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CHAPTER I 

INTRODUCTION 

General Statement of the Problem 

Neural Networks have long been studied in an attempt to 

explain and to exploit computational abilities of massively 

parallel systems. This effort has stemmed, in part, from 

the assumption that biological neural systems operate in a 

parallel manner and from the observation that classical 

computer architectures may be insufficient for the 

performance of some tasks. Further, these very tasks, 

pattern recognition for one, are exactly those at which 

complex biological systems excel. As physically imposed 

constraints increasingly limit the performance of standard 

serial architectures, differ.ent neural models have been 

proposed in an attempt to duplicate the behavior of real 

biological neural ·systems. A side benefit of this intense 

interest in neural networks has been the emergence of 

structures with ability to do complex processing in a 

massively parallel way. 

Filtering is concerned with the isolation or retrieval 
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of signals from noise. Typical applications include: 

* Reception ,and discrim~nation of radio signals 

* Digita~ data transmission on telephone lines 

* Beam-forming arrays 

* Deteqtion of radar signals 

* Processing of pictures sent· from spacecraft 

* Analysis of electrocardiog'ram (EKG) and 

electroencephalogram ('EE~) signals 

All of these are ideal tasks for a neural network based 

approach. In this research we consider the isolat-ion or 

detection of EKG signals from their noisy environment. The 

noise is assumed to be random-and of different frequency 

than the underlying signal. If the signal being worked on 

has a noise component added ~o it, the contribution of the 

2 

noise to the signal wi~l be random with respect to the other 

features of the original signal [KLIMASAUSKAS, 1989]. The 

noise in EKG signals is caused by fluorescent lights. The 

use of neural networks is in the development of a limited 
- . 

number of "feature detectors" that can account for the 

maximum amount of a signal. 

The purpose of this study' is to implement 

backpropagation neural network techniques for adaptive 

filtering using artificial neural simulation software and to 

identify the underlying signals. By varying the elements in 

the hidden layers the performance of the model can be 
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changed. The neural network technique is expected to 

improve the signal to noise ratio and reproduction of the 

wave pattern over the conventional methods. 

The general approach to use neural networks for such 

applications is: (1) to select an appropriate type of signal 

for training and testing the neural network filter; (in this 

study EKG signals are used) (2) to build a suitable neural 

network model by choosing an appropriate learning paradigm 

and determining the correct number of processing elements in 

each layer; (3) to train the network with appropriate 

momentum and learning rate; (4) to modify the number of 

units in the hidden layer in an effort to reconstruct the 

original signal retaining the highest level of details; (5) 

to test the model with noisy input after suitable 
I 

formatting. 

Approach to the Problem 

The approach taken here is to find a way of encoding or 

compressing the input data and then re-expanding it. The 

compression process eliminates portions of the input data 

which represent small or non-recurring features. By 

selecting the number of "encoders" the amount of detail 

retained in the transformation can be varied. This form of 

data compression is called dimensionality reduction 

[KLIMASAUSKAS,1989]. To achieve this reduction it is 



important that the following criteria be met [KLIMASAUSKAS, 

1989]: 
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* There must be some form of relationship between input 

variables. 

* An encoding system must be used that can represent 

the relationship. 

If there is no definite relationship among the input 

variables, dimensionality reduction often results in a 

series of fixed outputs which represent the average value of 

a combination of inputs. In noise filtering a high degree 

of relationship between adjacent time samples exists. 

Dimensionality reduction usually works well in this 

situation. 

As described earlier, the contribution of noise to a 

signal will be random when compared with the prominent 

features. If the noise component is of a relatively low 

frequency and accounts for a majority of the energy in the 

output signal (for example, 60 cycle hum) this process may 

detect noise. The novel characteristic of the neural 

network approach is that the weighted linear combination of 

inputs is transformed using a nonlinear function such as a 

sigmoid or sine function. These nonlinearities make the 

creation of multilevel systems possible and are responsible 

for several of the resulting output characteristics. 



5 

Why Neural Networks? 

The answer to this question can be given by two basic 

reasons. First, neural n~tworks are cappble of retaining a 

greater level of detail than other techniques. Rather than 

simply ignoring small features, they allow them to pass if 

they are of a stationary recurring nature. Second, the 

amount of detail retained by the filtering process can be 

varied by changing the number of elements in the hidden 

layer of the neural model. From these points of view, 

neural network techniques provide additional flexibility and 

control when the user analyzes noisy data. 

The approach, as mentioned earlier, is to develop a few 

elements (feature detectors) that encode a series of samples 

of an input signal. To reconstruct all or a portion of the 

input sample, the output of these encoders (processing 

elements in neural network sense) is used. This approach of 

using a few detectors ensures that some of the information 

(especially the noise) will be removed from the 

reconstructed signal. One of the interesting 

characteristics of neural networks is their ability to 

develop adaptive filtering techniques that can be tuned to 

preserve varying degrees of detail [KLIMASAUSKAS, 1989]. 



EKG Signals - A Case study 

The da~a for studying the neural network ability in 

noise filtering are EKG sign'als.· The data have been 

obtained from a local firm. .Th!ase signals are unfiltered 

and contain the actual EKG data with noise and other 

spurious signals. The backpropagation technique of the 
' . 

neural network model was implemented·to filter the noise. 

Backpropagation is a very powerful a-daptive technique for 

approximating relationships ,between several continuous-

valued inputs and outputs. This analysis was done on 

Artificial Neural Networks Simulation,Software (ANSIM). 

Neural Network Simulation Tool 

Many attributes were considered for selecting the 
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neural network simulation tool: cost, size limit, functional 

capabilities, speed~ ea~e of learning, interfaces to other 

software, portability, documentation,, training, paradigms 

supported, company support and sat,isfaction. Not all tools 

are good for all kinds of functions. Each is best suited · 

for a particular kind of'applicat:Lori. Science Applications 

Integrated Company's artificial neural simulation software, 

ANSIM appears the' best for the following 'reasons. It 

supports the backpropagation technique and gives freedom in 
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interfacing external data files. It makes it easy to change 

the network design, provides interfaces to assist in setting 

up the problem, and has tools f,or investigating what is 

happening within the network itself. In essence this 

software provides the tool required .to solve the problem. 

The main drawback of this software is its. inability to 

accept interactive /input from the.keyboard. The input must 

always be presented from a f·'ile·. 

Objectives ·of th·e Study 

The objectives of the study are t.o 1) design, 

implement, and t,est a neural .network based signal filter for 

noise filtering of EKG signals; 2) study the effect of the 

number of units in the hidden,layer on the reconstructed 
·' 

output signal; 3) o:t;>serv~ the· effect of. the learning rate on 

the training of the neural networks; 4) study the effect of 

the number of training cycles on the output unit error. 

In the area of signal processing, neural networks have 

been tried with some success, although there are no 

practical systems in the field'yet. The adapt'ive combiner 

discussed later points out the .usefulness of adaptive 

systems for certain signal processing problems. Neural 

networks can provide an adaptive, nonl'inear capability that 

can be useful in some signal-processing applications. 

Theoretical approaches to nonlinear filtering are very 
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difficult, and the adaptive system approach may again prove, 

as in the adaptive combiner, to be a very practical way to 

solve some problems. Therefore, even though no such signal 

processing applications are known at present, the 

capabilities of neural networks in providing adaptive, 

nonlinear signal processing will provide solution to some 

class of problems in the future. The hardware 

implementation of a neural network solution should also 

benefit in solving complex problems. 

Scope and Limitations of the study 

The scope of this system is limited to identifying the 

signal embedded in random disturbances and was without real 

time data. The neural network filter attempts to 

reconstruct the original signal while retaining higher 

levels of detail based on the user's preferences. 

The system assumed (1) the noise present in the input 

is random; (2) the original signal is of different frequency 

than the noise frequency; (3) the output of the Finite 

Impulse Filter (FIR), used as target vector during the 

training of the network is a pure signal; (4) the signal 

pattern is periodic; it keeps on repeating with constant 

time intervals; and (5) the number of samples constituting a 

wave pattern is constant. The entire model is simulated with 

the input supplied from a file. 



CHAPTER II 

RELATED, STUDIES· 

Neural Netwo:r:ks 

The interest in Artificial.Neural Systems (~NS) has 

grown in tremendous proportions recently. These systems are 

also called Neural Networks, ·connectionist Systems and 

Neurocomputers, and are spotlighted in Japan's most recent· 

announcement of their sixth g~neration project [CAUDILL, 

1987]. A neural network is a ·computing system made up of 
' ' 

several simple, highly interconnec.ted processing elements, 

which processes information by·its dynamic state r~sponse to 

external inputs [HECHT-NIELSEN 1:.1986] . In a serial 

computing system, the execution is essentially sequential; 

all operations are executed in deterministic sequence. on 

the other hand the key tO nep.ral networks as an alternative 

to Von Neumann computing is their ability to "learn" and 

"adapt." themselves to survive in a constantly changing 

environment. Neural networks take in and analyze or process 

millions of possibilities. In neural. networks the final 

output is not confined to one single location but is spread 

throughout the system. 

9 
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since their reemergence in the middle eighties, the 

field of neural networks has been developing rapidly. This 

is due to the advancement in hardware and software. Neural 

net research has a very strong foundation in mathematics. 

New concepts in the mathematics of neural models accompanied 

these developments [TANK and HOPFIELD, 1987.]. A very good 

overview of the field and a description of some of the most 

studied models is provided in [LIPPMAN, 1987], while 

[RUMELHART AND McCLELLAND, 1985] provide a good theoretical 

background on the subject. Specific neural network models 

are studied in [HOPFIELD 1987], [ABILITIS, 1982], [CAUDILL, 

1987-1989], [KOSKO, 1987], [WERBOS, 1989] and [HECHT

NIELSEN, 1989]. 

A neural network is modeled on the structure of the 

brain, but the neural networks used by researchers today are 

only loosely based upon biology. This is due to our 

inability to fully understand how a brain works. A neural 

network model consists of a collection of processing 

elements, called neurons, after their counterparts in the 

brain [HECHT-NIELSEN, 1987]. Each neuron can have several 

input signals coming to it either from other elements or 

from the external world, but there is only one output signal 

emerging from a single processing element. This output 

signal may fan out along many pathways to become one of the 

input signals for other elements (Figure 1) . The processing 
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that each element does is determined by its transfer 

function (Figure 2). Often a neural network model is divided 

into layers- groups·of processing elements all having 

similar transfer functions [DARPA STUDY, 1988]. Every 

connection which enters a processing element has an adaptive 

coefficient, called a weight·, assig.r1ed to it. The transfer 

function adds up all the weighted inputs to determine the 

value of its output. Thus weights determine the strengths of 

the connections from neighbo~ing elements [CAUDILL, 1988]. 

There are several models of neural networks for fixed 

patterns. One summary of these models is in [LIPPMAN, 

1987], based on.input, either continuous valued or binary, 

and method of training, supervised or unsupervised (Figure 

3). Of all the models, the backpropagation method of 

RUMELHART and McCLELLAND' [19S6] is perhaps the common one. 

It is a powerful model for signal processing applications. 

Neural networks are' being used in various fields. 

Widrow [1975] surveyed various potential applications of 

neural networks. Neural network models have great potential 

in areas such as speech recognition, image rec'ogn'ition, and 

pattern recognition, and· other,areas where many hypotheses 

are pursued in parallel and high computation rates are 

required and ·current systems are· far from: equaling human 

performance. They are used in robot control [WERBOS, 89], 

automotive diagnostics [MAKO, et.al., 1989], financial 
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decisions [DUTTA and SHEKAR, 1988], image data compression 

[SONEHARA, et. at., 1989], bio-medical research [STUBBS, 

1989], time-series forecasting [SHARDA & PATIL, 1989], 

pattern recognition [FALAL, ,1988]~ and associative memories 

[KOSKO, 1987], and in other areas. 

Prediction of time series, which is closely related to 

signal processing applications, using neural networks for 

was studied by Alan Lapedes and Ro~ert Farber [1987]. They 

used a neural network with hidden layers to predict values 

of a nonlinear dynamical system that exhibits chaotic 

behavior. They used a windowing technique. Lapedes and 

Farber pointed out that in spite of the inability of the 

neural networks to provide a high degree of accuracy in 

numerical calculations, in this particular application the 

neural model gave the highest accuracy. 

Backpropagatio~ Neural Networks 

Backpropagation is currently the most widely used 

neural network architecture. According to R. Hecht-Nielsen 

[1989] the backpropagation technique is defined as follows: 

Backpropagation is an information processing operation 

that carries out the approximation of a mapping or function 

f: A c Rn -> Rm, from a bounded subset A of n-dimensional 

Euclidean space to a bounded subset f[A] of m-dimensional 

Euclidean space. This mapping is realized by means of 



training on samples (X11 Y1), (X2 , Y2 ) ••• (Xk, Yk) ••• , where 

Yk = f (Xk) • 

Further it is assumed that such examples are generated by 

selecting Xk vectors randomly from A in accordance with a 

fixed probability density function p(x). He presents a 

survey of the basic theory of the backpropagation neural 

network architecture covering the areas of architecture 

design, performance measurement, function approximation, 

capability, and learning. 

Rumelhart, Hinton & Williams [1986] describe learning 

internal representations by error propagation. They also 

present a variation of the delta rule [RUMELHART et. al, 

1986] called the generalized.delta rule for learning 

internal representations. The delta rule is a method of 

computing the interconnectio·n weights that minimizes the 

output unit error. It forms the basis for backpropagation 

neural networks. 

16 

Backpropagation neural networks use a supervised 

learning method for training. Rumelhart et. al. explained 

how the generalized delta rule is a steepest descent method 

of computing the interconnection weights that minimize the 

total squared output error over a set of training vectors. 

In the backpropagation techniqUes the output generated is 

compared with the target vector or desired output. The 

differences between them constitute the error signals as 
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dictated by the generalized delta rule [CAUDILL, 1988]. The 

error in the processing element is a function of the square 

of the weighted vector. A plot of error versus the possible 

weight vectors gives a paraboloid-shaped bowl. The delta 

rule moves the weight vector from its current position 

towards the minimum error by moving down the negative 

gradient of the bowl. Hence it is also called the gradient

descent learning rule. 

A more complicated error surface has several local 

minima and maxima. If the network gets struck in a local 

minimum, the only way to overcome this is to reinitialize 

the weights and retrain the network. Suggestions to 

improve performance and reduce the occurrence of local 

minima include allowing extra hidden units [LIPPMAN, 1987]. 

One other difficulty than the local minima problem is that 

often this technique requires a large set of training data 

for convergence. Typically more than 100 passes may be 

required to make the network converge to a minimum error 

region. Even though several more complex adaptation 

algorithms have been proposed it is very unlikely that 

complex decision regions formed by multi-layered networks 

can be generated in fewer trials [LIPPMAN, 1987]. This is 

especially true when the decision regions are disconnected. 

In spite of these drawbacks, backpropagation has been proved 

to be successful in many applications. 
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Backpropagation neural networks always form 

hierarchical structures, in the sense that these networks 

always have at least three layers ·of neurons. Werbos (1989] 

highlights the emerging field of neurocontrol, and describes 
' . 

how backpropagation can be used in a ne~ generation of 

controllers suitable for problems involving thousands or 

millions of control variables and a high' degree of noise and 

nonlinearity. 

Chauvin presented a variation of the backpropagation 

algorithm that makes use of network hidden units in a 

optimal manner (CHAUVIN, 1989]. The algorithm he proposed 

automatically finds optimal or nearly optimal architectures 
' ' 

necessary to solve known Boolean functions. It also 

facilitates the interpreta~ion of the activation of the 

remaining hidden units. He explains how the network can be 

used in realizing complex signal processing algorithms. 

Signal Processing 

Recovering transmitted analog signals over a noisy or 

dispersive channel is an example of classical signal 

processing problem. Yeates [1989] describes a neural 

network structure as well as its ability to carry out 

several classical signal processing algorithms. He also 

describes an important filtering technique, Kalman 

filtering, for a general state transition matrix. Kalman 
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filtering is done by allowing weight changes to depend, 

locally, on other weights in the proposed model. He 

develops a novel parallel architecture for signal processing 

which is of interest for two reasons. The structure he 

proposes exhibits characteristics similar to the proposed 

schemes used in neural modeling. The architecture 

implements a Quasi-Newton algorithm with superior 

convergence properties to that of the Least Mean Square 

(LMS) algorithm implemented by the adaptive digital filters. 

The noise present in a signal can be of two types -

stationary or random. The stationary disturbances can be 

eliminated by adaptive prediction. Prediction is concerned 

with the problem of extrapolating a given time series into 

the future. As for filtering, if the underlying model of 

the time series is known, it is possible, in principle, to 

design an optimal predictor for future values. When the 

model of the time series is not specified, it is plausible 

that a model could be estimated by analyzing past data from 

the time series [GOODWIN & SIN, 1985]. Random disturbances 

are models of stochastic processes. If the signal and noise 

spectra are non-overlapp~ng, then it is possible to design a 

filter that passes the desired signal but attenuates the 

unwanted nois~ component. The resulting filter would be of 

low-pass, band-pass, or high-pass type, depending on the 

relative frequencies of the desired signal and noise. There 



are standard procedures for design of such electrical 

filters; these are discussed in OPPENHEIMER & SCHAFER 

[1975], OPPENHEIMER [1978], and RABINER & SCHAFER [1980]. 

The case of overlapping signal and noise spectra was 

first studied by Weiner and Kolmorgorov [1948], who 

formulated the filter-design proqlemusing statistical and 

frequency domain, ideas. The usual' me.thod of identifying a 

signal embedded in additive ~oise is to pass,the composite 

signal through a filter that suppresses the noise while 

leaving the signal relatively unchanged. 

Radar signal processing with .. multi-layered neural 

networks was described by Solka, et. al., [SOLKA et. al.~ .. 
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1989]. They tested networks with single hidden layers on 

millimeter wave target returns which had been corrupted with 

Gaussian noise. Speech production using a neural network 

with a cooperative learning mec~anism was deve~oped by 

Komura and Tanaka [1987]. Their proposed model consists of 

four layers including hidden and multiple outputs. They 

succeeded in producing na:tural speech.waves with high 

accuracy. 

Various digital filters'used in signal processing 

applications are described by Jackson [JACKSON 89]. He 

points out that the wealth of analog filter design data and 

techniques that has evolved over the years is based on 

frequency domain specification. For this reason, many 
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design techniques for infinite impulse response (IIR) 

digital filt'ers utilizing analog filter design have been 

developed.. The transformations from the analog variable in 

the Laplape transform domain. to the digital variable using 

z-transforms have been d~~iy~d. The pi0n~ering work in this 

area was done by Kaiser· [KAISER, 1973]. 

Johnson [1989]' presented the-th~ory and design 

principles involved in the d~sign of finite impulse response 

(FIR) and infinite impulse r~sponse filters (IIR). He 
I 

discussed in depth the design techniques of FIR filters 

based on windowing, frequency sampling, and qptimization. 

The windowing method involv~~ straight-forwar~ analytical 

procedure. To ob~ain a realizable filter, the impulse 
' ' 

response sequence is truncated to obtain a new sequence 

having finite domain. This truncation process is called 

windowing. The Kaiser family,of windows provides the 

designer considerable -flexibil'ity in meet-ing the filter 

specifications. In the frequency sam~ling method, a desired 

frequency response is uniformly sampled and filter 
' - ' 

coefficients-are then determinea from these samples using 

discrete Fourier transforms. Optimal' FIR filters have 

well-defined a~alytical procedures and solutions that are 

used in the design of these'filters. The optimal filters 

frequently are based on Ghebyshev approximation. 

The adaptive linear combiner or non-recursive adaptive 



filter is fundamental to signal processing applications. 

The general form of the adaptive linear filter is shown in 

Figure 4. The adaptive linear combiner takes in a signal 

vector and has a corresponding set of adjustable weight 

vectors and a summing unit to form the output signal. The 

method of adjusting or adapting the weights is called 

"adaptation" procedure. The combiner's fixed weight 

settings causes the output to be a linear combination of 

input components. 
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A general digital signal processing system is shown in 

Figure 5. By setting the feedback coefficients to zero, we 

get the single-input adaptive combiner as shown in Figure 4. 

The system shown in the figure is also called a digital 

filter. Without the feedback portion, the filter is called 

"non-recursive" and with the feedback portion it is 

"recursive." The non-recursive digital filters such as the 

adaptive linear combiner are inherently "stable." This can 

be attributed to the weight values. As long as weights are 

finite, the impulse response is bounded and is of finite 

length. Such digital filters are called Finite Impulse 

Response filters (FIR)~ The,recursive filters have impulse 

responses of infinite lengths. These filters are called 

Infinite Impulse Response (IIR) filters. 

The adaptive noise canceling technique was first 

studied in depth by Widrow in early '60s. Widrow et. al. 
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[1975] presented principles and applications for adaptive 

interference canceling and explained how the adaptive 

filtering technique can be applied successfully for EKG 

signal processing. Their model was closely based on the 

least mean square rule (.LMS) , which later formed the basis 

for the delta rule. 
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In 1960, Widrow and Hoff presented a learning rule 

called delta rule, which forms.the ba:~is ·for neural networks 

with hidden units.. In fact I there ~s no equally powerful 

rule for learning' in networks with one or more hidden units. 

A slight variation of this ru+e, called the generalized · 

delta rule, is used by most of the backpropagation neural 

models with hidden.units.known today. 

Huhta and Webster [ 1973 ], pointed out that a major 

problem in the recording of the electrocardiograms (EKG) is 

"the appearance of unwanted 60.:;.Hz interference in the 

output" [WIDROW et. al, l985]. They analyze the various 

causes of such power-line interference, including magnetic 

induction, displacement currents in leads.or in the body of 

the patient, and equipment interconnection and 

imperfections. They· also ·describe' several techniques for 

minimizing interferences which must be used during the 
- ' ' 

recording process itself; sue~ as prop~r'grounding and use 

of twisted pairs. Another method capable of reducing 60-Hz 

ECG interference is adaptive'noise cancelling, which can be 
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used separately or with more conventional approaches [WIDROW 

and STEARNS, 1985]. The standard approach to this problem 

is to adapt the finite impulse response filter (FIR) to 

reduce the noise and to use channel equalization to reduce 

the dispersion, and to apply estimation theory to estimate 

the optimal desired waveform. Neural networks is a powerful 

adaptive technique providing, solutio~s to signal processing 

or signal to rioise ratio reduction problems [MELNIKOF, 

1989]. One of the particularly interesting characteristics 

of neural networks is the capability to develop an adaptive 

filtering technique that can:be tuned to preserve varying 

levels of details [KLIMASAUS,KAS, 1989]. 

EKG processing demands high speed and accuracy. Data 

gathered from patients with suspected heart ailments 

typically approaches 100,0QO or more beats over a 24 hour 

period within which there may.be only one or more sequences 

of abnormal beats [CAROLL and VED, 1989]. They propose a 

neural network based model for identifying this arrhythmia 

from a noise free signal. It is very important that these 

signals are identified clearly without any noise for proper 

diagnostics. A data compressin,g algorithm for Digital 

Holter Recording using artificial neural networks (ANN) was 

developed by [IWATA, NAGASAKA, SUZUMARA, 1989]. They 

describe a neural network system for monitoring EKG signals 

for detecting disorders and arrhythmias in EKG which may 
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appear unusual or non-periodically. Goodwin et. al. [1984] 

explain how adaptive filtering prediction ~nd·control can 

potentially be applied to filter the noise component from 

the- EKG signals. 

The neural network filter can.be useful in the signal 

processing applications which ~equire hig~ 'speed, accuracy, 

and adaptability to the changing ~np~t signal.'with time. 

The main process invo~ved in·'these filters is-in compressing 

or encoding the input data and re-expanding it. The 

compression pro~ess eliminates that part of the input signal 

which represents sm~ll or nonrecurring features. By yarying 

the number of encoders-the ac~ual detail in the output 

signal can be varied. 

Figure 6 represents the process discussed above. The 

main step in solving this problem is the selection of a good 

set of feature dete~tors by.wh~ch the pa~ticular signal can 

be filtered. In the figure shown, there are 14 inputs which 

have been reduced at the output encoder to 4 outputs. 

Representing these ipputs and:outputs as 32 bit floating 
~ ' ~ ~ ' 

point numbers requires (14x32) and (4x32) bits to represent 

the input and output patt~rns re~~ectively. ·From this 

' viewpoint, the data.has been reduced by a_~actor of 448/128. 

This form of compressing the data is called dimensionality 

reduction [KLIMASAUSKAS, 1989]. 

The compressed signal from the hidden layer is re-
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Figure 6. Dimentionality' Red~ction.' An Input Signal is Sampled 

at Several Points' 'and Encoded. The Decoders 

Reconstruct the Full In'put Sigll:,al. [KLIMASAUSKAS, 1989] 
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expanded through the connection between the hidden and 

output layer. The backpropagation neural networks configure 

themselves in such a way as to establish a relationship 

between the input and the output variables. The connection 

is formed to minimize the error between the network 

generated output and the target vector. After minimizing 

the error or tr~ining the network, the network can be said 

to have learned the input/output- relation. Such a network 

produces an output close to or consistent with the target 

pattern, even when one or more inputs have been corrupted. 

This is attributed to the non-linear characteristics of the 

neural networks. 

Signal processing using neural networks is an ongoing 

research topic. This study verifies the ability of neural 

network techniques in noise filtering and compares it with 

the performance of a finite impulse response filter (FIR). 

The noise in the signals is stochastic. This requires 

complicated nonlinear signal processing algorithms whose 

procedures are l~ss known than stationary'noise signal 

processing algorithms. A neural network, by its ability to 

change its structure according ,to the environment, can be 

used in nonlinear signal processing which requires 

adaptability. One of the important features of neural 

networks is the ability to develop adaptive filtering 

techniques which can be adjusted to identify varying levels 
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of detail in the underlying signal. The output of the FIR 

filter and neural network based filter is compared in terms 

of signal reconstruction and distortion of the output 

waveforms. The input signal pattern which corresponds to 

the duration of one heartbeat is extracted from the original 

time series. The network first is tuned with the supervised 

signals which are same as in~ut signals. About 300 

successive heartbeats is used for training the network. 

After the tuning up, the activations of the neurons 

correspond with the characteristics of the waveforms. A 

recall file containing the unfiltered signal pattern is then 

presented to test the network's ability to filter the noise 

and identify the waveforms. 



CHAPTER III 

-IMPLEMENTATION OF NEURAL NETWORK FILTER 

Training Neural Networks 

The neurons in a neural model can be' "feedforward only" 

or "feedback only" or a combination of these two. Training 

in neural networks can be classified into three categories: 

supervised training, unsuperv';Ls'ed training, and self

supervised training. In the'present application, the 

backpropagation neural model, which uses supervised 

training, is used. In supervised training mode, the neural 

model is capable of discriminating among the members of a 

set of stimulus inputs, by pr9viding the network with the 

correct response expected at· th~ output. An externa'! signal 

corrects the network to produce the desired response. 

Unsupervised learning uses the inputs and forms 

appropriate interconnections to produce the desired 

response. No external input is provided to produce this 

response. One common unsupervised learning, procedure is 

competitive learning. In this technique, the inputs compete 

among themselves. to produce a ~esponse·to each applied 

stimulus pattern. The winner is the one whose connection 
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made it respond most strongly to the pattern. The network 

adjusts its interconnection strengths slightly towards the 

pattern that won. This technique is mostly used in 

classification problems. Much of the current research on 

the unsupervised learning scheme is focused on the emergence 

of feature detectors. Several researchers, including 

Rumelhart and Zipser [1986], built a network that can 

discriminate between stimuli occurring on spatially 

different parts of an input visual field using a form of 

competitive learning. While unsupervised learning schemes 

are topics for on going research, they are not as well 

understood as supervised learning techniques. This has 

mostly precluded incorporating unsupervised neural models 

into useful applications. 

In self-supervised learning, the network model is 

presented with a series of inp~t training patterns. The 

network learns to classify these patterns without being 

given the correct response for an input pattern. An error 

signal generated by the network is fedback to itself and 

the network adjusts its interconnection weights to produce 

the desired response. The network produces correct response 

after several training cycles. Networks trained with 

supervision include perceptrons and multi-layer perceptrons. 



Training Using Backpropagation 

Neural Networks 
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The neural network filter developed in this study uses 

supervised learning and in particular .the backpropagation 

technique. Backpropagation is the most widely used 

learning technique. Backpropagation learning techniques use 

the Delta or least mean square (LMS) rule to adjust the 

weights on the interconnections to produce the correct 

response. Earlier, when neural network models were formed, 

they consisted of simple two-layer associative networks in 

which a set of input patterns applied to an input layer was 

mapped to a set of output patterns by the output layer. 

These models involve only input and output and do not have 

internal representation. The main disadvantage of such 

systems is the inability of the network to learn certain 

mappings of relatively low complexity. The exclusive OR 

(XOR) problem is a very good example. 

Minsky and Papert [1969] showed several non-linear 

problems which two-layer networks did not solve. Their 

study showed that it is possible to do mapping required to 

solve problems that are not linearly separable. Later it 

was proved that a layer of simple neurons between the input 

and output layer will solve the problem. The third layer is 

called the hidden layer. The learning in backpropagation is 



closely based on the Delta rule. The delta rule was 

developed by Widrow and Hoff [1960] and recently has been 

reanalyzed and studied by several authors. The delta rule 

is also called the Widrow-Hoff rule. 

Generalized Delta Rule 
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The learning in neural networks during training is 

derived by applying a pattern to the network and allowing 

the activations to be passed to the output layer through the 

hidden layers. The weights are modified layer by layer by 

propagating the difference of the comparison of the output 

pattern to the target pattern. The error, also called 

delta, is propagated to the previous layer and while it 

propagates it modifies weights. The learning ceases when 

the error signal becomes zero. 

The rule for changing weights given by Rumelhart, et. 

al. [1986], for a $et of input and output pattern pis 

where 

t,.pWl.J = '7 (tpJ - OPJ) ipl. 

= '7 0 PJ ip1 

(1) 

(2) 

tPJ is the target input for the jth component 

of the output pattern for pattern set p. 

OPJ is the jth element of the actual output 

pattern for pattern set p. 

iPl. is the value applied to the ith element 
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of the input pattern p. 

5 PJ = tPJ - OPJ is the actual error 

produced by comparing the target output with 

the actual output . 

.t.PW1J is the actual change in weight 

"magnitude that is to be made after pattern p 
' ' 

is. applied. (W~J is th~ weight vector; the 

strength of the connection from unit i to j). 

The informal derivation of the,delta rule as given by 

Rumelhart et. at. [1986], is' g~ven in appendix A. The 

derivation shows· that the net change in weight values, W1 j, 

after a cycle of inpu~ patterns, is related directly to the 
< '• 

derivative of error with respect to weight. Hence the delta 

rule always moves the weight vector in the direction of 

negative slope to reduce the overall error, E. 

Internal Representation in Backpropagation 

Neural Networks 

The internal details of the backpropagation neural 

model are shown in Figure. 7. The first layer or the input 

layer consists of processing' elements or neurons which fan 

out to 'n' processing elements. The elements in this layer 

take in individual components of the input vector. These 

are distributed to all elements in the second layer (hidden 

layer) without any changes. Each element in every layer 
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Figure 7. Internal Details Of Backpropagation Networks 
[R. HECHT-NIELSEN, 1989] 
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except the input layer receives the output of the units in 

the layer immediately below it. The final layer, also 

called the output layer, accepts. input from the layer 

immediately be~ow it and tries t9 produce the desired 

output, th~ network's estimate of the outp~t pattern. Any 

layer between th~ input and the output layer is a hidden 

layer. Theoretically there· ·can be any ·numb~r of hidden 

layers in a neural model. 

The backpropagation neu~al networks function in two 
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stages: the forward pass and backward pass. During the 

forward pass stage, the signals propagate from the input 

layer to the output layer th~ough one or more hidden layers. 

Once the output has been estimated by the forward pas~, each 
' - ' 

of the elements in_ the 'output '.layer is given its component 

of the correct output patt~rn, the target. This initiates 

the backward pass. In the backward pass stage, the error . ' 

signal is computed by taking the difference of the network's 

estimate of the output component and the target component. 

This error signal is passed back starting from the output 

layer. This backpropagation of the error,signals adjusts 

the weights depending on.the,e~ror signals, so that the 

network produces the correc~ response. Each cycle of 

training the network involves "bubbling up" the inputs from 

the output layer to the input layer, while the error 

"propagates down" from the output layer to the input layer. 



The forward pass or backward pass is determined by the 

scheduling processing element. The scheduling processing 

element sends signals to each processing element of the 

network telling it to apply its processing elements 

transfer function and whether to apply forward pass or 

backward pass propagation. 
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Each processing element in the backpropagation neural 

model consists of one "sun"_ processing element and several 

"planet" processing elements. The sun of the processing 

element gets input signals from the planets which go to the 

suns of the previous layer as well. In turn the planet 

receives input fr9m its sun and also from the previous 

layer. A detailed description of working of backpropagation 

networks is given by Hecht-Nielsen [1989]. 

Error surfaces in Backpropagation 

Neural Networks 

The error surface of a backpropagation neural network 

can be defined by the equation [HECHT-NIELSEN, 1989] as: 

F 5 = F(W) (3) 

in the Q+1 dimensional space of vectors (W, F) • 

w is the weight vector of the network. 

Q is the number of dimensions in vector w. (i.e. 

planets in the network) 

For each W a non-negative surface height F5 is defined by 



F (W) • (The weight vector, w, ranges from over its Q-

dimensional space). While approximating the function, f, 

the network makes an average squared error F(W), for any 

selection of weights W. F(W) .is defined to be 
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F(W) = Lt (1/N) L:k Fk (4) 

where 

Fk. = {f(Xk) - B(Xk,W) }2 (5) 

f ·: is the given mapping function 

k·: is the numper of the testing pattern 

B is the network estimate of the output 

which is a fu~ction of input vector, X, and 

network weight. vector, W, L e. B (Xk, W) 

N : is the total nl,lmber of patterns. 

The function F(W) is the mean squared error function of the 

network. 

The generalized delta rule used by the backpropagation 

neural network moves the weight vector, W, from the starting 

point W0 to reduce the mean squared error. There is a zero 

probability tha't W0 is already a minimum. The 

backpropagation error surface consists of flat regions and 

troughs that have very little slope, so the weight vector 

must be moved quite a long distance on the error surface 

before F(W) drops significantly. Due to the small slope the 

delta rule has a hard time in determining which direction 

to move the weight vector to reduce the overall error. 
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The local minima in backpropagation error surface were 

discovered recently [HECHT-NIELSEN, 1989]. When the network 

gets struck in a local minimum, the weight vector has to be 

moved away from it to find a,global minimum. The training 

has to be repeated after perturbing the weights. 

Tr~ining Samples and Environment 

EKG signals are used for implementing and testing the 

simulated neural network based filter. 'Clinically recorded 

electrocardiograms formed the training samples. The EKG 

signal recorded by the EKG recorder is a continuous stream 

of binary numbers. These signals are first converted into 

ASCII numbers using programs developed in Pascal. The text 

file is then converted into a sample vector corresponding to 

a heart beat. Approximately 110-115 samples constitute one 

heart beat. About 250 such heart beat patterns are used to 

train the neural network. These patterns form the input 

vector. A part of the noisy signal is applied to the FIR 

digital filter and the filtered output obtained is used for 

the target signal vector, after suitable conversion and 

formatting. The training file consists of pairs of input 

pattern and the target pattern. 



Simulation Using Artificial Neural 

Simulation Tool 
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The neural network filter was simulated using Science 

Applications International Corp.'s (SAIC) ANSim, Artificial 

Neural Simulation Software. ANSim is a graphics-oriented, 

menu-based, artificial neural network simulation program 

running on top of Microsoft Windows. ANSim supports 13 

presently well known neural network paradigms. 

Figure 8 summarizes the steps involved in artificial 

neural network system development and application. This 

gives only a general idea of the'process; particular 

applications may involve repeating or excluding one or more 

steps or may have steps which are more complex and 

compounded. For example, in some cases the difference 

between training and processing is non-existent. Some 

models need no training at all and in others training is the 

same as processing except the use of a special training data 

set. The network models developed using ANSim can be 

embedded in stand-alone applications. 

The backpropagation paradigm uses training data files 

containing sequences of vecto~ pairs for training the 

network. Each vector pair is composed of an input vector 

and a target vector. The number of components in the input 

vector is equal to the number of elements in the input layer 

( 



Figure 8. Steps Involved in Development of Artificial Neural System 

" 
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of the network model. Similarly, the number of components 

in the target vec~or must equal the number of neurons in the 

output layer of the network. The recall file contains 

sequences of vectors for driving a trained network. The 

recall file does not contain target vect~rs. The components 

in each vector are the input values applied s~multaneously 

to the network. The output produced by· the network model 

while processing the recall file have the same structure as 

recall files so ~hat they can ·be used as input to other 

networks. The training or recall files should be normalized 

before presenting to the network~ Normalization is done to 

remove the mean and to scale. data within a specified range. 

During scaling, all values are adjusted proportionally so 

their minimum and maximum fall within the specified range. 

The backpropagation network represented in ANSim is a 

multilayered, fully connected,. feed-forward network. It is 

based on the Generalized Delta Rule (GDR). 



CHAPTER· IV 

RESULTS AN.O DISCUSSION 

Backpropagation neural network:systems are a powerful 

adaptive system for forming ,relationships,between several 

valued continuous inputs and cont·inuous valued outputs. The 
' ' -

interesting property in neural network filters is their 

ability in identifying the noisy and corrupt input patterns. 

This can be attributed to the'.non-linear mappj.ng ability of 

neura-l networks.· , To illustra~~ the process in a signal 

processing a~plication~ Figure 9 shows the adaptive 

interference canceling of EKG signals using LMS algorithm. 

The input and target wave samp,les used in training the 

network are shown in F~gure 1Q. The input signal is 

corrupted by random no~se~ The target pattern is the 
- ' 

filtered output obtained,from the FIR filter. The network 

attempts to produce output similar to the target pattern. 
' ; 

. The output produced· by the ne~ral network filter for 

various number of elements in the hidden layer is shown in 

the Figure 11. It·can be seen from the figure that, the 

more the number of processing elements in .~he hidden- layer, 
> • 

greater is the detail preserved from the encoding process to 

decoding process. However, the amount of detail produced at 
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the output layer does not improve after 70 processing 

elements in the hidden layer. The,performance of the 

network actually starts-to d~grade slowly after this stage. 

When the hidden layer had about 105 ~nits the network output 

was almost the input pattern. -

Thus smoothing of the corrupt and noi~y signal input is 

determined to a. great extent ~y the numbe~ of units in the 

hidden layer o U,SUally 1 the number O,f, UnitS in the hidden 

layer is kept well below the number·of units in the input 

layer below it. The lesser numbe~ of units in the hidden 

layer guarantee~ smoothing of the input ,signal. Figure 12 

shows the effect .of the number of elements in the hidden 

layer on the output unit error for 110 elements in the input 

layer. 

The performance of the,'neural network filter during 

training increased· as the ~raining progressed. However, the 

continued training after sometim~ does not improve 

performance. The root mean square error and.maximum unit 
- ' . 

error-does not requce significantly after this stage. 

Figure 13 shows the maximum outp~t unit error with 
' .,. ., ' 

respect to time (training ·cycles). It was observed that 

during training the maximum d~tput un~~"e~ror decreased 

steadily initially. After about 250 cycles the decrease in 

error at the output unit becomes insignificant. At this 

stage it can be said that the system has learned. Further 
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increase in training cycles does not reduce the output unit 

error significantly. 

It was also noted that p~r~ormance on the testing data 

increased with the n~mber of training samples. However, if 

training samples were increased beyond 40, the network 

performance did not continue. tq improve. ·The increase in 
'' 

the number of samples during .training makes the network to 

learn for a range of patterns. This ·~mprove~'the 

performance of the network when applied with the testing 

set. Figure 14 shows the effect of training vector size on 

the output unit error. 

The learning rate· (~) influences learning to a great 

extent. The goal i~ to set t~e learning rate"as high as 

possible without causing the output error to oscillate. The 

optimal value of ~ depends ori the shape of the error 

function in weight space. Figure 15 shows the output unit 

error against the learning rate. When the learning rate_ is 

very low, the network output "error_ oscillate.s and , does not 

reduce. On the other hand a ,hi_gh lear:ning rate also does 

not reduce the output. unit error. Diff'icult problems have· 

relatively constant err.or functions with tiny solution 

regions. These problems require 'a small·value of ~' 
' t ~ ' 

typically o. 25 or less, _and require many learning cycles. In 

practice, the value of ~ should b~ reduced until the output 

unit error shows a decreasing value with time. 

\ 
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Klimasauskas [1989] showed how neural networks can be 

applied to noise filtering successfully. He showed how the 

hidden layer elements affected the output produced by the 

network. This study found the results to be consistent with 

his findings. 

If sufficient amount of data is available for training, 

then it is possible to develop a trainable system with 

optimum performance using architectures currently known. 

The nonlinear processing capability of the neural network 

models add to the flexibility,of such systems. The extra 

flexibility obtainable in neural systems is likely to lead 

to several practical applications for which neural network 

signal processors will offer better performance in a 

smaller, cheaper package. 



CHAPTER V 

- RECOMMENDATIONS FOR FURTHER STUDY 

The results of the study show the ability of the neural 

networks in signal processing applications,,especially in 

noise filtering. In the neural network models each node 

does simple processing giving rise to the complex behavior 

for the system. 

The test of the neural network based filter gave some 

indication of improving filtering capabilities which can be 

explored for other neural network architectures. Further, an 

additional neural network based model can be developed to 

classify the noise fr~e signal of the first stage based on 

deviations from the normal pattern. The second stage 

network can then be interfaced to an expert system which can 

estimate the extent of the··damage to the heart and alert the 

physician. 

With some modif~cations, the system dan be made to 

process real time signals. Tpis may require creating 

windows, with about 20 ,to' 40 samples. By presenting these 

samples to the input laye+ and having one unit at the output 

layer, a continuously filtered signal may be obtained. 
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The increased performance of the neural network system 

is achieved at the expense of increased complexity. The 

requirement that the input nodes be fully connected 

prohibits the use of digitaL filters when the input is 

large. This problem can be eliminated by the neural network 

filters which place no restriction on the number of units in 

the input layer. As progress is made in the VLSI 

implementation of densely connected neural,netw'ork models, 

such neural network based filters should be able to handle 

complex problems. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A data compression algorithm for noise filtering 

applications for signal processing was studied with 

artificial neural network systems. A three layer neural 

network system with one hidden layer was used. The hidden 

layer had fewer units than the other layers. The network 

was trained with the supervised signals which are the same 

as input signals. The backpropagation algorithm was used 

for training the network. The network was found to be 

adaptable to the environment. When the input signal 
/ 

changes, the network changed its weights in an effort to 

identify the original signal. 

Neural network based techniques for noise filtering 

offer an interesting and potentially powerful approach. It 

can be extended to other signals. Depending on the type of 

the signal used, the processing elements in the hidden layer 

should use appropriate transfer function. 

The performance of the network was found to be 

consistent with the results and findings of Klimasauskas 

~1989]. He showed the effect of the hidden layer elements 

on the output produced by the network. The ability of the 
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network to reconstruct the original signal was found to be 

determined by the hidden layer elements. The network 

performance improved initially with the increase in the 

number of elements of the hidden layer. ,After a certain 

stage the performance ~tarted to-tail off gradually. 

The ability of the network to learn was found to depend 

to a great extent on the learning rate. The learning rate 

should be set to a value as high as possible without causing 

the output error to oscillate. The optimal value of the 

learning rate depends on the ~rror function in weight space. 

Difficult problems require usua·l-ly small values of learning 

rate and may require many training samples. 

The results of the study pointed out several new 

directions to investigate: the effect of multiple hidden 

layers on output; the,effect o~ using other transfer 

functions on the hidden layer, elements; and training with a 

large amount of decaying input noise. 

This study shows an application of neural networks in 

identifying the wave patterns from a noisy environment. The 

methodology employed in the n~ural network filtering could 

also be enlarged. -, Other network paradigms could be 

incorporated_into the system to improve the performance. 

This technique could also be extended to complex noise 

filtering problems and the methodology could also be 

extended for use with other signal processing problems. 
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DERIVATION OF THE DELTA RULE 

The Delta rule can be derived in'many ways. The 

following derivation applies to linear units that minimize 

the squares of the differences between the actual output 

produced by the output units,and the desired output values 

for all pairs of inputjoutput patterns. This can be shown 

showing the derivative of the error measure with respect to 

each weight is proportional to the weight change as dictated 

by the delta rule, the constant of proportionality being 

negative. This actually corresponds to performing steepest 

descent on a surface in weight space whose height at any 

point in error surface equals error measure. 

The error, EP, produced by the pattern set, p, is 

' 2 
Ep = 1/2 I (tpJ - opJ) 

where tPJ is the desired input for the 

jth component of the output pattern. 

OPJ is the actual ,output produced by unit j for 

pattern p. 

The overall error is E = IEP. 

When the units are linear, 
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By applying the chain rule, we have, 

a Ep/ a w J J. = a Ep/ a op3 • a oPJ/ a w J J. '( 8} 

aEPjaoPJ indicates the error changes with respect 

to the output of the jth unit. 

aoPJ;awJl. shows how much ,of changing weights 

changes that output. 

From equation (9} we get, 

a Ep/ a oPJ = 1/2 . 2 ( tPJ - oPJ} ( "":' 1} 

= - (tpJ - opJ} 

= -opj 

For a set of linear units, 

OPJ = l:WJi • ip~ 

Taking derivatives with respect to Wl.J, 

aoPJ/ awJi = iPJ 

Substituting (12} and (13'} in eqilation (11}, 

aEp/aWJl. = '-oPJ , . iPJ 

-a Ep/ awl.J = o PJ iPJ 

Combining for all input/output patterns 

aE/WJl. = L aEp~awJl. ' 

(9} 

(10} 

( 11} 

i.e. the net change in the weight vector, WJ 1 , for each 

cycle of training is proporti9nal :to this derivative. Hence, 

the delta rule implements a gradient descent in error, E. 
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BACKPROPAGATION TRAINING ALGORITHM 

The backpropagation training algorithm minimizes the 

mean square error between the actual output produced by the 

multilayered neural networks and the target output. It is an 

interactive·gradient descent algorithm. The algorithm is 

based on sigmoid activation·function and is given by Lippman 

[LIPPMAN, 1987]. 

Step 1: Initialize wei~hts and·~ffsets 

The weights and node offsets are initialized to a 

random value within specified limits. 

Step 2: Apply input and output vector patterns 

The training patterns contain a set of vectors, an 

input pattern, I, and desired output pattern, T. 

I = [i0 iN-d 

T = [t0 tM-d 

where N is number of units in the hidden layer, 

and M is the number of units in the 

output layer. 

The training should be presented cyclically till 

the weights subsidize. 

Step 3: Obtain actual outputs 

Determine the output, Y, based on the sigmoid 

nonlinearity of the processing unit. 
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Step 4: Adapt weights 

By using recursive algorithms, working back from 

the output layer to the first hidden layer, adjust 

weights according to 

wl.J(t+1) = rJ(oJ xJ) + W1j(t) 

If, the node, j ., is the output node, then 

o J = Yl. ( 1 - YJ • (tl. - YJ 

(12) 

(13) 

If the node, j, is art internal hidden node, then, 

sJ = x'J (1 -. x'J> Isk.wJk' (14) 

where x' J is either: output of the node i or is an 

input k is over all nodes in the layers above 

node j. 

The convergence can be made faster by providing a 

momentum and smoothing weight change by 

wl.j (t+1) = W1J (t) + '1 s J x' J + a: (Wl.J (t) - wl.J (t-1)) , 

where o < a: < 1. 

Step 5: Repeat again starting at step 2. 
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THE ADAPTIVE LINEAR COMBINER 

The adaptive linear combiner is fundamental to adaptive 

signal processing systems and filters. It is the single 

most important element in learning systems and adaptive 

processes. A general form of adaptive linear combiner is 

shown in Figure 5. 

The adaptive linear combiner consists of input signal 

vector, [X0 ,X1 ,X3 ; ••• X1 ], a corresponding set of adjustable 

weights, [W0 ,W1 , ••• WL], a summing unit, and a single output 

signal Y. A procedure for adapting weights is called an 

adaptation procedure. The combiner is called linear because 

for a fixed weight setting its output is a linear 

combination of the input components. When the weights are 

in the process of being a~just~d, they, too are a function 

of the input components and the output of theccombiner is no 

longer a linear function of the input. The operation 

becomes non-linear. 

Th~re are two different types of input vectors, 

multiple and single input. Multiple input may be considered 

to be simultaneous inputs from different sources. Single 

input may be considered to be sequenti~l samples from the 

same signal source. The rest of the discussion deals with

the single input, as multiple input is almost similar to the 
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single input combiner. 

Let Xk represent the single input signal. 

(15) 

In this notation, T stands for transpose, so Xk is actually 

a column vector in both cases. The subscript K is used as a 

time index. In the case of single input, the adaptive 

processor can be implemented with an adaptive linear 

combiner and unit delay elements as shown in Figure 4. This 

structure is called an adaptive,~raversa~ filter. 

For the input signal represented in '(18) the input

output relation is as follows: 

where ~k = [Wok' Wk, WLxJ T is the weight 

vector. 

(16) 

Using Vector representation, equation (19) can be rewritten 

as 

(17) 

In the adaptation,process with the performance feedback, the 

weight vector of the linear combiner is adjusted to cause 
,, 

the output, Yk, to agree ~s closely possible with the 

desired response signal. This is done by comparing the 
- ' 

output with the desired response to obtain an error signal 

and then adjusting the weight vectors to ~inimize the 

signal. The method of deriving the error signals is to 

subtract the output signal, Yk, from the target signal dk, 

to produce an error signal Ek. Mathematically this can be 
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given as 

(18) 
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PRINCIPLES OF FIR FILTER 

In appendix A, the adaptive linear combiner and its 

properties were described without recourse to the usual 

transform or frequency domain analysis. The analysis of 

adaptive signal processing involves z-transforms, as z

transforms transform directly relates to the frequency 

response of the system. 

Most signal processing systems involve the use of 

sample sets include input, desired and error signals as well 

as the set of weight vectors. The z-transforms of any such 

sequence is defined as follow: 

z-transform: 

Where Z is a continuous complex variable, 

(19) 

( 20) 

X(Z) is a two sided Z-transform because negative 

as well as positive values ~f index k is involved. 

For describing the design principles, the following 

terminology are used. 

Transfer function : The•transfprm of the output of the 

system divided by the transform of the input. The 

transform used here is the z-transform. 

hd(n) is the impulse response of the system. 
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Hd(n) is the desired frequency response 9f the system. 

H(w) is the z-transform of h(n) evaluated on the unit 

circle of pole~zero plot, ie., 

-Jwn e . 

Window - Function- Technique 

The most obvious way to design an FIR filter is to 

truncate the ·ideal re'sponse hd (n) outside the interval 

o <= n <= M to p~oduce h(n), ie., 

h (n) = hd (n) 0 <= n <= M 

= 0 otherwise 

(21) 

This results in an expression,,, which is equivalent to the 

above expression is 

h(n) = wR(n). hd(n~ 

where wR (n) is the rec~artgular ,·window; defined as 

wR ( n) = 1 o <= n <= M 

= 0 otherwise -

(22) 

The-relation between the two impulse-response-sequences 

corresponding to equation (25) is given by 

h8 (n) = w8 (n) . ·hd (n) 

where the subscript, S, indi'cates the symmetry of the 

window and it distinguishes from'the casual window wR(n). 

There are other windowipg techniques like,Hann window, 
'• 

Hamming window, ,Blackman window and Kaiser window. The 

analysis of these windows is beyond the scope of this study. 
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Frequency Sampling Technique 

Another method that is used in the design and analysis 

of FIR filters is the. frequency .sampl~ng. In th~s method a 
' ' 

set of samples is determined frq~ a ~es±red frequency 

response and is identified as discrete F:ourier Tra'nsform 

(DFT) coefficients. The-filter coefficients are then 
' -

determined as th~ :i,.nverse_ discrete.·Fo:urier-Transform (IDFT) 

of this set of samples. 

optimal FIR Filters 

The design ~nd analysis'for optima~ filters is based on 

a minimax or Chebyshev type approximation. This technique 

involves the determinati,on of a· weighted error function 

based on the desi~ed resp~ns~ and'the general form of the 

response function. The co~ff :i,.c,ients in the response function 

are then determined to _minimi,ze the maximum error that 

occurs. 
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GLOSSARY 

Adaptive coefficients 

The values computed during previous training are stored 

in a local memory which are used for subsequent 

modifications. 

Adaptive filter 

The pattern of activity in neurons are transferred from 

one level to that in another through the set of 

interconnections that are formed between neurons in one 

level and those at another level. This 

interconnection is called a filter. 

Backpropagation 

The information processing is the approximation of a 

mapping or function f: A c Rn -> Rm, from a bounded 

subset A of n-dimensional Euclidean space to a bounded 

subset f[A] of m-dimensional Euclidean space, by means 

of training samples (X1 ,Y1), (X2 ,Y2 ) ••• (Xk,Yk) , ... of the 

mapping's action where Yk = f(Xk). It is assumed that 

such samples of a mapping f, are generated by selecting 

Xk vectors randomly from A in accordance with fixed 

probability density function P(x). [R. HECHT-NIELSEN, 

1989]. 
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Connection 

The pathway formed between the neurons for signal 

transmission. 

Feature detector 

80 

The response of the neuron when a particular pattern of 

stimulus is present. For example the f~ature might 

correspond to a pixel in image processing_or a 

particular acoustic frequency component· 'in· acoustic 

signals. 

Graceful Degradation 

In neural networks, there is no single point at which 

the performance breaks down. The network performance 

gradually deteriorates as more and more processing 

elements are destroyed. 

Hidden layer 

The layer of neurons formed between the input and 

output layers. They are·called hidden because they 

derive the .input. fro~ other layers and feed their 

output to other layers. A neural network model may 

have one or .more hidden layers • ·. 

Input layer 

The layer of neurbns to which the input pattern is 

applied for processing. 
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Input pattern 

The input stimulus presented to the neural network for 

processing. 

Layers 

The neurons in: the neural network 'are arranged into 

layers. Th~ neurons in~ layer have similar transfer 

function., 

Learning law 

It is the equation which determines that all or some of 

the weights in the neuron's local memory be modified 

with response to the input signal and transfer function 

of that neuron. 

Neural network 

A neural network is a system in which many neurons 

process the information in a parallel manner. The 

overall function or re~ponse of the system is 

determined by \Veights pr7sent·in the connection, and 

the, processing done at the computing elements or 

neurons. 

Neuron 

The fundamental unit in the neural network. It is a 

nonlinear computational unit named after its 

counterpart in brain. 

output layer 

The layer of neurons which presents the output response 

of the neural network. 
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Self-supervised Training 

Self-supervision is used in automata which require 

internal error feedback.to perform some specific task. 

The learning is autonomous and no external correct 

input is specified. 

supervised Learning 

The lear~ing in the neural networks where the correct 

or expected response is provided ,by an external teacher 
' 

at the time·of training. 

Transfer functio~ 

The response of the neuron d~pends on the mathematical 

formula and is a function of the most recent input 

' 
signals and the adapti~e· weights stored in memory. 

Unsupervised learning 

The learning in the neural networks where no external 
. ' 

teacher provides the correct response. 

Weights 

The strength of: the interconnection between neurons are 

determined by a variable, called weights. The weights . ' 

determine the intensity.of connection~· which d~pends on 
' ' . 

network architecture and the information it has 

learned. 
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