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CHAPTER I 

INTRODUCTION 

Tenderness is a quality of primary importance that is the least understood and 

the most variable, thus causing it to be the most studied quality of meat. In recent 

years, economic pressures have challenged the livestock and meat industries to seek 

ways of producing meat products that will enable consumers to receive maximum 

palatability benefits at the lowest cost. Postmortem aging of carcasses at refrigerated 

temperatures remains a major factor in improving tenderness and overall palatability of 

meat; however, many questions arise as to the length of aging to receive the maximum 

tenderness benefits. Tenderness differences occur between carcasses, between muscles 

within the same carcass, and within parts of the same muscle. Because of these 

differences, various muscles seem to react differently to postmortem storage. Smith et 

al. (1978) reported that aging of US Choice beef carcasses for 11 days will optimize 

tenderness, flavor, and overall palatability for the majority of muscles in steaks and 

roasts from the major cuts of the carcass. Tenderization during aging has been 

attributed to the proteolysis of myofibrillar proteins by calcium-dependent proteases 

(CDP) and cathespins. Calcium-dependent proteases have been associated with initial 

tenderness (within the frrst 24 hours); whereas, cathespins Band H improve the overall 

tenderness from 1-14 days of aging (Calkins and Seideman, 1988). The initial levels of 

CDP activities have also been related to the general aging response of muscles which 

improves the tenderness of meat. Koohmaraie ( 1986, 1987, 1988a,b) stated that the 

longissimus dorsi (ribeye) muscle had the highest CDP activity and the highest aging 

response, whereas, the psoas major (tenderloin) had the least CDP activity and the 
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I lowest aging response. Olson et al. ( 197 6) found the longissimus dorsi (ribeye) and 

semitendinosus (eye of round) muscles to progressively increase in tenderness over 14 

days, while the psoas major (tenderloin) was unaffected during the aging period. 

Postmortem aging remains an important procedure for producing tender meat; 

however, long aging periods are expensive as overhead increases, product loses yield 

due to evaporation, and microbial spoilage occurs. Packers are always looking for 

ways to reduce the holding time of carcasses without incurring a forfeit on quality. 

Understanding the causes of tenderness variation and potential minimization of aging 

requirements is of obvious economic importance. Currently, most packers are freezing 

and storing subprimals in warehouses, until further shipment, after three days of aging. 

Because of this trend, we questioned if freezing would affect the aging response of 

muscles. The fulfillment of this objective will help elucidate the practicality of aging 

subprimals or individual muscles after frozen storage. 
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CHAPTER II 

REVIEW OF LITERATURE 

Tenderness 

Various factors contribute to the consumer acceptance of a meat product. 

Palatability, price, visual appearance, and availability of the product are a few; 

however, palatability is the most important to the acceptance of meat. The palatability 

of red meat has been a source for many research products and with the increased 

consumer demand for lean meat, palatability traits will be researched further. 

Tenderness, juiciness, and flavor are the main characteristics of a palatable product, but 

tenderness is the most closely monitored trait 

Tenderness of meat has been attributed to a multitude of different factors. 

Cattle breeds, postmortem aging, muscle type, quality grade, connective tissue, and 

cooking procedures are some traits commonly affecting meat tenderness. Because of 

the number of factors influencing tenderness, it is the most variable palatability trait in 

meat. It is essential that the meat industry learn to control the variation in products so 

it can provide a consistent retail product to the consumers who decide the future of this 

industry. 

Postmortem A~in~ 

Aging or "ripening" of beef has been a common practice for many years to 

assure a tender, acceptable retail product. Aging of beef is simply holding carcasses or 

wholesale cuts at refrigerated temperatures (32-40°F; 0-2°C) to allow "natural 

processes" to improve flavor and tenderness. An aging period of 2 weeks was 
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commonly used by packers to assure tenderness, however, today aging for extended 

time periods creates problems in merchandising and the use of storage facilities due to 

increased inventories of beef. Packers like Excel, Monfort, and IBP fabricate carcasses 

into subprimals after 3 days of aging. These subprimals are vacuum packaged, boxed, 

and stored in warehouses until exported or sold to retail chains. Morgan et al. ( 1991) 

conducted a national survey that summarized the time (d) for primal and subprimal cuts 

to arrive from warehouses to the various retail outlets. They found that the average 

post-fabrication time for all cuts was approximately 17 days. The minimum post­

fabrication time was 3 days and the maximwn time was 90 days. Because these 

subprimals are stored below freezing in the warehouse, the aging of beef is stalled, thus 

inhibiting the aging process. At retail outlets subprimals are stored at refrigerated 

temperatures that could provide an opportunity for the subprimals to age. 

The correlation between increased tenderness and aging is well established 

(Davey and Gilbert, 1969; Minks and Stringer, 1972). Many studies in the past century 

have focused on aging beef at refrigerated temperatures to obtain the maximwn 

tenderness within a short aging period. However, the actual aging period to achieve 

the maximum tenderness remains controversial and unresolved. A factor that may keep 

the controversy going is the response of muscles to aging. All muscles within a beef 

carcass seem to respond differently to aging thus affecting the overall tenderness of that 

muscle. Gothard et al. ( 1966) found the semimembranosus muscles of bulls, steers, and 

heifers to be consistently less tender than the longissimus dorsi muscles immediately 

after slaughter. However, these tenderness trends were nonnally reversed after 7 days. 

Semimembranosus muscles underwent considerable tenderization during aging, but 

final longissimus dorsi shear values differed very little from initial values. Field et al. 

( 1971) found that the longissimus dorsi had a greater aging response than the biceps 

femoris which is similar to Semiek and Rileys ( 197 4) findings for the longissimus dorsi, 

semitendinosus, and biceps femoris. It is evident that the longissimus benefits more 
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from aging than the biceps femoris and semitendinosus muscles. Not only do different 

muscles within the same carcass respond differently to the same aging period, but the 

same muscle from the same carcass reaches its maximum tenderness at different aging 

periods. 

Martin et al. ( 1971) stated that a cooler aging of 6 days for young carcasses of 

all sizes, sexes, and degrees of fatness was sufficient to produce a consumer product of 

satisfactory tenderness. In agreement, Crouse et al. ( 1990) found the greatest 

improvement in shear force values (an objective measurement of tenderness) within the 

first 6 days of aging for the longissimus dorsi muscle from bulls and steers, whereas an 

additional 8 days of aging showed only marginal improvement Minks and Stringer 

( 1972) also indicated a slight improvement of the longissimus muscle aged from 7 to 15 

days; however, they found a greater tenderization occurring within the frrst 7 days of 

aging. In contrast, a study conducted by Mitchell et al. (1991) evaluated the shear 

force values of the longissimus dorsi and found the steaks to be significantly more 

tender when aged 10 or 21 days compared to steaks aged for 3 days. They also 

observed a similar trend for the semimembranosus muscle; tenderness of the 

semimembranosus steaks improved with an increased aging period. Mitchell et al. 

( 1991) concluded that there was little advantage in extending the aging period of the 

longissimus dorsi and semimembranosus steaks beyond 10 days of aging. 

Smith et al. ( 1978) studied 20 muscles from USDA Choice carcasses and found 

8 muscles to achieve minimal shear force after 5 to 8 days of aging; the other 12 

muscles required 11 or more days of aging. The infraspinatus, longissimus dorsi, 

semimembranosus, and semitendinosus were a few of the major muscles requiring 11 

days of aging to reach maximum tenderization; however, Culp et al. ( 1973) reponed 

that tenderness did not improve beyond 8 days of aging for these 4 muscles. Parrish 

( 1969) did not find a significant aging effect on shear force values of USDA Choice 

longissimus dorsi or semimembranosus steaks, but he observed shear force values for 
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longissimus dorsi steaks aged 11 days were 27.4% lower than those steaks aged for 4 

days. 

Prolonged aging beyond 14 days does not enhance tenderness according to 

Larmond et al. (1969), Martin et al. (1971), and Davis et al. (1975); however, 

Koohmaraie (1988a) reported that 14 days of aging greatly decreased shear force 

values for the longissimus dorsi but affected the psoas major muscle slightly. Olson et 

al. (1976) also found the psoas major to be characteristically different from the 

longissimus dorsi and semitendinosus muscles. The psoas major did not respond to 

aging to increase tenderness, but the longissimus dorsi and semitendinosus muscles 

progressively decreased in shear values over the aging period. The longissimus dorsi 

has also increased in tenderness, as indicated by shear values, from 2 to 21 days of 

aging (Field et al., 1971; Jennings, 1978); however, Culp et al. (1973) found shear 

force values to be lower for the longissimus dorsi, infraspinatus, semimembranosus, and 

semitendinosus muscles after 28 days of aging. 

To improve tenderness more rapidly by the aging process, researchers have 

stored carcasses at higher temperatures (Parrish et al., 1969; 1973; Martin et al., 1971 ). 

Pierson and Fox (1976) found that the longissimus dorsi muscle aged for 3 to 5 days at 

200C was significantly more tender than the same muscle aged at 3°C for a similar 

period. Shear force values decreased linearly as aging time increased at 3°C; however, 

a significant quadratic effect between shear force and aging time was observed at 200C 

with the lowest shear force occurring after aging for 5 days. Higher storage 

temperatures accelerate certain reactions in muscle cells which affects the tenderness of 

meat; however, bacterial growth and excessive shrinkage are major problems that may 

be encountered during high temperature storage. 
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Proteolytic Enzymes 

Tenderization of meat during aging is largely attributed to the effects of 

proteolytic enzymes altering myofibrillar proteins (Locker, 1960; Parrish, 1973; Goll, 

1974; Dutson, 1983; Goll et al., 1983; Tarrant, 1987). Numerous proteolytic enzymes 

are found in skeletal muscle, but only calcium-dependent protease (CDP) and certain 

cathepsins have been shown to degrade myofibrillar proteins. The individual CDPs, 

individual cathepsins, or the synergistic action of the two have been identified as being 

primarily responsible for the postmortem changes leading to meat tenderization. 

(Dutson, 1983; Pearson et al., 1983; Dutson and Pearson, 1985; Greaser, 1986; Asghar 

and Bhatti, 1987; Koohmaraie, 1988). 

Calcium Dependent Proteases 

Scientists use a variety of names to refer to calcium-dependent proteases 

(CDP). These names include: calcium-activated factor (Busch et al., 1972; Olson et 

al., 1977; Koohmaraie, 1984, 1986); calcium-dependent neutral proteinase (Vidalenc et 

al., 1983; Ducasting et al., 1985); calcium-activated protease (Suzuki et al., 1982); and 

calpain (Murachi, 1985). 

Calcium-dependent protease were identified in skeletal muscle by Busch et al. 

(1972) and later purified by Dayton et al. (1976). Mellgren (1980) reported the 

existence of a second fonn of CDP; therefore, the two fonns of the protease are 

referred to as CDP-1 and CDP-11. A third component of the proteolytic system is an 

endogenous inhibitor (calpastatin or CDP inhibitor) that inhibits the activity of both 

CDP-1 and CDP-ll (Koohmaraie, 1988). These proteases and their inhibitor are 

located in the cytosol of the muscle cell and at the Z-disks where most changes occur in 

the muscle during postmortem storage (Dayton and Schollmeyer, 1981 ). 
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Four factors seem to influence the activity of muscle proteases - temperature, 

pH, free calcium concentration in the muscle cells, and the type of muscle. 

Temperature of the carcass falls at a rate depending on the size of the carcass and the 

holding environment With forced chilling, enzyme activities decline rapidly, whereas 

for a slow cooling carcass enzymes maintain a higher activity. 

A neutral pH keeps the calcium-dependent proteases active (Dayton et al., 

1976), but their activity declines as the pH of muscle falls after slaughter (Etherington, 

1984 ). Dayton et al. ( 1976) observed little activity of CDPs below muscle pH 6.0 and 

others have concluded that since muscle pH drops down to 5.5 within 24 hr 

postmortem, CDPs cannot be expected to bring about any marked changes in proteins 

(Etherington, 1984; Asghar and Bhatti, 1987). Koohmaraie et al. ( 1986) observed that 

CDP-1 retained 24-28% of its activity under normal postmortem conditions (pH 5.5-

5.8; 5°C) and he stated that this level of activity was sufficient to reproduce most of the 

known changes associated with the tenderization process during postmortem aging. In 

contrast, Calkins and Rhynalds ( 1989) found that the drop in muscle pH and 

temperature associated with aging reduces CDP-1 activity by 93.6% from optimal pH 

and temperature conditions. The change from normal postmortem conditions does not 

affect CDP-ll activity as Koohmaraie (1987) observed that CDP-ll retained 80.2% of 

its original activity at 14 days of aging; however, calpastatin is susceptible to 

postmortem aging (Vidalenc et al., 1983; Koohmaraie, 1987) where only 20.7% of its 

original activity was present after 24 hr and by 6 days of aging its activity was 

practically eliminated. Ducasting et al. ( 1985) disagrees as their findings reponed that 

90% of the inhibitor's activity was present at 24 and 72 hr postmortem. 

The third factor influencing the activity of CDPs is the free intracellular calcium 

concentration available to the muscle cells. The calcium ion concentration of the living 

muscle cell is normally maintained at about 10-8M, with a transient rise to 1o-5M 

during a contraction (Etherington, 1984). After death, the calcium ion pump fails, 
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permitting the free ion concentration to be released from the sarcoplasmic reticulum 

(Calkins et al., 1987) and equilibrate through the tissue; thereby, activating the calcium 

requiring proteases in the muscle cell (10-4M) (Etherington, 1984). The activation of 

CDP-1 requires 50-70 pM calcium, whereas CDP-ll requires 1-5 mM calcium for 

activation (Mellgren, 1980; Dayton et al., 1981; Szpacenko et al., 1981; Goll et al., 

1983; lnomata et al., 1984; Karlsson et al., 1985). Intracellular free calcium 

concentration is thought to be only 1-10 pM but the calcium concentration increases 

gradually with increasing time of postmortem storage and may reach levels at which 

CDP-1 can be activated (Goll et al., 1983). Calcium dependent protease-11, on the 

other hand, requires a higher level of calcium and the free intracellular calcium 

concentration would never reach this level, so CDP-ll cannot be activated during 

postmortem storage. Koohmaraie ( 1987) concluded that improvement in tenderness 

resulting from postmortem storage must be derived from changes in the myofibrils and 

since CD P-I activities paralleled the myofibrillar changes, it was reasonable to suggest 

that CD P-I, not CDP-II, plays an important role in the fragmentation of myofibrils and 

consequently in improvement of meat tenderness resulting from postmortem storage. 

The type of muscle also seems to be related to postmortem CDP activity. 

Olson et al. ( 1977) and Koohmaraie et al. ( 1988a) observed that the longissimus dorsi 

and semitendinosus muscles had a higher CDP-I activity compared to the psoas major 

which indicated a lower CDP-I activity. According to Koohmaraie (1986, 1987, 

1988a,b,c) the higher initial CDP-1 activities may determine the aging response of 

muscles as these studies found that CDP-1 activities followed the same general pattern 

as the aging response of muscles; the longissimus dorsi had the highest CDP-1 activity 

and also had the highest aging response, whereas the psoas major had the lowest aging 

response as reflected by the lowest CDP activity. Unlike Koohmaraie's results, 

Etherington et al. ( 1987) reported no relationships between muscle aging rate and the 

activities of calcium-dependent proteases. 
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The increase in tenderness associated with posnnortem aging of meat has been 

attributed to the endogenous proteolytic enzymes in muscle. Calkins et al. ( 1987) 

found initial shear force values between the time of slaughter and day 1 posnnortem 

correlated to COP-I activity thus suggesting that COP-I helps to establish initial (day 1) 

meat tenderness. A lower correlation between COP-I and day 3 shear force values is 

probably a reflection of reduced COP-I activity and suggests that other enzymes 

besides CD P-I are working after day 1. Johnson et al. (1990) found that COPs had no 

relationship with Wamer-Bratzler shear values; however, calpastatin was positively 

related to day 1 shear values. Whipple et al. ( 1990) reported a strong positive 

correlation for inhibitor activity at 24 hr posnnortem and stated that 44% of the 

variation in Wamer-Bratzler shear force values was explained by calpastatin activity at 

day 1. During the first 24 hr, the amount of inhibitor activity could play a major role in 

muscle proteolysis by regulating COP action and limiting activity, thus inhibiting 

improvement in tenderness. Calpastatin activity at day 1 within the longissimus dorsi 

has been shown to be significantly related to the tenderness among breeds, gender 

subclasses, and within the gender subclasses of cattle (Whipple et al., 1990). Johnson 

et al. ( 1990) reported that calpastatin activity was greater in 3/4 Brahman than in 

Angus and 1/2 Brahman carcasses. A reduced rate of myoflbrillar protein degradation, 

due to proteolysis, during posnnortem storage is reported to be a major reason for 

reduced tenderness of meat from Bos indicus beef compared to Bos taurus breeds of 

beef (Wheeler et al., 1990; Whipple et al., 1990 a,b; Shackelford et al., 1991 ). Besides 

breed differences, calpastatin activity at 24 hr has been associated with higher shear 

force values of meat from bulls (Morgan et al., 1991) thus inhibiting COP-I and CDP-11 

during aging to improve meat tenderness. However, in frozen storage calpastatin has 

been found to be unstable whereas COP-I and CDP-11 are not affected (Koohmaraie, 

1990a; Whipple and Koohmaraie, 1991 ). Freezing meat from bulls and Bos indicus 
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breeds of cattle will inhibit calpastatin activity and may allow CDP-I and CDP-II to 

improve meat tenderness by aging meat after frozen storage. 

Cathepsins 

A second group of proteolytic enzymes that have been implicated in 

postmortem tenderization are lysosomal enzymes. Thirteen lysosomal enzymes have 

been reported, but only seven have been shown to exist in skeletal muscle (Goll et al., 

1983 ). The main lysosomal enzymes involved in degrading myofibrillar proteins and 

enhancing meat tenderness are cathepsins B, H, and L. 

Cathepsins B, H, and L have a pH optima in the acid range (3.0-6.0) and are 

found within the lysosome, (small vesicles located in the sarcroplasm,} of skeletal 

muscle. Because the cathepsins are bound or enclosed within the lysosome, their 

release is a prerequiste to initiate degradative changes in meat. Low pH and high 

temperature cause the lysosomal membrane to rupture (Sorimade, 1982) which releases 

cathepsins into the intermyofilament space of muscle to begin protein degradation on 

the myofibrillar proteins (Greaser, 1986); however, the cathepsin's ability to hydrolyze 

these proteins is dependent on their release which may not occur after three weeks of 

aging (LaCourt et al., 1986). 

One of the first cathepsins observed was cathepsin B which was originally 

isolated from liver lysosome (Greenbaum and Fruton, 1957). Cathepsin B requires an 

optimum pH between 3.5-6.0 for activity (Asghar and Bhatti, 1987) to degrade myosin 

and actin. Bird ( 1977) found cathepsin B to maintain about 60-70% of its total activity 

at pH 5.5, which is the general ultimate pH of postmortem muscle. In contrast, 

cathepsin H exhibits activity at pH 7.0 to degrade myosin (Etherington, 1984). 

Because myosin, a major myofibrillar protein, is degraded by cathepsin B and H at an 
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acidic and neutral pH, these enzymes could enhance tenderness during postmortem 

storage. 

Calkins et al. ( 1987) observed the shear force of the longissimus dorsi muscle 

from bull and steer carcasses as affected by the activities of cathepsin B and cathepsin 

H. They found that the overall change in shear force (day 1-14) was correlated to 

cathepsin B activity, but the change in shear force from day 3 to 6 was related to 

cathepsin B and H total acitivities. Cathepsins B and H increase tenderness of meat 

after one day of postmortem aging but are not the only enzymes to degrade muscle 

proteins during the aging process. Ouali et al. ( 1987) and Wheeler et al. ( 1990) stated 

that cathepsin B and L activities could be related to postmortem tenderization of meat 

since cathepsin L has maximum activity at pH 4.0-6.0 (Dutson, 1983), like cathepsin B. 

Johnson et al. ( 1990) reported that cathepsin B+L activity in the longissimus dorsi 

muscle was negatively related to W amer-Bratzer shear force values at day 10 implying 

that increasing levels of cathepsin B+L total activity is associated with increased 

tenderness in response to aging. Etherington et al. (1987), however, reported no 

relationships between muscle aging rate and the activities of several lysosomal 

enzymes. 

Similar to calcium dependent protease activities, breeds of cattle differ in 

catheptic enzymatic activities which influences the rate of aging and improvement in 

tenderness. Johnson et al. ( 1990) found that the longissimus dorsi from Angus 

carcasses had a greater B+L activity and had a larger decrease in Wamer-Bratzler shear 

force values in response to the 10 day aging period compared to carcasses with 

Brahman breeding. Unlike the calcium dependent proteases, the activity of lysosomal 

enzymes is basically similar in the longissimus dorsi, semitendinosus, and psoas major 

muscles regardless of the aging response (Koohmaraie, 1988a). Also, other research 

studies failed to find differences in catheptic enzymatic activities in muscle with varying 

levels of tenderness (Koohmaraie, 1988a,c; Whipple 1989a,b ). 
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Muscle Location 

Meat is not a homogeneous material and the variation between different 

muscles of the same animal and between the same muscles from different animals is of 

great importance when planning experiments. Many studies have shown much 

evidence in the considerable amount of variation in tenderness of muscles in different 

anatomical locations (Ramsbottom et al., 1945; Hiner and Hankins, 1950; Paul and 

Bratzler, 1955; Ginger and Wier, 1958; Kent, 1963; Zinn et al., 1970; McKeith et al., 

1985; Morgan et al., 1991 ). Seideman et al. ( 1989) stated that various muscles within 

a carcass vary substantially in sensory properties as a result of postmortem aging and 

the various meat compostion and characteristic properties are related to ultimate 

tenderness. Their study found the psoas major, from bull and steer carcasses of various 

marbling scores, to be the most tender muscle as indicated by a sensory panel and shear 

force values; the least tender muscle for the sensory panel was the semimembranosus 

muscle, but the Wamer-Bratzler shear (WBS) showed the longissimus dorsi to have the 

highest shear force values. A study conducted by Hiner and Hankins (1950) on steer 

carcasses within the USDA Good quality grade found the psoas major to be the most 

tender muscle, as indicated by WBS, while the wholesale round muscles 

(semimembranosus, semitendinosus, and biceps femoris) were the least tender. 

Ramsbottom and Strandine (1948) compared 50 muscles from 3 "US Good" heifer 

carcasses and also found the psoas major to be the most tender muscle while the 

semimembranosus and semitendinosus muscles were the least tender for sensory and 

shear values, agreeing with Morgan et al. (1991) who observed the same results. The 

infraspinatus (top blade steak) has been identified by some researchers as the most 

tender muscle within the wholesale chuck (Ramsbottom and Strandine, 1948; Smith et 

al., 1978; McKeith et al., 1985; Paterson and Parrish, 1986; Morgan et al., 1991). 

These studies also reported the infraspinatus to be lower in shear values than the 
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longissimus dorsi muscle from the rib and loin subprimals; however, the psoas major is 

the only muscle to be more tender than the infraspinatus. 

A considerable amount of variation in tenderness of muscles from different 

locations within the carcass may be influenced by the connective tissue content in 

individual muscles. According to very early work by Lehmann ( 1907), the mechanical 

strength of a muscle is directly proportional to the amount of connective tissue present; 

the most active muscles which are subject to the greatest strains have the largest 

amounts of connective tissue and are the least tender. Individual muscles have been 

shown to differ in connective tissue by Ramsbottom et al. (1945), Ramsbottom and 

Strandine (1948), Ritchey and Hostetler (1964), Prost et al. (1975), and McKeith et al. 

(1985). All these studies showed that the level of connective tissue was lowest in the 

psoas major and the highest in the infraspinatus muscles. Furthermore, the muscles of 

the forequarter of the carcass contain more connective tissue than the muscles from the 

hindquarter. 

Not only do muscles vary within anatomical location, studies also indicate that 

within a given muscle shear force values vary from end to end (Ginger and Wier, 1958; 

Paul and Bratzler, 1955) and from location to location (Alsmeyer et al., 1965; Hedrick 

et al., 1968). Ramsbottom et al. (1945) removed sections of the psoas major and 

longissimus dorsi and cut each section from either end and the middle of the 

representative muscle for the purpose of making direct comparisons on differences in 

tenderness. They found the longissimus dorsi to be less tender at the anterior ends of 

the muscle, but the psoas major was unifonnly tender throughout the section. Unlike 

Ramsbottom's findings, Martin et al. ( 1971) found that samples from the rib had 

considerably lower average shear values than loin samples. This is in accord with 

reports by Martin et al. ( 1970) and Harrison et al. ( 1949) indicating an anterior to 

posterior falling gradient in tenderness of the longissimus dorsi muscle in bull and steer 

carcasses. For the wholesale round, Paul and Bratzler ( 1955) found the 
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semimembranosus muscle to be significantly different due to position. They found that 

the first and second steak removed from the anterior position of the semimembranosus 

to be more tender than the center portion, whereas the last three steaks removed from 

the posterior end were the least tender. 

Muscles also vary within location of the cores or samples removed within the 

same steak. Tuma et al. (1962), Alsymeyer et al. (1965) and Walter et al. (1965) found 

cores removed from the medial and dorsal portion of the longissimus dorsi to be more 

tender than cores from lateral postions. McBee and Wiles ( 1967) removed steaks from 

the 3rd lumbar and found that the dorsal postion had a significantly lower mean shear 

force value than the other two locations. There was no significant difference in shear 

force values between the medial and lateral locations, although the medial location had 

the highest mean shear force value. 

Tenderness variability within a muscle may also be due to the different heating 

rates and a considerable variation in internal meat temperature at the cessation of 

cooking (Shin et al.,1993). A particular internal temperature also differs for muscles 

within the same carcass (Bramblett et al., 1959; Cheng and Parrish, 1976; Locker and 

Daines, 1976) and may have a greater effect on palatabilty than marbling or aging 

(Cross et al., 1988). Meat becomes drier and less tender as the internal temperature of 

meat increases, thus decreasing its overall acceptance. 

Beef tenderness may be influenced by carcass quality grade, particularly 

marbling. USDA beef quality grades are designed to indicate expected palatability or 

acceptability of meat after cooking and are used to provide consumers a reliable guide 

for identifying beef quality levels (Smith, 1980). Quality of lean in beef is evaluated by 

considering its marbling and finnness in a cut muscle surface in relation to the 

15 



physiological maturity of the carcass (USDA, 1989). Marbling, or intramuscular fat, is 

evaluated for the amount and distribution within the longissimus dorsi (ribeye) muscle 

between the 12th and 13th ribs (USDA, 1989). The degrees of marbling, in descending 

order of amount, are: abundant (AB), moderately abundant (MA), slightly abundant 

(SA), moderate (MD), modest (MT), small (SM), slight (SL), traces (TR), practically 

devoid (PC), and devoid (D). 

Marbling has traditionally been thought to affect palatability (Tatum et al., 

1982), however, that theory has been difficult to prove. Many researchers have 

reported that tenderness, juiciness, and flavor increase with increasing degrees of 

marbling in a direct, linear relationship (McBee and Wiles, 1967; Jennings et al., 1978; 

Tatum et al., 1980; Dolezal et al., 1982), whereas others have reported very low or 

nonexistent associations (Carpenter et al., 1972; Parrish et al., 1973; Parrish, 197 4; 

Dikeman and Crouse, 1975; Davis et al., 1979; Smith et al., 1984 ). Romans et al. 

( 1965) found loin steaks containing moderate degrees of marbling to be juicier than 

steaks possessing slight marbling; although marbling level did not have a significant 

effect on tenderness as determined by the Warner-Bratzler shear. Breidenstein et al. 

(1968) also found that marbling level of the longissimus dorsi and semimembranosus 

muscles did not statistically affect shear force, but the abundant marbling level had the 

lowest shear force values. It is interesting to note that the modest marbling group of 

the longissimus dorsi muscle appeared to be "out of line" in that it showed a higher 

shear force and lower panel tenderness in comparison to the moderate and small 

marbling scores. For chuck muscles, Choi et al. ( 1987) found that quality grade did not 

significantly affect Wamer-Bratzler shear force values, but chuck muscles from USDA 

Choice carcasses had lower shear values than those carcasses from USDA Good. 

Unlike the former results, many studies have shown that increases in marbling content 

of loin steaks were significantly associated with lower shear values (Jennings et 

al.,1978; Tatum et al., 1980; Dolezal et al., 1982; Berry et al., 1993). Smith et al. 
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( 1984) stated that marbling is of very limited value in explaining differences in sensory 

panel ratings of round steaks compared to loin and rib steaks. For the variation in 

tenderness, marbling has been accounted for 6.9% (Alsmeyer et al., 1959), 10% (Cover 

et al., 1958}, and 11% (Palmer, 1958). Jeremiah et al. (1970) concluded that marbling 

was associated with 2-16% of the variability in flavor, juiciness, tenderness, and overall 

palatability; whereas, Blumer (1963) found that marbling explained 6.8% of the 

variability in tenderness and about 16% of the variation in juiciness. 

Composition 

Different muscles have different biochemical and histological properties because 

of differences in physiological function. It is possible that the textural properties, like 

tenderness, of muscles is determined by the constituents and arrangement of tissue. 

Muscles are analyzed by the proximate analysis procedure to determine moisture, fat, 

and protein content. Seideman et al. ( 1989) stated that various meat composition and 

characteristic properties of different muscles within the same carcass are related to 

ultimate tenderness; however, Johnson et al. (1988) found that the relationship between 

W amer-Bratzler shear force values and the proximate analysis traits of percent 

moisture, fat, and protein for different chuck muscles were very low. 

Tenderness of meat is partly influenced by the marbling score of carcasses and 

many studies have reported a strong relationship between marbling and percent fat 

within muscles (Cole et al., 1960; Tuma et al., 1962; Breidenstein et al., 1968; McBee 

and Wiles, 1967; Campion et al., 1975; Choi et al., 1987; Brackebusch et al., 1991b). 

As intramuscular fat content increases with increasing marbling scores, an inverse 

relationship occurs between marbling score and moisture content. Garrett and Hinman 

(1971) noted that as fat content increased, the water content decreased for the 

infraspinatus, longissimus dorsi, and semimembranosus steaks as marbling level 
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increased. Brackebusch et al. ( 1991 b) found the longissimus dorsi marbling level 

linearly related to percent fat of the infraspinatus, supraspinatus, longissimus dorsi, 

psoas major, semimembranosus, and semitendinosus muscles; a similar relationship was 

obsetved between marbling score and percent moisture for the muscles. Cole et al. 

(1960), Tuma et al. (1962), McBee and Wiles (1967), and Brackebusch et al. (1991b) 

obsetved that the protein content of major muscles tends to decrease with inceasing 

marbling score, a similar response to moisture levels. 

The composition of muscles vary, regardless of marbling, for proximate analysis 

traits. The psoas major tends to have the highest percent of ether extractable material 

compared to other major muscles (Ramsbottom and Strandine, 1948; Hunt and 

Hedrick, 1977; Seideman et al., 1989); however, McKeith et al. (1985) and 

Brackebusch et al. ( 1991 b) showed the infraspinatus to contain a higher percentage of 

fat than the psoas major. For all chuck muscles evaluated, the infraspinatus rates the 

highest in fat content (McKeith et al., 1985; Choi et al., 1987; Cecchi, 1988; Johnson et 

al., 1988; Brackebusch et al., 1991b). The higher fat level in the psoas major and 

infraspinatus tends to improve the subjective and objective measurement of tenderness 

and overall palatability. The semimembranosus and semitendinosus muscles show the 

lowest fat content compared to chuck muscles and those muscles associated with 

posture. The moisture and protein content are lower in the psoas major and 

infraspinatus muscles compared to the longissimus dorsi, supraspinatus, and round 

muscles (Ramsbottom and Strandine, 1948; Hunt and Hedrick, 1977; McKeith et al., 

1985; Brackebusch et al., 1991 b); it is not suprising that the round muscles show the 

highest percentage of moisture and protein. 
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Freezin& 

Freezing is often necessary for meat products that must undergo 

transcontinental and transoceanic distribution or must be purchased far in advance of 

consumption as a result of price, supply, and demand. The effect of freezing on meat 

quality, mainly tenderness and moisture loss, has been studied extensively but results 

have been inconclusive. Much of the earlier research on freezing promoted the view 

that various freezing treatments increased the tenderness of meat (Hankins and Hiner, 

1940; Hiner and Hankins, 1941; Hiner et al., 1945; Hiner et al., 1951, Hiner and 

Hankins, 1951). Hankins and Hiner (1938) and Hiner et al. (1945) reported that beef 

samples increased consistently in tenderness as freezing temperatures were lowered; 

however, Pearson et al. (1950) reported that the rate of freezing did not influence 

tenderness or palatability. Tenderness of beef samples aged for 5, 15, 25, and 35 days 

at 0.6 to 1.7°C became more tender and tenderness was further increased by 

subsequent freezing (Hiner and Hankins, 1941), but Bray et al. (1942) found that 

freezing had no effect on tenderness of beef aged for an unreported period of time 

before freezing. Locker et al. (1975) concluded that quick-freezing of meat before 

aging is responsible for pronounced toughness and recommended conditioning and 

aging the meat before freezing. Quick freezing, or fast freezing, causes the water inside 

the cells to be frozen into small ice crystals. The tiny ice centers are dispersed 

thoughout the muscle substance, being held apart by proteins and other cellular 

material, but does not damage the cell walls (Nord, 1936; Hiner, 1944; Hiner and 

Hankins, 1947) Hiner (1944) concluded that as the rate and degree of freezing 

increased, with decreased temperatures, it appeared that there was less time or 

opportunity for the transfer of water into the spaces between cells, thus causing less 

damage to the cell wall. Quick freezing increases the tenderness of meat (Hiner et al., 
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1945; Hiner and Hankins, 1947) and reduces shear force values (Berry and Leddy, 

1989). 

Slow freezing promotes the formation of large ice crystals between muscle 

fibers which creates more structural damage to the cell walls (Kuprianoff, 1952; 

Drozdov, 1955; Bevilacqua et al., 1979). If damage has been done to the cell wall 

during freezing, less water will be reabsorbed during thawing and a greater amount of 

exudate is released. The amount of exudate arising during thawing is an important 

quality or detriment of frozen meat 

Beef muscle contains approximately 70-75% water, most of it being within the 

fibers which are closely held together by interstitial connective tissue. A loss of 

moisture and water-soluble components such as protein, vitamins, minerals, or flavor 

components are of great economic importance. Freezing causes an extra loss of water 

in comparison with corresponding unfrozen samples, however the latter depends on the 

physical conditions during postmortem storage (Kuprianoff, 1952; Hicks et al., 1956). 

During postmortem storage meat can lose considerable weight due to evaporation, but 

as meat ages for long periods of time, less "drip" is observed and the meat has a greater 

capacity of absorbing water, or a greater water holding capacity. Hamm (1960) stated 

that to avoid a loss of water holding capacity during freezing and thawing, the meat 

should be frozen in a state of high hydration which is after postmortem aging. 

Unsuprisingly, some reports have observed that the drip losses of frozen aged meat are 

much less than those of frozen rigor muscles (Wierbicki et al., 1957; Bouton et al., 

1958; Sleeth et al., 1957, 1958) because the aging of meat results in an increase of its 

water holding capacity. Deatherage and Hamm ( 1960) found that slow freezing (-

15°C) causes a significant decrease in water holding capacity of thawed meat, whereas 

quick freezing results in a small but significant increase of meat hydration. 

The influence of frozen storage on the tenderness of meat is very controversial, 

but there is reasonably good agreement that drip loss tends to increase and yield to 
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decrease with frozen storage. Mitchell et al. (1991) found that the frozen 

semimembranosus steaks had higher shear force values and that the thawed longissimus 

dorsi and semimembranosus steaks had an increased thaw loss which was reflected in 

lower juiciness ratings for these steaks. Cooking loss, another form of moisture loss, is 

a result of denaturation of the proteins and is influenced by the temperature, time of 

cooking, and water holding capacity of the meat (Locker and Daines, 1974). 

Postmortem glycolysis lowers the water holding capacity (Lawrie, 1968) and aging 

improves it (Parrish et al., 1969). Cohen (1984) assumed that meat after aging will 

have less cooking loss; however, his findings indicated that changes induced by freezing 

probably have more influence on cooking loss than the extent of aging, as observed by 

myofibrillar fragmentation index. 

Warner-Bratzler Yalues 

The current US beef population varies extremely in tenderness. A trained panel 

identifies tenderness subjectively, which can differ widely with in the group. Warner­

Bratzler shear (WBS) force values, however, provide an objective assessment of 

tenderness. The relationship of WBS force to consumer acceptability has not been 

researched thoroughly and the value of research to improve meat tenderness hinges 

upon establishing the relationship of tenderness with consumer purchasing decisions. 

Shackelford et al. ( 1991) reported that WBS values of top loin steaks should not 

exceed 3.9 kg for a 68% confidence level and 4.6 kg for a 50% confidence level to 

assure overall tenderness ratings of "slightly tender" or greater from a trained sensory 

panel. A single WBS threshold cannot be applied to all types of retail cuts or consumer 

markets (retail vs. foodservice). Morgan et al. (1991) compared chuck, rib, and loin 

cuts to the 68% confidence level for tenderness. Interestingly, the top blade steak and 
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chuck eye from the chuck primal received no overall tenderness ratings below "slightly 

tender" providing evidence that some chuck steaks that are marketed as "convenience, 

marinate and grill" items can be successfully merchandised at the retail level. The 50% 

confidence level was applied to cuts from the round because of increased toughness 

and lower consumer expectations. Shear force values obtained in the Morgan et al. 

(1991) study indicated that a high percentage of retail cuts from the chuck and round 

would receive overall tenderness rating scores of less than "slightly tender." All 

segments of the beef industry should strive for 100% of all retail cuts to receive an 

overall tenderness rating of "slightly tender" within a 95% confidence level (Morgan et 

al., 1991). 
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CHAPTER III 

TENDERNESS AND AGING RESPONSE OF BEEF MUSCLES OF DIFFERENT 

QUALITY GRADES BEFORE AND AFTER FREEZING 

ABSTRACT 

This study was designed to determine the aging response and tenderness of six 

different beef muscles from different quality grades before and after freezing. The 

infraspinatus, supraspinatus, longissimus dorsi. psoas major, semimembranosus, and 

semitendinosus were cut into 2.5 em thick steaks from the right and left sides of 28 

beef carcasses representing the USDA quality grades of average Choice, low Choice, 

high Select, and low Select. Two steaks/muscle/side were assigned to aging periods of 

2. 5, 7, 14, or 21 days. One steak from each aging period was aged prior to freezing 

and the second steak was frozen prior to aging. Steaks frozen before aging had higher 

(P<.05) purge and cook losses than steaks frozen after aging. Warner-Bratzler shear 

force values were similar (P>.05) for both treatments. The infraspinatus, longissimus 

dorsi, and semitendinosus n1uscles showed no decrease (P>.05) in shear values beyond 

14 days of aging. The psoas rnajor, supraspinatus, and semimembranosus muscles did 

not change (P>.05) in shear value over the aging period. Except for the infraspinatus, 

all muscles from low Choice carcasses had lower shear values (P<.05) when compared 

to carcasses from other quality grades. No difference (P>.05) was observed for shear 

values of the infraspinatus, longissimus dorsi, psoas major, and semimembranosus 

muscles from Select carcasses. Muscles from average Choice carcasses were higher 

(P<.05) in fat content than muscles within the low Choice and Select grades. This 
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study indicates that freezing will not significantly affect the overall aging response and 

tenderness of n1uscles. 

(Key Words : Beef, Tenderness, Aging, Freezing.) 

Introduction 

Tenden1ess is the n1ajor palatability trait that affects consun1er acceptance of 

beef. Tenderness differences occur between carcasses, between n1uscles within the 

same carcass, and between regions of the san1e n1uscle. Smith et al. ( 197H) reported 

that aging of U.S. Choice beef carcasses for 11 days optin1ized the tenderness of 

muscles from major cuts of the carcass: however, muscles differed in their response to 

agtng. Olson et al. ( 1977) found a progressive decrease in shear values in the 

longissimus and semitendinosus muscles, but the psoas n1ajor was unaffected by 

postmortem storage. Differences in the aging response of muscles could be attributed 

to the activities of calcium-dependent proteases (COPs). Koohmaraie et al. ( 198H) 

found the longissin1us muscle to have high COP-I activity and aging response, whereas, 

the psoas major had low CDP-1 activity and aging response. 

Postmortem aging of meat improves tenderness; however, long aging periods 

are impractical as packers incur a major expense in merchandising. Packers seek ways 

to reduce the holding time of carcasses without incurring a forfeit on quality. 

Therefore, the objective of this study was to examine the aging response and tenderness 

of different beef muscles before and after freezing. 
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Materials and Methods 

Sample Preparation. Twenty-eight steers. within the USDA average Choice. low 

Choice, high Select, and low Select grades, were slaughtered at two con1n1ercial beef 

operations. The carcasses were fabricated at 48 hr to obtain the infrd.spinatus (IF). 

supraspinatus (SS), longissimus dorsi (LD), psoas major (PM), sen1imembranosus 

(SM), and sen1itendinosus (ST) muscles fron1 each side. A 1.3 em thick steak was 

removed at the anterior and center sections of each n1uscle to obtain pH and proxin1ate 

analysis data. Steaks cut to 2.5 cn1 thick were assigned to an aging period of 2. 5, 7, 

14, or 21 days. Due to the inability of the SS and ST to yield enough steaks for all 

aging periods, the 5 day treatn1ent was elin1inated for these n1uscles. 

Steaks were weighed, vacuum packaged, and assigned to treatment. The first 

2.5 em steak fron1 each side and muscle was refrigerated (40C) for the assigned aging 

period and then frozen (T1 ). The second steak was in1n1ediately frozen ( -20°C), 

allowed to thaw (4°C) for 18 hr, and then aged for the assigned periods (T2). The 

project was designed so that steaks fron1 each treatment were frozen and thawed one 

time and steaks were frozen approximately for 4 weeks. 

Cooking Preparation. All steaks from a given muscle and aging period representing 

both treatments were cooked on the same day to reduce variability. Steaks frozen after 

being aged (T1) were thawed at 40C for 18 h prior to cooking. Steaks were cooked at 

1770C in an impingement oven to an internal temperature of 700C as measured by an 

iron constantan thermocouple (Model #39658-J, Atkins Technical Inc., Gainesville, 

Ra.). Steaks were weighed prior to and after cooking to determine purge/thaw loss 

and cook loss. 
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Warner-Bratzler Analysis. Six to eight 12.5 0101 cores were reo1oved parallel to the 

muscle fibers after the steaks cooled for two hours at rooo1 teo1perature (200C). 

Wamer-Bratzler shear analysis was conducted using an attacho1ent to the Instron 

Universal Testing Machine (Model #4502, lnstron, Canton. Mass). A 1 kN load cell 

detected the force required to shear through the sample core as the crosshead n1oved at 

200 mm/min. The peak force (kg) was recorded by an IBM PS2 (Model 55 SX) using 

software provided by Instron Corporation and analyzed as an objective measureo1ent 

for tenderness. 

Proximate Analysis. A 1.3 em steak removed fron1 the center portion of right and left 

sides of each n1uscle was evaluated for composition. Right side san1ples were aged 

prior to being frozen (Tl), whereas left side samples were frozen before aging (T2). 

Steaks were assigned to a seven day aging period. Sao1ples were pulverized with liquid 

nitrogen and analyzed in duplicate. Percentage n1oisture was detern1ined by oven 

drying n1ethod and fat was determined according to the modified Soxhlet Extraction 

procedure (AOAC. 1984 ). Protein was detern1ined by cotnplete combustion using a 

Nitrogen and Food Protein Determinator (LECO FP-428, St. Joseph. Ml). 

pH Analysis. A 1.3 em steak from the anterior portion of the right and left sides of 

each muscle was used for pH analysis. These samples were frozen at 48 hr 

postmortem. Five grams of pulverized sample were diluted with 50 ml of distilled 

water. The pH value for analysis represents average over 4 samples. Analysis was 

conducted on the pH meter (Model #130, Coming Glass, Corning, NY). 

Statistical Analysis. Statistical analysis was performed ustng the General Linear 

Models procedure (SAS, 1988). The model included the effects of aging, treatn1ent, 

grade, muscle, and all interactions. When appropriate, means were separated using 
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Fischer's least significant difference and contrasts. Regression analysis was perfom1ed 

to predict Wamer-Bratzler shear force values over days of aging. Significant 

differences were reported at the P<.05 level. 

Results and Discussion 

Population means, standard errors. and range for carcass traits are shown in 

Table I. Selection was limited to "A" n1aturity carcasses within the slight, sn1all, and 

modest degrees of n1arbling. Neither the genetic history nor the previous feeding 

regin1ens of the animals were known. 

Table 2 shows the two day pH values of each nutscle. Steaks frozen before 

aging (T2) were similar (P>.05) in initial (2 day) pH values to steaks aged before 

frozen storage (T I); however, n1uscles did vary in pH values. The supraspinatus had 

the highest pH (P<.05 ), while the longissin1us and semin1embranosus n1uscles had the 

lowest (P<.05) values. 

An age by treatment by muscle interaction was observed for total n1oisture loss. 

The percentage of total moisture loss is a cotnbination of the n1uscles losing moisture 

during purge, thawing, and cooking with n1uscles losing the greatest percentage of 

moisture during cooking. Figure 1 presents the effect of treatment on percentage of 

total moisture loss for each n1uscle. In generaL n1uscles frozen prior to aging (T2) 

tended to have a greater (P<.05) total moisture loss than muscles aged before frozen 

storage (T 1 ). Freezing may have affected the muscles by creating ice crystals between 

the muscle fibers, causing structural damage to the cell walls of the muscles and 

increasing the amount of moisture lost during the aging period. A quadratic effect was 

observed for the SS and ST muscles. Steaks aged before freezing (T 1) had a decrease 

in moisture loss from 14 to 21 days of aging. Changes in protein structure may give 

these muscles a greater water holding capacity rusulting in greater moisture retention 
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after a long aging period. For steaks frozen prior to aging (T2). the SS continued to 

show a quadratic effect. with a decrease in n1oisture loss frorn 14 to 21 days: however. 

the ST showed a 6-7o/c increase in rnoisture loss frorn 14 to 21 days. The reason for 

this increase is not completely clear but n1ay be due to the differences in the aging 

process and the changes induced by freezing for the ST thus causing a greater n1oisture 

loss during cooking. Cohen (1984) assmned that after aging, n1eat would have less 

cooking loss; however, his findings indicated that changes induced by freezing probably 

have more influence on cooking loss than the extent of aging. 

Thaw and cook losses of n1uscles as affected by quality grade are shown m 

Table 3. Except for the LD and PM, muscles within the low Choice grade had the 

lowest (P<.05) thaw loss an1ong grades and. except for the SM. n1uscles within the low 

Select grade had a lower (P<.05) thaw loss than in the high Select grade. The high 

Select grade indicated the highest (P<.05) thaw loss for the IF, SS, LD. PM, and ST 

muscles: however. the SS and ST within the high Select grade were sin1ilar to the 

average Choice grade for thaw loss. Thaw loss was greatest (P<.05) for the SM in the 

average Choice grade when compared to other grades. Cook loss was lower (P<.05) 

for the SS, ST, and SM in the low Choice grade than in the average Choice and Select 

grades. The IF. LD, and PM indicated a decrease (P<.05) in cook loss as the quality 

grade increased. 

Tables 4 through 6 reflect compostional properties of each n1uscle as affected 

by quality grade. Muscles within the average Choice grade had a lower (P<.05) 

moisture content and a higher (P<.05) intramuscular fat content compared to the other 

quality grades. The SS, LD, and ST muscles were not different (P>.05) for moisture 

content within the low Choice and Select grades, but the IF and SM had a higher 

(P<.05) moisture content in the low Select grade and the PM showed a higher (P<.05) 

moisture content within the Select grade compared to the Choice grade. No difference 

(P<.05) was observed for intramuscular fat in the IF, SS, LD, SM, and ST muscles 
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between the low Choice and Select grades. but the PM had the lowest (P<.05) fat 

content in the low Select grade. Generally. as fat content increases with increasing 

marbling scores, an inverse relationship occurs between n1arbling scores and n1oisture 

content. Brackebusch et al. (1991) observed that the protein content of n1uscles tends 

to decrease with increasing n1arbling levels, but these effects were not always 

significant, which agrees with our results. We found a lower (P<.05) protein content 

for the IF within the average Choice grade and a lower (P<.05) protein content for the 

LD and PM muscles within the Choice grade compared to select. The SS, SM, and ST 

muscles were sin1ilar (P>.05) in protein content for all quality grades. 

Quality grades of muscles affected shear values as shown in Figure 2. The SS. 

LD, PM, SM, and ST muscles within the average Choice grade had higher (P<.05) 

shear values compared to the other quality grades; these muscles had the lowest 

(P<.05) shear values within the low Choice grade. The IF had the lowest ( P<.05) 

shear values within the average Choice grade. The reason the majority of the muscles 

had higher shear values in the average Choice grade is unclear, as past research 

(Jennings et al., 1978; Tatum et al., 1980; Dolezal et al., 1982; Berry et al. 1993) 

indicate that shear values for the longissimus decrease as marbling levels increase. The 

genetic background, feeding regimen, and maintenance of these anin1als may have 

influenced the overall shear values for these muscles in our study. Results of 

Breidenstein et al. ( 1968) agrees with our results. they found the modest marbling 

group (or average Choice quality grade) "out of line" as it showed a higher shear value 

and a lower panel tenderness for the LD and SM muscles con1pared to the small and 

moderate marbling levels. For the Select grades, the LD and PM did not have diferent 

(P>.05) shear values, but the SS and ST had lower (P<.05) shear values for the low 

Select grade. 

Calcium-dependent proteases (CDP-1 and CDP-11) and cathepsins have been 

identified as having activity during the aging process. Calcium-dependent proteases 
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establish initial tenderness within 2 days (Calkins and Seiden1;.m, 1988 ), while the 

cathepsins B and H influence the tenderization of beef over a long period of tin1e 

(Koohmaraie, 1990). Koohn1araie et al. ( 1988) has also shown that calpastatin or the 

CDP inhibitor is unstable in frozen storage thus suggesting that n1eat will be ahle to 

tenderize more fully after frozen storage. In our study, shear values for n1uscles frozen 

prior to aging (T2) were not different (P>.05) fron1 n1uscles aged prior to freezing 

(T I). Regression lines for average shear values over aging tin1e were developed for 

each muscle (Figure 3). Aging resulted in a decrease (P<.05) in shear values for the 

IF, LD, and ST muscles up to 14 days of aging. The SS, PM, and SM n1uscles were 

unaffected (P>.05) by aging tin1e for shear values. According to Shackelford et al. 

( 1990), the window of acceptability requires shear values to be below 4.5 kg for 

consumers to identify beef as tender. In this study, the IF and PM did not require aging 

to have a shear value below 4.5 kg. The LD and ST required 6 and 15 days of aging, 

respectively, to reach 4.5 kg with the SS and SM not reaching 4.5 kg in this study. 

Freezing will not affect the aging response of muscles, but some muscles will require a 

longer aging period or will need mechanical tenderization to ensure consumer 

acceptability. 

Variation (reported as plus or n1inus two standard deviations) is shown for the 

shear force values of each quality grade type stratified by aging period for the 

infraspinatus, supraspinatus, and psoas major muscles (Figure 4 through 7). Because 

of the inability of the SS to yield enough steaks for the aging periods, we selected to 

omit the 14 day aging period, in addition to the 5 day period, for this muscle in the low 

Choice and low Select carcasses. The IF shear force variance decreased (P<.05) as 

postmortem aging increased for the average Choice and Select grades. The PM 

variation decreased (P<.05) as aging time increased within the average Choice and high 

Select carcasses, but the variation in low Select carcasses for the PM increased (P<.05) 

as the aging period increased. The SS shear force variance decreased (P<.05) in low 
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Select carcasses as the aging period increased, but the shear force variation did not 

change (P>.05) for the SS in the Choice quality grades regardless of the aging period. 

Figure R shows the variation for shear force values of the longissinnts, 

semimembranosus, and sen1itendinosus n1uscles stratified by postn1orten1 aging within 

all quality grades. The longissin1us and sen1itendinosus nlUscles decreased (P<.05) in 

variability as the aging period increased. whereas the sernirnetnbranosus nun1erically 

increased in variation as aging period increased. The sernitnen1branosus rnuscle 

variation follows along the san1e path as its aging response over tin1e where it ren1ains 

fairly constant it is also interesting to note that the longissin1us variation shows a 

numeric increase from 14 to 21 days which tnay suggest that aging beyond 14 days is 

in1practical for this muscle for all quality grades. 

ltnplications 

In this study, freezing muscles prior to aging resulted in a greater total Inoisture 

loss, but there was no significant effect on the aging response or tenderness of muscles. 

The infraspinatus, longissimus, and sen1itendinosus rnuscles had n1axin1un1 

in1proven1ent in tenderness at 14 days, whereas the supraspinatus. psoas major, and 

semimembranosus muscles had no response to aging. Since aging periods are long and 

expensive for packers, it may re possible for retail outlets to age n1eat for a few days 

after frozen storage to increase tenderness. However, more extensive research is 

needed to address the enzymatic activities of reef muscles after frozen storage and its 

relationship to the tenderness of beef. 
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Table 1. Carcass characteristics. 
Trait 

HCW,kga 
Actual fat thickness,mm 
Adj. fat thickness,mm 
LD muscle area,cm2b 
KPH fat,o/oc 
USDA Yield Grade 
USDA Overall Maturity Scored 
USDA Marbling Scoree 
aHot Carcass weight 
bLongissimus Dorsi 

Mean 
334.44 

11.81 
12.19 
79.40 

1.76 
2.92 

143.75 
414.82 

SE 
4.38 

.76 

.66 
1.24 
.07 
.10 

1.30 
16.41 

Minimum Maximum 
280.32 - 377.84 

3.05 - 19.81 
5.08 - 19.30 

65.16 - 96.13 
1.00 - 2.50 
2.02 - 3.97 

135.00 - 160.00 
305.00 - 580.00 

CKidney, Pelvic, and Heart Fat 
dMaturity Score: 100=Aoo, 200=BOO 
eMarbling Score: 300=Slight00, 400=Small00, 500=Modest00 

~'"""C-~~--------------



Table 2. pH values stratified by muscle. 

Infraspinatus 5. 70d .017 

Supraspinatus 5.80C .014 

Longissimus 5.4Qf .009 

Psoas Major 5.7od .018 

Semimembranosus 5.4Qf .0 13 

Semitendinosus 5.5oe .015 

apH values evaluated on 2 day aging period of right and left sides of muscles 

bs tandard error 
c,d,e,fMeans in same column with different superscripts differ (P<.05) 
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Figure 1. Age length and treatment effect on percentage total moisture loss within 
muscles. 
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Table 3. Effect of USDA quality grade on percentage thaw and cook loss within muscles. 

USDA Quality Gradea 
LS HS LC AC SEC 

Muscteb Thaw Cook Thaw Cook Thaw Cook Thaw Cook 
IF 5.3e 26.1d 6.3a 25.1e 4.5r 23.4f 5.3e 24.2f 
ss 6.se 25.2e s.sd 26.se 5.sf 23.6f 8.6d 28.td 
LD 6.4f 25.od 7.6d 25.od 6.If 24.6e 7.oe 23.2f 
PM 4.8f 23.9d 7.td 23.8d 4.6f 22.9e 5.9e 22.9e 
SM 9.7e 24.5e 10.2e 25.2e 8.3f 23.1f 11.2d 27.2d 
ST 8.9e 20.3f 10.4d 22.5e s.of 18.3g IO.od 27.6d 
aLS=low Select, HS=high Select, LC=low Choice, AC=average Choice 
biF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, 
SM=semimembranosus, ST=semitendinosus 

CStandard error 

Thaw Cook 
.10 .18 
.15 .26 
.14 .15 
.12 .15 
.15 .17 
.17 .26 

d,e,f,gMeans in the same row within same dependent variable with different superscripts 
differ (P<.05) 
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Table 4. USDA quality grade on percentage moisture within muscles. 

USDA Quality Gradea 

MUSCLEb LS HS LC AC SEC 
IF 71.5e 71.7e 66.8f .33 
SS 76.4d 75.od 75.6d 70.7e .30 
LD 72.2d 7l.ld 7t.ld 67.9e .22 
PM 12.sd 7t.4d ?o.se 7o.se .26 
SM 75.od 72.9f 73.6e 71.2g .23 
ST 75.od 74.5d 74.5d 73.1e .16 
aLS=low Select, HS=high Select, LC=low Choice, AC=average Choice 
biF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, 
SM=semimembranosus, ST=semitendinosus 

CStandard error 
d,e,f,g Means in same row with different superscripts differ (P<.05) 
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Table 5. USDA gualitl: S!ade on Eercentase intramuscular fat within muscles. 

USDA Quality Gradea 

MUSCLED LS HS LC AC 

IF 6.7e 8.2e 7.3e 14.td 
ss 1.9e 2.se 2.2e 7.od 
LD 4.3e 4.9e 5.4e 9.2d 
PM 4.oe 5.2e 6.2d 7.od 
SM 1.7e 2.se 2.4e 4.3d 
ST 2.2e 2.4e 2.se 4.od 

aLS=low Select, HS=high Select, LC=low Choice, AC=average Choice 
biF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, 
SM=semimembranosus, ST=semitendinosus 

CStandard error 
d,e,Means in same row with different superscripts differ (P<.05) 

-- .. , ... -.. ~""'"'" 

SEC 

.43 

.28 

.26 

.29 

.23 

.12 
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Table 6. USDA quality grade on pef(;~!}~3:ge J!rotein within muscles. 

USDA Quality Gradea 

MUSCLEb LS HS LC AC SEC 
0--- --0 d 

IF 19.8 19.9 20.2 18.8e .18 
SS 20.1e 20.1 21.0 21.6 .23 
LD 22.1e 23.od 22.1e 22.1e .10 
PM 22.1d 2t.6d 21.2e 21.2e .14 
SM 22.6 22.8 22.7 22.5 .21 
ST 21.8 22.5 22.1 21.9 .14 
aLS=low Select, HS=high Select, LC=low Choice, AC=average Choice 
hiF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, 
SM=semimembranosus, ST=semitendinosus 

CStandard. error 
d,e,f Means in same row with different superscripts differ (P<.05) 



Figure 2. USDA quality grade on average Warner-Bratzler shear values within muscles. 
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Figure 3. Regression of Warner-Bratzler shear values over aging. 
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Figure 4. Variation (reponed as the mean± two standard deviations) in shear force 

(kg) within muscles over aging periods from average Choice carcasses. 
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Variance 

7 
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IF= Infraspinatus . 94a .166 .116 .146 

SS=Supraspinatus .30 .21 .24 .42 
PM=Psoas Major .16ab .41 a .27ab .16b 

a,bMeans in same row with different superscripts differ (P<.05). 
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Figure 5. Variation (reported as the mean± two standard deviations) in shear force 
(kg) within muscles over aging periods from low Choice carcasses. 
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7 

Variance 

Muscles 2 day 7 day 14 day 21 day 

IF=Infraspinatus 1.19a .136 .236 .066 
SS=Supraspinatus .24 .25 .24 
PM-Psoas Major .26 .30 .59 .45 
a,bMeans in same row with different superscripts differ (P<.05). 
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Figure 6. Variation (reponed as the mean± two standard deviations) in shear force 

(kg) within muscles over aging periods from high Select carcasses. 

1.94 

5.91 21DAY 

2.2 
5.29 14DAY 

2 

5.89 7DAY 

2.01 4.97 

3.91 ~--~~ 6.31 2DAY 

2.5 5.58 

1 4 7 10 

Variance 
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IF=Infraspinatus .59a .32 .34ab .146 

SS=Supraspinatus .36ab .37ab .21 b .52a 

PM-Psoas Major .55a .27b .14b .45ab 

a,bMeans in same row with different superscipts differ (P<.05). 
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Figure 7. Variation (reported as the mean ± two standard deviations) in shear force 

(kg) within muscles over aging periods from low Select carcasses. 
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Variance 
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IF=Infraspinatus .44 .21 .29 .08 

SS=Supraspinatus .34 .19 .30 

PM-Psoas Major .24b .2tb .26ab .79a 

a,bMeans in same row with different superscripts differ (P<.05). 
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Figure 8. Variation (reponed as the mean± two standard deviations) in shear force 

(kg) within muscles over aging periods. 
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Table 1. ANOV A table of dependent variable - pH of muscles. 
Source opa Sum of Squares 
~odel 11 7.42* 
Si~ 1 .00 
~uscle 5 7.37* 
Side*~uscle 5 .02 
aoegrees of freedom 
*P<.01 

Table 2. ANOV A table of dependent variable - total loss sorted b~ muscle for means. 
Source opa Sum of Sguares 

IFb ss6 LOb PMb SMb 
~odel 22 4153.87* 8106.95* 2643.77* 2640.55* 5482.92* 
Age 3 2300.32* 2375.43* 494.47* 1341.40* 552.50* 
Treatment 1 199.34* 1.21 977.78* 119.19* 1007.91 * 
Age*Treatment 3 457.52* 257.17* 470.55* 382.95* 372.54* 
Grade 3 1012.99* 2302.51 * 370.62* 656.42* 2881.19* 
Age*Grade 9 131.15 2161.12* 230.09 131.43 604.19* 
Treatment*Grade 3 53.82 357.22* 95.87 38.62 204.49** 

sT6 
13,557.47* 

1837.27* 
67.93 

2488.44* 
7967.68* 

832.67* 
462.05* 

aoegrees of freedom 
bJF=infraspinatus, SS=supraspinatus, LD=longissimus, P~=psoas major, S~=semimembranosus, 

ST=semitendinosus 
*P<.01 
**P<.05 
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Table 3. ANOV A table of dependent variable - total loss sorted by muscle for contrasts. 
Source DFa Sum of Squares 

Model 
Age-Treatment 
Grade 
Age-Treatment*Grade 
anegrees of freedom 

31 
7 
3 

21 

tFh ssb -----LoE~---PMD ~- ----sMb sTb 

4251.44* 
2970.20* 
1016.35* 
282.51 

8347.00* 
2689.62* 
2302.51 * 
2758.39* 

2738.50* 
1948.32* 
371.32* 
419.02 

2761.47* 
1839.52* 
656.39* 
290.46 

6058.81 * 
1938.83* 
2880.50* 
1385.11* 

14,387.93* 
4361.74* 
7963.64* 
2124.09* 

btF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, SM=semimembranosus, ST=semitendinosus 
*P<.01 

Table 4. ANOVA table of dependent variable- average Warner-Bratzler shear values sorted by muscle for contrasts. 
Source DFa Sum of Squares 

IFb sso-- --- -i.ob-- -- - --iJMo --- -- s rVib - sfo 
Model 22 80.47* 78.64* 131.57* 25.93* 56.07* 190.04* 
Age 3 64.37* 16.69* 106.51* 3.03** 11.63* 143.32* 
Treatment 1 .00 .53 .18 .10 4.20** 1.08 
Age*Treatment 3 1.56 .71 2.05 1.32 3.61 2.41 
Grade 3 3.24** 38.46* 9.69* 3.57** 17.74* 37.01 * 
Age*Grade 9 10.69* 16.90* 9.48 14.45* 13.33 3.74 
Treatment*Grade 3 .88 2.55** 3.67 3.65** 5.12 1.27 
anegrees of freedombiF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, SM=semimembranosus, 

ST =semitendinosus 
*P<.01 
**P<.05 



Table 5. Time required for steaks to reach 70°C internal temperature on an impingement 
oven set at 177°C. 

IF 
ss 
LD 
PM 
SM 
ST 

TIME (MINUTES)b 
10:35 
10:15 
13:00 
10:00 
12:00 
11:00 

MEANC 
4.8 sec/gm 
3.7 sec/gm 
2.3 sec/gm 
5.2 sec/gm 
4.0 sec/gm 
5.9 sec/gm 

a IF =infraspinatus, S S=supraspinatus, LD=longissimus, PM=psoas major 
SM=semimembranosus, ST=semitendinosus 

l:Yrime required for steaks to reach 700C internal temperature at the geometric center of 
the steak 

cseconds required per gram of each muscle 
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Table 6. Effect of aging period and treatment a on percentage cook loss. 

A!:,ring Period 
2 7 14 

Muscleb A B SEd A B SEd A B SEa A 

IF 24.3C 22.7f .43 22.6 23.8 .58 25.4 25.5 .41 26.7 
ss 27.9 26.7 .39 28.4 28.1 .34 28.2 28.5 .62 23.8e 
LD 26.5 26.1 .42 22.8 23.4 .33 24.0 23.5C .46 24.2 
PM 23.4e 21.9f .35 22.7 23.3 .34 22.6f 24.3C .45 24.3 
SM 25.1 24.6 .43 24.6 24.7 .47 25.0 25.4 .53 25.5 
ST 25.1e 22.6f .72 23.9e I8.of .85 24.4e 18.7f .83 19.8f 

aTreaunent A=aged before frozen; B=frozen before aged 
biF=infraspinatus. SS=supraspinatus. LD=1ongissimus: PM=psoas major; SM=semimcmbranosus, ST=semitendinosus 
dstandard error 
e.fMeans in the same row within same aging period with different superscripL'; differ (P<.05) 

21 

B SEa 

26.6 .48 
19.9f .86 
24.9 .38 
24.6 .47 
25.1 .62 
24.6e .63 
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Figure l. Age and treatn1ent on percentage cook loss within rnuscles. 
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MUSCLES: IF=infraspinatus, SS=supraspinatus, LD=Iongissimus, 
PM=psoas major, SM=scmimembranosus, ST=semitcndinosus 

TREATMENTS: 1 (Solid line)=agcd before frozen 
2 (Dashed line)=frozen before aged 
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Table 7. Effect of aging period and treaunenta on percentage total moisture lossb. 

2 7 
Aging Period 21 

14 

Musclec A B SEd A B SEd A B SEd A B SEd 

IF 29.0C .54 26.6f 29 .3e .63 --3().()f 32.1 e .54 3T9f 34.6c .64 

ss 34.4 33.4 .61 34.7 36.6 .51 32.1 40.8 .98 30.8 28.8 1.08 
LD 32.4 32.2 .47 28.6f 31.8e .49 28.5f 31.8e .61 29.7f 35.3e .54 
PM 28.6e 26.6f .48 26.9 28.1 .49 27 .7f 30.6e .65 30.7f 32.9e .64 
SM 33.0 33.1 .60 33.2f 37.0e .64 33.2f 38.2e .79 34.0f 37.JC .89 
ST 36.8e 33.1 f 1.01 32.2e 29.1 f 1.01 32.6e 28.9f 1.07 25.9f 33.3e .90 

aTreaunent A=aged before frozen~ B=frozen before aged. 
bcombination of purge/thaw and cook loss 
CfF=infraspinatus, SS=supraspinatus, LD=longissimus; PM=psoas major; SM=semimembranosus, ST=semitendinosus 
dstandard error 
c.fMeans in the same row within same aging period with different superscripts differ (P<.05) 
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Figure 2. USDA quality grade on percentage moisture within muscles. 
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Figure 3. USDA quality grade on percentage intramuscular fat within muscles. 
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Figure 4. USDA quality grade on percentage protein within muscles. 
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Table 8. USDA quality grade on Wamer-Bratzler Shear values within muscles. 
USDA Quality Gradea 

MUSCLEb LS HS LC AC SEC 
IF 3.6d 3.6d 3.6d 3.4e .03 
ss 4.3r 4.7e 4.3r 5.td .03 
LD 4.3d 4.2d 4.0C 4.4d .04 
PM 3.4d 3.4d 3.2c 3.4d .03 
sM s.ore 4.ser 4.6r s.2d .os 
ST 4.7e 5.2d 4.8c 5.4d .03 
aLS=low Select, HS=high Select, LC=low Choice, AC=average Choice 
biF=infraspinatus, SS=supraspinatus, LD=longissimus, PM=psoas major, 
SM=semimembranosus, ST=semitendinosus 

CStandard error 
d,cJMeans in same row with different superscripts differ (P<.05) 
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