
HARD REAL-TIME COMMUNICATIONS IN

CONTROLLER AREA NETWORK

By

WEIQINGLI

Bachelor of Engineering
Shandong Engineering Institute

Jinan, China
1982

Master of Engineering
Shandong Polytechnic University

Jinan, China
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1995

HARD REAL-TIME COMMUNICATIONS IN

CONTROLLER AREA NETWORK

Thesis Approved:

/9. d
ah~fky C~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my appreciation to my advisor, Dr. Mitch Neilsen, for his

intelligent supervision, constructive guidance, inspiration and friendship throughout my

graduate study and writing of this thesis. My sincere appreciation extends to my other

committee members, Dr. G. E. Hedrick and Dr. Blayne E. Mayfield, whose guidance,

assistance, encouragement, and friendship were also invaluable.

I would also like to give special appreciation to my wife, Lihong Sun, for her

precious suggestions to my research, her strong encouragement at times of difficulty, and

love and understanding throughout this whole process. My deepest appreciation is

extended to my daughter, Minghui Li, for her patience and love.

I am deeply indebted to my beloved parents who have provided moral support and

constant encouragement in all my endeavors.

Finally, I would like to thank the Department of Computer Science for providing

me with their generous financial support during my study.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. REAL-TIME COMMUNICATION 6

Overview 6
Basic CAN Protocol 7
Structure of Communication Controller 13
Interface Between Host Processor and CAN Processor 15

III. MODEL FOR COMPUTATION 17

Layered Structure of CAN 17
Communication Model 18
Message Classification 20

Periodic Messages 20
Sporadic Messages 21

Timing Model for CAN 22
Message Delays 24

IV. BASIC PROCESSOR SCHEDULING THEORY 26

Objectives of Scheduling Algorithms.. 26
Approaches to Scheduling 27
Feasibility Conditions 30

Basic Liu and Layland Assumptions 30
Feasibility Testing of Static Priority Process Sets 30
Development of Feasibility Analysis 31

Priority Assignment 35
Usage of Theory on Hard Real-Time Scheduling for CAN 36

V. CALCULATING CAN MESSAGE RESPONSE TIMES 38

Analysis of a Simple CAN Model 38
Extending The Model: Error Handling and 'RTR' Messages 41

Error Frame 42

iv

Error Handling 42
RTR Message 43

VI. ANALYSIS FOR DIFFERENT CONTROLLERS 47

Intel 82527 47
General Features 47
Functional Overview 48
82527 Message Objects 50
Message Object Priority 51
Message Acceptance Filtering 52
Real-Time behaviour of the Intel 82527 53

Philips 82C200 55
General Description 55
Functional Description 56
Latency Time Requirements 57
Real-Time Behavior of the Phlips 82C200 59

REFERENCES 63

v

Table

LIST OF TABLES

Page

I. Effect of Masking on Message Identifiers 52

II.Example for Calculating the Maximum Bit-Time 58

vi

Figure

LIST OF FIGURES

Page

1. The Components of Communications 2

2. Real-Time Communiction in a Network Environment 3

3. CAN Architecture 8

4. Collision Resolution by Non-Destructive Bitwise Arbitration 10

5. Data Frame Format 11

6. CAN Network Controller Structure 14

7. Interface Between Host Processor and CAN Processor 16

8. The OSI Reference Model 17

9. Message Queuing Jitter 19

10. Periodic Message 21

11. Sporadic Message 22

12. Worst-case Response Time of a Message 23

13. Application-to-Application Delay 24

14. A Feasible Schedule 27

15. Sporadic Tasks 29

16. Timeline for Tasks 1,2 and 3 35

17. Error Frame 42

vii

18. Remote Frame Format 44

19. A Block Diagram of the 82527 49

20. Message Object Structure 51

21. The Block Diagram of 82C200 55

viii

CHAPTER I

INTRODUCTION

There are two types of real-time systems, namely, soft real-time systems and hard real

time systems. In soft real-time systems, tasks are performed by the system as fast as

possible, but they are not constrained to finish by specific times. On the other hand, in

hard real-time systems, tasks have to be performed not only correctly, but also in a timely

fashion. Otherwise, there might be severe consequences.

A hard real-time system is often composed of a number of periodic and sporadic tasks

which communicate their results by passing messages; in a distributed system these

messages are sent between processors across a communication device. In order to

guarantee that the timing requirements of all tasks are met, the communication delay,

between a sending task queuing a message and a receiving task being able to access that

message, must be bounded. This total delay is often termed the end-to-end

communication delay - the time between a message being queued by the sending task

and the message fully arriving at the receiving task. The end-to-end communication

delay is made up of four major components (Figure 1):

1. the generation delay: the time taken for the application task to generate and queue the

message,

2. the queuing delay: the time taken by the message to gain access to the communiction

device after being queued,

3. the transmission delay: the time taken by the message to be transmitted on the

communication device, and

4. the delivery delay: the time taken to process the message at the destination processor

before finally delivering it to the destination task.

Source task

Network buffer

c

A generation delay
B queuing delay
C transmission delay
D delivery delay

Destination task

Network buffer

~
Communication channel

Figure 1: The Components of Communications

The generation delay is the worst-case time taken between the arrival of the sender

task and the queuing of the message. This represents some element of application

processing to generate the contents of the message, and the time taken to queue the

message. The queuing delay is the time the message spends waiting to be removed from

the queue by the communications device. With a point-to-point communication link, the

message must contend with other messages sent from the same processor; with a shared

communications link, the message must also contend with messages sent from other

processors. The transmission delay is the time taken for the message to be sent once it

has been removed from the queue. The delivery delay is the amount of time taken to

process the incoming data and deliver it to destination tasks. This work includes such

functions as decoding packed headers, re-assembling multi-packet messages, copying

message data between buffers, and notifying the dispatcher of the arrival of a message.

This latter function is important, since the destination task may be blocked awaiting the

2

arrival of the message. In practice the delivery delay can form a significant part of the

end-to-end communications delay.

The most important aspect of hard real-time applications is that a message

generated at the source station must be received at the destination station within a given

amount of time after its generation at the sending station. If a message's delay exceeds

this time constraint, the message is considered lost, regardless of whether it is ever

received at the destination station.

The message flow for hard real-time communication applications is shown in Figure 2.

The messages generated by a real-time application (A) at a sending station are first

buffered or stored (B) within the sending station. Once a message has been buffered, the

network access mechanism (C) eventually decides whether the message should be

transmitted into the communication subsystem (E) or should be explicitly discarded at the

sending station (D). If a message is eventually received successfully at the destination

station but its delay exceeds its time constraint, the message is lost (G); otherwise it is

passed on to the real-time application (H) at the destination station.

•o

Terminal

(A)

(0)

(E)
communication

subsystem

(G)

Terminal

(H)

Figure 2. Real-time communication in a network environment.

3

There are several important communication applications having such real-time

characteristics. One application is packetized voice, in which the human voice is

digitized, packetized at the sending station, transmitted over the network subsystem, and

reconstructed and played out synchronously at the destination station [12]. Since

excessive delays can have seriously disruptive effects on human conversation, voice

packets are usually constrained to arrive at the destination station within a given amount

of time after their generation at the sending station. Those packets that do not arrive

within the time bound are considered lost; a small number of lost packets has been shown

to have little, if any, effect on human speech intelligibility.

A second application requiring real-time communication is distributed vehicle

monitoring applications in which distributed stations attempt to track a moving object

using their local observations and the communicated observations of the other stations

[2]. Since the position of the object is continually changing, only a small amount of time

is available to fix its current location or trajectory. The distributed observations

necessary to determine the current location thus must be communicated within this

amount of time. A small amount of message loss due to excessive delays may be

tolerable, but may result in uncertainty in the object's calculated position. A third class or

real-time applications is real-time control applications, in which stations must initiate

some action at remote devices within a specified amount of time.

Most research into hard real-time communications has concentrated on protocols

bounding the access delay to shared communications media. For example, the MARS

project uses a simple TDMA protocol to resolve communications media contention

between processors [30]. A simple priority queue can be used to resolve contention

between local messages. Strosnider et al [5], and late Pleinevaux [35], apply rate

monotonic analysis to periodic and aperiodic messages sent across an 802.5 token ring.

Agrawal et al [2] also apply the rate monotonic scheduling approach to the FDDI access

protocol.

4

The 802.5 token ring protocol is an example of a global priority scheme - packets

sent on the bus are assigned apriority, and the highest priority packed in any node is

transmitted. This priority arbitration is carried out by a reservation protocol, whereby

each node 'bids' for the right to transmit the next packet; the node with the highest

priority packet wins the bidding.

Existing fixed priority schedulability analysis (such as rate monotonic analysis [22,

38]) has suffered from restrictions on deadlines: the rate monotonic approach requires

task deadlines to be equal to their periods, and thus applying this analysis to message

schedulability gives the restriction that a message must arrive at the destination processor

before the message from the next period can be queued. Further, the rate monotonic

approach does not lend itself easily to supporting sporadic activities, requiring the need

for periodic servers to poll for these activities. For the scheduling of messages this can be

very restrictive, since complex behaviour of the priority exchange server algorithm can be

very difficult to implement in a distributed system. Deadline monotonic analysis would

seem to offer some solutions: for example, deadlines are permitted to be less than or

equal to periods, and the approach can easily accommodate sporadic activities [5, 14].

However, in a real system it is often acceptable for the deadline on the arrival time of a

message to be longer than the period of a message: certain control and multi-media

applications can tolerate long lags (i. e., end-to-end communication delays) so long as the

rate at which data arrives is maintained. Hence an approach permitting arbitrary

deadlines is required [16]. Such analysis has been provided whereby the worst-case

response time of tasks with arbitrary deadlines can be determined [20].

This thesis reviews relevant work, and presents a theoretical analysis of real-time in

vehicle networking protocol. Chapter II presents an introduction to the Controller Area

Networks. Chapter III presents a model for analysis of the network. Chapter IV presents

the existing processor scheduling analysis. Chapter V presents the analysis of CAN

message response times. Chapter VI presents the analysis for different controllers.

5

CHAPTER II

REAL-TIME COMMUNICATION

2.1 Overview

The Controller Area Network (CAN) protocol, developed by Bosch GmbH, offers a

comprehensive solution to managing communication between multiple CPUs. The CAN

protocol specifies versatile message identifiers that can be mapped to specific control

information categories. Communications may occur at a maximum recommended rate of

1 Mbit/sec (on a 40 meter bus length). The protocol has found wide acceptance in

automotive in-vehicle applications as well as many non-automotive applications due to its

low cost, high performance, and the availability of various CAN protocol

implementations.

In-vehicle networking protocols satisfy unique requirements not present in other

networking protocols such as those found in telecommunications and data processing.

These requirements include a high level of error detection, low latency times and

configuration flexibility.

The CAN protocol provides four primary benefits. First, a standard communication

protocol simplifies and economizes the task of interfacing subsystems from various

vendors into a common network. Second, the communications burden is shifted from the

host-CPU to an intelligent peripheral; the host-CPU has more time to run its system tasks.

Third, as a multiplexed network, CAN greatly reduces wire harness size and eliminates

point-to-point wiring. Lastly, as a standard protocol, CAN has broad market appeal which

motivates semiconductor makers to develop competitively priced CAN devices.

An example of an application well-served by the CAN protocol is automotive

networking because many modules are inter-dependent. Sub-systems such as the engine,

transmission, anti-lock braking, and accident avoidance systems require the exchange of

6

particular performance and position information within a defined communications

latency. The engine transmits engine speed and acceleration parameters to the

transmission to allow smoother shifting. Perhaps the transmission requests the engine to

reduce fuel injection before a gear change.

CAN is a CSMA/CD-A, or Carrier Sense Multiple Access with Collision Detection

and Bit-wise Arbitration. Through a multi-master architecture, prioritized messages of

length 8 bytes or less are sent on a serial bus. Error detection mechanisms, such as a 15

bit CRC, provide a high level of data integrity.

The CAN 2.0 protocol was chosen by the SAE Truck & Bus Control and

Communications Network Subcommittee of the Truck & Bus Electrical Committee to

support its "Recommended Practice for Serial Control and Communications Vehicle

Network CLASS C" called the SAE J1939 specification. The SAE CLASS C passenger

car subcommittee is currently evaluating CAN, which is a candidate for its high speed

networks. Products using CAN Version 2.0 are already in production. The previous CAN

specification, Version 1.2, has been successfully implemented in passenger car, train and

factory automation applications since 1989. CAN Version 2.0, which features an

"extended frame" with a 29-bit message identifier, broadens the application base for this

protocol by allowing J1850 message schemes to be mapped into the CAN message

format.

The Intel 82526 was the first implementation of the CAN protocol, in production since

1989. The Intel 82527 is a follow-on to the 82526 which implements CAN 2.0, provides

greater message handling capability and implements a more flexible interface to CPUs.

2.2. Basic CAN Protocol

The real-time bus we examine in this paper is called Controller Area Network (CAN).

CAN is a broadcast bus where a number of processors are connected to the bus via an

interface (Figure 3).

7

Host
CPU

CAN bus

Network
Controller(82527)

r---------------l
I I
I I
I I
I I

I I
I I
I
I

I

Figure 3: CAN architecture

'Station'

A data source is transmitted as a message, consisting of between 1 and 8 bytes

('octets'). A data source may be transmitted periodically, sporadically, or on-demand. So

for example, a data source such as 'road speed' could be encoded as a 1 byte message and

broadcast every 100 milliseconds. The data source is assigned a unique identifier,

represented as an 11 bit number (giving 2032 identifiers - CAN prohibits identifiers with

the seven most significant bits equal to "1 "). The identifier servers two purposes:

filtering messages upon reception, and assigning a priority to the message.

A station on a CAN bus is able to receive a message based on the message identifier: if

a particular host CPU needs to obtain the road speed (for example) then it indicates the

identifier to the interface processor. Only messages with desired identifiers are received

and presented to the host processor. Thus in CAN message has no destination.

The use of the identifier as priority is the most important part of CAN regarding real-

time performance. In any bus system there must be a way of resolving contention: with a

TDMA bus, each station is assigned a pre-determined time slot in which to transmit.

8

With Ethernet, each station waits for silence and then starts transmitting. If more than

one station tries to transmit together then they all detect this, wait for a randomly

determined time period, and try again the next time the bus is idle. Ethernet is an

example of a carrier-sense broadcast bus, since each station waits until the bus is idle (i.e.

no carrier is sensed), and monitors its own traffic for collisions. CAN is also a carrier

sense broadcast bus, but takes much more systematic approach to contention. The

identifier field of a CAN message is used to control access to the bus after collisions by

taking advantage of certain electrical characteristics.

With CAN, ifmultiple stations are transmitting concurrently and one station transmits

a '0' bit, then all stations monitoring the bus will see a '0'. Conversely, only if all stations

transmit a '1' will all processors monitoring the bus see a '1 '. In CAN terminology, a '0'

bit is termed dominant, and a '1' bit is termed recessive. In effect, the CAN bus acts like a

large AND-gate, with each station able to see the output of the gate. This behavior is

used to resolve collisions: each station waits until bus idle (as with Ethernet). When

silence is detected each station begins to transmit the highest priority message held in its

queue whilst monitoring the bus. The message is coded so that the most significant bit of

the identifier field is transmitted first. If a station transmits a recessive bit of the message

identifier, but monitors the bus and sees a dominant bus then a collision is detected. The

station knows that the message it is transmitting is not the highest priority message in the

system, stops transmitting and waits for the bus to become idle. If the station transmits a

recessive bit and sees a recessive bit on the bus then it may be transmitting the highest

priority message, and proceeds to transmit the next bit of the identifier field. Because

CAN requires identifiers to be unique within the system, a station transmitting the last bit

of the identifier without detecting a collision must be transmitting the highest priority

queued message, and hence can start transmitting the body of the message (if identifiers

were not unique then two stations attempting to transmit different messages with the

9

same identifier would cause a collision after the arbitration process has finished, and an

error would occur).

The time required to resolve a conflict is bounded by the number of arbitration bits

used. The arbitration is shown by means of square wave forms, where each cycle

represents a bit level as seen below in Figure 4.

Clock

Station 1

Station 2

Station 3

Bus Value

Winner

Loser

Loser

* represents the points at which the station loses the bus

Figure 4. Collision Resolution by Non-Destructive Bitwise Arbitration

There are some general observations to make on this arbitration protocol. Firstly, a

message with a smaller identifier value is a higher priority message. Secondly, the

highest priority message undergoes the arbitration process without disturbance (since all

other stations will backed-off and ceased transmission until the bus is next idle). The

whole message is thus transmitted without interruption.

Message transfer for the CAN 2.0 version provides an extended frame in addition to

the standard frame defined in the CAN 1.0/1.2 version. Both a standard message format

with a 11 bit identifier, and an extended frame format with 29 bits have been incorporated

in the CAN 2.0 version. The extended frame format allows the CAN to address a large

10

implicit data content address. This way CAN performs functional addressing using the

data content rather than the physical address itself. There are four kinds of frames in the

CAN, namely, a data frame that carries data from transmitters to receivers, a remote

frame to request the transmission of a data frame with the same identifier, an error frame

to signal a bus error, and an overload frame to provide an extra delay between succeeding

data or remote frames. Data and remote frames may be used in both standard as well as

extended frame formats.

The data frame structure is shown in Figure 5.

Arbitration field

Control field Data field
(6 bits)

Interframe
space (3+bits)

End of frame
(7 bits)

DATA
(0 to 64)

Data Frame

C
T
R

ARB
(11 or 29)

Start of
frame

(1 bit)

Interframe
space (3+bits)

Figure 5. Data Frame Format

Each frame starts with a start of frame bit, signaling the start of a data frame. The

arbitration field follows the start bit and contains the message identifier and one

additional control bit for other purposes. The control field and data field follow the

arbitration field. The control field consists of 6 bits, 2 reserved bits, and 4 data field

length bits. The length of the data field is coded in bytes, and the control field identifies

the number of bytes of data presented in the data field. The length of the data field

11

varies from 0 to 8 bytes. The frame with a data field 0 is a special frame called a remote

frame, which requests certain message to be sent to the bus. The contents of the

arbitration field, control field, and data field of the frame corresponds to the contents of

the communication object to be transmitted or received in the DPRAM.

The CRC field contains a 15 bits cyclic redundancy check sum and a 1 bit delimiter.

The check sum checks the start bit, arbitration field, control field, data field, and CRC

field itself. After a message is completed the CRC field is checked. If any error is

detected in the frame, the whole frame will be retransmitted.

The acknowledge field consists of two bits, the ACK_SLOT bit and the

ACK_DELIMITER bit. The transmitting node sends the ACK_SLOT bit as 1. Any

receiving node which has received a frame correctly will send a 0 to the bus at the same

time. This 0 will overwrite the 1 sent by the transmitting node. Because the transmitting

node listens to the bus, it will find the change and know that at least one station has

received the message completely and correctly. The end of frame field consists of 7 bits,

all of them 1. It marks the end of the frame.

Besides data frame and remote frame there are 2 more frames: the error frame, which

indicates error conditions, and overload frame, which signifies receiving station not ready

condition or wrong interframe space bit condition. Data frames and remote frames are

preceded by at least 3 interframe spaces which allow the network interface to get ready to

transmit or receive the next frame.

The CAN message format contains 47 bits of protocol control information (the

identifier, CRC data, acknowledgment and synchronisation bits, etc.). The data

transmission uses a bit stuffing protocol which inserts a 'stuff bit' after five consecutive

bits of the same value. Because the number of inserted stuff bits depends on the bit

pattern of a message, a given message type can very in size, e.g. a CAN message with 8

bytes of data (and 47 control bits) is transmitted with between 0 and 19 stuff bits.

12

As well as data messages, CAN also permits 'remote transmission request' (RTR)

messages. These messages are contentless and have a special meaning; they instruct the

station holding a data message of the same identifier to transmit that message. RTR

messages are intended for quickly obtaining infrequently used remote data.

2.3. Structure ofCommunication Controller

The main components of the communication controller include a dual port RAM

(DPRAM), an interface management processor (IMP), and a processor interface unit

(PIU). Other components include a bus timing logic (BTL), a transceive logic (TCL), and

error management logic (EML), a bit stream processor(BSP), and a clock generator (CQ).

A block diagram representation is as shown in Figure 6.

The DPRAM forms a communication buffer between the station microprocessor and

the IMP. Messages are stored as communication objects in the DPRAM. Each

communication object consists of an identifier, a control segment, and a data segment. It

has a global status register and a control register that help create communication objects

to be used by the IMP. The IMP controls the transmission and reception of data between

the serial bus and the DPRAM. It performs these tasks by means of acceptance and

transmission filtering. This is done by scanning the communication objects in the

DPRAM through its data paths. It computes the address for a communication buffer

access and manipulates the appropriate control bits to execute the CPU's receive and

transmit commands.

The PIU links the DPRAM to the station CPU. It consists of an 8-bit multiplexed

data/address bus, read/write control, address latch enable, chip select, interrupt output,

external interrupt input, reset, ready output signal, two 8-bit output ports 0 and 1, and 3

chip select output lines to connect additional peripheral devices.

13

1/0 1/0

P
I
U

BTL
C
A
NIMP TCL

B
EML U

S

0 BSP
a CG

PIU: Processor Interface Unit

CG: Clock Generator

IMP: Interface Management Processor

BTL: Bus Time Logic

TCL: Transceive Logic

EML: Error Management Logic

BSP: Bit Stream Processor

DPRAM:Dual Port RAM

Figure 6. CAN Network Controller Structure

The bus timing logic (BTL) synchronizes the station clock with the signal clock on the

bus using a comparator. It also provides programmable time segments to compensate for

the propagation delays and phase shifts. The transceive logic (TCL) performs bit stuffing

and Cyclic Redundancy Check (CRC) sequence generation using an output driver and

several shift registers. The bit stream processor (BSP) controls the flow of bits between

the parallel IMP interface and the serial CAN bus interface. It performs bit reception,

14

bitwise arbitration, bit transmission, error signaling and control of TCL. The error

management logic (EML) gets error signals from the BSP, and takes action by signaling

the BSP, the TCL, and the IMP of error statistics. The clock generator (CG) has an

oscillator, a clock divider register, and a driver circuit. The oscillator is driven by an

external crystal, or in case of low baud rates by a ceramic resonator. The clock's output is

programmable.

2.4. Interface Between Host Processor and CAN Processor

From the observations of the basic CAN protocol mentioned earlier, we can calculate

the worst-case time from queuing the highest priority message to the reception of that

message (i.e., the worst-case response time of the message): the longest time a station

must wait for the bus to become idle is the longest time to transmit a CAN message (we

call this delay the blocking time of a message). The largest CAN message (8 bytes) takes

130 microseconds to be transmitted (at 1Mbit/sec transmission speed, with a 'bit stuffing'

width of 5 bits), and hence the blocking time of a CAN message is 130 microseconds.

The worst-case response time of the highest priority CAN message is therefore 130

microseconds plus the time taken to transmit the message. For a lower priority message,

the worst-case response time cannot be found so easily, leading to the generally perceived

problem that only the highest priority message can be guaranteed on CAN. In this paper,

we are going to try to bound the response time of all CAN messages, including the lowest

priority message.

CPU software programmers interface CAN via a Dual Port RAM (DPRAM), which is

accessed like any other memory. The sum of DPRAMs in all distributed control units

forms a common virtual memory containing all COMMUNICATION OBJECTs. An

access window is defined for each station by listing up COMMUNICATION OBJECTs

to be transmitted and received. Figure 7 depicts a typical interface.

15

In Figure 7 the host processor is queuing a message into the slot for identifier' 1'; the

slot for identifier'4' is already occupied with another message. The slots are typically

implemented as DPRAM shared between the processors. The interface processor will

attempt to transmit message '1' when the bus next becomes idle. There is no queue of

messages for a given identifier: in Figure 7, if message' l' is being transmitted when

another message with same identifier is queued then the message in the slot is overwritten

and destroyed. This is important, since it implies a deadline for a message queued

periodically: a given message must be transmitted before the message for the next period

can be queued. So, returning to the example of a message containing 'road speed', we

can see that the message must be transmitted within 100 milliseconds to avoid being

overwritten by the contents of the message corresponding to the next measurement. In

effect, we have a deadline on the transmission of any message: the message must be

transmitted before the subsequent message can be queued (of course, we may have a

deadline on the message that is much shorter than the period).

Host processor

message
queued

attemp to
transmit
message on
the bus

Figure 7. Interface between host processor and CAN processor

16

CHAPTER III

MODEL FOR COMPUTATION

3.1 Layered Structure ofCAN

In CAN, nodes communicate using a single shared channel. Figure 8 shows the

layered architecture of the ISO/OSI model. Each layer has a different set of protocols

responsible for carrying out the functions required of the layer. For example, the scope of

the LLC sublayer is to provide services for data transfer and for remote data request, to

decide which messages received by the LLC sublayer are actually to be accepted, and to

provide means for recovery management and overload notifications. The scope of the

MAC sublayer mainly is the transfer protocol which is responsible for selecting and

sending messages over the shared channel of the CAN. In terms of OSI Reference

Model, MAC protocols form part of the data link layer. [1 0]

Fault
Confinement

Data Link Layer

LLC
Acceptance Filtering
Overload Notification
Recovery Management

MAC
Data Encapsulation
/Decapsulation
Frame Coding
(Stuffing, Destuffing)

Medium Access Management
Errot Detection
Error Signalling
Acknowledgement
Serialization/Deserialization

Supervisor

,--------------------1
I I

I 1
1 I

1 I

1 I

I
I
I

Physical Layer
Bit Encoding/Decoding
Bit Timing
Synchronization

Driver/Receiver Characteristics

Bus Failure
Management

Figure 8. The OSI Reference Model

17

3.2. Communications Model

We define a message to be either a data message, or a remote transmission request

message. A message has a size (between zero and eight bytes), and an identifier. The set

of all messages in the system is denoted messages.

In a typical system, a message is queued by an application task. We assume that each

task is invoked repeatedly (a task is said to have arrived when invoked by some action).

Each task has a minimum inter-arrival time termed the period. Note that the period is a

minimum time between subsequent arrivals, rather than a strict fixed interval. If the

message queued by a given task is potentially sent each time the task is invoked, then the

message inherits a period equal to the period of the task. We denote as Pmsg the period of

a gIven message msg.

A given task i has a worst-case response time, denoted RTb which is defined as the

longest time between the arrival of a task and the time it completes some bounded

amount of computation. Existing analysis for single processors is able to determine this

worst-case response time.

In general, the queuing of a message can occur withjitter (variability in queuing

times). Correct analysis requires that jitter be taken into account. Queuing jitter can be

defined as the difference between the earliest and latest possible times a given message

can be queued.

As with the period, the jitter of a given message msg may be inherited from the sender

task. For an application task i (with worst-case response time RT) sending message msg,

this queuing window is no more than RTi in duration (i.e., the difference between the

earliest and latest queuing times of the message). The jitter of a given message msg is

denoted QJmsg' In any realistic system all messages will have some queuing jitter.

A given message is assigned a fixed identifier (and hence a fixed priority). We

assume that each given hard real-time message must be of bounded size (i.e., contain a

bounded number of bytes). Given a bounded size, and a bounded rate at which the

18

message is sent, we effectively bound the peak load on the bus, and can then apply

scheduling analysis to obtain a latency bound for each message.

We assume that there may also be an unbound number of soft real-time messages;

these messages have no hard deadline, and may be lost in transmission (for example, the

destination processor may be too busy to receive them). They are sent as 'added value' to

the system (i.e., if they arrive in reasonable time then some quality aspect of the system is

improved).

As mentioned earlier, the queuing of a hard real-time message can occur withjitter

(variability in queuing times). Figure 9 illustrates this.

Pmsg

Queuing
window

I
b

Pmsg

Figure 9. Message queuing jitter

The shaded boxes in the above diagram represent the 'windows' in which a task on the

host CPU can queue the message. Queuing jitter can be defined as the difference

between the earliest and latest possible times a given message can be queued.

19

The diagram above also shows how the period of a message can be derived from the

task sending the message. For example, if the message is sent once per invocation of the

task, then the message inherits a period, denoted Pmsg , equal to the period of the task.

The longest time taken to transmit a given message msg we denote as CTmsg. for an

eight byte message (the largest message permitted with CAN) transmitted on a 1 Mbit/sec

network, CTmsg is 13O~s (64 bits for the data, 47 bits of overhead - CRe and identifier

fields, etc. - and up to 19 stuff bits).

3.3 Message Classification

Hard real-time messages fall into two categories: periodic messages and sporadic

messages. A distributed hard real-time system will typically contain both types of

messages.

1. Periodic Messages

A periodic message is one that is generated repetitively in fixed time intervals. A

periodic message msg can be described by a quadruple (Rmsg, CTmsg, DTmsg, Pmsg), where

• Rmsg is the release time, i. e., the duration of the time interval between the begining

of a period and the earliest time that an transmissiom of message msg can be started in

each period.

• CTmsg is the transmission time.

• DTmsg is the deadline, i. e., the duration of the time interval between the begining of

a period and the time by which an transmission of message msg must be completed in

each period.

• Pmsg is the period, the minimal interval between transmission of message msg.

A periodic message msg can have an infinite number of periodic message

transmissions msgo, msgl, msg2, ... , with one message transmission for each period. For

the ith message transmission msgi corresponding to the ith period,

20

msg;' s release time:

Rmsgi == Rmsg + Pmsg X (i-I)

msg;'s deadline:

i*0,i==1,2, ...

For an example of a period message, see Figure 10.

Pmsg

DT

o 4

H I~ ~I
Rmsg=4 CTmsg=6

Pmsg

DTmsgo

DT

20 22 26

H I~ ~I
Rmsg=4 CTmsg=6

DTmsgl

42 44 48

HH
Rmsg=4 CTmsg=6

Figure 10. Periodic message.

2. Sporadic Messages

The sporadic message that is asynchronous in nature is one that is generated in

response to an internal or external event, and has an arbitrary arrival time and deadline. A

sporadic message msgAcan be described by a triple (CTA, DTA, minA) where

• CTA is the worst case transmission required by message msg
A

.

21

• DTA is the deadline; i. e., the duration of the time interval between the time when a

request is made for message msg
A

and time by which an transmissionof msg
A

must be

completed.

For an example of a sporadic message, see Figure 11.

minA

DTmsTO

minA

DTmsTl

3 19 23 27

I~ ~I

A2

43 47 50

H

Figure 11. Sporadic message

3.4 Timing Modelfor CAN

The primary goal of the analysis in this thesis is to bound the time between the arrival

of a message at the sending task, and the time at which the last packet of the message

reaches the destination task, which we term the worst-case response time of the message.

The following diagram illustrates these times:

22

2

1 Arrival at the sending task

2 Latest queuing time of message msg

3 Last packet of message m removed from packet queue. p is the

worst-case time taken to transmit a packet, and 8 is the electrical

propagation delay.

Transmision of last packet begins

4 Last packet of message reaches communications adapter

5 "Packet arrived" interrupt raised. 'tnf is the worst-case delay

between the packet arriving at the communications adapter and

the adapter notifying the processor of the packet arrival

Arrival at destination task

Figure 12. Worst-case response time of a message

23

3.5 Message Delays

When using CAN to support distributed hard real-time systems, the application-to

application delay is crucial in determining whether application deadlines will be satisfied.

The application-to-application delay is the time delay experienced by a message that is

sent between application tasks.

In CAN, protocols in layers above the MAC protocol are realized in the host processor

where applications are executed, while the MAC protocol is implemented by a CAN

network controller, such as the Intel 82527 or the Philips 82C200. With this kind of

system implementation, the application-to-application delay experienced by a message

msg can be decomposed as follows (Figure 13).

processing and
queueing delay in

upper layers of
sending node

1
message

queueing delay in
MAC layer of
sending node

1
message

transmission
delay

1"'-_----1-_[propagation delay

processing and
queueing delay in

upper layers of
receiving node

message
queueing delay in

MAC layer of
receiving node

Figure 13. Application-to-Application Delay

24

Processing and queuing delay in the upper layers of the sending node(dupsendCmsg)).

The processing delay includes the time required to create message headers. The queuing

delay includes both the time during which a message is waiting to be processed, and the

time during which a message is waiting to be passed to lower layer protocols.

Queuing delay in the MAC layer of the sending node (dMAcsend(msg)). This delay

occurs when a message is waiting to be sent by the MAC protocol.

Message transmission delay (Cmsg)' This delay is the time required to physically

transmit the message.

Propagation delay ('t). This delay is the time required for a single bit to travel

through the channel to the receiving node.

Message queuing delay in the MAC layer of receiving node (dMACreceive(msg)).

Once a message is received at its destination, it is stored in a queue at the MAC layer of

the receiving node until the message can be passed to the upper layer protocols.

Processing and queuing delay in the upper layers of the receiving

node(dupreceive(msg)). After a message is passed to the upper layer protocols, it may

again be queued, before the message header is removed and the data passed to the

receiving application task.

An upper bound on the application-to-application delay for message msg, dTOT(msg),

can be written as:

dTOT(msg) == dupsendCmsg) + dMACsendCmsg) + Cmsg+ 't +

dMACreceive(msg) + dupreceive(msg)

25

CHAPTER IV

BASIC PROCESSOR SCHEDULING THEORY

4.1 Objectives ofScheduling Algorithms

The function of a scheduling algorithm is to determine, for a given set of tasks,

whether a schedule (the sequence and the time periods) for executing the tasks exists such

that the timing, precedence, and resource constraints of the tasks are satisfied, and to

calculate such a schedule if one exists. In static systems, a scheduling algorithm

determines the schedule for a set of tasks off-line. However, in dynamic systems,

because not all the characteristics of tasks are known a priori, a scheduling algorithm

determines the schedule for tasks on-line progressively. A scheduling algoritm is said to

guarantee a newly arriving task if the algorithm can find a schedule for all the previously

guaranteed tasks and the new task such that each task finishes by its deadline. If a

scheduling algorithm guarantees a task, it ensures that the task finishes by its deadline. A

major performance metric for a dynamic scheduling algorithm is the guarantee ratio,

which is the total number of tasks guaranteed versus the total number of task that arrive.

Afeasible schedule is a schedule in which the start time of every task execution is

greater than or equal to that task execution's release time or request time, and its

completion time is less than or equal to that task execution's deadline. For an example of

a feasible schedule, see Figure 14.

26

0345
56

11

DTmsgoDTAo Rmsgl

r
19 20 26 27 29 34 42 43 48 50 52

Figure 14. A feasible schedule.

In Figure 14, a feasible schedule for the period task executions msgo, msgl' msg2 and

the sporadic task executions Ao, A b A 2 in Figures 10 and 11 within the finite time interval

[0,56]. Al preempts msgI at time 27 andA2 preempts msg2 at time 50.

A static scheduling algorithm is said to be optimal if, for any set of tasks, it always

produces a schedule which satisfies the constraints of the tasks whenever any other

algorithm can do so. A dynamic scheduling algorithm is said to be optimal if it always

produces a feasible schedule whenever a static scheduling algorithm with complete prior

knowledge of all the possible tasks can do so. An optimal dynamic algorithm maximiaes

the guarantee ratio of tasks that ever arrive in a system.

4.2 Approaches to scheduling

There are two distinct approaches to scheduling tasks in hard real-time systems. One

is dynamic (on-line) scheduling, the other is static (off-line) scheduling.

27

In dynamic scheduling, the schedule for tasks is computed on-line as tasks arrive, and

the scheduler does not assume any knowledge about the major characteristics of tasks that

have not yet arrived in the system. Advantages of this approach include the following: it

is unnecessary to know the major characteristics of the tasks in advance, and it is flexible

and can easily adapt to changes in the environment. Often, the only stated disadvantage

is its high run-time cost.

In static schedling, the schedule for tasks is computed off-line; this approach requires

that major characteristics of the tasks in the system be known in advance. It is possible to

use static scheduling to schedule periodic tasks. This consists of computing off-line a

schedule for the entire set of periodic tasks occuring within a time period that is equal to

the least common multiple of the periods of the given set of tasks and then executing the

periodic tasks at run time in accordance with the previously computed schedule[42].

It is possible to translate an sporadic task into an equivalent periodic one. One

technique for achieving this [45], is to translate each sporadic task (CTA, DTA, minA) into

a corresponding periodic task (Rmsg, CTmsg' DTmsg' Pmsg) that satisfies the following

conditions:

CTmsg == CTA, DTA~ DTmsg ~ CTA

Pmsg:::; min (DTA - DTmsg +1, minA)' Rmsg == 0 (see Figure 15).

Thus it is possible to schedule sporadic tasks using static scheduling.

28

3420212224 26

I"'ctl
A

o 1

24

RmSg3 P
msg

RmSg2 P
msg

RmSg1 p
msgPmsg

~msg ~msg ~msg ~msg

Figure 15 Sporadic task.

In figure 15, Sporadic task (CT
A

, DT
A

, min
A

) where CTA == 2, DTA == 9, minA == 10.

Periodic task (R ,CT , DT , P) translated from the sporadic task
msg msg msg msg

29

(CTA, DTA, minA) == (2, 9, 10) where Rmsg == 0, CTmsg == eTA == 2, DTmsg == eTA == 2, Pmsg ==

min(DTA - DTmsg +1, minA) == min(9 - 2 +1, 9) == 8. If periodic task executions msgo,

msgl' msg2' msg3' msg4' ... are scheduled to start at time 0,8, 16,24, 32, ... and if the

sporadic request times RmsgO, Rmsgb Rmsg2, Rmsg3 are 1, 11,22, then the start times of the

sporadic task executions Ao, A j, A2 are 8, 16, 24. Aoexecutes in the time slot of msgj, Al

executes in the time slot of msg2' A2 executes in the time slot of msg3.

4.3 Feasibility Conditions

Basic Liu and Layland Assumptions

The following restrictions are made regarding process timing and functional

characteristics:

(i) all processes are periodic;

(ii) all processes have a deadline equal to their period;

(iii) all processes are independent;

(iv) all processes have a fixed computation time.

The underlying assumption regarding timing constrains is that all processes have

eTi s DTi == Pi , and that at some point in time they have a common release time (often

the assumption that QJi == °for all processes is made). In (Liu and Layland 1973)[27]

assumption (iv) is relaxed to permit processes to have an actual execution time that is not

fixed, whilst assuming that the process computation time is bounded.

Feasibility Testing of Static Priority Process Sets

The fundamental result regarding the feasibility of fixed priority process sets

(assuming that all processes have eTi s DTi== Pi and QJi== °)is that only the first

deadline of each process (at DTi == Pi) need be checked. Time °(or any point in time

30

where all processes have a simultaneous release) represents the point in time at which the

work-load on the processor is at a maximum: the demand of higher priority processes 'tl

... 'ti-l in [0, DTi) is at a maximum, creating the hardest situation for 'ti to meet its

deadline. The time when all processes are invoked simultaneously is termed a critical

instant. Thus, if the deadline of a process is met for a release commencing at a critical

instant, all subsequent deadlines will be met.

Based on the concept of a critical instant, Liu and Layland identified and proved the

sufficiency of a utilization-based feasibility test appropriate for processes assigned

priorities according to the rate-monotonic priority assignment policy:

11 CTi 1
L-~n(2n -1)
i=l Pi

(1)

This implies that, if for a set of two processes, the combined utilization of those processes

is no greater than 82.84%, the process set is feasible. As the cardinality of the process set

approaches infinity, the permissible utilization approaches 69.31 % (i.e., In(2)). This test

is sufficient but not necessary, as process sets with utilization greater than the level given

by the above equation may still be feasible.

Development of Feasibility Analysis

One of the properties of the early utilization-based feasibility analysis is its simplicity,

both in concept and computational complexity. However, the analysis also suffers from

three major drawbacks:

(i) it is sufficient and not necessary;

(ii) it imposes unrealistic constrains upon the timing characteristics of processes; i.e.,

all processes must have DTi = Pi;

31

(iii) process priorities have to be assigned according to the rate-monotonic policy (if

priorities are not assigned in this way then the test is insufficient).

Following on from the early utilization-based analysis, several sufficient and necessary

feasibility tests were developed. In general, such tests are known to have non-polynomial

complexity (assuming that NP "* P). In 1980, Leung and Merrill [25] formulated the well-

known approach of simulating the schedule over an interval equivalent to the least

common multiple (LCM) of process periods. Unfortunately, this approach is inefficient

as, even in the case of small process sets, the LCM can be very large.

Response time analysis was initiated by Harter in 1984 [15], who used a temporal

logic proof system to derive the Time Dilation Algorithm. The algorithm can be restated,

in the terminology adopted within this paper, as the following equation:

;-li RTlcRT= CTi+ I -. 1j
j=l PI

(2)

If for any value of RT E [0, DTJ the above condition holds, then process 't i is feasible.

Further, the smallest such value of RT equates to the worst-case response time of process

'tie Equations of this form do not lend themselves easily to efficient analytical solutions.

However, as observed by Harter, et. ai, only a subset of time points in the interval need to

be examined for feasibility. For example, if some value of RT ~ DTi is chosen and the

above condition does not hold then the next value that may form a solution is given by

the right-hand side of the equation. By noting that the summation term increases

monotonically in RT, solutions can be found using a recurrence relation.

We note that the family of response time tests described above do not make any

assumptions regarding the priority assignment policy used (i.e. rate-monotonic priority

32

assignment is not a requirement for the tests to be sufficient and necessary). Further, these

tests are also applicable to processes with deadlines less than their periods.

Step-by-Step Example

The following steps illustrate how to apply the equation (2) disscussed above to task 3.

The characteristics of tasks 1, 2, and 3 are defined in the following table:

Task Execution Time CT Arrival Period P Priority Deadline DT

task 1 40 100 high 100

task 2 40 150 medium 150

task 3 100 350 low 350

Step 1 Compute the first approximation.

i

RTo == Ien
j=1

RyD = 100 + 40 + 40 = 180

The first approximation is simply the sum of the execution times of all higher priority

tasks and task 3. This first approximation of the response time does not take into

consideration the preemption from task 1 at 100 nor the preemption from task2 at 150.

Step 2 Calculate the next approximation.

33

Rrn+1 = CTi +I rRT
n

~1j
j~11 PI I

RT1 = 100 + P8°140 + r18°140 = 260
1100 1150

This step accounts for the preemption at 100 and 150 for tasks 1 and 2 respectively,

resulting in the next approximation. However, this latest approximation does not account

for the preemption from task 1 at 200. Notice that the term, r18°140, represents the total
I 100

amount of execution time requested by task 1 from 0 to 180. In general, term, rR:nleT; ,
represents the total amount of execution time requested by task i from time 0 to time Rf1.

Step 3 Determine if the approximation is the answer.

RT2 = 100 + r 260140 + r 260140 = 300
1100 1150

RT3 = 100 + P00140 + r 300140 = 300
1100 1150

Since (Rr is less than 350) and (Rr is equal to Rr), the technique terminates. Worst-

case response time is 300. Since 300 is less than the deadline, 350, task 3 is schedulable.

This last iteration accounts for the preemption at 200 plus all prior preemption, and there

is no additional preemption to account for. Thus 300 is the worst-case completion time

for task 3. Figure 16 shows the timeline for task 1, 2 and 3.

34

Task 1

Task 2

Task 3

o 100

Figure 16. Timeline for tasks 1,2 and 3

200 300

4.4 Priority Assignment

Early work in fixed priority pre-emptive scheduling produced the (optimal) rate

monotonic priority assignment policy (assuming Liu and Layland's constraints upon the

timing characteristics of processes). One side effect of relaxing the constraint that process

deadlines must be equal to their respective periods is that rate-monotonic priority

assignment is no longer optimal (Leung and Whitehead 1982) [26].

In 1982, the deadline monotonic policy was proposed for processes having

CTi ~ DTi== Pi and QJi== o. With this policy, priorities are assigned in a similar manner to

rate-monotonic: the shortest deadline process is assigned the highest priority; processes

with successively longer deadlines are assigned successively lower priorities. We note

that deadline-monotonic priority assignment is equivalent to rate-monotonic priority

assignment when, for all processes DTi == Pi. Deadline-monotonic priority assignment is

optimal in a similar manner to rate-monotonic: if there exists a feasible priority ordering

35

over a set of processes, a deadline-monotonic priority ordering over those processes will

also be feasible.

Rate-monotonic and deadline-monotonic priority assignments assume that all

processes share a critical instant (i.e. common release time). If processes are permitted to

have arbitrary offsets, then this condition may not hold. Under these circumstances

neither priority assignment policy is optimal. Indeed, whilst rate-monotonic and deadline-

monotonic priority assignments can be achieved in polynomial time, Leung, et. al

questioned whether the same applied to priority assignments for processes with no

common release time. Later, Audsley showed that optimal priority assignment can be

achieved by examining a polynomial number of priority orderings over the process set

(i.e. not n!) assuming an exact (pseudo-polynomial) feasibility test (Audsley 1993)[4].

4.5 Usage o/Theory on Hard Real-Time Scheduling/or CAN

Scheduling messages on a CAN bus is analogous to scheduling tasks with fixed

priorities. It is possible to take the existing analysis and apply it to CAN messages.

Audsley, et. al [6] and Burns, et. al [9] show how the analysis of Joseph and Pandys

[24] can be updated to include blocking factors introduced by periods of non-preemption,

release jitter, and accurately take account of a task being non-preemptive for an interval

before termination. The following equations represent this analysis:

RT· == QU:. + w· + CT·1 1 1 1 (3)

where wi is the least fixed-point of the following recursive relation.

36

(4)

Where hp(i) is the set of tasks of higher priority than task i, CTi is the worst-case

computation time required by a given task i, and Pj is the period of a given task j. BTi is

the blocking factor of task i (a bound on the time that a lower priority task can execute

and prevent the execution of task i); the priority ceiling protocol [37] controls this

'priority inversion' and defines how BTi can be computed. Variable 'tres is the resolution

with which we measure time. On a CAN bus we deal with time units as multiples of the

bit-time, which we denote as T:bit; with a 1 Mbit/sec bus, this is equal to 1 J.ls.

Variable QJi is the release jitter of task i, analogous to the queuing jitter of a message.

The feasibility of a given task can be trivially assessed by comparing the worst-case

response time of the task againt its deadline. Note that the deadline of a given task i,

denoted DTb is assumed to be less than or equal to Pi. Another assumption is that a task

cannot voluntarily suspend itself (and hence the processor cannot be idle when tasks have

work to do).

Equation above describes a recurrence relation, where the (n+ 1)th approximation to

the value of wi is found in terms of the nth approximation, with the first approximation

set to zero. A solution is reached when the (n+ 1)th approximation equals the nth.

Having introduced this analysis we can apply it to CAN bus scheduling. We do this

by first deriving a simple CAN model analysis, and then discussing how the analysis is

affected by the behaviour of implemented hardware.

37

CHAPTER V

CALCULATING CAN MESSAGE RESPONSE TIMES

5.1 Analysis ofa Simple CAN Model

In this chapter we develop a simple analysis for the CAN model. In reality, CAN is

more complex than described, and later sections will extend the analysis to cover these

complexities. The analysis of the previous chapter can be applied to simple CAN by the

analogy between task scheduling and message scheduling: a task is released at some time

(i.e. is placed in a priority ordered queue ofrunnable tasks), and contends with other tasks

(both lower and higher priority tasks) until it becomes the highest priority task in the

runnable task.

Because of the operation of the priority ceiling protocol, a task need only contend with

at most one lower priority task. In addition, it contends with all higher priority tasks until

these have all completed and the processor is freed. With the model of Burns, et. al [6],

the task is then dispatched and runs until completion. Upon completion it is returned to

the waiting queue until next made runnable.

The same behavior holds for CAN messages: a message is queued at some time, and

contends with other messages until it becomes the highest priority message. It

commences transmission, and is transmitted without interruption until completion. Note

that this assumes that the bus cannot become idle between the transmission of messages if

there are pending messages (this is analogous to the assumption that a task must not

voluntarily suspend itself).

The worst-case response time of a given message msg is the longest time between the

queuing of a message and the time the message arrives at destination stations. A message

is said to be schedulable if and only if:

38

We have a restriction on the worst-case response time: a queued message must be sent

before the next queuing of the message (we want to prevent the overwriting of a

message). Thus we must also have:

RTmsg ::::; Pmsg - QJmsg

From this we can see that the message queuing window(i.e. the message queuing

jitter) must be less than the periodicity of the message. We now develop analysis to

determine the worst-case response,time of a given message msg.

The worst-case response time is composed of two delays: the queuing delay and the

transmission delay. The queuing delay is the longest time that a message can be queued

in a station and be delayed because other higher and lower priority messages are being

sent on the bus. We denote this time as QTmsg. The transmission delay is the time taken to

actually send the message on the bus. This time is denoted CTmsg. The worst-case

response time is thus defined as:

RTmsg == QTmsg + CTmsg

The queuing delay QTmsg is itself composed of two times: the longest time that any

lower priority message can occupy the bus, and the longest time that all higher priority

messages can be queued and occupy the bus before the message msg is finally

transmitted. These times are called the blocking time (denoted it as BTmsg) or the

interference. From earlier scheduling theory [5], the interference from higher priority

messages over an interval of duration tis:

39

L rt + QJi+ "Chi! 1,,1)
\tjEhp(m)I PI I

"Cbit is the time taken to transmit a bit on CAN and hp(msg) is the set of messages in the

system of higher priority than messge msg. Note that the set h(msg) defines a priority

ordering. From other work we know that the optimal priority ordering is deadline

monotonic [26]. In fact, in the presence of queuing jitter, the optimal ordering is to select

priorities on the basis of:

That is, the smaller the value ofDL - QJ the higher the message priority [5]. Recall that,

QJmsg is the queuing jitter of message msg, inherited from the worst-case response time

Rsender(msg) (where sender(msg) denotes the task queuing message msg).

From the above description we can see that the queuing delay is given by:

QT _ BT ~ IQTmsg + QJJ +"Cbi/lCT.
1~- 1~+ ~ 1J

Vj Ehp(msg) fi
(6)

Where the term BTmsg is the worst-case blocking time of message msg, and is

analogous to the blocking factor defined by the analysis of the priority ceiling protocol.

BTmsg is equal to the longest time taken to transmit a lower priority message, and given

by:

BTmsg == max (CTk)
VkE/p(msg)

lp(msg) is the set of messages in the system of lower priority than message msg. If

msg is the lowest priority message then BTmsg is zero Gust as the lowest priority task has a

blocking factor of zero with the priority ceiling protocol).

40

CTmsg is the longest time taken to transmit message msg. As mentioned earlier,

CAN has a 47 bit overhead per message, and a stuff width of 5 bits. Only 34 of the 47

bits of overhead are subject to stuffing, so CTmsgcan be defined by:

(] 34 + 8Smsg I 1
CTm,.g = lL 5 J+ 47 + 8Sm,.gJbil

where Smsg is the number of data bytes in the message. Equation 6 above can be solved

in the same way as Equation 4.

We desire the smallest value satisfying the above equation. Unfortunately, the

above equation cannot be re-arranged to give a solution for QTmsg. However, a recurrence

relation can be formed:

Because the recurrence relation is monotonically increasing in QTmsg, i.e.,

QT,,7.~~ ~ QTl17.~'g , we need to start the iteration with a value of QTn~~g == 0 , and the iteration

terminates when QT,,~~;l == QT,,7.~'g .

5.2 Extending The Model: Error Handling and 'RTR' Messages

In the previous sections we described briefly the CAN architecture and protocol.

However, we made two simplifications: we ignored error handling, and we did not

address a special type of message called a Remote Transmission Request message. In

this section, we describe a model for error handling, discuss remote transmission request

(RTR) messages, and extend the analysis to handle the full CAN Model.

41

Error Frame

The error frame is a means by which any node in the system may indicate to all others

the detection of an error condition. The error flag consists of six consecutive dominant

bits and is recognized by all other nodes as an error condition due to violation of the bit-

stuffing rules. Due to different error flags being superimposed, the flag may consist of up

to a maximum of 12 dominant bits. On detection or transmission of an error flag, all

nodes will monitor the bus for a recessive bit and will then transmit six recessive bits

before continuing as shown in Figure 17.

Error delimiter
(7bits)

J,
Error flags superimposed (6-12bits)

Data Interframe
Frame Error Frame__+ >j< Space

\i
LZOZ111 T

Error
flag (6bits)

Figure 17. Error frame

Error Handling

CAN has an effective error detection mechanism: an error detected by either the

sender of a message, or receiver of the message, is signalled to the sender. The sender

then re-transmits the message. In the worst-case, upon detection of an error, the recovery

process requires the transmission of up to 19 bits (plus the retransmission of the

message). To include the costs of error handling, in the previous analysis, we define the

function E(l); the most probable bound on the overheads due to errors in an interval of

42

duration 1. We include in this function the costs of retransmission. This function can be

defined using statistical analysis based on observed error characteristics of a given

configuration of CAN in a given environment. Each detected error implies the

retransmission of a message. We assume that as soon as the sending station detects an

error in the transmission of a message it immediately requeues the message for

transmission. The assumption is an important one for the following reason: if the

message is not immediately requeued then the bus may become idle and a lower priority

message may attain access to the bus (and then begin transmission). This means that the

message being retransmitted may be again delayed by a lower priority message. In

general, therefore, a given message msg would be delayed by lower priority messages for

up to time (n+1)B, where n is the number of re-transmissions of message msg. This

would needlessly add to the worst-case response time of the message.

A probable bound on the error recovery overheads before a message msg arrives at the

destination is:

E(RTmsg)

Now that we have defined the overheads due to error handling for the transmission of

a given message msg, we can include these overheads in the analysis developed in the

previous section. We update Equation 4 to:

~ I QTmsg + QJi + 'tbit l
QTmsg == E(QTmsg + CTmsg) + BT + L....J I . FTJ (7)

VjEh(m) PI

Note that we have rewritten RTmsg as QTmsg+ CTmsg

RTRmessage

We now describe CAN Remote Transmission Request (RTR) messages (Figure 18).

This message is a special CAN message with a zero length data field. It is interpreted by

43

stations to mean "please transmit the message with the same identifier as this message".

Because identifiers are unique within the system, there can only be one station that

responds to this message (if no stations respond by transmitting the requested message

then an error is flagged). We make the assumption that a station responding to an RTR

message will immediately queue the requested message for transmission such that no

lower priority message can be transmitted first (for the same reasons described earlier for

the assumption that retransmissions occur immediately). Of course, if a higher priority

message has been queued since the transmission of RTR message,

Arbitration field

Interframe
space (3+bits)

End of frame
(7 bits)

A E
C 0
K F

CRC
C
T
R

Remote Frame ~

Control field CRC field
(6 bits) (16 bits)

ARB
(11 or 29)

Start of
frame

(1 bit)

Interframe
space (3+bits)

Figure 18. Remote Frame Format

then the higher priority message will be transmitted after the RTR message has been sent

and before the requested message is sent.

A number of stations may transmit RTR messages, and one station may transmit the

corresponding requested message; all of these messages have the same identifier, and

hence priority. This complicates the analysis slightly; previously, messages were assumed

to have unique identifiers and the set hp(msg) for a given message msg indicated all the

44

messages that could win the arbitration process and delay the transmission of msg.

However, with the introduction ofRTR messages this is no longer true. This problem is

addressed by CAN in two ways. First, although a number of stations can simultaneously

attempt to transmit RTR messages with the same identifier, no collision results. This is

because RTR messages with the same identifier have identical bit patterns (recall that

RTR messages are zero byte messages): no station will see other than the data

transmitted. Second, the CAN message arbitration gives priority to requested messages

over RTR messages with the same identifier.

One way to address the problem of interference between RTR and requested data

messages all with the same identifier is to change the set h(msg) to include all messages

of higher or the same priority. However, this is pessimistic, since it is possible for CAN

to prevent the interference if we are careful with how we define the semantics of an RTR

message. We say that the worst-case response time of an RTR message is defined as the

longest time between queuing the RTR message and the requested message arriving at

destination stations. This definition means that if an RTR message is queued at some

time, but that before the RTR message is transmitted the requested data message is

received (in response to an earlier RTR message, say), the response time is the time

between the still-untransmitted RTR message and the reception of the requested data

message. Thus, the RTR message could be satisfied before it has been transmitted.

Because of this definition of RTR response time we do not have to consider the

interference between data messages and RTR messages of the same priority. We now

continue, and define new notation: the time CRTR(msg) is the value of C msg for the requested

message as well as the time to transmit RTR messages, where msg is a given message. If

msg is not an RTR message then we define CRTR(msg) to be zero.

Because the worst-case response time of an RTR message includes the time taken to

transmit the requested message, we must re-define the equation for the worst-case

response time of a given message msg:

45

RTmsg == QTmsg + CRTR(msg) ifmsgE RTR

RTmsg == QTmsg + CTmsg otherwise

Where RTR is the set of RTR messages. The term QTmsg represents the queuing delay for

message msg (as before), but this queuing delay must also include the time taken to

transmit the RTR message. The interference from higher priority RTR messages must

include the transmission of the corresponding data message. Equation 7 is therefore

updated to:

QTm!;g == CTm!;g + E(QTmsg + CRTR(m!;g)) + BT +

I IQTmsg + Q/i + 'tbill(CTj + CRTR(j))
VjEh(msg) I PI

46

(8)

CHAPTER VI

ANALYSIS FOR DIFFERENT CONTROLLERS

6.1 Intel 82527

General Features

The 82527 serial communications controller is a highly integrated device that

performs serial communication according to the CAN protocol. The CAN protocol uses a

multi-master (contention based) bus configuration for the transfer of "communication

objects" between nodes of the network. This multi-master bus is also referred to as

CSMA/CD. The 82527 performs all serial communication functions such as transmission

and reception of messages, message filtering, transmit search, and interrupt search with

minimal interaction from the host microcontroller, or CPU.

The 82527 is Intel's first device to support the standard and extended message frames

in CAN Specification 2.0 part B. It has the capability to transmit, receive, and perform

message filtering on extended message frames with a 29-bit message identifier.

The 82527 features a powerful CPU interface that offers flexibility to directly interface

to many different CPUs. It can be configured to interface with CPUs using an 8-bit

multiplexed, 16-bit multiplexed, or 8-bit non-multiplexed address/data bus for Intel and

non-Intel architectures. A flexible serial interface is also available when a parallel CPU

interface is not required.

The 82527 provides storage for 15 message objects of 8-byte data length. Each

message object can be configured as either transmit or receive except for the last message

object. The last message object is a receive only buffer with a special acceptance mask

designed to allow select groups of different message identifiers to be received.

47

The 82527 also implements a global acceptance masking feature for message filtering.

This feature allows the user to globally mask any identifier bits of the incoming message.

The programmable global mask can be used for both standard and extended messages.

The 82527 provides an improved set of network management and diagnostic functions

including fault confinement and a built-in development tool. The built-in development

tool alerts the CPU when a global status change occurs. Global status changes include

message transmission and reception, error frames, or sleep mode wake-up. In addition,

each message object offers full flexibility in detecting when a data or remote frame has

been sent or received.

Functional Overview

The 82527 CAN controller consists of six functional blocks. The CPU Interface logic

manages the interface between the CPU and the 82527 using an address/data bus. The

CAN controller interfaces to the CAN bus and implements the protocol rules of the CAN

protocol for the transmission and reception of messages. The RAM is the interface layer

between the CPU and the CAN bus. The two port blocks provide 8-bit low speed I/O

capability. The clockout block allows the 82527 to drive other chips, such as the host

CPU.

The 82527 RAM provides storage for 15 message objects of 8-byte data length. Each

message object has a unique identifier and can be configured to either transmit or receive

except for the last message object. The last message object is a receive only buffer with a

special mask design to allow select groups of different message identifiers to be received.

Each message object contains control and status bits. A message object with the

direction set as receive will send a remote frame by requesting a message transmission. A

message object with the direction set as transmit will be configured to automatically send

a data frame whenever a remote frame with a matching identifier is received over the

48

CAN bus. All message objects have separate transmit and receive interrupts and status

bits,

Port 1 Port 2

TXO

TXl

RAM

Address/
Data Bus

Control
Bus

CPU
Interface

Logic

Mode 0 Mode 1

CAN

Controller

RXO

RXl

CLKOUT

Figure 19. A block diagram of the 82527

allowing the CPU full flexibility in detecting when a remote or data frame has been sent

or received.

The 82527 also implements a global masking feature for acceptance filtering. This

feature allows the user to globally mask, or "don't care", any identifier bits of the

incoming message. This mask is programmable to allow the user to design an

application-specific message identification strategy. There are separate global masks for

standard and extended frames.

49

The incoming message first passes through the global mask and is matched to the

identifiers in message objects 1-14. If there is no identifier match then the message passes

through the local mask in message object 15. The local mask allows a large number of

infrequent messages to be received by the 82527. Message object 15 is also buffered to

allow the CPU time to service a message received.

8).5).7 Message Objects

The message object is the means of communication between the host microcontroller

and the CAN controller in the 82527. Message objects are configured to transmit or

receive messages.

There are 15 message objects located at fixed addresses in the 82527. Each message

object starts at a base address that is a multiple of 16 bytes and uses 15 consecutive bytes.

For example, message object 1 starts at address 10H and ends at address lEH. The

remaining byte in the 16 byte field is used for other 82527 functions. In the above

example the byte at address IFH is used for the clockout register.

Message object 15 is a receive-only message object that uses a local mask called the

message 15 mask register. This mask allows a large number of infrequent messages to be

received by the 82527. In addition, message object 15 is buffered to allow the CPU more

time to receive messages.

50

Base Address +0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

Control 0

Control 1

Arbitration 0

Arbitration 1

Arbitration 2

Arbitration 3

Mess. Conf.

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Figure 20. Message Object Structure

Message Object Priority

If multiple message objects are waiting to transmit, the 82527 will first transmit the

message from the lowest numbered message object, regardless of message identifier

priority.

If two message objects are capable of receiving the same message (possible due to

message filtering strategies). the message will be received by the lowest numbered

message object. For example, if all acceptance mask bits were set as "don't care",

message object 1 will receive all messages.

51

Message Acceptance Filtering

The mask registers provide a method for developing an acceptance filtering strategy

for a specific system. Software can program the mask registers to require an exact match

on specific identifier bits while masking ("don't care") the remaining bits. Without a

masking strategy, a message object could accept only those messages with an identical

message identifier. With a masking strategy in place, a message object can accept

messages whose identifiers are not identical.

The CAN controller filters messages by comparing an incoming message's identifier

with that of an enabled internal message object. The standard global mask register applies

to messages with standard (II-bit) identifiers, while the extended global mask register

applies to those with extended (29-bit) identifiers. The CAN controller applies the

appropriate global mask to each incoming message identifier and checks for an

acceptance match in message objects 1-14. If no match exists, it then applies the message

15 mask and checks for a match on message object 15. The message 15 mask is ANDed

with the global mask, so any bit that masked by the global mask is automatically masked

for message 15.

Transmit message object 10 11000000000

Mask (O=don't care; 1=must match) 00000000011

Received remote message object 10 00111111100

Resulting message object 10 00111111100

Table 1 Effect of Masking on Message Identifiers

52

The CAN controller accepts an incoming data message if the message's identifier

matches that of any enabled receive message object. It accepts an incoming remote

message (request for data transmission) if the message's identifier matches that of any

enable transmit message object. The remote message's identifier is stored in the transmit

message object., overwriting any masked bits. Table 1 shows an example.

Real-time Behaviour of the Intel 82527

The queuing of messages in the Intel 82527 is undertaken in the controller and

interfaced to the host processor via dual-ported RAM. The intention is to map

permanently message identifiers to memory locations (termed slots), so that both

outgoing and desired incoming messages are assigned unique slots.

A slot is tagged with a message identifier, and marked as an incoming or outgoing

slot. If a message is received with the same identifier as a slot marked as incoming then

the message contents are stored in that slot (the slot also contains an interrupt enable flag

so that an interrupt can be raised when the message arrives). If the host processor wishes

to initiate the transmission of the message then it is able to mark the message as ready for

transmission.

Because of hardware limitations, only 15 slots are available for outgoing and incoming

messages (instead of the ideal 2032 - the full range of CAN identifiers). However, these

15 slots can be programmed to map to any CAN identifier. The controller will transmit

messages in order of slot number, rather than the message identifier, and therefore it is

important that the messages are allocated to the slots in identifier order. It should be

noted that in most envisaged automotive systems, 15 messages per station is

sufficient[Ana 8].

There is also a dedicated double-buffered receive buffer: when a message has been

received in the controller without errors, a "message received" interrupt may be raised on

the host processor. If the identifier of the message does not match the identifier in one of

53

the slots in the controller then the interrupt handler must copy the contents of the message

from the buffer and store it in main memory. The handler then issues a "removed

message" signal to the controller, indicating that the receive buffer is free. This is needed

because the receive buffer is double buffered: while the host processor is removing data

from one buffer, the controller may be placing data in the other buffer. The controller

needs to synchronize with the host processor in order to place data in a free buffer.

There is an implicit deadline on handling the "message received" interrupt: if the host

processor fails to remove the data and signal "removed message" before the controller has

received the subsequent message then any further incoming messages may be lost (the

smallest time between two successive messages is 47 ~bit).

In many ways the dual-ported memory approach is an elegant way of implementing a

controller, but one drawback is that there is an implicit restriction on message deadlines:

a message cannot be queued if the previous queuing of the same message has not yet been

transmitted. Therefore, we must have DTmsg ~ Pmsg (an assumption also made by the

scheduling analysis in this paper).

Apart from the limitations discussed, the Intel 82527 controller behaves as an ideal

CAN controller with respect to the analysis derived in this paper.

54

6.2 Philips 82C200

General Description

The 82C200 is a highly integrated stand-alone controller for the CAN used with

automotive and general industrial environments. The 82C200 contains all necessary

features required to implement a high performance communication protocol. The 82C200

with a simple bus line connection performs all the functions of the physical and data-link

layers. The application layer of an Electronic Control Unit (ECU) is provided by a

microcontroller, to which the 82C200 provides a versatile interface. Figure 21 is the

block diagram of 82C200.

Mode RST INT

1 1 i

TXO
TXl

RXO
RXI

- Controller ... Interface Bit Timing I

Interface Management Logic +-- Logic
.....

Logic - ...
~ ~ ~ ~

r T
,. ..

===-r
..

1
Transmit Transceiver..

Buffer Logic
~

Receive Error
.....-.... Buffer 0 ~. """-- Management

Logic

Receive
.... f--------+

Bit Stream.. +-
Buffer 1 - ... Processor +-

ALE
CS
RD

WR

XTAL2
XTALI

CLKOUT

AD7---ADO

Figure 21. The Block Diagram of 82C200

55

Functional Description

The 82C200 contains all necessary hardware for a high performance serial network

communication. The 82C200 controls the communication flow through the area network

using the CAN-protocol. The 82C200 meets the following automotive requirements:

• short message length

• guaranteed latency time for urgent messages

• bus access priority, determined by the message identifier

• powerful error handling capability

• configuration flexibility to allow area network expansion.

The latency time defines the period between the initiation (Transmission Request) and the

start of the transmission on the bus. Latency time is dependent on a variety of bus related

conditions. In the case of a message being transmitted on the bus and one distortion the

latency time can be up to 149 bit times (worst case).

Interface Management Logic (IML) interprets commands from the microcontroller,

allocates the message buffers (TBF, RBFO and RBF1) and provides interrupts and status

information to the microcontroller.

Transmit Buffer (TBF) is a 10 byte memory into which the microcontroller writes

messages which are to be transmitted over the CAN network.

Receive Buffers (RBFO and RBFl) are each 10 byte memories which are alternatively

used to store messages received from the CAN network. The CPU can process one

message while another is being received.

Bit Stream Processor (BSP) is a sequencer, controlling the data stream between the

Transmit Buffer, the Receive Buffer (parallel data) and the CAN-bus (serial data).

Bit Timing Logic (BTL) synchronizes the 82C200 to the bitstream on the CAN-bus.

Transceiver Control Logic (TCL) controls the output driver.

Error Management Logic (EML) performs the error confinement according to the

CAN-protocol.

56

Controller Interface Logic (CIL) is the interface to the external microcontroller. The

82C200 can directly interface with a variety of microcontrollers.

Latency Time Requirements

1. Maximum allowed bit-time calculation

The maximum allowd bit-time (tBIT) due to latency time requirements can be

calculated as:

tMAXTRANSFERTlME
tBlT ~-----------

(nBlT, MAXLATENCY + nBlT, MESSAGE)
(a)

Where:

• tMAX TRANSFER TIME: the maximum allowed transfer delay time (application specific).

• nBIT, MAX LATENCY: the maximum latency time (in terms of number of bits), which

depends on the actual state of the CAN network (e.g. another message already on the

network).

• nBIT, MESSAGE: the number of bits of a message; it varies with the number of

transferred data bytes nDATA BYTES (0...8) and Stuftbits like:

44 + 8.nDATABYTES ~ nBIT, MESSAGE ~ 52 + 10.nDATABYTES (b)

Examples:

For the calculation ofnBIT' MAX LATENCY the following is assumed (the term 'our message'

refers to that one the latency time is calculated for):

• since at maximum one-bit-time ago another CAN-controller is transmitting.

• a single error occurs during the transmission of that message preceding ours, leading

to the additional transfer of one Error Frame.

57

• 'our message' has the highest priority,

gIvIng:

nBIT, MAX LATENCY ~ 44 + 8.nDATA BYTES, WORST CASE + 18 (c)

nBIT, MAX LATENCY ~ 52 + 10.nDATA BYTES, WORST CASE + 18 (d)

Where:

• The additional 18 bits are due to the Error Frame and the Intermission Field preceding

'our message' .

• nDATA BYTES, WORST CASE denotes the number of data bytes contained by the longest

message being used in a given CAN network.

2. Calculating the maximum bit-time

Table 2 illustrates calculation of the maximum bit-time

STATEMENT COMMENTS

tMAx TRANSFER TIME = 10 ms assumption

nDATA BYTES, WORST CASE = 6 longest message in that network;

asumption

nDATA BYTES = 4 'our message'; assumption

nBITMAXLATENCY ~ 130 using Equation (c) and (d)

nMESSAGE ~ 92 using Equation (b)

tBIT ~ 1Oms/(130+92) = 45 J.lS using Equation (a)

Table 2. Example for calculating the maximum bit-time

58

Real-time Behavior of the Philips 82C200

In this section we discuss the behavior of the Philips 82C200 CAN controller, and

show its worst-case real-time properties are poor (space limitations preclude the

development of analysis for this controller).

The Philips controller is a simple controller, with two message buffers on-chip: a

single 10 byte transmission buffer, and a 10 byte double-buffered receive buffer. The

controller is typically interfaced to the processor as a memory mapped I/O device, and

can raise two interrupts: "message received", and "message sent". The controller accepts

three signals from the host processor: "send message", "abort message", and "removed

message". The controller requires messages to be held on the host processor, and software

drivers to copy the messages from the processor to the controller when appropriate.

To send a message, the host processor fills the transmit buffer with up to eight bytes of

data, the identifier of the message, and some control bits, and then sends a "transmit

message" signal to the controller. We denote the longest time to do this as 'tcopy. The

controller attempts to transmit the message according to the CAN protocol; when the

message has been sent, a "message sent" interrupt is raised on the host processor.

The reception of messages is very similar to the Intel 82527 controller: when a

message has been received in the controller without errors a "message received" interrupt

is raised on the host processor and the interrupt handler must copy the 10 bytes of

message data from the controller and store it in main memory.

The signal "abort message" is to aid in the writing of software device drivers for pre

emptive queuing. Without the signal, the real-time performance of the controller would

be very poor indeed. Consider the situation where there is a low priority message in the

transmit buffer of the controller, and a high priority message has just been queued by the

host processor software. If the host processor were unable to remove the low priority

message, then the high priority message would blocked until the low priority message is

59

sent. The low priority message will only be sent when all other higher priority traffic on

the bus has finished: this could be very long.

Instead of succumbing to this problem, the device driver should abort the transmission

of the low priority message, and copy the high priority message to the transmit buffer.

The controller will only abort the message if it has not yet begun transmission. This is a

sensible approach, since if the low priority message has begun transmission then there

will be only a short delay (equal to the transmission time of the message) before the

transmission buffer is freed.

There remains a major problem with the management of the transmission buffer: the

time between "message sent" and the host processor copying the next message to the

transmit buffer is non-zero (although short if the host processor is fast). In this short

interval the bus could be claimed by a low priority message from another station and

defer the transmission of the newly copied message. This problem also occurs when a

message is pre-empted: the short interval between a lower priority message being

aborted, and the higher priority message being copied into the buffer, releases the bus to

low priority traffic.

For every pre-emption (i.e. when a message is aborted, and replaced by a higher

priority message) in an interval, the bus may potentially be claimed twice by lower

priority traffic at other stations: once when the higher priority message preempts, and

once when the message has been transmitted.

To illustrate this, consider the following scenario: a message M is to be sent from a

given station. Also sent from this station are a high priority message H and a low priority

message Ll. Other stations also have low priority traffic to send(messages L2, L3, L4). In

this scenario, message M can be delayed four times by lower priority messages whilst

being pre-emptedjust once. this is solely a result of the buffer management mechanism.

The first delay occurs when message M is queued: as mentioned earlier, the 82C200

controller is not able to abort a message if the message has begun transmission. Therefore

60

message M can be delayed by L1. After the message has been sent, the host processor

copies message M to the transmission buffer(taking at most 't copy). In this time the bus is

released and may become idle, or may be claimed by lower priority messages from other

stations. When message Mhas been copied to the buffer, and is ready for transmission, it

may be delayed by a lower priority message that has just started transmission from

another station (L2). Just before message M starts transmitting, a higher priority message

H can preempt M: the 82C200 controller aborts message M, and copies the higher priority

message to the transmission buffer. Again, the bus is released, and again lower priority

message can be transmitted (L3), delaying both message H and message M. When

message H has been transmitted the host processor copies message M back to the

transmission buffer. Again, the bus is released, and again message M can be delayed (by

L4).

It is straightforward to bound the delays due to this priority inversion, and the delays

due to copying messages. This priority inversion can be very large, and lead to very poor

worst-case performance of the controller. The following table details a set of messages

based on the above scenario. They conform to the 'rate monotonic' model of deadlines

equal to periods.

Message P DT CT util

H 605 605 47 7.8%

M 610 610 47 7.8%

Ll 100000 100000 130 0.13%

L2 100000 100000 130 0.13%

L3 100000 100000 130 0.13%

L4 100000 100000 130 0.13%

61

In above table, all times are in microseconds. Messages are assumed to be queued with

zero jitter.

A small value for 't copy is assumed: large enough to release the bus to lower priority

messages when copying a message to the transmission buffer, but not large enough to

form a significant part of the response time of a message(in practice, such a small value

would be unattainable).

The example message set is unschedulable: in the scenario described, we find that the

response time of message Mis 614 J.ls. The bus utilization in this example is just under

16%. By comparison, the worst-case response time ofM with the Intel controller is

224J.ls. It is possible to find unschedulable scenarios with bus utilizations as low as 11 %.

Clearly using the Philips controller could lead to very poor resource utilization.

Note that in the situation where there is a large amount of low priority 'soft' real-time

traffic on the bus, the impact of higher priority traffic on lower priority traffic sent from

the same station is at least trebled when compared to the ideal CAN behavior (and when

compared to the behavior of the Intel 82527), and that worst-case response times will

therefore be very much larger.

62

REFERENCES

[1] Agrawal, G., B. Chen, and W. Zhao. 1993. Local synchronous capacity allocation

schemes for guaranteeing message deadlines with the timed token protocol. In

Proceedings ofINFOCOM '93, pp. 186-193

[2] Agrawal, G., B. Chen, W. Zhao, and S. Davari. 1992. Guaranteeing synchronous

message deadlines in high speed token ring networks with timed token protocol. In

Proceedings ofthe 12th IEEE International Conference on Distributed Computing

Systems, pp. 468-475

[3] Agrawal, G., Chen, B., Zhao, W., and Davari, S., "Architecture Impact ofFDDI

Network on Scheduling Hard Real Time Traffic," Workshop on Architectural Aspects of

Real Time Systems (December 1991).

[4] Audsley, N. C. 1993. "Flexible Scheduling in Hard Real-Time Systems",

Department of Computer Science, University of York, UK. YCST 9307

[5] Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A., "Applying

New Scheduling theory to Static Priority Pre-emptive Scheduling," Software Engineering

Journal 8(5) pp. 284-292 (September 1993)

[6] Audsley, N., Burns, A., et aI, Applying New Scheduling Theory to Static Priority

Pre-emptive Scheduling, Software Engineering Journal 8(5), pp. 285-292(sept. 1993).

[7] ANSI Standard X3T9.5/88-139, Rev 4.0. 1990. FDDI Media Access Control

(MAC)

[8] Burns, A., Nicholson, M., Tindell, K. and Zhang, N. "Allocating and Scheduling

Hard Real-Time Tasks on a Point-to-Point distributed System", Proc. Workshop on

Parallel and Dist. Real-Time Syst., pp. 11-20 (Apr. 1993)

63

[9] Burns, A., Nicholson, M. et ai, Allocating and Scheduling Hard Real-Time Tasks

in a Point-to-Point distributed System, Proc. Workshop on Parallel and Dist. Real-Time

Syst., pp. 11-20(Apr. 1993)

[10] CAN Specification Version 2.0, Robert Bosch GmbH, September, 1991

[11] Cheng, S. C., and Stankovic, J. A., Scheduling Algorithms for Hard Real-Time

Systems, Tutorial- Hard Real-Time Systems, IEEE Computer Society Press, pp. 150

173

[12] Coviello, G. J. 1979. Comparative discussion of circuit vs. packed switched voice.

IEEE Trans. Commun. COM-27, 8(Aug), 1153-1160

[13] Damm, A., Reisinger, W., Schwabl. W., "The Real-Time Operating System of

MARS", ACM Operating Systems Review, 23(3), pp. [4] - [5] (1989)

[14] Grow, R.M. 1982. A timed token protocol for local area networks. In Proceedings

ofElectro/82, Token Access Protocols, paper 17/3

[15] Harter, P. K. 1984. "Response Times in Level Structured Systems". Department of

Computer Science, University of Colorado, USA. CU-US-269-94

[16] Hong, J., X. Tan, and D. Towsley. 1989. A performance analysis of minimum

laxity and earliest deadline scheduling in a real-time system. IEEE Transactions on

Computers, 38(12):1736-1744

[17] IEEE Standard 802.5-1989.1989. Token Ring Access Method and Physical Layer

Specifications

[18] Intel, 82527 Serial Communications Controller Architectural Overview, Feb., 1995

[19] Intel, 8XC196K.x, 8XC196Jx, 87C196CA Microcontroller Family User's Manual,

June, 1995

[20] Jeffay, K., Stanat, D. F., and Martel, C. V., On Non-Preemptive Scheduling of

Periodic and Sporadic Tasks, Proceedings ofthe 12th IEEE Real Time Systems

Symposium, December 1991, pp. 129 - 139

64

[21] Joseph, M., and Pandya, P., Finding Response Times in a Real-Time System,

Computer Journal. 29(5), pp.390-395 (Oct. 1986)

[22] Kurose, J. F., M. Schwartz, and Y. Yemini. 1984. Multiple-access protocols and

time constrained communication. Computer Surveys, 16(1):43-70.

[23] Lehoczky, J., Sha, L., and Ding, Y., "The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behaviour," Proceedings of the 11th Real-Time

Systems Symposium (December 1989)

[24] Lehoczky, J. P., "Fixed Priority Scheduling of Periodic Task Sets With Arbitrary

Deadlines," Proceedings 11th IEEE Real-Time Systems Symposium pp. 201 - 209

(December 1990).

[25] Leung, J. Y. T. and Merrill, M. L. 1980. "A Note on Preemptive Scheduling of

Periodic, Real-Time Tasks". Information Processing Letters. 11(3): 115-118

[26] Leung, J. Y. T. and Whitehead, J. 1982. "On the Complexity of Fixed-Priority

Scheduling of Periodic, Real-Time Tasks". Performance Evaluation. 2(4): 237-250

[27] Liu, C.L., and J.W.Layland. 1973. Scheduling algorithms for multiprogramming in

a hard-real-time environment. Journal ofthe ACM, 20(1):46-61

[28] Liu, M.T. 1978. Distributed loop computer networks. Advances in Computers,

17:163-221

[29] Malcolm, N., W.Zhao, and C. Barter. 1990. Guarantee protocols for

communication in distributed real-time systems. In Proceedings ofIEEE infocom'90, pp.

1078-1086

[30] MIT DSN 1982 Workshop on Distributed Sensor Networks (Lexington, Mass.,

Jan.). MIT Lincoln Laboratories, Lexington, Mass.

[31] Panwar, S. S., D. Towsley, and J. K. Wolf. 1988. Optimal scheduling policies for a

class of queues with customer deadlines to the beginning of service. Journal ofthe ACM

35(4):832-844

65

[32] Phail, F. H., Arnett, D. J., In-Vehicle Networking - Serial Communication

Requirements and Directions, SAE paper #860390

[33] Philips Semiconductors, 80C51 - Based 8 - Bit Microcontrollers DATA

HANDBOOK IC20, 1995

[34] Philips Semiconductors, Application Notes and Development Tools for 80C51

Microcontrollers DATA HANDBOOK, 1995

[35] Pleinevaux, P., "An improved hard real-time scheduling for the IEEE 802.5", Real

Time Systems 4(2) pp. 99 - 112. Real-Time Systems (June 1992).

[36] Ramamritham, K. 1987. Channel characteristics in local-area hard real-time

systems. Computer Networks and ISDN Systems, 13(1):3-13

[37] Sha, I., Lehoczky, J.P., Rajkumar, R., Priority Inheritance Protocols; An Approach

to Real-Time Synchronization, IEEE Trans on Computers, 39(9), pp.1175-1185(Sept.

1990)

[38] Shin, K. G., and C. J. Hou. 1990. Analysis of three contention protocols in

distributed real-time systems. In Proceedings ofthe IEEE Real-Time Systems Symposium,

pp. 136-145

[39] Strosnider, J. K., Marchok, T., and Lehoczky, J., "Advanced Real-Time Scheduling

Using the IEEE 802.5 Token Ring," Proceedings of the 9th IEEE Real-Time Systems

Symposium, pp. 42 - 52 (December 1988).

[40] Strosnider, J.K., and T.E. Marchok. 1989. Responsive, deterministic IEEE 802.5

token ring scheduling. Journal ofReal-Time Systems, 1(2):133-158

[41] Tindell, K., Burns, A., Wellings, A., "An Extendible Approach for Analysing Fixed

Priority Hard Real-Time Tasks," Real-Time Systems 6(2), pp. 133-151 (March 1994).

[42] Xu, J., and Pamas, D. L., On Satisfying Timing Constraints in Hard Real Time

Systems, IEEE Transactions on Software Engineering, Vol. 19, No.1, January 1993, pp.

70-84

66

[43] Zhao, W., J. A. Stankovic, and K. Ramamritham. 1990. A window protocol for

transmission of time constrained messages. IEEE Transactions on Computers,

39(9):1186-1203.

[44] Zhao, W., and K. Ramamritham. 1987. Virtual time CSMA protocols for hard real

time communications. IEEE Transactions on Software Engineering, SE-13(8):938-952.

[45] ---------, The design of real-time programming systems based on process models, in

Proc. IEEE Real-Time Systems Symp., Dec. 1984, pp.5-17

67

68

VITA

Weiqing Li

Candidate for the Degree of

Master of Science

Thesis: HARD REAL-TIME COMMUNICATIONS IN CONTROLLER AREA
NETWORK

Major Field: Computer Science

Biographical:

Personal Data: Born in Jinan, Shandong province, China, October 3, 1959, the
son ofNailin Li and Yanmei Yu.

Education: Graduated from Jinan No.2 High School, Jinan, Shandong province,
China, in May 1976; received Bachelor of Engineering Degree in
Electrical Engineering from Shandong Engineering Institute in July, 1982;
received Master of Engineering Degree in Electrical & Computer
Engineering from Shandong Polytecnic University in July, 1988;
Completed requirements for the Master of Science Degree at Oklahoma
State University in December, 1995.

Professional Experience: Teaching Assistant, Department of Computer Science,
Oklahoma State University, August, 1992 to December, 1995. Lecturer,
Department of Electrical & Mechanical Engineering, Shandong Light
Industrial University, Jinan, China, September 1982 to July 1991.

