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PREFACE

The solutionvof large scale allocation problems is an important
factor in the current complex world economy. Decisions that were once
made based solely upon subjective judgement must now be aided by
powerful mathematical tools. Those factors which influence or control
industrial management decisions are sometimes so numerous and compli-
cated that intuition alone cannot be relied upon to render optimum
décisions°

The objective of this investigation is to add to the tools avail-
able for solution of such problems. The technique developed in this
thesis can be used to obtain the solution of many types of integer
programming problems, such as the allocation problem, without being
restricted by the '"curse of dimensionality'" which limits the size of
problem that can be handled with conventional dynamic programming
techniques.,

I would like to take this opportunity to express my\gratitude to
those individuals without whose help and encouragement the attainment of
this level of education would not have been possible. Primary among
those are the members of my coﬁmittee, Dr, James E, Shamblin, Dr. Earl
Ferguson, Dr., Palmer Terrell, and Dr. Larry Perkins. Dr. Shamblin and
Dr. Terrell provided the quantitative insight necessary for my major
interest of operations research; Dr. Ferguson contributed wisdom in the
art of leadership and management; and Dr, Perkins helped my under-

standing of real-=world problems by tempering my enthusiasm on the
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quantitative aspects with reminders that humans seldom fit exactly the
mold of mathematical symbols so readily fashioned by operations
research analysts,

My special thanks to Dr. Shamblin who suggested this thesis topic
and provided help and encouragement during its development.

My appreciation also to Margaret Estes for her excellent typing.

Above all, I would like to express my deep gratitude to my wife,
Johnnie, and daughters, Tammy and Pamela, for their encouragement and

patience during the attainment of this degree.
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CHAPTER I
INTRODUCTION

The allocation problem has received a considerable amount of
attention in the literature, as might well be expected. The allocation
of resources in order to maximize some kind of return is a fundamental
problem in mathematical economics. As such, it is a fruitful area for
study by the methods of operations research. Operations research is
based in economics; it is the science of getting the most output for
the least input -~ i,e., optimization, and'optimization is measured in

terms of the economics of some objective function,
Types of Allocation Problems

Gue and Thomas (1) divide allocation problems into three broad
areas, The first type occurs when there are tasks to be performed and
there are exactly enough resources to perform the tasks., If each task
requires only one resource, it is called an assignment problem., If
there are tasks to which more than one resource is required, and if
each resource may be used for more than one task, it then becomes a
distribution problem. The transportation problem is a specific form of
the distribution problem,

A second class of problem concerns the allocation or assignment of
resources to activities when there are insufficient resources to satisfy

all of the requirements, and one must decide which activities to include



in the allocation.. In this case, it is a zero-one problem in that
activities are either included or excluded,

In the third type of problem, it is possible to control not only
which activities are to be included, but also the level of resource
that will be allocated to each of the activities,

This thesis 1s concerned with the thifd type of allocation problem,
which may be described as follows:

Given a limited quantity of resource, such as money, time,
materials, machines, etc., it is desired to distribute this resource
in an optimum manner among competing activities, such as projects,
products, etco For each activity, the allocation of a quantity of
resource provides a return of some kind. This return, or utility
function, may be a linear or non-linear function of the amount of

resource allocated to that activity,
Examples of Allocation Problems

Allocation problems of many forms arise in business and industrye.
The basic allocation problem considered in most texts is the "knapsack"
problem, This general type of problem is aimed at determining the
optimum loading of cargo, weapons, etco., in order to maximize return,
whether the return is profit, damage potential, or some other measure
of utility, These problems are usually referred to as one=dimensional,
since only one resource is considered and there is a single constraint,
such as volume or weight.

More complicated problems arise when there are multiple constraints
because of several resources to be allocated, or because of several

constraints on the allocation of a single resource.



The transportation and distribution problem are forms of the
allocation problem with multiple constrain£s. In the transportation
problem, it is desired to determine the least expensive routing system
for shipping goods between shipping points and demand points. The
distribution problem considers the optimum placement of goods or
services at various facilities,

One of the important allocation problems with multiple constraints
is that of budgeting and project selection. In this general type of
problem, there are limited resources that must be divided among
competing projectss There may be limitations on the amount of resource
that can be given to a single project, as well as limitations on the
amount of resources available in any given time period., Baker and
Yormark (2) refer to this as the allocation problem with two-dimensional
constraints., Two=dimensional refers to the fact that there are
constraints on two entities, such as projects and time periods.

As an example, a manufacturer may produce automobiles and boats,
each requiring a specific amount of a raw material such as steel.

Since both products are to be produced, there is a 1limit as to the
amount of steel that can be given to each production line, Also, since
steel is provided to the manufacturer over a period of time, there may
be limitations as to the amount of steel available to both production
lines during any given time period. Because of seasonal variations,
the return (profit) to the manufacturer may be a function of the time
period; i.e., period of year, as well as the type of product.
Additionally, the market can become saturated with either of these
products, so that the return may not be a linear function of the amount

produced, which complicates the problem even further., Thus,



determining the optimum allocation for each production line and time
period is not a simple problem.

A mathematically similar problem is that of portfolio selection,
where a limited amount of money is available for investment in each of
several time periods., In addition to the time period constraints,
there may also be constraints on the type of investment, such as a
limitation on the investment in a particular industry, or limitations
on the general types of investments, etceo

There are innumerable other examples of allocation problems, In
fact, many problems that at first appear to be totally unrelated can be
shown to be a form of the allocation problem, or can be formulated and
solved as such, For example, a linear or non-linear programming problem
can be formulated as an allocation problem where a resource is to be
"allocated" to each of the variables, and the amount of resource is

governed by the problem constraints,
Mathematical Formulation

The allocation problem may be mathematically formulated as follows:

B

Maximize R(X) = ri(xi)

subject to: (1-1)

n
z C. .XxX, SA j = 1, 219 cocgy M
i 9t J

. : .t e .
where ri(xi) is the return obtained from the i h of n activities when
an amount of resource x, is allocated to that activity. There are m

constraints, each constraint controlled by an allocation amount Ajo



In those cases where the return (or utility) functions are linear,
the solutions can usually be obtained through one of several mathe-
matical programming techniques. The problem becomes more complex when
the return functions are non-linear, although techniques are available
which make them tractable, such as Beale's algorithm when the objective
function is quadratic (1). In some instances, linear approximations
to the objective function can be used and an approximate solution
obtained using linear programming techniques. However, the linearized
versions are usually inadequate,

The introduction of an additional requirement for integer solutions
eliminates most available mathematical programming techniques. Exhaus-
tive search is a possible, but very expensive, alternative. An approach
often suggested is to assume a continuous problem, obtain a solution,
then round or truncate to an integer solution, =~ Unfortunately, the
solution obtained in this manner is usually infeasible and/or
non-optimal.

There have been various abpfoaches/to the solution of the differ-
ent types of allocation problems. Some of the original techniques for
the solution of linear versions of Equation (1-=1) were developed by
Koopmans (3). The capital budgeting version of the allocation problem
was attacked through Lagrange multipliers by Lorie and Savage (&),
Weingarten (5) applied integer programming. However, Nemhauser (6)
concluded that dynamic programming provided the most efficient tech-
nique when there are not more than three constraints.

A survey of various approaches to the capital budgeting alloca=-

tion problem is contained in Weingarten (7).



Solution by Dynamic Programming

Most of the work on allocation problems with integer solutions
has been accomplished with dynamic programming. Examples are contained
in Gue and Thomas (1) and Hillier and Lieberman (8). Unfortunately,
this approach can be used only if there are few constraints. When there
are several constraints, usually more than two or three, the number of
calculations and size of computer memory required prohibit the use of
this technique., This results from the fact that computer memory re-
quirements increase exponentially with the number of problem con-
straints. This is referred to by Bellman as the ''"curse of
dimensionality" (9).

The technique proposed by this thesis circumvents the limitations
of conventional dynamic programming through the use of a recursive
search technique. This technique eliminates the need for large computer
memory which usually makes the solution of large scale problems

impossible.



CHAPTER 1II
THE RESOURCE ALLOCATION PROBLEM

The general form of the resource allocation problem is given by
Equation (1-1), When there is only one constraint, the problem may be

written in the following form:

n

Maximize R(X) = E: r.(x.)
iz vt

subject to: (2-1)

n
25 x, SA
iTh

This particular form is referred to in the literature as the Lori-
Savage model, since it was discussed originally by Lorie and Savage (4).
Wagner (10) refers to this as the when-or-where model. This title
comes from the fact that the Lorie-Savage model has several interpre-
tations from an allocation standpoint. The usual definition is that
there are n projects (products, etc.) and it is desired to maximize the
return given by Equation (2-1) when an amount of resource A is dis-
tributed among these projects during a single time period, or single
planning horizon. By a redefinition of terms, it can be considefed as
a problem of allocating an amount of resource A among the n time
periods of a single project. Since only one constraint is present,

this is a one-dimensional allocation problem.



Although the problem description has been in terms of projects
and time periods, it could have easily been defined as availability and
requirements in a transportation problem, or in many other terms.
Throughout this thesis, the problem will be described as one of
allocating resources over>projects and time periods, recognizing the

many other possible interpretations of this model,
Multiple~Constraint Problems

Generally, the allocation problems solved in textbooks are of the
form given by Equation (2~1); i.e., single constraint or one-
dimensional problems. This type of problem can be easily solved with
dynamic programming, which is the most efficient approach when the
solution is constrained to integer values, However, the problem takes
on a different character when there are several constraints, such as
the general allocation model given by Equation (1-1). Although dynamic
programming is still the best approach for problems of this nature, the
""curse of dimensionality" mentioned earlier limits the size of problem
that can be handled.

As a specific example of a multiple~constraint problem, consider
the project selection analysis studied by Baker and Yormark (2). As
discussed earlier, in this situation, there are several projects and
time periods, with varying budget constraints on both entities., This
particular problem will be used as a model to demonstrate the recursive

search technique,
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Mathematical Model

The mathematical formulation of the allocation problem with

constraints on two entities is given by:

m n
Maximize R(X) = 2 Z ri.(xi.)
i=h jo1 Y
subject to:
m n
zz x; 5 SA
i=1 j:l J
(2-3)
m
Z X .SA 1 = 1, 2, [ X ¥ N n
=1 2
n
Z x..sB J=1, 2, seey M
izh 9 J

x, .20 for all i, j
ij

x, . integers
1]

where, for the project selection problem:

A

total budget constraint
. .th .
A. = budget constraint for the i project
. .th ., .
B. = budget constraint for the jJ time period
.th . .
x, . = amount of resource allocated to the i project in
.t . .
the j h time period
r..(x..) = return from allocation X;
m = number of time periods
n = number of projectse
In this model, it is desired to maximize the return from allo-

cation of a resource to specific projects and time periods. There are
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n projects and each project can be allocated no more than Ai of the
resource. In addition, the projects will last a maximum of m time
periods, and during any one time period the resource allocation to all
projects must not exceed Bj' As an overall constraint, the total amount
of resource available is A, For each project~time period there are
discrete feasible funding levels, so that the xij,mUSt take on integer
values corresponding to these levels. This is, therefore, an integer

programming problem, This problem is shown in Figure 1,
Assumptions

As mentioned previously, this type of problem is difficult to solve
by any method, but the most promising approach is dynamic programming.
As with allbmethods for the solution of complex problems, certain
assumptions are necessary. For this problem, the following assumptions
are made:

(1) The return from different activities (where here an

activity is a project-time period) can be measured in
common units,

(2) The total return from any activity is independent of the

allocations to the other activities,
(3) The total return can be obtained as the sum of the
individual returns.

(4) The return functions are concave.

The first three assumptions are necessary to apply the dynamic pro-
gramming technique. The last assumption is necessary to use the

recursive search technique proposed by this thesis. This technique
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makes an exact solution of Equation (2-3) possible within the limits of
present day computers,

Before discussing the details of the solution to Equation (2—3),
it is necessary to briefly review dynamic programming as a basis for

the solution developed in this thesis.



CHAPTER TIII
DYNAMIC PROGRAMMING

The theory and application of dynamic programming are discussed
fully in several texts, such as Bellman (9), who developed the concept,
Bellman and Dreyfus (11) and Nemhauser (12), There are also reports
which discuss the specific problem of allocation of resources and
solution using dynamic programming, such as Dreyfus (13) and Kalaba (14),
These sources should be referred to for complete details; the following
description is presented only as a basic review of dynamic programming
and to establish the notation that will be used in the remainder of
the thesis.

Dynamic programming is an approach to the solution of multistage
decision problems which transforms these problems into a series of
single stage problems, Dynamic programming can be applied to a wide
variety of problems, It is more of a concept than a specific technique,
and for this reason it is difficult to develop an algorithm which can be
used to solve many types of problems; each problem must be specifically

modeled for solution by this technique.
Principal of Optimality

Decomposition of a multistage decision problem is accomplished
through mathematical formulation of Bellman's '"principal of optimality"

which states (9):

13
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An optimal policy has the property that whatever the initial
state and decision are, the remaining decisions must

constitute an optimal policy with regard to the state

resulting from the first decision,

This says, in effect, that the optimum decision is one in which

all subsequent decisions are optimum with respect to the state resulting

from the previous decision.
Dynamic Programming Notation

The usual method of depicting a dynamic programming problem is
shown in Figure 2, where the stages of the problem are numbered in
reverse order in accordance with conventione.

In Figure 2, the state variables and decision variables for the
ith stage are denoted by S; and X s respectively., State variables
represent the state or condition of the system at a particular point
within the problem solution; i.e., at a particular stage. State
variables are usually those conditions not under the control of the
decision maker, The input state, S5 is the value of the state variable
entering the ith stage. The output state, 2;, is the value after the
decision x, has been made, As can be seen in this figure, the output
of the i th stage is the input to the (i~ 1)St stage.

Decision variables, denoted by X, are those variables that are
under the control of the decision maker,

The return function, ri(si’ xi), represents the return of the ith
stagé where the input is S5 and the decision made at this stage is X,
The state transformation function, ti(si, xi), determines the value of

the state variable at the (i - 1)St stage as a function of the state and

decision variable at the previous stage. That is, for a given input
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state and decision, the transformation function determines the output

state for that stage.

Recursive Relationships

Now define the following:

fk(sk, xk) = the total return from stages 1 through k (k stages
remaining) when the input state is given by S and
decision X is made with optimum decisions made
for the output state EL in stages 1 through k-1,
f;?sk) = the optimum total return for stages 1 through k for

the input state S\ .

Then for any stage k, Bellman's principal of optimality may be mathe-

matically formulated as follows:

*
fk(sk) = mgf fk(sk, xk) (3-1)
*
= m%ic [rk(sk, :ﬁ() - fk-l(sk—l)] (3-2)
for
k = 1, 2, eese N
where
*
f (s) = 0.,
o o

where the input to the (k-l)St stage is determined from the trans-

formation function:

= tk(sk, )ﬁ() L] (3"3)
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Dynamic Programming Solution of the
One-Dimensional Allocation

Problem

With the above definitions, consider the dynamic programming
approach to the one-dimensional allocation problem, As described
previously, this is an allocation problem where there is one type of
resource and one constraint, such as the following formulation of the

Lorie-Savage model:

n
Maximize R(X) = zz r.(x.)
. i 71
i=1 .
subject to: (3-k)
n
x. SA
i=1 ¢t

X, 20; integers .

In problem solving with dynamic programming, the first step is the
definition of stages, states and decisions. For the allocation problem,
the stages correspond to the activities. The decisions then correspond
to the amount of resource allocated at each stage (or activity), and the
state variables represent the amount of resource remaining that could be
allocated at each stagee If the problem is considered as allocating a
portion of A at each stage, it can be seen that the constraint yields

a transformation function:

St = S X o (3-5)

The recursive equation, or functional relationship, of the

principal or optimality for this problem is then given by:
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% %
fk(sk) = max [rk(xk)-kfk_i(sk_i)] (3~6)

X S5

for k= 1, 2, seey I

*
where fo(so) = O, (Note that since the return is a function only of
the amount of resource allocated, it may be written as rk(xk) instead
of rk(sk, }&()o)
Using the transformation function, Equation (3-5), Equation (3=6)

becomes:

fé?sk) = max [rk(xk)-bf;ii(sk-xk)] (3-7)
% S5

for k= 1, 2, ceey I

*
where f (s ) z O.
o "o

Notice that for a n stage problem, the optimum value for all

stages is given by:

£ s ) = £(A) . (3-8)
n n n

Computational Aspects of

Dynamic Programming

For each stage of the dynamic programming process, it is necessary

to calculate fk(sk, xk) for each feasible X and s, , and then from

k’

these values, to determine the value of X which maximizes fk(sk, xk)

%*
to yield fk(sk) for each s Therefore, for state transformation

k.
functions given by Equation (3-5), if there are v feasible input states

for each stage, then for n stages, there are approximately %nvz

evaluations of Equation (3-7) required to determine the optimum
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allocation. Although this may seem to be a large number, compare this
to the v calculations required for exhaustive searchl!

If this problem is to be solved on a digital computer (a necessity
for large problems), an important factor is the required size of core
memory. This can be determined as follows: At each stage in the dy-
namic programming solution, it is necessary to save the optimum value
of Equation (3-~7), and also the decision variable that yielded the

*
optimum value, for each input state. However, fk(sk) is needed only

*

until f (

ks 1 ) is calculated. Again assuming n stages with v feasible

Sk+1
values of S at each stage, the total memory requirement, not including
memory for the program statements, is v(n+2) storage locations.
Obviously quite large one-dimensional problems can be solved using
large computers. However, it will be demonstrated later that the

memory requirements mushroom when problems with several constraints are

encountered,
Numerical Example

As an example of dynamic programming solution to a one-
dimensional allocation problem, consider a single project, four time

period optimization problem given by:

L
Maximize R(X) = }Z r,(x,)
. i i
1=1
subject to: (3-9)
L
zz x, €10
i=1 *
x, 2 0, integers
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where the return functions, ri(xi) are given in Table I, These return

functions are of the form:

ax,
r.(x,) = o (3-10)
The first two derivatives of Equation (3-10) are:
ri(x,) = ——=S—— (3-11)
(bx, +¢)
i
2 2
r;(xi) - 2k c+2abc (3-12)

(bx, + c)lk
i

From these equations, the maximum occurs at x = ®, and from
Equation (3-12) the function is concave for all positive a, b and c.
Thus, these return functions meet the assumptions of Chapter II.

The recursive equation for the first stage of the dynamic pro-
gramming solution to this problem is given by:

*
f1(s1) = max r1(x1) .

X158

(3-13)

The first stage returns are given in Table II for each feasible input
states At the right side of the table are the optimum returns and
decisions from this stage as a function of the input state. For a
computer solution of this type problem, only the values in the last two
columns need to be saved, and f;ks1) is needed only until f;ksz) is
calculated.

Table III contains the returns from the first and second stages,

obtained from the second stage recursive equation:

fz*(sz) = max Lr (x2)+f1*(52-x2)] - (3=-14)

X, 558,

2



RETURN FUNCTIONS FOR NUMERICAL EXAMPLE

TABLE I

21

Return
X, r1(x1) rz(xz) r3(x3) r4(x4)
0 0 0 0 0
1 2619 3529 1244 1274
2 3437 3810 2074 2062
3 3837 3913 2667 2597
A Lo74 3970 3111 2985
5 4231 L4000 3457 3279
6 L4342 L4022 3733 3509
7 4425 4039 3960 3694
8 4490 4051 4148 3846
9 4541 4060 4308 3974
10 4583 4068 bbbl 4082




FIRST STAGE RECURSIVE ANALYSIS

TABLE II

X * *

o) 1 2 3 L 5 6 7 8 9 10 £, (s, ) X
o 0 0 0
1 " 2619 2619 1
2 " " 3438 3438 2
3 " " " 3837 3837 3
L " " " " Lo7h LO74 L
5 " " " " " 4231 4231 5
6 n " n " n " L3L2 4342 6
7 " " " Ul " " " LL2s Lh25 7
8 " " " " " " " " 4490 LL9o 8
9 " n 1" 1 " " " " " 4541 L5k 9
10 " " 1 n n n n " " " 4853 4853 10

(44



TABLE III

SECOND STAGE RECURSIVE ANALYSIS

s, 0 1 2 3 L 5 6 7 8 9 10 fé?sz) x;
0 0 )
1 2619 3259 3259
2 2438 6148 3810 6148
3 3837 6967 6429 3913 6967
4 Lo7k 4367 7247 6532. 3967 7247
5 4231 7603 7647 7351 6586 4000 7647
6 4342 7660 7884 7750 7404 6619 4022 7884
7 L4425 7872 8040 7987 7804 7438 6641 4039 8040
8 4490 7995 8152 8144 8041 7837 7460 6658 4051 8152
9 4541 8019 8235 8255 8198 8074 7860 7476 6670 4060 8255

10 4583 8071 8299 8338 8309 8231 8096 7876 7488 6679 4068 8338

€2
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Again for this table, the optimum return and decision for each input
state are shown in the last two columns,

Similarly, Tables IV and V contain the return for the third and
fourth stages, respectively. The fourth stage contains the total
return from all four stages as a function of the input state. From this
fable, it can be seen that the maximum possible return is 12,675.

In order to determine the allocation which yielded this optimum
return, it is necessary to trace back through the stages using the
state transformation function, Equation (3-5). These calculations, as
shown in Table V, given an optimum allocation x" - (2,1,4,3). Thus the
optimum return for this project is 12,675 for an allocation of two
units in time period one, one unit in time period two, four units in
time period three, and three units in time period four. Any other
allocation, where the allocation is restricted to integer values,

would yield a lower return,

Dynamic Programming Solution of the
Multiple Constraint Allocation

Problem

As seen from the above example, the one~dimensional allocation
problem is straightforward and can be readily solved with dynamic
programming. As mentioned previously, this is the most efficient
means of solution when the solution is restricted to integer values.
However, now consider the same problem as before, but add constraints

on time periods as well., The problem now becomes:



TABLE IV

THIRD STAGE RECURSIVE ANALYSIS

S5 0 1 2 3 L 5 6 7 8 9 10 f;(s3) ;;
0 o o o
1 3529 1244 3529 o
2 6148 4774 2044 6148 o]
3 6967 7393 560k 2667 7393 1
A 7367 8211 8223 6196 3111 8223 2
5 7648 8611 9041 8815 6641 3457 9041 2
6 7884 8892 94k 9634 9260 6986 3733 9634 3
7 8040 9128 9722 10333 10780 9605 7263 3960 10780 A
8 8152 9285 9958 10314 10478 10424 9882 7489 4198 10478 A
9 8255 9396 10114 10550 10759 10823 10700 10108 7678 4308 10823 5

10 8338 9416 10226 10707 10995 11104 11100 10927 10287 7837  4bLbLL 11104 5

(4



TABLE V

FOURTH STAGE RECURSIVE ANALYSIS

*
f4(s4)

Xy

11104

12097 12540 12675 12619 12320 11731 11087 10005 7503 4082

12675

Optimum allocation: X, = 2
x2=1
x, =4
3
x4 =3

i

Optimum return = f:(s4) 12675

92
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TABLE VI

OPTIMUM DECISIONS FOR NUMERICAL EXAMPLE

Stage Input State Decision Output State
s; X, s, =X,
L 10 3 7
3 b4 3
2 1 2
1 2 0
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n

Maximize R(X) = }E r.(x.)
. i 71
i=1
subject to: (3-15)
n
x. <A
i1 *
XJSBJ j:l, 2y eso, m
x.20, integer .

In the dynamic programming formulation of the one-dimensional
allocation model, the state variable represented the slack in the
constraint -- the amount of unallocated resource =-- at each stage in
the solution. The state variable is also the slack in the constraints
of Equation (3-15); however, since there are now m+ 1 constraints,1 the
state variable is now a vector with m+ 1 components. As in the previous
problem, it is necessary to calculate the return for all feasible
decisions and state variables., For the multiple constraint problem,
however, the number of feasible states has increased significantly,
since each combination of the m+ 1 components of the state vector
represents a feasible state. If there are v feasible values of each of
the m+ 1 components of the state vector, then the amount of storage
space required to solve an n stage problem is approximately Vm+1(n4-2)
storage locations. If there are n projects to be considered as well,

m+n+1
(n

then the storage requirements are approximately v +2),

1The non-negativity constraints are not included in this number,
Since the problem can be structured such that only positive allocations
are considered, the non-negativity constraints do not increase the
dimension of the problem,
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As an example, consider the problem where there are four competing
projects, and it is desired to obtain the optimum allocation for these
projects for each of ten time periods., Assuming ten feasible values
of each component of the state vector at each stage; i.e., ten feasible
funding levels at each time period for each »nroject, then the storage

15

requirement is approximately 10 locations. Obviously a problem of
even this modest size could not be handled with present day computers,
which have internal storage on the order of 106 locations. Of course,
external memory could be used, but at a significant reduction in
computational speed. This is a rather minor point, however, since the
time required to perform the calculations necessary just to fill these
storage spaces, assuming 106 calculations per second, is on the order
of a century., There is little consolation in the fact that 104O
calculations are required to determine the optimum solution with
exhaustive enumeration,

Obviously, conventional dynamic programming has severe limitations.

Under certain conditions, however, these limitations can be overcome,

as will be discussed in the next chapter,



CHAPTER IV
RECURSIVE SEARCH DYNAMIC PROGRAMMING

As discussed previously, the dynamic programming formulation of
large allocation problems with several constraints requires more storage
space than is available in even the largest computers. To reduce the
storage requirements, various approaches have been investigated.

Bellman (11) discusses the use of a polynominal approximation to the
recursive equations. With this procedure, only the coefficients of the
polynominal are stored, and interpolation is used to obtain values of
the recursive equation at specific points.

Kalaba (14) uses Lagrange multipliers in conjunction with dynamic
programming to reduce the number of constraints in the problem and, thus,
reduce the dimension., However, neither polynominal approximation nor
the Lagrange multipliers provides an efficient method of getting around
the problem. |

Various search techniques can be used when the return functions are
unimodal. However, the search techniques discussed in the literature
are not as efficient nor as easily programmed as desired; especially
when vector state variables are involved.

One of the more recent and comprehensive investigations in the area
of solution of thelallocation problem with multiple constraints is
reported in the previously-mentioned reference by Baker and Yormark (2).

In this paper, a capital budgeting problem is investigated in which

30
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there are non-linear return functions, integer solutions, and several
constraints, However, only an approximation to the optimum solution
was obtained. Baker and Yormark also discuss related works by Hess (15)
and Rosen and Souder (16) which formulate a research and development
project selection problem, a form of the capital budgeting problem,
In each case, the inherent limitations of conventional dynamic
programming prevented obtaining exact solutions in an efficient manner.,
This problem can be solved, however, with a modification of
dynamic programming. This technique, referred to as recursive search
dynamic programming, considerably reduces the computer storage require-
ments as well as the number of calculations necessary to obtain an
optimum solution. Basically, the recursive search technique starts
with a feasible solution, then searches over each of the recursive
relationships until an optimum solution is reached. If the return

functions are concave, then the solution is a global optimum.

Computational Advantages of

Recursive Search

The recursive search method of dynamic programming provides an
efficient means of solution of many forms of the allocation problem,
With this technique, only a limited number of states and decision
variables in each stage need to be investigated, so that computational
time and computer memory requirements are significantly reduced. As
will be seen later, the number of calculations required to reach the
optimum solution by this technique is a function of the starting
solution and only in a worse case condition approaches the number

required by the conventional method. (For worse case conditions;
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i.,e., starting solution at one extreme boundry of the constraints

and the optimum solution at the other extreme boundry, the recursive
search calculates all values necessary for the conventional method.)
In trial problems using this technique, the number of calculations was
a small fraction of that required using the conventional method,

This technique utilizes a feasible starting solution which
implicitly defines the state vector for each stage, so that it is not
necessary to calculate the values of the state vector. A search pro-
cedure is then utilized which successively optimizes each recursive
equation until a global optimum is reached.

The computer algorithm was originally developed to handle problems
such as given by Equation (2-3); however, with modifications to the
program, it can also handle various other types of problems, such as

the manpower leveling problem,

Description of the Recursive

Search Technique

First consider the allocation problem with constraints on two
entities, such as projects and time periods in the case of the R & D
budgeting problem, To obtain a form more compatible with the usual
dynamic programming formulation, Equation (2-3) can be written with

single subscripted variables with no loss of generality as follows:

N
Maximize R(X) = 2 r.(x,)
. i 7i
1=1
subject to: ‘N (4-1)
Z 5.‘.X. SA. j = 1, 2, ®e0y M
i=1 191 J

Xy 20, integers
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where N=mXn and M=m+n+ 1 so that there are the same number of
variables and constraints as in Equation (3-2),‘and where each 5ij==0
or 1 to account for the fact that all xi's do got appear in every
constraint.

To solve Equation (4-1) by dynamic programming, let the N variables
X,y X5y eeey Xy correspond to the stages of the usual dynamic pro-
gramming formulation. The decision variables are then the amount of
resource to allocate at each stage. The states correspond to the
amount of resource remaining to be allocated; i.e., the slack, and
since there are M constraints, the state variable must be an
M-dimensional vector. The kth member of the state vector is the amount
of slack in the kth constraint,

Let Si be the input state vector variable at stage i, and let Sij

.th .
represent the j component of that vector. Then s for example, is

32’

a component of the vector S_ and represents the amount of slack in the

3
second constraint at the beginning of the third stage.

The state transformation resulting from the constraints of

Equation (4-1) is given by:

S, = T,(S,,x.) (4-2)
i=1 i i1
= (550 =8;4%;08;5= 8, 0%, 5 eeey 5= 65y%;) (4-3)
or, letting
D, = (5,18, eees ) (4-t)

Equation (4-3) can be written:

S. 47 (sinnixi) . (L=5)
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With these definitions, the dynamic programming problem may be
. R . . . . t
diagrammed as shown in Figure 3., In this figure, the input to the N h

stage is given by the amount of resource remaining (slack) in each

constraint, and since nothing has been allocated at this point, S_ is

N
given by:
SN = (Al,Az, LR XY AM) o (4‘6)
Thus, the slack at each stage is given by:
N
SlJ J éJk)ﬁ& (4-7)
' k=i+1
Now let
(s,) £ (S ,x ) (4-8)
£ 5 = max: heCkr Mk -
kamln Sk

represent the return obtained by optimally allocating the resource

represented by the state vector S over variables 1 through k, where

k
min Sk indicates the minimum component of vector Sko Then the dynamic

programming principal of optimality is given by the recursive

relationship:

fk*(sk) = max Lr (x)+ f;_l(skwkxk)] (4-9)
xkgmln Sk

*
—D = [y
where fo(S1 1xl) =0
With conventional dynamic programming it would be necessary to
determine the optimum value of each decision variable, X, i =1, 2, aoe,

N, for each feasible input state. As discussed earlier, this would

. M .
require storing approximately (N + 2)v values, so that a problem with a



XN XN-| Xk X2 Xy

o

~ ~

Sy Sn N-I §k S, S
—»! N }—» N-I e o oo k s o] 2 > | .
Sn = V§N-l = Sk = | Sz= 5 =
Sy~ Dnxy Sn-1"Dneir Xn-t Sk~ Dy xk S;-Daxp 5~ x,
i (Xy) ) fe (%) | r2(X5) r (%))

Sk = Sk Dix = (s =8y Xk» Skz2 ~Ska Xk 2 = *» Skm~ Skm Xk )

Fig'ufe 3. Dynarpi'c"Programming Formulation of ‘the Allocation Problem with
-~ Multiple Constraints
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modest number of constraints can easily exceed the memory capacity of
the largest computer.

Now assume a starting solution X = (x ooy xN) such that X

10 Xor
satisfies the M constraints given in Equation (4-1), Resources are
allocated by stage, beginning with stage N in the regular (backward
recursive) dynamic programming manner. The input to the ith stage

. t 3 . .
(output of the (i +1)®" stage) is given by the state transformation

function, Equation (4=3), which, using Equation (4-~7) may be written as:

S; = (A - kz i e A Z i) (4-10)
=1+1 k=1+1

Now the input vector to the Nth stage, S is given by Equation

N’
(4=6). Since Xy is defined by the starting solution X, the output of

the Nth stage (which is also the input to the (N-1)St stage, SN 1) is

defined by the state transformation function, Equation (4-3). Likewise,
SN__1 and XNo1 specify the input state vector to the (N-2.)nd stage, etc.
Thus, with X defined, the input state vector to each of the N stages is
specified,

Although X defines a feasible solution to Equation (4=1), it is not
necessarily the optimum solution. The recursive search technique
provides a method of improving the solution by successively incrementing
the decision variables, and implicitly the state variables, until the
optimum solution is reached, This technique beginsg by finding an

optimum value for the first stage decision variable, x for the stage 1

1’

state vector, S defined by the starting solution X. The first stage

1’

vector is given by:
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N- N
sz(A_Zé ,A-Zb s eee
1 174 1Kk Y2 L, 2k k

N
Ay - Z k) (k-11)
K=2

With the first stage state vector fixed, a search over x, can be
accomplished (while maintaining a feasible solution) to determine the
1

value of x, which maximizes the recursive relationship for the first

stage:

*
fl(S1) = max r1(x1) . (L=12)
x1 <min S1

To determine the value of X, which optimizes Equation (4-~12) for a

*
given state Si, increment X, by an amount delta (4) until a point X, is

reached where

*

1 +4) (4=13)

* Ee
- >
f1(S1,x1 A)<f1(S1,x1) ffsl,x

or until one of the constraints prevents incrementing X, further.

As a matter of notation, let:

* * ‘
fl(si) = f1(Sl,x1)= max fl(Sl,x1) (A-1l)
x, Smin S
1 1
*
so that f1(Si) is the optimum return from the first stage for a fixed
input vector Si'
For the second stage, the dynamic programming recursive relation-

ship is given by:

*
fz(sz, xz) = rz(xz) + f1(82-D2x2) (4~15)
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where the first term is the return function for the second stage, and
the second term is the optimum first stage return for the input state

vector (Sz-D X_)s It is now necessary to find an optimum value of x

2 2 2

for the state vector 52. (Recall that 52 is specified by the starting
solution vector x3, X)s eoss XN which has not been changed thus far.)
To determine an optimum X, increment this decision variable by an
améunt delta (delta may be positive or negative, depending on the
direction which causes Equation (4-=15) to increase)e. Changing X,

however, not only changes the second stage return, r2(x2), but also

the input to the first stage through the state transformation equation
S, =S_ -Dx_ . (4=16)

Therefore, for each change in X, and resulting change in Sl’ it is
necessary to calculate a new value of f;?sz-szz); i.e., reoptimize
the first stage for the new input vector., This is accomplished in the
same manner as before, incrementing X, until fl(Sl,xi)is at a maximum
within the constraints. It is necessary to reoptimize Xy for each new
S, before evaluating Equation (4=15) to determine if X, is at a maximum,
Continuing in this manner, x, is incremented (and X, reoptimized)

*
until a point x, is reached where:

* * * '
fz(Sz, x, -4) <f2(82, x, ) > fz(Sz, X, + b) (4=17)

where again:

* *
fz(Sz, x2) = fz(Sz) o (4-18)

ok '
At this point, fz(Sz) is the optimum total return for the first and

second stages for the state vector Sz.
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Going next to the third stage recursive equation:

*
fj(sj’xj) = r3(x3) + fz(SB-DBXB) . (4-19)

The optimum third stage return for a state vector S, is obtained by

3

incrementing across x, in the same manner as before., In this case,

3

it can be seen that changing x, changes the input to the second stage,

3
and, therefore, to the first stage also, through the state transforma-
tion function. Thus, it is necessary to reoptimize the first stage,
and then the second stage, in a manner identical to the previous steps,
This procedure is continued in a similar manner through stage Nj
incrementing across Xy and subsequent reoptimization of stages x,

through Xyo1 for the resulting state variables will result in an

Op tlmllm re tuI n:
fN SN :fN A [) A 9 o0oey %4 ll‘ '-20

at an optimum solution vector:

* * * *
X = (xi, xz, caey XN) o
This process is shown in Figure 4 for a three stage allocation

problem; i.e., solving the problem:

Maximize R(X) = r1(x1)+-r2(x2)4-r3(x3) (4=21)

subject to:

8§, x +6. x +8,
i i

< i = o -
1151 5%, <A, i=1,2,3,%4 (L-22)

X
33 i
This figure shows only the basics of the algorithm in order to

describe the logic behind this technique., The details of the algorithm



SET V=0

'

SET X = FEASIBLE
STARTING SOLUTION

CHECK FEASIBILITY OF X.
IF CONSTRAINT VIOLATED, <
PERTURB DOWNSTREAM VALUES
UNTIL FEASIBILITY RESTORED.
NO
V|=X-—->x,=x|+A L
YES
Vo: X f— X2=X.2+A .
SET
X =Vo
IS NO . .
R(V3z) >R(X) Vz=X f—81 x3= x3+ A F— >
?
YES  NOTE: -
, V = 3 x 3 matrix
X =V3 Vi = ith column of V

Optimum allocation = X
Optimum return = R(X)

Figure 4, Recursive Search Algorithm for Three Stage
Problem

40
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vary depending on the particular problem being solved. The computer
code which implements this algorithm for the allocation problem with
constraints on two entities is given in Appendix A,

The algorithm starts by setting three vectors, Vl’ Vz, and V3

equal zero. Each vector contains the same number of components as

stages, in this case three, Vector V for example, will contain the

17

current value of the vector with the optimum first stage decision for

the input state specified by x_ and x

o 30 Similarly, V2 will contain the

vector with the optimum value of x, for the input vector specified by

X,o Finally, V_, will contain the optimum vector specified by the

3 3
input state (A1, L A3, Aé)'

The starting solution X = (x1, X x3) is set equal to a feasible

2,

starting solution; a solution that satisfies the constraints of
Equation (4-=22),

Now letting
3
R = ) r,(x) (4-23)
i=1 1 1

a comparison is made between R(X); i.e., the return obtained from the

starting solution, and R(V1)o Since V., = (0, 0, 0) at this point, R(X)

1

is greater than R(V1) so that the "no'" branch is taken. The vector V1

will then be set equal to X and the first decision variable, Xy
incremented by delta. Next, a check is made to determine if the new

solution vector (x1-+A,

X9 x3) still satisfies the constraints.

If not, x, is at the optimum value for the input state specified by x

1 2

and x and the algorithm proceeds to the next stage. (The portions of

3,
the algorithm that perform the feasibility check are omitted from this

figure for simplicity.)



L2

If the new trial solution is still feasible, R(Vl) is compared to

R(X) to determine if incrementing x, increased the return function.

1

If so, x, continues to be incremented until a constraint is reached, or

1

until a further increase in x1 causes the return function to decrease.

*
At this point X = (x1, x is at the optimum value for

2’

x3) so that X,

the input state 51 specified by X, and x3 as follows:

S =S ~-Dx (L4-2L4)

Sl=(A1—51x-5 0 x -8 .x A3-=5 ) e

o¥p = 013%31 Ay = 0yo%, = Ogaxa, 32%2 = 839%5

(4-25)
At this point the working vector, X, is set equal to the optimum stage 1

vector, V_, and R(Vz) is compared to R(X). Since V2 = (0, 0, 0) at

1,

this point, R(Vz) < R(X) so the algorithm sets V2 = X and increments

the second stage decision variable, X, by delta, However, incrementing

X, changes Sl, so a new optimum value of x, for this new input state

1

must be calculated. To accomplish this, the algorithm sets the elements

of V1 equal zero and reoptimizes x, until a point x, is reached;

1 1
"€ (x, A, x)e X i
X, X4y x2-+ ’ x3 o is then set equal V1 so that:

(x, (4-26)

X =V, % Xqs Xp x3) -2
V= (xy x,+4, x,) (4-27)

o = (X, X, + 8, x3 IS -27
R(Vz) is now compared to R(X) to determine if incrementing X, increased

the return function. If so, X, is again increased and x, reoptimized

for the new input state vector, This is continued until X, and x, are

both at an optimum value for the input state S2 specified by x_.

3
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It must now be determined if x3 can be improved, so this decision
variable is incremented in a search across the third stage recursive
equatione. The algorithm continues to increment x,, and reoptimize x,

3

and X, for each new input state, until a point is reached where:

* %
R(xl, X +4) . (4-28)

% %
o XB-A) <R(x1, X9 x3)>R(x1, X5y X

3

*

* *
This is the optimum allocation X = (x o

17 X

* -k
x3), and R(X ) is the

optimum return.
Maintaining Feasibility

The recursive search technique requires that a feasible solution
be maintained while searching across the recursive equations for the
optimum value of the decision variable, This is accomplished as
follows.

As each decision variable is incremented, the new trial solution
is checked for feasibility., If the trial solution is infeasible,
"downstream" decision variables are operated on until feasibility is
restored. For example, if x3 is increased and if this makes the trial

solution infeasible, x, and/or X, are increased or decreased (depending

1
on the type of constraint being violated) until feasibility is restored.
This feature is not shown én the flow diagram due to dependence on the
type of problem being solved.

Also included in the algorithm, shown in later figures, is a
feature to allow the decision variable to be incremented in both
positive and negative directions. It is not known beforehand whether

increasing or decreasing a particular decision variable will cause the

objective function to increase. Therefore, the algorithm provides for
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a search in both directions before proceeding to the next stage. If
increasing the decision variable decreases the objective (return)
function, the direction is reversed and that decision variable incre-
mented in the negative direction. The algorithm continues to increment
the decision variable in a direction that causes the return function to
increase. After each increment is added, the trial solution is checked
for feasibility., This process is repeated until further increasing the
decision variable violates a constraint such that the solution cannot

be made feasible by perturbing downstream variables, or until the return
function starts to decreases At this point the algorithm proceeds to

the next stage.

Recursive Search Algorithm for

n-Stage Problem

To make the algorithm more efficient, define an n x n matrix V,
and let Vj represent the jth column of that matrix. Each column of V
contains n components, and Vj contains the optimum solution for the jth
stage for the inpﬁt state defined by X 9 X 49 eoe xj_1,

Also, let K represent an n-component vector, K = (k1, kz, coeey kn)e
The value of kj determines the direction of search for the jth variable;
for k equal zero xj is incremented in the positive direction. For k
equal one xj is incremented in the negative directione.

With these definitions, the algorithm for an n-stage recursive
search solution is shown in Figure 5. To illustrate the use of this

procedure, again consider the four stage dynamic programming problem

given in Chapter III.
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SET ELEMENTS OF MATRIX
V AND VECTOR K = 0.

Y

SET X = FEASIBLE CHANGE "DOWNSTREAM " VALUES
STARTING SOLUTION OF X TO RESTORE FEASIBILITY

Y
: SET ki = O
Ti=! jg—— l
SET) FOR i<]j
NO SET
Vi = X
YES )
SET X=Vj
NO SET kj=1TO
, REVERSE SEARCH
DIRECTION
YES
NOTE:
V = nxn matrix
Vj = jth column of V
K = vector
k =

jth element of K

Optimum allocation = X*
Optimum return = R(X*)

Figure 5. Recursive Search Algorithm for n-Stage
Problem
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Maz;:imiz-e R(X) = Z ri(xi)

subject to:

where the return function for each stage is given in Table I,

In order to see the correlation between conventional dynamic pro-
gramming and recursive search, calculate the input state specified by
the starting solution and compare each step of the recursive search to
the conventional dynamic programming solution given in Tables II
through V. Notice, however, that with the recursive search, it is not
necessary to calculate the state variables. Since a feasible decision
is always defined, the state variables are implicitly in the solution,
but never need to be determined.

Choose a starting solution X = (2, 2, 2, 2), With this starting
solution, the input to each of the stages is determined as follows,

using the transformation function, Equation (3-5).

Sy = A = 10

Sg = 8, =X = 8
Sy = Sy=Xy = 6
Sy = Sy=%, = L
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In accordance with the recursive search algorithm, increment X, by
delta, which for this problem is chosen as a unit increment. The new

vector is then X' = (3, 2, 2, 2). Since

4

the constraint is not violated, and R(X) = 11,783,

Now since R(X') > R(X), X, is again increased to give a new trial
solution X" = (4, 2, 2, 2). Again, the constraint is not violated and
R(X'") = 12,020 > R(X'), The first stage decision variable is again
incremented to give X"'= (5, 2, 2, 2). However, this solution violates

the constraint, so x, = 4 is the optimum value for the input state

1

51 = 4, It can be seen from Table II that an identical result is

obtained in conventional dynamic programminge.

Now set V. = X" = (&, 2, 2, 2), the optimum value of x, for

Xy = Xy =X = 2 (and, implicitly, s, = 10-6 = 4), 1Increment the

second stage decision variable giving a new working vector
X= (4, 3, 2, 2). Since the constraint is violated for this solution,
the downstream variable, X5 is reduced until a feasible solution is

obtained, giving x' = (3, 3, 2, 2). Since x, cannot be increased

1

without violating the constraint, x. = 3 is the optimum value for the

1

specified by x, = 3, x3

input state s = X, = 2; i,e., for the input

1

state

L
Si=1°-zxi=3 .
i&h

At this point, R(X') = 11,886, and since R(X') < R(Vl) the

direction of search over the second stage is reversed to determine if
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decreasing X, will improve the solution. Thus the new trial solution
vector is: X" = (1, 1, 2, 2). The input state to the first stage is

now given by
L
s:lO-Zx,:S P
1 -

Incrementing x, as before gives an optimum value of 5 for this input

1
state. Then, for X' = (5, 1, 2, 2), R(X') = 11,896, Since R(X')<R(V1),

the optimum first and second stage decision variables for S, = 6 are
*
X, = L, X, = 2. Note that from Table III, for s, = 6, X, = 2. Then
*
s, = 6-2 = 4 and from Table II, X, = 4, Thus, identical results are

obtained with both conventional dynamic programming and the recursive

search technique. The next step, in accordance with the algorithm,

is to set A2 =X = (x;: xé; X3, xé) = (&, 2, 2, 2).

Next,.x3 is incremented, giving a new solution vector X= (3, 2, 3, 2)
where X,y as a downstream variable, has been reduced until a feasible
solution was obtained. Before the new trial solution for x3 = 3 can be
evaluated, however, it is necessary to reoptimize X, and X, for the
input state s_ = 10=-3=2 = 5, This is accomplished in the same manner

2

as before,

Succeeding steps of this algorithm continue to improve the solu-
tion by incrementing the decision variable at each stage until an opti-
mum solution is found. In contrast to conventional dynamic programming,
the recursive search calculates values of the return function only for
those solutions on the path between the starting and optimum solution.

Therefore, the number of calculations is usually reduced.
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As shown in Appendix A, the optimum solution for this problem
obtained by the recursive search technique is X=k= (2, 1, &, 3) giving
an optimum return of 12,675; results that are identical with those
obtained in Chapter III,

For a one-dimensional allocation problem, there is a small savings
in computer memory, and also a reduction in the required number of
calculations., However, now consider a problem where there is one
project with a budget constraint, and in addition, constraints on each

of the four time periods, such as:

L
Maximize R(X) = Zr,(x.)
. i1
i=1
subject to:

4

z:x < 10

iz1 *t

X S L.I: i = 1, 2, ®ocoy L.I:

x, 2 0, integers o

With five constraints, the state variable is a vector with five
components, and although there are only four feasible levels of the
state variable at each stage, there are 45 feasible inputs to each
stage, requiring approximately 6 X 45 storage spaces. However, with
recursive search, the problem is not complicated in any way, since the
optimum solution for every feasible input state need not be determined,
The storage requirements remain n X n, in this case 4 X 4, In fact,
the problem requires fewer calculations since the. feasible range of

each decision variable has been reduced,
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The solution for this problem is X,k= (2, 1, &, 3), which is
identical to the previous problem since the time period constraints
did not bind, If the time period constraints are reduced from four to
three, however, the optimum allocation is X=k= (3, 1, 3, 3) giving an

optimum return of 12,631,
Mathematical Proof

The basis of this technique is that a search is conducted sue-

cessively over the dynamic programming recursive relationships:

*
£ x) = (q) + £ (5 -Dx) (4=37)

*
where fo(So, xo) = 0, to determine the optimum return from stages 1

through k, k = 1, 2, cs0y N, given by:

*
fk(Sk) = ;&{52‘3 Skfk(Sk, :&{) o (4~38)
In order for this search technique to converge to a global maximum,
a necessary and sufficient condition is that each fk(sk’ xk) be concave
(or conversely, to converge to a global minimum each fk(sk’ xk) must
be convex) over the decision variable X e This is proved ' in the
following paragraphs.
A function g(z) is said to be concave if, for any point z *between

z, and zz,

o(z) 2 aglz,) + (1-%)g(z,) (4-39)

forOS@Sle
This says, in effect, that if g(z) is concave, then the function

evaluated at any point between z, and z, is greater than or equal to
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any point on a linear interpolation between g(z1) and g(zz). If
Equation (4=39) is a strict inequality, then g(z) is said to be
strictly concave,

To prove concavity in Equation (4~37), first consider stage one,

where the recursive relationship is a function of the stage return only:

fl*(Sl)= max r (x) . (4=h0)

. 1
xlsmln 51

As before, min S, indicates the minimum component of the vector S

1 1°

E3
Since r1(x1) is assumed to be concave, fl(sl) is also concave, It can

be seen that the input vector simply limits the maximum value of X, to

be less than or equal to the minimum slack in the state vector, The
constrained maximum value can, therefore, be easily determined by

incrementing x Since integer values are desired, it is assumed that

10
the decision variables are incremented by an integer amount in the

search technique.

The second stage recursive relationship is given by:

*
fz(sz, xz) = rz(xz) + fl(sz-szz) o (L~k1)

Now r2(x2) is concave by assumption, and since the sum of concave

¥
functions is also concave, fz(Sz, x2) is concave if f1(Sz-D2x2) is

concave, In searching for the optimum of Equation (4-41); i.e.,

*
fz(Sz), x_ is incremented, holding S, constant, until a maximum value

2 2

of f2(52, xz) is obtained within the constraints, This increments the

input to the first stage, from the transformation equation

S, = Sz—Dz(x2+kA) k=1, 2, coe (k=L2)

*
and for each new state vector Sq, a new optimum f1(S4) must be



52

determined. Thus, incrementing across x_ causes a search across 51

2
%X
in the function fl(sl)' Therefore, it is necessary to prove that
%X
fl(sl) is concave in Sl°
%k

For the continuous case, fl(sl) can be shown to be concave for
concave stage return functions in a straightforward manner. However,
the analysis becomes considerably more complex when the solution is
restricted to integer values. Therefore, the continuous case will be
proved, then a heuristic argument used to show where integer solutions
can introduce non-concavity in constrained optimization problems which
are more general than that given by Equation (4-1),

1 2 . . 1
Let S, and 51 be two state vectors in the first stage, and x, and

1 1

5 1 A
x? be optimum values of x, for states S, and S?, respectively. Then

1 1
* 1 1 1

fl(Sl) = f1(s1’ xl) (L=43)
* 2 2 2

fl(Sl) = fl(Sl, xl) o (L-bl)

Multiplying Equation (4-43) by @ and Equation (4=44) by (1-a) and

adding:

1

* * 2 1 1 * 2 2
afl(sl)q-(1-.a)f1(sl)==af1(sl, xl)q-(l-a)fl(sl, xl) o (4=45)

. 1
Now- if 51 is a state between Si and‘S?, and x, is a decision between x,

. . 1 3 1 .
and xf, and if min 51 < min S? and x, < x2 then using the fact that

1 1’

the stage return is concave:

fl(sl’

11, 2 2
xl) > afl(sl,,xl) + (1-a)f1(51, xl) ° (4=46)
But since f;&sl) = max fl(S19 xl), and using Equations (4-43) and (4=L4k),

1
1

2

% . (4-47)

£.(5)) 2 a8 (5]) + (1-00f (S
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Therefore, from the definition of concavity given in Equation (4-39),

% *
fl(sl) is concave across S . Since both rz(xz) and fl(sl) are concave,
then fz(Sz,xz) is concave. Using an argument identical to the previous

*

proof, if fz(Sz,xz) is concave, then fz(Sz) is concave, and thus
f3(53,x3) is concave. Then, by induction fk(sk’xk) is concave for
k=1, 2, eeey No Since each fk(sk’xk) is concave, it is possible to
search across each of the functional relationships successively to
arrive at a global maximum,

It was assumed in the above proof that there were no integer

restrictions. Now consider the more complex case of integer solutions.
Recursive Search with Integer Restrictions

For the first stage, Equation (4-40) is a function of the stage
return only. Since x, takes on only integer values in the problem
formulation, Equation (4-40) is concave for integer solutions alsoe.
However, consider the second stage return, Equation (4-42), where the

components of the vector D are not restricted to zero or one; i.e., the

more general case where the constraints are of the form:

c..x. <A, J=1, 2, seo, m (4-48)

s

with no restrictions on the Cij'
Since the optimum first stage return is a function of rl(xl), the

second stage recursive relationship, Equation (4-42), may be written as:

x )=r_(x.) +  max r (x,) (4=49)
22 xlsmin[sl/clj 1

where min [51/01] is the minimum component of

]

[511 €117 S19/%07 *°*r Sy Sy
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and where the brackets indicate that integer values are to be taken.
t . . . s s
Assume that the k' constraint of Equation (4-48) is binding, so

that the maximum value of the second term occurs at this constrainte.

Then
mln[Sl/Clj = [sik/cik] . (L=50)
Using the state transformation function, Equation (4-5), X, is limited
by:
S = C._X
x, 5[ -B—2c2] (4=51)
C1k ;

and since the maximum occurs at this value, Equation (4-49) becomes:

272 "2 272 c

‘ S - C., X
f (S X ) = I (X )+r1 [_&15—21{_2_] . (4—52)
1k

Tt can be shown that the second term of Equation (4-=52) is not

concave for certain values of c1k and c2k when the solutions are

restricted to integer values. To prove this, choose Sk and Con such

that:

[s.?.k = o (%, = A)] S [Srak = czkxz:\ ~ [521«; = C (x5 + A)]
€1k ¢ C1x

(4=53)

For example, let c = 3 and c = 1, and consider the case where

1k 2k

s, = 10, x_ = 2, & = 1, Then the terms in Equation (4-53) become

2k 2

3.0, 2,67, and 2,33, respectively. Taking integer values, these numbers
become 3, 2, and 2 so that Equation (4-53) holds. Now consider the
simplest case of a linear (and thus concave) return function of the

form:



55
ri(xi) = xi i= 1, 2, ceey N .

For this case, the test for concavity, Equation (4-39), does not hold;

i.e., X, is between xz-A and x2-+A, but-

rz(xz)?‘ Grz(xz-A) + (1—a)r2(x2+ 4) (4-55)

since, using Equation (4-53)

\:Szk' Cox™o 3q [szk' Cop (X5 = A)]+ (1- a)‘:SZk- Cop (%5 +'A):I

€1k C1k €1k

(4=56)
For example, with @ = .5, using the values calculated previously;

Equation (4-56) yields:

2 7‘ (05)(2) + (95)(3) = 245

and, thus, the second term of Equation (4-42) is not necessarily
concave, As a consequence, fz(sz, xz) is not necessarily concave for
all functions. Notice, however, that under many conditions, this
function is concave and a search technique can be used. For example,
if the constraints do not bind, then Equation (4~41) is concave even
for integer solutions.

If we now consider the problem given by Equation (4-1); i.e.,
coefficients on the constraint variables restricted to zero or one,

then Equation (4-51) is of the form:

61k must be equal one, since if it were zero that term could not have

been the minimum and, thus, could not bind.
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Since the X, are restricted to integer values, each S'j must also
be integer-valued, from Equation (4-~5), As a result, Equation (4-57)
always produces integer values and, thus, there are no values for which
Equation (4=53) holds. Therefore, the dynamic programming formulation
of Equation (4-1) is concave for integer solutions, and a search
technique can be used to determine the optimum solution, For the more
general case, however, where the coefficients of the constraints are
not restricted to zero or one, the constrained objective function is
not necessarily concave for integer solutions, and a search technique

may not converge to a global optimum,



CHAPTER V

RELATED PROBLEMS AND CONCLUSIONS

The technique for mathematical programming developed in this
thesis provides an efficient method of solving certain classes of
allocation problems with multiple constraints. The specific problem
studied has been that of project selection; a form of the capital
budgeting problem, As already mentioned, recursive search dynamic
programming can also be applied to other types of problems amenable to
solution by conventional dynamic programming. Any problem that can be
formulated as a dynamic programming problem can be solved using this
technique providing:

(1) The return functions are concave. (Or convex in the case of

minimization problems.)

(2) The constraints are of the form given in Equation (2=3),

Although the discussions in this thesis have been centered around
the economy of recursive search when applied to multiple=-constraint
problems, some unconstrained or partially constrained problems can be
efficiently solved using this technique, especially when the solutions

are restricted to integer values,

Manpower Leveling

Another optimization problem considered in the operations research

literature is that of manpower leveling. In many businesses, the

57
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manpower requirements vary from year to year or from season to season.
Although it would be possible to change the manning level to meet the
requirements of each time period, there is a cost involved due to
administrative expenses in hiring and firing and due to inefficiencies
caused by the continual flux of personnel. On the other hand, however,
if the same manpower level were to be maintained, during some of the
time periods there would be an excess of personnel charged to overhead
while in others a shortage would require increased costs for overtime.
Thus, it is desired to determine employment levels which will minimize
costse.

An example of manpower leveling is discussed in Hillier and
Lieberman (8). In this case, continuous solutions are assumed to
simplify the problem. However, recursive search can be readily applied
to obtain integer solutions.

For this problem, the manpower requirements for each season of the
year are as shown in Table VII, The manpower level for the preceeding

season is 255, which is assumed to be fixed.

TABLE VII

MANPOWER REQUIREMENTS FOR MANPOWER
LEVELING PROBLEM

Season Summer Autumn Winter Spring

Requirements 220 240 200 255
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The decision variables for this problem, X, s (k = 1,2,3,4) are the
employment levels at the kth stage from the end, where stages correspond
to seasons. The state variables, sk, are the employment levels at the
beginning of stage ke In this problem, the state variables are scalars
instead of vectors as encountered in the multiple-=constraint probleme.

The cost of maintaining levels above the required manpower is
assumed to be $2000 per man per season. The total cost of changing
the level of employment is assumed to be $200 times the square of the
difference in manpower levels. It is further assumed that the level
cannot fall below the requirements (no overtime allowed), so that this
is a partially constrained problem.

The recursive relationship for the kth stage of this problem is

given by:

fk(sk, :ﬁ()=zoo(:ﬁ(-sk)2+zooo(:ﬁ(-wk)+f* (

em1 sk—l) (5=1)

. . t
where wk is the required manpower level for the k h season.

. t .
Since the state at the (k-1)° stage is the employment level at

the kth stage, the transformation function is given by:
s = X (5-2)
so that Equation (5-1) can be written as:
) = 200( )2 ( )+t (x) (5-3)
fk(sk, x ) =200(x ~s_ + 2000 X ~w )+t () . 5-3

The basic recursive search algorithm given in Figure 2 is applied
to this problem, using a starting solution vector X= (255,200,240,220),

In this case the starting solution is set equal to the requirements.
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Since the stages are numbered in reverse order, X, corresponds to the

Spring employment, x_ to the Winter level, etc.

2

Appendix B contains the computer code of the recursive search
algorithm developed to solve the manpower leveling problem,

The solution obtained using recursive search is X*= (255,247,2&4,
247); i.e., Summer, Autumn, Winter, and Spring requirements of 247, 24k,
247, and 255, respectively., The corresponding cost is $185,200. The
solution obtained by Hillier and Lieberman, assuming continuous
solutions, is 247.5, 245, 247,5, and 255 for a total cost of $185,000,

Another interesting aspect of this problem can be studied through
a simple change to the return functions. Assume now that overtime can
be used at time and one half regular time, In this case, the cost for
a shortage of personnel is given by 105(2000)(xk-wk). The problem was
solved again using recursive search, with the return function appro-
priately modified, The total cost in this case was $159,400, with the
manning levels shown in Table VIII. Thus, a savings of over $25,000

can be obtained by using overtime,

TABLE VIIT

OPTIMUM MANPOWER LEVELS WITH AND
WITHOUT OVERTIME

Season Summer Autumn Winter Spring Cost

No overtime 247 244 247 255 $185, 200

With overtime 245 240 236 237 $159, 400
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Thé project selection and manpower leveling problems illustrate
the variety of applications of the recursive search algorithm given in
Figure 3, Although details of the computer code implementing the
algorithm vary from oﬁe problem to another depending on the form of the
recursive relationships and the number and type of constraints, the

solution technique remains essentially the same,
Computational Considerations

Improved Search Technique

The recursive search technique can be made more efficient by modi-
fication of the method of search employed. In seeking to optimize the
dynamic programming recursive relationships, the recursive search
algorithm increments the decision variable, then reoptimizes previous
stages until an optimum value of the decision variable is obtained.for
that particular stage and input state. In most problems, since integér
solutions are desired, the decision variables are incremented by a unit
amount in the search, However, for problems where the range of the
decision variables are large, incrementing by a unit amount can use a
lot of computer time, especially if the feasible starting solution is
considerably different than the optimum solution.

In order to reduce computer time, the algorithm can be modified
so that fewer calculations are required to converge to the optimum
decision variable for each recursive equation. One method of doing
this is to solve the problem several times; initially with a large delta
(incrementing value)} then reduce delta in subsequent passes until a unit
delta is reached, This is analogous to the course=fine grid search

technique proposed by Nemhauser (7).
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For example, for the first pass through a problem, a delta of 100
can be used for the course grid search. This will result in a more
rapid convergence to an approximate solution., If the solution obtained

on this pass is given by X = (x ceo, xn), then it is known that

17 xz’

the true optimum lies within the interval.

X2 (xl-A;x:5xi~+A, .’.Q,,, xn-ASXn*an+A) .

In the next pass through the problem, delta can be reduced to obtain an
even better approximation until finally the exact integer solution is
obtained when a unit delta is used.

Since it is known that each true optimum decision variable lies
within delta of the approximate optimum, the algorithm must be changed
to ensure that the recursive search for each decision variable is
limited to the range xk=-ASJ%:Sxk4‘AQ This can be accomplished by
adding additional constraints after each course grid solution. Since
the number of constraints do not increase the number of state variables
in the solution as with conventional dynamic programming, the additional
constraints do not complicate the problem,

This feature has been incorporated into the manpower leveling code
of Appendix B, The code initially sets limits within which the optimum
solution vector must lie. For example, the lower limit is zero and the
upper limit is arbitrarily set at 500 for this problem, The initial
delta was set at 2, which yielded an approximate optimum solution of
X = (256, 246, 244, 246), The search width for the next pass was set
at Xk:tA so that the problem constraints for each decision variable were
re~set to these values, The optimum allocation for the subsequent pass,

3
for a unit delta, was X = (255, 247, 244, 247), as before,
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A reduction in the number of calculations can also be achieved
through the use of the Fibonacci search (7), which, under some

conditions, may be more efficient than the course~fine grid search.

Improved Starting Solution

Since the number of calculations necessary to converge to the
optimum solution is a function of the starting solution, the efficiency
of the algorithm can be improved by judicious selection of this starting
solution.

Although the optimum solution is obviously not known in advance,
the analyst usually has a fair idea of approximately where it lies.

In this case, it is best to choose a feasible starting solution equal
to this guess to reduce the number of feasible solutions on the path
between the starting and optimum solutionsa

The recursive search technique relies on maintaining a feasible
solution, therefore, this initial guess must be feasible as well as
being in the vicinity of the optimum. To simplify matters, the computer
code given in Appendix A allows the analyst to choose the starting
solution without worrying about feasibility. The code checks the
starting solution and, if infeasible, restores feasibility before
proceeding into the main part of the program. For the manpower
leveling problem, the starting solution must be feasible, therefore, the
algorithm sets the starting solution equal to the manpower requirement

vector.
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Infeasible Stages

In the project selection recursive search algorithm, it is assumed
that there are nxm feasible stages., This means that there are n
projects, and each project lasts m time periods., However, in many
cases, the projects may last an unequal number of time periods. For
example, project 1 may last ten time periods whereas project 2 may last
only nine, or project 2 may not start until time period 2. In the first
case, the stage corresponding to decision variable x is not feasible.

29

Simiiarly, in the second case, the stage for variable X501 is not
feasible. To ensure that no allocations are made to these infeasible
stages, an artifical return is assigned to each such stage in the
algorithm;"For‘ﬁaximization problems, infeasible stages are assigned
a large negative return. This is analogous to the "big M" technique
of linear programminge.

A similar problem can occur in a transportation problem where

there is no route between a supply point and a demand point., Here the

cost, or distance between these points, would be chosen as infinity.
Summary of Results

This research is directed to the solution of the allocation problem
with multiple constraints and non-linear objective function using a
technique referred to as recursive search dynamic programming, Integer
solutions of resource allocation problems are usually obtained through
application of dynamic programming developed by Richard Bellman,
However, this technique becomes very inefficient when the resource
allocation is restricted by several constraints, since the amount of

computer memory required increases exponentially with the number of
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constraints; Thus, when the number of constraints is greater than two
or three, the memory requirements usually exceed computer capacitye.

Recursive search dynamic programming circumvents this "curse of
dimensionality" by successively incrementing the decision variable in
the recursive equation at each stage of the problem while maintaining
a feasible solution. In this manner the number of constraints does not
decrease the efficiency of the algorithm, but actually increases the
efficiency by limiting the feasible range of the decision vector, and
exclﬁding some of the possible states.

This technique is proved to converge to a global optimum for

problems of the form:

n
Maximize (Minimize) }E ri(xi)

i=1
subject to:
n
Z x,(s,z‘)A- j = 1’ 2’ o0oy m
. i J
i=1

provided the return functions are concave for a maximization problem

or convex for a minimization problem.
Recommendations for Further Research

Generalized Constraints

In the proof of the recursive search algorithm, it was demonstrated
that integer solutions can introduce non-concavity when the constraints
are not restricted to specific formss. For the cases discussed in this

thesis, the constraints must be of the form given in Equation (2-1),
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In solving integer programming problems of the more general form
given by Equation (1-1), the recursive search algorithm yielded the
optimum solution in most cases. In some cases, however, the non-
concavity problem discussed earlier was encountered and the algorithm
did not reach the global optimum.

It is believed that further research could result in a set of more
general rules under which the recursive technique would provide the
optimum solution. This would allow the use of this algorithm for a

wider class of integer programming problems,

Non=Concave Objective Function

‘From the mathematical proof of the recursive search technique,
convergence to a global maxiﬁum was shown only for the case of a
concave objective function. There are several 'real-world' problems,
however, where the return functions are neither convex nor concave,
but are monotonic., The proof for the recursive search technique should
be extended to determine convergence properties of the algorithm when

only a monotonic objective function can be assumed,
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—..ECRTRAN IV G LEVEL

PAGE 0001}

iB_ MALN e NATE = ?leO 19410415

DIMENSLON V(20,20) X 6200 oK{200 38200 217200 s R(20)+TA(LO) yPALLD) . —

0001
LC1420) 9»C21(20)eC3(20) ,FKITLL)
0002 COMWMUN_ /Y/NeCleC2sC3 [L/DELTALNPANTP2HALPALTALX
C003 INTEGER VX DELT +TAsPALBA
0004 DATA_ V/400%0 /s K/23%0 /5 1T /£20%0/
[ DIMENSIONED FOR 29 STAGE PROBLEM
_____ - —
[ » T
[ o e it i s o sk e, . .l Al i, sl it S
c . '
C NUPBRER STAGES AS FOLLOWS
c .
c JIME_PEREIODS. : .
C.
c i 2 3
[
€ 1 1 2 3
C PROJECTS 2 4 5 6
c- 3 T 8 9
[
CReunRaks FRERREEY EX RIS REEEREECTE EXEE XEET X ¢ RSP EEREE
c DELTA = SEARCH INCREMENT :
0005 READ (5+500) DELTA
- 0006 500 FORMAT (I110)
c__ 8A = TOTAL BUDGET ALLOCATIGN
0007 READ (5+510) BA
0008 9210 FORMAT (110} -
c NP = NUKBER OF PROJECTS
C PA(IL) = MAXTMUM ALLOCATION FOR _PROJECT 1
0009 READ{S5,+520) NPy (PALI)I=1,NP)
C. NTP = MAXIMUM AUMBER OF TIME PERIODS
c TA(T) = MAXIHUM ALLOCATION FOR TIME. PERIOD 1
0010 READ_{55520) NTP,(TA{L)41=1,NTP}
Goll 520 FORMAT (5110}
0012 N=HTPENP
0013 NP1=N+]
C C1,C2,C3 = CONSTANTS FOR_RETURN FUNCTION
[o R{I) =.RETURN FUNCTIGN FOR STAGE I
(o = CLOIY*X(I)/(C201)*X(1)+C3(1})
ool 4 READ (5+5301 (Cl{I)sC2(104C3(I)sI=1eN)
0015 530 FCPMAT _(3F10.5)
0016 READ (54540} (X(I),I= l.h)
0017 540 FORMAT (1015}
0018 JCOUNT=0
C LOCP TRAP STOPS CALCULATIDONS IF SOLUTIDN HASN'T
c CONVERGED BY 1COUNT
0019 ICOUNT=5000 :
0020 CALL XCST(NPL,£558+8558)
0021 10_J=1
0022 20 CONTINUE
S 0023 . DD 30 _I=14N
0024 30 BLIY=VIJ,s1)
0025 JCOUNT=JCOUNT+1

0L



_FORTRAN IV G LEVEL 18 MAIN DATE = 71020 __10/10/15 PAGE_ 0002 —
e . 0026 . . _______ IF{JCOUNY.GE.ICOUNT) GO TG 555 _ __ . _ .. _ . o B
0027 IFLIT(IILEN.D) GG TO 40
... 0028__. . CALL XFCN{BeVi) . — e e et e e e
0029 CALL XFCN{X,V2)
0030 JF{V1.6T,¥2) GO IO 130 ——
0031 40 CONTINUE
0032 . .DO 50 I=leN_ . [ e e e s e e e .
0033 50 ViJds1)=X(1)
0034 Ivtw=2 L —— R
0035 60 CONT INUE
0036 XeJd=X(J)4L=1 P *K( JI*DELTA
0037 - IFIX(J}.GE.O) GO TO 80
— 0038 DO 70 T=l.N - I e
0039 70 X(1)=viJ.I)
0040 .60 T9H 150 — S e
0041 80 CONTNUE
0042 CALL XCST{J,6130,£558)
0043 90 CONTINUE
_ 0044 _ = e : e
0045 100 CONT INUE
— 0046 JMi=g=1 _ R I —_ I
0047 IF{JML.EQ.O0} GO TO 120
0048 DO 110 I=1,4M1
0049 K(I)=0
0050 _-_ __ 110 _1T{131=0 S . e
0051 120 CONTINUE
0052 .60 70 20 e e s ——
0053 130 CONTINUE
0054 D3 140 I=1,4N
0055 X(I)1=V{J,y1)
0056 140 _CONVINUE S S o .
0057 IF(K{J).€Q.1) GO TQ 150
0058 K{a=1___ N e S e - R
0059 GO To 60
——— 0060 35C CONTINUE
0061 d=J+l
0062 IF(J.LE.N) GO TO 190 . I R — I
0063 160 CONTINUE
0064 _DD_170 I=1,N S S S e .
0065 170 XtI¥=VIN,I)
066 CALL XFCN{X,ANS)
0067 WRITE (6,300)
. 0068 ___ 300 FORMAT {1H1,40X,*ALLOCATION PROBLEM?) . s
0069 WRITE (64310) NP
__0070 310 FORMAT (1HD,25X, *NUMBER OF PROJECTS *,16) . U
0071 WRITE (65320) NTP
0072 320 FORMAY _(1HO,25X,*NUMBER OF TIME PERIODS ',16)
0073 WRITE (6,330) BA" ’ .
________ 0074 330 FORMAT (LHOy: *YOTAL RESOURGE CONSTRAINT *,16) . e
0075 WRITE (6,340 PALI) s I=1,NP) .
0076 ___ 340 FORMAT' (1HO,%DX, PROJECT RESOURCE CONSTRKAINTSY,// 240X PROJECT 49X . . N FT. N I

Lo CONSTRAINT /74 (40Xy [4415X,14))
0077 WRITE (65350) (I,TALI),1=1,NTP]}

172



FORTRAN. ]V G _LEVEL 18 MAIN DATE = 71020 - 10710715

PAGE

0003

Q078 350 FORMAT (1HQ2 40X, *TIME PERIOD CONSTRAINTS®s//+360Xs ' TIME_PERIGD " 9X —
Lo 'CONSTRAINT®,// 540Xy 14,15X,14))
0079 WRITE (64360} . e .
0080 360 FORMAT (1HO 20X, ' %xssxbbtbbiibssrdhanedbnk RESULTS AR RS
PRLLIIEAI I LIS LD
0081 WRITE (6,370} R
_____ 0082 370 FOPMAT_(1HQ,40X*0PTIMUM RESCURCE_ALLOCATION') o
- 0083 WRITE (6,380} : :
0084 380 _FORMAT (1HO425X¢ *PROJECT *,18X, "TIME PERIOD')
0085 WRITE (64360) (KJIpKI=LiNTPJ
0086 390 _FORMAT (1HO¢34Xy919)
o087 DC 180 I=1,4NP
0088 II=(I=1)%hTP+] S
0089 JI=I=NTP
0090 WRITE (604000 14X{1J),1d=11,4J)
0091 400 FORMAT (1HO420X,1945%X,919)
0092 _180_CONTINUE .
0093 WRITE (6,410) ANS
0094 410 _FORMAT_{1HOs// 440X s*OPTIMUM RETURNY,F10.3)
0095 HRITE (&,360)
0096 WRITE (6,420) _
0097 420 FORMAT (1HI,30X,*RETURN FUNCTIONS®)
0098 DQ 200 I=1,NP
0099 II=(1-1)%NTP
0100, WRITE (6,430) I .
0101 430 FORMAT (1HO,30X4*PROJECT®, 6}
N 0102 WRITE (69440) -
0103 440 FORPAT (1HO.5X"ALLOCATION® 45X, *TIME PERIGD 1%,5X*TIME PERIGD 2%
15X, *TIME PERIOD_3% 45X, *TIME PERIOD 4%)
0104 DN 200 KK=1,11 .
0105 KMI=KK=1
0106 DD 190 J=1,NTP
107 L=l1+J
0108 190 FKJ{LY=CLIL}*KML/LC2(L)*KML1+C3 (L))
g109 WRITE (6:450) KMl LFKJ{L)},L=1,NTP}
6110 450 FORMAT {lH ,5X¢15,4F18.4)
_ 0111 200 CONTINUE e
0112 GO TO 777
e 0rIl3 555 WRITE {6,999) JCOUNT o
OLk4 999 FORMAT {1HO,*STOPPED AT JCOUNT='I161}
OrLl5 60 10 777
0116 558 WRITE (65,9961}
0117 996 FORMAT _(1HO,*NO FEASIBLE SOLUTIGN®). }
o118 777 CONTINUE
all9 STOP B
0120 END

gl
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EORTRAN 1V G LEVEL 18 XCSY DATE = 71020

0001 SUBROUTINE XCSTLJ, *,%)

002 DIMENSION X(20),TALIO)PALLIO)}

0003 . COMMON _ /2/DELTANPyNTP,BA.PA,TA,LX [
0004 “INTEGER XsTA,PA,BA,TPPyA.DELTA

0005 TPP=NTFEINP

0006 A=0

co07 D0 10 I=i,TeP N _
0008 10 A=A+X{1)

00409 Ki=1 : .

0010 20 IF(A.LE.BA) GO TO 50

0011} 30 1NX=KI

0012 IFLINX.GELS) GO TO 160

0013 IF{INX.6T.TPP) GO TO_ 170 I
0014 XOINXY=X(INX)=-DELTA

0015 IE{X{INX).GE.Q) GO TO 40 I

0016 X{INX)=0

0017 Kl=K]+1

0018 G0 'TQ 30

0019 40 A=A-DELTA e

0020 G0 Y0 20

0021 .. 50 CONTINUE

0022 DO 100 I=1,NP

0023 II=(I=1)%NTP+}

6024 JJI=1=NTP

0025 A=0Q I

0026 DO 60 K=Il,43

0027 60 A=A+X[K) .

0028 KI=0

0029 70 _IF(ALLE.PA(I)) GO TGO 100

0030 80 INX=FI+KI

0031 - IF{INX.GE.J)} GO TQ 160 e

G032 IFLINX.GT.34) GO TO 170
_0033 XUINX)=X{IRX)-DELTA o
0034 IFIX(UINX) .GE.O)} GG TO 90

0035 X{INX)=0

0036 KI=KI+1

0037 _ 6GotTo 80 A .
0038 90 A=A-DELTA

0039 _Ge_Juo 19 ; _
0040 160 CONTINUE

0041 00_150_I=1,NTP

0042 Ti=1+NTPE(NP-1)

0043 ASC e
0044 D0 110 K=1,JI,NT?

0045 110 a=A+X(K) _ B
0046 KI=0

0047 120 IF(A.LE.TA{I})} GO TG 150

0048 130 INX=1+KI

0049 IF{INX.GE.J) GG 10 160 e
0050 IF(INX.GE-II) GO TO 170

0051 . XCINX)=X{ INX)—DELTA o o
0052 IF(X(INX).GE.O) GO TO 140

0053 __XUINX)=0 _

#L
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ALLCCATION PROBLEM
o NUMBER OF PROJECTS 1 L L
NUMBER OF_TIME PERIODS 4 —

10

TOTAL RESOURLCE CONSTRAINT

PROJECT RESOURCE CONSTRAINTS

- - PROJECT . CONSTRAINT —
1 10
TIME _PERIOD CONSTRAINTS _

- TIME PERIOD CONSTRAINT -
1 4 3
2 4
3 4 —
4 4
ERFERUEERERRERKER KK kT KK RESULTS EEERERTRT R Rk ARk SRkxkd

DPTIMUM RESOURC

€ ALLOCATION

PROJECT ~ TIME PERLOD

i 2 3 4

1 ‘ Fl 1 4 3
OPTIMUM RETURN 12.675

FTEEEREREE R BT REETE KT KEE RESULTS

FRRRRKERER KRR AT R ERTERE

9.
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APPENDIX B

COMPUTER CODE FOR MANPOWER LEVELING PROBLEM
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EORTRAN_ IV G LEVEL 18 MAIN DATE = 71020 10/15/49 PAGE 0031

9001 DIMENSION V(20:20) ¢X{20)o1T{20)2R120) XL {20) +XUL20)+sB8{20)sDELI20), —
1K{20)
0002 — INTEGER VX DELTA XL 9 XU BEL»BsRy XXELy XX [
0003 DATA VZ100%0/,K/10%0/,1T/710%0/
c N = NUMBER OF TIME PERIODS
c DIMENSIONED FOR 20 STAGE PROBLEM
0004 READ (5,500) N
0005 500 FORMAT (I5)
0006 READ 525053 NDELTA, {DEL{I),I=1,NDELTA) o
0007 505 FORMAT (10I5)
c X = FEASIBLE STARTING SOLUTION VECTOR
0008 NPLl=N+1
0009 DO 10 I=1,NP}
c
[ XL{I} = LOWER MANPOWER LIMIT_FOR _TIME PERIDD I
c RII) = MANPUWER REQUIREMENT FGR TIME PERIOD 1
o XUlI) = UPPER MANPOWER LIMIT FGR TIME PERIOD 1
C
C NUMBER TIME PERIODS AS Osls2ressp WITH ZERO _AS INITIAL TIME
c PERIGD. INITIAL TIME PERIOD HAS FIXED MANPOWER LEVEL.
[o
C USE ONE INPUT CARD FOR EACH TIME PERIOD, EACH CARD CONTAINING
C LOWER LIMIT, REQUIREMENT {IDEAL LEVEL) AND UPPER LIMIT,
[+ RESPECTIVELY
C
[4 FOR PROBLEM WITH NO OVERTIME ALLOWED, SET XL{I} = R(I)
[o
C FOR FIRST CARD {TIME PERIOD ZERD}, SET XL{0} = XU({0) = R{O} -
(o
0010 10 READ {5,510) XL{NP1-I+1),R{NPL=I+1),XU{NPL-I+1)
0011 510_FORMAT (31102 -
002 DO 20 I=1,NPl
0013 20 X{I}=RU(I})
[4 R{I) = REQUIREMENTS FOR ITH TIME PERIOD
0014 BINPLY}SRINPL)
0015 JCOUNT=0
0016 ICOUNT=3000 -_
[+ SET ICOUNT AT REASONABLE NUMBER OF ITERATIONS. LOCP TRAP
c STOPS CALCULATIONS IF SOLUTION HASN®'T CUNVERGED BY ICOUNT .
0017 Ix=1
0018 30 J=1
0019 DELTA=DEL L IX)
0020 40 GCONTINUE
0021 DO 50 I=1,N
0022 50 B({I)=V(J,I)
0023 JCOUNT=JCOUNT+1
0024 IF{JCOUNT.GE. ICUUNT) G3 TG 555
0025 IFUIT{J).EQ.0) GO TQ 60
0026 CALL XFCN{BsNsRyVL) o
0027 CALL XFCN{XyNg¢R;V2)
0028 IF(V1.LT.V¥2) GO TO 150
0029 60 CONTINUE
0030 DO 70 I=1,N

6L



FORYRAN 1V G LEVEL 18

MAIN — DATE = T1020 10/15/4S

PAGE 0052

. _.._..0031 I (N Y VPR O Eo).4 & B I I e e e e e e e e R
0032 IT{Ji=1
0033 80 CONTINWE T R R
0034 .. XU3I=XCIP+{—11**K{ JI*DELTA
0035 IFIX{J).GE,0) GO TO_100
0036 00- 90 I=1,N
0037 90 X(Il=v{J4,1} S [ U S,
0038 GO YO 170
0039 ___100 CONTINUE _ . . . e e e S
0040 IFIX{JI LT XL} ORX(IILGTLXULJY) GO TO 150
0041 110 CONTINUE
0042 J=1
0043 120 CONTINME . el
0044 ) JM1=J-1
0045 " IF{JM1.EQ.0) GO 1O YO _ R . _
0046 . DO 130 I=1,JM1
0047 K{1l=g
0048 130 IT¢13=0
0049 — e _ DR
0050
0051 150 CONTINUE . . e
0052 DO 160 I=1,N
0053 X{13=V(J,1}
0054 160 CONTINUE
0055 . _JF{K{J).EQ.1) GO TO 170 e _ I
0056 K{J)=1
0057 GO TO 80 L B I
0058 170 CONTINUE
0059- J=J+1 :
0060 IFtJ.LE<N) GO TO 120 i
0061 IF{IX.GELNDELTA) GG 1O 190 .
0062 DO 180 I=1,N
[ RE-SET LOWER AND _UPPER LIMITS OF EACH DECISICN VARIABLE
0063 XXL=V(NyI)—2%DELTA .
0064 XXU=VIN, [} +2¥DELTA
0065 XLE T V=MAXOLXLE{I) , XXL)
0066 XUCTI=MINOCXULT) 4 XXU) e
0067 180 CONTINUE
0068 CIX=IX+1 o _ _ - -
0069 GO TO 30
0070 190 CONTINUE
‘ 0071 B3 200 I=1,N
0072 200 X{I}=V{N.1) OO S -
0073 CALL XFCNIXyNsR,ANS)
0074 _HWRITE (6,600} - e __ I e
0075 600 FORMAT (1Hl,+35X, "MANPOHER LEVELING PRGBLEMY)
0076 WRITE (65610}
6077 610 FORMAT (1HO,//,10X+*TIMC PERIOD® 44Xy "LOWER LIMIT? y4X, "REQUIREMENT* '
194Xs YUPPER LIMITY,4X,"0OPTIMUM MANPOWER LEVEL') e e .
0073 DO 210 I=1,NP1
Q073 IMl=1=) I . _ .
0080 210 WRITE (64630) IML, XLINPL~I+1),R{NP1-1+1) ¢XU(NPL-I+1),X{NP
0081 630 FORMAT (1H 512X,13510Xs15,11Xy15510X+15415X+15)

08



— FORTRAN IV G LEVEL

10/15/49

PAGE 0003

18 MAIN DATE = 71020

0082 WRIJE {6,640) ANS

0083 640 FORMAT (1HO+//210Xs"MINIMUN LEVELING €OST =%,F20.2}
0084 GO 10 7717

0085 555 WRITE {6,999} JCOUNT - ~

0086 999 _EORMATY {140, *'STQPPED AT JLOUNT=*16)

0087 777 CONTINUE

o088 SI0P

0089 END

18
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MANPOWER LEVEL ING PRUBLEM

_TIME PERIOD 1. OwER LIAIY __ REQUIREMENT _  UPPER LIMIT_____DPTIMUM MANPOWER LEVEL

9 255 255 255 255

1 220 220 200 247

2 240 240 . 500 244

3 200 200 500 247

4 255 255 500 255
MINIMUM LEVELING COSY 185200.00

€8
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