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CHAPTER I INTRODUCTION

1.1 What is An Artificial Neural Network

A neural network (NN), more properly referred to as an "artificial neural network

(ANN)", is a collection of mathematical models which consist of a large number of

densely connected simple processing units (called artificial neurons or nodes). Links are

the connections between nodes. A synapse is a link with a weight. An artificial network

uses electronic circuits or software to model biological neurons and their interaction.

These ANNs use or simulate many simple interconnected electronic processing elements

(nodes) to emulate the interconnected neurons in the brain.

Neural networks are based on simulated nerve cells or neurons that are joined together

In a variety of ways to form networks. These networks have the capacity to learn,

memonze, and create relationships among data. Although they are described in many

different ways, neural networks resemble a very small portion of the human brain in the

foUowing two respects [Aleksander and Morton 1990]:

Knowledge is acquired by the network through a learning process. Interneuron
connection strengths known as synaptic weights are used to store the knowledge.

The fundamental structure of computers is based on sequential processing, which has

little in common with the human nervous system. It has been known that the human

nervous system consists of an extremely large number of nerve cells or neurons (10
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billion or 1010 neurons in the human cortex, and each of these neurons is connected to

about 104 others via synapses [Beale and Jackson 90]). These nerve cells operate in

parallel to process various kinds of infonnation. Despite the fact that individual neurons

operate much slower than today's silicon logical units, the human nervous system can

handle complicated tasks such as image processing much more efficiently.

Artificial neurons simulate the function of biological neurons in the human nervous

system. Figure 1 shows a si mple neuron from the human cOltex. Signals enter the neuron

from other neurons through the dendrite (the input channel of a neuron). If the sum of

input signals at a given moment exceeds a certain threshold value, the cell firing

Axon (Carries
signals away)

~
Synapse size changes in
response to learning

Figure 1. A typical neuron cell (source: [NewWave 98])

produces an output signal which travels along the axon (the output channel of the neuron)

and is passed on to other neurons. A synapse connects the axon with the dendrite of

another cell, i.e., transfers a signal from one neuron to another.
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Figure 2 shows a diagram of an artificial neuron. The input Xi simulates the function of

the dendrites to a cell body, and the output connection Y is used to simulate the axon of

the cell body. The computation Y = F(X) performed by the neuron simulates the

transformation of signals from incoming dendrites to the outgoing axon.

Xl WI

INPUT

F(X) OUTPUT
y

Figure 2. An artificial neuron

Usually there are two kinds of measures for determining the "Similarity" between two

vector inputs. The first one is the inner product of the two vectors. The second one is the

Euclidean distance. Therefore, the artificial neuron may compute a weighted sum of the

n
input signals F(X) = L XiWi (inner product) and pass it through a response function

i = 1

such as the sigmoid function. This type of neuron is usually used in Multi-Layer

Perceptron (MLP). The neuron may also compute a distance between the input vector

n
and weights vector, F(X) =[ L (Xi - Wi l ]1/2 (Euclidean distance) and pass it through

i =1
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a non-linear response (kernel) function. Radial basis function (RBF) networks typically

use this kind of hidden layer neuron with Gaussian response function [Haykin 94].

The effects of the synapses are represented by "weights", which simulate the effects of

the corresponding input signals. The weigh~ Wij connects from neuron j to neuron i. If

wij > 0, the firing of neuron) encourages neuron i to fire. If Wij < 0, the firing of neuron

) discourages neuron i from firing. The greater the magnitude of a weight, the greater the

corresponding encouragement or discouragement effect. The weights in a network

determine the computational properties of the network. The training of the network is

achieved by modifying the weights appropriately.

Input Layer Hidden Layer

Figure 3. A Feed-forward neural network

Output Layer
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A response function represents the nonlinear characteristics of neurons. The neuron

impulse is computed as the weighted sum of the input signals, transformed by the transfer

function. The learning capability of an artifi.cial neuron is achieved by adjusting the

weights in accordance with the chosen learning algorithm.

In feed-forward networks, there are connections only between adjacent layers. Figure 3

shows a typical structure of a feed-forward network, formed by an input layer, one

hidden layer, and an output layer. It has two kinds of weights, the weights Wij between the

input layer and the hidden layer, and the weights Wkl between the hidden layer and the

output layer.

The structure of a network includes the number of layers, the number of nodes in each

layer, and how nodes are connected to each other.

1.2 A B.riefHistory of Neural Networks

McCulloch and Pitts [McCulloch and Pitts 43] and Hebb [Hebb 49] first introduced

perceptrons to begin neural networks research. Perceptrons were popular in the 1950's

and 1960's. But Minsky and Papert [Minsky and Papert 69] demonstrated that

perceptrons have very se110US limjtations when used to compute. In the next two decades,

the limitations of neural networks were overcome due to a number of reasons:

• the introduction of hidden layers, and nonlinear activation functions;

• Random, probabilistic, or stochastic methods (e.g., Boltzmann machines) have been

introduced [Ackley et a1. 85].

Lippmann [Lippmann 87] wrote a fundamental paper to help researchers apply neural

networks in their fields. Lippmann gave various types of neural networks for
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classification problems. A more comprehensive review of neural networks can be found

in many neural network books, such as Haykin's [Haykin 94]. The Multi-Layer

Perceptron (MLP) might be the most popular and extensively studied network. Recently,

Radial basis function networks, introduced by Broomhead and Lowe [Broomhead and

Lowe 88], have been developed very fast.

L3 Where Are Neural Nets Being Used?

The study of neural networks is an interdisciplinary area, both in its development and

in its application. Here we give the most successful areas of neural networks.

1. Signal Processing: There are many applications of neural networks in the area of

signal processing. The neural network is used for suppressing noise on a telephone

line in a device known as an ADALINE. The adaptive noise cancellation idea is quite

simple. At the end of a long-distance line, the incoming signal is applied to both the

telephone system component (hybrid) and the adaptive filter. The ADALINE is

trained to remove the noise from the hybrid's output signal [Widrow and Steams 85].

2. Pattern Recognition: One specific area in which many neural networks applications

have been developed is the automatic recognition of handwritten characters.

Multilayer networks have been used for recognizing handwlitten zip codes [Le Cun et

al. 90].

3. Neurocomputers: Neurocomputer designers are exploring the use of virtually every

known computing hardware idea, including digital, analog, and hybrid approaches

using electronic, optical, acoustic, mechanical, and chemical technologies and
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combinations of those lechnologies. There are several kinds of neurocomputers such

like electro-optic, optical, and digital neurocomputers (Mark IV) [Hecht-Nielsen 90].

4. Neurosoftware: Neurosoftware languages are typically built around a model of neural

networks. It is used with digital electronic neurocomputer coprocessors operating as

process servers to host digital computers. It also can be used to provide neurosoftware

descriptions of neural network architectures [Hecht-Nielsen 90].

5. Control: An examp~e of the application of neural networks to control problems, is the

task of training a neural "truck backer-upper" to provide steering directions to a trailer

truck attempting to back up to a loading dock [Miller et a1. 90]. The neural network is

able to learn how to steer the truck in order for the trailer to reach the dock, starting

with the truck and trailer in any initial configuration that allows enough clearance for

a solution to be possible. To make the problem more challenging, the truck is allowed

only to back up.

6. Medicine: "Instant Physician" [Hecht-Nielsen 90] is a method to train an

autoassociative memory neural network to store a large number of medical records,

each of which includes information on symptoms,. diagnosis, and treatment for a

particular case. When a particular set of symptoms occurs frequently in the training

set, together with a unique diagnosis and treatment, the net will usually give the same

diagnosis and treatment.

7. Speech Production: one of the most widely known examples of a neural network

approach to the problem of speech production is NETtaik [Sejnowski and Rosenberg

86], a multi-layer neural network. NETtalk only requires a set of examples of the

written input together with the correct pronunciation for it. The written input includes
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both the letter that is currently being spoken and three letters before and after it. After

training, the net can read new words with very few errors and the intelligibility of the

speech is quite good.

8. Speech Recognition: Several types of neural networks have been used for speech

recognition, including Multi-layer networks or Multi-layer networks with recurrent

connections [Lippmann 89J.

9. Business: Artificial neural networks are applied successfully in many business areas

[Harston 90], such as the mortgage assessment work by Nestor, Inc. [Collins and

Scofield 88].

1.4 Radial Basis Function Networks

The method of Radial Basis Functions (RBF), a technique for interpolation in a high

dimensional space, has developed fast in the past several years. The basic idea was

originally proposed by Bashkirov et al. [Bashkirov et al. 1964]. This method also had

been explored by Duda and Hart (Duda and Hart 1973] with a different name - potential

funclion. The first users of the RBF technique in neural networks are Powell and

Micchelli [Powell and Micchelli 1985].

RBF provides an alternative tool to learning in neural networks. The major idea is as

fonowing:

• avoid unnecessarily lengthy calculations, and

• reduce hardware cost when attempting VLSI implementation of such artificial

networks for specific problem solving.

Radial functions are radially symmetric functions: R ---? R , defined as:
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where 4j> (r) is continuous on [0,00) and its kth derivative is completely monotonic on (0,

00) for some snteger k; x is the input vector, and Cj is the center of the radial basis

function.

The most widely used radial basis function in RBF networks is the Gaussian function:

<1> ( r) = exp ( - !I x - cde / cr2
)

where cr is the smoothing factor. The value of cr can affect the training of the RBF

networks (See Chapter V for more details).

REF networks are feed-forward networks with one hidden layer (Figure 3). Typically,

an REF network consists of three layers: an input layer, a hidden layer, and an output

layer. The input layer nodes propagate the input values to the hidden layer nodes. The

input layer nodes are funy connected to the hidden layer nodes. The connections between

input layer and hidden layer specify the set of function centers, which are denoted by wij

in Figure 3. Each hidden layer node computes a distance measure (Euclidean norm)

between the input vector x (input node) and the vector Cj (hidden node). The response

functi.on of the hidden neuron is a non-linear transformation <p -- the radial basis function.

Each hidden layer node is also fully connected to each output layer node. The training of

the network will determine the weights Wkl between the hidden layer and the output layer.

Each output layer node will compute a weighted sum of the outputs (linear

transformation) from all the hidden layer nodes.
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In order to apply an RBF network for solving a problem, we need to give the structure

of the network first. In the other words, we have to specify the number of nodes in each

layer and the response function for the hidden layer nodes. It is easy to choose the number

of input layer nodes and output layer nodes. For example, in a function approximation,

the number of input nodes is equal to the dimension of the independent variable space. If

we approximate the function F (Xl ,X2) = 1 I (xl + x/ +1) by using a RBF network, the

two nodes in the input layer are Xl and X2. The number of output nodes is equal to the

number of dimensions in the target variable space. In the example above, the output of the

node in the output layer is y E (0, 1]. For classification problems, the number of input

nodes is chosen to be the dimension of the patterns, and the number of output nodes is

usually equal to the number of classes. The selection of the hidden nodes (centers) is the

major problem for RBF networks and decides the structure of the networks, i.e., the

training of the networks. Table 2 gives the summary of nodes on the input layer and

output layer.

Problem Example

Function F(xl ,X2) =11 (x/ + xl + 1)
Approximation

Classification XOR

Input Layer
Nodes
XI,X2

Output
Layer Node

y

YI, Y2

Table 1. Input and output layers of RBF network

1.5 RBF Networks vs. Multi-Layer Perceptron Networks
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Neural networks have been used in variOlllS areas such as biological nervous systems.,

real-time adaptive signal pl"Ocessors, and physical or chemical processes. In many

applications, neural networks were used as "black-box" modeling tools. A network or a

number of alternative network.s are selected as the candidate models of a process to be

modeled. A set of data (training data) is used to determined the proper values of the

weights, and then the network is applied to another set of data. A trained network is used

as the model of the system for prediction when new inputs are given to the system.

The Multi-Layer Perceptron (MLP) networks are widely use in many areas for the

following reasons:

• MLP networks can approximate any continuous function arbitrarily well provided that

there are enough neurons [Ilie and Miyake 88] [Cybenko 89];

• MLP networks are used and implemented widely in many neural network softwares;

• MLP networks are applied in many areas.

However, there are some disadvantages of MLP networks:

• MLP networks usually require a large number of training data to achieve a certain

precision [Baum and Haussler 89];

• MLP networks are non-parametric models, i.e., there is no interpretation of the model

parameters (the weights and biases) in relation to the network;

• Algorithms used for training MLP networks are not guaranteed to find the global

minimum of the error surface.
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The advantages of an RBF network:

• In practice, an RBF network is much easier to tfain than an MLP network. The RBF

networks establish the RBF parameters dir;ectly from the data. The weights between

the input layer and the hidden layer represent data points in the input space. The

weights between the hidden layer and the output layer control the contributions of

each hidden node to the output node. For an MLP with one hidden layer, selecting the

proper number of nodes in the hidden layer is the only mechanism to regulate the

complexity of the model;

Networks REF MLP

Number of hidden layers One layer One or more layers

Neurons in hidden layer Different model Same model
and output layer

Output layer Linear combination Nonlinear combination

Global minimum Guaranteed Not guaranteed

Bias No Yes

Kernel function Gaussian, Sigmoid,
Thin plate splines Logistic

Implemented by OLS, Newton's method
Random fixed centers Back-propagation, etc.

Training method Supervised, Supervised,

Combination function Euclidean norm Inner product

Table 2. RBF networks vs. MLP networks
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• While increasing the number of hidden nodes, the complexity of a neural network

increases. In RBF networks, optimizing the smoothing factor is easier, faster and

more effective than optimizing the number of nodes of a network. In the other words,

optimizing the smoothing factor does not need to change the structure of the network

and achieves better resu]ts (see Chapter V for more details);

• It is known that RBF networks can be trained much faster than MLP networks, and

the global minimum is guaranteed in the error surface.

RBF networks still have their own problems. Their perfonnances are different,

depending on the architectures and the type of RBF kernels. Finally, we summarize the

difference between RBF and MLP networks in Table 2.

1.6 Organization of the Thesis

This thesis consists of six chapters: Overview of neural networks which gives the

basic knowledge of the neural networks; The details of RBF networks; Orthogonal Least

Squares (OLS) Algorithm; The details to implement OLS by the Gram-Schmidt method

or Householder Transformation; Simulations and the comparisons among OLS of RBF

networks and MLP networks; and the summary of the thesis.

Chapter I explains the overview of neural networks, its history, where to use it, and

the basic idea of REF networks. Also, it compares REF networks with MLP networks

and gives the advantages and disadvantages of each.

Chapter II discusses the radial basis function and interpolation problem, how to use it

to approach neural network problem, i.e. Radial Basis Function (RBF) Networks. Before

the end of the chapter, it gives several commonly-used radial basis functions.
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Chapter ill briefly describes the least squares approximation, QR factorization, and the

details about QR decomposition implemented by Gram-Schmidt method and

Householder Transformation.

Chapter IV shows the Orthogonal Least Squares (OLS) method, i.e., how to use Gram

Schmidt orthogonahzation or Householder Transformation to implement the RBF

networks.

Chapter V gIves the several interpolation applications solved by OLS for RBF

networks and back propagation for IvILP networks (programs implemented in C). This

chapter also discuss how the smoothing factor affects Normalized Mean Square Error

(NMSE) and the centers selection. Finally, comparison between the OLS for REF

networks and the Newton's method for MLP networks is given by solving the same

function approximation problems.

Chapter VI briefly summarizes this thesis.
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CHAP'JER II RADIAL BASIS FUNCTION

A nonlinear function cj> (x, c) is caned a Radial Basis Function (RBF) if it depends only

on the radial distance r =II x - c II, where x, C E RIl and the norm It • II is Euclidean norm.

x is the independent variable, and c, called center, is a constant.

2.1 Interpolation Problem and RBF Networks

The RBF network is designed to perform a nonlinear mapping cj> from the input space

N

to the hidden space. Then it performs a linear mapping L Wi cj> ( II x - Ci II) from the
i = 1

hi.dden space to the output space. Therefore it depends on the theory of multivariable

interpolation in high-dimensional space [Davis 63]. The interpolation problem is stated as

[onows:.

Interpolation Problem: Given N different points Xi E RIl in an n-dimensional real

space, and N cOlTesponding numbers Yi E R, find a function F : R"~ R, that satisfies the

interpolation conditions:

i = 1,2, ... , N (2.1)

In the other words, we are going to construct an interpolating surface r c RIl
+

1 passing

through all the training data points {Xi E: RII I i = 1, 2, ... , N}. Usually, the surface r is



16

unknown and the training data are contaminated with noise. In these cases the function F

shoLlld pass near the data points, not through them. Accordingly, the training phase and

generalization phase of the learning process may be viewed as fonows [Broomhead and

Lowe 88]:

The training phase constitutes the optimization of a fitting procedure for the
surface r , based on known data points presented to the network in the form of
input-output examples. The generalization phase is synonymous with
interpolation between the data points, with the interpolation being performed
along the constrained smface generated by the fitting procedure as the optimum
approximation to the true surface r .

RBF approach: find a function F

N

F( x) = L Wi <I> ( II x - Ci 11)
i = 1

(2.2)

satisfying interpolation condition (2.1), where {<I> (II x - Ci II) Ii = 1,2, ... , N } is a set of

N nonlinear functions, known as radial basis functions, and the norm II • II is the

Euclidean norm. The centers {Ci E RIl I i = 1, 2, ... , N } of the radial basis functions and

the weights {Wi E R Ii = 1, 2, ... , N } are to be decided by training.

We can use interpolation condition (2.1) to determine the unknown weights Wi. First,

we define interpolation matrix ep E RNxN as:

where <l>ij = <1>(11 Xi - Cj II) (2.3)

from the above definition, we know that each column ¢J of ep has a fixed center. Then,

we can rewrite (2.1) and (2.2) as the following linear system:

epw =y (2.4)
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or

YI ¢II f/J12.. '¢1 N WI

Yz t/JZ1 ¢n . , '¢JZN Wz
=

YN tf>N1 ¢JN2 •. '¢JNN W N

where w andy represent weight vector and target (output) vector, respectively.

There is a class of radial basis functions that has the following property [Light 92]:

Let Xl, X2 ... , XN be distinct points in RN
. Then the N x N interpolation matrix <t>

whose element is <l>ij = <I> (II Xi - Xj 11) is positive definite.

Therefore, a unique solution to the interpolation problem exists and the interpolation

matrix depends only on «l> and the centers Ci. We can solve the undefined weights vector w

as:

,n-I
W='¥ Y

2.2 Approaches for RBF Networks

(2.5)

From the above analysis, the foHowing two problems are essential for RBF networks:

1. How to determine the structure of a neural network, i.e., the number of the hidden

neurons and how to choose these neurons. In other words, how to choose small

numbers of centers Cj to solve the linear system under tolerated error.

2. How to choose an RBF kernel function $, such that the column vectors ¢JJ of <t> form a

There are different learning strategies that we can use to design an RBF network,

depending on how the centers of the radial basis functions of the network are specified.

There are three approaches specified as folJows:
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1. Fixed centers selected at random: use fixed radial basis functions defining the

response functions of the hidden neurons and the location of the centers may be

chosen randomly from the training data set [Lowe 89].

2. Self-organized selection of centers: the radial basis functions are peJmitted to move

the locations of their centers in a self-organized fashion: the linear weights of the

output layer are computed using a supervised learning method. The self-organized

component of the learning process serves to allocate network resources by placing the

centers in only those areas of the input space where significant dat.a are present, such

as by the k-nearest-neighbor rule [Moody and Darken 89].

3. Supervised selection of centers: the centers undergo a supervised learning process. A

natural candidate for such a process is error conection learning, implemented using a

gradient-descent procedure that represent a generalization of the least mean square

algorithm [Poggio and Girosi 1990].

One method, called scale-based clustering (similar to method 2 above), alms at

partitioning data into more or less homogeneous subsets when the priori distribution of

the data is not known. Well-known clustering methods like the k-means algorithm use an

implicit cost function to yield a desirable cluster [Dubes and Jain 79]. Recently,

Chakravarthy and Ghosh [Chakravarthy and Ghosh 96] showed that scale-based

clustering can be used in the REF networks. In this thesis, we will focus on the

0l1hogonalleast squares algorithm [Chen et a1. 1991].

Usually, dimensionality reduction is used to reduce the dimension from N to M « N).

In order to approximate <1>, M columns are selected from <1> and form a new matrix

¢ E R
NxM

(How to select the columns primarily depends on the method to implement the
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Th n-,T n-, RM x M . b" RM d'OLS. The details are given in Chapter IV. en ~ ~ E IS a aSlS In an IS

invertible. Therefore the linear problem (2.4) is reduced to an approximation problem or

optimal problem with reduced dimension.

Approximation Problem: Oive 4> E RN
x M and y E RN satisfying:

(2.6)

choose an optimal coefficient vector W E RM such that the en-or energy eTe minimized.

Optimal Problem: Find w* E RM such that for all W E RM
, w* satisfying

M
min (Yi - L Wi(j) ( II Xi - Cj II »2,

j=l

l = 1,2, ... , N (2.7)

where 1 ~ M ~ N, the reduced dimension, and N is the number of input data.

There are other approaches to determining the network size. Chen et ai. [Chen et al.

1991] described a method to determine the number of neurons in REF networks based on

orthogonal least squares algorithm. The OLS will reduce the size of an RBF network and

avoid the ill-condition in other training method [Haykin 94]

the OLS procedure will generally produce an RBF network whose hidden layer is
smaller than that of an RBF networks with randomly selected centers, ... the
problem of numerical ill-conditioning encountered in the random selection of
centers method is avoided.

2.3 Kernel Functions for RBF Networks

In order to specify the property of the kernel functions, Micchelli [MiccheHi 86] gave

two sufficient conditions for choosing an RBF kernel function. From the results of

Micchelh, the functions given below satisfying the sufficient conditions:
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..,
1. Gaussian function: <I> (r) = exp(- (r lut)

The Gaussian function is widely used in neural network research [Broomhead and

Lowe 88]. cr, called the smoothing factor, decides the width of Gaussian function.

The Gaussian function, among the radial basis functions, is the only one wi th the

factorizable property [Poggio and Girosi 90]. In the other words, a multidimensional

Gaussian function can be decomposed into a product of several lower-dimensional

Gaussian functions. The Gaussian function with different smooth factors is showed in

Figure 4.

42 3
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cr = 1.0
cr =2.0
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O. 0 ~__~I::-..-----&._--'-_---=:t:.._~__~~
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Figure 4. Gaussian function with different smoothing factors

2. The thin plate splines function: <I> (r) =? log r

This kind of function was first used to minimize the bending energy of a "thin plate"

[Duchon 76]. There is no user-specified smoothing factor to be concerned with. The thin

plate splines function is showed in Figure 5.

3. The cubic function: <I> (r) = r3
, shown in Figure 5 with larger dots.
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4. Multiquadric function: l\l (r) =--J r
2 + C

Z
> shown in Figure 6 (left).
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Figure 5.. Thin-p~ate Splines and Cubic Functions
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Figure 6. Multiquadric and Inverse Multiquadric (left) functions
with different c

5. Inverse multiquadric function: l\l (r) =1 / ~ r2 + c2 is shown in Figure 6 (right). The

shape is rather similar to the Gaussian function, but it is more sensitive to the smooth

factor c.
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CHAPTER III ORTHOGONAL LEAST SQUARES ALGORITHM

The Orthogonal Least Squares algorithm (OLS) is a very popular method in science

today. There are many textbooks [Jacob 95] [Gill el a1. 911 giving the details of this

method.

3.1 Least Squares Approximation

Least Squares Approximation is a very popular and powerful method to solve linear

problem today.

Definition 3.1: Let A be an n x m matrix. A vector x E R m is called a least squares

solution to the system Ax = b, if the distance

HAx - b II = (Ax -b, Ax _b)1I2 (3.1 )

in Rm is a minimum among all possible choices for x.

Theorem 3.1: Let A be an n x m rank n matrix, then the least squares solutions to the

system Ax =b are the solutions to the system Ax =A(ATArIA1b. This equation has the

unique solution x =(ATAr l Alb.

3.2 QR Factorization
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The~e are several methods to decompose the matrix A into a product of an orthogonal

matrix and an upper triangular matrix. Here two of them, the Gram-Schmidt

orthogonalization method and the Householder Transformation method, are briefly

introduced as follows.

Theorem 3.2 (Gram-Schmidt Theorem): Suppose that WI, WZ, ... ,Wm are mutually

orthogonal and nonzero vectors in R rJ
• Suppose v ~ span{w" Wz, ... ,wm }. Define

(3.2)

Then the vectors WI. Wz. ... , Wm, Wm+1 are mutually orthogonal. We have, moreover,

span{ w], Wz., •••, Wm, v} = span{ WI, Wz., •••, W,m wm+d.

QR Factorization: Given an nxn rank n matrix A, we can use the Gram-Schmidt

Theorem to decompose the matrix A into QR, where Q is an n x n orthogonal matrix, i.e.,

QTQ =I, and R is an n x n upper triangular matrix.

Denote the columns of A as Vl, Vz... , Vn . Apply the Gram-Schmidt Theorem to the

columns of A.

where B. is an n x n upper triangular matrix from the coefficients from (3.1).

Therefore we have

A= QR

where Q = {WI. Wz, ... , wn } and R = R-1
.

Theorem 3.3 (Householder Transformation): Let A be an n x n matrix with rank n.

There exists n -1 Householder matrices HI, Hz... , HrLl , such that
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Therefore we have A = QR, where Q is an n x n o11hogonal matrix.

The Householder matrix is symmetric (H = HT
) and orthogonal (HHT = H

T
H = l). The

Householder matrix only depends on the direction of u, the Householder vector. The

Householder Transformation has the fonowing format

2uuT 2uu T

H = 1- lIulf =1 - I~

where II- II is the Euclidean norm.

1 2
where ~ = 211ull

3.3 Lea.st Squares Solutions and the QR Factorization

If we apply the above QR factorization to an n x m matrix A, where m < n, we won't

obtain an orthogonal matrix. The n x m matrix Q consists of orthonormal columns, and

the m x m matrix R is an upper triangular matrix.

Let A =QR be a QR-factorization of A, we have

Therefore, the least square solution becomes

The solution of the linear system Ax =Y can be easily solved by a matrix-vector product,

if we get the QR decomposition of A.
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CHAPTER IV OLS ALGORITHM FOR RBF NETWORKS

Since M is very large, optimal subset selection techniques are computationally

impractical. We have to use subset model selection. The Orthogonal Least Squares (OLS)

algorithm [Chen et a1. 91] is an efficient implementation of a subset selection method.

When M « N, computational requirements can be reduced by a preprocessing scheme

based on Gram-Schmidt orthogonalization procedure [Chng 94]. Without loss of

generality, only one neuron of the output layer is considered in this thesis.

4.1 OLS Algorithm for REF networks

The OLS (Orthogonal Least Squares) algorithm for the RBF networks is a supervised

training algorithm. While back-propagation and other widely used supervised methods

are fOTInS of continuous training, OLS is a fonn of combinatorial optimization. Rather

than treating the REF centers as continuous values to be adjusted to reduce the training

error, OLS begins with a large set of candidate centers (in the training data) and selects a

limited numbers of centers that usually gives good training error. The vectors

corresponding to the centers selected are orthogonal to each other. If we selected all the

test data as centers, the vectors would form an orthogonal basis (the dimension of the

space would be equal to the number of test data). For small training data sets, the

candidates can include aU of the training data. For large training data sets,. it is more
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efficient to use a random subset of the training data or to do a cluster analysis and use the

cluster means as candidates.

How to select the centers and how many of them for OLS depends on the method of

implementing the QR decomposition and the stopping criteria. In this chapter, we will

discuss OLS implemented by Gram-Schmidt Orthogonal Method and Householder

Orthogonal Transformation..

4.2 OLS Implemented by the Gram-Schmidt Orthogonalization Method

From (2.6), we know that <I> ERN x M, where N is the number of data and M is the

number of neurons in the hidden layer. Let an orthogonal decomposition of <I> be QR. The

model (2.6) can be rewritten as

y= Qg+e

where

g=Rw

(4.1)

(4.2)

Since (4.1) is a special case of the approximation problem, due to the orthonormality, its

linear least square solution is

(4.3)

we have

M
yT y =gTg+eTe = L g/ +eTe =

j=l

M
L(q/Yi +eTe

j = J

(4.4)
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The key difference between the OLS method and QR factoralization is the selection of

the centers [Chen et al. 91]. The OLS method selects centers at each step to maximize g/

=(qlyi. The OLS method selects from the remaining N - i-I choices the values j and ~

such that the resulting qj gives the largest energy g/ at each step i = 1, 2, ... , M. The

selection stops when the error energy has been reduced to the given tolerance.

Denoting d = yTy , we have error energy from (4.4)

M
eTeld=l- LErrj

j=1

h T 2were Errj = (qj y) I d.

The center selection procedure is given as following [Chen et a1. 91]:

(4.5)

a. Base Case: for 1 ~ i ~ M, we normalize every column vector and calculate the error:

·qtJ=¢Ji/ll ¢Jj II

To find

Err] (j / = max {Err/, 1~ i ~ M }

and select

b. Iteration: at the kth step where k ~ 2, 1 ~ i ~ M, i =1= i], ... , i =1= h.i. Orthogonalize the

column with the previous selected columns.
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To find

and select

c. Stopping Criterion: stop the center selection procedure when the foHowing error

condition is met.

M

1- L Errj < P
j =1

for some M , and given error tolerance jJ.

(4.6)

(4.7)

(4.8)

In the center selection, the error tolerance p controls how many centers will be

selected, i.e., when we will stopping the center selection. As soon as the M centers have

been selected and satisfied the stopping criterion (4.8), we have finished the selection of

the centers. At the same time, we get the orthonormal matrix Q ={ q/, Q2, ... , qM}. On the

next step, we will use Q to get the weight vector w by us.ing (4.3) and (4.2):

R -1 QrW= y;

the calculation of w is trivial.

4.3 OLS Implemented by Householder Orthogonal Transformation
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In this section, the Householder Transformation (Theorem 3.3) is used to implement

OLS.

From (2.7), choose cI> E RN
xM and..!!!. E RM such that

to get the approximation of y in RM
. The minimum will be achieved if and only if q> has

full column rank, i.e., the columns of <P are linearly independent to each other.

Let e E RM and e = y - cI> w, we have

where Q is a M x N orthonormal matrix such that Q cI> =R =(~MxM ).

(N-M )xM

Therefore, we have

lIell'=lIz-(:)WII' = II Z -(:W) If=lIzd!!:II'+lIdl'

(4.9)

T T 7' .
where z =Q y, z = (z/, Z 2) , Zj =( Zj, Z2, . .. ,ZM-/) and z/ =( ZM, ZM+}, •.• ,ZN -1) . If we

choose w =B. -J Zj, we have

N-j

II e11
2 = II Z 211

2
= l: z/

j=M

(4.10)

From (4.10), the error e depends only on the last N - M elements in the vector z = Q y.

Therefore, when applying the Householder Transfonnation to RBF networks, the next

column is chosen among the unselected columns of <t> in order to maximize the reducti.on

in II Z 211·
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CHAPTER V SIMULATIONS OF RBF NETWORKS

In order to show the capability of the RBF network modeling, the RBF network is

used to solve function approximation problems. First of all, a small set of data from a

known function is given to training the RBF network. Then a larger set of data are used to

test the RBF network. Finally, the results from RBF network is compared with the actual

function values using Normalized Mean Square Error (NMSE):

NMSE = ----''-''------====--

where L is the number of test data Xi (i = J, ... , L), Yi is the actual function (target) value at

Xi and y'i is the output value from the trained RBF network corresponding to the input Xi.

The RBF networks can learn the shape of different functions with a small number of

training data. The RBF approximations and the original functions wiJI be showed in

three-dimensional graphs respectively. We can compare the accuracy of the RBF

approximation though these graphs. We also use NMSE on the test data to show how the

smoothing factor affects the selection of centers.
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5.1 OLS Procedure

In this thesis, the simulation program is written in C. Following the discuss in Chapter

IV, the procedure OLS for REF networks is given as following:

Step O. Set the number of centers selected to k = O.

Step 1. While stop criteria 1- Error < p (4.8) is false, do Steps 2 - 13.

Step 2. Select starting from the first column and set ind = O. While not selecting all

M centers (ind < M), do Step 3 - 12.

Step 3. If column No. ind is not selected, do Steps 4 - 11.

Step 4. Initialize the k1h column of Q, q = (And. Calculate the possible k
rh

column of R and the k1h column of Q; do steps 5 - 6 (i = 0,1, ... , k -1).

Step 5. r[i]= qrr/Jilld

Step 6. q =q - r[i] x qi

Step 7 .. Get the /(h ctialog element of r, r[k] =II q II .

Step 8. Normalize q, q =q / II q II .

Step 9. Calculate the error q will reduce when it is selected,

T 2/ TErrind = (q y) y y .

Step 10. Set the /(h column of R and the /(h column of Q as rand q

respectively, corresponding to the biggest Err;nd.

Step 11. Replace ind =ind + 1.

Step 12. Else if column ind is selected, set ind = ind + 1, and go back to Step 2.

Step 13. Add Errilld to Error, and set k = k + 1.

Step 14. Print the result into file.

,
I,
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From the above procedure, the OLS algorithm selects the number of hidden neurons

dynamically, depending on the stop criterion (4.8). As soon as the stop criterion IS

satisfied, the procedure IS finished and the number of neurons at hidden layer is

detennined.

5.2 Simulation I

In this section, the RBF network is used to simulate a two-dimensional function

(5.l)

1.0

0.5

0.0

-1.0

1.0

1.0

Figure 7. Shape of F(x] 02) =11 ( xl +xl + 1)

The shape of FI(x/ ,X2) is shown in Figure 7. The input layer has two nodes: X" X2. The

output layer has only one output y =FI(x, ,X2). We test different numbers of nodes in the

hidden layer during training. Figure 8 shows the figure for 100 test data after training the
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to
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-to

1.0

Figure 8. 4 neurons (Centers) in the hidden layer with SF =1.5
(9 training data and 100 test data)

1.0

05

00

-1.0

Figure 9.7 neurons (centers) in the hidden layer with SF =1.0
(25 training data and 100 test data)

RBF network with 9 training data and selecting only 4 centers. Figure 9 shows the figure

for the same 100 test data after training the RBF network with 25 data and selecting 7
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(9 training data and 100 test data)
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NMSE vs. Number of Centers (SF=0.1)
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NMSE vs. Number of Centers (SF=3.5)
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Figure 11. NMSE (vertical) vs. number of centers selected
(36 training data and 100 test data)

centers. Comparing these three figures, it is easy to see that the shapes of the simulations

(Figure 8 and 9) by the RBF network are very similar to the shape of the original

function (Figure 7). The RBF networks were trained only with a small number of data for

each simulation and the simulation result is good..
In order to show how the smoNhing factor affects the NMSE and the number of the

centers selected, a number of graphs were drawn (Figure 10 and 11). Since the stopping

M
criteria for training a RBF network is controJled by 1 - L Err) < p (4.8) for a given

j = I

error tolerance p, it is hard to increase the number of centers selected only by one at each

training. In the simulation program, we use p to control how the number of centers will

be selected.

In Figure 10, the RBF network was trained with 9 equidistributed data. The horizontal

axis is the number of centers selected. The vertical axis is the NMSE on the 100

equidistributed test data. When a small number as the smoothing factor (Figure 10, SF =
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0.1 or SF = 0.5) is chosen, the NMSE for the test data is every large even though an 9

training data are selected as centers. When the smoothing factor is gradually increased,

the approximation result is pretty good even though only 2 or 3 centers are selected

(Figure 10, SF = 1.0 or 1.5). But when the value of the smoothing factor is increased

further, the NMSE increases also (Figure 10, SF =2.5, 3.0 and 3.5). Therefore for this

example, the best value for the smoothing factor is 1.5 to train the network (Figure 8).

For 36 training data, the results are similar (Figure 11).

5.3 Simulation II

Another two-dimensional function

was used to do a simulation. This function is also simulated with noise, I.e.,

F(Xl,X2) =sin(x} X2) exp(-I Xl x21 )+ 0.05J1

where /-l is a random number.,-" E [-1,1].

(5.2)

(5.3)

In this simulation, 9 equidistributed training data (same as in simulation I) are used to

train a RBF network. Figure 13 shows the test results for both regular and noise situations

while smoothing factor = 1.0. Then 16 equidistributed training data were used to train a

REF network while choosing the smoothing factor cr = 1.5 (If the same method in

section 5.2 were used, a good value of the smoothing factor cr is around 2.5). 4 and 8

neurons (centers) at the hidden layer were chosen in each simulation. Figure 14 and 15

show both simulation results.
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Figure 12. Shape of F(xj ,X2) =sin(XjX2) exp(-I XjX2D
(right with noise)
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Figure 13. 4 Neurons (Centers) in the hidden layer
(9 training data and 100 test data, right with noise)
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Figure 14. 4 Neurons (Centers) in the hidden layer
(16 training data and 100 test data, right with noise)
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Figure 15. 8 Neurons (Centers) in the hidden layer
(16 training data and 100 test data, right with noise)

5.4 Simulations with MLP Network

In this section, MLP networks were used to do the same two simulations above. the

Back-Propagation (BP) algorithm was widely used in the 1980's. It is based on gradient

descent weights are modified in a direction that corresponds to the negative gradient of

an error measure. For weights on connections that directly connect to network outputs,

this is straightforward and very similar to the Adaline. The gradient of these backward-

propagated error measures can then be used to determine the desired weight

modifications for connections that lead into these hidden neurons. There are a lot of

books [Mehrotra et a1. 97] [Haykin 94] on neural networks giving the details ofBP.

B:i:i;~~_~;-~;l~~~Jhecomputational requirements for training may be large even for

networks of reasonable size. There are several better methods in the literature to

accelerate the learning process by reducing the number of iterations required for

convergence. Two such methods, Newton's and conjugate gradient methods [Mehrotra et

a1. 97] [Haykin 94] are most popular.



40

Newton's method for MLP [Haykin 94] [Mehrotra et a1. 97] relies on analytically

determining the minimum of a paraboloid that passes through two know points. This

method often gives rapid convergence to the minimum, especially if the error surface

between the newly generated point and one of its generating points has a roughly

paraboloidal shape.

The conjugate gradient metllOd [Shewchuk 94] is an iterative optimization procedure

that conducts a special kind of gradient descent in d-dimensional space. A line search is

carried out ot find a local minimum along each search direction, and the (i + l)th

direction is chosen to be "conjugate" to the first i directions. In the application of the

conjugate gradient method to feed-forward neural network training, a series of direction

vectors is computed along which modifications are successively made to the weight

vector.

1.0
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9 training data

1.0
0.5

0.0
-0.5

-1.0

1.0

1.0
0.5

0.0
-0.5

-1.0

25 training data

Figure 16. MLP network to simulate Fj(xj ,X2)

(4 neurons at hidden layer and 100 test data)

•
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At the beginning, a MLP network is used to simulate the function Fl(xj ,X2) (5.1) or

F2(x] ,X2) (5.2) respectively, and it is trained by ack-propagatio . The simulation results

are not very close to the original functions. Since back-propagation is basically a hill-

climbing technique, it runs the risk of being trapped in a local minimum [Haybn 94). It is

undesirable to have the learning process terminate at a local minimum, especially if it is

located far above a global minimum. The theoretical work of back-propagation learning

to explain the local-minimum is a difficult task to accomplish so far [Haykin 94).

Then the simulation of Fj(x] ,X2) (5.l) is repeated with a MLP network trained by

Newton's method. Figure 16 (left) gives the results from MLP network by using the

same training and test data in Figure 8 (9 training data and 100 test data). With a very

small number of training data, MLP can learn the this function, but it is not accurate.

With the same MLP configuration, the result is much better (Figure 16 right) by

increasing the number of training data to 25. If the number of neurons is increased to 8 in

the hidden layer, Figure 17 shows smoother graphs.
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Figure 17. MLP network to simulate F](x] ,X2)
(4 neurons and 25 training data, right with noise)
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The second function F2(x, ,X2) (5.2) is also simulated with an MLP network trained by

Newton's method. The same training and test data are used in Figure 13, i.e.,

equidistributed 9 training data and 100 test data. With 9 training data, Figure 18 (left)

shows that the MLP network could learn F2(x] ,X2), but it is not very accurate. The tight

side of Figure 18 is function F2(xr ,X2) with noise. When both number of neurons and test

data sets increase, the simulation result is much better (Figure 19).
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Figure 18. MLP network to simulate F2(x, ,X2)
(4 neurons and 9 training data, right with noise)

0.5

0.0

-0.5
1.0

0.5
0.0

-0.5
-1.0

0.0

-0.5
1.0

0.5
0.0

-0.5
-1.0

Figure 19. MLP network to simulate F2(x] ,X2)
( 8 neurons and 36 training data, right with noise)
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5.5 Discussion

From the above simulations, we can draw the following conclusions:

• The RBF network can approximate the function in the two-dimensional space very

well with a relatively small number of neurons in the hidden layer and with a small

number of training data (e.g., 2 or 3 centers with 9 training data).

• There always exists one smoothing factor that could achieve a good approximation

with fewer centers selected. When this smoothing factor is used, a smaJi number of

centers were selected and the network achieved a very small NMSE on the test data

(in Figure 11, a best choice of smoothing factor is 1.3 when fewer than six neurons in

the hidden layer are used). When a small number of centers is used in the simulation

for certain eITor tolerance, the computation time for training the network will be

reduced dramatically.

• When more centers are chosen, the NMSE on the training data will become smaller.

But this property is not always guaranteed on test data sets (Figure 11, SF = 2.5, 3.0

and 3.5).

• OLS is a very good method to handle noise. Comparing Figures 13, 14 and 15 with

Figure 12, the simulation shows that RBF network can learn the noise well with only

small number (4 or 8) of centers selected.

• The configuration of an RBF network is decided dynamically during the OLS training

procedure. In other words, the number of neurons in the hidden layer is not fixed

before the training procedure;. it will be decided when the OLS training procedure is

finished. The number of neurons (centers) in the hidden layer is controlled by the

error tolerance p in (4.8). The configuration of an RBF network is decided
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automatically after it has been trained by OLS when a given error tolerance p is

satisfied.

• The configura6on of a MLP network, on the other hand, is given before traini ng.

Therefore, the configuration is static during the training. Through the simulation

above, MLP with the same configuration of REF network (i.e., same number of

neuron in the only hidden layer), needs more test data to learn the functions.

-



45

CHAPTER VI CONCLUSION

In this thesis, OLS for RBF networks is used to solve function approximation

problems. Neurons in the hidden layer are selected one-by-one from training data. When

adding a hidden neuron (center), the new information contributed is due to that part of its

corresponding vector which is orthogonal to the space spanned by the vectors

corresponding to the previously added hidden neurons (centers). At each training step, a

hidden neuron was selected through optimization such that it, together with previously

obtained hidden neurons, would minimize the residual error. The Gram-Schmidt

orthogonahzation method (or the Householder Transformation method) is llsed at each

step to form an orthogonal basis for the space spanned by the vectors corresponding to the

hidden neurons (centers). The orthogonal basis is used both in hidden neuron (center)

selection and in weight calculation. Using this technique, it i.s possihle to find the number

of hidden neurons required to provide a good representation and hence avoid using an

unnecessarily large network.

Through these simulations, it is shown that OLS provides an effective means for

developing RBF networks. This training method can be easily used to determine the

number of hidden neurons required and the proper weights. The examples show that the

OLS for RBF networks provides good modelling capabilities, as well as :MLP networks.
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They also show that the OLS for RBF networks needs less training data sets than MLP

networks, to achieve the same simulation results.

-
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GLOSSARY

Activabon Function: A mathematical function that a neuron uses to produce an output.
Also called the response function or kernel function.

Artificial Neural Networks: Computers whose architecture is modelled after the brain.
They contain idealized neurons called nodes which are connected together in some
network.

Artificial Neuron: The primary object in an artificial neural network of human creation.
It is a processing element of a network.

Associative Memory: This type of memory is not stored on any individual neuron but is
a property of the whole network. This is very different from conventional computer
memory where a given element of memory is assigned a unique address which is
needed to recall that memory element.

Autoassociative: Making a correspondence of one pattern or object with itself.

Axon: The part of a biological neural cell that contains the dendrites, connecting this
neural cell to other cells. The incoming stimulation of a neural cell is transported
from the cell's core through the axon to the outgoing connections.

Back-propagabon: A learning algorithm used by neural nets with supervised learning.
The errors at the output layer are propagated back to the layer before in learning. if
the previous layer is not the input layer, then the errors at this hidden layer are
propagated back to the layer before.

Bias: A value added to the activation of a neuron. Its purpose is to generate different
inputs for different input patterns given to the net.

Conjugate Gradient Method: An optical method to smooth the decent to an error
minimum which incorporates memory of past search directions into the fonnation
of each sequential weight update cycle for a neural network.

Dendrite: The connections between biological neural cells. Electrical stimulation 1S

transported from cell to cell using these connections.

47
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Feed-forward: A specific connection structure of a neural net, where neurons of one
neuron layer may only have connections to neurons of later layers. An example of
such a net type is the Multi-LayerPerceptron Networks.

Forward-propagation: The output values of a neural net's neurons are only propagated
through the net in one direction, from the input layer to the output layer.

Gaussian Function: A very famous function, used in FBF networks as kernel function:
<j)(r) = exp(_r2 / 0-2).

Kernel Function: See activation function.

Hidden Layer: An array of neurons positioned in between the input and output layers.

Input Layer: An array of neurons to which an external input or signal is presented.

Lz function: A function that is square-integrable on the given domain.

Layer: An array of neurons is positioned together in a network.

Learning Algorithm: A mathematical algorithm that a neural net uses to solve specific
problems. The process of finding an appropriate set of connection weights to
achieve the goal of the network operation.

Multi-Layer Perceptron (MLP): A feed-forward neural net, built of an input layer, at
least one hidden layer and one output layer.

NetTalk: A perceptron-type network capable of reading aloud English text with the aid
of a voice synthesizer.

Neural Network: A collection of processing elements arranged in layers, and a collection
of connection edges between pairs of neurons. Input is received at one layer, and
output is produced at the same or at a different layer.

Neuron: An element of a neural net's neuron layer.

Noise: Distortion of an input.

OLS: For a statistician, "Ordinary Least Squares" (as opposed to weighted or generalized
least squares), which is what the neural networks literature often calls "LMS"
(Least Mean Squares). For a neural networker, "OLS" means "Orthogonal Least
Squares", which is an algorithm for feed-forward regression proposed by Chen et
al. [Chen et a1. 91] for training RBF networks.

48
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Output A value or a set of values (pattern), generated by the neurons of a neural net's
output layer. Used to calculate the current error value of the net.

Output Layer: The last layer of a neural net, which produces the output value of the net.

Pattern Recognition: Ability to recognize a given sub-pattern within a much larger
pattern. Alternatively, a machine capable of pattern recognWon can be trained to
extract certain features from a set of input patterns.

Perceptron: An mificial neural network capable of simple pattern recogmtlOn and
classification tasks. It is composed of at least three layers where signals on}y pass
forward from nodes in the input layer to nodes in the hidden layers and finally out
to the output layer. There are no connections within a layer.

Propagation: The passing of values and errors through the different layers of a neural net
during its learning process.

Response Function: See activation function.

Self-organization: A learning algorithm used by the Kohonen Feature Map neural net.
During its learning process, the neurons on the net's feature map are organizing
themselves depending on given input values. This will result in a clustered neuron
structure, where neurons with similar properties (values) are arranged in related
areas on the map.

Sigmoid Activation: A specific type of activation function <rex) = 11 (1 + exp(- x) ).

Supervised Learning: A specific type of learning algmithm. The output of the net is
compared with a target output. Depending on the difference between these patterns,
the net error is computed.

Training: The process of helping in learning by a neural network, by providing desired
values corresponding to inputs. In other words, to select a particular structure for a
neural network.

Threshold: A specific value that must be exceeded by a neuron's activation function,
before this neuron generates an output.

Unsupervised Learning: A specific type of a learning algorithm, especially for self
organizing neural nets hke the Kohonen Feature Map. Unlike supervised learning,
no target outputs exist.

Weight: A connect between two neurons with a value that is dynamically changed during
a neural neCs training process.
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