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THE POLYNOMIALS GENERATED BY f(t) exp (p(x)u(t})
CHAPTER I

INTRODUCTION

One of the first studies of polynomial sets was magde !

by Appell [1] 1 who characterized a class of sets by demand-
1ng that they satisfy the relgtion D[P (x)] P...(x), where

D =d/dx. These sets may be defined ‘equivalently by the gen=-
érating function g(x,t} =f(t) oexp (xt) where f(.t) is a power
serles of the form Zb t . The expressions (x = é)?nt vhich

appear in the Taylort!s series expansion of a funciioﬁ serve

as. a simple exemple Of an Appell sete
Sheffer in 1935 [6] developed a differential equation
for the Appell. sets end later [7] studled a generallzed form

of these sets which he called sets of tym zero. The latter

" are characterized by a generating function of the form
ig(x,,t) f(t) exp (xu(t)), where u(t) is a power series of
the form Za £ . Melxner [5] and ‘also Sheffer ['7] were
1nterested in finding whether there are any orthogonal gsets |
among the sets of type zero other than the sets of Hermite

|

'and Laguerree

lNumbers in square brackets refer to bibliographye
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More recently Huff [2] treated the seéts generated by
g(x,t)= @(t)f(xt) where both Q(t) and f(xt) are power

series in their respective variables. He found among other

things the differential equation and conditions for ortho-

gonality for these sets.

In the present discussion we develop the differential

equation in explicit form for Sheffer's sets of type zero %
cnd give several speclal cases, In Chapter III we consider ;
;he class of sets generated by g(x,t)=£(t) exp (p(x)ult)),
%here p(x) 1s a polynomiel of degree k. The differential
%quation and a recurrence relation are obtalned.

é Several propertles of these sets are studied in i
bhapter IV. In particular they are classified by studyling
%he form of the recurrence relations they satisfy. Also
conditions an arbltrary k-set must satisfy in order to be
characterized by the function g(x, t)" £{t)exp (p(x)u(t) are

1nvestigated.

In Chapter V some further properties of k-sets and !

i : !
;everel speclal cases are presented, 1n particular the k-set%
corresponding to the finlte operator L(x,D) = D~ and the %
%-set obtaiced'by demanding p(x) be of degree 2 and u(t) be E
% itself. It 1s found this latter 2-set is necessar11y~of |
&nfinite A-type. The basic 2-set, that 1s when g(x,t)=exp
kp(x)t), 1s found to satlisfy a differential equatilon of ;
&nfinite order. The chapter is concluded with the develop=- '

!

hent,of,a_k-set_which_satisfies.aaRodnigueslwformnla._.
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It should be pointed out thet a great deal of the l
material of Chapters III and IV generalizes Sheffer's article
on polynomial sets of type zero [7]l.

Before proceeding 1t may be well to state the con-
ditlon that a set be of A-type k, a designation to which we
shall refer in the sequel. We follow Sheffer [7]. -

Definition: A polynomial set is a sequence of poly- |

‘nomials iP“(x)} such that P,(x) has exactly degree n, n = 0,

l’ L X X I

Theorem: Let {P,;(x)l be a polynomial set. Thers is
a unique operator L(x,‘b) for which
(1) L[P.(x)] = éL“(x)Dh [e.(x)] =P, _, (x), D=d/ax,
where L,(x) 1s a polynomlal of degree 2t most n-1l.
Definlition: If the maximum of the degrees of the

polynomials L.(x) in (1) 1s exactly k then the set {P,‘(x)}
is said to be of A-type ke If the degrees of the L,(x) are
unboundéd then the set 1is said to be of iInfinite A-typé.
The simplest and probably most Iinteresting case 1s
the A-type zero, that 1is, the L.(x) are constants for all

Noe




CHAPTER II
A DIFFERENTTIAL EQUATION

The class of polynomials sets {Yh(x)} generated by
fhe function
? x ul) "
| glx,t) = £(t)e = EYZ“(x)t ,

; 00 .

where £(t) = .ébi t and u(t) = ; a; t, a # 0, has been

rl 4 = : [ 3

shown to be of A-type zero by Sheffer ['7]. We shall find

éa recurrence relation and the differential eqﬁation for this

clags of sets.,

The above notation willl be used throughout as con-

sistently as possible.
j ProEosition 1: The set {Y (x)& satisfles the re-

i
!

currence relation

, nY (x)—Z(d + 1a; x)Y (x),n 12 coo, :
1n which we define constants d, so that ’Z d, t f'(t)/f(t).%

Proof: Consider ,

¥

; ax 8(x,t) = xu'(t)g(x,t) + -ﬁ)g(x,t),

’then |

} o0 net o0 o & .
_Zl nY (x)t Z (d; +ia,x)t Af.: Y, (x)t°,
| 3 }f (4, + 1a,3)Y,_(x)t"" .
‘h 1 4=

Fquating the coefficients of t"

" we have the result.

4

& ey —n e W a ke ke N . BN S e e s —-d
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In order to get the differential equation in explicit
form we need the following. |

Lemma l: The set {Y“(x)s satisfles the relation

| -k 0 (k) (R) ® |
Y p(x)= a, |Y(x)-a, Y 4 (x)-28, Y  (x) = ceoca,

Y, (x) , for k =1, 2, ¢**, n.

!
I
}
i
l

Proof: From the generating function g(x,t) = £(t )ex““s)
yve find a?;;( g{x,t) = u(t)g(x,t), from which can be written,

by equating coefficlents of t,

| "
{(2) Y'“ (x) = ‘é a‘:Yn-;.(X)’ n = 1’ 2; oo,
Solving this for Y _ ) we have

:(3) Y o= al Y- Z 8, Y ]

which 1s the required result for k=1, This result, of ,
| |
course, holds for n - 2 so that

i - ] Nt

| Y ()= dhﬂ - Zaxa.l,
o =

(4) - [Y (f) - ‘2’: a a Y (Xg - Z a. aq—&'y_”“(x) -® 00
"t

-Zaa Y&)]

In the last step we used 2) for various indices and the
derivative of 3). The coefficient of Y,“-m(x) in (4) is of

the form
>~ m o (2]
(Zat)-g...Za, = 5 at,
M2 3 m-§ meg ™
and we follow Knopp [9] by defining a “ 80 that (Ze t ) =
o €3
P wt‘ « Thus equation (4) is the required result for

nam

& ',
k=2, The general result is shown to hold for k=1, 2, *°°n

by & somewhat involved finite induction.
! The step k=2 has been 1ncluded to indilcate the

i
f‘o rmation of the coefficlents.
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By means of Proposition 1 and repeated application of"

Lemma 1 we find the followlng theorem, in which use is made ;
S’.l ) i‘. '...,ji

of the well known symbol iyl iy et defined as 1(=1)

for an even (0odd) permutation of the j's,

. Theorem 1: The set }Y. (x)} satisfles the differ-

éntial equation @

. |
'hY.,,(“) = Z (h.‘. + S; x)-Y_h()c) 5 |
<=1 :

iwhere - (fm;z) el & (m;i

: ‘Cq“ - a' [-,-Zo (‘l) au Q'n”: d',m‘:., . |
' ,(m;a.) it S ( . (on;...)

’ S, =L, s _=a ‘Zo 1) (m-1-4) q Q_m.-,; Q i

| _ N ) == Je¢ (5.) (5.1) . (J*)

?.n Which Q' mi Sﬁu-é )Mt -n ) ...: ‘mfl mii-C @ ppya-s a"‘m. )

ﬁvith the conventions a(;’--o for r>s and Q = 1.

Some Special Cases

(a) The Appell se’t.s. In this case u{t) = t so that

a =1and a,=0 for 1=2, 3, **», From the definition of

: Gy ™)
the a  we find a_ =0 for m % n.

i

The recurrence relation (Proposition 1) becomes

¥, (x) = (4, +x)Y,_, (x)+ & ¥ __ (x)+eeed Y (x).

|
:Since r =4, m21; and 8 =0, m=2 the differential
Pquation can be written as

% nY (x) = (4, + x)Y_(x)+ sz: (x)+ oco + d_,\Y(:) (x).
This 1s the usual differential equation for the Appsll sets
as obtained by Sheffer [6].

a (b) The Hermite set. This 1s a particular set

rather than a class of sets so that both functions £(t) and

i
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u(t) are specialized. Namely, we have, f£(t) = exp (é-tz/Z)“-i
u(t) =t. |
Thus, i
,' c0 N / . ?
Lot = £(e)/e(s) = - &,
|
which implies d, = <1, d4-=0, for 1 # 2, |
The recurrence relation is nH (x) = xH _ (x) - H“_L(x),
and the Hermlte dlfferential equation 1s | |
: Y} 1}
nE (x) = xB (x) - H (x), (efe [10] ).

(c) The Laguerre set. In this case we have f(t) =

- —~ -] o <
(1 =t)' and u(t)= -t(l -t) = = = t°+ This implies
i ’ <~/
a;=-land d,=1for 1 =1, 2, *°,
5 ) ‘ ‘
From the definltion of a(% we find | |

I S *
a = 2 a ;a;=(-1) (p=1),

"%

o -l ) - 3 n-1 3
a¥: 2 s al=(-1) & (1-1)=(-1) ("),

“ ‘0.:" MeeaA

and in general,

' R) ! -1 A VL. Ny
() &7= Fla &Th(-1).E (410)= (1) G,

In order to evaluate r and s we need to éxamine the

expression ., )
g -("a (2 g 3, s o, ¥ (5 1)
0(;\“2 a, a‘ ' AL, RRITE 0y e e t-a oo a.m d”‘_;.) r

2 P .
s """zm"l“_%.‘.z‘_(m.-")

- : Jo v, 54 m=-a . e ‘
...(_ ') - §=1 S‘“n’.,,, (3'."’)-'”(4"-—1). |

* =l

T.Ehe exponent of (~1l) is -m or equivalently m so that for
1 = 1 the expresailon can be written as

f ™ e Y- _ ™ 'w-l) '

e = 7S (G em (L .

; . | ,

If we assume «, = (-1) (M_‘q') for / = 1, 2, ***, k in which
1M }

m then . . Z
l >*e F ”J- Jr - ,kaﬂ (%-*-/) (‘»“’,) .
! - .o . .. , :
. d**,).m é/) ?. 'k",""')“”’"'— _.Io._(_ e s e JRH‘T? / ) e i
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can be written, by means of the induction hypoﬁhesis, as

O(R#l, = (_’)'m {(‘:‘f; ’:. t.zf:)[( m-R-:. ) é

- )[(*::*;)('*-:. :::-:.)[(:::z:)( By
|
- (::.:)[ o)) )] TE
_ =&—1)“{§(-')i mERL) =)™ “,.)Z() (%)
The sum in the preceding expressibn can be evaluated

easily by renaming the dummy index and we find
. vt ! £+
R"")M:Q_l Q.,_,)Z ) ( )

Thus we have .o(k" -:Q-l)"M .k:,,) » Which completes the ine
: / ‘,h

éiuction.

This resulﬁ enables us to write

| r = (-1)“ 2 (=1) (™" = -1, form = 1,

m . L’:O .
: = 0, for m £ 2,
é.nd s, =1,
- Yok - | | l
s = (1" (1) (m -1 - 1)(-1)("2) = -1, form= 2,
| =0 : i
= 0, for m >:5.

; In view of these results, the recurrence relation

‘simplifies to

; | nL (x) = ;l (1-1x) L . (x),

%nd the differential equation reduces to

| nL,(x) = (x-1) L. (x) - xL. (x),

{:be Iaguerre differential equation of second order (cf. [10]).
ib __As_the _concluding item in thils ..sec‘t,i,on,mwev_shall_find_; |




9

a condition that the class of sets {Y;ji)} of A-type zero |
coincide with the class of sets generated by %
| glx,t) = @ ()e(xt) = 5 b (x) 7,
with Q(t) = ‘gob‘.t‘.' and, f(xt) = ‘..é:'o c“(xt)q:/n'. 3 c.# O |
Many interesting propertles of the class of sets '
{h,&x)} have been discovered and investigated by Huff [2].
In addition, Huff and Rainville [3] found the condition that
{h,(x)} be of A-type k can be expressed by stating that f(xt)
éust be a hypergeometric functlion of k denominator parameteré

and no numerator parameters.

Pr;position 2: A necessary and sufflclient condition ;

that the sets {¥,(x)} "and fh (x)} coincide is that u(t)::at,
a ¢ O. .

i
i

Proof: We ask that the equatlion

| p(t) exp ( xu(t) )= @(t) £(xt)
be an identity. Letting x = O we see that ¥(t) and (t)

are the same except for a constant factor. Abéorbing this :

i

factor in f(xt) we bave that

!
!

f exp ( xu(t) ) = £(xt)
z:nust be an identity. Thus, | |

; g " 2 3 ) g
| S G (xk) = (x ua) =0 =) alt
| weo T w fso0 ! m=j
(-] N .
- - ' + Z i *?-f. o'(:\.) i%'
Az L=t A

e f e e e e e

v equating coefficlents, we have
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A W 2
5 % x o Cn ™
il !

from which a_

"
o
|
Q
3
]
5
Qu
o

u(t) = a, t.

Corollary: Polynomlal sets that are both Y_h(x)%

and {hh(x)} are Appell sets.

e s % i = e o B A Ao o o P S o i . S . 1t i, et — o e timeme




CHAPTER III
K-SETS OF POLYNOMIALS

In this chapter we first define a k-set of polynomialé
énd then develop a linear operator which is applicable to a |
?-set of polynomlals. Moreover, this opsrator corresponds
%o the k-set, fhat'is, 1t takes each member of the k-set
#nto the preceding member. Usling the operator we find a 5
%ecunrence relation, the differential equatlion, and several |
%roperties of the k-set {qu(xi}

i Consider a generating function of the form
(6) g(x,t) = £(t)exp (p(x)ult)),
where
| £(t) = th ,b, # 0,
u(t) = ZE a; t* 2, + 0,

a=!

and p(x) is a polynomial of degree k such that p(O)"O.

} Definition: A ke-set of polynomials is a sequence of ‘
bolynomials of degrees exactly mk, m =0, 1, 2,¢°9, designatéd
! :
}n general as 5gkn(;2} .

To show that (6) generates a k-set, we expand as a
series in t, that is, '

@ [¥] . ) . R
; T Z%ZﬁFM

: y o
-
PO PO

il
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® W < @ ..
= | -+ Z 2__ P“‘). O‘wﬁ,

I
§Ms

b ;o
u’&qf) x s Where

| L (4)
(7) ST lx) = 2 px) e/, ?
, Using thls result we see the form of the general cs.sca:i
1s o
P&)a 0 m
glx,t) = £(t)e = 2.2 0® Ua (x) & Z Y (x) tm,
| MO M0 W-Ww m ~z 0 fn’
where
| ™
‘(8) Y& (X) yg - (X), O l soe,

Remark 1l: {U‘k (x)} and Sth (x)} conslstently r

éenote the ke-sets (7) and (8) in the sequsl, moreover

{U& (x)} 1s sald to be the basic set relative to {Y (x)}
Sheffer [7] has the followlng, which we state as

Lemma 2: Let L(x,D) be a linear operator applicable

to the function x“, n = 0,11, 2, **+ (hence to all poly-
oo g 4
nomials) and such that L [x"’] 1s a polynomial of degree at

ﬁost ne Then L(x,D) has the form
(9) L(x,D) = éf_ L (x)D"‘, D= d/dx,
valid for all polynomials, where L  (x) 1s a polynomlal of

'degree at most m.

i Of special interest to us 1s the case for which
L [x"] 1s of degree n-k;

i Iemma 3t In order that the operator (9) carry every

polynomial of degree n (n Z k) into ome of degree n-k, 1t 1is’
| i
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necessary and sufficient that L(x,D) be of the form ;
(100 T L (=)D = Z: (8, + A, xteeetf B o |
f w=k ™

mym- R ?

with the restriction

(11) A, 2], n(n-1)ess(n-k+1)+ !?,H,, n(n-1)sse(n=k)+esesf 'hL 0,
for n Z k. . ;

Proof: From Lemma 2 we have the operat:or L(x,D), and

l

demand that .

Z (f +ﬁ£‘k + -+ ,Q;i 'x;) D&[‘xMJ = PM.R{*)

i -=°

;where the polynomial P __,(x) is zero for n=0, 1, s+-, k-1,
fand is of degree n~k for nZ k. Rearranging the terms, we
£ind | |
e . ?
| . : Y-y |
1(12)2 [ﬂjo’h(h-n)-.. (“.J.,.,)-I-Ii,.“),'n(h-l)--. (“‘J)+ cee ot fum.j—n(]'y = ? 2:)’ |

N~

!
|
i

t'.['hese relations are to be satisfied for n =0, 1, 2,¢¢+ 80
! .
that we find 1t 1s necessary that

1,

In order to assure the degree of P (x) is precisely n-k,

)m: ﬂkoy‘(w')m (M-&ﬂ)""ek-n,l“(“")'" (n-K)+ - """oh,‘h-k'h.'

=0 for J=0, 1,¢¢+, kel and 1=0, 1, 2, e--,

44-3 4

I

|

§ .

must not vanish.

I
g The condltlons are also sufficient since |
t !
|

LLaT = & (0, + dx v+ dy o) D [x"]

nwz=R

{:I.s of degree r-k.

The operator may be further simplified for application
'to a k-gset of polynomials since n takes values n = mk, m = O,
}a 2y **% %
- ;
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Lemma 4: The operator L(x,D) of the form
i (1) ‘km

Z L, oD =2 U+
( 13) e km(x) D = + ﬂ”)"k +.--+ ‘l?‘m,h(-mq)-x )D

M\:I

;iefined' on any k-set ‘{Pk“(x)} carries E, (x) into thf’f)) for

each n provided

| )] ﬂ &‘M(k‘m-l) (km-k-ﬂ)ﬁ-ﬂk kkm(kw.) (k-,,-).k# + - +ﬂ k(”(k‘m) 5740

|
a \ < Rwn !
Proof: ILet Pg, (x) = 2 e x with e, = #0.

<zo -

Using Lemma 3 we have

i(lé) »..Zg L (x)D [P (=] =z

or more expliclitly

| m-K) R o1 L otem ?.n 5 3
i "t’ C. x = ¢ !
% W-Zk (40 + Qo‘". 'x + . ’0‘?“'“—-: -Z‘“ (; -\ﬂ)'. k-“ 3__=° *("-')y .

I
!

If we let L (x) be ldentlcally zero for m#nk, n=1, 2,¢°°,
i:he remaining L, (x) are sufficient, moreover they are |

uniquely determined. To insure P, ® (on the right of (14))

‘N'l

is of degree exactly (n-l)k, we must require that
; )& = ‘0 km(k\u-l) (*m k+:)+ kzl!k’"(k”"} (ky,.-2k+l)+ -I-&m,” (’%c)l

m~l l
!

%nust not vanishe. '

| Theorem 2: The baslic k-set {Uk‘n(x)} satisfies the

2:'elzelt.ion
i
(15) L[y, B = Upeptmd
| : , (M=) "
'iWitb. L (1 D) Z (ﬂi'n °+ jkﬁ,sl" + ot Ikn,k(u-l) * )D 2
where the ,0 _ are uniquely determined by
(16) 0 R = and

“Ro ‘4«‘ k1 1 ’

|

& et 4 et —— T —
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N | .
(kl\-h.)_ khas _ ™ )
&; ‘“.‘J.:N Q‘kl\’:’ i l. M«h “R(’l_') ) M o) 'J 2 2 R (h l))i
4,=O’l ..,ﬁ(n-k) - A2 2 |

3 =9 1 ’ R&-1)

Proof: The first part of the theorem follows from
Lemma 4, and the‘rest can be seen as follows. From equation
2(7) we have " .
‘ W, (x) = =, «u.,;,,_ o ‘

= ) .

-3 . . .

(a S < .

'U. (x) Z-O’(") Q)/.\_ g. k X, Rh=h2,0
L1,

:

i

which serve to defline the constants at o, Writing equa'tion |
‘(15) for r = 1, we have

/ X £ < R R
(17) ’ekoDREg‘. wy x°] = Ly W kKl=uw] = L.

For the rth (p2 2) case, we have

. kfu-:) .
RA-1) | s 1 2kl
(%si)! R+ (2k+4). i
,Zko z_; — ,uh “t Z.f éo Tl Ay, ¥4
 JLT R("") A, m
+¢’§ ’a‘k")j X (&“) . MZA:I u&% ') x )

in which the powers of x may be combined to glve
RZW') I .zk+ )! ak+i ‘m
‘ﬁk (k-wu) +Mm ‘m.+ Z [ ( £ y. 4 .-

o 'ml sn ¥ o 2, : ;
30, I, ... k (n - 2,)
3' - 0 ' ’ )

fe(a-) k""‘)

! ( _ "m m
| + L, = (klt) At = 2 A, %

| \.Zn R, m R& m=o fa-y
|

-Equating the coefficients of x~, (m = O, ky,ere, (r-1)k) we
find the result, along with equation (17), 1s the required
condition (16).

Corollary: If L(x,D) is the operator corresponding !




1le

to the baslc set {U ks (x)} then L(x,D) also correspondsy
to iYh‘(x)E ‘ |

21‘_9_9_13 From equation (8), and the fact that I(x,D)
1s a linear operator, we have “ |
(18) L[Y&,‘(x)] = Z LS COR AR C 3P
in which it is necessary to rename the index (m= 1 + l) to
conform with equation (8).

Although the preceding theorem 1s stated 1ln terms of
the basic set gU *“(x)} , 1t asctually applies to any k-set
which has ti'le property P, (x) =

Noting the result of" the corollary, equation (18),
we procesed to define |
(19) Lz 2[r 0],
which has the property, -

L [¥y, (x)] = H.fx)e

It is convenient to éxbress the | polynomligl involved
in the generating function for {Y kﬂ(x)k as p(x) = p, x
+pz+-..+pkx"'. o |
Theorem 3% The k-set {Yk (x)} satisfies the

func tional eq_uat fon

(20? L { y(x)]

where A :=n for y(x) = Ynﬂ(x). The constants are defined

P ‘,Z d..x x[y(x)] Yy(x),

by
(21) £'(t)/elt) = Zd t ,

nz=o0 e




and | e

(22) p; u(t) = Za , 3=1, 2,°%°, k.

V\-l'l

Proof: Consider the right side of (20) for A =n

énd y{x) = ¥, (x) multiplied by t ™~ and summed on n. The

result 13

o0 ~ POc) u.(é)
i(ggz,) Z “Yk o) k- 'aa Z Y Nl S ﬁ%[@ﬁ)e .],
(24) - tf} [_p&)/fg) +(Fx + P, X 4. +09Rx .u..&)]
1n which we used the defining equation (6) for the k-set
i gy'km.(x)}

We now turn to the left side of (20), multiply by £

and sum on n. Thls gives us

‘noting that Y_ki(x) = 0., By changing appropriate indices

this may be written as

E [Z ('°"°vm x +--+d

w0 ,'ﬂf-l

pe) w®

xk) i“] tfwe _

!

P& u(t)

R, m+1

‘;Using relations (21) and (22), we have

| [-9’9)/45(*) ¥ lpox + px +-o o+ Pﬂ*«) wd) ]t fee
%vhich 1s precisely the right side of (24). Hence the ex=-
| . . P4

ip:t'essi.ons (23) and (25) are formally equil and 80 in turn
l . L |
iare the coefficlents of tn, n=1 2,**+, which gives us
the_result (20). |
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~ Corollary: {Y m(:t)} ~satisfies the recurrence re-

lation ‘

tog = (x)
2(25) jz (, d + a|ax + .. d%'x )Yk(‘”Ck) h 1, >
- = |

4
It may be of some interest to note that the preceding?
. o
results simplify to the usual relatlions for the classical |
bolynomlal sets.,

(a) Appell set. This set is generated by

!
x
i
{

| 3(1: %) = £@) exp (x2) = P (x) &7
The basic set 1s U‘m(x) ,7/| S0 that the operator L(x,D)=D
and p,ut{t) =1=4,, d“5 = O for j # 1. Hence, the differ-
ential equation 1s | o

(a,+ x)pLy]+ &, D [.ﬂ-l-d,._,D3 [y]+eee = )‘Ya

where A=n for y= P (x).

i
?
l
t

The recursion relation (26) becomss

nP,(x) = (4, +x)B, *) +d,, PX+d, P R +ecetd P,
‘ (b) Hermite set. This set is. generated by

é(X,t) =9Xp(-tz/'2}exp (xt) = Z H ()t .

Whzo ™

Using the results 1n (a), we see in ad_dition that

f'('t)/f(t) = =f = Z d t‘h, 80 that the differential equatien
| - !

~wmed ,"\*"
is

d xH' (x)+ 4, H!''(x) = xH'(x) - H"(x)—nH (x),

and the recuraion formula 18 '
DH“(X) = j_'“_'(x) - H*-l(x) .

l (c) Inguerro'set. The eehsmera_tien of this set 1s

somewhat more complicated than ths similar discussion for ’
; z

. e e s e e e s e oa e aa [PRUER——
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the"“Ap'pell sets since the constants f& in the 1linear
Operator must be determined by means of the relations (16)
as stated in Theorem 2, .
| The generating funetion is

g(x,t) = (1-t) exp ( -xt(1-t) )= ZL LX),

and the basic IAguerre polynomials ('7) are
* (x)a../ “) = ‘ex) _
Cwm =g B T ) -

L |

N
P %

™3

4 .

o - L -1

"

'. « N
where the evaluation of a_wi is from (5) and the u__ are

;found to be

;(27) | | u’: :-.(l'l "'.'") with U, (x) = u? =1.

o

| In order to evaluate the l ai » We have from (16) fori

n,

=1, m =0 that 0 = =1, Assume B = el for j= 1, 2,%°°,

!

r-l then using (27), we find

l
i

X,
! 1) | E0 7 (aer ) _
, : Z(.l)&‘ ( )*zho '}:T ().,-.) - O,
from which it can be seen that
(28) /

20

-1 for r =1, 2, AN

When m= 1 and r = 2 equation (16) gives ﬂ,. O. By an

1nduction similar to the above in which use is made of (28)

we find that ﬂ O for r = 2y, 5, ***e In fact, we can show‘
by an induction somewhat like the preceding that l §= o, ‘
r>j = )

- The remaining constants involved 1ln the differential

equation can be determined as follows. From (21) we have
. s D

T d, b = £16)/0(8) = (1-6) = 2 &,

s 0, At
L=0
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so that 4 =1, for n=0, 1, 2, ***, In addition, from
O, n+1 . } ] d »

(22) we have

© . co it i,

| putlt) = =(Z t*)' = - 7 (1+1)¢ = Z4a ..t

L= L=0 L=

;from which it i1s seen that d',w= -(n+1), n =0, 1, 2,°°~,
| Using the results thus far obtained we may write the
differential equation (20) as

oo N

2__: (do‘ + da5 x)]:-"s [Y] = )‘y:

or Z.‘l - 1) P [yl= 2y,

. J=

where L = Z( 1)D « This explicit form of the operator
gives the 1ncidenta1 result

(x)+ L"(x)+ "‘+L (x) -L (x).

Also we have

[Z( 1)n1 Z( 1f (o

|
in which use was made of relation (5)¢ Thus the differential
equation takes the form o

Z(l- 3x>2:(-1) (30" [y]= Ay,

. ME

i

which may be rearranged as

Z Z [1- (14 1)-‘*!] (-1)&'(_"?)5‘&] = M.

m oa.-o

|
:

?pli’cting the sum on 1 into three sums corresponding to the

three terms In the bracket, we see that the first and third i
! ’

sums are zero for mZ1l, while the second sum is zero for
1 : ;
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2; Hencemwemvérrive é-t.”the Laguerre differential equatim
. .

(-1+x)D [y] = xD [y]= Ay,

_which mey be written more familiarly as

(x=1)L!(x) = xL' 1 (X)=nL_(x)e

nw

m




CHAPTER IV

THE TYPES OF k-SETS

| |
i

| In analogy to Sheffer's classificatlion of polynomlal |
%sets as B and C typse ['7], we shall define a classification
for k-sets of polynomials, and various characterizations

;will be found for the k-set {gh(x)} and for sets of By and
Cyg type. We shall define B, and Cp type below. |
| .

Lemma 5: To sach k=set {Pk“(x)} corresponds a unique

sequence of polynomials {O*“(x)} ’ withQ* {x) of degree not

;exceeding nk, such that
(29) nB(x) = Q(X)R, (%)Q (x)F, (x)+ = ++Q (x)F (=),
%n - 1’ 2,000. | |

Proof: Set m =1, 2, ¢+~ successlvely and it 1s seen

that the Q, (x) are uniquely determined. However, the Qe (x)
do not determine the k-set .{P*M(x)} although, as will be |

|
|
|

seen, they characterlze the k-set in several ways.

Definlition: A k-set ":{P,‘h(x)} is of Ck-typel, 1f the
maximum degree of the Q,(x) in (29) is L+, If the degrees

of the polynomials Q, (x) are unbounded, the keset {P, (x)]
1s of infinite Ce-type.

Proposlition 3 {Y,R“(x)} is of C,-type k-l. |

22
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"Proof: The statement can be seen from equation (26)7

Lemma 6: To each k-set { P Py (x)‘s corresponds a tmiquel

;seque'nce ‘{T (x)} with T (x) a polynomlal of degree not
%exceeding nk-1 such that ;
(30) By (x) = G(x)B, (x)+T, (X)B, (x)+ ”‘*Tn (x)B, () ,
n =1, 2, eee,

Proof: If we set n =1, 2,¢++ successively, the

| & (x) are uniquely determined.

 Definition: A k-set {Pkn(x)} is of Bk-typel if the g

maximum degree of the T (x) in (30) is 4.
' Prgppsition 43 {Y& (x)} is of BR-type k-1,

Proof: - From the generating function for the k-set , |
I{YQI (x)} (see (6)), we find that the partlal derivative with

‘respect to x can be written

had /
2. 1 ) £ = 1°f*) u ) 3(7:1‘) |
=1 oo
= (»
: P(*)MZ?J—D Y&J )i‘
|
lEquating the coefficients of t  we have
i(51) Y’_tx) — P'(x) z' o) . Y (X)
g o &x 50 we-y ey

‘ | It should be noticed that when k = 1, the B, -type ']

and c _=type 4 classes colncide with Sheffer's B and C typei
!respectively. |

, We now turn our attention to conditions that a k-set
in‘mslt satlsfy in order to be of class Bgp=type 2, l

l
{ Lemma 7: The relation (30),
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W3 = DR )+ Ty (DR ) F I @R (R

gis equ-:!.valent to

(32) | g(x,t) T(x,t)g(x,t),

where

“nso

glx,t) = = By (1),
T(x,t) = & T, (x)t

Proof: Suppose (30) 1is given, then

2 Tas- (x) la(ng)t“

3
*5 (X)t °

f

a—i—-g(x,t) = Z P (x)t™
T, ()t

Conversely, if (32) is given then (30) follows by equating

'Ma,

i
L+

l’MR [

aumty
—

8

3coef‘f:lc:!.ent:s of t_ .

We have as ths solution of (32) that

X U
(33) glx,t) = g(0,t) exp ng(x,t)dx.
The integrand of thls expression can be written
| Z oo kh-l . -
T(x,t) Z Tt (x)t ngl z t,.x° te
We rearrange thils in powers of x as
, k1 o 2K-1 oo
o TEe) = 22 v E sz ttEt e
4§20 £ J o Y
2 Z bt x4,
; 3= Rlm-y =R

'so that the integral, after changing indlces, 1s

oo - -

J

(] £= 3- 4 =2

where

hey =4 /4.0

x o
(m(x,t) ax Z'_ 2 h, tx°+Z Z b tixieere,
§=1
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In order that {By(x)| be of B,-typel; T(x,) mast be &
'polynomial of degree ? in X, and after Integration it must !
:be of degree {+1, Thus we have the following. ,
| Proposition 5: A necessary and sufficient condition | !

that a k-set fPfh(X)} be of By-type £ 1s that the generating

function for the k-set is of the form

A £m . fat

x,t) = £(t) e H (t)x* H 9,
st =) o (8 B maoxts Zp o),
where r is determined by rk < { £ (r +1)k and

1l

H(t) = ht + h,  t +eee,
mat, 4
Note that for {=k-1 and H(t) = pault), 1 =1, 2,
i;"', k, we have |
i | ‘ ﬂ .
g(x,t) = £(t) exp (2 p, x‘u(t)) = £{t) exp(p(x)ult)),
which 1s the generating function for the ke-set {Yh(x)} .

| Lemma 8: The relations
@:(29) nf (x) = Q(x)R (x)+Q (x)imhz)(x) + o003 @ | (x)Pm(xi)

Efor.n =1, 2, *** are equivalent to

(34) a—"t‘ g(X,t) 3 Q(x,t)g(x’t)’

g(x,t) = (x)t

‘“-

e = g
Proof: Suppose (29) 1s given, then

|
3
!
l
|
|

!

|

| lye should note the restrictions h,,# O to insure
a k-set and H,,, 4, (t) # O to insure exact ¥y B -type L o In
addition, we see from the restriction h,, #c0 that L Z k=1,
Thus the ke-set (%.(x)] (see Proposition 4) is the simplest
k-set in the Bk-type classification.

i
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a%- g(x,t) ='§' nE, | (X))t = :‘;. é: Q,;:(i)P—(x)t mH——
e leg o= !
= 1:21 Qki(x)t -§=Z° P«:‘(X)tao

Conversely, 1f (34) is given then (29) follows by equating

the coefficients of t™.

| By means of Lemman 8, we are able to find a relation
which shows the equivalence of the B,-type ! and G, -type £
fclassifications. Solving equation (34) we have

2(35) glx,t) =c exp {a(x,t)dt, ¢c = g(x,0).

iSince an arbltrary k-set fl;m(x)} satisfies both equations
Q(SS) and (35) we see the two expressions for the generating

ffunction must be equal, that 1is

o x £
}(36) g(t) exp _g'l‘(x,t)dx = ¢ exp fQ(x,t)dt.

If we find the logarithm of both sides of (36) and then take
ithe partial derivative with respect to x, the result is

(37) T(x,t) = fq(x, )a.

i
i
1
{

Theorem 4: A k-set {P (x)} is B&-typeﬂ if and only

1f 1t is Cﬂ-typef .
i Proof: If the keset is C -type.Q then Q(x,t) 1s a
gpoly'nomi.al of degree I+1 in x, and hence by (5‘7) T(x,t) 1s
'of degree ! 8o that the ke-set is By=typel .

ﬁ Although the two classificatlons of k-sets are
|:equivalent it 1s of some lnterest to see the condltlon that

a k-set is of Ca-type £ . For convenience we restate equation
| .

d——— i e .- S PR
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(35)  gl(x,t) = c’éip"“gtc,(f,t)dt, c = g(x,0). .
In order that g(x,t) generate a k-set, it is necessary that
one of the following statements hold.

| (a) TheQQi(x) are of degree ik for 1 =1, 2, -,
This implles Infinite Cp-type.

| (b) The le.’(x) are of degree ik for ik < l+1 and the
Iinaximum of the degrees of Q&L(X) for ik > 0+1 is 4+1. This
implies Ck-typeﬂ , (0+12z k).

We incorporate the second condition in the statement

Q) x)t
Ri 5 -1 i 0 J L"
S 4. %t + L_Z 2_: (Xt
4=0 S =

"

™3
P/s

<

- alxt) =

]
M:}

»,
[1]
-

where r 1s determined so that rk ¢ 0+1<(r+1)k. Interchang-

ing the summatlons the expresslon can be wriltten
| - J‘::o

. s=4,
| Q4+ . e o=t
(28) Q(x,t) -.-.-J_z.;oxs s qJLt , i sak s a)luuJ sk,
: _ ) «=S

g J'mk ;S = R4,

i
|
i

"gvith the same condition on r, i.e. rk £ f+1¢(r+l)k. Upon
ii.nt:egmt;ing the relation (38), we have

: Proposition 6: An arbitrary k-set {Ph(x)} is of

%

finite Ce=type 2 if and only if the generating function is

of the form

f . Jev g N .
; g(x,t) = c exp ( _Zo x? G:.;(t)) 3 ¢ = glx,0),
J=

J‘:o ‘, S:j, '

118 55ak 5 (S-Dktreg s sk,

©0 My
Gj(t) = £§ q".‘,'b/j‘: L j >k ; S = avl,

)
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where r 1s determined by rk s liidr+ 1)k,
Example 1: If [J=kel then s =1, and 1if

G'J'('b) = p3° i;eoait“"- j — l’ 2’ see, k;

then

R
g(x,t) = ¢ exp Z: x'6;(t),

() ) uk)
- ec; pmae) £(t) of "

L

which is the generating function for the k-set {1% 1$x)}.
;We have used the following. |

Remark 2: If G(t) is a power series then exp G(t)

‘can be written as a power serles f(t) where £(0)> O.

Example 2:¢ Suppose k =1, then

{= O . -
J ) SO"

G;(t) = £ . .t‘.’ where for
N {=S qﬂ"/JL {léié&.:lw ; §$= %.

Thus the generating function for a C -type {d set is of the

iform

i o0 - 2P
glx,t) =c exp (X -32.-‘3)&)3317( x® 2 ft ),

‘ s i:d 4
| l+
| =f(t) exp ( 2 x G-(t)),

J=t J

241

31n which we make use of the preceding remark. This result

’coincides with Theorem 5.3 of Sheffer [_‘7]

Example 3: If in addition to k = 1 we suppose
J=0, then |

g(x,t) = £(t) exp (xG(%)), |
fwhich is a characterizing relation for sets of type zero.
According to Lemmas 5 and 6, we found that to each

i
!

k-set there correspond unique sequences of polynomials
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{Qk ,gx)} and {‘Ikh_‘(it)}' such that relations (29) and (30) re-
spectively are satisfied. As we noted there, these sequence;s
do not determine the k-set uniquely. However they do !
%_characterize the k-set iIn the followlng ways. ° *

Propoglition 7¢ An arbitrary keset {Pkn(xﬂ is a |
1% (%)} k-set 1f and only 1f the relation | |
! - - !
PRR(JF) = &{, a, p'(x) IL“-SSJ:,),
1s satisfied, that is

Proof: For the k-set QYR x)} we have by (51),

(x) -J%’ p'(x)a:,YR gx).

i
l
iConversely, if

U

| 'l‘,ﬁ,,(x) a;p'(x),
then
T(x,t) = p'(x) Z“: aa-iss--= p'(x)u(t).

From equation (33) we wr:lte

r glx,t) = g(t) exp_f T(x,t)dx
= glt) exp (p(x)u(t)). ’
%so that the k-set 1s {Yk(x)} | | ‘
| We now find a particularly simple characterization

of a 1% x)] k-set.

1as usual p(x) 1s a polynom:lal of degree k such that
p(0) =-0. g
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Proposition 8: An arbitrary k-set {P (x)} is a

fYk (x)} k-set if and only 1f sach of the polynomials of
the sequence {Qk,;(x)} in relation (29) is of degree k,
Proof: For the k-set {Y,R,\(x)} we have from (26) |
that |
| (x) = ' a a. x + "
x . +d.x+d . x +eect+d x ,
" %

Conversely *f

k ‘
ij(x) = ;Z='° 9 X
fchen
ke
alx,t) = Z qu £,
: 430 e

Ma‘i"M §

5 (q +3a; p(x))t s ;
J
| |
for some values of a,, a "-, From equation (35) we have

z.
i g{x,t) = c exp =Z. (Q. -I-Jadp(x)“)tw at ,

i
i

"

f
c exp Z -&-" exp (p(x)u(t)),

J"'

= £(t) exp (p(X)u(t)),

gin which we use Remark 2e

| The relation, - |
(30) nP*k(X) = Qk‘(x)gh‘ $X) + ka.(X) %h\ gx) 4 006 +Qk(x) P ix)’ i
may be used to obtain the following result.
‘ Proposition 9: Bvery k-set (B (x)} satlsfies the

functlional equation

Zq (x)n’“[y(x)l =Ay(x),

Yith A=n for y(x) = 'P*h(x) , and {Q‘kp(f?}_ the unique Seqﬁén??
of polynomials determined by (30). - _ . ?

i
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Proof: From Lemma 4 we have the opsrator L(x,D), ~~ ~
which by the convention expressed by equation (19) has the
property |
: ™

e x]= B _(x), m = 1, 2,000, n,
This property in conjunction with equation (30) gives the

result.
| As the concluding item (Proposition 2) of section 2
jre found the condition that the class of polynomial sets
generated by _ _
i ' ©0 "
glx,t) = @(t)f(xt) = 2 h_n(x)’c
; n=o
with
| <2 i

(t) = 2 bt , b, ¥ o,
‘o0 n
| £(xt) = 5 c (xt)/nl, e # o,
: w=0 '
fwere of A-type zero, that is, g(x,t) = @(t) exp (x u(t)).
We shall carry this discussion e 1ittle further, If we
inglist thet ¢ _# O for alln =0, 1, 2,°* then the only

sets in the class of sets {h“(x)i that are 'also among the |

}c-sets iYkéx)g are the Appell sets. However if this conditilon

1s removed, we may state

Proposition 10: The ke-sets {Ymgx)} coincide with

ithe sets ih“(x)} if and only if | ‘
; g(x,t) = @(%) exp (ax*tk).

i Proof: The keset fYén(x)} 1s generated by glx,t) =
1/)(1;) exp (p(x)u(t)) with p(x) of degree k (exactly) and

p(0) = 0. The sets coincide whenever -

Ut)exp (p(x)ul(t)) = P(t)f(xt)
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1s an identity. Setting x = O we see (%) and ?‘(t)"'"d':tffé-f

only by a constant factor. Absorbing this constant in f(xt),

we state that f(xt)
that 1is | |

\ . | |
gu(t) a te | | %

!

,where H(xt) is a polynomial in xt of degree é+1. Thus
g{Y%(x)} which has generating function g(x,t) = £(t) exp

il

exp (p(x)u(t)) must be an 1dentity,

.
(

2o xt)/at =) B L) = 2 B :{ ' |

=1+p(x)at+---+ [}:P-’“"’*’l“, .

bt
3--!
Since the power of x 1nvolved in the bracket is n alone and

p(x) 1s degree k, we have am #0 for 1 =1, 2, *** and

‘\

0
=0 for n # ik. This also implies a Doz

R (ak) s S0 that

R
According to a theorem of Huff [2 3.4] his set

{h (x)} is of B-type £ if and only if f(xt) = exp H(xt)

I(;_)(J':)u.('c)), p(x) of degree k could satisfy this condition |

gresult (Proposition 10) is consistent with Huff's theorem.

R R
only if p(x) = x s u(t) = at or {3% (x)} is of B-type k=-1l.
From PrOposition 4 {Yk (x)} is of B, -type k-1 so that our




CHAPTER V e

FURTHER PROPERTIES OF k-SETS

The simplest form of the generating function for the
k-set { ¥ (x)] 1

(39) g.(x,t) = exp (t) = F 74 ¢,

From Theorem 2 we have the existence of an operator L(x,D)
;corresponding to this set with the constants defined by
-‘equations (16), that is

R
|
§(16)' ‘pkl,l R kl

& . - |
Z. Z: .0 (&E—‘l)l Rbve - u’qg ,'ln-:o -..)P'?(-’L-l).

J')

il
=
-

w -
'e;‘:-l a:ﬂ»jzm *":J‘ &{ A th (n )
© oz 1 | fo = &
: = O for L = 0)[)... km""l
so that in (16)' we have rk-k = m = 1+j = (hk +1)-k which

.1mp11es.j=='hk-k and 1 = rk-hk. Thus the relation (16)!
‘simplifies to

(40) Z j (&& Q&)' ’ r = 1’ 2’000’

and the operator reduces to

i (Ba~s '9("\
(41) L(xD)"Z.o g

35
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in which okz‘ kth-y = Lan . ;
We shall now investigate condltions under which an
arbltrary k-set {Ph‘sx)} corresponds to the operator L.(x,D).

4Clear1y a sufflclient condltion is that there exlst a

isequence of constants {r;g such that

" R(‘h"‘:)
— X f.
R(x) = 2 r, ot - ;

<=0

This condition is equivalent to considering the gensrating

function

g(x,t) = £(t) exp(x*t)
00 m R(n-g) 5
(42) = Z Z-—- /a.' (w-2)! ", |
: wzo <=0 |

instead of (39). The following statement will show that

zthere are k-sets which correspond to the operator L¢(x,D)
!

bther than those noted in (42).

Proposition 1l: An arbitrary k-set {Pﬁh(x)} corres-
bonds to the operator Lg(x,D) defined by (41) if and only
; )

iif there exlists a sequence of polynomials {1;0, .+ o X

d oot p ‘x such that

!

E R-1,Ni ‘
| fn w Q-n ket ;
| Byl X) = "f:' Z(ro£.+ P ® F 0L ) o5 o ':
|

iwhere .

! n=-4

a P = ;]:l: ‘YSm = (m i) }"‘Si )

|

|

t -— S~ ‘&m*s ‘I ] L N -
with Y. =2 ﬁfﬁ.[&j )(lk,). , 8 = 1, 2,000 k-1,
I
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Proof: For "éﬁi"k:set"{P“(f)‘}» there exists 8 sequence
I |

of polynomials {rm, r +r .X +°°*+p x 3 such that

ond Ind - k-l na -
| B o R-1 «R(‘h-s)
- % ' XX

‘ol

We demand that L [Pk (x)] Bw$%), that is |

R(%’b) R(ﬁ *)""

g:_)'- -L[(m.u']"‘Z".mL[Q“ &)l]

. Ona
e D {

" Rm.0)+ - l |

+"-- -+ Z ﬁl,u‘. L. [ (‘h AN f

K-t R(h-"“-) Nt L Mey k(l ,) k‘“"—)i'l

= Z R (‘h_ oy t Z)'-.uz“ [k D[?(‘“ *)|]

¢=0

: Nt n-o k(ho)-u) 1

| : #6.-) X

+ -+ Z )L Z ‘ék D [ (m-x£)! ] .

£z Ina L:d ‘\'

This expression must be expanded and set equal to P (x)

: .')
hsing (43). The resulting expressions are identically equal

whenever the coefflcients of corresponding powers of x are

R(na-i
equal. Equating coefficlients of x " ,)we have r .= T

N °,h"', 6:

i‘:‘or n=1,2, ***, so that the second index is superfluous.

|
In effect, we find r_.=r ., 1 =0, 1,°°°; nzil, Equating

the coefficlients of xmwm? l£s8£k=-1, we have

n-a

;(44) rs..;.Z am(ﬁn-hﬂ)... (Rn-Fi-Blessr) = (n-0) x

s,”",i

For notational convenience, we introduce constants
!

i
i
|
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(45) 7, -_-E'; (n’”‘*s)(u)l o

HA
g
A
~
4

s0 that (44) 1s written as x; %, = (n-i)x for mzi,

S,n~-1, <

By an lterative process the coefficients can be written as

tH

- | "‘S‘h* .
;)" qSl = ‘al,'u )"s,i-:-z,,.i ‘73;‘);: RS (h_&”Tr Sm. )

si .. = Ny

Sia 34“"'11.

|
|
|

which completes the proof.
"It is interesting to note from (45) that 7,,.=m are
i:he definlng equations for the sequence {jkh} (cf. (40)).

Another result analogous to the preceding pr0position
) .
has to do with finite operator L(x,D) =D . i

: k .
Proposition 12: The operator L(x D) =D correspond=:

, *n

ing to the k-set S(%;),} corresponds to an arbltrary k-set
{.Ph(x)} if and orily if there is a sequence of polynomials
| k-1

Wor + Pips X + U WL 3 such that Ru-Ri

i ‘xku Y R-1 ‘k

?ﬂn(x) = r°°(k':')| + Z r,.+ TuX+ece+rn, o ox Tro)!
where

k- ka+d o
rj"‘li: ( 3 3 I'a" ) j = 1’ 2 .‘., k“'l; n;i:l’z’OOO.
Proof- For any k-set {P (x)} there 1s a sequence

'.
|
|
1
i
{
l

of polynomials such that
e kn ~ feo

P‘k'n (x) = onoz;h)l.'-z( X+oeocy r*":“* x ) ("M"*")' .

L B
l

k -
V'Ve demand that D [Ph(x)],- I;um)(x) and find after expanding

tiand equating coeffliclents of 1ike powers of x that

-— o ? — oo ;
' oni = To,net,i =Toi for n-1 =1 1, 2,°°°, ;
| . :
and |
| i
! . {
| r (8n-ki+i) = r nzi, ‘!

ng k(""):k‘."" - Ln-3,4
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By an iterative process we find this may be written

rmi(nk-ik-i-l) =r . =1,

4 & A

L | ot etenra ap o RN
In a similar manner, the coefficlents of x ’

J =1, 2, eee, k=1, are

. .(&‘”° k‘."'j)(k""k‘.*’:j‘") T {km*ki +1L—k+l) — ‘)"-i,'),-,, A !

e

Jna (Ry - fo2)! T (Rm k- &)!

for n-1 z1, so that by iteration we are able to state the |

conditions as |

kn-hi-{-. . ‘
rJ.M( 3 ﬂ = ra.uz ro.; s J =1, 2,°°¢, k=1; n_?_i =1’2’.§”°

fw .
The k=-set g(i‘:)‘jmentioned in Proposition 12 1s not

a sYh’sx)} k-set since the generating function (6) for the

i

SYk 15:‘«:)} k-set cannot be modified to obtaln thls particular

k-set. In order to verlfy thls statement we shall derive
kn

the generating function for (%)'}. The linear operator
; " . ’

: k
corresponding to this k-set is L(x,D) = D, so that we need

? function u(x) such that

| R

(46) D [u(x)] = u(x).
| . ,
'!I‘he auxilliary equation isk

v;vhich 1s satisfied by the ktB roots of unity., Let < be & |
primitive kth root of unity. Then the geraral solution of |

(46) 1is | | |
| % o k-t |
(47) u(x) = ¢

b2 o K |
o & T C © + *°*4 -le ° ;

We alter (47) to obtain the generating function

|

t
|

— e s B T T -
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Iy R -1 17
b 4 .
g(x,t) = 1/k [ e  t & +eee + o _].

ProRosition 13: The function

: R-1
glx,t) = 1/k 2 exp (ocmxtv"),

Mm=0

where « 1s a primitive kbR root orf unity, is the generating

Un
funetlon for the k=set s’ }
z A (!")!

Proof: The expansion of g(x,t) can be written

}

. (R-)iq L 4 7%
g(x’t) l/k(z [1 + O( +dz+ooo+°( J t! ),

|
lwhere i=nk, n =0, 1,*** implies

| | ‘= («R)""= 1; O0$r € k-1,

and 1#nk Implies di#l since 1Er (mod k), 15 r k-1,

The sum of the geometric serles

(RI)L (dk)
1 +d+eeetad = '__ =0, for 1# nk,
Hence we have the result,
a0 «k“\ h.
glx,t) = 2 o b e

Wé note that in case k=2, then g(x,t) is the familiar
cosh (x V&),

Remark: The generating functlon for the k-set
can also be expressed in terms of the generallzed hypergeo-
metric functlion of .one numerator parameter and k denqminator
parameters. Using the usual definition (cf. [8] ) we have

after simplifying

, “k g «R«n "
Fa (13 1/k, 2/k, 000, ki3 (g) t) =L annit s

R
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which identifies the hypergeometric function With g(X,t) of |
Proposition 13, 1In fact when k = 2, we notice that
IF.L (1; %’ 1; Xz/4)o

In order to make some remarks conce‘rning the operator.

it

cosh x

and the differential equation corresponding to the k-set
?'{Yh‘(x)} which are not readily apparent for the general

case, we present the case k =2 in some detall.
We conslder the basic 2-set generated by ,
;(48) g(x,t) = exp[ (am—bx"/E)t] |
: ) o®

=ZTy(x)t, bro,

=0.

Two lemmas are needed.

-t . '
Lemmsa Qs ,Z(-i) = (a,:.,) for nzm + 1.
| sz . .
| Proof: By induction.

Lemma 10: If g(x,t) is given by (48), then
[\tl:.]

T O

;(49) o, [ g(x,t)] = Z c, b (a+bx) £ glx,t),
inher"e | ' |

i Con = 1s o

| e (™),

‘(50) C,.. =%.£T%;-u)!(a.‘”‘)’ nz2m > 0.

% | Proof: Equation (49) can be determined by an iterative

brocedure with the constants rqlat.ed a8 follows:

Mal

!

i c"‘ =j§j=(1) ;n=‘-2,5, oo, §
%; Ciw = 3'::2; (j—2)c‘5 s n :-_4’»5’ oo, i
| c . =i=§_'(3-2m+2) Cony,; 3 BE2m 0,

We have (50) for m = 1, and assume it for m = k and n = 2k, .
f .

ok + 1, ¢***, Whenm =k+1and n £ 2k + 2 we have
|

e — e o s [P
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- B (- e, = REDLE(TTea )

R+tm j=akw Ry "(k-l)' §=2le+)
ked [ ™
= ;2 ‘;. (2k+z)
1n which ILemma (9) was applied to obtain the last step.

o0

There 1is a linear operator L(x,D) = 2_ L L (x )Dzm

‘)»ﬂl

D = ;—3- , corresponding to the basic set SU (x)S of i_m(x)}I
and hence to {Y (x)} 1tself as is shown by Theorem 2 and

11:3 corollary, We have by llnearity

iL'[g(x,t)] = Mé? L (x)D [g(x t)] = x-—u 2(“_ (x)t™ |
Z L, (x) [_Z ¢. b (a+bx) 1""""‘:(g(zvc t),

:3\11

i
1n which use was made of Lemma (10). By rearranging this
expression in powers of t and then equatling corresponding

!coefficients of t , » 1, 2, **+, we are able to wrilte
{ .\ "_ . sz
Uy (%) = ZL(x)) e b (a+bx) (x),

W J':_-s 1: m ""‘J"Zu)
-.;3where S = max [O,‘ 2m-r] and r = 1, 2, ***, Each of these

relations may be written more convenlently as

Y -
(51) U {x) = Z A/(x) U il )
where

' e Qn-l-_‘*l

| } A (x) = Z L (x) ¢ (a+bx)
| Aty jzo Xmagn N ﬂvl‘?;*?.
(52) —
o 3 |
. A (x) = ZL (x) e, b (a+bx)” > m=0, 1,
i :0 a,md" 2',4!,2**:,’,.

|

i

, eeoe
1
E

dince the relations (51) must hold for n= 0, 1, 2,¢¢
! he s (51
A(x) = lend &;(x) = Ofori=1, 2, ***. By means of

e e i o b
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these values the equations (52) are seen to yield the ex-
plicit expresslions for the polynomials 1n the operator ;

L(x,D)s That 1is |
: An-2 2 dn-2 ;
(53) LQ“SX) = Z _0 X = K'h(a "l"bX) s N = 1’ 2’ sse !

4:.‘:0 1“)‘- ! !

and the constants K are defined by recurrence as

K,b =1, i
2*(-‘ ™l :"-{'l :
K ¢ b =-2K _.ec. b ;m =1, 2,°°°, |
Amdt 2wt Yoy EL g1 2”1-!)2”1’.&
. 2t i,
K - - K 2 e = 0, l_ e
chﬁmﬁ,' "u“ib = ‘:Zo it %J’ %‘%3 s s *» ’

from which it can be seen that the K, are independent of
the value of a and involve some power of b as a factor,

éspe cifically,

el “Qw

(54) K =(= 1) (function of ¢ o)

i.
n |
Since we Insist b # 0, neither a nor b can affect the vanish-i-

j.ng of the X, .

|
|
l
Having the operator L(x,D) in the form (53) we are %
iable to determine whether iYn(.x)} can be of finlte A-type. ;
In view of our previous remark (54), we may set a = O and f
; : !

b = 2 and the A-type will not be altered. Moreover this 1s
|
a special case of .the generating function given by (59) for
which the operator 1s

oo R(la-o) KL
;(41)_' L, (x,D) = 5 4, x D,

inith the constants related 'by

(40)"

™

ﬁm‘(::)(.k.h)l = r,r =1, 2, ees,

B e e i e - - o ke
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Proposition 14: The k-set {"7#:)‘} k 2 2 generated

by gs(x,t) = eoxp (x® t) 1s of infinite A-type.

Proof: Assume the k-set is of finite A-type r, that

|
1s the constants in the operator (41)! are such that -Qk,ﬁé 0

and 4; =0 for 1Z r + 1. This implies that (40)' can be
written as _
. A .

2 ﬂ“kn(kn-l)‘"(kn-kh +1) = n fornZ r,
=1

ﬂ& _ " D we.

3 P (Rm-1) - -« (Rn-Ratt) Z (Rn-RR) <+ (fon-Fn+1)

or

From thls we see that
| | net Loy |
Mol f 5 + 2 3t

Let € >0 be arbitrary. There 1s an N such that n > N im-

plies max [Rw' ’ &LQ!:“:‘ , h = 1,2, ¢c-, r-1]<;fi, so that
lﬂmlw or equivalently | 4&[ = 0, which is contrary to the
assumption. |

, In view of (53) and the remarks following (54),
EProposition 14 sllows us to state that the basle 2-361:

{U (x)} given by (48) is of infinite A-type. Moreover, as
shown by the Corollary to Theorem 2, the baslc set and the
set {Y (x) have the same operator. This completes the
proof of the following statement. |

roposition 15: The 2-set [Y (x)} is of infinite

iA-type. | )
The k=-set {Y*éX)} satisfies a functional equation

i
'
]

'which is given by Theorem 3. For the basic 2-set {U (x)}

e e o+ e o i — e o it E— [ —

i

|
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this equation becomes
LIl = (a,z+a,2 )L [3], ;

2 a 2m
= (ax+ bx /Z)E Iam(x)D [y] = Ay,

where A =n whenever v = in(x); By means of (53) thils can i
be written |
; 2 - o Am-2 2w

(55) J]y] = (ax+bx"/2) & K (a+bx) DIyl = Ay.

I ms\

Proposition 14 implies that there are arbitrarily large h
such that £, #0 and from (53) the corresponding K, #0, so
that we have the following statement.

‘ Proposition 16: The differential equation (55) for

jthe basic 2-set {U%(x)} 1s of infinite order.

o A Rodriguesgs! Formula

The classical Laguerre polynomials, which are
generated by

M=o

-] | x "
g(x,t) = (1-%t) exp( ) A L (x)t ,
fsatisfy a Rodrigues'! formula
L(x) = ¢ ”‘( ) , D = d/ax,

‘This formuls may be used to show that the Laguerre poly-

fnom:lals form an orthogonal set. We firat note

o0

%(55) fe*x° L (x)ax

0’ 8 = O’ 1’..., n e 1;

Il

%so that orthogonality follows from the linearity of the
| %
lintegral. . __. e
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In 1923 Humbert [4] generalized these relations to a
particular 2-set. We shall show there 1s aAEY*&jx)} k-set é
which 1s determined by a Rodrigues' formula and satisfies a é
restricted orthogonality condition analogous to (56). |

We consider the particular k-set generated by'
(57) glx,8) = (167" exp (x*ult)) = 2 7, (x),t7,

& R : : o N
a(e) = (1=6)" 2 (-1] (§)8’ = = £ CFOEE

The recurrence relation (31) for the general gYinod}

k-set becomes

=1

(s8) T (x) = -n""dgo (ks )Ty ().

§In order to proceed further, we develop a recurrendé relatio
ffor the k-set {Tﬁixﬂ} which involves a fixed number of

terms.

e e e+ e e e u [ O,

Lemma 11:  J (=1)° (% )1 ™= 0, nym2o0. |

L-O

Proof: The well known proof for m = O may be extend=

ed by induotion. "
+1
Lemma 12:  » (-1)° (*"") %)

¢=0

i

O for all a,

E Proof: The statement follows as a consequence of

'Len'lma 11,
‘ Proposition 17: The k-set fl@ézﬂ} satisfies the

|
g .

| lhe equivalence of the two forms of u(t) may be
verified by'means of Lemma 12,




45

relation | R T

i

T, (x) Z (-1 k)[m -1 k’TR (x)].

(n-3)

Proof: By means of the recurrence relation (58) we :

have
‘é(-lf‘(.) - ] )jf,"(***-'w) 2,04

= -kx {m Z (-1)’(?) (" k- "‘)]T ) +Z( 1)( )(";ﬂ;i)m ()

R(n-p)
k-2 L *)
+J~Z°( l) ( ) EcA + (e T*h(:)')} ’

ifln which the bracket 1s zero for each i1 by Lemme 12, In |
addition we find on applyling Lemma 12 to each of the remain-
1ng sums that

Z(-l) ( )TI x) = -nk-'?? (-17" (f)w (x) ,

k(‘hu) ‘ $=l R(n-3)

which proves the proposition. |

| The proof of the main result of this section, namely |
that the k-set {T (x)] satisfles a Rodrigues' formula, re-
| .

éuires several facts which we state as 1emmas;

" €+n -xn i iy, m -xk
Lemma 13¢: D (x e ):7()3!13(1! ) .

’”-! ) L4<z . (1!-4)'

‘ Proofs The statement 1s an application of the
i.eibniz' formula,

|

f -m m-i =X H-m=| “-m2_ -X

% Lemma 14: D (x_ ) = (%

5 (n-m=1)" R T i

| -k (""”‘"')i T4z e )e
| - e - izmep (Lot /. e
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Proof: Perform one of the differentiations amd

apply Lemma 13,

Lemma 153 (jf‘)-(kjf‘)z(ﬁ;:) , 051tk - 1,

Proof: By induction. i

! . ™ sfm ~ 3
| TLemma 162 Z:o(-l) (5)(:;_‘3)=O; O<\m=zn,
J.‘:

; n > ( 15.('\?‘)
| Proof: The sum is equal to (m)z -1) 3/

r3 i
J:.o !

Theorem 5: The ke-set (T, (x)| defined by (59) 1is

determined by the formula

, l! n,
T&k(X) - 6 D (x ) s T = O 1 coe,

Proof: The statement is true for r = O; we assume

the relation holds for r = O, 1, ***, n~1l, so that

k L2 A
(x) =6 D (x'e )+kx Tk (x), » =0, 1,°¢°,n=1,

;‘l

From Proposition 17 we see that
N-j4) , M-y xk

Bt (x) = e Z (-1) DY (x Je),
K J9=! (-3 .
which can be wriltten as

L4 R R-! R

- k"l Q e, -he -

7L (x) = o {Dw(x“ex) + k) ( , )x'D" (x x)

fom. ('n-«)

| n-j -x k - 4‘* Pyt neg -xk |
+(k - 1)D" (xw_e” )+,§.( l)(J)D (:'['c'ﬁ"'-z’i! )}.

in which use was made of Lemma 14. This expression may be

rearranged_slightly to _obtaln_
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R R R
(59) T (x) = D[ e D"(x"‘e"‘ﬂ +e Alx, D n, k),

iwhere R
A=km (k")fkiﬁ" (x"e "‘) + (k" )D“ (x" e )

i=1 ! IR ! (n-1)! :

R +t "J'“ “"J k ;

|

+ 2 (- 1" (5)8% e |

=2 (n- ,3)'

Vne shall show that A(x, D; n, k) vanlshes identically to

icomplete the argument. Applyling Lemma 14 to the single term

we find .

l [(Peol)(k-l) (k- )(rl R-l-'LDh-(.( (:-:)z: ) |
i : . R
| +(- 1)[( (R @) Z( 1 (F)5Fae ™).

™-21)! (m=-g)!

iA_(x, D; n, k) can be placed into a form simik r to the pre-~

ceding, that is, we shall show that

(60) A::}kZ[ Z("l) (*- )(* ,’ J) #-l-b 'u-a. 'n -xk)

= ~§59° (‘h-u)'

+) . R
T (B, 5 (<1 (5 )™ e,

rrm-n) ! JEMEL (ney)!
holds form = 1, 2,¢¢+, As a matter of fact we have the
relation for m = 1 by means of Lemma 5. Assuming (60) 1s a
valld for m <k-1l and noticihg that the bracket vanlshes for
1 = m by Lemma 16, and applying Lemma 14 to the single term

we have | :
| = R-1\/k R- R
= k (e R e
.;‘ ’Z; £ =) ('h-o.)'

(w-m-2)! =3 (n-317:

(=1 (o) f‘..l.ﬂ MUt G R () 3l ")

|

B

b
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in which the results obtained from Lemms 14 are included in
the exlisting sums. Application of Lemma 15 completes the
Induction.,.

We now evaluate A(x, D; n, k) as expressed in (60)
|[for m = k -2 and find, after making use of Lemma 16, that
A(x, D; n, k) vanishes identically. In view of equation

!(59) we see that

T'Rn.(x) = e"D“(x’_‘:"x) -+ C,e*

However ¢,= 0 since Tkm(o) = 1, which completes the proof
of the theofem.

R - -]
Lemme 17: D (x"e™* )J = 0, for n>m 20,
o

Proof: As can be seen by means of the I:e_ibniz'

R
x

formula the exprsssion has the form Q(x)e™™ where Q(x) 1s a

- polynomial such that Q(0) = O.

Proposition 18: The keset {T*,‘(x)g has the property

fe-x xs’.[‘*h_(x)dx =0, 8 =0, 1, *¢+, n=l,

Proof: We substitute the Rodrigues' formula of
Theorem 5, integrate by parts, and make use of Lemma 17 to
verify this propertye.

In the case of the Laguerre polynomials (k=1) the

property 1s equlvalent to the property of orthOgonality.-

When k Z 2 this is no longer true and w: are able to state

only that the first n -1 moments of e"x'T,m(x) vanish,
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