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Abstract

We present a time-dependent hyperspherical, wave packet method for cal-
culating three atom state-to-state S-matrix elements. The wave packet is prop-
agated in time using adiabatically adjusting, principal axes hyperspherical
(APH) coordinates that treat all arrangement channels equivalently, allowing
the simultaneous analysis of the products in all three arrangement channels.
We take advantage of the symmetry of the potential energy surface and de-
compose the initial wave packet into its component irreducible representations,
propagating each component separately. Each packet is analyzed by projecting
it onto the hyperspherical basis at a fixed, asymptotic hyperradius, and irre-
ducible representation dependent S-matrix elements are obtained by matching
the hyperspherical projections to symmetry-adapted Jacobi coordinate bound-
ary conditions. We obtain arrangement channel-dependent S-matrix elements
as linear combinations of the irreducible representation dependent elements.
We derive and implement a new three-dimensional Sylvester-like algorithm
that reduces the number of multiplications required to apply the Hamiltonian
to the wave packet, dramatically increasing the computational efficiency. A
convergence study is presented to show the behavior of the results as the ini-
tial parameters are varied and to determine the values of those parameters
that give accurate results. State-to-state H + Hy and F + Hy results for zero
total angular momentum are presented and show excellent agreement with

time-independent bechmark results.
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CHAPTER 1
INTRODUCTION

We are interested in three-body reactions of the form

(

A+BC (a)

AB+C (b)
A+BC= (1.1)

AC+B (c)

A+B+C (d).

The products in Eq. (1.1a) correspond to non-reactive collisions, where the
diatom can be in the same or different rovibrational state as the reactants. The
products in Egs. (1.1b) and (1.1c) correspond to reactive (or rearrangement)
collisions, where the diatomic molecule dissociates and one of its constituents
binds with the free atom. The products in Eq. (1.1d) correspond to collision-
induced dissociation (CID) reactions, where the three atoms separate after
the collision. The time-reversed reaction of CID corresponds to three-body
recombination, which is very important in cold and ultracold physics.

The quantum mechanical treatment of three-body scattering processes is
key to understanding chemical reaction dynamics and inter-particle interac-
tions, and has attracted recent attention in the field of cold and ultracold
atomic gases [3]. Non-reactive collisions are important for understanding the
dynamics of ultracold atom-molecule systems at the mean field level, and
in these systems reactive collisions affect the lifetime of Feshbach molecules
[4, 5, 6]. An understanding of three-body recombination collisions provides

information on the lifetimes and stability of ultracold gas samples, especially



in Bose-Einstein condensates [7, 8].

Initial progress in full-dimensional triatomic quantum reactive scattering
was dominated by time-independent (TIT) methods that calculate the entire
S-matrix at a given energy [9, 10, 11, 12, 13, 1], and has resulted in the de-
velopment of accurate and efficient hyperspherical, coupled channel TT meth-
ods [1, 14, 15, 16] that are ideal for low energy scattering in systems with a
small number of basis functions. TI methods require multiplication of two
matrices of dimension Ng X Npg, where Npg is the number of basis functions,
for each propagation step and for each energy. The number of floating-point
operations required is proportional to NgNpN3, where Ng is the number of
energies and Np is the number of propagation steps (dimension of the prop-
agation coordinate grid). This scaling makes TT methods inefficient at high
energies, where a large number of channels are open, and for systems with deep
wells, such as H + O, or C's 4+ Csy that support a large number of available
bound states.

Time-dependent wave packet (TDWP) methods [17, 18, 19, 20, 21, 22, 23,
24, 25] provide an intuitive picture of the scattering dynamics. While TDWP
methods only calculate one column of the S-matrix at a time, corresponding
to a single initial state, they do so for a range of energies defined by the initial
wave packet. As a result, a single propagation in time produces scattering
information over a range of energies, making it easier to locate scattering reso-
nances than with TT methods. TDWP methods require the multiplication of a
matrix and a vector of dimension NpNpg for each initial state. The number of
floating-point operations required is proportional to N, (NpNg)?, where N is
the number of time propagation steps. The ratio of the TI to TDWP scalings

is NgNp/N:NpN;. Typically, we are only interested in a single initial state,



N; = 1, and Ng = N, giving a ratio of Ng/Np. Therefore, when the num-
ber of basis functions required is larger than the dimension of the scattering
coordinate grid, the TDWP method scales better than the TT method.

The majority of TDWP methods are Jacobi coordinate-based [17, 18, 19,
20, 21, 22]. A major advantage of Jacobi methods is that the coordinate grids
are evenly spaced and the computational time scales as N In N, where N is the
number of grid points. Note that our hyperspherical grid is also evenly spaced
and may have the same scaling as the Jacobi methods. However, we have not
proved that relationship. A better approach for a hyperspherical method may
be a non-uniform grid which drastically decreases the number of grid points.

Jacobi TDWP methods possess two primary drawbacks: First, different
coordinate sets are needed for each arrangement channel, and separate prop-
agations are required for each unique set of reaction products. Second, Ja-
cobi coordinates are not optimal for treating products with three free atoms,
referred to as collision-induced dissociation (CID), or its time reversal, three-
body recombination, due to the double continuum [26, 27, 28]. Although
Jacobi-coordinate based methods to overcome the first drawback have been
developed by Althorpe [18] and Sun, et al. [22], hyperspherical coordinate
methods offer a favorable alternative.

By propagating the wave packet using a hyperspherical coordinate set that
treats all arrangement channels equally, scattering information can be obtained
in all arrangement channels with a single propagation. Also, the double contin-
uum is reduced to a single continuum, providing a proper treatment of products
consisting of three free atoms (CID). As a result, hyperspherical methods can
overcome both of the previously discussed drawbacks associated with Jacobi

methods. The propagating hyperspherical wave packet can be matched to a



set of mixed-boundary conditions at a constant value of the hyperradius, [29]
with Jacobi basis functions for the atom-diatom products and hyperspherical
basis functions for CID products.

Here, we will use the adiabatically adjusting, principal axes hyperspherical
(APH) coordinate system [1]. For systems containing two or more identical
atoms, the symmetry of the potential energy surface (PES) can be exploited,
and the wave packet can be decomposed into its component irreducible rep-
resentations. This offers an increase in computational efficiency, since each
irreducible representation wave packet can be propagated using a fraction of
the total coordinate space.

Other hyperspherical TDWP methods [23, 24, 25] have been presented.
These methods use Johnson’s hyperspherical coordinates and a different asymp-
totic matching method. Furthermore, they do not take advantage of the sym-
metry of the potential energy surface. Results from these methods [25] are not
as accurate as those presented here, especially at higher energies. This is most
likely due to their use of a different method to match onto asymptotic states.

In this thesis, we introduce a hyperspherical, time-dependent wave packet
method for calculating state-to-state S-matrix elements for scattering processes
of the form in Eq. (1.1). Similar to other time-dependent approaches, our
method involves three primary steps [30]: (i) definition of an initial wave
packet, (ii) propagation of the wave packet in time, (iii) analysis of the wave
packet. An initial wave packet is obtained that appropriately describes the
reactants. Prior to propagation, the wave packet is mapped onto APH coor-
dinates and decomposed into its component irreducible representations. FEach
irreducible representation of the wave packet is propagated in time using

the APH Hamiltonian, which treats all three arrangement channels equiva-



lently. The wave packet is analyzed in the asymptotic region of the PES to
extract irreducible representation dependent S-matrix elements. After each
irreducible representation has been analyzed, the arrangement channel depen-
dent S-matrix elements are calculated as linear combinations of the irreducible
representation S-matrix elements.

This thesis is organized as follows: In Chapter 2, we begin by discussing the
Jacobi and APH coordinate systems, reviewing their derivations and their basis
set expansions. We then discuss a time-dependent method for obtaining state-
to-state probabilities where APH coordinates are used to propagate the wave
packet in time and Jacobi coordinates are used to represent the reactants and
products. In Chapter 5, state-to-state probabilities for the H+ Hy and F + H,
reaction with zero total angular momentum are presented and compared to

previous time-independent results. In Chapter 6, we present our conclusions.



CHAPTER 2
THEORY
2.1 Introduction

In this chapter, we present a hyperspherica- TDWP (h-TDWP) method for
obtaining state-to-state S-matrix elements. The method propagates the wave
packet in hyperspherical (APH) coordinates, treating all arrangement channels
equivalently. As the APH wave packet evolves, scattering information can
be obtained in all arrangement channels. Moreover, the three-atom PES is
symmetric with respect to a single APH coordinate, and symmetry adapted
wave functions can be readily obtained. Noting that APH coordinates cover
configuration space twice, the PES for systems of three identical atoms, two
identical atoms, or no identical atoms, belongs to the Cg,, Cy,, or Cs point
groups, respectively. The wave packet can be decomposed into components
labeled by the irreducible representations of its parent point group, and can
be represented on a reduced coordinate grid, providing and efficient means to
propagate and analyze the wave packet.

Initially ignoring symmetry, the basic steps of the h-TDWP method are
as follows: (1) An initial wave packet is constructed and transformed to APH
coordinates. (2) The wave packet is propagated in time according to the APH
Hamiltonian, and, after each time step, the scattered wave packet is projected
onto the APH basis at a constant asymptotic hyperradius. (3) The time-
dependent APH projections are converted to energy-dependent projections
via a Fourier transform. (4) The S-matrix elements are obtained by match-
ing the energy-dependent APH projections to a set of appropriate boundary

conditions.



To include symmetry, the APH wave packet in step (1) is split into its
component irreducible representations via projection operators [31]. Then,
steps (2)—(4) are carried out for each irreducible representation component
of the initial wave packet, giving S-matrix elements labeled by irreducible
representation rather than arrangement channel. Note that the boundary
conditions in step (4) are rewritten as irreducible representation dependent
linear combinations of the arrangement channel dependent conditions. After
obtaining the S-matrix elements for all irreducible representations present in
the initial wave packet, the arrangement channel dependent S-matrix elements
are obtained by a simple transformation.

In Sec. 2.2, we briefly review mass-scaled Jacobi and APH coordinates and
their basis functions. We also include a brief discussion of the symmetry of
the potential energy surface in APH coordinates. We provide the details of
the wave packet propagation in APH coordinates in Sec. 2.3 and define the
initial wave packet in Sec. 2.4. The extraction of the state-to-state S matrix

elements is presented in Sec. 2.5.

2.2 Coordinates and Basis Functions

Although detailed descriptions of the Jacobi and APH coordinate systems and
their basis functions have been presented previously [1], a brief summary is
presented here in order to provide consistent notation and to illustrate the

complementary relationship between them.

2.2.1 Jacobi Coordinates

Consider a system of three atoms A, B, and C, with masses m,4, mpg and

me and positions X 4, Xp, and X with respect to a space-fixed axis. After



separating the center-of-mass motion, the Jacobi coordinates are given by

rr = XT+2 — XT+17 (21&)

T XT T XT
R =X, — Mr1 8741 + Mrg2 2 (2.1b)
My + Mry2

where 7, 741, and 7+ 2 are any cyclic permutation of A, B, and C' for a given
7. Each pair of Jacobi coordinates describes a unique arrangement channel of
the system, labeled A, B, or C. For arrangement A, r4 is the vector pointing
from B to C' and R, is the vector pointing from the center-of-mass of B and
C towards A.

The mass-scaled Jacobi coordinates are given by

s, =d 'r,, (2.2a)

S, = d,R., (2.2b)

where the scaling factor d, and the three-body reduced mass p are given by

0, - [%u - %)} " (23)
p= (ameme), (24)

and M = my4 + mp + m¢ is the total mass of all three particles.
An advantage of mass-scaled Jacobi coordinates is that transformations

between the different sets are kinematic rotations,

( Sri1 ) _ T(XTHJ)( j ) (2.5)

Sr41



where the transformation matrix T is

T =

COS X741, S Xry1r
+1 +1 )®I (2.6)

—SI Xrq1,7  COS Xri1,7

where I'is a 3 x 3 identity matrix. The kinematic angles x.41, are negative,

obtuse angles given by

i
= ————————— 2.7
CR X, drdry1me o (2:78)
and
| ! (2.7b)
SINXrp1r = — , )
v, deT+1
with x,, = 0 and X;r+1 = —Xr+1,-- Since the mass-scaled Jacobi coordinates

will be used exclusively, they will be referred to simply as Jacobi coordinates.

The positions of the three atoms can be described with respect to either
a space-fixed (SF) or a body-fixed (BF) set of axes. The six Jacobi SF co-
ordinates consist of the magnitude and two orientation angles of each Jacobi
vector: (s., Os,, ¢s., Sr, Os,, ¢s.). The BF coordinates consist of the magni-
tudes of each Jacobi vector, a relative angle between the Jacobi vectors, and

three Euler angles: (s;, S, ©., a,, 5;, 7,). The relative angle O, is given by

Sr- S,
5.5,

(2.8)

cos©, =

with 0 < ©, < 7. The Euler angles describe the orientation of the BF axes of
arrangement channel 7 with respect to the SF axes.
The set of Jacobi BF axes corresponding to arrangement channel 7 will be

referred to as the BF, system. The BF, systems share a common y axis that



is perpendicular to the triatomic plane, and the z axis for each system points
along its respective S, vector. Transformations between the three sets of BF
axes consist of rotations about this common y axis.

The Jacobi kinetic energy operator is given by

_712(1 0? 1 92 )+£3 J?

(Lo g 1O , 2.9
210\ S; 052 378338 2uS2  2us? (2:9)

where L, is the orbital angular momentum operator of the atom 7 about
the center-of-mass of the other two atoms, and J, is the rotational angular
momentum operator of the 741 and 742 atoms. The total angular momentum

operator of the system is given by J = L, + J ,.

2.2.2 APH Coordinates

Consider the kinematic rotation

( :2 ) =700 S ) (2.10)

where ., is a continuous variable with the range 0 < x, < 27w. We choose the
angle’s origin to be along the A arrangement channel, denoted as the initial

or reactant channel:

X = Xi — Xri» (211)

where the y,; are the Jacobi kinematic angles of Eq. (2.7).
The kinematic angle y, is chosen to maximize the magnitude of Q so that

the vector Q will approach the vector S¢ of any atom ¢ that leaves the other

10



two. () is maximized when

2S;-s;
tan (2x,) = Sl (2.12)

where x, € [—m,7].

Similar to the BF; set, we choose a BF( set of axes in which the z axis
points along Q, and the y axis is perpendicular to the triatomic plane. The
BF system is an instantaneous principal axis system [1], since Q and q al-
ways lie along the smallest and second smallest principal moments of inertia,
respectively. As a result, the BFg axes swing smoothly from reactants to
products.

Transformations from the BF; systems to the BF system consist of rota-

tions Bg, about their common y axis. The rotation Sy, is given by

Sysin x, sin ©,

sin 8o, = (2.13a)
Q
and
S’?’ T T 1 T ®T
cos ﬁQr _ COs Xr + s@smx COS 7 (2.13b)
where

T

Q= [32 sin? x, sin? ©,

1/2
+ (ST COS X, + S, 8in x, cos @T) 2] ) (2.13¢)

This is an important connection between the Jacobi and APH systems and
will be used to map wave functions from one system to the other.

The internal coordinates of the APH system are the hyperradius p, and

11



the two angles # and x;. The hyperradius p and angle 6 are given by

p=(¢+Q)", (2.14a)

0=7/2—2tan"*(¢/Q), (2.14Db)

where 0 < p < 00, 0 < 0 < 7/2. The kinematic angle y; is given in Eq. (2.11).
These internal coordinates treat all arrangement channels equivalently. The
remaining three coordinates are the Euler angles aq, 8o, and 7 that describe
the orientation of the BF¢ system with respect to the SF axes.

The APH internal coordinates in terms of Jacobi coordinates are given by
p=(s2+52)" (2.15a)

(52— )"+ (25,57

tanf =
an 2S,5,sn O, ’

(2.15b)

and
_ 25;-s;
o S2 _ g2°

tan [2 (x; — X=4)] (2.15¢)

Alternatively, the Jacobi coordinates in terms of the APH coordinates are

1/2
Sy = %{1 +sinf cos 2 (x; — Xm‘)]} ) (2.16a)
1/2
Sr = %{1 —sinfcos[2 (x; — Xﬂ)]} , (2.16Db)
and
c0s @, = sinfsin [2 (x; = xri)] (2.16¢)

{1 — sin® 0 cos? 2 (i — XTi)]}l/Q.

The hyperradius describes the size of the three-atom system and the hy-

12



perangles describe its shape. As the hyperradius p increases, the interatomic
separation increases, causing S, and s, to increase. The angle 6 is a “bending”
angle, which varies the triatomic shape from an equilateral triangle (6 = 0) to
a collinear geometry (6 = 7/2). For collinear geometries, the kinematic angle
x; describes the ratio of s, to S, for a fixed value of p, where, for example,
s4/Sa — 0as y; — 0.

The APH kinetic energy operator is

K9 L, 15K
2up>/% Op* 8up?

— e 4 9 in 2(92 + L 8—2
2up? [sin2000 " 90 " sin® 0 02
1 _
+_2{MJ2+(C9——A9 Bg)ﬁ},
P 2 2
1 ./49 — Bg 0
5 { 5 (J3 + J2) + hDy(J- — J4) aXi] (2.17)

where J is the total angular momentum operator,

Jr = J, Fily, (2.18)

are the raising and lowering operators, .J; are the components of the total

angular momentum with respect to the BFg system, and

Ay = Tiin@’ (2.19a)
By = Tﬁﬂe’ (2.19b)
Co = ﬁ (2.19c¢)
Dy = % (2.19d)
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Note that Ay = pup?/21, and Cy = pp*/21,, but By # pp*/21,, for principal
moments of inertia I, I,,, and I,. Therefore, the APH Hamiltonian is that of
a fluid rotor, rather than a rigid asymmetric top rotor [1].

For 6 > 40°, the diagonal terms of the APH kinetic energy operator domi-
nate. When using basis set methods, one must be careful in choosing rapidly
converging basis functions. However, since we are using a grid-based method

we don’t have to take this into account.

2.2.3 Symmetry of the Potential Energy Surface

The symmetries present in the potential energy surface (PES) are important
because they allow a reduction in the coordinate space required to represent
the wave functions. The APH coordinates provide a good illustration of the
symmetries present at a constant APH p value. The potential energy surface
for H; at a constant p is given in Fig. 2.1. The plot shows the PES as a
function of APH 6 and x; at a constant hyperradius, p = 6 bohr. The X and

Y coordinates are given by [1]

7
X =tan (5) COS X (2.20)

0
Y = tan (5) sin ;. (2.21)

The APH 6 coordinate is the radial coordinate, since it provides the distance
from the center of the plot, and APH y; is the polar angle measured from the
positive x-axis.

The symmetry of the H + Hy surface is readily evident in Fig. 2.1 and
exhibits symmetry elements belonging to the Cg, point group [31]. Fig. 2.2

shows the location of the arrangement channels on the constant APH p surface;

14



(RHO=6.0)

H+H2

X

The shaded

Figure 2.1: PKH3 potential energy surface at p = 6 bohr [1].

areas show the repulsive region of the PES and the contours show the well

region. The contours are at 0.1, 0.38, and 1.0 eV.

Figure 2.2: Location of the potential energy surface arrangement channels and

symmetry elements of Cg,..

Each dashed line represents a reflection plane and

are located at successive x; = 7/6 rotations. The shaded areas illustrate the

rotational symmetry and are located at succesive y; = /3 rotations.
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dashed lines are used to illustrate the symmetry elements in Cg,. Note that
each arrangement channel is listed twice, since the APH coordinates cover
configuration space twice. This is done to avoid using half-integer angular
momentum. FEach dashed line represents a reflection plane. These planes
are located at succesive y; = 7/6 rotations. The PES is symmetric with
respect to reflections through these planes. The shaded areas illustrate the
rotational symmetry and are located at succesive y; = 7/3 rotations. The
PES is symmetric with respect to 7/3, 2n/3, w, 4w /3, b7 /3, and 27 rotations
of the APH y; coordinate.

The PES for F+Hs at a constant p is given in Fig. 2.3. The plot shows the
PES projected on the top hemisphere of a hypersphere of radius p = 10.5 bohr.
The F 4+ Hy surface is less symmetric than the H 4+ Hy surface and exhibits
symmetry elements belonging to the Cy, point group [31]. Fig. 2.4 shows the
location of the arrangement channels on the constant APH p surface; dashed
lines are used to illustrate the symmetry elements in Cs,. Each dashed line
represents a reflection plane. These planes are located at succesive y; = 7/2
rotations. The PES is symmetric with respect to reflections through these
planes. The shaded areas illustrate the rotational symmetry. The PES is
symmetric with respect to 7 rotations of the APH y; coordinate.

The important feature is that the PES is symmetric with respect to a single
APH coordinate, x;. As a result, the wave function can be represented on a
fraction of the total space, making computation more efficient. Cg, contains
four one-dimensional and two two-dimensional irreducible representations (IR)
[31]. If the wave function is an eigenfunction of a Cf,, it only needs to be rep-
resented from x; = 0 to 7/6 for a one-dimensional IR and from x; = 0 to 7/3

for a two-dimensional IR. C5, contains four one-dimensional IR’s, so an eigen-
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1.0

0.5

-0.5

-1.0
-1.0 -0.5 0.0 0.5 1.0

X

Figure 2.3: Stark-Werner FH2 potential energy surface at p = 10.5 bohr [2].
The shading runs from dark to light, with the darkest shading showing the
highest potential energy.

Figure 2.4: Location of the potential energy surface arrangement channels and
symmetry elements of Cy,.. Each dashed line represents a reflection plane and
are located at successive x; = 7/2 rotations. The shaded areas illustrate the
rotational symmetry and are located at succesive y; = 7 rotations.

function only needs to be represented from y; = 0 to 7/2 [31]. In this work,

we will take advantage of the ability to expand the wave functions in terms of

17



the IR eigenfunctions, in order to increase the computational efficiency.

2.2.4 Jacobi Basis

For a given total angular momentum J and its SF z component M, the time

independent Schrodinger equation (TISE) is given by
(E—H) WM =, (2.22)

where ¢ is labels the initial state. To define the Jacobi basis, the Hamiltonian
H =T + V is formed from the kinetic energy operator in Eq. (2.9) and the
potential energy V = V(S;,s,,0,). The wave function can be expanded in

SEF Jacobi coordinates as a sum over the final states:

~

i 1 i S
WM = 3T Gl(S) Xy (s0) ZM 5. (223)
TVl =T

where §, = (6., ¢s.), S, = (0s,, ¢s,), T labels the arrangement channel, v
labels the diatomic vibrational state, j labels the diatomic rotational state,
and /¢ labels the angular momentum state of the atom about the diatom.

The functions X,,;(s;) are the vibrational eigenfunctions of the diatom
formed by atoms 7 4+ 1 and 7 + 2 and satisfy

no L R+

~ 31597 o + v:(87) = €705 | Xri(87) =0, (2.24)

where v,(s;) is the diatomic potential between atoms 7+ 1 and 7+ 2 and €,,;
is the vibration-rotation energy. We obtain the solutions to Eq. (2.24) using
a distributed approximating functional (DAF) representation [32, 33, 34, 35,

36, 37] for the s, kinetic energy operator.
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The angular functions @Tg M(s,, ST) for each arrangement channel are eigen-
functions of J2, J,, £2, and J? formed by coupling eigenfunctions of £2 and

2
J7

XY;‘ (éT)Yl,M—m( 7')7 (225)

where the Y functions are spherical harmonics, and C' is a Clebsch-Gordan
coefficient [38].

The functions G7*

7vj0(S7) satisfy the asymptotic boundary condition

I 1/2
Ji
GTV‘]‘K(ST) ST—>00 (27Th2kTVj )

X {57'7i 51’1/1' 6]'3'1' 5”1‘ ‘%ﬂZ(Z) (kTVj S’F)

AN ¢) %“)(km&)}, (2.26)
where
24
]{Zﬂ,j = ﬁ(E - ETVj)a (227)

E is the total energy, S” is the scattering matrix (S matrix), and jii(k), with
k =1, 2, are Riccati-Hankel functions [39]. These boundary conditions will be
applied at sufficiently large values of S, such that the wave packet is outside the
interaction region of the potential energy surface, but the centrifugal potential
will not necessarily be negligible.

In terms of BF, Jacobi coordinates, the angular momentum functions can
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be expanded as [40]

. 20 +1\ 2
JM _ - .
o (sT,ST)_(QJH) EQ C(jtJ; Q00Q)

X 7539(@7') DéM(aTaﬁT777)7 (228)
where (2 is the BF . z-component of the total angular momentum J, with values

from —min(j, J) to +min(j, J). The basis function P;q(0,) is a normalized

spherical harmonic, and ﬁé v (@, Bry7v-) is a normalized Wigner D function

[41]:
Pia(0;) = (21)"* Y;0(O-,0) (2.29)
R J 1/2
Dhustan ) = (550 ) Dhulanbun). 230

Substituting Eq. (2.28) into Eq. (2.23) gives

oM — Z Gi;jfz (S7) Xruj(sr)

Trj§2 STST
X 7539(67') DéM<OéT7/BT7’7T)7 (231)
where
20+1\"?
Ji - )T Ji

Here we will choose to represent the initial and final states using the expan-
sion in Eq. (2.23) with the angular momentum functions expanded according to
Eq. (2.28). This choice of basis takes advantage of the SF boundary conditions

in Eq. (2.26) and, as shown in Sec. 2.4, offers a simple transformation between
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Jacobi and APH coordinates via the Euler angle 8¢, defined in Eq. (2.13).

2.2.5 APH Basis

To define the APH basis, the Hamiltonian is formed from the kinetic energy
operator in Eq. (2.17) and the potential energy V' (p, 0, x;). The solutions to
the APH Schrodinger equation can be expanded as functions of good parity p
as [42],

4 A~
W= 3 R B0 00) D0 o) (2.33)
KA

where A is the BF z-component of .J. The functions D% (ag, Bo,vo) are

normalized Wigner D functions with definite parity, defined as

D% (ag, Ba,1q)
o +1 YT,
= — Dl

(1) biAMmQ,ﬁQ,m]. (2.34)

The basis functions ®7% (8, x;; pe) satisty [1]

h? 4 9 . o0 9, N 1 0? 15h?
——— | ——=——==sin 20—
24107 | sin 20 90 90 sin® 0 Ox? JO:

+L2[A9+Beh2J(J—I—1)+ (CQ_A6+BG) h2A2:|
P 2 2

+V (0, xi; pe) — 53}‘1);”1(97 Xi; pe) = 0, (2.35)

where Ay, By, and Cy are defined in Eq. (2.19), and V' (6, x;; pe) is the potential

energy for a fixed value of p = p¢. Since the functions @iﬁ(@, Xi; pe) are defined
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on the surface of a hypersphere of radius pg, they will be referred to as surface
functions.

For the h-TDWP method, we will only need to calculate surface functions
at a single p value located in the asymptotic region of the PES, that we will
refer to as po,. The wave packet will be analyzed on surface located at p = poo.

The surface functions are obtained by diagonalizing the Hamiltonian in
Eq. (2.35), where we use a discrete variable representation (DVR) [43, 44]
for the 6 kinetic energy operator and periodic DAF (PDAF) representation
(32, 33, 34, 35, 36, 37| for the x; kinetic energy operator.

If the symmetry of the triatomic PES is taken into account, which is sym-
metric in the y; coordinate, we can calculate symmetry-adapted (SA) surface
functions @gﬁr(e, Xi; Pe) that are labeled by the irreducible representations I
of the appropriate point group. The basis set expansion in Eq. (2.33) can be

rewritten as

4 ~
W= S U ) B 0pe) Dislaaifon) (230)
T'rA

The SA surface functions are obtained by using a SA-DAF representation
[45, 46] of the x; kinetic energy operator. The SA y; kinetic energy operator,
and corresponding surface functions only need to be represented on a fraction
of the total coordinate grid located in the interval 0 < x; < 27lp/h, where h
is the order of the group, and [r is the dimension of irreducible representation

T [31].
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2.3 Evolution of the Wave Packet in APH Coordinates

The wave packet will evolve in time according to the time-dependent Schrodinger
equation,
0

ih 5 @ MP(t) = H "M (1), (2.37)

and, for a time-independent Hamiltonian H, the solution is given by
P7MP(t) = M IV 1) (2.33)

Propagation of the wave packet is carried out using the Chebyshev method
[47], where the time-evolution operator e~"*(=%)/" i5 expanded as a sum of
Chebyshev polynomials. This will require evaluating the result of operation of
the Hamiltonian on the wave packet: Ho”/MP(t).

To propagate the wave packet in APH internal coordinates, (p, 0, x;), we

expand the wave packet as

A

4 /
@JMp<t) = Z W QDJA p(pv 97 X t) DX/pM(O[Q7 ﬁQ7 7Q)7 (239>
A/

where D%, (0o, Bg,70) are defined in Eq. (2.34). The action of the APH
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Hamiltonian on the A component of the wave packet is

HQDJAp(p7 gaXZH t) =

B2 92 15K
2 Vi(p,0,%:) po”™(p, 0, i, t
{ 207 Tar T (p, »c)}so (p, 0, xit)

h2 4 0 0 1 82 e
_{ 2up? [sm 20 00 sin 26% sin6 3)@4 }SO (p, 0, x:, )

B
{u_/)z AH 9h2J(J+1)}90"A”(p,9,xi,t)

1
{7 <CB 'A9 + Be) h2A2:| }@JAp(pa 67 Xis t)

J
2up2 AZO <

Bi 212 ] %> o, 0, 1, 1)

J
| - :
DB WDy (J- — J)=— | DY > TNP(p, 6, x5, 1)
2 Z < AM 9 + ] Ay )P P Y5 Xir ),
2up o Ixi
(2.40)
where Ay, By, Cy, Dy are given in Eq. (2.19).
The matrix elements in Eq (2.40) can be solved analytically [1]:
(Dyh, | J2 + J2| Dy,
) ~1/2
=12 (1+ 6r,0) (1 + bv0)|
X [)‘JJF,A)‘}F,AH(SA’,AH - )‘;,A)‘;,Afl(SA’,A—l
+ (=D)AL A A 15/\/,2—/\}, (2.41)
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and

(Dihe | J- = Ty | Dy
—-1/2
=h[(1+ 000)(1+3wo)| - [Mfadnas

= Agadwac + (=D)AL Gy | (2.42)

where [48, 49]
Ny = [T A+ )T F )] 7 (2.43)

The results in Eqs. (2.42) and (2.41) are referred to as the asymmetric top
and Coriolis coupling coefficients, respectively [?]. Each A component of the
wave packet is coupled to its A + 1 and A £+ 2 components, and J or J +1 A
components of the initial wave packet must be propagated, depending on the
parity [21, 50].

The number of terms that must be used in the Chebychev expansion of
the time-evolution operator is dependent upon the eigenvalue range of the
Hamiltonian [47]. For small values of #, the presence of 1/ sin 26 and 1/sin* @
terms in the 6 and y; kinetic energy operators result in very large eigenvalues.
Furthermore, similar issues exist for the angular momentum operators that
contain By, Cy, and Dy. To avoid these large eigenvalues, we set energy cutoffs
that limit the maximum eigenvalues of terms that do not couple different A
values. The coupling terms are ignored when the sum of the J(J + 1) and A?
terms are cutoff [51]. The computational details concerning these points will
be discussed in Sec. 3.3.

As discussed in Sec. 2.2.5, the PES symmetry can be exploited to reduce

the coordinate space required to represent the wave packet and y; derivatives
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by decomposing them into the irreducible representations I' of the appropriate
point group. Rather than propagating the wave packet over the full APH
coordinate space, we propagate the irreducible representation wave packets
using Hamiltonians that belong to the same irreducible representation. The
only terms affected in the APH Hamiltonian operation, in Eq. (2.40), are the

X: derivatives, represented using the SA-PDAF representation [45, 46].

2.4 The Initial Wave Packet

In general, the initial wave packet can be constructed in any coordinate basis
that appropriately represents the reactants of the system, assuming a trans-
formation between the coordinate system and APH coordinates exists. To
be propagated using the Chebyshev method with Eq. (2.40), a general initial

JM

wave packet @7 (t = 0) is expanded according to Eq. (2.39), giving

5/2 R
0/ (p,0, it = 0) = pT /dQ Db oM (1 = 0), (2.44)
where the index ¢ denotes a set of initial quantum numbers and

dQ = dOéQ sin ﬁQ dBQ d’)/Q. (2.45)

To calculate state-to-state transition probabilties, we choose an initial wave
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packet that obeys the SF boundary conditions discussed in Sec. 2.2.4:

1
JM
907-1'1/51& (t = O) :STiSTi gn(Sﬂ') XTiVijz‘<STi)
20+1\"? .
X (2J+ 1) > o C(es; Qo0
Q>0
X 75]191 (G)Tz) f)ng(aT“ 57-1'7 771')‘ (2'46>

Note that Eq. (2.46) has been written as a function of definite parity, where

Dng(am 571'777'1')

2J +1 1/2
= - DJ - - "
{167r2(1+5/\0)} [ o (s Bris Vry)

—|—(—1)J+A+P DZQiM(Oémﬁm’Yn)}- (2.47)

The translational function g,,(Sy,) is a normalized Gaussian defined as

_ 1\ —(Sr, =52 ) /402 ,—iko Sy,
G-, (S7,) = <2702) e i e : (2.48)
The initial wave packet is centered at S(T)i, chosen to be large enough that the
packet is located in the asymptotic region of the reactant arrangement channel
PES, and is centered at hky in momentum space, chosen such that ky > 0, so
the packet is traveling toward the interaction region. In other words, the initial
wave packet is constructed so the atom and diatom are initially well separated
(large S2), are not interacting, and are given an initial momentum such that
they are initially approaching each other. It is important to choose an appro-
priate width parameter o that keeps the momentum space distribution narrow

enough to contain only incoming waves and keeps the coordinate distribution
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narrow enough to ensure that the whole packet is initially localized in the
asymptotic region of the potential energy surface.

Substituting Eq. (2.46) into Eq. (2.44), the integral can be solved by taking
advantage of the orthogonality of the Wigner D functions. We transform from
the BF; system to the BFy system by a [, rotation about their common

y-axis, where [, is defined in Eq. (2.13), using the relationship [1]

Db (e, Brve) = Y dih (Bar) Dby (g, By Q) (2.49)
A

The A component of the initial wave packet is given by

JA 05/2
vy _ _
Spnuijiéi(pa 97 Xi,t = 0) _4373‘973 g‘n‘(sﬂ') XTiViji(STi)
204+1\"?
1 0J; Q00
X (2J+1) ; C(jitJ; Q0Q)
X ﬁjzﬁz(@Tz)déIZA(ﬁQﬂ)v (250)

where

J . J+A+p ;5
ngfA(ﬁQT) _ do, A (Bor) + ( 1) lciQi—A(BQT)' (2.51)

[2(1 - 5A70)] /

Eq. (2.50) shows that the A components of the initial wave packet can be
formed directly from the Jacobi basis functions and mapped to APH coordi-
nates using Eq. (2.16).

If we consider symmetry, the initial wave packet will need to be decomposed
into its component irreducible representations. Since the initial wave packet

in the Jacobi basis has been mapped to internal APH coordinates, this can be
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done using projection operators [31]:
Pyt (0, Xit = 05 pog) = PP@lil (0, x5t = 03pc). (2.52)
The projection operators are defined as [31]
lr .
P' ==Y X(R'R, 2.53
PR (2.53)

where /r is the dimension of the irreducible representation I', h is the order
of the point group, R is a symmetry operation of the group, and X (R)! is
the character of the symmetry operation R for irreducible representation I'.
Each irreducible representation wave packet will be propagated and analyzed
separately.

The values of the rotational quantum number j and parity p will limit
the number of component irreducible representations present in the initial
wave packet. As a result, the region of coordinate space over which we must
propagate the wave packet is reduced. For example, for the reactants H + H,
with j = 0 and even parity, the initial wave packet will have A; and Fs4
irreducible representation components of the Cg, point group. Propagation of
the A; component requires 0 < y; < 7/6, and the Fy4 component requires
0 < x; < /3, which is 1/4 of the coordinate space that would be required if
the full wave packet were propagated.

At this point, we have defined an initial Jacobi wave packet that is localized
in the asymptotic region of the potential energy surface and that consists of
only incoming waves. We can propagate it in APH coordinates from t = 0
to a time t,,,, when the reaction has concluded and the entire wave packet

has exited the interaction region. The scattering information can be extracted
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by analyzing the wave packet at each time step as it re-enters the asymptotic

region.

2.5 Wave Packet Analysis

Let ©/M(t = 0) be an initial wave packet, where i denotes the initial state,
that is localized in the asymptotic region of the PES. As the wave packet
propagates in time, it will enter the interaction region, scatter, and exit into the
asymptotic region. Once the packet has returned to the asymptotic region, it
can be analyzed after each time step by projecting it onto the APH basis states
at a constant p surface, which we label p,,. The S-matrix can be extracted
by Fourier transforming the APH projection coefficients and matching them
to the appropriate Jacobi boundary conditions.

First we present the analysis assuming no symmetry, so S-matrix elements
are labeled by arrangement channel. Then we present the analysis taking
into account symmetry, so the S-matrix elements are labeled by irreducible
representation, and show how to transform to arrangement channel dependent
S-matrix elements.

At any time t, the A component of the propagating wave packet can be

expressed in terms of it’s stationary state components,

JAp

(0,0, X, 1) / A e~ iB/h (B wI, (2.54)
0

~ 27k

with U/AP — <D;{’]’V[(QQ,5Q,7Q) ‘ \IIJMi>, where W/M? is defined in Sec. 2.2.4,

and 7;(E) is the total energy distribution,

m 00
m(E) = [ [ a5, 0550) (50, (2.59)
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determined from the initial Gaussian, where Jﬁfl)(kisﬂ.) is a Ricatti-Hankel
function [39].

We project the wave packet onto the surface of a hypersphere of radius
P = Poo, Where po, is located in the asymptotic region of the potential energy
surface, and project this portion of the wave packet onto the APH surface
functions ®7 (6, x; poo). This is done by multiplying both sides of Eq. (2.54)
by 6(p — pm)éiﬁ(e, Xi; pe) and integrating over the APH internal coordinates

[52], giving

00 w/2 2
/ dpd(p— po) / sin 20 6 / dx: B8 (0, xis pe) 97 (0, 0, X1, 1)
0 0 0

1 | 0 /2
=— dE e_’Et/hni(E)/ dpd(p — poo)/ sin 20 d6
2mh J, 0 0
2
X/ dy: @28 (0, x5 pe) U7 (2.56)
0

The left-hand side (LHS) of Eq. (2.56) contains the overlap of the wave packet
with the APH surface functions, and the right-hand side (RHS) contains the
overlap of the surface functions with the Jacobi stationary state basis func-
tions.

We seek the S-matrix contained in the boundary conditions of U/ Since
Pso has been chosen to be in the asymptotic region, the boundary conditions,
such as those in Eq. (2.26) for an asymptotic value of S;, can be applied. The

stationary state wave functions W72 can be expanded as
i Ai
VAP (pog) = = Y S74(B) U1 (E; poo). (2.57)
f

where the composite index f labels the final product states in all arrangement

channels, and S}{ ;(E) is the S-matrix element for a transition from an initial
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state ¢ to a final state f. Notice the absence of the incoming boundary condi-
tion in Eq. (2.57). For this equation to be valid, we can either choose po, to
be large enough that the initial wave packet is localized in the region p < p
or we can choose to start the analysis at a time £4eqy > 0 such that the initial
wave packet no longer has any significant amplitude along p > peo.

At energies below dissociation, the final state wave functions \II;MP (E; pso)
are constructed from Jacobi basis functions. If the wave packet energy range
includes both bound and dissociative final states, the final state wave func-
tions are constructed as a sum of Jacobi and hyperspherical basis functions,
satisfying a set of mixed-boundary conditions [29].

Substituting Eq. (2.57) into Eq. (2.56) and evaluating the p integral gives

1o
F\ it poo) = / AE e/ g(E)
0

" 27k
X D SFE) Al 4 (B pso), (2.58)
f
where
w/2
F/;]A,z‘(t;poo) z/ df sin 20
0
27
: / s ®% (0, X3 poo) 07 (0, i, 15 i) (2.59)
0
and

w/2
Aly (B poo) :/ df sin 26
0

27
< / A B8 (6 x5 poe) W (B, ). (2.60)
0

To extract the S-matrix elements from the integral, we perform a time-to-
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energy Fourier transformation on Eq. (2.58) and rearrange to get
ZS}]z(E) AiA,f(E; Poc) = F,;]A,i(E; Poo)s (2.61)
f

where

Fi(E; poo) =

U(E>/ dt e'Pt/h F,;]A’i(t;poo), (2.62)
i 0

and A/, +(F; po) is defined in Eq. (2.60).
If we have Ny open final states and Ny, APH surface functions at a given

total energy F, Eq. (2.61) can be written in matrix form as
A'ST =F’, (2.63)

where A7 is an N; x N, matrix, 8’ is a vector of length Ny, and F’ is
a vector of length N,. The number of energetically accessible final states
will depend upon the value of the total energy at which Eq. (2.63) will be
solved. The number of APH surface functions must be large enough to fully
represent all the energetically accessible final states. Since the matrix A7 will
not necessarily be square, we multiply both sides of Eq. (2.63) by (A”7)” and
solve for 87 as

S8’ = [ATA] 'A”F, (2.64)

where the J superscripts on the right-hand side have been suppressed for
clarity.

In deriving Eq. (2.63), we made no use of symmetry. To extract the S-
matrix elements, taking advantage of symmetry, we first expand the I" com-

ponent of the initial wave packet in terms of the I' components of the Jacobi
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stationary state functions:

1 o0 . .
P bxit) = 5 [ A I (E)EAT, (269
0

as in Eq. (2.54). We can decompose the stationary state functions, which have
been mapped to APH coorddinates, in the same way we decoposed the initial
wave packet in Eq. (2.52). Expanding ¥/4T over final states f’, excluding
the sum over the arrangement channel 7, and projecting the wave packet onto

the SA-APH surface functions corresponding to irreducible representation I’

at p = poo, gives

> SHE) AL 1(B; poo) = FIN (B3 poc). (2.66)
f/
where
1 o
FIUAE; ps) = / dt e’V IV (4 o), 2.67
A,( ) T]z(E) 0 A, ) ( )
w/2
F:ii(t;pm) :/ df sin 26
0
27lp /h
></ i @R (0. X33 o) @ 7T (0, X ;5 o), (2.68)
0
and

/2
AL (B pso) = / df sin 20
0
2rir /h JpI' . JA
X dxi @i (0, X365 Po0) Vi (B, Poo)- (2.69)
0

The S-matrix elements labeled by irreducible representation are obtained by

solving Eq. (2.66) using Eq. (2.64). The S-matrix elements indexed by ar-
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rangement channel are linear combinations of those indexed by irreducible

representation:

St(E) =) P SP(E), (2.70)
1—‘/

where ]5]1: are the matrix elements
50 JAip | DT | qy JAT
Py = (WP | PUwyt ), (2.71)

and PT is a projection operator for irreducible representation I' [31].
A negative imaginary potential (NIP) [53, 54] is used to absorb the wave
packet after it crosses the analysis surface at p,,. The NIP is applied beginning

at the pyrp > poo surface, and has the form

3
Vnip = —Z'UNIP<M) (2.72)

Pmax — PNIP

for pyrp < p < pmae and is zero, otherwise. Upyyp is the strength of the
potential, and is adjusted according to the range of kinetic energies contained

in the initial wave packet [54].
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CHAPTER 3
COMPUTATION
3.1 Introduction

This chapter discusses the details of implementing the time-dependent hy-
perspherical method, specifically the computational methods and algorithms
used. The majority of the computational time is used to propagate the wave
packet in time, so the primary goal of this chapter is to discuss how the wave
packet is propagated, how to make the propagation more efficient, and how
much computational time is required to run the program for various input
parameters.

First, the Chebychev method used to propagate the wave packet will be dis-
cussed. This method will require multiple matrix-vector multiplications, as the
Hamiltonian is applied to the wave packet. Next, a Sylvester-like algorithm,
which is used to make the matrix-vector multiplications more efficient, will be
discussed. Finally, the computational times required to run the program will

be discussed.

3.2 Chebychev Method

The wave packet is propagated in time, for an interval At = t—t, by applying

the time-evolution operator:

gOJMp(t) — efiHAt/h SOJMp(tO)a (31)

The kinetic energy operators in the Hamiltonian are not diagonal, so we will

approximate the time-evolution operator as sum of Chebychev polynomials

36



[39]. The operation of the time evolution operator can be expanded as [47, 55]:

Nc

e HAU TN () — i (Fmas=Bmian) U0 N9 5 0)im T, (R) T, (—iH) @M (1),
n=0

(3.2)

where T, (—iH) are the Chebychev polynomials [39], J,,(R) is a regular Bessel

function [39], and

1
R == %(Emax - Emzn)Aty (33)
7 2 - Emaa: Emzn
7 = 2= (Enaa & Evin) (3.4)

Emaz - Emzn

FE,.in and E,,,, are the minimum and maximum eigenvalues of the unscaled
Hamiltonian, respectively.

The sum requires N¢ + 1 terms to converge. The quantity No depends on
the eigenvalue range of the unscaled Hamiltonian and the time interval over
which the wave packet is propagated: No = aR for o > 1. The operator H is
the scaled Hamiltonian, and its has been scaled so that its eigenvalues range
between —1 and 1. This scaling is done to match the interval over which the
Chebychev polynomials are defined.

The Chebychev polynomials are functions of the scaled Hamiltonian oper-

ator, so we will calculate their action on the wave packet as

On = Tu(—iH) "7 (to). (3.5)

The terms in the sum are calculated according to the Chebychev recurrence

relation [39]

¢n = _2i7:[¢n—1 - ¢n—2; (36)
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where ¢g = /MP(ty) and ¢ = —iHe'MP(t,).

According to Eq. (3.3), the number of terms required increases as the eigen-
value range increases and as the time interval increases. When the eigenvalue
range becomes too large, the large value of No can cause a large computa-
tional cost. Therefore, it is important that the eigenvalue range is accurately
determined. To determine the eigenvalue range, we diagonalize the discretized
kinetic energy operators in the APH Hamiltonian and sum the maximum eigen-
values. To this we add the maximum value of the potential energy and angular
momentum terms. Note that we restrict the maximum value of the potential
by setting a cut-off value V,,;. We can do this because the wave function will
not have amplitude in regions of the PES that are above V_,;. We have deter-
mined that the minimum number of terms required for the Chebychev sum to
converge is about 25 terms, even if the predicted N is less than this value.

The Chebychev method is preferred over other methods because its accu-
racy is dominated by the accuarcy of the computer [56]. The reason for this is
that as the order n of the Bessel functions becomes larger than the argument
R, the Bessel functions decay exponentially. The error is equally distributed
over the entire range of eigenvalues [56]. Furthermore, the method is not lim-
ited by the time interval chosen, providing results of the same accuracy as long

as enough terms are included in the sum.

3.3 Constraining the Eigenvalue Range

The previous section discussed the importance of the eigenvalue range in deter-
mining the computational efficiency of the Chebychev method. Since the time
propagation of the wave packet is the most computationally expensive part of

the program, it is important to limit the eigenvalue range when it exceeds the
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physically relevant region of interest.

Referencing Eq. (2.40), the 6 and x; kinetic energy operators are given by

h? 4 0 . 0 1 9?
—sin 2

 2up? | sin 26 06 o0 * sin20 0x2 | (3.7)

For small values of 6, the presence of 1/sin20 and 1/sin®6 terms in the 6
and y; kinetic energy operators result in very large eigenvalues. These eigen-
values may exceed the physically relevant energies for a particular scattering
experiment and unnecessarily increase the required number of terms in the
Chebychev sum. To remove these eigenvalues, the eigenvalues associated with
the high energy eigenvectors can be set to a determined energy cut-off value
E.:. In the program, E.,; is the same as the potential energy cut-off value,
Veut-

First, the discretized kinetic energy operator is diagonalized to obtain the
eigenvalues and eigenvectors. Then, the kinetic energy matrix operator T can

be written as

N
T=> ey (3.8)
=1

where ¢, is the eigenvalue of the i'* eigenvector v, and N is the dimension
of the grid. The first step is to determine which values of ¢ correspond to
eigenvalues above E.,, such that the eigenvalues to be kept lie between ¢ = 0
and 7.,;. Next, the terms in the sum with ¢ > i.,; are removed from the kinetic

energy operator and replaced with ¢; = E.; to give

N N
Tcut =T — Z €j Zﬁ;lpj + Z Ecut Q/J]J.E;l/}k (39)

J=tcut k=ficut

Now the maximum eigenvalue of the kinetic energy operator T,.,; is equal to
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Eeu.

It is important to note that there will not be one specific value of 7.
associated with each kinetic energy operator. The 6 kinetic energy operator
is also a function of p~2, so the eigenvalues will be p dependent. Therefore,
the 0 kinetic energy operator eigenvector replacement will have to be done at
each p grid point. Similarly, the x; kinetic energy operator depends on p and
0, so the replacement will need to be completed at each p and 6 grid point.
Fortunately, the eigenvalues only exceed E.,; at a few grid points, when @ is
small, and kinetic energy operators can be used without replacement. Because
of this fact, this eigenvalue replacement method is much more efficient than
retaining the eigenvalues above E.,;.

Similar issues exist for the angular momentum operators that contain By,
Cy, and Dy, which are defined in Eq. (2.19). These also have large eigenvalues at
small values of 6. The best way to eliminate the large energies associated with

these terms is to look at the diagonal angular momentum terms in Eq. (2.40):

1 [Ag+ By, Ao+ By 5,0
P 5 hJ(J+1)+(C9 5 )hA : (3.10)

Since the matrix associated with these terms is diagonal, there is no need to
resolve it into its eigenvectors. We can just replace any energy above E.,; with
E..;. At points where the energies are replaced, we ignore the asymmetric-top

and Coriolis terms, since they will also exceed E.;.
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3.4 Efficient Three-Dimensional Sylvester-Like Algorithm for Ap-

plying the APH Hamiltonian

3.4.1 Introduction

The most time consuming portion of the program is the time propagation of
the wave packet. Since the propagation is facilitated by repeatedly applying
the Hamiltonian to the time-dependent wave function, reducing the number
of multiplications needed for this matrix-vector multiplication will have a sig-
nificant effect on the computational efficiency.

In this section, a three-dimensional Sylvester-like algorithm for applying
the APH Hamiltonian to the time-dependent wave packet is derived. A de-
tailed derivation is presented since this is a new algorithm I developed by
extending the two-dimensional Sylvester algorithm [57]. First, the relevant
operators and notation will be introduced and discussed. Next, a proof of the
two-dimensional Sylvester algorithm will be presented and applied to the two-
dimensional APH Hamiltonian used in time-independent reactive scattering
theories. Last, the three-dimensional Sylvester-like algorithm will be derived

and its computational efficiency discussed.

3.4.2 Operators and Notation

Matrices and vectors will be denoted by boldface letters (eg. A, B), while
scalar quantities will be denoted by math italic text (eg. A, B). Since sub-
scripts will be used as identifying labels, the traditional method for labeling
the elements of rank 2 matrices (eg. A;; for the element of A in row ¢ and
column 7) will be replaced by the notation Az, j]. For rank 3 matrices, we will

use the notation A[i, j, k]. To represent a single row or column of a matrix A,
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the notation Al[i,:] for the i*" row and A[:, j] for the j** column will be used.

The colon represents every element contained in the corresponding index. For

example, if A is an (n4 X m4) matrix, then

Al = (ALY AL2 - Alimg] )
and
AlL)
N
Alna.d

(3.11)

(3.12)

For rank 3 matrices, let B be an (ng X mp X pg) matrix. Then, the use of one

colon gives a vector:

BI[1, 4, k]

B[:,j, k] = Bl2..K

B[nBaja k]

Bli, 1, k]
Bli,2, k]

B[Z, mpg, /{}

Bli, j, 1]

Bli,j,:] = Bli.j.2

B[i7j7pB]
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The use of two colons gives a rank 2 matrix:

B[lalak] B[]-?Q)k] B[LmB)k]
BR21,k| B[22k - B2 mpk

B[, k] = | | | | [2.ms. K (3.14a)
B[”Bu]wk} B[nBa27k] B[nBamBak]
B[17]71] B[17]72] B[lajapB]
Bl2.j.1] B[2.j.2 --- B2.j

B[, j,] = . 252 1%:5:ps] (3.14b)
B[nBuja]-] B[?’LB,j,Q] B[”B7j7pB]
B[Zalvl] B[27172] B[%LPB]
Bli.2.1] Bli.2.2] --- BJi.2,

Bl[i,:,:] = | | | | -2, ps] : (3.14c)
B[iamBal] B[iamBu2] B[i7mBapB]

Let A and B be matrices with, A € R"2*"4 and B € R"8*"8. The

Kronecker product of A and B is given by [57]

AlLB  A[L,2B - All,n4B
AoB A[2,.1]B A[2,‘2]B A[Q,@B | 5.15)
A[TLA,l]B A[TLA,Q]B A[nA,nA]B

an nang X nanpg matrix.
For a two dimensional case, let X be a matrix with X € R"4*"2_ Applying

the vec operator [57] to X stacks the columns of X into a vector of length
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nANg:

vec(X)

X

X[nA, 1]
X[1,2]

X[nA,2] -

X[l,nB]

X[”A?”B]

X[:, 1]
X[, 2]
X[:, np|

(3.16)

For a three dimensional case, let X be a matrix with X € R"4*"8>X"¢_ - Applying

the vec operator gives a vector of length nangnc:

vee(X) =

X[, 1,1]
X[, 1, nc]
X[:,2,1]
X[:, 2, nc]
X[, np, 1]
X[:,ng,ne
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Other useful ways to write Eqn. (3.17), which will be used later, are

vec(X[:, 1,:])
vee(x) = | TXE2D) (3.18)
vec(X[:, np, )
and
X[, 1]
X[, 2]
vec(X) = vec . (3.19)
X[:, 5 nel

3.4.3 Operations in Two Dimensions

In this section, we will be dealing with discretized two-dimensional operations

of the form

Cx = (B ® A)vec(X), (3.20)

where B € R"57"5 A € Rnaxna X € Rraxns C g Rransxnans x ¢ Rransxt)
and x = vec(X). The operation of C on x requires 2n%n% multiplications.

The number of multiplications can be reduced by rewriting Eq. (3.20) as [57]

(B ® A)vec(X) = vec(AXBT), (3.21)

which requires n%np + nan% multiplications. Eq. (3.21) is the Sylvester iden-

tity [57].
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Proof of Eq. (5.21): (See Ref. [57] ) We begin with the k™ column of the
product AXB”, denoted (AXBT)[:, k],

(AXB")[:, k] = A(XB")[;, k]
= AXB™[;, k]
= AiX[:,k] BTi, k]
= (AB[1,k] AB[2,k] --- AB[ngp, k]) vec(X)

= (B[;, k] ® A)vec(X). (3:22)

Including all ng columns of B gives

B[, 1]]® A
B[;,2]® A

vec(AXB”) = ' vece(X) = (B ® A)vec(X). (3.23)
B[, ng]|® A

The expression in Eq. (3.21) can be used in time-independent three-atom quan-
tum reactive scattering (QRS) calculations to reduce the number of multipli-
cations involved in applying the Hamiltonian operator to the wave function
[58]. In this case, the adiabatically adjusting, principal axes hyperspherical
(APH) coordinates [1] will be used. The APH kinetic energy operator for
total angular momentum J = 0 is given by

2o .0 R 4 9 9 R 1 0

“Srast 9, 57 7p SN 2047 — . (324
2005 8pp dp  2up?sin 20 00 Y] 211p% sin? § Ox? (3.24)
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Solutions for the terms containing only the 6 and x derivatives, with p as
a parameter, are useful in QRS problems [58, 45], and the two-dimensional

kinetic energy operator is given by

h? 4 0 0 h? 1 0?
53 hg g SN 20 — 3.25
241 sin 20 96 ) 2p1pF sin® 0 Ox?’ (3.25)

TIop = —

where pg is a fixed value. Adding the potential energy operator provides the

full Hamiltonian:

Hyp = hg + fohy + Vap, (3.26)
where
R 4 0 0
hg = ———————1sin 20— 2
o 21107 sin 26 00 T (3:27a)
h 02
hy = ———=— 3.27b
Y 2upfOx; (3:270)
1
= 2
Jo sin? 6 (3.27¢)
~ 15h2
Vop = Vipe, 0, x:) + —. 3.27d
2D (1057 » X ) + Sﬂpg ( )
Solutions for Hyp are obtained via the Schrédinger equation
Hypdi = &9y, (3.28)

where ¢; are the eigenfunctions and &; are the energy eigenvalues. Discretizing
the application of the Hamiltonian to the wave function, with n,, ng, and n,
representing the number of grid points for each coordinate, the left-hand side

of Eq. (3.28) gives an expression with terms that are analogous to Eq. (3.20):

Hopos = (£ @ hy +hy @ I, + Vyp)vec(®;). (3.29)
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In Eq. (3.29), {fy, hy} € R™>*™0 h, € R "x, Vap € Rromxnonx &, e Rrx<ne,
¢; € Rxmxt and I, is an (n, X n,) identity matrix. Note that Vyp and fy are
both diagonal matrices and that ¢; = vec(®;). This Kronecker product form
requires 2n@n§< + 2n2n, + ngn, multiplications, not counting multiplications

by zero. Using the Sylvester identity in Eq. (3.21) gives

(fy @ hy )vec(®;) = vec(h, P;fy) (3.30)

(hy ® I, )vec(®;) = vec(L,®;hy) = vec(®;hy), (3.31)
which provides

Hapo; = vec(h, ®;f) + ®;h)) + Vapvec(®;), (3.32)

requiring ngni + nZn, + 2ngn, multiplications, not counting multiplications
by zero. The new form requires ngni + nZn, — ngn,, less multiplications than
the Kronecker product form.

3.4.4 Operations in Three Dimensions

The three-dimensional Hamiltonian that is applied to the wave packet is given

in Eq. 2.40. It can be rewritten as

Hsp =h, + fohe + fofohy +V

+ fo(Ag + Bg)J(J + 1) + f,(Co — Ag — Bg)A?
- B D
- 0of, (%) —af, (f) hL (3.33)

48



where Ay, By, Cy, and Dy are given in Eq. (2.19), and

K2 O2
hy=——— 34
o 2019,7 (3.34a)
4 9 )
= §in20— 34
sin2090 "™ 205 (3.34b)
82
)
hl=—— 3.34d
X By ( )
h2
p— . 4
o 2 (3.34e)
1
= 34f
Jo sin® 0 (3.34f)
- 15K2
V=V(p,b 3.34
(p,0,x) + e (3.34g)
J
g1 =Y (Db, |ihd, | Dby, (3.34h)
A'=0
J A~ A
9= Y (D | J2 =I5 | Difus)- (3.34i)
AN'=0

Note that the definitions of hy and h, are different than in the 2D case.

Propagation of the time-dependent wave packet ¢, is facilitated by applying
the Hamiltonian, as shown in Eq. (2.40). Here, the wave packet is represented
by ¢; to avoid a large number of indices. The only index of importance that
is suppressed is A, which couples off-diagonal terms. This will be referenced
when necessary.

Discretizing the application of the Hamiltonian on the wave function gives
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an expression with terms that are analogous to Eq. (3.29):

H;ppy =, 0fpoh, +f,0hy®1,+h, L, ®I, + V)Vec(\Ilt)
+J(J+1)[f, ® (Ag+ By) @ I, ] vec(¥y)
+ A2 if, ® (2Cy — Ay — By) ® I ] vec(¥,)

_ {29—}; £, @ (Ag — By) ® L] + g—hl [, ® Dy ® h'] } vee(W,),  (3.35)

with {f,, h,} € ™" {fy, hg, Ag, By, Co, Dy} € R"*", {h,, hi} € R
V € Rrenonxxmpnenx 5, € Roxmexno and qh, € Rrxwenoxl - Also, T, and I, are
(ng x ng) and (n, x n,) identity matrices, respectively. Note that V, f,, fy,
Ay, By, Cy, Dy are all diagonal matrices.

We seek to reduce the number of multiplications needed to compute Hspi),.
As with the potential energy term, the J(J + 1) and A? terms are diagonal
and do not require attention to make them more efficient. Furthermore, the
matrices that form the asymmetric top term are all diagonal with respect to
the coordinate grid and do not require attention either. The terms of interest
contain the p kinetic energy operator, the 6 kinetic energy operator, the y;
kinetic energy operator, and the y; first derivative Coriolis coupling operator.

The right-hand side of Eq. (3.35) can be written as
Hsp, = vec(Y) + Zvec(Wy), (3.36)

where Z is a diagonal matrix containing the terms that do not need atten-

tion. The term Y € R™*™*" ig a rank 3 tensor obtained by regular matrix
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multiplication, rather than by Kronecker product, and can be written as

Y=Y, +Y,+Y,+Y, (3.37)

vec(Y) = vec(Y,) + vec(Yy) + vec(Y,) + vec(Yi). (3.38)

The y;, 6, and p components of Y satisfy the equations

(£, ® £5 ® hy )vec(L,) = vec(Y,) (3.39)
(£, ® hy ® L Jvec(¥,) = vec(Yy) (3.39b)
(h, ® Iy ® L )vec(¥,) = vec(Y,) (3.39¢)
g—hl(fp ® Dy @ h)vec(¥,) = vec(Y)). (3.39d)

The individual Y; terms can be determined by rearranging the left-hand sides
of the expressions in Eq. (3.39), as was done in the two-dimensional case.
First, we will find Y, using Eqn. (3.39a). Rewriting the terms on the

left-hand side gives

(f,@fh@h)=

fp[lvl](f9®hx) 0 0
0 fp[272](f9®hx> 0 : (340&)
0 0 fp[npa”pKfH ®hx)
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vee(Wy) =

vec(Wy[:, 1,:])
vec(Wy[:, 2,:])

vec(Wy[:, nyp, 1))

The product of these can be written

(f, ® fy ® hy )vec(¥,) =

fo1, 1](fy @ hy )vec(W,[:, 1,:])
o2, 2](fo @ hy)vec(¥y[:, 2,:])

Folno, no) (fg @ hy )vec(W,[:, ny, )

(3.40b)

(3.41)

Using the two-dimensional relation from Eq. (3.21), each row of the right-hand

side of Eq. (3.41) can be written as

fp[j7 ]](fa ® hX)VeC(\IIt[:a ja

giving

(f, ® fy ® h, )vec(¥,;) =

:]) = vee(f, [, ST ®el:, 5, <),

vec (fo[1, 1]h, ¥[:, 1,:]fp)
vec (f,[2,2]h, W[:, 2, :]fp)

vec (fp[np, nplhy Wyl:, myp, :]f)
vec (Y [5,1,:])
vee (Y[, 2,:])

vece (Y5, np, )

92

= vec(Y,).

(3.42)

(3.43)



Then, Y, is given by

YX[:wjv :] = fp[j7j]hx‘1’t[:7j> 1]f9- (344)

Obtaining Y, using Eq. (3.44) requires np(ngnf< + ngn, + 1) multiplications
However, this form is not the most efficient, though it is more efficient than
the Kronecker form. We compute the x vectors of Y, for each set of p and 0

values according to

Y, [:, 7, k] = folg, by Wi, 4, fa]:, K] (3.45)

= fp[jvj]hx‘:[’t[zvja k]f@[ka k]a (346)

where Eq. (3.46) arises since fy is diagonal. This requires n,ng(n2 + 2) mul-
tiplications to obtain the full Y,, which is n,(ngn, — 2ng + 1) less than for
Eq. (3.44). Therefore, computation of Y, is most efficient when its compo-

nents are calculated via

YX[:7j7k] :fp[jvj]fe[k’k]hqut[:ajakL (347)

which requires npng(ni+2) multiplications to obtain the full Y, , not including
multiplications by zero.

Since Eq. (3.39d) is similar to Eq. (3.39a), with diagonal p and 6 terms
in the Kronecker product, the expression for Y}( can be found using a similar

procedure. Referencing Eq. (3.48), the expression for Y is given by

Y, [0,k = %fp[j,j]De[k, kI, W, 5, k], (3.48)
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requiring the same number of multiplications as Y,

Next, we will find Yy using Eq. (3.39b). Rewriting the terms on the left-

hand side gives

(f, ®hy ®1I,) =

vec(W,) =

vec(Wy[:, np, 1))

fol1, 1)(hg @ 1) 0
0 fo[2,2](hy © 1)
0 0

vec(Wy[:, 1,:])
vec(Wy[:, 2,:])

The product of these can be written as

(f, @ hy ® I )vec(¥,) =

fo[1,1](hy @ I, )vec(¥,[;, 1,:])
1512, 2](hy @ I, )vec(¥y[:, 2,:])

fp[np’ np](he ® IX)VeC(‘I’t[:v Tp, ])

fp[nm np](hG ® L)

(3.49a)

(3.49b)

(3.50)

Using the two-dimensional relation from Eq. (3.21), each row of the right-hand
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side of Eq. (3.50) can be written as

Fold, 31(hg @ L)vec(Wel:, j,:]) = f,ld, jvec(LyWy[:, 5, :Jhg)

= vec(folj, J1®el:, 4, hy ),
giving

vec (fp[l, 1w, 1, Z]hg)

(f, ® hy @ I)vec(¥,) = vee (f”[27 2%, 2, 3]hg)

vec (fp[np, n, Wel:,m,, :]hHT)
vee (Yol:, 1,:])

vec (Yql:, 2,:
— ( 6[72’ 1 = vec(Yy).

vec (Yg[:,np, 1))

Then Yy is given by

Ya[i,j, :] = fp[jvj]\:[lt[:ajv ]hg

(3.51)

(3.52)

(3.53)

Obtaining Y, using Eq. (3.53) requires n,(njn, + 1) multiplications. This is

the most efficient form.

Finally, we will find Y, using Eq. (3.39¢c). Rewriting the terms on the
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left-hand side gives

(h, @ Iy ® I, )vec(¥;) = (h, ® Ig)vec

The I,4 term is an (ngn, X ngn,) identity matrix obtained from

and we use

:[9 X IX - IX97
\Ilt[:, ,1]
‘Ilt[:y ,2]

vec(W¥y) = vec

\Ilt[:7:7n9]

W, [, 1]
v, 2]
W, [:, :, ng|

(3.54)

(3.55)

(3.56)

as shown in Eq. (3.19). Using the two-dimensional relation from Eq. (3.21),

the right-hand side of Eq. (3.54) can be written as

(h, ® I 9)vec

w,[:, 1]
v, [, 2]
W, [:, :, ng|

= vec ¢ I,

= vec

56

I

(3.57)



and

p
lI’t[ s 2]hlj;
(h, ® Iy ® I, )vec(¥,) = vec
‘Ilt[ s ng]hz
vee (Y, [:,:, 1))
vec (Y ,|:, 1, 2
= (okn2) vee(Y,). (3.58)
vec (Y,[:, 1, ngl)
Then Yp is given by
Y, [:, 1 k] = Wy, k) (3.59)

Obtaining Y, using Eq. (3.59) requires ningnx multiplications, and this is the
most efficient form.

The expressions for all four Y; terms are

YX[:7j> k] = fﬂ[]a]]fa[k? k]hqut[:7ja k]
Yol j,:] = f,l7, 195, 4, Thg
Y, [, k] = ®,[:,:, kJh?

p

. g . .
Y)lg[:hjvk] = Elfp[j7j],D9[k7k]h>1(\Pt[7]7k]

For later comparisons, we will compare the number of multiplications re-
quired for the J = 0 Hamiltonian, which consists of the p, 6, and x; ki-
netic energy terms and the potential energy. The kronecker form requires

2n,m9n’ 4 20,150y + 202097, +n,n6n, Multiplications, while the matrix mul-
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tiply form requires n,ng(n; +2) +n,(ngn, + 1) +nZngn, +n,ngn, multiplica-
tions. The matrix multiply form requires n2ngn, +mn,ngn, +n,ngns —n,ng—n,
fewer multiplications than the Kronecker form.

Fig. 3.1 compares the scaling of the number of multiplications required for
the Kronecker and Sylvester-like methods when the total angular momentum
is J = 0. Figs. 3.1a and 3.1b compare the scaling as a function of N, for
Ny = 31, N,, = 241 and Ny = 65, N,, = 481, respectively. Not only does the
Sylvester-like method require far fewer multiplications at any given value of
N,, but the slope of the Sylvester-like scaling is greatly reduced.

Figs. 3.1c and 3.1d compare the scaling as a function of Ny for N, = 100,
N,, = 241 and N, = 150, N,, = 481, respectively. Figs. 3.1e and 3.1f compare
the scaling as a function of N,, for N, = 100, Ny = 31 and N, = 150,
Ny = 65, respectively. As before, the Sylvester-like method requires much
fewer multiplications at any given value of N,, and the scaling still has a

smaller slope than the Kronecker counterpart.
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Figure 3.1: Comparisons of the number of multiplications required using the
Kronecker and Sylvester-like matrix-multiply methods to apply the Hamilto-
nian operator. The solid lines show the Kronecker scaling and the dashed lines

show the Sylvester-like scaling.
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3.5 Scaling of Computational Time

This section presents the computational times required to run the program
and how they scale for various input parameters. It is important to determine
these scalings so that priority can be assigned to determine which parameters
can be changed without a dramatic gain in computational cost.

Fig. 3.2 shows the computational times and scalings associated with the
APH grid parameters. There are two plots associated with each APH grid
parameter: one for a modest number of grid points and another for a dense
number of grid points. Fits to the curves are listed above each plot.

Figs. 3.2a and 3.2b show the times and scalings for N,. Both plots show
a linear scaling as N, increases. Note that there is about a six-fold increase
in the slope of the fits as the number of grid points increase from Ny = 31,
N,, = 241 to Ny = 65, N,, = 481, a dramatic increase in computational
cost as the grid density increases. The linear fits show better scaling than the
slightly quadratic nature of Figs. 3.1a and 3.1b, which show the estimated
number of multiplications required.

Figs. 3.2c and 3.2d show the times and scalings for Ny. Both plots show a
small quadratic scaling, with small quadratic fit coefficients, as Ny increases.
However, the fits show a strong linear character. Note that there is about
a five-fold increase in the linear slope, and the quadratic coefficient of the
denser grid is about 1.5 times that of the more sparse grid. The fits show a
less favorable scaling than the linear nature of Figs. 3.1c and 3.1d, which show
the estimated number of multiplications required.

Figs. 3.2e and 3.2f show the times and scalings for V,,. Both plots show

a small quadratic scaling as [V,, increases. However, the fits show a dominant
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Figure 3.2: Fits of the computational time vs. APH coordinate grid points.
The data points are the computational times and the solid lines are the fits to
the points.

linear character. Note that there is about a five-fold increase in the linear slope,
and the quadratic coefficient of the denser grid is about 3 times that of the

more sparse grid. The fits show a similar scaling when compared to Figs. 3.1e
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Label Coefficient | Label Coefficient
1 457.4 Co 1725
b1 0.3273 bo 0.3883
dq 138.2 ds 492.2
fi 0.0688 fa 0.3221
g1 —5.328 g2 —21.38

Table 3.1: Coefficients of the At fit.

and 3.1f, which show the estimated number of multiplications required. It
is evident that increasing Ny has the greatest effect on the computational
scaling, due to the larger quadratic and linear coefficients. These plots show
that it is important to determine the minimum values of N,, Ny, and N,,, since
the computational times significantly increases as these parameters increase.
Convergence of these parameters will be discussed in Chapter 4.

Fig. 3.3 shows the computational times and scalings associated with the
propagation time parameters. Again, there are two plots associated with each
time parameter: one for a modest number of coordinate grid points and an-
other for a dense coordinate grid. Fits to the curves are listed above each
plot.

Figs. 3.3a and 3.3b show the times and scalings for ¢,,,,. Both plots show a
linear scaling as t,,,, increases. Note that there is about a two-fold increase in
the slope of the fits as the number of grid points increase from N, = 150,Ny =
45, N,, = 361 to N, = 150, Ny = 65, N,,, = 481, an increase in computational
cost as the grid density increases.

Figs. 3.3c and 3.3d show the times and scalings for N;. Both plots show a
linear scaling as IV; increases. Note that there is about a three-fold increase in
the slope of the fits as the number of grid points increase from N, = 100,Ny =

45, Ny, = 361 to N, = 150, Ny = 65, N, = 481.
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Figure 3.3: Fits of the computational time vs. propagation time parameters.
The data points are the computational times and the solid lines are the fits to
the points.

Figs. 3.3e and 3.3f show the times and scalings for the time grid spacing,
At. Both plots show a decaying exponential scaling as N, increases, but also

have linear and quadratic terms. The fit coefficients are listed in Table 3.1.
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According to fit coefficients, the exponential behavior of the more dense grid
is similar to that of the more sparse grid but shifted to longer computational

time.
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CHAPTER 4
CONVERGENCE
4.1 Introduction

This chapter discusses the convergence of the scattering results produced by
the h-TDWP program. We will analyze the behavior of the h-TDWP results
as the input parameters are varied and compare them with benchmark TI
results produced by the ABC program [15]. The input parameters and their
descriptions are listed in Table 4.1.

A convergence study will not be presented for all the parameters listed
in Table 4.1. The atom masses, M4, Mp, and My, are determined by the
system being studied, so that we use the same values as those used in the
benchmark calculations. The inner boundary of the hyperradius grid, pmin, iS
determined by the shape of the electronic PES, and we choose the same value
used in the benchmark calculations. Similarly, the PES cut-off V,,; is chosen
to be large enough such that convergence isn’t in question. The negative
imaginary potential parameters, py;p and Uy;p, are primarily determined by
an independent study conducted by Vibok and Balint-Kurti [54], with pyrp
also depending on p.,, where the wave packet is analyzed. The energy grid
parameters, Egim, Fmin, and FE,,.., are chosen by considering the Gaussian
parameters, which determine the energy region of interest where the results
will be accurate. For the purposes of illustrating the behavior of the results
outside the appropriate energy regions-of-interest, the energy grid parameters
will be chosen to cover a much larger range than what would be determined
by considering the Gaussian parameters. The maximum number of rotational

states, Jjmaz, is determined by the maximum energy, F,,.., being considered.
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Table 4.1: List and descriptions of input parameters used in the h-TDWP
program. The first column lists the symbol for the parameter used in this
document and the second column lists the symbol for the parameter used in

the program.

Parameter Name Description

My amass Mass of atom A

Mp bmass Mass of atom B

Me cmass Mass of atom C'

N, nrho Number of APH p grid points

Ny ntheta Number of APH 6 grid points

N, nchi Number of APH y grid points

Prmin rhomin Minimum of APH p grid

Pmazx rhomax Maximum of APH p grid

Poo rho_infty user Value of p where wave packet is analyzed

tmaz tmax Total propagation time: The wave packet is
propagated from ¢t = 0 to t,,42.

N; tstep Number of time step intervals

Ldelay tdelay Time to begin analyzing wave packet: The
wave packet is analyzed from ¢ = tgeqy to
tam-

S%- sO Spatial center of initial Gaussian wave packet
in mass-scaled Jacobi S

ko kO Momentum center of initial Gaussian wave
packet

ol sigma Width parameter of initial Gaussian wave
packet

Jmaz jmax Largest number of diatomic rotational states
used in asymptotic final state analysis

Veut veut Potential energy cut-off. Also used to limit
the maximum eigenvalues of the APH 6 and
X kinetic energy operators.

PNIP rho_nip Value of APH p where negative imaginary
potential region begins

Unrp unip Amplitude of negative imaginary potential

Ng edim Number of energy points where S matrix is
evaluated

Eoin emin Minimum of energy grid

E o emax Maximum of energy grid
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We begin by studying the behavior of the results as the Gaussian initial
wave packet parameters o, kg, and SSZ, are varied. We continue by varying
the number of APH grid points, N,, Ny, and N,,, to find the minimum grid
densities required to accurately represent the wave packet. Next, the conver-
gence of the results with respect to t,,,, will be presented, discussing which
parameters have a significant effect on the maximum propagation time. To
study the behavior of the results, we will present probabilities for the initial
state given by H+Hs(v; = j; = 0) for zero total angular momentum. The total
non-reactive probabilities, total reactive probabilities, and the total probabil-
ity (normalization) will be presented along with their precent difference with
respect to the benchmark ABC results [15]. The percent difference plots of
the normalization data will be the precent difference from unity. The term
“accurate” will be used to classify results that have a difference of < 1% with

respect to the benchmark ABC results.

4.2 Gaussian Initial Wave Packet Parameters

The expression for the Gaussian initial wave packet was given previously in

Sec. 2.4 by Eq. (2.48) as

1/4
gTi(Sn):< 1 ) e_(STi_S%)Q/‘leQe—ikOSTZ.’

2o

and has an initial momentum distribution given by

1 o
k) =\ g [ 452 A (1520 9.5, (4.)
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with

ki = 20 (E — ), (4.2)

where FE is the total energy, and ¢ is the vibrational-rotational energy of the

diatom. As shown in Sec. 2.5, the initial energy distribution is given by n;(E) =

(11/k:)""* m; (), with the explicit expression given previously in Eq. (2.55).
Since the results presented in this section are for the initial state with J = 0

and v; = j; = £; = 0, the energy distribution is given by

2,2\ 1/4
wB) = (Fifs) e, (43)
s

The shape of the initial energy distribution determines the energy region of
interest, where accurate results can be obtained, and also provides information
concerning the initial momentum distribution. The energy region of interest
boundaries are located where the energy distribution is 1% of its maximum.
We will discuss the behavior of the plots with respect to the shape of the total
energy distribution, since the results are presented with respect to total energy.
As will be shown, the shape of the inverse of the initial energy distribution is
also important, since the Fourier transformed time-dependent analysis coeffi-
cients are multiplied by n;(F)™!, shown in Sec. 2.5. The inverse of the energy
distribution diverges outside the region of interest, outside of which, results
are no longer accurate.

There are three input parameters that determine the characteristics of the
initial wave packet and its energy distribution: o, kg, and S%_. The parameter
o determines the width of the wave packet in coordinate and in energy (and
momentum) space. The parameter ky determines the center of the wave packet

in momentum space, pg, where pg = hky, and, along with o, determines the
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center and shape of the total energy distribution.

4.2.1 Behavior for changing o

The input parameter ¢ determines the width of the Gaussian initial wave
packet in coordinate and energy (or momentum) space. Fig. 4.1 shows the
envelope of the initial wave packet for different values of o, centered at S%— =
9.5 bohr. The wave packet is narrow at smaller values of ¢ and broadens as o
increases. The narrowest allowable initial wave packet is desirable so that it
will be completely located in the asymptotic region of the PES but not overlap
the NIP region.

T =\

7 8 9 10 1 12
JACOBI S, (AU)

Figure 4.1: Envelope of the Gaussian initial wave packet for different values
of o centered at S = 9.5 bohr.

LEGEND: (BLACK : ¢ = 0.2), (BLUE : 0 = 0.3), (GREEN : ¢ = 0.4), (RED
:0=0.5), (CYAN : 0 =0.6), (GRAY : 0 = 0.7).

Fig. 4.2 shows the envelope of the initial total energy distribution and its
inverse for different values of o, centered at ky = 4.5, 8.5, and 12.5 au in mo-
mentum space. Note that the curves originate at the energy of the diatomic
ground state €; = 0.269 eV, where v; = j; = 0, since this is the zero of the
kinetic energy. The energy distribution is broad at smaller values of ¢ and
narrows as o increases. We want the broadest energy distribution allowable

so that we can obtain results over a large range of energies. As discussed in
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o ko = 4.5 au ko=85au ky=12.5 au
0.2 0.269->3.0 0.269->30 0.269-> 3.0
0.3 0.269-235 0269->30 045->3.0
0.4 0.269 - 1.75 0.3-3.0 0.75-> 3.0
0.5 0.269 - 1.45 0.4-2.6 0.95-> 3.0
0.6 0.269 - 1.25 0.5-2.35 1.15- > 3.0
0.7 0.3-1.15 0.55 - 2.15 1.25->3.0

Table 4.2: Energy regions of interest, in eV, for different values of o for kg =
4.5, 8.5, and 12.5 au

Sec. 2.4, we want the initial wave packet to contain only momenta directed
toward the interaction region of the PES, so that the entire wave packet prop-
agates into that region. When the initial wave packet contains both positive
and negative momenta, a portion of the wave packet will propagate away from
the interaction region. This creates two primary issues: First, a portion of the
wave packet never enters the interaction region of the potential and can still
cross the p. surface, causing incorrect results due to the analysis of the un-
reacted wave packet. Second, since the momentum distribution crosses zero,
the presence of very small momentum components can cause the value of ¢geqy
to be too large, such that the reacted portion of the propagating wave packet
crosses the analysis surface before the unreacted amplitude has left.

We can estimate an appropriate value of ¢ by studying the energy distribu-
tion and its inverse in Fig. 4.2. For the energy distribution plots in Figs. 4.2a,
4.2¢, and 4.2e, the curves that go to zero as £ — 0 contain the appropriate
momentum distribution. For the inverse plots in Figs. 4.2b,4.2d, and 4.2f, the
divergence of the curves determines the energy region of interest, and energies
outside this region are not accurate. We will estimate the energy region of

interest boundaries to be where n;(E)~! = 100 eV~!, and these are given in
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Figure 4.2: Plots of the initial energy distribution and its inverse for different
values of ¢ for ky = 4.5, 8.5, and 12.5 au.
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Table 4.2.

For Fig. 4.2a, where kg = 4.5 au, all the energy distribution curves have
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significant amplitude as £ — 0, and an optimum value of ¢ would be greater
than 0.7. The corresponding inverse in Fig. 4.2b, for ky = 4.5 au, shows that
the energy region of interest for o > 0.7 is very narrow and confined to energies
below 1.15 eV. Furthermore, as shown in Fig. 4.1, a value of o greater than
0.7 results in a very broad initial wave packet, which is not desirable, and the
wave packet will have amplitude outside the asymptotic region of the PES.

For Fig. 4.2c, where ky = 8.5 au, all the energy distribution curves for
o > 0.4 go to zero as E — 0, with ¢ = 0.3 also being a viable choice.
The corresponding inverse in Fig. 4.2d, for ky = 8.5 au, shows a broad energy
region of interest for o = 0.2, ¢ = 0.3, and ¢ = 0.4, and progressively narrower
regions of interest exist for o = 0.5, 0.6, and 0.7. We would choose ¢ = 0.3
or 0 = 0.4, the smallest of the qualifying o values, so that the initial wave
packet is as narrow in coordinate space as possible, and because 7;(E) — 0 as
E — €.

For Fig. 4.2e, where ky = 12.5 au, all the energy distribution curves go
to zero as £ — ¢;. The corresponding inverse in Fig. 4.2f shows that the
broadest energy region of interest corresponds to o = 0.2, so this would be the
best choice. To illustrate the previous conclusions, results for different values
of o will now be presented for kg = 8.5, 12.5, and 4.5 au.

Fig. 4.3 shows results for different values of ¢ when ky = 8.5 au. The
divergence of the probabilities in Figs. 4.3a, 4.3c, and 4.3e clearly illustrates
the importance of the shape of the inverse of the energy distribution. As o
increases, the energy region of interest narrows, as shown by the curves for
o = 0.5, 0.6, and 0.7, matching the predictions made previously.

The percent difference plots in Figs. 4.3b, 4.3d, and 4.3f illustrate the

accuracy of results for different values of o when ky = 8.5. The most prominent
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Figure 4.3: Convergence of H + Hy(v; = j; = 0) results for different o values.
The other Gaussian parameters are ky = 8.5 au and S% = 9.5 bohr, with
Poo = 10 bohr. The APH grid parameters are N, = 150, Ny = 65, and

N.
tdelay = 500 au.
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feature of these results is the cusp located around 1.2 eV where the percent
difference goes to zero. This cusp is due to the shape of the energy distribution,
with the cusp located at the maximum of the energy distributions, as shown
in Fig. 4.2c. Note that each o curve has its own cusp, since the maxima of
the energy distributions occur at different energies. Again, the shape of the
inverse of the energy distribution is clearly evident, and the accuracy is reduced
outside the energy region of interest. The decrease in accuracy as ¢ increases
is most likely due to the broad shape of the initial wave packet, which has
amplitude outside the asymptotic region of the PES, located at about 8 bohr
and also encroaches into the NIP region at 10.75 bohr.

The non-reactive percent difference plot in Fig. 4.3b shows that the most
accurate results are obtained for ¢ = 0.3, with ¢ = 0.4 providing the next
best results, as predicted. The o = 0.2 results are very oscillatory due to
the presence of very small kinetic energies, shown by the low energy spike in
Fig. 4.2c. The presence of these small kinetic energies causes the initial wave
packet to have amplitude on the p., analysis surface when analysis begins.
Adjusting ¢4eqy could possibly fix the problem, as is evident by looking at the
reactive percent difference plot in Fig. 4.3d, which shows highest accuracy for
o = 0.2. Since the initial wave packet at ¢t = 0 doesn’t have amplitude in the
reactive arrangement channels, the reactive results are not affected if residual
amplitude of the initial wave packet is present. The reactive results for o = 0.2,
0.3, and 0.4 show excellent agreement with the ABC results, having a percent
difference of < 1% from 0.7 to 3.0 eV.

Fig. 4.4 shows results for different values of 0 when ky = 12.5 au. The
divergence of the probabilities in Figs. 4.4a, 4.4c, and 4.4e are now more evident

at lower energies, since the center of energy distribution has been shifted to

74



PROBABILITY

15 20 25
ENERGY, eV
(a) Non-Reactive Results

10

3.0

1.2F
> 10}
- 0.8f
2 06
§o.4f
a 0.2
085" 10 15 20 25 30
ENERGY, eV
(c) Reactive Results
>
|_
=
o
<
m
0
x
o
05 10 15 20 25 30
ENERGY, eV

(e) Normalization

% DIFFERENCE % DIFFERENCE

% DIFFERENCE

ENERGY, eV
(b) Non-Reactive % Difference

4.0,

3.0

20

1.0

05 10 15 20 25 30
ENERGY, eV

(d) Reactive % Difference

25

20!

15

1.0l

0.5

0005710 15 20 25 30
ENERGY, eV

(f) Norm. % Difference
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a higher energy. The predicted regions of interest in Table 4.2, for ¢ = 0.4,
0.5, 0.6 and 0.7 are reflected in the results. Above their respective energies of
divergence, all o values shown have reasonably accurate results, and there are
only small differences in the curves above 2.0 eV.

The percent difference plots in Figs. 4.4b, 4.4d, and 4.4f show the presence
of the cusps, as before, that correspond to the energy distribution maxima
in Fig. 4.2e. The most accurate results over the entire energy range occur
for ¢ = 0.2, as predicted, and good results are also present for ¢ = 0.3.
There is some anomalous behavior in the non-reactive percent difference in
Fig. 4.4b, where the o = 0.2 results become the least accurate above 2.0 eV.
This is due to the presence of higher kinetic energies than in the reactive
case, since the majority of the non-reactive probability is in the vy = 0 state,
so the products have more kinetic energy for a given total energy. For the
reactive and normalization percent difference plots, the accuracy is reduced as
o increases due to the increasing width of the initial wave packet as before.

The ko = 12.5 results differ from the ky = 8.5 results in that they are
much less oscillatory due to the lack of low energy components in the energy
distribution, and they are more accurate at higher energies. The reactive
results for ¢ = 0.2, 0.3, and 0.4 show excellent agreement with the ABC
results, having a percent difference of < 1% from 0.7 to 3.0 eV.

Fig. 4.5 shows results for different values of o when ky = 4.5 au. The
divergence of the probabilities in Figs. 4.4a, 4.4c, and 4.4e are now present at
higher energies, since the center of the energy distribution has been shifted
to a lower energy. The predicted energy regions of interest in Table 4.2, for
o =0.3,04,0.5, 0.6 and 0.7, are reflected in the results. Below their respective

divergences, all o values shown have reasonably accurate results.
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The most apparent feature is present in the non-reactive results, which are
overwhelmingly oscillatory, showing very large percent differences in Fig. 4.5b.
This is also reflected in the normalization plots. These results are due to the
small energies present in the energy distribution, as discussed before, and can
be fixed by adjusting tgeqy or by choosing S(T)Z_ to be much smaller than p., so
that there is no overlap of the initial wave packet at ¢ = 0.

The percent difference plots in Figs. 4.5b, 4.5d, and 4.5f show the presence
of cusps, as before, that correspond to the energy distribution maxima in
Fig. 4.2a. While the non-reactive results do not provide much information,
accurate reactive results are obtained for o = 0.2 over the entire energy range,
which was not predicted by our initial estimate. For energies below 0.6 eV,
the 0 = 0.7 results are the most accurate, which was predicted.

The kg = 4.5 results differ from the ky = 8.5 and ky = 12.5 results in that
they are more accurate at lower energies, < 0.7 eV. The reactive results for
o =0.2, 0.3, and 0.4 show excellent agreement with the ABC results, having
a percent difference of < 1% from about 0.55 to 3.0 eV for ¢ = 0.2, from 0.55
to 2.8 eV for ¢ = 0.3, and from 0.55 to 1.7 eV for o = 0.4.

The behavior of the results for different values of ¢ has been presented,
and the results follow the predictions made by studying the shapes and lo-
cations of the initial wave packet, energy distribution, and the inverse of the
energy distribution. Deviations from the predictions, usually observed in the
non-reactive data, have been explained and can be avoided by changing other
parameters such as tgeq,. This study of o has also provided information con-
cerning the behavior or the results for different values of kg, which will be

covered next.
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4.2.2 Behavior for changing kg

The input parameter ky determines the center of the initial momentum distri-
bution and determines the shape and location of the total energy distribution.
It has no effect on the shape or location of the Gaussian initial wave packet.
Fig. 4.6 shows the envelope of the initial total energy distribution and its in-
verse for different values of kg, for ¢ = 0.2, 0.3, and 0.5. The initial energy
distribution translates to higher energy and broadens as ky increases. The
broadening as kj increases is due to the \/m factor in the energy distribu-
tion in Eq. 4.3. We want the broadest energy distribution allowable so that we
can obtain results over a large range of energies. Another requirement for ob-
taining accurate results is that the energy distribution to go to zero as £ — ¢;,
where ¢; is the ro-vibrational energy of the diatom, so that the momentum dis-
tribution only contains momentum directed toward the interaction region of
the PES. The reasons for this were discussed at the beginning of Sec. 4.2.1.
Conversely, the reactive results were shown in Sec. 4.2.1 to not be significantly
affected even when the 7;(F) — 0 as E — ¢; requirement is not met.

We can estimate an appropriate value of ky by studying the energy distribu-

tions and their inverses in Fig. 4.6. For the energy distributions in Figs. 4.6a,

ko(aw) o=02 oc=03 oc=05
4.5 0.269 - > 3.0 0.269 -2.35 0.269 - 1.45
6.5 0.269 - > 3.0 0.269 - 3.0 0.3-2.0
8.5 0.269 - > 3.0 0.269 - > 3.0 04-26
125 0.269->3.0 045->3.0 0.95->3.0
16.5 0.45-> 3.0 1.1->30 1.95->3.0
20.5 1.1->3.0 22->30 N/A

Table 4.3: Energy regions of interest, in eV, for different values of ky for
o =20.2,0.3, and 0.5.
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Figure 4.6: Plots of the initial energy distribution and its inverse for different
values of kg for o = 0.2, 0.3, and 0.5.

LEGEND: (BLACK : kg = 4.5), (BLUE : kg = 6.5), (GREEN : ky = 8.5),
(RED : ko = 12.5), (CYAN : ko = 16.5), (GRAY : ko = 20.5).

Figs. 4.6¢c, and Figs. 4.6e, the curves that go to zero as E — ¢; contain the

appropriate momentum distribution. For the inverse energy distributions in
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Figs. 4.6b, 4.6d, and 4.6f, the energy regions of interest are located inside
the divergences of the curves. We will estimate the energy region of interest
boundaries to be where 7;(F)~! = 100 eV~!, and these are given in Table 4.3.

For Fig. 4.6a, where o = 0.2, the energy distribution curves with ky < 8.5
au have significant amplitude as £ — ¢;, so the appropriate values of kg
would be greater than or equal to 12.5 au. For the corresponding inverse in
Fig. 4.6b, for ¢ = 0.2, the divergences show that the results should be accurate
for energies above 0.45 and 1.1 eV for ky = 16.5 and 20.5 au, respectively. The
results for ky = 12.5 should be accurate over the full range of energies shown.
As shown in Sec. 4.2.1, even though the ky < 8.5 energy distributions have
significant amplitude for small kinetic energies, we can predict that the reactive
results will still be accurate over their respective regions of interest given in
Table 4.3.

For Fig. 4.6c, where o = 0.3, the energy distribution curves with &y < 6.5
au have significant amplitude as £ — ¢;, so the appropriate values of kg
would be greater than or equal to 8.5 au. However, the energy distribution
for kg = 20.5 au has very little amplitude over the given range of energies,
which implies that accurate results will not be present over the shown energy
range: 0 to 3.0 eV. For the corresponding inverse in Fig. 4.6d, for 0 = 0.3,
the divergences show that the results will be accurate for energies above 0.5,
1.3, and 2.3 eV for kg = 12.5, 16.5, and 20.5 au, respectively, and for energies
below 2.35 for kg = 4.5 au. The results for kg = 8.5 and 6.5 should be accurate
over the largest range of energies shown.

For Fig. 4.6e, where o = 0.5, the energy distribution curves do not have
significant amplitude as £ — ¢;, and any of the values of ¢ shown would be

appropriate, with the exception of ky=20.5 au. The energy distribution for
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Figure 4.7: Convergence of H + Hy(v; = j; = 0) results for different kg values.
The other Gaussian parameters are o = 0.3 and S2 = 9.5 bohr, with ps, = 10
bohr. The APH grid parameters are N, = 150, Ny = 65, and N,, = 481. The
time parameters are t,,q,, = 10010 au, N, = 1001, and #4c14,y = 500 au.
LEGEND: (BLACK : kg = 4.5), (BLUE : kg = 6.5), (GREEN : ky = 8.5),
(RED : ko = 12.5), (CYAN : ky = 16.5), (GRAY : ko = 20.5).

ko = 20.5 au has negligible amplitude over the given range of energies and

implies that accurate results will not be present over this range: 0 to 3.0 eV.
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The benefit of using a larger o value, as opposed to o = 0.2 or 0.3, is that the
energy distributions of kg = 4.5 and 6.5 au do not have appreciable amplitude
at ¥ — ¢;. For the corresponding inverse in Fig. 4.6d, where ¢ = 0.5, the
divergences show that the results will be accurate for energies above 0.95 and
1.95 eV for kg = 12.5 and 16.5 au, respectively. The curves for kg < 8.5
au, show bounded regions of interest, with their bounds listed in Table 4.3.
The optimal choice when ¢ = 0.5 depends on the energy range of the desired
results, with ky = 8.5 au having the largest energy region of interest. These
parameters will be appropriate for ky = 4.5 au and ky = 6.5 au, since they
cannot be obtained for the other values of o shown. Fig. 4.7 shows results
for different values of kg when ¢ = 0.3. The divergence of the probabilities
in Figs. 4.7a, 4.7c, and 4.7e show that changing k creates overlapping energy
regions of interest, and as kg increases, the energy region of interest translates
to higher energies. The results for these overlapping regions can be joined to
obtain accurate results over the full range of energies from ¢; to 3.0 eV. The
results in Figs. 4.7a, 4.7c, and 4.7e show that the most accurate results over
the full energy range are for ky = 8.5 and 12.5 au, as predicted.

The percent difference plots in Figs. 4.7b, 4.7d, and 4.7f illustrate the ac-
curacy of results for different values of kg when o = 0.3. The large oscillations
present for ky = 20.5 au are due to the negligible amplitude of the energy dis-
tribution. The large oscillations present in the non-reactive percent difference
plot for ky < 6.5 au are due to the presence of the significant amplitude of the
energy distribution as £ — ¢;. Note that these oscillations are not present in
the reactive percent difference plot.

Accurate results for ky = 8.5, 12.5, and 16.5 au, corresponding to a percent

difference < 1% in both the non-reactive and reactive results, are found be-
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Figure 4.8: Convergence of H + Hy(v; = j; = 0) results for different kg values.
The other Gaussian parameters are o0 = 0.5 and S2 = 9.5 bohr, with ps, = 10
bohr. The APH grid parameters are N, = 150, Ny = 65, and N,, = 481. The
time parameters are t,,q,, = 10010 au, N, = 1001, and #4c14,y = 500 au.
LEGEND: (BLACK : kg = 4.5), (BLUE : kg = 6.5), (GREEN : ky = 8.5),
(RED : ko = 12.5), (CYAN : ky = 16.5), (GRAY : ko = 20.5).

tween about 0.5 and 2.9 eV, 0.6 to 2.8 eV, and 0.9 to 2.7 eV, respectively. Note

the accuracy of the reactive kg = 4.5 and 6.5 au results, which are very accu-
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rate even when the energy distribution has amplitude as £ — ¢;. Futhermore,
the reactive results show that the results for a specific value of kg becomes
the most accurate, with respect to the other results, around the energy that
corresponds to the energy distribution maximum. These regions of maximum
accuracy are the “cusps” meentioned in Sec. 4.2.1.

Overall, the best results over the entire energy range are for ky = 8.5 and
12.5 au. However, the most accurate results for a given energy depend on the
location of the energy distribution maximum, corresponding to better accuracy
at higher energies as ky increases.

Fig. 4.8 shows results for different values of ky when o = 0.5. Referring to
the probabilities in Figs. 4.8a, 4.8c, and 4.8e, the overlapping energy regions
of interest are more evident than when o = 0.3, since the ¢ = 0.5 energy
distributions are more narrow. The most accurate results over the full energy
range are for ky = 8.5 au, as predicted. The oscillatory behavior for kg = 4.5 in
the non-reactive and normalization results is due to the significant amplitude
of the energy distribution as £ — ¢;.

The percent difference plots in Figs. 4.8b, 4.8d, and 4.8f illustrate the
accuracy of results for different values of ky when o = 0.5. The absence of
accurate results for ky = 20.5 au is due to the negligible amplitude of the
energy distribution. As discussed for the o = 0.3 results, the locations of the
high accuracy cusps, especially evident in Fig. 4.8f, correspond to the energy
distribution maxima, and each kg curve is the most accurate around its cusp.
The reactive results in Fig. 4.8d, for ky = 4.5 au, are more accurate at low
energies than the o = 0.3 results, as predicted. However, this is not the case
for the kg = 6.5 au results, which disagree with the previous prediction, due

to the energy distribution maximum shifting to about 0.6 eV in the ¢ = 0.5
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Figure 4.9: Convergence of H + Hy(v; = j; = 0) results for different kg values.
The other Gaussian parameters are 0 = 0.2 and SY = 9.5 bohr, with ps, = 10
bohr. The APH grid parameters are N, = 150, Ny = 65, and N,, = 481. The
time parameters are t,,q,, = 10010 au, N, = 1001, and #4c14,y = 500 au.
LEGEND: (BLACK : kg = 4.5), (BLUE : kg = 6.5), (GREEN : ky = 8.5),
(RED : ko = 12.5), (CYAN : ky = 16.5), (GRAY : ko = 20.5).

results.

Fig. 4.9 shows results for different values of ky when o = 0.2. Referring to
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the probabilities in Figs. 4.9a, 4.9c, and 4.9e, the overlapping energy regions
of interest are much less evident than when o = 0.3 or 0.5, since the energy
distributions are all very broad. The broad energy distributions for kg = 4.5,
6.5, and 8.5 au have significant amplitude as F/ — ¢;, causing the oscillatory
behavior present in the non-reactive and normalization results. The most
accurate results over the full energy range are for ky = 12.5 au, as predicted,
with the ky = 16.5 au results also being accurate over a similarly large energy
range.

The percent difference plots in Figs. 4.9b, 4.9d, and 4.9f illustrate the
accuracy of results for different values of ky when o = 0.2. The messy non-
reactive and normalization precent difference plots, in Figs. 4.9b and 4.9f,
only provide significant information concerning the accuracy and stability of
the ky = 12.5 and 16.5 au results. The reactive percent difference plot in
Fig. 4.9d, show that the o = 0.2 results have the highest accuracy overall, when
compared to the previously discussed results for ¢ = 0.2 and 0.3. The reactive
results have an accuracy < 0.5% between 0.7 and 2.4 eV for all values of k.
The locations of the high accuracy cusps are not as evident as for previous
results, but Fig. 4.9d shows that the most accurate results are achieved by
increasing ko as the energy increases. Unlike the ky = 20.5 au results for
o = 0.3 and 0.5, the 0 = 0.2 results are accurate between 1.7 and 3.0 eV due

to the broad energy distribution.

4.2.3 Behavior for changing S?

The input parameter S% determines the center of the initial wave packet in
coordinate space. It has no effect on the shape or location of the initial mo-

mentum or energy distributions. Fig. 4.10 shows the envelope of the initial
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wave packet for different values of S%_, for 0 = 0.2, 0.3, 0.5 and 0.7. The wave
packet has the same width when o is fixed and translates to higher S, as S?
increases.

Choosing an appropriate value of S% depends primarily on the charac-
teristics of the PES, since the initial wave packet needs to be located in the
asymptotic region of the potential energy surface. The next condition depends
on the location of the NIP boundary, since we want the initial wave packet to
be located outside the NIP region, from pxrp t0 ppmae. The initial wave packet
“boundaries” are located at the points where the amplitude of the wave packet

is 1% of its maximum value. The boundries STf are located at
St =52 £20vIn100, (4.4)

where the width is 40v/In 100.

As Eq. (4.4) and Fig. 4.10 show, the value of ¢ plays a large role in choosing
the appropriate value of S%- To keep the initial wave packet outside the
interaction region of the PES and the NIP region, it is advantageous to choose
the smallest o possible. The widths of the initial wave packets are 1.72, 2.57,
4.29, and 6.01 bohr for ¢ = 0.2, 0.3, 0.5, and 0.7, respectively. The results
should show a decrease in accuracy as S% decreases, and this loss of accuracy
should be amplified as ¢ increases.

Instead of using tgeiqy to remove overlap of the initial wave packet with
the po surface, S%_ can be chosen such that the entire initial wave packet is
located inside the analysis surface. As long as kg and o are appropriately
chosen, placing the entire wave packet inside the analysis surface will ensure

that the non-reactive results are not ruined by the analysis of the unreacted
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Figure 4.10: Plots of the initial Gaussian wave packet for different values of
Sgi for 0 = 0.2, 0.3, 0.5, and 0.7.

LEGEND: (BLACK : S? = 10 bohr), (BLUE : S? = 9.5 bohr), (GREEN :
S? = 9 bohr), (RED : S? = 85 bohr), (CYAN : S? = 8 bohr), (GRAY :
S? = 7.5 bohr).

wave packet.

First, we will discuss the behavior of the results for different values of S?
ranging from 7.5 to 9.5 bohr, when o = 0.3 and 0.5. These results will illustrate
the importance of choosing the narrowest possible wave packet and show how
the results behave when the initial wave packet has amplitude outside the
asymptotic region of the PES and inside the NIP region.

We can predict the appropriate values for S%_ when o = 0.3, p = 10 bohr,
and pyrp = 10.75 bohr by looking at Fig. 4.10b. Accurate non-reactive results

can be obtained for SBZ_ < 8.5 bohr, since the only packets with amplitude at or
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above 10 bohr are for S[T)i =9 and 9.5 bohr. However, for Sgi < 8.5 bohr, the
non-reactive results should become less accurate as S? decreases and begins
to have amplitude outside the asymptotic region of the PES. Since the initial
wave packet’s overlap with p., does not affect the reactive results, the accuracy
should decrease as S? decreases.

Note that we are approximating the location of p,, = 10 bohr in this case,
since p = S, only when y; = 0 and 6 = 7/2. As the results will show, this is
a reasonable approximation for illustrating the behavior of the data.

Increasing o to 0.5 will broaden the initial wave packet, and, as shown
in Fig. 4.10c, accurate non-reactive results can be obtained for S? < 8.0
bohr. However, the accuracy of the non-reactive S% results may be adversely
affected since the wave packets are broad and located at small values of S.
The reactive results should decrease in accuracy as SEZ, decreases, and this
decrease in accuracy should be more pronounced than in the ¢ = 0.3 results.

Next, we will look at the convergence of S% as its value is increased for
Poo = 10, 11, and 12 bohr. Increasing the value of p,, will allow observation
of higher values of SBZ, without initial overlap with the analysis region, and
the results should converge as neighboring values of S% produce initial wave
packets that are entirely localized in the asymptotic region of the PES.

Fig. 4.11 shows results for different values of S when ¢ = 0.3. The non-
reactive probabilities and normalization plots in Figs. 4.11a and 4.11e show
large oscillations when Sﬂi =9 and 9.5 bohr. These results have t4cq,y = 0 au,
so the oscillations are due to the overlap of the initial wave packet with the
analysis surface at p,, = 10 bohr, as predicted. This overlap can be seen in
Fig. 4.10b. The reactive results in Fig. 4.11c show no noticeable deviations for

all values of S? .
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Figure 4.11: Convergence of H+Hy(v; = j; = 0) results for different S values.
The other Gaussian parameters are ¢ = 0.3 and kg = 8.5 bohr, with p,, = 10
bohr. The APH grid parameters are N, = 100, Ny = 45, and N,, = 361. The
time parameters are t,,q,, = 10010 au, N; = 1001, and t4e1qy = 0 au.

LEGEND: (BLACK : S? = 10 bohr), (BLUE : S? = 9.5 bohr), (GREEN :
S? = 9 bohr), (RED : S) = 85 bohr), (CYAN : S? = 8 bohr), (GRAY :

S? = 7.5 bohr).
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The percent difference plots in Figs. 4.11b, 4.11d, and 4.11f illustrate the
accuracy of results for different values of S(T)i when o = 0.3. As predicted, the
most accurate reactive results occur when S? = 9.5 bohr, with a decrease in
accuracy as SY decreases. The reactive results, even for the smallest value
of SSZ, = 7.5 bohr, are very accurate, with a percent difference less than or
equal to about 0.5% above 0.7 eV. The non-reactive results have an accuracy
< 1% above 0.65 eV for S? < 8.5 bohr, with the accuracy decreasing as S
decreases, as predicted.

Fig. 4.12 shows results for different values of S? when o = 0.5. The non-
reactive probabilities and normalization plots in Figs. 4.12a and 4.12e show
large oscillations when S? > 8 bohr. The increased width of the wave packet
decreases the accuracy of the non-reactive results, relative to the o = 0.3
results, due to the large amount of overlap with the analysis surface at p,, = 10
bohr shown in Fig. 4.10c. The reactive results in Fig. 4.12c show no noticeable
deviations for all values of SY.

The percent difference plots in Figs. 4.12b, 4.12d, and 4.12f illustrate the
accuracy of results for different values of SSZ, when ¢ = 0.5. As predicted,
the most accurate reactive results occur when S? = 9.5 bohr, with a decrease
in accuracy as S% decreases. Compared to the o = 0.3 reactive results, the
decrease in accuracy is more pronounced when o = 0.5 due to the larger width
of the initial wave packet. The larger width causes the wave packet to encroach
further into the interaction region as S%- decreases and also causes the energy
distribution to be more narrow than in the ¢ = 0.3 case. The non-reactive
results are not very accurate and show the problems associated with broad
initial wave packets.

Now the convergence of S? will be discussed with respect to increasing S?,
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Figure 4.12: Convergence of H+H,(v; = j; = 0) results for different S? values.
The other Gaussian parameters are o = 0.5 and kg = 8.5 bohr, with p,, = 10
bohr. The APH grid parameters are N, = 100, Ny = 45, and N,, = 361. The
time parameters are t,,,, = 10010 au, N, = 1001, and t4e1qy = 0 au.
LEGEND: (BLACK : S? = 10 bohr), (BLUE : S? = 9.5 bohr), (GREEN :
S? = 9 bohr), (RED : S? = 85 bohr), (CYAN : S? = 8 bohr), (GRAY :
S? =17.5 bohr).
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at a fixed value of o = 0.2. Choosing a small value of ¢ gives a narrow initial
wave packet and will provide detailed information on convergence for a narrow
region around S%_. Results will be shown for p,, = 10, 11, and 12 bohr so that
accurate results can be shown for larger S% than were previously shown.

Fig. 4.13 shows results for different values of S? when o = 0.2, kg = 12.5
au, and p,, = 10 bohr. The non-reactive probabilities and normalization
plots in Figs. 4.13a and 4.13e show large oscillations when S% = 9.5 and 10
bohr, due to the overlap of the initial wave packet with the analysis surface
at po = 10 bohr, as predicted in Fig. 4.10a. The non-reactive results for
S2 < 9 bohr show no noticeable difference, and the normalization results
are converged above about 0.7 eV. The reactive results in Fig. 4.13c show no
noticeable deviations for all values of SY.

The percent difference plots in Figs. 4.13b, 4.13d, and 4.13f illustrate the
accuracy of results for different values of S%- when o = 0.2, kg = 12.5 au, and
Poo = 10 bohr. The non-reactive results in Fig. 4.13b, for Sgi < 9 bohr, are
converged above about 1.5 eV, with the best results obtained when S = 9
bohr at lower energies. The non-reactive results have a percent difference of
< 1% from 0.6 to 2.7 €V. The reactive results in Fig. 4.13d are converged
above about 2.2 eV, with the best results obtained when S? = 10 bohr at
lower energies. The reactive results have a percent difference of < 0.5% from
0.65 to 2.85 eV. The key here is that the results are very accurate for all shown
values of S? between 0.65 and 2.7 eV as long as the initial wave packet does
not overlap p... The non-reactive and low energy results are the most sensitive
to S2.

Fig. 4.14 shows results for different values of S when o = 0.2, kg = 12.5

au, and p,, = 11 bohr. Here we include S? = 10.5 and 11 bohr, and exclude
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Figure 4.13: Convergence of H+Hy(v; = j; = 0) results for different S? values.
The other Gaussian parameters are o = 0.2 and ky = 12.5 bohr, with p,, = 10
bohr. The APH grid parameters are N, = 150, Ny = 55, and N,, = 481. The
time parameters are t,,,, = 10010 au, NV, = 1001, and t4e1qy = 0 au.
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S = 8 and 8.5 bohr. The non-reactive probabilities and normalization plots in

T

Figs. 4.14a and 4.14e show large oscillations when S% = 10.5 and 11 bohr. The

95



non-reactive results for S? < 10 bohr show no noticeable difference, and the
normalization results are converged above about 0.7 eV. The reactive results
in Fig. 4.14c show no noticeable deviations for all values of S? .

The percent difference plots in Figs. 4.14b, 4.14d, and 4.14f illustrate the
accuracy of results for different values of 591- when 0 = 0.2, kg = 12.5 au, and
Poo = 11 bohr. The non-reactive results in Fig. 4.14b, for S(T)i < 10 bohr, are
converged above about 1.4 eV, with the best results obtained when S? = 10
bohr at lower energies. The non-reactive results have a percent difference of
< 1% from 0.55 to 2.75 eV. The reactive results in Fig. 4.14d are converged
above about 1.7 eV, with the best results obtained when S? = 11 bohr at lower
energies. The reactive results have a percent difference of < 0.5% from 0.65 to
2.8 V. Compared to the results in Fig. 4.13, the curves for different values of
S? in the present results are much more compact as S;, decreases. This is due
to the higher values of SSZ, that are shown. The results are very accurate for
all shown values of S? between 0.65 and 2.75 eV, as long as the initial wave
packet does not overlap p... The non-reactive and low energy results show
sensitivity to increasing S% since they are more convergent and more accurate
at lower energies. However, note that there is no real improvement at energies
above about 1.5 eV.

Fig. 4.15 shows results for different values of S when o = 0.2, kg = 12.5
au, and p,, = 12 bohr. Here, we include S%_ = 11.5 and 12 bohr, and exclude
S%- = 9 and 9.5 bohr from the previous results. The non-reactive probabilities
and normalization plots in Figs. 4.15a and 4.15e show large oscillations when
S? =115 and 12 bohr. The non-reactive results for S? < 11 bohr show no
noticeable difference, and the normalization results are converged above about

0.7 eV. The reactive results in Fig. 4.15¢ show no noticeable deviations for all
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Figure 4.14: Convergence of H+H,(v; = j; = 0) results for different SY values.
The other Gaussian parameters are 0 = 0.2 and kg = 12.5 bohr, with p,, = 11
bohr. The APH grid parameters are N, = 159, Ny = 55, and N,, = 481. The
time parameters are t,,,, = 10010 au, NV, = 1001, and t4e1qy = 0 au.
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values

of S2.

The percent difference plots in Figs. 4.15b, 4.15d, and 4.15f illustrate the
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accuracy of results for different values of S%_ when ¢ = 0.2, ky = 12.5 au,
and ps = 12 bohr. The non-reactive results in Fig. 4.15b, for S% < 11 bohr,
converging above about 0.7 eV, which converges at much lower energy than
with the p = 10 and 11 bohr results. The non-reactive results have a percent
difference of < 1% from 0.6 to 2.7 eV. The reactive results in Fig. 4.15d are
converged above about 1.55 eV, with the best results obtained when S? = 12
bohr at lower energies. Note that the low energy results, below 0.6 eV, are
more accurate and better converged than the p = 10 and 11 bohr results.
The reactive results have a percent difference of < 0.5% from 0.65 to 2.8 eV.
Compared to the results in Figs. 4.13 and 4.14, the curves for different values
of S%_ in the present results are more compact as S% decreases. Again, this is
due to the higher values of S(T)i that are shown. The results are very accurate
for all shown values of S? between 0.65 and 2.7 eV as long as the initial wave
packet does not overlap p.,. Again, the non-reactive and low energy results
show sensitivity to increasing S% since they are better converged and more
accurate at lower energies. This shows that the initial wave packet must have
a large value of SSZ, in order to obtain accurate low energy results. Also, as
will be shown later, the larger value of p., also has an effect on the low energy

results.

4.3 APH Grid Parameters

4.3.1 Convergence of N,

In this section, we study convergence of the results as the APH p grid density is
varied. This is accomplished by changing the number of p grid points N,, while

the grid boundaries p,,;;, and pnq. remain constant. The p grid is uniformly
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Figure 4.15: Convergence of H+Hy(v; = j; = 0) results for different SY values.
The other Gaussian parameters are 0 = 0.2 and ky = 12.5 bohr, with p,, = 12

bohr. The APH grid parameters are N, = 168, Ny = 65, and N,, = 481.
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spaced, with grid spacing:

Ap _ Pmaz — Pmin ‘
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For the p grid to accurately represent the wave packet, the grid must be dense
enough to represent incoming and outgoing waves that possess the highest
kinetic energy contained in the wave packet. The maximum eigenvalue of the
p kinetic energy operator can be used to determine if a given grid density is
appropriate.

As discussed in Sec. 2.2.2, in Eq. (2.17), the p kinetic energy operator is

given by
2 2

1= i (16)
which we construct using the DAF representation [32, 33, 34, 35, 36, 37|. The
maximum eigenvalues of T}, for different values of NV, are given in Table 4.4.
Results with initial state H + Hy(v; = j; = 0), for various values of N,, are
shown in Figs. 4.16 and 4.17, where the boundaries of the p grid are p,,;, = 0.64
and pnae = 16.5 bohr. Fig. 4.16 presents convergence data with ky = 8.5 au
and Fig. 4.17 presents data with ky = 12.5 au, providing convergence infor-
mation at lower energies with the former and at higher energies for the latter.
It is necessary to present two separate data sets due to the energy width of

wave packet. This fact is illustrated by the collective divergence of the data

in Fig. 4.16 for energies below 0.5 eV and above 2.4 eV, and by the same phe-

N, Ap(x107' au) Max. Eigenvalue (eV)

100 1.602 2.757
125 1.279 4.324
150 1.064 6.245
175 0.9115 8.514
200 0.7968 11.138

Table 4.4: Maximum eigenvalues of the APH p kinetic energy operator for var-
ious grid densities. The number of grid points, N,, are uniformly distributed
between p,,;, = 0.64 bohr and p,,q, = 16.5 bohr.
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nomenon in Fig. 4.17 for energies below 0.9 eV. For both figures, plots (a), (c),
and (e) present the total non-reactive probability, total reactive probability,
and sum of the total non-reactive and reactive probabilities (normalization),
respectively. Plots (b) and (d) present the percent difference of the data with
respect to the benchmark results of the ABC program [15] and the plots in (f)
show the normalization percent difference from unity.

Fig. 4.16 presents data with ky = 8.5 au. The non-reactive and reactive
results, in Figs. 4.16a and 4.16¢, show that convergence is reached for all values
of N, > 125. The N, = 100 results deviate around 2.8 ¢V in the non-reactive
results and around 2.3 €V in the reactive results. The normalization plot in
Fig. 4.16e shows convergence is reached when N, > 150, with the N, = 100
results deviating around 1.95 eV and the N, = 125 results deviating around
2.5 eV.

Plots of the percent difference, in Figs. 4.16b, 4.16d, and 4.16f, provide a
more detailed picture of convergence. For the non-reactive results, in Fig. 4.16b,
the most apparent feature is the deviation of the N, = 100 results above about
1.9 eV. While the N, = 100 results are converged below 1.9 eV, these results
have an accuracy of < 1% between about 0.5 and 2.4 eV. The non-reactive
results also show convergence of the N, > 125 results to about 2.4 eV, with
only slight deviations of these results above this boundary, having an accuracy
< 1% between 0.5 and 2.75 eV.

The reactive results in Fig. 4.16d show a similar behavior with respect
to the N, = 100 results, which is convergent to about 1.5 eV, and have an
accuracy of < 1% between 0.6 and 2.5 eV. An odd feature is present in the
reactive results, with the N, = 125 results having a higher accuracy than the

N, > 150 results. This feature should only be viewed as a lack of convergence
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= j; = 0) results for different N,

values uniformly distributed between p,,;, = 0.64 bohr and p,., = 16.5 bohr.
The other APH grid parameters are Ny = 65 and NV,, = 481. The Gaussian
parameters are o = 0.3, kg = 8.5 au, and SBZ, = 9.5 bohr, with p,, = 10 bohr.
The time parameters are t,,,, = 10010 au, V; = 1001, and tgeq,, = 500 au.

LEGEND: (BLACK : N, =200), (BLUE : N, = 175), (GREEN : N, = 150),
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above 2.5 eV, since an increase in accuracy is not present in the non-reactive
case. However, even with the lack of convergence, the N, = 125 results have an
accuracy of < 1% between 0.6 and 3.0 eV. The reactive results are converged
for N, > 150 across the entire energy range and have an accuracy of < 1%
between 0.6 and 3.0 eV.

Shifting the energy distribution, with ky = 12.5 au, allows analysis of the
higher energy convergence. Fig. 4.17 shows the results for different values of
N, when ko = 12.5 au. The non-reactive and reactive results in Figs. 4.17a
and 4.17c show that convergence is reached for all values of NV, > 125. The
deviation of the N, = 100 results is much more pronounced, with large os-
cillations at low energy in the non-reactive results and a distinct separation
above about 2.3 eV in the reactive results. The non-reactive results also show
deviation of the N, = 100 results above about 2.6 eV. The normalization plot
in Fig. 4.16e shows a more detailed view of the N, = 100 oscillations, and
shows the effect of setting ky = 12.5, since the low energy results are larger
than unity:.

Plots of the percent difference are given in Figs. 4.17b, 4.17d, and 4.17f.
For the non-reactive results, in Fig. 4.17b, the most apparent feature is the
deviation of the N, = 100 results, which, even though they do drop below
1%, do not properly converge over the entire energy range. The non-reactive
results also show convergence of the N, > 125 results to about 2.0 eV and
convergence of the N, = 150 results below about 2.0 eV. At higher energies
the N, = 125 and 150 results have a higher accuracy than the N, = 175 and
200 results. As before, this should only be viewed as a lack of convergence,
and not that the less dense grids give better results. The results for N, > 125

have an accuracy < 1% between 0.55 and 2.75 eV.
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The other APH grid parameters are Ny = 65 and NV,, = 481. The Gaussian
parameters are 0 = 0.3, kg = 12.5 au, and SSZ, = 9.5 bohr, with p,, = 10 bohr.
The time parameters are t,,,, = 10010 au, V; = 1001, and #geq,, = 500 au.
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The reactive results in Fig. 4.17d provide a better picture of the higher
energy convergence. The N, = 100 reactive results only converge between
0.9 and 1.15 eV, but have an accuracy < 1% between 0.7 and 2.3 eV. The
N, = 125 reactive results are converged below 1.9 eV, which is a lower energy
of convergence than is shown in the ky = 8.5 au results, but have an accuracy
< 1% between 0.65 and 3.0 eV. The N, = 150 reactive results are converged
below 2.6 eV, which is a higher energy of convergence than is shown in the
non-reactive results. Due to the oscillatory nature of the non-reactive results,
the convergence limit of 2.6 eV for the N, = 150 reactive results is the limit
that will be chosen. The N, = 150 results have an accuracy < 1% between 0.65
and 3.0 eV. The N, > 175 reactive results are converged for the entire range
of energies. The credibility of the higher energy convergence for the ky = 12.5
au results, relative to the ky = 8.5 results, is attributed to the higher accuracy
of the results at higher energies. Taking both the ky = 8.5 and 12.5 au results
in consideration, the N, = 100 results should only be considered for energies
< 1.5 eV, even though the non-reactive 12.5 au results are highly oscillatory.
Since the energy of the initial diatom, with v; = j; = 0, is 0.269 eV, this
convergence is obtained at a maximum kinetic energy of 1.231 eV. Table 4.4
lists a maximum eigenvalue of 2.757 eV for N, = 100, and the ratio of this to
maximum kinetic energy is about 2.24. The N, = 125 results are converged
for energies < 1.9 eV, which corresponds to a maximum kinetic energy of
1.63 eV. Table 4.4 lists a maximum eigenvalue of 4.324 eV for N, = 125, and
the ratio of this to maximum kinetic energy is about 2.65. The N, = 150
results are converged for energies < 2.6 eV, which corresponds to a maximum
kinetic energy of 2.33 eV. Table 4.4 lists a maximum eigenvalue of 6.245 eV for

N, =150, and the ratio of this to maximum kinetic energy is about 2.68. For
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N, > 175, the data is fully converged across the entire shown energy range.
Using the highest ratio calculated above, which is 2.68 for N, = 150, and the
eigenvalues listed in Table 4.4, the highest kinetic energy that can be accurately
described for N, = 175 is 3.177 eV. For N, = 200, the maximum kinetic energy
is 4.156 eV. The maximum allowed kinetic energies for N, > 175 are above the
maximum kinetic energies shown in the results. A good estimate on whether
a given p grid density will provide converged results for the maximum allowed
kinetic energy of the energy region of interest is given by

Bz = Eaz/ (4.7)

max

where &7, is the maximum eigenvalue of 7,, E¥ . is the maximum kinetic
energy required, and « is empirically assumed to be > 2.68.

However, it should be noted that, for N, > 125, all the reactive results
have an accuracy < 1% above 0.65 eV, and the non-reactive results have an
accuracy of < 1% between 0.6 and 2.75 eV, regardless of the convergence.

While convergence to the most accurate results is important, the results are

reliable across a majority of the energy range shown.

4.3.2 Convergence of N,,

In this section, we study convergence of the results as the APH y; grid density
is varied. This is accomplished by changing the number of x; grid points N,,

over the range 0 to 2w. The y; grid is uniformly spaced, with grid spacing:

2
Xi = g (4.8)

Xi

For the x; grid to accurately represent the wave packet, as well as the initial
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and final states, the grid must be dense enough to represent the rovibrational
states that are present in the wave packet. The eigenvalues of the diatomic
Hamiltonian can be used to determine if a given grid density is appropriate
at a given energy, since, as each vibrational state opens, more grid points
will be required to represent the added node present in the eigenfunction. The
diatomic Hamiltonian is given in Sec. 2.2.4 in Eq. (2.24). The reasoning behind
using the asymptotic states to determine the adequacy of a given grid density
is a result of the decrease of the y; grid density as p increases. Since the
largest value of p at which the wave packet needs to be represented is around
Poo, Where the wave packet is projected onto its asymptotic eigenfunctions,
then we can assume that if the y; grid density is appropriate at p, it is
appropriate at p < ps. Note that this will also be the case for Ny, which
will be discussed in the next section. Table 4.5 lists the energy eigenvalues
of the diatomic hamiltonian for seven lowest bound states. Only the lowest
seven bound states are shown, since these will be the only open states in the
energy region of interest of the results. The energies at which these vibrational
states open will provide information on where a particular grid density becomes

ineffective at representing that particular eigenfunction.

v Eigenvalue (eV) | v Eigenvalue (eV)
0 0.269 4 2.160

1 0.782 ) 2.563

2 1.269 6 2.939

3 1.728

Table 4.5: Eigenvalues of the diatomic Hamiltonian for the first seven bound
vibrational states with j = 0.

Results with initial state H+Hy(v; = j; = 0), for various values of N,,, are

shown in Figs. 4.18 and 4.19. Fig. 4.18 presents convergence data with ky = 8.5
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au and Fig. 4.19 presents data with ky = 12.5 au, providing convergence
information at lower energies with the former and at higher energies for the
latter. It is necessary to present separate data sets due to the energy width
of wave packet, as discussed previously in the convergence with respect to
N,. For both figures, plots (a), (c), and (e) present the total non-reactive
probability, total reactive probability, and sum of the total non-reactive and
reactive probabilities (normalization), respectively. Plots (b) and (d) present
the percent difference of the data with respect to the benchmark results of
the ABC program [15], and the plots in (f) show the normalization percent
difference from unity.

Fig. 4.18 presents data with kg = 8.5 au. The results in Figs. 4.18a,
4.18¢c, and 4.18e show large oscillations and that no convergence is reached
for N,, = 121. For N,, = 241, the non-reactive and reactive results are con-
vergent below about 1.35 eV, but the normalization results show convergence
below 0.9 eV. For N,, = 361, the non-reactive results do not show significant
evidence of a lack of convergence, but the reactive and normalization results
show convergence below 2.75 and 2.1 eV, respectively. The N,, > 481 results
are convergent across the entire range of energies shown.

Plots of the percent difference in Figs. 4.18b, 4.18d, and 4.18f provide a
more detailed picture of convergence. For all percent difference plots, the
N,, = 121 results are only visible at low energy, and show no convergence.
Choosing N,, = 121 will not provide accurate results for any initial or final
value of v. The N,, = 241 nonreactive and normalization results are converged
below around 0.9 eV, and have an accuracy of < 1% between 0.5 and 0.9 eV.
The reactive results are only converged to around 0.6 eV and have an accuracy

< 1% between 0.6 and 1.0 eV. According to Table 4.5, the N,, = 241 results
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Figure 4.18: Results for different N,, values with N, = 150 and Ny = 65.
The Gaussian parameters are o = 0.3, kg = 8.5 au, and S% = 9.5 bohr, with
Poo = 10 bohr. The time parameters are t,,,, = 10010 au, N, = 1001, and
tdelay = 500 au.
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lack convergence and have an accuracy < 1% just above the energy where the

v = 1 vibrational state becomes open. Therefore, choosing N,, = 241 will
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only give accurate results for initial or final v = 0 states.

All the precent difference results in Fig. 4.18 for N,, = 361 are converged
below 1.8 eV. The results have an accuracy < 1% between 0.5 and 2.4 eV
for non-reactive, between 0.6 and 2.75 eV for reactive, and between 0.5 and
2.8 eV for normalization. According to Table 4.5, the N,, = 361 results
lack convergence between the energies just above the energy where the v = 3
vibrational state becomes open. However, the results have an accuracy < 1%
around the energy of the v = 5 state. Therefore, choosing V,, = 361 will only
give converged results for initial or final v < 2 states, but will give accurate
results for the v < 4 states.

The percent difference results in Fig. 4.18 for INV,, > 481 are converged
across the entire range of energies. The results for V,, > 481 have an accuracy
of < 1% between 0.5 and 2.85 eV for the non-reactive, between 0.6 and 3.0
eV for the reactive, and 0.5 and 3.0 eV for the normalization. According to
Table 4.5, the N,, > 481 results have convergence above where the v = 6
vibrational state becomes open. The results have an accuracy < 1% just
around the energy of the v = 6 state for the non-reactive results, and above
the v = 6 state for the reactive and normalization results. Therefore, choosing
N,, > 481 will give converged results for initial or final v < 6 states, but will
only give < 1% accuracy for the v < 5 states.

The fact that the results become much less accurate as each vibrational
channel opens is key feature of the precent difference results. This feature illus-
trates the initial assumption that the accuracy of the results is dependent on
the ability of number of x; grid points to represent the asymptotic vibrational
eigenfunctions.

Shifting the energy distribution, with ky = 12.5 au, allows analysis of the
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Figure 4.19: Results for different N,, values with N, = 150 and Ny = 55. The
Gaussian parameters are 0 = 0.3, kg = 12.5 au, and S% = 9.5 bohr, with
Poo = 10 bohr. The time parameters are t,,,, = 10010 au, N, = 1001, and
tdelay = 500 au.

LEGEND: (BLACK : N,, = 601), (GREEN : N,, = 481), (RED : N,, = 361),
(BLUE : N,, =281), (CYAN : N,, = 121).

higher energy convergence. Fig. 4.19 shows the results for different values of

N,, when kg = 12.5 au. The results in Figs. 4.19a, 4.19¢, and 4.19e show no
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new information when compared to the ky = 8.5 au results.

Plots of the percent difference in Figs. 4.19b, 4.19d, and 4.19f provide a
more detailed picture of convergence, but provide no useful information for
the IV,, < 241 results. While the high energy results are more accurate in the
reactive and normalization plots than when &y = 8.5 au, the convergence and
< 1% accuracy boundaries for N,, > 361 are the same as before. Therefore,
the data favoring the higher energy region of interest reinforces the previous
conclusions.

The maximum eigenvalue v that can be properly represented by a given N,,
has been determined by analyzing the convergence and accuracy of the results.
The assumption that the x; grid density can be determined according to its
ability to properly represent the diatomic eigenfunctions, and the validity of
the conclusions made from the results, can be further reinforced by explicitly
looking at how well the x; grid density represents the diatomic eigenfunctions.
The diatomic eigenfunctions are a function of s,, and the relationship between
X: and s, was given in Sec. 2.2.2 in Eq. (2.16b). In order to remove the p and 6
dependence in Eq. 2.16b, we can set p = po, = 10 bohr, and set # = 7/2. Since
it is assumed that p, is located in the asymptotic region of the PES, choosing
P = Poo is appropriate. The least dense x; grid corresponds to the edge of the
hypersperical surface where = /2, providing a picture of the least available
representation of the eigenfunctions. Finally, we only need to look at the
eigenfunctions in a single arrangement channel, so we choose x,; = 0. With

these parameters, Eq. (2.16b) becomes

10 1/2
Sr, = —2{1 — €08 [2)@]} , (4.9)
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providing a mapping of the x; grid points to s,, grid points.

ENERGY (eV) ENERGY (eV)

ENERGY (eV)

Figure 4.20: Plots of the vibrational eigenfunctions as a function of s, The
solid lines are the eigenfunctions determined by diagonalizing the diatomic
Hamiltonian and the data points are the x; grid points mapped to s, for
p = 10 bohr and 6§ = 7/2. The dashed lines are a first order interpolation of
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for three different values of N,,, with the first providing an eigenfunction that
is properly represented and the second showing an eigenfunction that is not
properly represented. Since the NV,, = 481 results are converged for all open
channels in the energies shown, the two eigenfunctions are both assumed to
be properly represented.

Figs. 4.20a and 4.20b show the grid points used to represent the v = 0
and 2 diatomic eigenfunctions when N,, = 241. Previously, it was determined
that the N,, = 241 results were only appropriate at energies where the v = 0
vibrational state is open. The v = 0 eigenfunction is properly represented
over the range of its amplitude. The v = 2 eigenfunction is not properly
represented, with a large portion of its amplitude not accounted for, and this
is evident in the low accuracy of the results presented earlier.

Figs. 4.20c and 4.20d show the grid points used to represent the v = 2 and
5 diatomic eigenfunctions when N,, = 361. Previously, it was determined that
the N,, = 361 results were converged at energies where the v < 2 vibrational
states are open, and accurate to < 1% for v < 4. The v = 2 eigenfunction
is properly represented with only a small portion of its amplitude left unac-
counted. The v = 5 eigenfunction is not properly represented, with two of its
extrema not accurately accounted.

Figs. 4.20e and 4.20f show the grid points used to represent the v = 5 and
6 diatomic eigenfunctions when N,, = 481. Previously, it was determined that
the N,, = 481 results were converged and accurate at energies where the v < 6
vibrational states are open. The v = 5 eigenfunction is properly represented.
The v = 6 eigenfunction has a small portion unaccounted for, but the majority
of the wave function is properly represented.

Even though the conclusions made using the plots shown in Fig. 4.20 are ad
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hoc with respect to the results already presented, they still serve as a useful tool
in determining the energies where a chosen grid density not be appropriate.
Remember that, since § = 7/2, these plots show the minimum number of
points that are used to represent the eigenfunctions, and when 6 < 7/2 more

points will be available over the range of the eigenfunctions’ amplitude.

4.3.3 Convergence of Ny

In this section, we study convergence of the results as the APH 6 grid density
is varied. This is accomplished by changing the number of 6 grid points Ny
over the range 0 to /2. Unlike the p and y; grids, the € grid is not uniformly
spaced. The @ kinetic energy operator is formed using the discrete variable
representation (DVR) [43, 44], and the grid points are determined by the roots
of the Legendre polynomials.

As with the y; grid, for the 0 grid to accurately represent the wave packet,
as well as the initial and final states, the grid must be dense enough to repre-
sent the rovibrational states that are present in the wave packet. Again, the
eigenvalues of the diatomic Hamiltonian can be used to determine if a given
grid density is appropriate at a given energy, since, as each vibrational state
opens, more grid points will be required to represent the added node present
in the eigenfunction. Table 4.5 lists the energy eigenvalues of the diatomic
hamiltonian for seven lowest bound states. The energies at which these vibra-
tional states open will provide information on where a particular grid density
becomes ineffective at representing that particular eigenfunction. Results with
initial state H4+-Hy(v; = j; = 0), for various values of Ny, are shown in Figs. 4.21
and 4.22. Fig. 4.21 presents convergence data with ky = 8.5 au and Fig. 4.22

presents data with ky = 12.5 au, providing convergence information at lower
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energies with the former and at higher energies for the latter.
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Figure 4.21: Results for different Ny values N, = 150 and N,, = 481. The

Gaussian parameters are ¢ =

0.3, kg = 8.5 au, and S% = 9.5 bohr, with

Poo = 10 bohr. The time parameters are t,,,, = 10010 au, N, = 1001, and
tdelay = 500 au.
LEGEND: (BLACK : Ny = 75), (GREEN : N, = 65), (BLUE : Ny = 55),
(RED : Ny =45), (CYAN : Ny = 31).

Fig. 4.21 presents data with ky = 8.5 au. The non-reactive and reactive

116



results in Figs. 4.21a and 4.21c show convergence for Ny = 31 below about
1.3 eV, and the normalization results, in Fig. 4.21e, show convergence below
about 0.9 eV. For Ny = 45, the only a minimal lack of convergence, above
about 2.3 eV, is evident in the normalization results. The results for Ny > 55
appear convergent across the entire range of energies.

Plots of the percent difference for kg = 8.5 au in Figs. 4.21b, 4.21d, and
4.21f provide a more detailed picture of convergence. For all percent difference
plots, the Ny = 31 results do not converge in the traditional sense, but do show
a high accuracy below about 0.9 eV before beginning to deviate significantly.
The Ny = 31 results have an accuracy < 1% between 0.5 and 1.3 V. According
to Table 4.5, the Ny = 31 results lack convergence just above the v = 1
vibrational state and have an accuracy < 1% up to around the energy where
the v = 2 vibrational state becomes open. Therefore, choosing Ny = 31 will
give converged results for initial or final v = 0 states, but will give accurate
results for v < 1 states.

The Ny = 45 results for kg = 8.5 au are converged below around 2.0 eV
in all difference plots, and have an accuracy of < 1% between 0.5 and 2.6 eV
for the non-reactive results. The reactive and normalization results have an
accuracy < 1% above 0.6 eV. According to Table 4.5, the Ny = 45 results
lack convergence between the v = 3 and v = 4 vibrational states and have
an accuracy < 1% up to around the energy where the v = 5 vibrational state
becomes open for the non-reactive results. The Ny = 45 results don’t follow
the usual behavior, where convergence is lost just above the energy where a
vibrational channel opens. However, the lack of convergence does increase
as each new vibrational channel opens, so the general behavior assumed still

applies. Choosing Ny = 45 will give converged results to around the energy
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where the v = 2, or possibly 3, states become open. Since very accurate results
< 0.5% are present below 2.3 €V in all plots, it can be assumed that the Ny
grid adequately represents the v < 3 states.

The Ny = 55 and 65 results for kg = 8.5 au only show a minor lack of
convergence above 2.9 eV, evident in the reactive and normalization plots.
These results have an accuracy < 1% above 0.5 eV in the non-reactive and
normalization plots, and above 0.6 €V in the reactive plot. Furthermore, the
results have an accuracy of < 0.5% between 0.6 and 2.7 eV in the non-reactive
plot, between 0.65 and 2.4 eV in the reactive plot, and between 0.6 and 3.0 eV
in the normalization plot. According to Table 4.5, the Ny = 55 and 65 results
lack convergence just above the v = 6 vibrational state and have an accuracy
< 1% for all the shown energies. Therefore, choosing Ny = 55 or 65 will give
converged and very accurate results initial or final v < 5 states, but will give
adequately accurate results for v < 6 states.

Shifting the energy distribution, with kg = 12.5 au, allows analysis of the
higher energy convergence. Fig. 4.22 shows the results for different values of
Ny when kg = 12.5 au. The results in Figs. 4.22a, 4.22¢, and 4.22e show no
new information of significance when compared to the ky = 8.5 au results.

Plots of the percent difference in Figs. 4.22b, 4.22d, and 4.22f provide a
more detailed picture of convergence, but provide no useful information for the
Ny = 31 results. The convergence and < 1% accuracy boundaries for Ny > 45
are the same as for the ky = 8.5 au results. The only aspect of the ky = 12.5
au results that is important is the higher accuracy of the higher energy results
for the Ny > 45 results. This fact reinforces the previous conclusions, but
adds the conclusion that the Ny > 45 grids provide very high accuracy for all

shown energies, even in regions that lack convergence.
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Figure 4.22: Results for different Ny values with N, = 150 and N,, = 481.
The Gaussian parameters are o = 0.3, kg = 12.5 au, and SS,- = 9.5 bohr, with
Poo = 10 bohr. The time parameters are t,,,, = 10010 au, N, = 1001, and
tdelay = 500 au.

LEGEND: (BLACK : Ny = 75), (GREEN : N, = 65), (BLUE : Ny = 55),
(RED : Ny = 45), (CYAN : Ny = 31).

The maximum eigenvalue v that can be properly represented by a given

Ny has been determined by analyzing the convergence and accuracy of the
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results. As with N,,, the assumption that the 6 grid density can be determined
according to its ability to properly represent the diatomic eigenfunctions, and
the validity of the conclusions made from the results, can be further reinforced
by explicitly looking at how well the 6 grid density represents the diatomic
eigenfunctions. The diatomic eigenfunctions are a function of s., and the
relationship between 6 and s, was given in Sec. 2.2.2 in Eq. (2.16b). In order to
remove the p and y; dependence in Eq. (2.16b), we can set p = po, = 10 bohr,
and set x; = 0. Since it is assumed that p. is located in the asymptotic region
of the PES, choosing p = p is appropriate. The least dense 6 grid corresponds
a line on the hypersperical surface where y; = 0, providing a picture of the least
available representation of the eigenfunctions. These parameters offer look
at the eigenfunctions in the entrance arrangement channel, and Eq. (2.16b)
becomes
10

5y, = E{1 —Sine}l/Q, (4.10)

providing a mapping of the # grid points to s,, grid points.

Fig. 4.23 shows the 6 grid points used to represent the diatomic eigenfunc-
tions at p = ps and yx; = 0. This figure presents two eigenfunctions for three
different values of Ny, with the first providing an eigenfunction that is prop-
erly represented and the second showing an eigenfunction that is not properly
represented.

Figs. 4.23a and 4.23b show the grid points used to represent the v = 0 and 1
diatomic eigenfunctions when Ny = 31. Previously, it was determined that the
Ny = 31 results were only appropriate at energies where the v = 0 vibrational
state is open. The v = 0 eigenfunction is properly represented over the range

of its amplitude. The v = 1 eigenfunction is not properly represented, with a
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Figure 4.23: Plots of the vibrational eigenfunctions as a function of s, The
solid lines are the eigenfunctions determined by diagonalizing the diatomic
Hamiltonian and the data points are the € grid points mapped to s,, for p = 10
bohr and y; = 0. The dashed lines are a first order interpolation of the data
points.

large portion of its amplitude not accounted for, and this is evident in the low
accuracy of the results presented earlier.

Figs. 4.23c and 4.23d show the grid points used to represent the v = 2 and
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4 diatomic eigenfunctions when Ny = 45. Previously, it was determined that
the Ny = 45 results were converged at energies where the v < 2 vibrational
states are open, and accurate to < 0.5% for v < 3. The v = 2 eigenfunction
is properly represented with only almost all of its amplitude accounted. The
v = 4 eigenfunction is not properly represented, with two of its extrema not
accurately accounted.

Figs. 4.23e and 4.23f show the grid points used to represent the v = 5
and 6 diatomic eigenfunctions when Ny = 65. Previously, it was determined
that the Ny = 65 results were converged and accurate at energies where the
v < b vibrational states are open. Although minor portions of the v = 5
eigenfunction, around its extrema, are left unaccounted, the majority of it is
properly represented. The v = 6 eigenfunction shows similar behavior, but
this is expected, due to the minimal lack of convergence and the high accuracy
of the results.

As with N,,, even though the conclusions made using the plots shown
in Fig. 4.23 are ad hoc with respect to the results already presented, they
still serve as a useful tool in determining the energies where a chosen grid
density not be appropriate. Remember that , since y; = 0, these plots show
the minimum point density that is used to represent the eigenfunctions, and,
when x; # 0, more points will be available over the range of the eigenfunctions’

amplitude.
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4.4 Time Parameters

4.4.1 Convergence of t,,,,

The t,,,. parameter determines the total time the wave packet will be prop-
agated, starting from ¢ = 0. t,,,, must be large enough to ensure that the
entire wave packet has propagated into the interaction region of the PES and
returned to pass p... The appropriate value of t,,,, depends primarily upon
the attributes of the PES. The asymptotic region of the PES determines where
SSZ, and p. must be located, and the larger these parameters, the longer the
wave packet must be propagated. Furthermore, the properties of the interac-
tion region of the PES can cause the wave packet to be temporarily “trapped”,
requiring longer propagation times. The initial momentum distribution of the
initial wave packet also have an effect on t,,,,, where the presence of small
kinetic energies will require longer propagation times. Conversely, an initial
wave packet containing higher kinetic energies will decrease the propagation
time.

A zeroth-order estimation of t,,,, can be found by analyzing the propaga-

tion of a free Gaussian wave packet in one-dimension. The envelope of a free

Gaussian wave packet at any time ¢ is given by [55]

1 1/4 ,
( t)) ¢~ [Sr=S%+ot/w]/[aoplo)] (4.11)
0-7

2mo?p

9(Sr,t) = (

where

t2

To determine the zeroth-order value of ¢,,,,, we find the propagation time

required for the free wave packet to travel approximately the round-trip dis-

123



tance from Sgi to poo. This is accomplished by plotting the amplitude of the
evolving wave packet over the range Sﬂi to S;, = —p for various propagation
times. The time it takes for the wave packet amplitude to drop below 1% of its
initial maximum value, between SEZ, to S;, = —poo, provides a good estimate of
tmaz. Of course, this estimate doesn’t take the PES interactions into account,
such as the possibility of resonances, but does help to reduce the amount of
parameter space that needs to be explored.

Fig. 4.24 shows “snapshots” of the envelope of two evolving wave packet
at different times. The solid curves represent a wave packet with ¢ = 0.3 and
ko = 8.5 au, and the dashed curves represent a wave packet with ¢ = 0.2 and
ko = 12.5 au. Both wave packets start at S% = 9.5 bohr and are propagated
toward S% = —pPs = —10 bohr. Fig. 4.24a shows the wave packet at ¢ = 0.
The maximum amplitude of the o = 0.3, kg = 8.5 au wave packet is about 1.1
and the amplitude of the o = 0.2, kg = 12.5 au wave packet is about 1.4. The
time at which the wave packets’ maximum amplitudes drop to about 0.011
and 0.014 between —10 and 9.5 bohr is the zeroth order value of t,,4,.

Fig. 4.24b shows the wave packets at ¢ = 1010 au. The packets have
translated toward —10 bohr and have significant amplitudes in the region of
interest. Note that the ky = 12.5 packet is translating more rapidly since it
contains higher kinetic energy components. Also, the packets have broadened
as the higher energy components leave the lower energy components behind.
Fig. 4.24c shows the wave packets at ¢ = 2510 au. A significant amount of
the kg = 12.5 au packet has crossed the —10 bohr boundary, but it still has
a maximum amplitude of about10% its initial maximum. The slower moving
ko = 8.5 au packet still has significant amplitude, with a maximum at about

25% of its initial maximum.
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Figure 4.24: Envelope of the Gaussian wave packet at different propagation
times. The initial wave packet starts at S? = 9.5 bohr. The solid line is a

wave packet with ¢ =
packet with 0 = 0.2 and ky = 12.5 au.

0.3 and ky = 8.5 au, and the dashed line is a wave

Fig. 4.24d shows the wave packets at ¢ = 5010 au. The maximum of the

ko = 12.5 au packet is now around 1% its initial maximum, and choosing

tmaz = D010 au would be a suitable choice. However, to account for possible
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resonances and to be sure that the “entire” wave packet is out of the region of
interest, it would be beneficial to propagate it for a little longer. The kg = 8.5
au packet’s maximum has decreased about an order of magnitude between
t = 2510 and 5010 au, but still needs to be propagated longer as well.

Fig. 4.24e shows the wave packets at t = 7510 au. The ky = 12.5 packet
can be assumed to have vacated the region of interest, since its maximum
amplitude is about 0.2% of the initial maximum. A maximum propagation
time of t,,,. = 7510 au is a suitable zeroth-order starting point for the ky =
12.5 au wave packet. The ky = 8.5 au packet still has a maximum amplitude
of about 1% its initial maximum, so it should be propagated a little longer.
Fig. 4.24f shows the wave packets at ¢ = 10010 au. Both wave packets have
exited the region of interest, so t,,,, = 10010 is suitable propagation time for
the ky = 8.5 au packet.

Results with initial state H+Hs(v; = j; = 0), for various values of t,,,4., are
shown in Figs. 4.25 and 4.26. Fig. 4.25 presents convergence data with o = 0.3
and ky = 8.5 au, and Fig. 4.26 presents data with ¢ = 0.2 and kg = 12.5 au.
The Gaussian parameters of these results are the same as the wave packets
discussed above, and the zeroth-order predictions can be tested.

Fig. 4.25 presents the results for 0 = 0.3, kg = 8.5 au. The non-reactive
and reactive results, in Figs. 4.25a and 4.25¢, only show a lack of convergence
for the t,,,. = 5010 au data. The normalization results, in Fig. 4.25e, show
a lack of convergence for both the t,,,, = 5010 and 7510 au data. The non-
reactive and normalization plots show deviations at low energies, around 0.5
eV, and are present because the low kinetic energy portion of the wave packet
hasn’t reached the analysis surface. All three plots show a lack of convergence

around 1.0 eV. The v = 1 vibrational state opens, at 0.78 eV, just below the
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Figure 4.25: Results for different values of t,,,,. The APH grid parameters are
N, = 150, Ny = 55, and N,, = 481. The Gaussian parameters are o = 0.3,
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deviations and the v = 1 products have a small kinetic energies and don’t
reach p. All three plots also show oscillations above around 2.5 eV and are
caused by the lack of higher kinetic energy components in the wave packet.
Plots of the percent difference for ¢ = 0.3, kg = 8.5 au, in Figs. 4.25b,
4.25d, and 4.25f, provide a more detailed picture of convergence. The most
prominent features in these plots are the large spikes in the ?,,,, = 5010 au
data. Less pronounced versions of these are present in the t,,,, = 7510 au data.
As before, these are due to the low kinetic energy of the v = 1 products at
these energies, and these slow moving portions of the wave packet don’t reach
Pso- The loss of convergence around energies where other vibrational channels

open is evident in the large wavelength oscillations in the ¢,,,, = 5010 au data.

The percent difference results show convergence for t,,,, > 10010 au, as
predicted by the zeroth-order estimation discussed previously. Only the re-
active results, in Fig. 4.25d, show convergence of the t,,,, = 7510 au data,
between 0.5 and 0.8 eV. However, even though the t,,,, = 7510 au results
are not converged elsewhere, in all plots they have a high accuracy of < 0.5%
between 0.65 and 2.5 eV and < 1% between 0.6 and 2.7 eV.

Fig. 4.26 presents the results for 0 = 0.2, kg = 12.5 au. The non-reactive,
reactive, and normalization results, in Figs. 4.25a, 4.25c, and 4.25e, are similar
to the kg = 8.5 au results, but lack the high energy oscillations. These oscil-
lations are no longer present since the wave packet’s energy region of interest
has been shifted and contain higher energy components.

Plots of the percent difference for o = 0.2, ky = 12.5 au, in Figs. 4.26b,
4.26d, and 4.26f, provide a more detailed picture of convergence at higher

energies. As in the kg = 8.5 au results, the t,,,, = 5010 au data contains large
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Figure 4.26: Results for different values of t,,,,. The APH grid parameters are
N, = 150, Ny = 55, and N,, = 481. The Gaussian parameters are o = 0.2,
ko = 12.5 au, and S% = 9.5 bohr, with p,, = 10 bohr. The time parameters
are Ny, = 1001 and ?4eqy = 500 au,
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spikes, with the t,,,, = 7510 au data containing smaller versions, around 1.0
eV. Similar, but smaller, features are present in the t,,,, = 5010 au data around
1.4 and 1.9 eV, corresponding to energies just above where the v = 2 and 3
vibrational states open at 1.27 and 1.73 eV, respectively. Another distinct
feature of the ky = 12.5 au results, when compared to the kg = 8.5 au results,
is the accuracy and semi-convergent t,,,, = 5010 au data at energies above 2.0
eV. Since the vibrational states that are open above 2.0 eV do not significantly
contribute to the total non-reactive and reactive probabilities, the populated
lower vibrational states have larger kinetic energies and are moving fast enough
to reach p.

In all plots, the t,,,., > 7510 au data is converged above 1.4 eV. The
reactive results, in Fig. 4.26d, show convergence for t,,,, > 7510 au for all
energies, except for the 1.0 eV spike in the t,,,, = 7510 au data. The zeroth-
order estimate above predicted that t,,,, = 7510 au should be adequate for
converged results, and, since a wave packet with ¢ = 0.2, ky = 12.5 favors
results at higher energies, this estimate is validated. The lack of convergence,
in the non-reactive and normalization results, for all values of t,,,, below 1.4

eV confirms the high energy favorability.

4.4.2 Convergence of N,

The N, parameter determines the total number of grid points between t = 0

and t,,4.. The N; grid is uniformly spaced, with grid spacing:

tmam
At = “maz. (4.13)

130



The wave packet is analyzed at p,, at each time grid point, so the grid must
be dense enough to obtain relevant information from the wave packet. For
example, if N; = 1, the only grid point is located at t,,,,. When t = t,,42,
the entire wave packet has already crossed p., and analysis of the packet only
at this point provides no information. Therefore, if N; isn’t large enough,
significant portions of the wave packet will cross p,, without being analyzed.

The appropriate value of N; is primarily dependent upon the Gaussian
parameter kg, with higher values of ky requiring larger values of V; due to the
higher kinetic energy components present in the wave packet. Therefore, the
faster the wave packet is moving, the denser the time grid must be to properly
resolve the information present in the evolving wave packet.

Results with initial state H + Ha(v; = j; = 0), for various values of NNy, are
shown in Figs. 4.27 and 4.28. Fig. 4.27 presents convergence data with o = 0.3
and kg = 8.5 au, and Fig. 4.28 presents data with 0 = 0.2 and ky = 12.5 au.
Table 4.6 lists the values of N; and their corresponding grid spacings At when
tmaz = 10010 au.

Fig. 4.27 presents the results for o0 = 0.3, kg = 8.5 au. The non-reactive,
reactive, and normalization results, in Figs. 4.27a, 4.27c, and 4.27e, show
convergence for all values of N;. This is to be expected when ky = 8.5 au,

since the wave packet contains low kinetic energies and will slowly evolve in

Ny At (au) | Ny At (au)
401 25.0 1001 10.0
501 20.0 1335 7.5
667 15.0 2002 5.0

Table 4.6: Values of N; and their corresponding grid spacings At when t¢,,,,, =
10010 au.

131



PROBABILITY PROBABILITY

PROBABILITY

08516 15 20 25 30
ENERGY, eV
(a) Non-Reactive Results
1.0
0.8}
0.6}
0.4}
0.2}
085 10 15 20 25 30
ENERGY, eV
(¢) Reactive Results
11
1.0
0955 1.0 15 2.0
ENERGY, eV

(e) Normalization

% DIFFERENCE % DIFFERENCE

% DIFFERENCE

15

1.0

05

0.0+

ENERGY, eV
(b) Non-Reactive % Difference

20 25
ENERGY, eV
(d) Reactive % Difference

3.0

A

10 15 2.0
ENERGY, eV
(f) Norm. % Difference

0.5

Figure 4.27: Results for different values of V;. The APH grid parameters are
N, = 150, Ny = 55, and N,, = 481. The Gaussian parameters are o = 0.3,
ko = 8.5 au, and S% = 9.5 bohr, with p,, = 10 bohr. The time parameters are

tmaz = 10010 au, tgeqy = 500 au,

LEGEND: (BLACK : N, = 2002), (GREEN : N, = 1335), (RED : N, = 1001),
(BLUE : N, = 667), (CYAN : N, = 501), (GRAY : N, = 401)

time. The slow moving wave packet can be properly analyzed even for small

values of N;.
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Plots of the percent difference for ¢ = 0.3, kg = 8.5 au, in Figs. 4.27b,
4.27d, and 4.27f, provide a more detailed picture of convergence. The non-
reactive results show convergence for N; > 1335 between 1.0 and 2.4 eV.
This is to be expected since the largest grid density should extract the most
information from the wave packet. However, outside this energy region, the
N; = 2002 data is the least accurate, with increased accuracy as N; decreases.
This behavior is not expected, but the difference in accuracy is very small and
should not be considered to be significant behavior.

The reactive results in Fig. 4.27d show no convergence in the data. As
before, at energies below 1.0 eV, the N; = 2002 data has the lowest accuracy
relative to the other data. The reactive results above 1.9 eV show equally
odd behavior, where the N; = 501 data is the most accurate between 1.9 and
2.5 eV. No value of N; establishes itself as being optimal, so it is difficult to
classify this behavior. Even though the o = 0.3, ky = 8.5 au non-reactive and
reactive results present odd behavior, the results for all values of N; are very
accurate, having an accuracy < 0.5% between 0.6 and 2.5 eV.

Fig. 4.28 presents the results for ¢ = 0.2, kg = 12.5 au. The non-reactive
results in Fig. 4.28a show a minor lack of convergence for the N, = 401 and
501 data below 0.9 eV. The reactive results in Fig. 4.28c also show a minor
lack of convergence for the Ny = 401 and 501 data below 1.2 eV The normal-
ization results in Fig. 4.28e provide a more detailed picture of the convergence,
showing large oscillations in the N; = 401 and 501 data across the entire range
of energies. The N; = 401 results deviate more than the N; = 501 results,
which is expected behavior.

Plots of the percent difference for ¢ = 0.2, kg = 12.5 au, in Figs. 4.28b,

4.28d, and 4.28f, provide a more detailed picture of convergence. The percent
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difference plots show large oscillations in the N; = 401 and 501 data. This
is expected behavior that is not present in the o = 0.3, kg = 8.5 au results.
The non-reactive results in Fig. 4.28b show convergence of the N, > 1335 data
between 1.0 and 2.2 eV, but there is only a small difference in accuracy for
the N; > 667 data above 1.0 eV.

The reactive results in Fig. 4.28d show convergence of the N; > 1335 data
between 1.2 and 2.2 eV. The N, = 401 and 501 reactive results are very
oscillatory, with the N, = 667 data possessing similar oscillations below 1.5
eV. As in the 0 = 0.3, kg = 8.5 au results, the N; = 2002 data is less accurate
than the N; = 1001 and 1335 data below 1.2 eV and less accurate than the
N; = 667 data above 2.5 eV.

The non-reactive and reactive results are very accurate for N, > 1001. For
N; > 1001, the non-reactive results have an accuracy < 0.5% between 0.8 and
2.4 eV, and the reactive results have an accuracy < 0.5% between 0.7 and
3.0 eV. The ¢ = 0.2, kg = 12.5 au results reinforce the observation of odd
behavior of the o = 0.3, ky = 8.5 au results. However, the ky = 12.5 au results
do exhibit expected behavior with the low accuracy of the N; < 667 data, due

to the higher kinetic energies contained in the wave packet.

4.4.3 Convergence of t;.qy

The ?4e1qy parameter determines the time at which to begin analyzing the wave
packet. Its primary purpose is to avoid analysis of the unreacted wave packet
when the initial wave packet overlaps poo. fgeiay is chosen to be large enough
so that the its unreacted amplitude has vacated p,,, but small enough so that
the returning reacted packet has not yet reached p,. The non-reactive results

are affected the most, since the reactive arrangement channels do not contain
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Figure 4.28: Results for different values of V;. The APH grid parameters are
N, = 150, Ny = 55, and N,, = 481. The Gaussian parameters are o = 0.2,
ko = 12.5 au, and S% = 9.5 bohr, with p,, = 10 bohr. The time parameters
are tpya, = 10010 au, tgeqy = 500 au,

LEGEND: (BLACK : N; = 2002), (GREEN : N, = 1335), (RED : N, = 1001),
(BLUE : N, = 667), (CYAN : N; = 501), (GRAY : N, = 401)

any initial wave packet amplitude. However, if t4c, is too large, the reacted

wave packet could cross p., in the reactive channel without being analyzed.
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The value of t4e1q, depends on the Gaussian wave packet parameters. As
ko increases, t4e1qy Will decrease due to the increase in the wave packet kinetic
energy. The window of appropriate tgeq, values, between where the wave
packet has vacated p, and before where the returning wave packet crosses
Poo, decreases as Sgi decreases. This is due to the shorter round-trip the wave
packet has to travel. However, if p., is held fixed while S%_ decreases, tgeiqy
will decrease since the p., overlap of initial wave packet will decrease. As
o increases, lgeqy increases, since a broader wave packet will take longer to
vacate poo.

The properties of the PES do affect t4¢4,, but since po is located in the
asymptotic region of the PES, the wave packet will behave like a free wave
packet. A zeroth-order estimation of t4e,, can be found by analyzing the
propagation of a free Gaussian wave packet in one-dimension. To determine
the zeroth-order value of #4.,, we find the propagation time required for the
free wave packet to vacate S; = p. This is accomplished by plotting the
amplitude of the evolving wave packet in a narrow region around S;, = p for
various propagation times. The time it takes for the wave packet amplitude
to drop below 1% of its initial maximum value at S, = —po, provides a
good estimate of ¢4.,. However, this estimate doesn’t take into account the
approach of the returning reacted wave packet, so it is beneficial to choose
the minimal value of ¢4, that is appropriate. Making plots such as those in
Fig. 4.24 provide a good estimate of when the reacted wave packet will return
by looking at when it begins to overlap S, = —peo.

Fig. 4.29 shows “snapshots” of the envelope of a wave packet at different
times. The solid curves represent a wave packet with o = 0.3, kg = 8.5 au and

the dashed line marks the line a S;, = po = 10 bohr. The wave packet starts
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Figure 4.29: Envelope of the Gaussian wave packet around S;, = 10 bohr. The
initial wave packet starts at S2 = 9.5 bohr. The solid line is a wave packet
with 0 = 0.3 and ky = 8.5 au. The dashed line locates the S;, = 10 bohr
boundary.

at S(T)i = 9.5 bohr and propagates to the left, toward S;, = 0 bohr. Fig. 4.29a
shows the wave packet at £ = 0. The maximum amplitude of the wave packet

is about 1.15 and its amplitude at 10 bohr is about 50% of its maximum. The
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time at which the wave packets’ maximum amplitudes drop to below 0.0115
at S;, = 10 bohr is the zeroth order value of tgciqy-

Fig. 4.29b shows the wave packet at t = 100 au. The packet amplitude at
10 bohr is about 2.17% of its initial maximum value, S0 tgeqy = 100 au is too
short. Fig. 4.29¢ shows the wave packet at ¢ = 250 au. The packet amplitude at
10 bohr is about 0.13% of its initial maximum value, S0 tgeqy = 250 au should
be sufficient to obtain accurate results. Fig. 4.29d shows the wave packet at
t = 500 au, and its amplitude at 10 bohr is 0.04% of the initial maximum.
Setting t4eiqy = 500 au should be more than sufficient. This is probably a
better choice for t44, since the wave packet has significantly vacated 10 bohr.
Furthermore, ¢ = 500 au is short enough that the returning reacted wave
packet hasn’t returned to p,,. Note that the ¢ = 750 and ¢ = 1000 au plots
in Figs. 4.29¢ and 4.29f, respectively, both have about the same amplitude of
around 4.3 x 107° at 10 bohr. This shows that the amplitude of the wave
packet has most likely reached its minimum possible value at 10 bohr, since
the returning reacted wave packet is close to returning. Results with initial
state H + Ho(1; = j; = 0), for various values of ¢4y, are shown in Fig. 4.30,
with ¢ = 0.3 and kg = 8.5 au. The Gaussian parameters of these results are
the same as the wave packet discussed above, and the zeroth-order predictions
can be tested.

Fig. 4.30 presents the results for 0 = 0.3, kg = 8.5 au. The non-reactive
and normalization results, in Figs. 4.30a and 4.30e, show a lack of convergence
for the t4eqy = 0 au data. These oscillations are caused by the overlap of the
initial wave packet with p.,. Note that the oscillations are not present in the
reactive results, in Fig. 4.30c, since the initial wave packet has no amplitude in

the reactive arrangement channels. All three plots show a lack of convergence

138



m
: :
E :
o
< L
o I
Q &
o X
005608 10 12 14 16 18 20 % 03 1.0 15 2.0
ENERGY, eV ENERGY, eV
(a) Non-Reactive Results (b) Non-Reactive % Difference
1.0— ; ; ; ; ; ; 2.0
L
E 0.8f LZ) 15
3 m|
= 0.6f
o 1.0
o 0.4f L
? ool 8 05
o S i w
0056 08 10 12 14 16 18 20 06 08 1.0 12 1.4 16 1.8 20
ENERGY, eV ENERGY, eV
(¢) Reactive Results (d) Reactive % Difference
1-1 T T n (] T1 1 || | 1 T
w
: :
2 | ] &
o - /
< 10 \_1 E f
) o
; 1l LANR:
U N ,.,V,‘/\.
0905 1.0 15 2.0 05 1.0 15 2.0
ENERGY, eV ENERGY, eV
(e) Normalization (f) Norm. % Difference

Figure 4.30: Results for different values of ¢4c14y. The APH grid parameters
are N, = 150, Ny = 45, and N,, = 361. The Gaussian parameters are o = 0.3,
ko = 8.5 au, and S% = 9.5 bohr, with p,, = 10 bohr. The time parameters are
tmaz = 10010 au, N; = 1001,

LEGEND: (BLACK : tgeay = 1500 au), (GREEN : t4eq, = 1000 au), (RED :
tdelay = 750 au), (BLUE : tdelay = 500 au), (CYAN : tdelay = 250 au), (GRAY
: tdelay = 0 au).
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for the t4e1qy = 1500 au data. This value of ¢4¢14, is too large, and the returning
reacted wave packet has begun to cross p., before analysis begins. The results
for tg4eiqy between 250 and 1000 au appear to be converged.

Plots of the percent difference for ¢ = 0.3, kg = 8.5 au, in Figs. 4.30b,
4.30d, and 4.30f, provide a more detailed picture of convergence. The most
prominent features in these plots are the large oscillations in the #gq, = 1500
au data, showing what happens when #44, is too large. The non-reactive and
normalization results show that the Zgeq, = 0 au results are highly divergent,
but are converged in the reactive plot. The non-reactive and normalization
results also show that the most converged results are for ¢4eq, = 750 and 1000
au, with the ?4e4, = 250 and 500 au data possessing small oscillations. This
makes sense since the wave packet amplitude is negligible at S;, = po = 10
bohr for t44, = 750 and 1000 au in Fig. 4.29. Even though the tge4, = 250
and 500 au data lack complete convergence, it has very accurate results < 0.5%
above 0.6 eV. The reactive results are converged for ¢4, < 1500.

The zeroth-order estimate predicted 40y = 250 au should be sufficient to
produce accurate results, but that ¢4, = 500 would provide more converged
results. The reactive results confirm these predictions, but the non-reactive

results favor the larger values of #geqy -
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CHAPTER 5
RESULTS
5.1 Introduction

In this chapter, we show results obtained by using the h-TDWP method to
calculate state-to-state probabilities for the H + Hy and F + H, systems for
total angular momentum, J = 0. The results presented are the state-to-state
non-reactive and reactive (rearrangement) probabilities, resolved for each vy
and j; final states. The total non-reactive and reactive probabilities were given
in the convergence study in Chapter 4. Results are shown for two potential
energy surfaces belonging to two different point groups. The H 4+ Hy surface
possesses the maximum symmetry, belonging to Cg,, and the F + Hy surface
belongs to C5,. The parameters chosen for the calculations are determined
using the convergence study presented in Chapter 4 and are listed in Table
5.1.

To verify our results, we also performed time-independent calculations for
these systems using the well-studied ABC reactive scattering program [15].
The state-to-state results show excellent agreement when compared to the
time-independent results. The parameters used in the ABC calculations are
listed in Table 5.2.

First, the H + H, state-to-state non-reactive and reactive probabilities are
presented for initial states v; = 0, 1, 2, all with j; = 0, to the final states
v =20, 1, 2, for all j; values with appreciable amplitude. Second, the F' + Hj
state-to-state reactive probabilities are presented for initial state v; = j; = 0,

to the final states v = 0 to 3, for j; = 0 to 10.
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Table 5.1: Parameters used in TD calculations. All values in atomic units
unless otherwise specified.

Parameter H+ H, F+H,
tmaz 10010.0 20010.0
N, 1001 2001
Ldelay 500.0 400.0

N,, Ny, N, 150, 65, 481 200, 90, 601
Ponins Pmae 0.64,16.0 1.2, 16.0

Poo 10.0 10.5
SEZ, 9.5 10.0
ko 8.5 6.0
o 0.3 0.3
Jmaz 22 29
Vit 0.19 0.225
PNIP 10.75 10.75
Unrp (eV) 0.75 0.75

Table 5.2: Parameters used in ABC calculations.

Parameter H+H, F-+H,
Maximum internal energy (eV) 3.0 4.0
Maximum rotational quantum number 25 40
Maximum hyperradius (ao) 12.0 14.0
Number of propagation sectors 250 350
Initial scattering energy (eV) 0.3 0.233
Scattering energy increment (eV) 0.015 0.01
Number of scattering energies 114 80
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5.2 H+H,

The H+H, system is well-studied [59], providing a benchmark platform to test
the h-TDWP method. We employ the double many-body expansion (DMBE)
potential energy surface for this system [60]. As stated previously, the H+ H,
PES belongs to the Cg, point group. As a result, depending on whether j; is
even or odd, only certain irreducible representation projections of the initial
wave packet must be propagated. Here, we deal with J = j; = 0 initial states,
which only contain A; and Es4 components. The A; component only requires
41 of the total 481 x; points and the Fs4 only requires 80 y; points.

Figs. 5.1 to 5.27 show the state-to-state reactive and non-reactive probabil-
ities for the H + Hay(v; = j; = 0) — Ha(vy, j¢) + H reactions, with vy =0, 1, 2
for appropriate values of j;. The figures show excellent agreement between the
current results and the ABC method. Note that the accuracy of the results is
consistent across the full range of energies, which sets our method apart from
other hyperspherical TDWP methods [25]. The energy dependence of the ac-
curacy of the other methods is most like due to their asymptotic matching

scheme, which analyzes the wave packet at a constant Jacobi coordinate.
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Figure 5.1: State-to-state reaction probabilities for H + Hy(v; = j; = 0) —
Hy(vy = 0,j7) + H on the DMBE potential energy surface when j; = 0 to 11.
The solid lines represent our h-TDWP results and the symbols represent the
ABC results. The O symbol labels the smaller j¢, and the [J symbol labels
the larger j; in each plot.
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Figure 5.20: State-to-state reaction probabilities for H + Hy(v; = 2, j; = 0) —
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Figure 5.21: State-to-state non-reactive probabilities for H + Ho(v; = 2,j; =
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Figure 5.22: State-to-state reaction probabilities for H + Hy(v; = 2, j; = 0) —
Hy(vp =1, ;) + H on the DMBE potential energy surface when j; = 0 to 11.
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Figure 5.23: State-to-state reaction probabilities for H + Hy(v; = 2, j; = 0) —
Hy(vy =1, j;) +H on the DMBE potential energy surface when j; = 12 to 19.
The solid lines represent our h-TDWP results and the symbols represent the
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the ABC results. The () symbol labels the smaller j;, and the O symbol labels
the larger j; in each plot.
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Figure 5.25: State-to-state reaction probabilities for H + Hy(v; = 2, j; = 0) —
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5.3 F+H,

The F+H, system provides a test on a PES belonging to a different symmetry
group, but is still similar enough to the H 4+ Hy system that there is no ap-
preciable change to any calculation parameter. We employ the Stark-Werner
potential energy surface [2] for this system. The F 4+ Hy PES belongs to the
Cy, point group. Again, we deal with the J = j; = 0 initial state, which only
contains an A; component that requires 151 of the total 601 y; grid points.
The total energy zero is set at the minimum of the HF well. The wave packet
parameters provide a total energy region-of-interest from 1.63 to 2.58 eV.

Figs. 5.28 to 5.31 show the state-to-state reactive probabilities for the H +
Hy(v; = j; = 0) — HF (vy, j¢) + H reactions, with vy = 0 to 3 and j; = 0 to 10.
As with the previous system, the figures show excellent agreement between the
two methods. Note that the accuracy of the results is once again consistent
across the full range of energies.

In comparing the F 4 H, parameters to those of H+ Hy, convergence of the
F + Hjy results requires more grid points. The increased number of p points,
when compared to the H+ Hs results, is attributed to the higher kinetic energy
attributed to the wave packet as it enters the HF arrangement channel. The
increased number of # and y; points is due to the number of open vibrational
states in the HF channel. Since larger v values have basis functions with more
nodes, a denser grid is needed to accurately represent them in the final state

matching.
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Figure 5.28: State-to-state reaction probabilities for F + Hy(v; = j; = 0) —
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Figure 5.30: State-to-state reaction probabilities for F + Hy(v; = j; = 0) —
HF(vy = 2,j¢) + H on the Stark-Werner potential energy surface when j; =0
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Figure 5.31: State-to-state reaction probabilities for F + Hy(v; = j; = 0) —
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CHAPTER 6
CONCLUSION

In this work, a new hyperspherical time-dependent wave packet method
was introduced and implemented to produce accurate state-to-state reaction
probabilities. Our results show excellent agreement with current benchmark
time-independent results, and this agreement is consistent over a large range
of energies. The ability of our method to obtain accurate results at higher
energies sets our method apart from other hyperspherical TDWP methods [25].
Furthermore, a reviewer from The Journal of Chemical Physics, discussing
a recently submitted paper that presents the theory and results presented
in this dissertation, commented that, “Although hyperspherical wave packet
calculations have been presented before, the present paper is leagues ahead in
terms of the detail and clarity of the theory and the accuracy of the results.”

In Chapter 2, a time-dependent, hyperspherical method for calculating
state-to-state S-matrix elements is fully developed for all values of the total
angular momentum J. The method is completely general and can treat elastic,
rearrangement, and collision induced dissociation reactions. By propagating
the wave packet in APH hyperspherical coordinates, all arrangement channels
are represented equivalently, and we were able to obtain final state informa-
tion for all possible products. The complementary relationship between APH
and Jacobi coordinates provides simple asymptotic matching expressions for
physically accurate boundary conditions. We increased the computational ef-
ficiency by taking advantage of the PES symmetry to reduce the region in
coordinate space where we must represent the wave packet.

In Chapter 3, the computational details of the program were discussed.
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The time propagation of the wave packet is the most computational expen-
sive portion of the program. To decrease this cost, we introduced a method
of reducing the eigenvalue range of the APH Hamiltonian by replacing the
eigenvalues above an energy cut-off. The number of multiplications involved
in applying the Hamiltonian were reduced by developing and implementing a
new three-dimensional sylvester-like algorithm. The computational times and
time scalings with respect to various input parameters were discussed.

In Chapter 4, the behavior and convergence of the results were discussed.
The input values of the Gaussian, APH grid, and propagation time were varied
to show how they affected the accuracy of the results. We presented simple
methods to estimate the behavior and convergence of the results and showed
that these estimates are reasonable.

Currently we are studying systems with nonzero total angular momen-
tum, systems that exhibit collision-induced dissociation (or its time-reversal:
three-body recombination), time-dependent Hamiltonians, inclusion of coni-
cal intersections, and systems in electromagnetic fields. We are planning to
publish articles that discuss the new sylvester-like algorithm, collision induced-
dissociation in H+Hs, a more detailed study of the F+Hy resonances. Results
for Li + Lis, and hopefully other alkali systems, are also being considered in
future work.

The program is still not fully optimized. Further optimization of the pro-
gram can be facilitated through parallelization and use of more efficient nu-
merical and computational procedures. Parallelization can be used where the
Hamiltonian is applied to apply each operator simultaneously. Furthermore,
for cases with J > 0, the propagation of each A component of the wave packet

can be parallelized. To increase computational efficiency, we are looking into
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using non-uniform y; and time grids. The number of y; points required to rep-
resent the wave packet and the asymptotic states can be decreased by using a
non-uniform grid that concentrates grid points in the well region of the PES.
For the time grid, there is a window of time between when the wave packet
has no initial overlap with p,, and when it returns to the asymptotic analysis
region. If a less dense grid is used during this window, the smaller At results

is smaller computational times.
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