

functions) and non-symmetric architecture (forward propagation). In this section,

DKN and AEN architectures which are symmetric networks perform excellently in

the inner loop predictions of the POD weights of the Boussinesq mixing flow presented

in Fig. 3.8. But, when we perform the outer loop predictions, the results (see Fig. 3.9)

77

seems to agree with the results obtained from the 6-MGOC-TS3(FFNN). Although

this behavior is not expected, the application of encoder-decoder on every prediction

step in outer loop is causing the predictions in the Koopman space to grow in error and

eventually blowing up. On the other hand, the inner loop predictions do not encounter

the error growth due to encoding and decoding. Further, from the table 3.2, we can

see that the one step of encoding-decoding introduces an error of the order ≈ 1e−6 and

from Fig. 3.10, we can see that the cost minimization that forces the encoding error

Jff in AEN and Jckt in DKN is also of the same order. The inner loop predictions

are comparable to the EDMD with 3 POD weights, while the outer loop does not

perform well. This is in line with hypothesis initially made about the advantages of

a symmetric networks over non-symmetric networks. Here again in Figs. 3.11 and

3.12, the inner loop predictions in the Koopman space agree very well with the actual

data.

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

Figure 3.8: Comparison of inner loop predictions based POD weights, where (1st and
2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and
6 - HL Deep Koopman Network (DKN)for Buoyant Boussinesq Mixing Flow

78

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

0 5 10 15 20 25 30

t

-1

0

1

Figure 3.9: Comparison of outer loop predictions of POD weights, where (1st and 2nd

row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and 6 -
HL Deep Koopman Network (DKN) for Buoyant Boussinesq Mixing Flow

79

0 1000 2000 3000 4000 5000 6000

iter

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jff

Jff(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jp

Jp(val)

Jck

Jck(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jff

Jff(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jp

Jp(val)

Jck

Jck(val)

Figure 3.10: Plot of cost function minimization with respect to number of iterations,
(top:left) 5 - HL AEN, (top: right) 4 - HL DKN , (bottom:left) 7 - HL AEN and
(bottom: right) 6 - HL DKN for Buoyant Boussinesq Mixing Flow

80

1

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

2

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

3

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

4

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

5

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

6

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

7

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

8

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

9

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

TR

YK

YK-AEN-O

YK-AEN-I

Figure 3.11: Comparison of inner loop vs outer loop predictions in Koopman space
of 7 - HL Auto-Encoder (AEN) for Buoyant Boussinesq Mixing Flow

1

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

2

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

3

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

4

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

5

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

6

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

7

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

8

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

9

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TR

YK

YK-DKN-O

YK-DKN-I

Figure 3.12: Comparison of inner loop vs outer loop predictions in Koopman space
of 6 - HL Deep Koopman Network (DKN)for Buoyant Boussinesq Mixing Flow

81

Train DMD EDMD 6-DKN 8-DKN 7-AEN 9-AEN

cycles(BBM) E N = 3 N = 10 N = 3 N = 10 N = 3 N = 3 N = 3 N = 3

FD: 1
Ep−o 0.0249 0.013 8.7 e−3 4.17 e−7 0.7847 0.4737 0.5103 0.4729

m=1600
Ep−i 0.0249 0.013 8.7 e−3 4.17 e−7 2.5 e−2 9.6 e−3 2.1 e−2 9.7 e−3

Ea −− −− −− −− 9.6 e−7 9.12 e−6 3.5 e−7 1.16 e−6

cycles(CW) E N = 3 N = 55 N = 3 N = 55 N = 3 N = 3 N = 3 N = 3

LC: 16− 20
Ep−o 7.4 e−3 6.06 e−5 3.51 e−3 −− 4.5 e−2 1.5 e−2 3.4 e−3 3.0 e−3

m=124
Ep−i 7.4 e−3 6.06 e−5 3.51 e−3 −− 8.3 e−3 7.8 e−3 5.5 e−3 6.9 e−3

Ea −− −− −− −− 7.6 e−6 3.43 e−6 8.6 e−7 9.3 e−8

TR-I: 8− 20
Ep−o 0.5129 4.8 e−2 0.776 8.3 e−5 0.1168 0.6 1.074 0.486

m=372
Ep−i 0.5129 4.8 e−2 0.776 8.3 e−5 0.521 0.5864 0.5109 0.478

Ea −− −− −− −− 9.8 e−6 7.35 e−6 1.7 e−7 2.05 e−7

TR-II: 4− 16
Ep−o 0.5538 0.7138 0.6831 1.76988 0.4438 0.8078 0.7429 0.727

m=372
Ep−i 0.5538 0.7138 0.6831 1.76988 0.4313 0.4437 0.4323 0.4343

Ea −− −− −− −− 8.6 e−6 1.2 e−5 2.07 e−7 2.4 e−7

Table 3.2: Prediction error estimates for layer-wise local (MLOC) and global optimization based Koopman networks for Re =
100.

82

3.2.3 Transient Cylinder Wake Dynamics Predictions

In this section, we have presented the analysis based on predictions of flow over cylin-

der in the transient regions TR-I and TR-II. In Fig. 3.13, we can see that all the cost

function minimize to an order of 1e−4, while the encoder-decoder error is minimized

to an order of 1e−6. From the cost minimizations in DKN, we can infer that there is a

strong coupling between cost of learning the encoder-decoder and Koopman operator.

Even though the cost of penalty network was lower, the error of Koopman operator

learning was very high, but as the Jff started decreasing and the Jckt started in-

creasing and then both started decreasing, this behavior signals to a strong coupling

between cost of learning the encoder-decoder (Jckt) and Koopman operator (Jff). In

Fig. 3.14, the predictions obtained from the inner loop does not yield good results,

on the contrary to the observations in previous section 3.2.2, the outer loop predic-

tions Fig. 3.15 yield better results than the inner loop predictions. This dichotomy

in prediction results between two different flow physics signal more intricate coupling

between the encoder-decoder and Koopman operator. By comparing the Koopman

operators from the both the Buoyant mixing flow and Transient cylinder wake, we

83

0 1000 2000 3000 4000 5000 6000

iter

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jff

Jff(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jp

Jp(val)

Jck

Jck(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jff

Jff(val)

0 1000 2000 3000 4000 5000 6000

iter

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o

s
t

J

J(val)

Jp

Jp(val)

Jck

Jck(val)

Figure 3.13: Plot of cost function minimization with respect to number of iterations,
(top:left) 5 - HL AEN, (top: right) 4 - HL DKN , (bottom:left) 7 - HL AEN and
(bottom: right) 6 - HL DKN

can see that there is no correlation. Further, here we would like to highlight that

the fact that the magnitudes of Koopman operators found from AEN for transient

cylinder are sparse and high, could be a sign of over fitting. Further, when we change

the training data to transient region II we see that the two step AEN performs poorly

as a result of over fitting(see Fig. 3.17), while the the DKN performs excellently. In

Fig. 3.18 the Koopman operators of training region are plotted, we can see that here

again we see that the magnitudes of AEN Koopman operator is both sparse and high.

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 3.14: Comparison of inner loop predictions based POD weights, where (1st

and 2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL
and 6 - HL Deep Koopman Network (DKN)

84

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 3.15: Comparison of outer loop predictions of POD weights, where (1st and
2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and
6 - HL Deep Koopman Network (DKN)

DKN

2 4 6 8

2

4

6

8

-0.5

0

0.5

ODD AUTO ENCODER

2 4 6 8

2

4

6

8
-0.4

-0.2

0

0.2

0.4

0.6

DKN

2 4 6 8

2

4

6

8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ODD AUTO ENCODER

2 4 6 8

2

4

6

8

-600

-400

-200

0

200

Figure 3.16: Comparison of the Koopman operator obtained from the 6 - HL - DKN
and 7 - HL - AEN (first row) Buoyant Boussinesq Mixing Flow and (second row)
Cylinder flow

85

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 3.17: Comparison of outer loop predictions of POD weights, where (1st and
2nd row): 5 - HL and 7 - HL Auto-Encoder (AEN) and (3rd and 4th row): 4 - HL and
6 - HL Deep Koopman Network (DKN)

DKN

2 4 6 8

2

4

6

8

-0.4

-0.2

0

0.2

0.4

0.6

ODD AUTO ENCODER

2 4 6 8

2

4

6

8

-500

0

500

Figure 3.18: Comparison of the Koopman operator obtained from the 6 - HL - DKN
and 7 - HL - AEN of Cylinder flow

3.3 Summary

In this section summary of the prediction based analysis of the Deep Koopman Net-

works is presented. The following are the important observations based on which we

have derived preliminary conclusions:

1. Koopman Networks (DKN and AEN) where used as symmetric Markov Linear

methods where in both the learning of the encoder-decoder are learnt with the

86

linear Koopman operator.

2. We have seen from Limit cycle data of cylinder flow and Boussinesq Buoyant

mixing flow that symmetric network helps in learning and improves prediction

capabilities.

3. Even with the encoder-decoder error driven to atleast 1e−6, the predictions

using inner loop with cylinder flow are still not predicted very well.

4. Further investigation is required on the outer loop and inner loop predictions

for transient cylinder flows. The DKN method with its outer prediction is able

to learn the nonlinear dynamics/ transient region of the cylinder flow POD

weights, on the other hand a two step process with the same encoder-decoder

with inner prediction does not yield promising results.

5. Further investigation is needed to concretely establish the differing trends with

different physical nature of the flow.

87

CHAPTER 4

Deep Koopman Networks: Spectral Analysis

Extraction and analysis of dynamical characteristics from data have two broad va-

rieties that either use the raw data ensemble arranged as a matrix or by learning a

linear transition operator when time-resolved data is available. Both these approaches

provide very different information of the physics represented by the data. An example

of the former are the class of model decomposition techniques that leverage the extent

of correlation in the snapshots of data such as the proper orthogonal decomposition

or more specifically, spatial POD (Lumley 2007, Holmes 2012, Taira et al. 2017). This

approach is also known by other names such as principal component analysis (PCA)

and singular value decomposition (SVD). Spatial POD modes represent spatial coher-

ent structures as they are essentially eigenvectors of the spatial two-point correlation

tensor of the data and arranged in terms of energy content. Consequently, each spatial

POD mode is energetically grouped instead of grouping by temporal scale (frequency)

and may contain multiple temporal frequencies. To achieve this frequency-based seg-

regation or decomposition, one can transform the data into spectral space, organize

them into frequency bins or groups and then perform a spatial POD analysis. This

approach will provide frequency dependent spatial POD modes and is referred to as

spectral POD (Towne et al. 2018). The other class of methods leverage dynamical

operators by combining spectral analysis with linear time-invariant (LTI) description

of the physics. Just as linear operator based control is often preferred on account of

the established literature, expertise and track record of success (Kim & Bewley 2007,

Rowley & Dawson 2017) for fluid flows, flow analysis has also been heavily linked

88

to linear system theory (Rowley et al. 2009, Rowley & Dawson 2017, Schmid 2010,

Williams et al. 2015, Lu et al. 2018) due to interpretability of the products of spectral

analysis.

The success the Koopman approximation framework is tied to two aspects: (i) the

ability of the projection or convolutions to the feature space (Rowley & Dawson 2017,

Taira et al. 2017, Lu et al. 2018) to accurately map data without loss of information

while incorporating the appropriate degree of nonlinearity and (ii) their ability to

capture the evolution of the dynamics in the feature space (Lu et al. 2018). In gen-

eral satisfying (i) enables satisfying (ii). Therefore, one needs to learn the unknown

transformation g that is appropriate for a given system and is often modeled from

phenomenology or assumed to be spanned by a chosen basis space (POD, Fourier

or Gaussian) or both. Invariably, the choice of basis space corresponds also to the

method of choice, i.e., DMD algorithms typically use POD basis space and Evolv-

ing Gaussian Process (EGP) methods (Csató & Opper 2002, Williams & Rasmussen

1996) leverage Gaussian kernels. Alternately, functional regression based on sparsity

promoting l1 minimization algorithms have also been explored (Brunton et al. 2016).

These approaches provide the sparsest basis space to approximate the transformation

to the Koopman space as long as one adopts the appropriate library of candidate

functions. When the library is insufficiently populated, the alternate strategy is to

build nonlinear convolution operators by layering multiple ‘elementary’ convolutions

(Lu et al. 2018). Extended DMD or EDMD (Williams et al. 2015) incorporates a

second convolution (over a layer of SVD convolution) by embedding nonlinear func-

tions. This approach builds a hybrid data-functional form of the convolution and is

effective if one knows the nature of the nonlinearity a priori, but often results in a

very high-dimensional function dictionary to approximate the data accurately. The

precise nature of the nonlinearity is normally not known a priori. The kernel variant

of this method, KDMD (Williams et al. 2014) helps with dimensionality reduction,

89

but is once again limited by the choice of the kernel function. A key limitation of all

the above multilayer methods is that each of the layers are treated independently and

the map is learned using local criteria, i.e. by direct function evaluation or projection

onto a basis space that is optimal with respect to local features. As shown in (Puligilla

& Jayaraman 2018b), this severely limits the ability of the convolution map to repre-

sent the dynamics for a given layer dimension. Feedforward neural networks (FFNNs)

provide an intriguing alternative as global optimal convolution architectures and are

effective Markovian prediction tools (Puligilla & Jayaraman 2018b), but are purely

forward maps, i.e they do not use symmetric convolutions which prevents learning

of a Markov linear operator. To address this, the authors have developed a modi-

fied neural network architecture termed as Deep Koopman Neural Networks (DKN)

(Puligilla & Jayaraman 2018a, Jayaraman & Puligilla 2018) that enforce symmetry

and learn the Koopman operator simultaneously by combining two FFNNs trained

in sync. An alternative is to leverage deep neural networks (DNNs) to learn multi-

layer convolution maps from data through the use of symmetric deep auto-encoder

networks or AENs (Hinton & Salakhutdinov 2006) that invariably allow for dimen-

sionality reduction and encoding data into a transformed ‘feature’ space. Both these

approaches are similar in using deep learning to compute data-driven embeddings,

but the former learns the corresponding Koopman operator approximation simulta-

neously while learn the mapping. g. In the second approach, the Koopman (Markov

linear) operator is learned in a separate step. Both these approaches perform sim-

ilarly in most cases, but the DKN produced robust long-time predictions that has

implications for data-driven modeling.

4.1 Spectral Analysis

In the Koopman framework, the feature space is the observable space and the feature

maps are observable functions. The operator theoretic view interprets K as operating

90

on the observable space (Williams et al. 2015) K : F → F . When g and h are

identical, then the linear operator K evolves the Markovian dynamics in Eq. (2.2) as

a Koopman evolutionary model given by:

Kg(xxx) = g(yyy) = g(FFF (xxx)). (4.1)

Since, the Koopman operator has the effect of operating on the functions of state

space as shown in Eq. (4.1), it is commonly referred to as a composition operator

where ◦ represents the composition between g and FFF .

Kg = g◦FFF. (4.2)

Being a linear operator, the products of Koopman spectral analysis such as the eigen-

functions (φj), eigenmodes/ eigenfunctions (vj) and eigenvalues (µj) can be leveraged

to reconstruct the transformation g(xxx) as shown in Eqs. (4.3)-(4.4). This suggests

that the transformation g should be spanned by Koopman eigenfunctions φφφ.

g(xxx) =
∞∑

j=1

φjvvvj (4.3)

g(yyy) = Kg(xxx) =
∞∑

j=1

φjvvvjµj (4.4)

In this discussion, we consider sequential snapshots of data separated by a constant

time-step and denoted by (xxxi,xxxi+1 . . .) such that the dynamical system is given by:

xxxi+1 = FFF (xxxi) (4.5)

The corresponding Koopman representation is:

g(xxxi+1) = g(FFF (xxxi)) = Kg(xxxi) (4.6)

91

where, g is some convolution operator yet to be identified (or assumed for a given

model). We can split this sequence of snapshots into pairs asX = (xxx1 . . . xxxM−2,xxxM−1)

and Y = (xxx2 . . . xxxM−1,xxxM) such that (X, Y) ∈ R
N×M , then the dynamical system in

Eq. (4.5) can be represented as

Y = FFF (X) (4.7)

and its quasi-linear form is

Y ≈ AAA(X)X. (4.8)

Here, AAA(X) ∈ R
N×N is the quasi-linear operator describing the evolution of the

discrete dynamical system that we are trying to approximate from data. Where

N, M represent the dimensions of the instantaneous system state and the number

of available snapshots respectively. Typically, N ≫ M and for a nonlinear system

AAA(X) evolves with X .

4.1.1 Koopman Modes and Eigenvalues

Once the A matrix is found we can extract the spectral information via the eigenvalue

analysis as follows:

A vvvj = µj vvvj (4.9)

where, vvvj are the Koopman modes and µj Koopman eigenvalues. The growth rate

and the discrete frequency content from the Koopman eigenvalues can be extracted

via

λj =
ln(µj)

2π∆t
(4.10)

4.2 Results

In this section, we perform spectral analysis of nonlinear cylinder wake flow with

dynamics including a limit-cycle attractor and an unstable equilibrium. It is well

92

known that beyond the critical Reynolds number,the unstable equilibrium is disturbed

by an axi-symmetric perturbation which saturates into a limit-cycle behavior. In this

paper we assess the ability of the locally optimal Koopman approximation methods

such as DMD & EDMD and globally optimal DKNN & AEN to capture the dominant

Koopman spectrum and model structures for the different flow regimes. In this work,

we analyze Koopman spectra and modes from different data regimes and assess their

impact on long-time limit-cycle predictions. In this chapter we have concentrated our

analysis on 6-HL Deep Koopman Network(DKN) and 7 - HL AutoEncoder Network

(AEN) for brevity. Further, we have used the MLOC methods (DMD and EDMD)

with POD weights that sum to 100% energy for clear comparison. The predictions

obtained from such a system are presented in Fig. 4.1, we can see that the predictions

from DKN and AEN are comparable to the predictions obtained from full set data.

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 4.1: Comparison of outer loop and MLOC predictions of POD weights, where
(1st and 2nd row): DMD and EDMD with 55 POD weights, (3rd and 4th row): 6 - HL
DKN and 7 - HL AEN with 3 POD weights

4.2.1 Limit Cycle Dynamics of Cylinder Flow

Using the Koopman operators used in the previous chapter 3 for predictions of POD

weights in the limit cycle region, we will extract the Koopman eigenvalues and Koop-

man modes. With ∆t = 0.2D/u∞, the eigenvalues of the Koopman operator obtained

93

for all the methods used as part of this study are tabulated in table 4.1. In the table,

only the eigenvalues that correspond to the limit cycle are only listed. We can see

that, the first three frequencies of the POD weights are captured by DMD, but 4-

HL DKN and 4-HL AEN where able to capture the mean mode and the first mode,

while other modes did not fall in the vicinity of the higher frequencies. But, it should

be noted here that the predictions obtained from Koopman operator accurately pre-

dicted the Limit cycle dynamics(see Figs. 3.4 and 3.5). It interesting to see that even

though the specific frequency is absent from the eigenvalues spectrum of the Koopman

operator, the dynamics are accurately represented. In Fig. 4.2 and 4.3 the Ritz plot

of the eigenvalues are plotted along with eigenvalues obtained from DMD(MLOC)

method. From the figures, we can see that the the µ0 the mean mode and µ1 from

both DKN and AEN over lap with µ’s of DMD, but all other eigenvalues from the

DKN and AEN are damped or decaying. A growth rate vs. frequency plot of the

AEN and DKN for limit cycle are plotted in Figs. 4.4, here again we can see that the

growth rates and frequencies of λ’s are accurately predicted.

94

POD DMD DKN-4 AEN-4 DKN-6 AEN-6

µ(St = 0) 1± 0i 1.001 ± 0i 1.001 ± 0i 1± 0i 1.001 ± 0i 1.001 ± 0i

λµ 0 0.00079 0.00079 0 0.00079 0.00079

µ(St = 0.1655) 0.9784 ± 0.2065i 0.9786 ± 0.2064i 0.9786 ± 0.2059i 0.9784 ± 0.2059i 0.9786 ± 0.206i 0.9786 ± 0.2059i

λµ 0± 0.1655i 0.0001 ± 0.1654i 0± 0.1652 −0.0001 ± 0.1651i 0± 0.1651i 0± 0.1651i

µ(St = 0.331) 0.9147 ± 0.4041i 0.9148 ± 0.404i −− −− −− 0.6078 ± 0.4056i

λµ 0± 0.331i 0± 0.3309i −− −− −− −0.2497 ± 0.4683i

µ(St = 04965) 0.8115 ± 0.5843i 0.8117 ± 0.5841i −− −− −− −−

λµ 0± 0.4966i 0± 0.4964i −− −− −− −−

Table 4.1: Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies (Im(λ)) obtained from Limit cycle dynamics
of cylinder wake flow.

95

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 DMD

AEN

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
DMD

AEN

Figure 4.2: Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN

4.2.2 Identification of Dominant and Allied Structures via Dynamic Mode

Decomposition

In this section, identification of the important modal structures of Koopman modes

are studied understand the importance of these structures in reconstruction/predic-

tion of the flow field. To do this, we have identified the eigenvalues at certain fre-

quencies from the growth rates obtained from DMD and EDMD. In the Fig. 4.5(1st

), we have identified the the frequencies of the periodic modes or coherent structures

that are dominant and the allied structures in the vicinity of the periodic modes. For

example, the first three modes in the positive x-axis correspond to the mean mode

ans its allied structures. Similarly, the next three mode cluster correspond to the first

harmonic and its allied structures. In Fig. 4.5, we can see that the eigen spectrum

is discrete, we have also looked at the eigen spectrum obtained from EDMD. The

growthrates and their respective frequencies are plotted in Fig. 4.5(2nd row), here we

can see that the eigen spectrum is continuous. In Figs. 4.6 and 4.7, we have plotted

the Koopman modes of the identified growth rates and frequencies. Here, we have

plotted the Koopman modes in accordance with the appearance/increase of frequency

96

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 DMD

DKN

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
DMD

DKN

Figure 4.3: Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

AEN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

DKN

Figure 4.4: Comparison of growth rate and frequencies of (1st row)7 - HL Auto-
Encoder(AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN)

97

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

KM plots

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

EDMD

KM plots

Figure 4.5: Comparison of select growth rate and frequencies of (1st row)DMD and
(2nd row): EDMD for understanding the Koopman mode structures.

value. For example, the mean mode for both DMD and EDMD are plotted at first

and the followed its allied structures.

The Koopman mode identified, from both DMD and EDMD have similar struc-

tures and are representative of the eigenvalues and frequencies. We can see that, al-

though DMD spectrum is not continuous, the Koopman modes have similar structures

in the Koopman modes. More detailed analysis is required in terms of identifying the

importance of allied structures on the predictions and reconstruction. We have used

these structures to make important observations while evaluating the performance of

the DKN and AEN methods.

4.3 Spectral Analysis of Transient Dynamics of Cylinder Flow

The eigenvalue spectrum of limit cycle dynamics is rather straight forward and can be

easily computed using DMD like methods. The transient dynamics are not captured

very well using the conventional DMD, an additional nonlinear mapping is required

to learn/capture the dynamics. Here we use EDMD with 55 POD weights and a

second order polynomial expansion mapping is used. In Fig. 4.8, the approximate

Koopman operators are plotted as image pixels to show the structure of the operator

98

Figure 4.6: Koopman Eigen functions obtained using DMD with 55 POD weights

Figure 4.7: Koopman Eigen functions obtained using EDMD with 55 POD weights
and 2nd order polynomial mapping

99

matrix. We can see that, the MLOC methods produce a diagonally dominated matrix

and the MGOC methods produce matrices which do not have any clear pattern. But

with closer look at the Koopman operator of DKN, we can see it also has diagonally

dominated matrix which signifies the features in the Koopman space are correlated.

On the other hand the, the Koopman operator is sparse and spiky, which hints might

operator be overfitted or the features in the Koopman space are not correlated. All

the eigenvalues of the AEN operator lie nearby the eigenvalues µ0, µ1, and µ2 as seen

in Fig. 4.9, but the µ0, µ1 eigenvalues found from the DKN are overlapping with

the eigenvales of DMD and EDMD(see Fig. 4.10). The rest of the eigenvalues from

the DKN are decaying and are near by to zero. In case of AEN, the eigenvalues in

the vicinity of the µ0, µ1, and µ2 create a combined effect to capture the nonlinear

dynamics of the transient region. But it is not very clear from the DKN results,

how the transient dynamics are captured. Further investigation is need to assess the

quality of the modes obtained from the DKN Koopman operator. In Figs. 4.11, we

can see that the DKN and AEN are able to capture the mean eigen values at frequency

St = 0 and first eigenvalues at St = ±0.1655. In the table 4.2 the eigenvalues and

the frequencies of obtained from all the methods used as part of this study. We can

see that the DKN with both 4-HL and 6-HL manages to find the the mean eigenvalue

and the first and second eigenvalue accurately. On the other hand, the AEN with

5-HL and 7-HL manages to find the eigen values in the vicinity of the first three most

dominating and the mean eigen value.

From the Figs. 4.6 and 4.7, we can see that the dominating modes with higher

magnitudes are µ0 and mu1 in both DMD and EDMD methods. While µ2 and µ3 are

two orders less than the dominant eigenfunctions. The structures of the eigenfunctions

also signify their nature, for example the eigenfunctions associated with µ1 and µ2 are

periodic and signify the dominant coherent structure in the flow. While the µ0 signifies

a mean, which indicates the mode doesn’t evolve with time. The third mode µ3 is the

100

shift mode (Noack et al. 2003). Now by looking at the eigen functions obtained from

the DKN and AEN. In Fig. 4.12, we can see that except for the mean mode µ0 all

other modes looks like a combination of shift mode and periodic coherent structure

modes. Similarly, in Fig. 4.13, except for the mean mode all the other eigenfunctions

indicate periodic coherent structures. Finally, the eigenfunctions from both AEN and

DKN have similar magnitude unlike DMD or EDMD where the eigenfunctions µ0 and

µ1 had higher magnitude which translates to higher dominance in the flow dynamics

and reconstruction.

101

DMD EDMD DKN-4 AEN-4 DKN-6 AEN-6

µ(St = 0) 0.99 ± 0.009i 1± 0i 0.9934 ± 0i 0.9931 ± 0i 0.993 ± 0i 0.995 ± 0i

λµ −0.0080 ± 0.0072i 0 −0.0053 −0.0055 −0.0056 −0.0040

µ(St = 0.1655) 0.979 ± 0.2063i 0.9784 ± 0.2066i 0.9822 ± 0.1976i 0.982 ± 0.1976i 0.982 ± 0.1982i 0.9796 ± 0.2005i

λµ 0.0004 ± 0.1653i 0± 0.1656i 0.0015 ± 0.1580i 0.0013 ± 0.1580i 0.0014 ± 0.1585i 0.0001 ± 0.1607i

µ(St = 0.331) 0.9167 ± 0.4043i 0.9149 ± 0.4039i 0.2828 ± 0.2394i 0.8445 ± 0.4453i −− 0.899 ± 0.289i

λµ 0.0015 ± 0.3305i 0.0001 ± 0.3308i −0.7917 ± 0.5604i −0.0369 ± 0.3861i −− 0.0456 ± 0.2475i

µ(St = 04965) 0.8145 ± 0.5834i 0.8108 ± 0.5856i −− −− −− 0.8247 ± 0.5495i

λµ 0.0015 ± 0.4946i 0.0001 ± 0.4978i −− −− −− −0.0072 ± 0.4677i

Table 4.2: Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies (Im(λ)) obtained from Transient region - I.

102

DMD with 55 POD weights

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
EDMD with 55 POD weights

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

-0.4

-0.2

0

0.2

0.4

0.6

0.8

DKN

2 4 6 8

2

4

6

8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ODD AUTO ENCODER

2 4 6 8

2

4

6

8

-600

-400

-200

0

200

Figure 4.8: Comparison of the Koopman operators from DMD, EDMD, DKN and
AEN methods.

103

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

DMD

EDMD

AEN

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
DMD

EDMD

AEN

Figure 4.9: Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

DMD

EDMD

DKN

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
DMD

EDMD

DKN

Figure 4.10: Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN

104

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

EDMD

AEN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

EDMD

DKN

Figure 4.11: Comparison of growth rate and frequencies of (1st row) 7 - HL Auto-
Encoder (AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN)

Figure 4.12: Koopman Eigen functions obtained using 7 - HL AutoEncoder Network
(AEN), with 3 POD weights

105

Figure 4.13: Koopman Eigen functions obtained using 6 - HL Deep Koopman Network
(DKN), with 3 POD weights

4.3.1 Effect of Input Features vs Hidden Features Increase on Spectral

Information

In this section, we have studied the importance of adding data vs spanning the learn-

ing space to accurately capture the dynamics and spectral information. Here, we

have used 10 POD weights for learning the transient region -I, while using feature

growth factor Nf = 1. In Fig. 4.14, we can see that the outer prediction obtained

using 10 features with same number of hidden features (neurons), the predictions

are qualitatively similar. The eigen spectrum obtained Koopman operators of AEN

and DKN are plotted in Fig. 4.15 and the growth rates and frequency in Fig. 4.16.

We can see that, contrary to DKN and AEN results with 3 POD weights as input

features, the spectrum with 10 POD weights captured the first 2 dominant coherent

structures and the mean mode. While DKN and AEN with three input features was

able to capture only the first harmonic and the mean mode. Further, we can see that

the Koopman modes obtained from the 10 POD weight Koopman operator are very

106

distinct than what was predicted from both DMD and EDMD. Further research is

need to provide an full analysis that provides important conclusions.

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 4.14: Comparison of predictions (1st row)5 - HL Auto-Encoder (AEN) and
(2nd row): 4 - HL Deep Koopman Network (DKN)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

DMD

EDMD

AEN

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

DMD

EDMD

DKN

Figure 4.15: Ritz plot of eigenvalues(µ) spectrum obtained from 4 - HL DKN

107

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

EDMD

AEN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

DMD

EDMD

DKN

Figure 4.16: Comparison of growth rate and frequencies of (1st row)5 - HL Auto-
Encoder (AEN) and (2nd row): 4 - HL Deep Koopman Network (DKN)

Figure 4.17: Koopman Eigen functions obtained using 5 - HL Autoencoder Network
(AEN), with 10 POD weights

108

Figure 4.18: Koopman Eigen functions obtained using 4 - HL Deep Koopman Network
(AEN), with 10 POD weights

4.3.2 Significance of Accurate Predictions on Spectral Information

In this section, we have presented importance of correlation between accurate pre-

dictions and spectral information. In the Fig. 4.19, we can see that the predictions

obtained fail to capture the transient dynamics accurately, but they are able to predict

the limit cycle dynamics accurately. Using the Koopman operator of these predictions,

we can answer if the spectral information captured by this operator can distinguish

between the eigenvalues that help in predicting the transient dynamic and limit cycle.

Here again we can see from the Fig. 4.20, the growth rates and the frequencies cap-

tured are very similar to the ones that were obtained from good predictions results

operator. More investigation is needed to concretely assess the importance of the

eigenvalue spectrum on the predictions.

109

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

0 50 100 150 200

t

-1

0

1

Figure 4.19: Comparison of predictions (1st row) 7 - HL Auto-Encoder (AEN) and
(2nd row): 6 - HL Deep Koopman Network (DKN)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

DMD

EDMD

AEN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

DMD

EDMD

DKN

Figure 4.20: Comparison of growth rate and frequencies of (1st row) 7 - HL Auto-
Encoder (AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN)

110

CHAPTER 5

Genetic Algorithm based Global Optimal Convolution

5.1 Introduction

The learning process in artificial neural networks is carried out by backpropagation

algorithm Rumelhart et al. (1988) which is widely used and helped in popularizing

neural networks. Artificial neural networks have been widely used and deep variant

have demonstrated excellent accuracy in image classification and regression. More

recently, artificial neural networks have been used in fluid dynamics community as

model order reduction methods with main emphasis on extracting underlying physics

Raissi et al. (2017). Furthermore, artificial neural networks are used for regression

and prediction. Neural networks extract the underlying physics or patterns with the

help of activation or transformation functions, which are vital to this process. While

back propagation needs gradient information to optimize the weights connecting the

neurons. Generally, conventional activation functions used in the machine learning

community are not enough to model fluid flows or help in extracting the underly-

ing physics. Methods like proper orthogonal decomposition Schmid (2010), wavelet

and Fourier transformation functions have been found optimal to model fluid flows.

But these transformation functions don’t have derivative information based on which

back propagation works. So, there is a need for an optimization technique that poten-

tially replaces back propagation and aid in the usage of physics based transformations

which enable efficient modeling. To do this, we have used genetic algorithm which is

a global optimizer and do not require gradient information to optimize the system.

There have been attempts to use genetic algorithm based methods to optimize neu-

111

ral networks with limited successYen & Lu (2003), Montana & Davis (1989), while

review articles by Yao Yao (1999) and Ding Ding et al. (2013) have provided various

possibilities using genetic algorithm in neural networks. This ranges from designing

the neural network architecture by optimizing the hyper parameters involved while

using back propagation to optimize weights to both designing and optimizing the

hyper parameters, weights and number of layers. In this article, we present out ini-

tial efforts into using genetic algorithm to train weights using non–dominated sorted

genetic algorithm Deb et al. (2002) with conventional transformation functions.

The objectives of this study are as follows

1. Feasibility of genetic algorithm as a substitute for back propagation.

2. Genetic algorithm for designing and optimizing the network simultaneously

3. Develop strategies to help in improve the fine tuning ability of GA to find an

optimal solution using multi-objective optimization using aposteriori error.

5.2 Methodology

In Figs. 2.5 and 5.1 of the neural network used as part of this study. The four layer

design is motivated from the previous efforts where in a four layer or higher have found

to model the flow more accurately compared to a shallow(one hidden layer) network.

Further, this network acts as a precursor to deep neural networks and can help making

important observations needed to make genetic algorithm work with such an archi-

tecture. Genetic algorithm is widely used as a multi objective optimizer, where in

competing multi objective functions are optimized simultaneously. We have posed the

training process as a multi objective problem with objective functions to minimize are

cost functions shown in Eqn. 5.13 is computed using forward propagation. Training

error or apriori error in Eqn. 5.13 which is generally used in backpropagation algo-

rithm to learn has been chosen as objective-1 and additional posteriori error is used

112

X Y

C+
POD Θ, N Θk, I Θ, N−1 CPOD

X̄ ¯̄X ¯̄Y Ȳ

nxm

kxm kxm

nxm

rxm rxm

Figure 5.1: A schematic representation of the Modified Feed Forward Neural Network
with N−1 used for symmetric architecture.

as objective -2 to understand the effect of learning on regression and performance.

5.2.1 Modified MGOC-1

In this section we discuss the modification with respect to the nonlinear mapping

used in a MGOC framework . This framework also follows the same procedure as

the MGOC described in section 2.2.3. The following equations clearly describe the

procedure for a four layer layer network (without POD convolution layers):

Z1 = Θ1X̄, (5.1)

¯̄X = N (Z1), (5.2)

Z2 = Θ2
¯̄X, (5.3)

¯̄X = N−1(Z2), (5.4)

Ȳp = Θ3
¯̄X. (5.5)

Here we can see that the inverse of the nonlinear map N helps in mapping the evolved

features from the Koopman space to the original manifold of the POD coefficients.

This also helps in symmetry of the framework.

113

5.2.2 Inverse Mapping Transfer Function: Tansigmoid

Inverse mapping for a typical transfer function tansigmoid is as follows:

N =
e−2z − e−2z

e−2z + e−2z
(5.6)

N−1 = log

([
1 + z

1− z

] 1

2

)

(5.7)

Intermediate variable derivative - ∂z
∂zi

Tan Sigmoid

∂dz3
∂zi3

=
∂

∂zi

[
1− zi
1 + zi

]−1/2

(5.8)

= −
1

2

[
1− zi
1 + zi

]−1/2−1

·

[
(1 + zi)(−1)− (1− zi)(1)

(1 + zi)2

]

(5.9)

= −
1

2

[
1− zi
1 + zi

]−3/2

·

[
−1− zi − 1 + zi

(1 + zi)2

]

(5.10)

=

[
1− zi
1 + zi

]−3/2

·

[
1

(1 + zi)2)

]

(5.11)

=
1

(1− zi)3/2 · (1 + zi)1/2
(5.12)

Jl =
1

2m ∗N

m∑

i=1

n∑

j=1

(Ȳp(j, i)− y(j, i))2

︸ ︷︷ ︸

Cost function

(5.13)

R(Θ) =

(

λ

2m

L−1∑

l=1

Pl−1∑

p=1

Ql∑

q=1

(
Θ(l)

p,q

)2

)

︸ ︷︷ ︸

Regularisation term

(5.14)

Jg =
1

2m ∗N

m∑

i=1

n∑

j=1

(ˆ̄Y (j, i)− y(j, i))2

︸ ︷︷ ︸

Cost function

(5.15)

114

5.2.3 Non-dominated Sorting Genetic Algorithm

Evolutionary algorithm used for this study, NSGA–II (Deb et al. 2002) is a popular

non domination based genetic algorithm. This method is widely used in multiob-

jective optimization. The algorithm of the method is detailed in algorithm 4, while

the algorithms of important operations done as part of this method like Fast non–

dominated sorting and computing crowding distance are detailed in algorithms 5 and

6. The method starts with initialization of the population of individuals with specific

chromosome length. Then the populations is sorted to into fronts based on non-

domination sorting. These fronts are labeled or fitness ranked from 1 to p based on

level of domination/fronts these individuals are in compared to the other individu-

als in the population. In addition to fitness value these crowding distance of each

individual is computed to maintain diversity while creating new generation. Based

on this fitness value and crowding distance parents are selected from the population

to generate offspring/children using crossover and mutation operators. The current

population and current children are sorted again and the best N individuals are pro-

gressed into the next generations. This cycle repeats until it satisfies the stopping

criteria, which generally is the number of generations.

5.3 Test Bed: Flow over a Cylinder

In this study, direct numerical simulation obtained by solving Navier-Stokes equations

over a cylinder are used. In Fig. 5.3 a contour plot of velocity field of the fluid is

plotted. The data comprises of velocity field on ≈ 23, 000 data points over 2000

time steps. But, this system can be reduced using proper orthogonal system which

provides a low dimensional manifold where the dynamics of such a flow can be modeled

and evolved. In Fig. 5.4 the first three modes(low dimensional manifold) and their

corresponding weights(dimensions) which govern the dynamics this flow are plotted.

By learning these weights and evolving them would enable accurate prediction of the

115

initialize population
define Network
& Fitness func

Evaluate fitness

Sort the Non-
dominated indiviual

+ Rank batch

Crowding dist
+ select parents

Crossover +
Mutation + Merge

update fitness val of
New population N

n ≤ NGen

Stop

no (n = n+ 1)

yes

Figure 5.2: Schematic of the NSGA-II algorithm process

116

Algorithm 4 NSGA 2

1: procedure Initialize population(P)

2: Rt = Pt ∪Qt

3: F = Fast–non–dominated–sort(Rt)

4: Pt+1 = ∅ and i = 1

5: while |Pt+1|+ |Fi| ≤ N do

6: Crowding–distance–assignment(Fi)

7: Pt+1 = Pt+1 ∪ Fi

8: i = i+ 1

9: Sort(Fi,≺n)

10: Pt+1 = Pt+1 ∪ Fi[1 : (N −−|Pt+1|)]

11: Qt+1 = make–new–pop(Pt+1)

12: t = t + 1 ⊲ increment the generation counter

13: end while

14: end procedure

Figure 5.3: Velocity field snapshots of Re100 flow field.

fluid flow.

5.4 Results

5.4.1 Modeling Fluid Flow: Multi-Objective Problem

In this study, fluid flow is modeled as a multi objective optimization problem. While

the minimization of the local (apriori) error cost function is straight forward, but

including the posteriori (global) error cost function as other objectives is to add

constraints which aides in improving the predictions. While regularization is also

applied and will help in terms of penalizing the weights, the global error is used

117

Algorithm 5 Fast Non–Dominated Sort

procedure Fast Non–Dominated sort(for each p)

2: for p ∈ P do

Sp = ∅

4: np = 0

for q ∈ P do

6: if p ≺ q then

Sp = Sp ∪ {q}

8: else if (q ≺ p) then

np = np + 1

10: end if

end for

12: if np = 0 then

prank = 1

14: F1 = F1 ∪ {p}

end if

16: end for

i = 1 ⊲ Initialize the front counter

18: while Fi 6= ∅ do

Q = ∅

20: for p ∈ Fi do

for q ∈ Sp do

22: nq = nq − 1

if nq = 0 then ⊲ q ∈ to the next front

24: qrank = i+ 1

Q = Q∪ {q}

26: end if

end for

28: end for

i = i+ 1

30: Fi = Q

end while

32: end procedure

118

Algorithm 6 Crowding Distance

procedure Crowding Distance–assignment(I)

l = [I]

3: for i ∈ I do

Set I[i] = 0

end for

6: for for each objective m do

I = sort(I, m)

I[1]dist = I[l]dist =∞

9: for i = 2 to (l − 1) do

I[i]dist = I[i]dist + (I[i+ 1] ·m− I[i− 1] ·m)/(fmax
m − fmin

m)

end for

12: end for

end procedure

-0.01

0

0.01

-1

0

1

-0.01

0

0.01

-0.5

0

0.5

0

0.01

0.02

-0.8
-0.6
-0.4
-0.2

0
0.2

y
y

y

x

POD mode 1POD mode 1

POD mode 2POD mode 2

POD mode 3POD mode 3

t

w
(t
)

w
(t
)

w
(t
)

40 80 120 160 200

Figure 5.4: POD modes and their corresponding time series weights are plotted

119

to accurately provide the actual time series error associated with individuals in the

population. The choice of global error cost function was motivated from the fact

that, with the cost function used here, there is a high probability that the cost of a

bad solution individual and a good solution would be same, many such cases have

been found through experience. In Fig. 5.5 shows the pareto front of all possible

solutions found from the MGOC–GA algorithm, we can see that the prediction in

Fig. 5.6 from this pareto front has a good solution even when compared MGOC

with backpropagation, whose cost is less. Finally, two objectives are simultaneously

optimized and we see that the prediction improves even further which is evident

from predictions. Here, the lack of fine tuning final solution ability of NSGA–2 is

the caused the satisfactory results when compared to actual solution. In Fig. 5.6,

we have plotted randomly chosen pareto front solutions to perform predictions on

the transient dynamics. We can see that, the best predictions correspond to the

points in pareto front which have both objective functions minimized. Further, we

have plotted for comparison the predictions results obtained from DMD, EDMD and

FFNN in Fig. 5.7 with same learning space and learning parameters. We can see that

GA performed far better then DMD. EDMD and FFNN.

5.5 Summary

In this work, we proposed a derivative free training algorithm for training weights in

neural networks. Here, the non dominated sorting genetic algorithm was successfully

used as a training algorithm to find optimal set of weights. Here, the optimization

problem was cast as a multi-objective problem to improve the accuracy of the pre-

dictions and penalize the false positive individuals from the population. It has to be

noted here that there is a need an algorithm which fine tunes the weights and filters

out a optimal solution based on the competing objective functions. Furthermore, this

method can be used to design the network and optimize the weights simultaneously.

120

3 4 5 6 7 8 9 10 11 12

10 -4

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

1

10

19

28

37

46

55

64

Figure 5.5: Pareto front of apriori error vs. aposteriori error

121

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

Figure 5.6: Prediction results from the Rank 1 pareto front from NSGA-2

122

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

0 20 40 60 80 100 120

t

-1

0

1

Figure 5.7: Comparison of prediction results between (a) DMD, (b) EDMD, (c)
MFFNN-BP and (d) MFFNN-GA (best of the Rank 1 pareto front from NSGA-2).

In addition, this method enables the usage of different sets of activation functions

which need not have derivation information. In future, we would like to use this

method to first learn low dimensional manifolds and later use them in modeling the

fluid flows.

123

CHAPTER 6

Conclusions and Recommendations

6.1 Summary

In this thesis we explore the role of local (MLOC) versus global optimization (MGOC)

of the multilayer convolution maps through the lens of learning parameter dimension-

ality, symmetric networks, spectral analysis and nonlinear transfer functions on their

ability to reconstruct, predict and allow for analysis for the transient, nonlinear dy-

namics of canonical fluid flows. Fluid flows represent multiscale PDE dynamical sys-

tems that often require low-dimensional data-driven representations and evolutionary

models for a multitude of applications. The locally optimal multilayer frameworks

allow for both backward and forward operations and can support symmetric architec-

tures including Koopman approximation methods such as DMD and EDMD, which

also allow for analyzing data. Such approaches allow for spectral analysis of the

underlying system in addition to building data-driven models. On the other hand,

globally optimal (MGOC) frameworks can support only forward maps due to the

choice of gradient-based optimization algorithms being commonly used as the tool of

choice for nonlinear parametric regression in machine learning. Consequently, MGOC

architectures like FFNN cannot learn the Koopman operator using current methods.

Recent work by the authors on leveraging feedback networks Puligilla & Jayaraman

(2018a) with feedforward networks has allowed us to bypass this limitation to perform

Koopman spectral analysis along with building an effective predictive model.

The success of both the MLOC and MGOC architectures are tied to the nonlin-

earity in the mapping and the size of the learning parameter space in the multilayer

124

architecture design. We observe that for prediction of limit-cycle dynamics from limit-

cycle data where all the different models show reasonable success, FFNN-like MGOC

models control the growth of long-time prediction errors better than MLOC models.

While prediction errors decrease with increase in dimension of the learning param-

eters and the appropriateness of the nonlinear transfer function, their combination

through a MGOC architecture turned out to be the most effective. As an example of

appropriateness of the nonlinear transfer function, we show that tansigmoid functions

operate well with MGOC architectures as against MLOC architectures which perform

better using polynomial nonlinear features.

To assess the ability of these model architectures to generalize to diverse training

data regimes, we considered two different case studies with different training regimes

that differ in their limit-cycle content. In order to mimic the availability of only

limited resolution data as is commonly the case, we chose to train these models us-

ing their low-dimensional representation with only three POD features. Within the

context of these restrictions, we observed that for comparable number of learning

parameters, the FFNN-like MGOC architectures outperform the corresponding lo-

cally optimal MLOC model frameworks by a significant margin in terms of accuracy

and robustness. To illustrate this, we show that the 6-MGOC-TS1 architecture with

9 learning parameters produce qualitatively accurate results as against the grossly

inaccurate results using DMD/EDMD (4-MLOC and 6-MLOC) models. With in-

crease in LP dimension, both class of methods converge to the accurate predictions

with tangible improvements and slower convergence in the MLOC as compared to

the MGOC framework. For example, a 7th polynomial nonlinearity in the MLOC ar-

chitecture with O(1.5×104) parameters produced accurate predictions as against the

6-MGOC-TS3 models with a bias term (traditional FFNN) with just 135 parameters.

The downside of MGOC models is their computational cost and learning time as

one needs to solve a nonlinear regression problem, often requiring iterative gradient

125

search based algorithms which can also impact convergence. A common issue with

FFNN/MGOC architectures is the solution being stuck in a local minimum as against

a true global minimum for which algorithmic advances continue to be explored. How-

ever, this is made up for by the relatively modest increase in LP dimension needed to

improve the learning and prediction performance. The case with limited quantity of

information about the limit-cycle dynamics in a different training data regime (TR-II

regime) both class of methods find learning and prediction harder. In this case how-

ever, the MGOC architectures were able to generate accurate predictions with as little

as 135 parameters especially with the inclusion of a bias term whereas the MLOC

method with O(1.5 × 104) parameters failed to predict meaningful data. When the

inherent system dimension increases at higher Reynolds numbers, i.e. Re = 1000, the

above trends remain consistent, but the dynamics are harder to predict, especially

when the dimension of the training data is not increased. In spite of using data with

missing dynamically relevant physics, the FFNN/MGOC models produced stable and

qualitatively accurate results.

We also explored data-driven modeling of data-sparse non-stationary buoyant mix-

ing flow phenomena in the context of pure learning-based reconstruction and learning-

based prediction. For such systems, the MLOC-based methods turned out to be good

at reconstruction (consistent with Lu et al. (2018)), but struggle to learn the dynamics

to predict a future state accurately. While both methods struggle with quantitatively

accurate prediction of such data, the MGOC frameworks generate better qualitative

accuracy in the prediction regime.

MLOC (DMD) and its extensions for a given problem with knowledge of physics

learns the nonlinear dynamics excellently but as we change the dynamics, the method

perform poorly. Multilayer locally optimal convolutions are limited by the local opti-

mization and we have seen that for a given span of hyper-parameters, MGOC methods

perform better in learning the nonlinear dynamics on both the training sets. Further,

126

the modifications to MGOC has proved to improve the learning in modified MGOC

and representation in Deep Koopman Networks. This is evident from the predictions

on two different regions of training in transition. Comparison of a two step autoen-

coder verses the integrated learning in CKNN have shed light on the effect of using

locally optimal convolutions in learning. Learning with two step autoencoders renders

into a learning exercise in identifying the optimal feature maps. While an integrated

approach would utilize the learning capability of back-propagation to learn Koopman

subspaces and operator that are coupled and optimized with respect to the dynamical

system. Ideally, both the models in true Koopman subspaces should provide similar

results. Further, we see that while different physics provides different conclusions

and there is a dichotomy of interpretation of results. More research is needed to con-

cretely provide meaningful conclusions. Further, by performing the spectral analysis,

we can see that both DKN and AEN methods capture the dynamics accurately but

the koopman eigenvalues and eigenvectors are distinct. Finally, we propose a frame-

work with genetic algorithm based MGOC that can enable utilization of data based

convolution maps rather than searching for optimal convolutions. There are issues

that needs to be addressed in MGOC-GA, like integration of POD like convolutions

and finding cost function that accurately represents the learning process, which is

future research.

In summary, the strategy of extending the LP space, learning the model parame-

ters concurrently using a global optimization, constraining symmetry of network and

improved regularizations Pan & Duraisamy (2018) can help enhance the efficiency of

the learning process, improve robustness and accuracy of the resulting predictions.

However, as with machine learning in general, these outcomes are strongly tied to

data sufficiency and quality. Consistently, we observe that the MGOC models such

as FFNN outperform the suite of MLOC frameworks explored in this thesis, although

they are slightly harder to train. We see MLOC models as two-layer shallow learning

127

architectures requiring large intermediate layer dimensions while the MGOC is its

deep learning counterpart that while harder to train can approximate the nonlinear

dynamics using a few parameters.

128

REFERENCES

Bagheri, S. (2013), ‘Koopman-mode decomposition of the cylinder wake’, Journal of

Fluid Mechanics 726, 596–623.

Bengio, Y. (2007), ‘On the challenge of learning complex functions’, Progress in Brain

Research 165, 521–534.

Bengio, Y., Goodfellow, I. J. & Courville, A. (2015), ‘Deep learning’, Nature

521(7553), 436–444.

Bengio, Y., Simard, P. & Frasconi, P. (1994), ‘Learning long-term dependencies with

gradient descent is difficult’, IEEE transactions on neural networks 5(2), 157–166.

Benner, P., Gugercin, S. & Willcox, K. (2015), ‘A survey of projection-based model

reduction methods for parametric dynamical systems’, SIAM review 57(4), 483–

531.

Berkooz, G., Holmes, P. & Lumley, J. L. (1993), ‘The proper orthogonal decomposi-

tion in the analysis of turbulent flows’, Annual review of fluid mechanics 25(1), 539–

575.

Bishop, C., Bishop, C. M. et al. (1995), Neural networks for pattern recognition,

Oxford university press.

Brunton, S. L., Brunton, B. W., Proctor, J. L. & Kutz, J. N. (2016), ‘Koopman

invariant subspaces and finite linear representations of nonlinear dynamical systems

for control’, PloS one 11(2), e0150171.

129

Brunton, S. L. & Noack, B. R. (2015), ‘Closed-loop turbulence control: progress and

challenges’, Applied Mechanics Reviews 67(5), 050801.

Brunton, S. L., Proctor, J. L. & Kutz, J. N. (2013), ‘Compressive sampling and

dynamic mode decomposition’, arXiv preprint arXiv:1312.5186 .

Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G.,

De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D. et al. (2015), ‘Nek-

tar++: An open-source spectral/hp element framework’, Computer Physics Com-

munications 192, 205–219.

Cao, Y., Zhu, J., Navon, I. M. & Luo, Z. (2007), ‘A reduced-order approach to four-

dimensional variational data assimilation using proper orthogonal decomposition’,

International Journal for Numerical Methods in Fluids 53(10), 1571–1583.

Christopher, M. B. (2016), PATTERN RECOGNITION AND MACHINE LEARN-

ING., Springer-Verlag New York.

Csató, L. & Opper, M. (2002), ‘Sparse on-line gaussian processes’, Neural computation

14(3), 641–668.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002), ‘A fast and elitist multiob-

jective genetic algorithm: Nsga-ii’, IEEE transactions on evolutionary computation

6(2), 182–197.

Deem, E. A., Cattafesta, L. N., Yao, H., Hemati, M., Zhang, H. & Rowley, C. W.

(2018), Experimental implementation of modal approaches for autonomous reat-

tachment of separated flows, in ‘2018 AIAA Aerospace Sciences Meeting’, p. 1052.

Ding, S., Li, H., Su, C., Yu, J. & Jin, F. (2013), ‘Evolutionary artificial neural

networks: a review’, Artificial Intelligence Review pp. 1–10.

130

Edstrand, A. M., Schmid, P. J., Taira, K. & Cattafesta, L. N. (2018), ‘A parallel

stability analysis of a trailing vortex wake’, Journal of Fluid Mechanics 837, 858–

895.

Fang, F., Pain, C., Navon, I., Gorman, G., Piggott, M., Allison, P., Farrell, P. &

Goddard, A. (2009), ‘A pod reduced order unstructured mesh ocean modelling

method for moderate reynolds number flows’, Ocean modelling 28(1-3), 127–136.

Golub, G. H. & Van Loan, C. F. (2012), Matrix computations, Vol. 3, JHU Press.

Gottlieb, S., Shu, C.-W. & Tadmor, E. (2001), ‘Strong stability-preserving high-order

time discretization methods’, SIAM review 43(1), 89–112.

Hinton, G. E. & Salakhutdinov, R. R. (2006), ‘Reducing the dimensionality of data

with neural networks’, science 313(5786), 504–507.

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural compu-

tation 9(8), 1735–1780.

Holmes, P. (2012), Turbulence, coherent structures, dynamical systems and symmetry,

Cambridge university press.

Hopfield, J. J. (1982), ‘Neural networks and physical systems with emergent col-

lective computational abilities’, Proceedings of the national academy of sciences

79(8), 2554–2558.

Hornik, K., Stinchcombe, M. & White, H. (1989), ‘Multilayer feedforward networks

are universal approximators’, Neural networks 2(5), 359–366.

Jayaraman, B. & Puligilla, S. C. (2018), ‘Deep koopman multilayer networks for data-

driven modeling and spectral analysis of fluid flows’, Manuscript in preparation for

Journal fo Fluid Mechanics pp. 1–23.

131

Kim, J. & Bewley, T. R. (2007), ‘A linear systems approach to flow control’, Annu.

Rev. Fluid Mech. 39, 383–417.

Koopman, B. O. (1931), ‘Hamiltonian systems and transformation in hilbert space’,

Proceedings of the National Academy of Sciences 17(5), 315–318.

LeCun, Y., Bengio, Y. & Hinton, G. (2015), ‘Deep learning’, Nature 521(7553), 436–

444.

Lele, S. K. (1992), ‘Compact finite difference schemes with spectral-like resolution’,

Journal of computational physics 103(1), 16–42.

Liu, J.-G., Wang, C. & Johnston, H. (2003), ‘A fourth order scheme for incompressible

boussinesq equations’, Journal of Scientific Computing 18(2), 253–285.

Lu, C. & Jayaraman, B. (2017), Data-driven modeling for nonlinear fluid flows, in

‘23rd AIAA Computational Fluid Dynamics Conference’, number 3628, pp. 1–16.

Lu, C., Jayaraman, B., Whitman, J. & Chowdhary, G. (2018), ‘Sparse convolution-

based markov models for nonlinear fluid flows’, arXiv preprint arXiv:1803.08222

.

Lumley, J. L. (2007), Stochastic tools in turbulence, Courier Corporation.

Lusch, B., Kutz, J. N. & Brunton, S. L. (2017), ‘Deep learning for universal linear

embeddings of nonlinear dynamics’, arXiv preprint arXiv:1712.09707 .

Manohar, K., Brunton, B. W., Kutz, J. N. & Brunton, S. L. (2017), ‘Data-driven

sparse sensor placement’, arXiv preprint arXiv:1701.07569 .

Mezić, I. (2005), ‘Spectral properties of dynamical systems, model reduction and

decompositions’, Nonlinear Dynamics 41(1), 309–325.

132

Montana, D. J. & Davis, L. (1989), Training feedforward neural networks using genetic

algorithms., in ‘IJCAI’, Vol. 89, pp. 762–767.

Noack, B. R., Afanasiev, K., MORZYŃSKI, M., Tadmor, G. & Thiele, F. (2003), ‘A

hierarchy of low-dimensional models for the transient and post-transient cylinder

wake’, Journal of Fluid Mechanics 497, 335–363.

Otto, S. E. & Rowley, C. W. (2017), ‘Linearly-recurrent autoencoder networks for

learning dynamics’, arXiv preprint arXiv:1712.01378 .

Pan, S. & Duraisamy, K. (2018), ‘Long-time predictive modeling of nonlinear dynam-

ical systems using neural networks’, arXiv preprint arXiv:1805.12547 .

Puligilla, S. C. (2018), ‘Nonlinear multilayer convolution for data-driven modeling of

fluid flow dynamics’, Internal rep pp. 1–23.

Puligilla, S. C. & Jayaraman, B. (2018a), Deep multilayer convolution frameworks

for data-driven learning of fluid flow dynamics, in ‘24th AIAA Fluid Dynamics

Conference, Aviation Forum’, number 3628, pp. 1–22.

Puligilla, S. C. & Jayaraman, B. (2018b), ‘Neural networks as globally opti-

mal multilayer convolution architectures for learning fluid flows’, arXiv preprint

arXiv:1806.08234 .

Puligilla, S. C. & Jayaraman, B. (2018c), ‘Nonlinear data-driven estimation of tran-

sient fluid flows’, Manuscript in preparation pp. 1–29.

Raissi, M., Perdikaris, P. & Karniadakis, G. E. (2017), ‘Physics informed deep learning

(part ii): Data-driven discovery of nonlinear partial differential equations’, arXiv

preprint arXiv:1711.10566 .

Roshko, A. (1954), ‘On the development of turbulent wakes from vortex streets’,

NACA rep .

133

Rowley, C. W. & Dawson, S. T. (2017), ‘Model reduction for flow analysis and control’,

Annual Review of Fluid Mechanics 49, 387–417.

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. (2009),

‘Spectral analysis of nonlinear flows’, Journal of Fluid mechanics 641, 115–127.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. et al. (1988), ‘Learning representa-

tions by back-propagating errors’, Cognitive modeling 5(3), 1.

Schmid, P. J. (2010), ‘Dynamic mode decomposition of numerical and experimental

data’, Journal of Fluid Mechanics. 656, 5–28.

Scholkopf, B. & Smola, A. J. (2001), Learning with kernels: support vector machines,

regularization, optimization, and beyond, MIT press.

Soltani, R. & Jiang, H. (2016), ‘Higher order recurrent neural networks’, arXiv

preprint arXiv:1605.00064 .

Taira, K., Brunton, S. L., Dawson, S., Rowley, C. W., Colonius, T., McKeon, B. J.,

Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. (2017), ‘Modal analysis

of fluid flows: An overview’, AIAA 55(12), 4013–4041.

Towne, A., Schmidt, O. T. & Colonius, T. (2018), ‘Spectral proper orthogonal de-

composition and its relationship to dynamic mode decomposition and resolvent

analysis’, Journal of Fluid Mechanics 847, 821–867.

Trefethen, L. N. & Bau III, D. (1997), Numerical linear algebra, Vol. 50, Siam.

Weinan, E. & Shu, C.-W. (1998), ‘Small-scale structures in boussinesq convection’,

Physics of Fluids .

Williams, C. K. & Rasmussen, C. E. (1996), Gaussian processes for regression, in

‘Advances in neural information processing systems’, pp. 514–520.

134

Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. (2015), ‘A data–driven ap-

proximation of the koopman operator: Extending dynamic mode decomposition’,

Journal of Nonlinear Science 25(6), 1307–1346.

Williams, M. O., Rowley, C. W. & Kevrekidis, I. G. (2014), ‘A Kernel-Based Ap-

proach to Data-Driven Koopman Spectral Analysis’, ArXiv e-prints .

Williamson, C. (1989), ‘Oblique and parallel modes of vortex shedding in the wake of

a circular cylinder at low reynolds numbers’, Journal of Fluid Mechanics 206, 579–

627.

Wu, H., Mardt, A., Pasquali, L. & Noe, F. (2018), ‘Deep generative markov state

models’, arXiv preprint arXiv:1805.07601 .

Wu, H. & Noé, F. (2017), ‘Variational approach for learning markov processes from

time series data’, arXiv preprint arXiv:1707.04659 17.

Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P.

(2017), ‘Transitional–turbulent spots and turbulent–turbulent spots in boundary

layers’, Proceedings of the National Academy of Sciences p. 201704671.

Yao, X. (1999), ‘Evolving artificial neural networks’, Proceedings of the IEEE

87(9), 1423–1447.

Yen, G. G. & Lu, H. (2003), ‘Hierarchical rank density genetic algorithm for radial-

basis function neural network design’, International Journal of Computational In-

telligence and Applications 3(03), 213–232.

Yu, R., Zheng, S. & Liu, Y. (n.d.), Learning chaotic dynamics using tensor recurrent

neural networks, in ‘Proceedings of the ICML 17 Workshop on Deep Structured

Prediction, Sydney, Australia, PMLR 70, 2017’.

135

CHAPTER 7

Appendix

7.1 Effect of Bias on Predictions

The results presented in the main sections of this article were based on FFNN-like

MGOC architectures devoid of the bias term. It is well known from machine learning

literature Hornik et al. (1989) that the presence of the bias term contributes sig-

nificantly to the universal function approximation characteristic of FFNNs provided

sufficient LPs are used to capture the dynamics. The lack of a bias parameter impacts

the predictions of the shift mode for the transient cylinder wake dynamics (section

2.3.5). In contrast, the modes with zero mean were predicted accurately. The bias

term helps in quantitative translation (shift) of the learned dynamics into higher or

lower values as the case may be. In this additional discussion we provide predictions

obtained with a non zero bias term. In Figs. 7.1 and 7.3, we have plotted the predic-

tions obtained from 6-MGOC-TS1, -TS3, TS9 with TR-I for Re = 100 and Re = 1000

respectively. And, in Figs. 7.2 and 7.4, the predictions obtained from 6-MGOC-TS3

and -TS9 with the TR-II data. In these cases, we see that the shift mode (third POD

feature) is predicted accurately with the bias term. Alternatively, one can preprocess

the input data such that their mean values are zero.

136

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 7.1: Times series of predicted Re100 POD features obtained from (a) 6 -
MGOC -TS1 (b) 6 - MGOC - TS3 and (c) 6 - MGOC - TS9 compared with their
respective original coefficients for TR-I region.

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

-1

0

1

0 50 100 150 200

-1

0

1

Figure 7.2: Times series of predicted Re100 POD features obtained from (a) 6 -
MGOC - TS3 and (b) 6 - MGOC - TS9 compared with their respective original
coefficients for TR-II region.

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 7.3: Times series of predicted Re1000 POD features obtained from (a) 6 -
MGOC - TS1 (b) 6 - MGOC - TS3 and (c) 6 - MGOC - TS9 compared with their
respective original coefficients in the TR-I.

137

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 7.4: Times series of predicted Re1000 POD features obtained from (a) 6 -
MGOC - TS3 and (b) 6 - MGOC - TS9 compared with their respective original
coefficients in the TR-II.

138

7.2 Spectral Analysis of the Transient 2D Buoyant Boussinesq Mixing

Flow

DMD with 10 POD weights

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EDMD with 10 POD weights

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

DKN

2 4 6 8

2

4

6

8

-0.5

0

0.5

ODD AUTO ENCODER

2 4 6 8

2

4

6

8
-0.4

-0.2

0

0.2

0.4

0.6

Figure 7.5: Comparison of Koopman operators obtained, where (1st row): from DMD
and EDMD and (2nd row): 6 - HL Deep Koopman Network (DKN) and Auto-Encoder
Network for 2-D Boussinesq Bouyant mixing flow

139

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 DMD

EDMD

AEN

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
DMD

EDMD

AEN

Figure 7.6: Ritz plot of eigenvalues(µ) spectrum obtained from 7 - HL AEN for 2-D
Boussinesq Bouyant mixing flow

140

DMD EDMD DKN-4 AEN-4 DKN-6 AEN-6

µ(St = 0) 1± 0i 1± 0i 1± 0i 0.997 ± 0i 0.2627 ± 0i 0.9242 ± 0i

λµ 0 0 0 −0.0239 −10.6375 −0.6273

µ(St = 0.03) 0.99 ± 0.0036i 0.99 ± 0.0037i 0.9996 ± 0.00383i 0.9995 ± 0.00382i 0.9996 ± 0.0037i 0.9995 ± 0.00378i

λµ −0.0799 ± 0.0289i −0.0799 ± 0.0297i −0.0031 ± 0.0305i −0.0039 ± 0.0304i −0.0031 ± 0.0295i −0.0039 ± 0.0301i

µ(St = 0.06) 0.99 ± 0.0054i 0.99± 0.007456i −− 0.9989 ± 0.0091i −− −−

λµ −0.0799 ± 0.0434i −0.0798 ± 0.0599i −− −0.0084 ± 0.0725i −− −−

µ(St = 0.09) 0.99 ± 0.0125i 0.9995 ± 0.144i −− −− −− −−

λµ −0.0793 ± 0.1005i 0.0778 ± 1.1387i −− −− −− −−

Table 7.1: Koopman eigenvalues(µ), growth rate (Re(λ)) and discrete frequencies (Im(λ)) obtained from 2-D Boussinesq
Bouyant mixing flow.

141

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 DMD

EDMD

DKN

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
DMD

EDMD

DKN

Figure 7.7: Ritz plot of eigenvalues(µ) spectrum obtained from 6 - HL DKN for 2-D
Boussinesq Bouyant mixing flow

142

-0.1 -0.05 0 0.05 0.1
-0.1

-0.05

0

0.05
DMD

EDMD

AEN

-0.1 -0.05 0 0.05 0.1
-0.1

-0.05

0

0.05
DMD

EDMD

DKN

Figure 7.8: Comparison of growth rate and frequencies of (1st row)7 - HL Auto-
Encoder(AEN) and (2nd row): 6 - HL Deep Koopman Network (DKN) for 2-D Boussi-
nesq Bouyant mixing flow

143

7.3 Tutorial on Inhouse Deep Koopman Network Code and

Backpropagation Algorithm

In this tutorial, a detailed description and usage of in-house MATLAB code used for

generating FFNN, MFFNN, DKN and AEN results will be explained. The following

are the important parameters needed to setup the code for any of the aforementioned

architectures.

1 mcase %% Model case

2 Ncyc s %% cycles #(num) starting for training

3 Ncyc f %% cycles #(num) final for training

4 Ncyc p %% cycles #(num) to predict from Ncyc s

5 P %% #(num) of hidden layers

6 N %% #(num) of input features/POD weights

7 N fac %% feature factor(# of neurons = N fac * N)

8 cfunc %% transfer function in the encoder or FFNN or MFFNN

9 kfunc %% transfer function on the output layer

10 ifunc %% transfer function in the decoder or FFNN or MFFNN

11 FAO %% Flag for TF or inverse TF in the encoder

12 LAO %% Flag for TF or inverse TF in the decoder

13 CKT %% Flag for FFNN, DKN or AEN

14 BLP %% Weightage of cost functions in DKN

15 LBD %% logspace start, end, divisions for Regularization

16 opt alg %% Flag for optimization method

17 param ac %% relevant parameter value for Transfer function

18 incond f %% Weights initialization(\Theta)

19 scaling %% Flag for scaling the input data

20 IMGFMT %% Output figures image format

21 num iters %% # of iterations(epochs)

144

Further the following are the important distinctions between different architecture

setups. For example

1 cfunc %% FFNN, MFFNN, DKN, AEN : 'tansigmoid' or other TF ...

(encoder part)

2 kfunc %% FFNN, MFFNN, DKN, AEN : 'linear'

3 ifunc %% FFNN, DKN, AEN : 'tansigmoid'; and MFFNN: 'log'

4 FAO %% FFNN, MFFNN, DKN, AEN : 'conv'

5 LAO %% FFNN, DKN, AEN : 'conv'; and MFFNN: inv conv

6 CKT %% FFNN or MFFNN : 0; DKN: 1; AEN: 54.

7 BLP %% FFNN, MFFNN, AEN : 1.0; and generally for DKN : [1−2)

COnstructing diffeent architectures using Tfunc and INV for example: for a six

hidden layer networks:

1. FFNN or DKN:

1 Tfunc = [repmat(cfunc,P/2,1);repmat(ifunc,P/2,1);kfunc];

2 INV = [repmat(Aconv(1),(P/2),1); repmat(Aconv(2),(P/2),1); ...

Aconv(1)];

for 6 - HL with tansigmoid TF yields:

1 Tfunc ...

={'tansig','tansig','tansig','tansig','tansig','tansig','lin'}

2 INV = {'conv','conv','conv','conv','conv','conv','conv'}

2. AEN:

145

1 Tfunc = ...

[repmat(cfunc,(P−1)/2,1);kfunc;repmat(ifunc,(P−1)/2,1);kfunc];

2 INV = [repmat(Aconv(1),(P−1)/2,1); Aconv(1); ...

repmat(Aconv(2),(P−1)/2,1); Aconv(1)];

1 Tfunc ...

={'tansig','tansig','tansig','lin','tansig','tansig','tansig'

2 ,'lin'}

3 INV = {'conv','conv','conv','conv','conv','conv','conv','conv'}

3. MFFNN:

1 Tfunc = [repmat(cfunc,P/2,1);repmat(ifunc,P/2,1);kfunc];

2 INV = [repmat(Aconv(1),(P/2),1); repmat(Aconv(2),(P/2),1); ...

Aconv(1)];

for 6 - HL with tansigmoid TF yields:

1 Tfunc ={'tansig','tansig','tansig','log','log','log','lin'}

2 INV = ...

{'conv','conv','conv','inv conv','inv conv','inv conv','conv'}

7.3.1 Weights: Random Initialization

Zero initialization (symmetry). Not a good idea all the time (It might never converge).

After each update, parameter corresponding to the inputs going into each of two

hidden limits are identical.

Random initialization (symmetry breaking). Initialize each ΘL
ij to a random value

146

in [−ǫ, ǫ] =⇒ −ǫ ≤ Θl
i.j ≤ ǫ.

Θl = (rand(M,N) ∗ 2 ∗ ǫ)− ǫ (7.1)

7.3.2 Gradient Checking: Validating Backpropagation Algorithm

Approximating gradient and checking, using Central difference to approximating,

d

dθi
J(θ) =

J(θ + ǫ)− J(θ − ǫ)

2ǫ
(7.2)

the above gradient help validate the backpropagation algorithm coded. Note:

• Implement Backdrop to compute Dvec (unrolled D1, D2, D3)

• Implement numerical gradient check to compute grad approx.

• Make sure they produce similarities

7.3.3 P - HL Network for FFNN and DKN

1. Forward propagation

z1 = θ0a0 = θ0X

a1 = g1(z1)

(7.3)

zp = Θp−1ap−1

ap = gp(zp)

(7.4)

ap+1 = gp+1(zp+1)→ [Ŷ] (7.5)

Here the data is divided into training data and validation data.

147

1

2 %% ============== FEED FORWARD PROPAGATION==================

3 a0 = X;

4 Z(:,:,1) = Theta0*a0;

5 Z VAL(:,:,1) = Theta0*Xval;

6 for i = 1:P−1

7 A(:,:,i) = sigmoid(inv var(Z(:,:,i),Tfunc{i},INV{i}),Tfunc{i});

8 Z(:,:,i+1) = THETA(:,:,i)*A(:,:,i);

9

10 A VAL(:,:,i) = ...

sigmoid(inv var(Z VAL(:,:,i),Tfunc{i},INV{i}),Tfunc{i});

11 Z VAL(:,:,i+1) = THETA(:,:,i)*A VAL(:,:,i);

12

13 REG = THETA(:,:,i).*THETA(:,:,i);

14 REGN = REGN + sum(REG(:));

15 end

16 A(:,:,P) = sigmoid(inv var(Z(:,:,P),Tfunc{P},INV{P}),Tfunc{P});

17 Zpp1 = Thetap*A(:,:,P);

18 HT = sigmoid(inv var(Zpp1,Tfunc{P+1},INV{P+1}),Tfunc{P+1});

19

20 A VAL(:,:,P) = ...

sigmoid(inv var(Z VAL(:,:,P),Tfunc{P},INV{P}),Tfunc{P});

21 Zpp1 VAL = Thetap*A VAL(:,:,P);

22 HT VAL = ...

sigmoid(inv var(Zpp1 VAL,Tfunc{P+1},INV{P+1}),Tfunc{P+1});

2. Penalty network for symmetry (koopman)

czk1 = θ0Y

cak1 = g1(czk1)

(7.6)

148

czkl = Θkl−1cakl−1

cakl = gkl(czkl)

(7.7)

capkl = gpkl(czpkl)→ [ˆ̄Y] (7.8)

where Pkl = P/2.

1 %% ==========KOOPMAN THEORY CONSTRAINED FORWARD ...

PROPAGATION=======

2 if CKT == 1

3 ZCKT(:,:,1) = Theta0*y;

4 ZCKT VAL(:,:,1) = Theta0*yval;

5 for ck = 1:Pkl−1

6 ACKT(:,:,ck) = sigmoid(ZCKT(:,:,ck),Tfunc{ck});

7 ZCKT(:,:,ck+1) = THETA(:,:,ck)*ACKT(:,:,ck);

8

9 ACKT VAL(:,:,ck) = sigmoid(ZCKT VAL(:,:,ck),Tfunc{ck});

10 ZCKT VAL(:,:,ck+1) = THETA(:,:,ck)*ACKT VAL(:,:,ck);

11 end

12 ACKT(:,:,Pkl) = sigmoid(ZCKT(:,:,Pkl),Tfunc{Pkl});

13

14 ACKT VAL(:,:,Pkl) = sigmoid(ZCKT VAL(:,:,Pkl),Tfunc{Pkl});

15 end

3. Cost for FFNNN and DKN

J =
1

2m

∑

(Ŷ − Y)2 (7.9)

4. Cost with Penalty network (DKN)

J =
1

2m

∑

(Ŷ − Y)2 +
1

2m

∑

(zpkl+1 − capkl)
2 (7.10)

149

1 %%========================= COST FUNCTIONS ==============

2 JER = 0.0;

3 JCKT = 0.0;

4 yshift =sum((y − mean(y,2)).ˆ2,2);

5 RDEN = zeros(size(y));

6 for b = 1:bat

7 JER = JER + (((HT(:,b) − y(:,b))'*(HT(:,b) − y(:,b))));

8

9 if CKT == 1

10 JCKT = JCKT + (ACKT(:,b,Pkl) − ...

Z(:,b,Pkl+1))'*(ACKT(:,b,Pkl) − Z(:,b,Pkl+1));

11 end

12 RDEN(:,b) = ((HT(:,b) − y(:,b)).ˆ2)./yshift(:);

13 end

14 JER = JER./(2.0*bat);

15 JCKT = JCKT./(2.0*bat);

16 RPI = sum(ones(length(y(:,1)),1) − ...

sum(RDEN,2))/length(y(:,1));

17

18 J = BLP.*JER +(2 − BLP).*JCKT + REGN;

5. Back Propagation for 6 Hidden layer Network

dJ

dθ6
=

1

m
(a7 − Y)

dg7
dẑ7
·
dẑ7
dz7

︸ ︷︷ ︸

δ7

·a6 + 0 (7.11)

dJ

dθ5
= θ6δ7

dg6
dẑ6
·
dẑ6
dz6

︸ ︷︷ ︸

δ6

·a5 + 0 (7.12)

dJ

dθ4
= θ5δ6

dg5
dẑ5
·
dẑ5
dz5

︸ ︷︷ ︸

δ5

·a4 + 0 (7.13)

150

dJ

dθ3
= θ4δ5

dg4
dẑ4
·
dẑ4
dz4

︸ ︷︷ ︸

δ4

·a3 +
1

m
(z4 − a3CKT)a3

︸ ︷︷ ︸

δCBP4

(7.14)

dJ

dθ2
= θ3δ4

dg3
dẑ3
·
dẑ3
dz3

︸ ︷︷ ︸

δ3

·a2 + θ3δCBP4
dg3
dẑ3

dẑ3
dz3

︸ ︷︷ ︸

δCBP3

·a2 + (−
1

m
)(z4 − a3CKT)

dg3
dcz3

)

︸ ︷︷ ︸

δEBP3

·a2CKT

(7.15)

dJ

dθ1
= θ2δ3

dg2
dẑ2
·
dẑ2
dz2

︸ ︷︷ ︸

δ2

·a1 + θ2δCBP3
dg2
dẑ2

dẑ2
dz2

︸ ︷︷ ︸

δCBP2

·a1 + θ2δEBP3
dg2
dcz2

︸ ︷︷ ︸

δEBP2

·a1CKT (7.16)

dJ

dθ0
= θ1δ2

dg1
dẑ1
·
dẑ1
dz1

︸ ︷︷ ︸

δ1

·a0 + θ1δCBP2
dg1
dẑ1

dẑ1
dz1

︸ ︷︷ ︸

δCBP1

·a0 + θ1δEBP2
dg1
dcz1

︸ ︷︷ ︸

δEBP1

·a0CKT (7.17)

1 %% == BACKPROPAGATION ================================

2 % %=== INITIALIZING FOR GENERAL NN=================

3 DELTA = zeros(Nhl,bat,P);

4 DJDT = zeros(Nhl,Nhl,P−1);

5 ∆pp1 = zeros(ols,bat);

6 dJdTp = 0.0;

7 dJdT0 = 0.0;

8

9 % %======= INITIALIZING FOR CONSTRAINED NN===========

10 DELTA CBP = zeros(Nhl,bat,Pkl +1);

11 DELTA EBP = zeros(Nhl,bat,Pkl);

12 DJDT CKT = zeros(Nhl,Nhl,Pkl);

13 dJdT0 CKT = 0.0;

14

15

16 for j = 1:bat

17 ∆pp1(:,j) = (HT(:,j) − y(:,j)).*

18 sigmoidGrad(inv var(Zpp1(:,j),Tfunc{P+1},INV{P+1}), ...

Tfunc{P+1})....

151

19 .*inv var grad(Zpp1(:,j),Tfunc{P+1},INV{P+1});

20

21 DELTA(:,j,P) = Thetap'*∆pp1(:,j).* ...

sigmoidGrad(inv var(Z(:,j,P),Tfunc{P},INV{P}),Tfunc{P})....

22 .*inv var grad(Z(:,j,P),Tfunc{P},INV{P});

23

24 for lay = 1:P−1

25 DELTA(:,j,P−lay) = THETA(:,:,P−lay)'*DELTA(:,j,P+1−lay)...

26 .*sigmoidGrad(inv var(Z(:,j,P−lay),Tfunc{P−lay},INV{P−lay}), ...

Tfunc{P−lay})....

27 .*inv var grad(Z(:,j,P−lay),Tfunc{P−lay},INV{P−lay});

28

29 DJDT(:,:,P−lay) = DJDT(:,:,P−lay) + ...

DELTA(:,j,P+1−lay)*A(:,j,P−lay)';

30

31 end

32 dJdTp = dJdTp + ∆pp1(:,j)*A(:,j,P)';

33 dJdT0 = dJdT0 + DELTA(:,j,1)*a0(:,j)';

34

35 %%===

36 if CKT == 1

37 DELTA CBP(:,j,Pkl+1) = −(ACKT(:,j,Pkl) − Z(:,j,Pkl+1));

38

39 DELTA EBP(:,j,Pkl) = (ACKT(:,j,Pkl) − Z(:,j,Pkl+1))...

40 .*sigmoidGrad(ZCKT(:,j,Pkl),Tfunc{Pkl});

41

42 for clay = 1:Pkl

43 DELTA CBP(:,j,(Pkl +1 − clay)) = THETA(:,:,(Pkl + 1 − ...

clay))'*DELTA CBP(:,j, (Pkl+2 − clay))...

44 .*sigmoidGrad(Z(:,j,Pkl+1 − clay),Tfunc{Pkl+1 − clay});

45

46 DJDT CKT(:,:,Pkl+1 −clay) = DJDT CKT(:,:,Pkl+1 −clay) + ...

152

DELTA CBP(:,j,Pkl+2 − clay)*A(:,j,Pkl+1−clay)';

47

48 if ((Pkl + 1−clay) < Pkl)

49 DELTA EBP(:,j,Pkl +1 −clay) = THETA(:,:,Pkl+1 − ...

clay)'*DELTA EBP(:,j,Pkl+2 − clay)...

50 .*sigmoidGrad(ZCKT(:,j,Pkl+1−clay),Tfunc{Pkl+1−clay});

51

52 DJDT CKT(:,:,Pkl+1−clay) = DJDT CKT(:,:,Pkl+1−clay) + ...

DELTA EBP(:,j,Pkl+2−clay)*ACKT(:,j,Pkl+1−clay)';

53

54 end

55 end

56 dJdT0 CKT = dJdT0 CKT + (DELTA EBP(:,j,1)*y(:,j)') + ...

(DELTA CBP(:,j,1)*a0(:,j)');

57

58 elseif CKT == 0 | | CKT == 54

59 %%% NO CKT APPLIED

60 else

61 error('Provide CKT to either zero or one')

62 end

63 end

64 %%======= COMPUTING THE FINAL GRADIENTS =============

65

66 Theta0 grad = BLP.*dJdT0./bat + (lambda/bat).*Theta0 + ((2−BLP).* ...

dJdT0 CKT)./bat ;

67 Thetap grad = BLP.*dJdTp./bat + (lambda/bat).*Thetap;

68

69 for lay = 1:P−1

70 THETA GRAD(:,:,lay) = BLP.*DJDT(:,:,lay)./bat + ...

(lambda/bat).*THETA(:,:,lay);

71 if lay ≤ Pkl && CKT == 1

72 THETA GRAD(:,:,lay) = THETA GRAD(:,:,lay) + ...

153

((2−BLP).*DJDT CKT(:,:,lay))./bat;

73 end

74

75 end

76 %% === UNROLL GRADIENTS ========================

77 GRAD = [Theta0 grad(:) ; THETA GRAD(:); Thetap grad(:)];

7.3.4 Post Processing Codes

Predictions using initial condition X(0)

1 function p = predict CKNN(Theta0,THETA,Thetap, X,Tfunc,INV)

2 P = length(THETA(1,1,:))+1;

3 a0 = X;

4 Z = Theta0*a0;

5 for i = 1:P−1

6 A = sigmoid(inv var(Z,Tfunc{i},INV{i}),Tfunc{i});

7 Z = THETA(:,:,i)*A;

8 end

9 A = sigmoid(inv var(Z,Tfunc{P},INV{P}),Tfunc{P});

10 Zp = Thetap*A;

11 p = sigmoid(inv var(Zp,Tfunc{P+1},INV{P+1}),Tfunc{P+1});

12 end

Encoder:

1 function [Xout] = ENCODER CKNN(Theta0,THETA,Xin,Tfunc,INV,CKT)

2 P = (length(THETA(1,1,:))+1);

3 %%==== FOR CKNN ============================

4 if mod(P,2) == 0 && CKT == 1

5 Pkl = (length(THETA(1,1,:))+1)/2;

154

6 Z = Theta0*Xin;

7 if Pkl ≥ 2

8 for i = 1:Pkl−1

9 A = sigmoid(inv var(Z,Tfunc{i},INV{i}),Tfunc{i});

10 Z = THETA(:,:,i)*A;

11 end

12 end

13 Xout = sigmoid(inv var(Z,Tfunc{Pkl},INV{Pkl}),Tfunc{Pkl});

14

15 %%====== FOR AUTOENCODER =====================================

16 elseif mod(P,2) == 1 && CKT == 54

17 Pkl = (length(THETA(1,1,:)))/2;

18 Z = Theta0*Xin;

19 if Pkl ≥ 2

20 for i = 1:Pkl

21 A = sigmoid(inv var(Z,Tfunc{i},INV{i}),Tfunc{i});

22 Z = THETA(:,:,i)*A;

23 end

24 end

25 Xout = sigmoid(inv var(Z,Tfunc{Pkl+1},INV{Pkl+1}),Tfunc{Pkl+1});

26 end

27

28

29 end

Decoder:

1 function[Xout] = DECODER CKNN(THETA,Thetap,Xin,Tfunc,INV,CKT)

2 P = (length(THETA(1,1,:))+1);

3 %%==== FOR CKNN ============================

4 if mod(P,2) == 0 && CKT == 1

5

155

6 Pkl = (length(THETA(1,1,:))+1)/2;

7 Amid = Xin;

8 if Pkl ≥ 2

9 for i = Pkl+1:P−1

10 Zmid = THETA(:,:,i)*Amid;

11 Amid = sigmoid(inv var(Zmid,Tfunc{i+1},INV{i+1}),Tfunc{i+1});

12 end

13 end

14 Zmid = Thetap*Amid;

15 Xout = sigmoid(inv var(Zmid,Tfunc{P+1},INV{P+1}),Tfunc{P+1});

16

17 %%====== FOR AUTOENCODER =====================================

18 elseif mod(P,2) == 1 && CKT == 54

19

20 Pkl = (length(THETA(1,1,:)))/2;

21 Amid = Xin;

22 if Pkl ≥ 2

23 for i = Pkl+1:P−1

24 Zmid = THETA(:,:,i)*Amid;

25 Amid = sigmoid(inv var(Zmid,Tfunc{i+1},INV{i+1}),Tfunc{i+1});

26 end

27 end

28 Zmid = Thetap*Amid;

29 Xout = sigmoid(inv var(Zmid,Tfunc{P+1},INV{P+1}),Tfunc{P+1});

30 end

31

32

33

34 end

1 %%%==================== WRITE THE STATS TO A FILE ...

156

=========================

2 save (['THETA FINAL ' num2str(ger) ...

'.mat'],'Theta0','THETA','Thetap');

3

4 if CKT == 0

5 save(['YPRED FINAL ' num2str(ger) ...

'.mat'],'X','y','yt','Tpred','Ypred','Ypred n')

6 elseif CKT == 1

7 save(['YPRED FINAL ' num2str(ger) ...

'.mat'],'X','y','yt','Tpred','Ypred','Yp inner','Yp lin','Ypred n')

8 save(['YK PRED FINAL ' num2str(ger) ...

'.mat'],'YK','YK pred','YK pred lin','EKP')

9 THETA KOOPMAN = THETA(:,:,int8((P)/2));

10 save(['EIG KOOPMAN' num2str(ger) ...

'.mat'],'U K','D K','V K','THETA KOOPMAN','THETA LIN')

11 clear THETA KOOPMAN

12 elseif CKT == 54

13 save(['YPRED FINAL ' num2str(ger) ...

'.mat'],'X','y','yt','Tpred','Ypred','Yp inner','Ypred n')

14 save(['YK PRED FINAL ' num2str(ger) '.mat'],'YK','YK pred','EKP')

15 save(['EIG KOOPMAN' num2str(ger) ...

'.mat'],'U K','D K','V K','THETA LIN')

16 end

17

18

19 fprintf('\n Pred Error on Training set: %5.5g\n',T error);

20 fprintf('\n Pred Error on Non−Training set:%5.5g\n',P error);

21 fprintf('\n Pred Error on Non−Training set+noisy input: ...

%5.5g\n',P error n);

22 fprintf('\n%8s\t\t%8s\t\t%8s\n','Mean','Range','Variance');

23 fprintf('\n%8.5f\t\t%8.5f\t\t%8.5f %15s ...

\n',TMean error,TRange error,TVariance error,'TrainSet');

157

24 fprintf('\n%8.5f\t\t%8.5f\t\t%8.5f %15s ...

\n',YMean error,YRange error,YVariance error,'nonTrainSet');

25

26

27 if CKT == 1 | | CKT == 54

28 pred stat = [ger,lambda,BPerror,J,JER, ...

JCKT,REGN,T error,P error,P error n,E AN,YKP error, ...

YMean error,...

29 YRange error, ...

YVariance error,norm(THETA ER),PRED ER, ...

double(rng seed)];

30 else

31 pred stat = [ger,lambda,BPerror,J,JER, ...

JCKT,REGN,T error,P error,P error n,YMean error,...

32 YRange error, ...

YVariance error,norm(THETA ER),PRED ER, ...

double(rng seed)];

33 end

34

35 stats plot(ger,:) = pred stat;

158

VITA

Shivakanth Chary Puligilla

Candidate for the Degree of

Masters of Science

Thesis: DEEP MULTILAYER CONVOLUTION FRAMEWORKS FOR DATA-
DRIVEN LEARNING OF NONLINEAR DYNAMICS IN FLUID FLOWS

Major Field: Mechanical and Aerospace Engineering

Biographical:

Personal Data: Born in Hyderabad, India on 23rd September of 1988.

Education:

1. Received a Bachelor of Technology in Aeronautical Engineering from Jawaharlal
Nehru Technological University, Hyderabad, India in May 2010.

2. Received a Master of Science in Aerospace Engineering from Indian Institute of
Science, Bengalore, India in July 2017.

3. Completed the requirements for the degree of Master of Science with a major in
Mechanical and Aerospace Engineering at Oklahoma State University in July,
2018.

Experience: Graduate research and Teaching assistant for two years at MAE,
OKSTATE.

Google Scholar: https://scholar.google.com/citations?user=YiOa4jkAAAAJ&hl=en

Linkedin: https://www.linkedin.com/in/shivakanth-chary-702a0b38/

Professional Affiliations: Student member: American Institute of Aeronautics
and Astronautics (AIAA).
Student member: American Physical Society (APS).
Student member: Society for Industrial and Applied Mathematics (SIAM).

https://scholar.google.com/citations?user=YiOa4jkAAAAJ&hl=en
https://www.linkedin.com/in/shivakanth-chary-702a0b38/

	Introduction
	Overview and Motivation
	Markov Models
	Symmetric Markov Linear Model: Koopman

	Deep Neural Networks
	Objectives and Scope of this Study
	Fluid Flows and Data Generation
	Transient Wake Flow of a Cylinder
	2D Buoyant Boussinesq Mixing Flow

	Linear vs. Nonlinear Modeling for Prediction
	Introduction
	Data-driven Markov Models for Transient Dynamical Systems
	Koopman as Markov Linear Model
	Markov Model using Multilayer Locally Optimal Convolution (MLOC)
	Markov Model using Multilayer Globally Optimal Convolution (MGOC)

	Numerical Experiments and Discussion
	Experiments
	Analysis Framework
	Prediction Framework and Error Metrics
	Learning and Predicting Limit-cycle Cylinder Wake Dynamics
	Learning and Prediction of a Transient Cylinder Wake Dynamics
	Learning and Prediction of a Transient 2D Buoyant Boussinesq Mixing Flow

	Summary

	Deep Koopman Networks: Predictions
	Methodology
	Forward Propagation for a 6 Hidden Layer Network
	Penalty Network for Symmetry
	Cost Functions
	Proof of Symmetry
	Back Propagation for 6 Hidden Layer Network
	Conjugate Gradients

	Results
	Validating with Limit-cycle Dynamics
	Learning and Prediction of a Transient 2D Buoyant Boussinesq Mixing Flow
	Transient Cylinder Wake Dynamics Predictions

	Summary

	Deep Koopman Networks: Spectral Analysis
	Spectral Analysis
	Koopman Modes and Eigenvalues

	Results
	Limit Cycle Dynamics of Cylinder Flow
	Identification of Dominant and Allied Structures via Dynamic Mode Decomposition

	Spectral Analysis of Transient Dynamics of Cylinder Flow
	Effect of Input Features vs Hidden Features Increase on Spectral Information
	Significance of Accurate Predictions on Spectral Information

	Genetic Algorithm based Global Optimal Convolution
	Introduction
	Methodology
	Modified MGOC-1
	Inverse Mapping Transfer Function: Tansigmoid
	Non-dominated Sorting Genetic Algorithm

	Test Bed: Flow over a Cylinder
	Results
	 Modeling Fluid Flow: Multi-Objective Problem

	Summary

	Conclusions and Recommendations
	Summary

	Appendix
	Effect of Bias on Predictions
	Spectral Analysis of the Transient 2D Buoyant Boussinesq Mixing Flow
	Tutorial on Inhouse Deep Koopman Network Code and Backpropagation Algorithm
	Weights: Random Initialization
	Gradient Checking: Validating Backpropagation Algorithm
	P - HL Network for FFNN and DKN
	Post Processing Codes

