
USE OF RAMP TESTS TO OBTAIN INVERSE

NEURAL NETWORK PROCESS MODELS

By

PAUL A. BELCHER

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1996

USE OF RAMP TESTS TO OBTAlN INVERSE

NEURAL NETWORK PROCESS MODELS

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGMENTS

I would like to thank my thesis adviser Dr. Rob Whiteley for his guidance,

suggestions, patience, and encouragement throughout my research experience. I want to

give special thanks to my wife Megan. She is understanding and always takes the time to

listen and understand. She has been an instrumental part of my success and I greatly

appreciate it. I am also very thankful for the support of my entire family, especially my

parents, throughout college. I would also like to thank Dr. Karen High, Dr. Alan Tree,

and Dr. Rob Whiteley for providing me with enjoyable experiences interacting with

students and the opportunity to encourage them. In addition, I want to thank Dr. Alan

Tree for his time and effort which made my transition to chemical engineering virtually

seamless. I want to thank Dr. Karen High and Dr. A.B. Johannes for being on my

committee and for their suggestions. I want to thank the entire School of Chemical

Engineering faculty for providing me with an enriching and rewarding graduate school

experience. The friendships I have made with some faculty members are invaluable.

Finally, I want to thank the School of Chemical Engineering for financially supporting me

during graduate school.

111

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION.. 1

Motivation .. 1
Problem. ..]
Solution. .. 2

II. BACKGROUND... 3

Model-Based Control .. 3
Classical Feedback Control .. 3
Internal Model Control .. 5
Development ofModel-Based Control. 5

Neural Networks in Control. .. 7
Neural Networks as Process Models 8
Neural Networks for Fault Detection and Diagnosis 9
Neural Networks in Advanced Control Strategies. 10
Improving the Performance of Neural Networks. 13
Other Applications of Neural Networks 14
Neural Networks as Inverse Process Models 15

III. INVERSE PROCESS MODELS .]8

What is an Inverse Process Model . 18
Why Use an Inverse Process Model. 21
The Function Approximation Problem . 27
Anticipated Improvements Using Ramp Inputs 32
Simulated Nonlinear CSTR with Time Delay was Implemented to Study

Performance 34
Offset and Disturbance Rejection Capabilities 38
Closed-Loop Perfonnance Without Model Mismatch Correction 40

Setpoint Changes. 40
IS and lR Model Error . 41
Comparison of IS, IR and ElR Models for

Setpoint Changes. 46
IS Models. 46
IR Models. 59

IV

Chapter Page

EIR Models . 75
Comparison of IS, IR, and EIR Results 91

IV. APPLICATION OF INVERSE PROCESS MODELS FOR CONTROL 95

Integration of an Inverse Model into an IMC Control Strategy 95
Control Algorithm 95
Tuning Parameters and Model Mismatch 95

Closed-Loop Performance With Model Mismatch Correction 97
Setpoint Changes. 97
Comparison of IS, IR, and EIR Models for

Setpoint Changes. 98
Disturbance Rejection 105
Comparison of IS, IR, and EIR models for

Disturbance Rejection 111

V. CONCLUSIONS 120

VI. RECOMMENDATIONS 122

REFERENCES 124

APPENDIX A 129

Neural Network Mechanics 130
A Single Neuron .13 I
A Layer of Neurons 134
Multiple Layers of Neurons 134
Characteristics of Neural Networks 137

APPENDIX B 140

How to Obtain an Inverse Process Model Using Neural Networks 141
Neural Network Type 141
Neural Network Architecture 142
Neural Network Activation Functions 142
Neural Network Initialization ,143
Neural Network Training Method 144
Neural Network Training Algorithms 145
What to use as Network Inputs and Outputs 146
Neural Network Structure 148
How to Obtain Neural Network Training Data 150

v

LIST OF TABLES

Table Page

1. Summary of IS, IR, and EIR Integral Absolute Errors 76

II. Summary ofIS, IR, and EIR. Neural Network Models Studied 93

VI

Figure

LIST OF FIGURES

Page

1. Classical Feedback Control Structure. .. 4

2. Internal Model Control Structure .. 6

3. Representation of a Forward Process Model 19

4. Representation of an Inverse Process Model 20

5. Servo Controller . 23

6. Inverse Neural Network Process Model Structure 24

7. Inverse Neural Network Control Structure 26

8. Effects of the Number ofTerms Used in a Fourier Series on the
Accuracy of Square and Triangular Waves 29

9. Nonlinear Continuous Stirred-Tank Reactor System Used in this Study 35

10. Examples of Step and Ramp Input Training Signals 36

11. Step Test Data Used as Training Data for aU Step-Trained
Inverse Process Models 42

12. Step Test Data Used as Validation Data for all Step-Trained
Inverse Process Models. 43

13. Ramp Test Data Used as Training Data for all Step-Trained
Inverse Process Models. 44

14. Ramp Test Data Used as Validation Data for all Step-Trained
Inverse Process Models 45

15. T(t+2) Step-Trained Inverse Process Model Sum-Squared Error as a
Function of the Number of Epochs for the Training Set and Test Set 47

VB

Figure Page

16. T(t+2) Step-Trained Inverse Process Model Training Set Prediction 48

17. T(t+2) Step-Trained Inverse Process Model Test Set Prediction 49

18. Setpoint Change Performance of the T(t+2) Step-Trained
Inverse Process Model . 50

19. T(t+3) Step-Trained Inverse Process Model Sum-Squared Error as a
Function of the Number ofEpochs for the Training Set and Test Set 52

20. T(t+3) Step-Trained Inverse Process Model Training Set Prediction 53

21. T(t+3) Step-Trained Inverse Process Model Test Set Prediction 54

22. Setpoint Change Performance of the T(t+3) Step-Trained
Inverse Process Model . 55

23. Setpoint Change Performance of the T(t+3) Step-Trained
Inverse Process Model with a 50% Increase of the Process Dead Time 56

24. Setpoint Change Performance of the T(t+3) Step-Trained
Inverse Process Model with a 50% Decrease of the Process Dead Time 57

25. Setpoint Change Performance of the T(t+3) Step-Trained
Inverse Process Model with a 10% Increase in the Heat ofReaction 58

26. Setpoint Change Performance of the T(t+3) Step-Trained
Inverse Process Model with a 25% Decrease in the Overall Heat Transfer
Coeffi.cient of the Cooling Jacket. 60

27. T(t+2) Ramp-Trained Inverse Process Model Sum-Squared Error as a
Function of the Number of Epochs for the Training Set and Test Set 61

28. T(t+2) Ramp-Trained Inverse Process Model Training Set Prediction 62

29. T(t+2) Ramp-Trained Inverse Process Model Test Set Prediction 63

30. Setpoint Change Performance ofthe T(t+2) Ramp-Trained
Inverse Process Model . 65

31. T(t+3) Ramp-Trained Inverse Process Model Sum-Squared Error as a
Function of the Number ofEpochs for the Training Set and Test Set 66

VllI

Figure Page

32. T(t+3) Ramp-Trained Inverse Process Model Training Set Prediction. 67

33. T(t+3) Ramp-Trained Inverse Process Model Test Set Prediction 68

34. Setpoint Change Performance of the T(t+3) Ramp-Trained
Inverse Process Model , , , 69

35. Setpoint Change Performance of the T(t+3) Ramp-Trained
Inverse Process Model with a 50% Increase of the Process Dead Time 71

36. Setpoint Change Performance of the T(t+3) Ramp-Trained
Inverse Process Model with a 50% Decrease of the Process Dead Time .. , . 72

37. Setpoint Change Performance of the T(t+3) Ramp-Trained
Inverse Process Model with a 10% Increase in the Heat of Reaction. 73

38. Setpoint Change Performance of the T(t+3) Ramp-Trained
Inverse Process Model with a 25% Decrease in the Overall Heat Transfer
Coefficient of the Cooling Jacket. 74

39. T(t+2) Equivalent Ramp-Trained Inverse Process Model Sum-Squared
Error as a Function of the Number of Epochs for the Training Set
and Test Set , , , 77

40. T(t+2) Equivalent Ramp-Trained Inverse Process Model
Training Set Prediction . 78

41. T(t+2) Equivalent Ramp-Trained Inverse Process Model Test Set Prediction .. 79

42. Setpoint Change Performance of the T(t+2) Equivalent Ramp-Trained
Inverse Process Model . , , 81

43. T(t+3) Equivalent Ramp-Trained Inverse Process Model Sum-Squared
Error as a Function of the Number of Epochs for the Training Set
and Test Set 82

44. T(t+3) Equivalent Ramp-Trained Inverse Process Model
Training Set Prediction . 83

45. T(t+3) Equivalent Ramp-Trained Inverse Process Model Test Set Prediction .. 84

46. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model . , _ 85

IX

Figure Page

47. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model with a 50% Increase of the Process Dead Time 87

48. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model with a 50% Decrease of the Process Dead Time 88

49. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model with a 10% Increase in the Heat ofReaction 89

50. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model with a 25% Decrease in the Overall Heat Transfer
Coefficient of the Cooling Jacket 90

51. Setpoint Change Performance ofthe T(t+3) Step-Trained Inverse Process
Model Using a CHSF of 2 without Model Mismatch Correction Enabled.... 100

52. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model Using a CHSF of2 with a 50% Increase of the Process Dead Time
without Model Mismatch Correction Enabled .101

53. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model Using a CHSF of 2 with Model Mismatch Correction Enabled.102

54. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of2 without Model Mismatch Correction Enabled.... 103

55. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of2 with a 50% Increase of the Process Dead Time
without Model Mismatch Correction Enabled .104

56. Setpoint Change Performance ofthe T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of 2 with Model Mismatch Correction Enabled.106

57. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model Using a CHSF of 2 without Model Mismatch
Correction Enabled. I07

58. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model Using a CHSF of2 with a 50% Increase of the
Process Dead Time without Model Mismatch Correction Enabled108

x

Figure Page

59. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model Using a CHSF of 2 with Model Mismatch
Correction Enabled. .109

60. Disturbance Rejection Performance of the T(t+3) Ramp-Trained
Inverse Process Model Using a CHSF of 1 with Model Mismatch
Correction Disabled .112

61. Disturbance Rejection Performance of the T(t+3) Step-Trained
Inverse Process Model Using a CHSF of2 with Model Mismatch
Correction Enabled. .. .114

62. Disturbance Rejection Performance of the T(t+3) Ramp-Trained
Inverse Process Model Using a CHSF of 2 with Model Mismatch
Correction Enabled. .115

63. Disturbance Rejection Performance of the T(t+3) Ramp-Trained Inverse
Process Model 10 Degrees Above the Operating Point of the Training
Data Using a CHSF of 2 with Model Mismatch Correction Enabled 116

64. Disturbance Rejection Performance of the T(t+3) Ramp-Trained Inverse
Process Model 10 Degrees Below the Operating Point of the Training
Data Using a CHSF of2 with Model Mismatch Correction Enabled 117

65. Disturbance Rejection Performance of the T(t+3) Equivalent Ramp-Trained
Inverse Process Model Using a CHSF of2 with Model Mismatch
Correction Enabled. ,119

A-I. A Multiple Input Neuron 132

A-2. Matlab Representation of a Multiple Input Neuron 133

A-3. A Layer ofMultiple Input Neurons , 135

A-4. Matlab Representation ofa Layer ofMultiple Input Neurons , .. 136

A-5. Multiple Layers of Neurons 138

A-6. Matlab Representation of Multiple Layers of Neurons 139

B-1. Nonlinear Continuous Stirred-Tank Reactor 147

B-2. A Sample of Pulsed, Stepped, and Ramped Signals , 152

Xl

NOMENCLATURE

A Amplitude

C Actual process output

C Predicted process output

CHSF Control Horizon Scaling Factor

CMAC Cerebellar Model Arithmetic Computer

CSTR Continuous Stirred-Tank Reactor

DMC Dynamic Matrix Control

E Error

EIR Equivalent Inverse Ramp

G Actual process

G Process model

Gc PID Controller

Gc* IMC Controller

IMC Internal Model Control

lR Inverse Ramp

IS Inverse Step

K Controller gainc

L Process disturbance

MAC Model Algorithmic Control

Xll

MlMO Multiple Input, Multiple Output

MPC Multi-step Predictive Control

MPHC Model Predictive Heuristic Control

n A harmonic frequency of a function £(t)

N Number of sampling periods

NIMC Nonlinear Internal Model Control

P Input to process

P Bias value

PID Proportional, Integral, Derivative

PRBS Pseudo Random Binary Signal

R Setpoint

R Adjusted setpoint

SISO Single Input, Single Output

t Time

't J Reset time

't D Derivative time

ro Frequency

X111

CHAPTER I. INTRODUCTION

Motivation

Problem

In recent years there has been an increasing interest in neural networks and their

possible applications in process control. Process control systems have become

increasingly more complex in order to meet the need for increased manufacturing

productivity. While traditional proportional, integral, derivative (PID) control methods

are adequate most of the time, there are a number of control problems in which the PID

strategy fails, especially when the process is very nonlinear and has large delays. In most

cases, classical control methods will work with these types of systems, but they usually

yield poor results. In others, a robust control system with capabilities beyond those of

traditional control techniques is necessary to maintain optimum performance. Achieving

this optimum performance may require the precision control of a dynamic system for

which there may be either no attainable model or any model that is obtained will be highly

uncertain (Sheppard et al., 1992). Thus, a more advanced control strategy is necessary.

One powerful and practical control technique that has been developed is internal

model control (!MC). IMC is a generic term for a widely used class of process control

algorithms. The general idea is simple. A process model is used on-line to adjust the

available manipulated variables in response to disturbances, changing goals, etc. While it

has been demonstrated that IMC can often satisfy these demanding requirements, there is

one weak link in the strategy - the accuracy of the process model.

1

Solution

Neural networks are attracting interest as process models for IMC as well as other

advanced control schemes, such as multi-step predictive control (MPC), dynamic matrix

control (DMC), and adaptive control (Su et at., 1992a). Selection of a reasonable model

structure based on first principles usually requires many months of effort on the part of a

modeling specialist (Ricker, 1991). Even then, there is no guarantee that the resulting

model will describe a complex process with sufficient accuracy for use in IMC. One

alternative to this classical approach is the formulation ofwhat are essentially empirical

nonlinear models through the use of neural networks. While neural networks have already

been successfully implemented in many applications, their potential for use in IMC has not

been fully exploited.

It is difficult to obtain an inverse process model capable ofproviding good overall

performance using traditional step tests. As a result, there has been minimal research

devoted to evaluating inverse neural network models for use in !MC. This study evaluates

the use of ramp tests to obtain inverse neural network models. This represents an

alternative approach, which. has not been previously considered in the literature. The

approach is appealing theoretically and practically. Results show the approach to be very

prorrusmg.

2

CHAPTER n. BACKGROUND

Model-Based Control

Internal model control (WC) is derived from multi-step predictive control (MPC).

IMC is the base case of MPC, since IMC only makes one prediction of the controlled

variable(s) to determine the best input for the manipulated variable(s), while MPC makes

several future predictions to determine an optimal set of control moves for each

manipulated variable that will minimize the error between the predicted output and a

specified trajectory for each controlled variable. A comparison of the classical feedback

control structure to the one used in IMC will help one better understand the IMC strategy.

Classical Feedback Control

Figure 1 is a block diagram of the classical feedback control strategy. In the

figure, R is the setpoint, C is the output of the system, L represents a disturbance, G is the

process, P is the input to the process, and E is the error (R-C) that is input to the

controller Gc. Those familiar with PID controllers know that the error E is directly used

to obtain a new input to the process P through the use of proportional, integral, and

derivative contributions using the formula

- [1 rt
(.) '" dE]p(t)=P+Kc E(t)+~JoEt dt +'t0dt (1)

where P is the bias value, Kc is the controller gain, 't[is the reset time, and 'tl) is the

derivative time. This method does not consider future behavior of the process and, as a

result, is shortsighted in its selection of control moves. This can often result in excessive

overshoot, long settling times, and overaggressive control actions since one must make a

3

Controller Process

L

R

Figure 1. Classical Feedback Control Structure

4

tradeoff between disturbance rejection and setpoint change capabilities when tuning a PID

controller.

Internal Model Control

The IMC design method is based on an assumed model of the plant that relates

process inputs to process outputs. To better understand the fundamental differences

between the way a classical PID controller and an IMC controller function, consider

Figure 2. In Figure 2, R is the setpoint, C is the actual output of the system, C is the

predicted output from the model G, L represents a disturbance, G is the process, P is the

input to the process and the model, the control1er is Gc*, C- C is the model mismatch, and

R is the adjusted setpoint (R-(C- C)). It should be noted that the model mismatch C- C

can occur as a result of modeling error, process changes, disturbances, or any combination

of the three. The IMC control strategy has many advantages over the classic PID control

strategy. Some advantages include inherent anti-windup, which can decrease overshoot

and settling time, and the ability to compensate for process dead time by looking past it to

determine a control action, which prevents the controller from being overaggressive,

Seborg et al. (1989) state that there are two important advantages to using the IMC

approach: it has the ability to explicitly account for any model uncertainty and it allows

the designer to balance control system performance with control system robustness to

process changes and modeling errors.

Development ofModel-Based Control

The idea of model predictive heuristic control (IvlPHC), a type of MPC strategy

that uses impulse responses to represent the system was introduced by Richalet et al.

(1978). They successfully applied this strategy to three different industrial processes and

5

Controller Process

l

R

c

C-C
Internal Model

Figure 2. Internal Model Control Structure

6

were able to achieve significant cost savings for each process. Their success quickly

established the idea of optimal and robust control as a very attractive control alternative.

The initial success ofMPC led to research on the stability and robustness of model

algorithmic control (MAC) strategies by Rouhani and Mehra (1982).

An excellent paper that summarizes the various control strategies based on the

MPC concept and how they compare and relate to each other, as well as to traditional

methods, was presented by Garcia et at. (1989). The paper helped establish the idea that,

for nonlinear multivariable process control problems, the MPC approach is very

advantageous.

A good text on IMC has been provided by Morari and Zafiriou (1989). It covers

single input, single output (SISO) and multiple input, multiple output (MIMO) IMC

design in detail and includes a chapter on robust stability and performance.

Neural Networks in Control

Neural networks can be very powerful tools when used properly. However, there

are a few rules that should be followed. Any good textbook on neural networks, such as

Zurada (1992), should provide an adequate starting place for someone who wants to learn

about neural networks. There are a number of articles in the literature that do a good job

of summarizing the more important aspects of neural networks and can help determine

whether or not using a neural network should be considered. An excellent paper

summarizing various types of neural networks and how they function in general was

presented by Hammerstrom (1993). Background discussion on neural network mechanics

7

is located in Appendix A. The fonowing represents an overview of how neural network

models have been employed in the process industries.

Neural Networks as Process Models

Neural networks have been tested in empirical data modeling applications and

compared to conventional statistical techniques by Cheung et al. (1992). One advantage

of having a good model ofprocess data is that there are many process variables that

cannot be measured frequently enough, if at all, while the system is on-line. Furthermore,

if the modeling predictions are accurate enough, they can be used to control or monitor a

process. The researchers carried out studies comparing the performance ofneural

networks and linear regression methods in estimating product stream properties on two

different fractionators. They had hoped that the neural networks would extract the

nonlinearities of the process data, but they discovered that one of the limitations of neural

networks is that excessive noise will mask the nonlinearities in the data.

Karim and Rivera (1992) used neural networks to estimate bioprocess variables.

They compared the performance of feed forward and recurrent neural networks in

learning, recalling, and generalizing the nonlinear behavior of a fermentation process.

While they found that both types of networks performed adequately as unmeasureable

state estimators and had good recall abilities, the recurrent network did a much better job

of generalizing.

The applications of radial basis function networks in process modeling and control

have been investigated by Hofland et al. (1992). They compared the performance of

radial basis function networks to sigmoidal activation function feed forward neural

8

networks using data from an industrial penicillin fermentation process. Their study

showed that radial basis function networks are capable of representing data more

accurately than feed forward networks when applied to biomass estimation.

Neural Networks for Fault Detection and Diagnosis

Use ofneural networks for fault detection in heat exchangers was investigated by

Himmelblau (1992). Deviations from normal states of measurement and internal faults

were detected and diagnosed using neural networks, linear discrimination, and nearest

neighbor classification. It was discovered that the neural networks and clustering methods

were both very sensitive and superior to linear discrimination methods. Furthermore,

using neural networks for classification does not require that any assumptions be made

about the probability distribution characteristics of the data, which is a definite advantage.

Implementation of several types of neural networks in the role of process fault

diagnosis was evaluated by Sorsa and Koivo (1993). Networks that were compared

include the multilayer perceptron, radial basis function, nearest-neighbor rule, ART2, and

Kohonen feature maps. They pointed out that, in practice, the defi.nition of different fault

situations is a difficult problem. As a result, neural networks trained in an unsupervised

learning mode provide a promising method for fault detection and diagnosis and that the

next step is to experiment using this technology on real processes.

Hsu and Yu (1992) have incorporated self-learning, based on the reinforcement

learning feature of a neural network, into a qualitative/quantitative model-based diagnostic

system. They noted that a self-learning feature makes the qualitative/quantitative model-

9

based diagnostic system more attractive in practical applications since it requires much less

engineering effort.

Kavuri and Venkatasubramanian (1993) replaced the linear activation function

typically used in feed forward neural networks with an ellipsoidal one and developed an

algorithm that would generate or terminate hidden nodes. The use ofan ellipsoidal

activation function provides bounded regions and, as a result, the network is able to

overcome the problem ofgeneralization that is usually encountered when using linear

activation functions. Making the network structure adaptive allows the network to

increase in size so that it has sufficient representational capacity or to decrease in size by

eliminating nodes that are not contributing to the representation.

Neural Networks in Advanced Control Strategies

Various types of neural networks have been employed for use in advanced process

control strategies. Su et aJ. (1992a) used recurrent neural networks to obtain a process

model for use with what they call a neural network model predictive control al.gorithm

(NNMPC). They claim that it is a DMC-like, model-predictive approach. In this setup,

the neural network is used to obtain multiple future predictions of plant behavior, based on

a combination of present and past information, while also optimizing the future trajectory

to the desired setpoint when selecting each control action. This strategy was implemented

with great success using a simulation of a complex industrial reactor that consisted of

more than forty coupled nonlinear differential equations that had been obtained from first

principles modeling.

10

A neural network was used in a generalized predictive model-based control

algorithm to control an experimental furnace by Sheppard et ai. (1992). The neural

network was trained with only a small amount of data from one furnace experiment, yet

performed extremely well when used for control within the bounds of the networks

training experience.

Ishida and Zhan (1993) have developed a control strategy for a MIMO process

with time delay that incorporates four different neural networks consisting of two

prediction networks and two control networks.

Use of neural networks to assure quality control in batch processes was

investigated by Joseph and Hanratty (1993). They successfully demonstrated that a neural

network model of a nonlinear batch process can be used as the process model in a MPe

scheme to assure product quality.

The problem of how to use neural. networks for control of a system without an

objective function was addressed by Hoskins and Himmelblau (1992). They developed a

control strategy, comprised of both an evaluation network and an action network, which

relies on reinforcement learning. As a result, the control engineer must apply his/her

knowledge to specific subgoals or additional appropriate criteria in order to obtairJ

intelligent control. These criteria are crucial to the effectiveness of the reinforcement

signal.

An integrated control architecture for complex systems was proposed by Lu

(1992). This general strategy included a control and/or decision mechanism, which could

be an explicit model, a neural network, use fuzzy logic, or any combination of these. It

11

also provided for learning and adaptation of the control and/or decision mechanism and

included human input.

Hernandez and Arkun (1990) developed an extended DMC algorithm for control

of nonlinear systems when the process model is specified by a neural network. One

interesting aspect of their algorithm was the input/output structure of their neural

network. They did not input values of the predicted variable ranging from oldest to most

recent, as was done with the controlled variable. Instead, they made the window of the

predicted variable smaller by moving the most recent input to the network back in time.

The purpose for this was that, since multiple future predictions needed to be made at each

control interval, the uncertainty in the predictions could be decreased by not allowing

prediction error to compound with each future time step.

Control-relevant properties of neural network models were investigated by

Hernandez and Arkun (1992). This included stability of equilibrium points and stability of

the inverse model dynamics. Several examples were provided to support the theory that

was developed. An extended horizon controller was evaluated, and it was found that it

could provide stable control of a nonlinear system around a stable equilibrium point as

long as the selected horizon was large enough.

Psichogios and Ungar (1991) presented an excellent paper studying both direct and

indirect !Me and :MPC control strategies for SISO systems using neural networks as both

models and controllers. Performance was also compared to that when using a linear

regression model in each indirect control strategy. The linear regression model was found

12

to be inferior, as was expected, since the process they were testing the strategies on was a

nonlinear continuous stirred-tank reactor (CSTR).

Three different nonlinear controller strategies were compared by Piovoso et ai.

(1992) and included generic model control (GMC), global linearizing feedback (GLF), and

IMe. The WC controller used a neural network as the process model and was referred to

as an IMC-NN scheme. The GMC was implemented using a neural network as a

functional approximator, called GMC-NN, in addition to just using the equations that

described the process.

Improving the Perfonnance of Neural Networks

Kramer et al. (1992b) have studied the use of a hybrid network that incorporates

both neural networks and first principles models. They developed a new hybrid network

architecture that accounts for constraints that must be satisfied for all future network

inputs. The perfonnance ofboth backpropogation and radial basis function neural

networks in this proposed strategy was evaluated. It was found that using a radial basis

function network assures that the hybrid model predictions conform to prior knowledge in

the absence of calibration data.

Su et at. (1992b) developed a method of training neural networks that can increase

their accuracy when used in advanced control strategies requiring multiple future

predictions, such as MPe. What they have essentially done is, rather than training the

network as a one step ahead predictor and then simply chaining it to itself as many times

as needed to obtain the desired future prediction, they chained the network to itself during

training. They refer to this procedure as a parallel identification method. They evaluated

13

it using both feed forward and recurrent neural networks to obtain long-tenn and multiple­

step predictions and found the recurrent network to be superior. Therefore, they

recommended using a recurrent network for MPC applications.

The idea of hierarchical neural networks was investigated by Mavrovouniotis and

Chang (1992). Their hierarchical network consisted of individual subnets combined to

fonn the complete network, with the idea that each subnet will capture some particular

aspect of the input data. They claim that organizing the variables into related sets and

then structuring the network as a multiple hierarchy of subnets supplies the neural network

with hints as to which directions are the most promising to find patterns. However, this

approach requires some a priori knowledge of the structure and behavior of the system

being modeled.

A discussion on combining expert systems and neural networks to form expert

networks was given by Caudill (1991). Several different strategies were evaluated. These

included divide and conquer, embedded neural networks, explanation by confabulation,

and artificial expert.

Other Applications ofNeural Networks

Rehbein et ai. (1992) recommended various possible applications of neural

networks in the process industry. These included the following: process models, process

optimization, open-loop advisory systems, prediction of product quality values, predictive,

multivariate, statistical process control, predictive maintenance scheduling, sensor

validation, and closed-loop real-time control. They also noted that some chemical

companies have had significant success using neural networks.

14

Autoassociative neural networks have been investigated by Kramer (1992a) for use

in noise filtering, missing sensor replacement, and gross error detection and identification.

A comparison was made with linear methods of noise filtering and gross error removal and

it was determined that the autoassociative network perfonned much better.

Neural networks were used successfully by Osborne (1992) to obtain more

accurate estimates of reservoir penneability. Use of neural networks as opposed to

regression methods almost doubled a correlation coefficient when comparing core-derived

permeability to predicted permeability.

Neural Networks as Inverse Process Models

A paper by Kasparian and Batur (1992) presents a neural network structure that

employs two feed forward neural networks. One network learns the forward dynamics of

the process to be controlled while the other network learns the inverse dynamics of the

neural network process model. They evaluate the performance of the proposed neural

network control structure on a dynamical second order simulated process.

An article by Moran and Nagai (1993) presents the method used to obtain a neuro­

observer that identifies the inverse dynamics of the front suspension of a vehicle. This

allows front road disturbances to be identified so that they can be used to improve the

response of the rear suspension.

Kyung et al. (1994) present a nonlinear compensation method for trajectory

control of robotic manipulators based on multi-layered neural networks. A simple

acceleration based learning scheme has been proposed for the promotion of the adaptation

capability of the neural network feedforward controller. The feasibility of the proposed

15

learning scheme was demonstrated through computer simulations compared with the

conventional learning scheme.

Nikolaou and Hanagandi (1993) presented an integrated methodology for the

modeling and controller design ofnonlinear dynamical systems. Their three~step

methodology was tested on a CSTR and shown to perform better than a linear, optimally­

tuned controller.

Normandin et al. (1994) considered the control of a continuous stirred tank

fermenter using a neural network model in a predictive control strategy. It was shown

that a relatively simple neural network, developed as a one-step ahead predictor, can be

used recursively to predict accurately the biomass and the substrate concentrations many

sampling periods in the future.

Eskandarian et al. (1994) developed a hybrid dynamics-CMAC (Cerebellar Model

Arithmetic Computer) algorithm which has the advantage of reduced memory

requirements and improved computational speed over the previous application of CMAC

as a trainable and learning robot controller. Test cases indicated a successful application

of the developed hybrid dynamics-CMAC method for simulation as well as control of

robotic manipulators.

Zhang et at (1994) developed and implemented a prototype neural network-based

supervisory control for Bacillus thuringiensis fermentation. The results from the

simulation and experimental results of the neural network controller were compared. The

technique was capable of improving the control performance of the fermentation process.

16

Monis et al. (1994) provide a good summary on the current status of neural

networks and their role in process control.

Nahas et al. (1992) propose a strategy for neural network models in nonlinear

internal model control (NIMC). The NIMC consists of a model inverse controller and a

robustness filter with a single tuning parameter.

Thibault and Grandjean (1991) have provided an excellent survey paper on neural

networks. The paper reviews the fundamentals of feedforward neural networks as well as

the various neural network-based control strategies, making use ofthe plant and/or plant

inverse neural models.

17

CHAPTER m~ INVERSE PROCESS MODELS

What is an Inverse Process Model

With any process there are inputs and outputs, and, for any given set of inputs a

unique set of outputs is generated. That is, there is a distinct mapping between the inputs

and outputs of a dynamic system. A forward process model should be able to accurately

describe this mapping. Figure 3 represents a generic forward process model where inputs

A and B produce an output C. For many processes, this relationship is easy to obtain

through a first-principles analysis of the system. For nonlinear systems, the system can be

modeled using nonlinear equations that are eventually linearized for use in a control

strategy. Other methods obtain process models through the use of open-loop response

data. These models assume a general form, usually a first- or second-order model with

time delay, for use in a control strategy. While all ofthese methods can be very powerful,

there are systems where this type of model approximation will not provide adequate

controller performance. This often occurs when a system has variable time delays that are

difficult to model or when some of the processes are not fully understood, or both.

Furthermore, some systems are very complex, and the interactions between various

process input and output variables may be difficult or impossible to predict and model.

An inverse process model is one that is capable of providing the set of process

inputs that will produce a given set of process outputs. Figure 4 represents a generic

inverse process model, where the output C generates the inputs A and B that produced it.

To obtain an inverse process model, also known as an inverse plant, one must know how a

18

A---.......

B---....;w

J----~c

Figure 3. Representation of a Forward Process Model

19

C-----Jl'.
}-----+A

l-----~B

Figure 4. Representation of an Inverse Process Model

20

system behaves in reverse. While this backwards process is sometimes intuitive, it usually

involves enough parameters to make the reverse reasoning process extremely difficult.

For example, consider a process where two numbers are summed. Because one knows

how the process works, one can predict the correct output glven any two inputs.

However, one might not understand the process well enough to predict the relationship in

reverse, or, as in this case, it may be too complicated, with any given output being

generated by more than one set of inputs. For example, if a given output was four, the

inputs could be zero and four, one and three, two and two, three and one, or four and

zero. The problem becomes even more complex if some of the combinations are

physically impossible based on the previous behavior of the system.

Why Use an Inverse Process Model

The main advantage of an inverse process model is that it does not have to be

inverted each time a control move is needed. It can be difficult and computationally

inefficient to solve for inputs using a forward process model. Furthermore, convergence

to a solution is not guaranteed. While this might only present a small difficulty when

dealing with SISO systems or smaller MIMO systems, it can become virtually impossible

to solve large MIMO systems using conventional numerical methods. While it is possible

to obtain very good forward process models for multivariable control, the limiting factor is

having the capability to mathematically solve for the inputs. This is where the inverse

process model has a great advantage. The only fundamental differences between

implementing an we controller using an inverse process model instead of a forward

21

process model are that the control inputs are calculated explicitly, removing the need to

numerically solve for them, and model mismatch is accounted for by adjusting the

controller output instead of the setpoint.

There are also many other reasons to use an inverse process model for control.

First, a perfect inverse process model would allow one to implement a perfect servo

controller. Figure 5 shows a servo controller, where R is the setpoint, C is the output

from the process G, and P is the input to the process from the controller Gc*. Gc· is the

inverse of the process G and usually includes a filter to insure that the transfer function is

proper or that derivative action is disabled. Second, it would provide offset-free control in

an IMC control strategy (see Figure 2) and have the ability to compensate for disturbances

much better than traditional control methods. Another advantage to having an inverse

process model is that it can look at past and current process information and predict future

problems, whether they might be offsets from a setpoint change or some type of

disturbance, before a conventional feedback controller. Furthermore, a model-based

control strategy will minimize overshoot associated with setpoint changes since anti­

windup effects are intrinsic to it. Finally, a model-based control system has the potential

to be adaptive. The inverse model can be updated on-line as needed to insure that the

process is always accurately modeled.

Figure 6 shows the inverse neural network process model architecture used in this

study. It has eleven inputs, one output, and two hidden layers, with eight neurons in the

first and three neurons in the second. In the figure, MV represents a coolant valve signal

and CV represents the reactor temperature. The coolant valve signal is the manipulated

variable and the reactor temperature is the controlled variable. The network outputs the

22

ProcessController

R ~ Gc* II--_p_)~1 G

Figure 5. SeJVo Controller

23

C
)

MV(t)

) ,

) 8 3
1

1)
Sigmoidal Sigmoidal Linear I

3)
N N) N
e e I

) e
u u

) u
r r

)
r

0 0
0

) n n
n

1) s s
,

CV(t-3
eV(t-2
eV(t­
eV(t)
CV(t+

MV(t-6
MV(t-5
MV(t-4
MV(t-3
MV(t-2
MV(t-

Figure 6. Inverse Neural Network Process Model Structure

24

coolant valve signal, MV(t), that will achieve a desired reactor temperature, CV(t+3). In

addition to the desired reactor temperature, the network also has as inputs the current and

past three values of the reactor temperature (CV(t), CV(t-I), CV(t-2) and CV(t-3),

respectively) and the past six signals to the coolant valve (MV(t-I), MV(t-2), MV(t-3),

MV(t-4), MV(t-5), MV(t-6».

To further clarify how this model was used in an IMC control strategy, consider

the inverse neural network model control structure shown in Figure 7. In the figure, TDL

represents transmission delay lines that simply sample and hold, at various multiples of the

sampling time, the coolant valve signal input to the process and the reactor temperature

output from the process to produce the necessary time history profile for input to the

control algorithm. The control algorithm contains the neural network model within it.

There are two primary functions of the control algorithm. These are to calculate a value

for the desired future reactor temperature input, CV(t+3), based on the setpoint and

current reactor temperature, CV(t), and to correct for model mismatch. The formula used

to obtain CV(t+3) is

CV(t+N)=CV(t)+(Setpoint-CV(t»/(CHSF) (2)

where CV(t+N) is the desired reactor temperature N sampling periods into the future that

the neural network model was trained with (in this case N=3) and CHSF is the control

horizon scaling factor. CV(t+N) will equal the setpoint when CHSF equals one. To

effectively double the number of sampling periods used to achieve the desired future

reactor temperature, one would set CHSF equal to two. This would change the effective

control horizon from N to 2N sampling periods and approximate the behavior of a neural

25

CV(t+3)-
MV(t-6) - Control. MV(t) I eV(t). Algorithm

r---MV(t-2) - Plant
......,.

r-MV(t-I)-
.c- CV(t-3)- I TDL 1 I TDL I

, INN Modell
.. ..

~eV(t-I)-

, c-CV(t)-
I

,

Figure 7. Inverse Neural Network Control Structure

26

network model trained using CV(t+2N) as the desired reactor temperature 2N sampling

periods into the future. It should be noted that the control horizon must always be greater

than the dead time of the system. The effects of adjusting the control horizon will be

discussed later.

Model mismatch is compensated for by stepping back in time and calculating the

control signal that would have been input to the process to produce the current output.

The difference between the control signal that was actually input to the process and the

one that would have been input to produce the current output is then added to the current

control signal output.

The Function Approximation Problem

One is essentially approximating a function when training a neural network. For

example, one could take a data set generated using an algebraic formula and then train a

neural network to learn that formula. The resulting network would be able to accurately

predict the output of any given input over the range of inputs used in training. While a

neural network can extrapolate out of the region in which it has been trained, it is

generally not a good idea to do this. Usually, the neurons in a network will saturate when

it attempts to extrapolate too far from its trained region and, as a result, will output a

constant value at some point.

The step test data that is being approximated is simply a square wave with varying

amplitude. A square wave can be approximated using an infinite series of sines or cosines,

27

also known as a Fourier series. Each neuron in a neural network is synonymous with one

sine or cosine term in a Fourier series. A square wave is defined as,

4A "" 1
f(t) =- L - sin(nrot) (3)

1t 0=1.3.5. n

where t is time, ro is the frequency, A is the amplitude, and n is a harmonic frequency of

f(t). Thus, a neural network would need an infinite number of neurons to be able to

approximate the square wave perfectly. Because it is not computationally feasible to use a

very large number ofneurons in a network, the accuracy that can be achieved with a fmite

number of neurons is not adequate to approximate the step test data. However, this is not

the case with the ramp test data.

The ramp test data is essentially a triangular wave with varying amplitude. A

triangular wave can also be approximated using a Fourier series. A triangular wave is

defined as,

where t is time, ro is the frequency, A is the amplitude, and n is a harmonic frequency of

f(t). Like the square wave, the triangular wave will also need an infinite number of terms

to make a perfect approximation. However, it will not need as many terms to achieve the

same accuracy as the square wave since the changes in slope are not as radical. In other

words, the square wave is a series of infinite slope changes and, as a result, is very difficult

to approximate. The triangular wave, however, is a series of more gradual changes and

therefore requires fewer terms to obtain a sufficient approximation. Figure 8 shows four

different approximations of square and triangular waves. The number of terms used for

28

1,5,--------r-----------,

10050

Three Terms
1.5,--------..---------,

0,5

o
-0.5

-1

-1.5 '- --'-- --...1

o10050

One Term

o
-0.5

-1

-1.5 '--------'------------'
o

Nine Terms Five Hundred Terms
1,5,--------r---------,

10050

1.5,--------..---------,

1

0.5

o
-0,5

-1

-1 ,5 '--------'----------'
o10050

-1

-1,5 '--------'----------'
o

Figure 8, Effects of the Number of Terms Used in a Fourier Series on the Accuracy of
Square and Triangular Waves

29

each (1, 3, 9, and 500, respectively) is shown in the figure. One can easily observe that a

triangular wave is much easier to approximate than a square wave. The bottom line is, if

the training function has many changes with infinite or almost infinite slopes, it will be very

difficult to obtain a good function approximation without using a large network with many

neurons. However, if the training function has slope changes that are more gradual and

less abrupt, it will be possible to obtain a satisfactory network with fewer neurons.

A major consideration when designing a neural network is what type of training set

is to be used. There are two types of data that are usually used for network training:

simulation data and actual process data. When a simulator is being used to generate

training data, it is very easy to control the level of excitation and make sure that all types

of process behavior will be represented in the training set. However, one must also be

careful to not over-excite the system, since this can cause many problems during training.

One problem that may arise if a highly excited training set is used is that the

network will exhibit an inability to properly relate the process variables. That is, if the

changes in process variables are too abrupt, the network will never get the opportunity to

properly learn how they relate to one another. The other problem that can come about

relates to the previously discussed problem concerning the type of signal used. Abrupt

changes in process variables coincide with infinite slope approximation, which is a very

unfavorable situation.

These problems are alleviated when actual process data can be obtained.

However, new problems take their place. These include redundancy in the training data,

30

noisy data, and long periods of inactivity. All three of these problems can be handled by

preprocessing the data so that noise is reduced or eliminated, and the inactive periods and

repeated or similar data are removed from the training set. However, one must be careful

not to remove too much from the training data or the data set will not be rich enough to

provide an accurate process modeL Furthermore, there may be relationships between the

process variables within the data that are not evident to the person editing the data but

may be crucial to the network performance.

There is a trade-off that must be made between how much to excite the network

and what type of function will be used when using both types of training data. If you use a

signal with infinite slopes, the network will have a hard time approximating them, but, if

you use a signal that is less aggressive, you will run the risk ofnot producing a rich

enough training set. If you use a signal that is highly excitatory, whether it has infinite

slopes or not, you will run the risk of inhibiting the ability of the network to learn the

proper relationships between process variables, but, if you use a signal that does not

provide sufficient excitation, you will end up with a process model that is not very

accurate and will not be sufficient for model-based controL The correct combination of

these two factors is what must be ultimately determined by the user when generating an

inverse process model.

31

Anticipated Improvements Using Ramp Inputs

There are two main improvements that should come about from using a ramped

input training set, as opposed to one that is stepped once the network is integrated into a

model-based control strategy: less overshoot and decreased settling time.

The amount of overshoot should be reduced when a ramped input training set is

used since a more accurate function approximation can be obtained. If one considers the

development of an approximate function for a square wave, one knows that, as each

successive term is added, the front of the wave becomes less spiked and the slope of the

top ofthe wave approaches zero. The number of neurons in a neural network is fixed at

some predetermined value; thus, there is already a limit on the accuracy that the network

can achieve while trying to approximate the stepped function. After training a network

with this type of input, one will usually observe the following phenomenon. The larger the

step change, the more overshoot, in the form of a spike, there will be, and, consequently,

for smaller step changes, the overshoot will be minimal. Thus, one can conclude that the

network has inherently learned an improper behavior. That is, the larger the step change,

the more it will overcompensate. Therefore, once the model is being used for control

purposes, it will continue to overcompensate, whether during a setpoint change or when

rejecting a disturbance.

Ramped inputs can virtually eliminate this problem, since this type of phenomenon

is almost completely abolished while using the same number of neurons and network

architecture. Because the ramped inputs are much easier to approximate, they allow a

much more accurate process model, i.e., one that more closely approximates the training

32

data, to be obtained. Thus, the network does not learn an improper behavior and, as a

result, when implemented into the control strategy, will provide control with less

overshoot than that observed when using stepped training data.

Another advantage that ramped inputs have over stepped ones is that the settling

time will decrease. Just as the step-trained networks have a tendency to overshoot, they

also tend to be oversensitive. This behavior is primarily a result of the way the model­

based controller is implemented. The step-trained controller must use steps to make

changes to the input. This is sometimes too aggressive and results in extended oscillation

about the setpoint.

On the other hand, the ramp-trained controller uses a ramp to make changes to the

input. The II ramp II is actually a discrete ramp in the sense that it is essentially made up of a

series of equal, smaller steps. Overall, this type of signal is less aggressive and results in

smoother transitions during setpoint changes and disturbance rejection. Furthermore, it

has a much smaller settling time, since it is not as burdened with having to correct for

overaggressive changes to the input.

The overshoot and settling time can be directly related to how sensitive the model

1S. If the model is too sensitive, the network will behave like the step-trained model. It

should be noted that this type of behavior might be desirable if the network is to be used

more for disturbance rejection than for setpoint changes. If the network is not sensitive

enough, it will result in sluggish setpoint changes and poor disturbance rejection. The

ramp-trained network has the ability to perform both tasks well.

33

Simulated Nonlinear CSTR with Time Delay was Implemented to Study
Performance

In this study, a simulation ofa nonlinear CSTR was used to evaluate the closed-

loop performance with and without model mismatch correction of several inverse process

model controllers. The reaction is exothermic and the exit concentration of the reactor

needs to be controlled. The two manipulated variables in the system are the volume of the

reactor, regulated by changing the level, and the flow rate of water through the cooling

jacket. It was determined that, while the level in the tank does affect the outlet

concentration of the reactor, the coolant flow has a much larger effect. This is because the

temperature of the reactor, changed by adjusting the coolant flow, is more important than

the residence time in determining the extent of conversion. Thus, it was determined that

the controller would be SIS0, with the coolant flow rate as the manipulated variable and

the reactor temperature as the controlled variable, since temperature is much easier to

control than concentration. Furthermore, it was determined that regulatory control would

be adequate for control of the level. Figure 9 shows the CSTR used in this study. As

illustrated, the coolant inlet flow rate will be manipulated to control the reactor

temperature, which will consequently change the outlet concentration.

The training data was obtained by running the reactor temperature control in open

loop mode. The training signal was input to the coolant flow valve, the manipulated

variable used to regulate the temperature of the reactor. It was important to leave the

reactor level in closed loop operation and maintain a constant reactor level since changes

in the level would have affected the reactor temperature. Two types of signals, stepped

and ramped, were utilized. Figure 10 contains examples of typical step and ramp signals

34

Feed -------,

Reactor Temperature
Controlled variable

Coolant Out <:::J------l

~-.m_-Coolant In
Manipulated variable

Product

Figure 9. Nonlinear Continuous Stirred-Tank Reactor System Used in this Study

35

Step Training Signal

~ 1
(ij

>C 0.8
('ll

g 0.6
()

0

1ii 0.4
.c:
0>

en 0.2
:i
c.

£; 0
0 50 100 150 200 250 300

Time (min)

Ramp Training Signal

~ 1
(ij

>C 0.8
('ll

g 0.6
()

0

1ii 0.4
.c:
0>

en 0.2
:i
c.
.&; 0

0 50 100 150 200 250 300
Time (min)

Figure 10. Examples of Step and Ramp Input Training Signals

36

used to generate training data. The number, period, and magnitude ofthe changes for

both types of coolant flow input signals were the same. A total of30 changes ofvarying

magnitude and direction were made every 10 minutes. The step input signals reached each

new value immediately whereas the ramp input signals required 5 minutes. This resulted

in a 9 minute relaxation period for the step input signals and a 5 minute relaxation period

for the ramp input signals. The relaxation periods between changes aided in the networks

ability to learn the inverse process dynamics.

The step tests were performed and the resulting system output was saved. Ramp

tests were then performed using the same parameters discussed above. These data files

were then used to generate training sets for various neural network inverse process

models. The same data sets were used in many different network architectures. All neural

networks used in this study were feed forward networks and employed nonlinear

logarithmic-sigmoidal activation functions defined as f{x)=l/(l +exp(-x)). Networks were

batch trained using the Levenberg-Marquardt algorithm (Marquardt, 1963) and were

validated using an independent set of test data. The network structure used for all inverse

process models was seen earlier in Figure 6. There are 8 neurons with logarithmic­

sigmoidal activation functions in the first hidden layer, 3 neurons with logarithmic­

sigmoidal activation functions in the second layer, and] neuron with a linear activation

function in the output layer. While detennining the size and structure of a neural network

is not a straightforward task, there are some general guidelines that can be followed to

obtain a network that will not simply memorize the data set or have poor generalizability.

A discussion of the detailed procedure used to generate an inverse neural network process

37

model can be found in Appendix B. Most of the methods and suggestions are very

empirical in nature. However, they all have one element in common: they assume that

one has already chosen the network architecture.

For the CSTR process, the network inputs consisted ofa time history of the 6

previous control actions and 3 past temperatures, the current temperature, and a future

desired temperature. The output of the network is the control signal that would come

closest to achieving the future desired temperature. Thus, the inverse process model

controller had 11 inputs and 1 output.

The set of inputs was chosen after much empirical investigation. It was found that,

because the network was predicting the manipulated variable, there needed to be more

information on it than on the controlled variable supplied to the network. This sort of

weighting of the inputs resulted in a much more accurate prediction of the necessary

control action. Furthermore, the extra control inputs allowed the network to better learn

the various dynamics associated with different short-term control histories.

Offset and Disturbance Rejection Capabilities

The classic IMC strategy requires feedback to complete the control strategy. This

is because a forward process model prediction is subtracted from the actual output of the

system and the difference is then added to the setpoint to drive the system to the desired

value. This type of feedback serves two very important functions. First, it provides a

method of compensating for any model mismatch errors. Second, it is the sole means in

which disturbances are rejected by the controller. Without feedback, an IMC controller

38

would simply operate blindly in a servo controller mode of operation. The neural network

equivalent of this type of controller would simply consist of a neural network forward

process model of the system replacing a more conventional type of model, such as a

transfer function or state-space model. However, the method in which the models are

inverted is quite different.

Transfer functions can be readily inverted, made proper, and then filtered. On the

other hand, inverting a neural network, especially one that has more than one manipulated

variable, is much more complicated. As a result of this complex optimization problem,

obtaining a solution becomes increasingly more difficult as the number of controlled

variables increases. Consequently, this is where the power of an inverse process model

becomes very evident.

Because an inverse process model only requires process information that is already

available (see Figure 6) and generates required control actions explicitly, there is no

optimization problem at each control period, which results in a more computationally

efficient control aigorithm. However, an inverse process model neural network controller

also requires feedback for the same reasons as forward process model neural network

controllers and classic IMC controllers do.

The best way to begin evaluating how well a neural network controller will

perform is to allow the controller to run in closed-loop mode without model mismatch

correction. This will provide one with an idea of how much model mismatch is present,

how robust the controller might be, whether or not the model is stable, how sensitive it is,

and how it will perform. It also provides a good basis to compare the performance of

39

inverse model controllers designed from two types of training data, stepped and ramped

signals.

Closed-Loop Performance Without Model Mismatch Correction

Setpoint Changes

Perforntance of the inverse step (IS) and inverse ramp (IR) controllers was

evaluated by performing numerous setpoint changes of varying magnitudes and directions

from different operating points. Setpoint changes over a wide range of magnitudes were

made in order to evaluate the performance of the neural network models in terms of

overshoot and settling times. Setpoint changes in both a positive and negative direction

were made in order to determine how well the model had learned the nonlinear dynamics

of the system. This is an important aspect of the neural network controllers, since a

conventional controller must be tuned to perform optimally for setpoint changes in both

directions, even though there is a different set of optimal controUer gains for each

direction due to the nonlinearity of the system. Finally, setpoint changes were made from

a variety of operating points above and below the one in which the model was trained in

order to determine how robust the neural network controllers were.

The controllers could not be operated in an open-loop mode since the neural

network models require feedback in the form of past temperatures and valve inputs,

However, the controllers could operate in dosed-loop mode without model mismatch

correction by simply disabling that function of the control algorithm so that it would

40

calculate a value for the desired future reactor temperature, T(t+3), based only on the

setpoint and the current reactor temperature, T(t).

IS and IR Model Error

All inverse models that were trained using ramp data achieved prediction errors an

order of magnitude smaller than those trained with step data. Thus, one would expect

these models, with the lowest errors, to provide the best performance. Equivalent inverse

ramp (EIR) models were generated to demonstrate that better controller performance is

linked to model error. To do this, an integral absolute error was calculated for all step

models and the EIR models were then trained until the errors were approximately the

same. It was virtually impossible to get them equal, since the integral absolute error could

drop an order in magnitude in one training epoch.

Results show that EIR models do perfonn similar to IS models. Furthermore, the

results to be presented demonstrate that IR models do provide performance superior to

the both the IS and ErR process models. It should be noted that all networks were trained

using data in which the magnitudes and durations of the steps and ramps were identical,

In addition, all networks were trained using the same set of initial weights. These

measures were taken to facilitate as direct a comparison as possible.

The training data used to generate all of the IS process models are show in Figure

] 1. The test data used to validate all IS process models are shown in Figure 12.

Similarly, the training data used to generate all IR and EIR process models can be seen in

Figure 13. Figure 14 shows the test data used to validate all IR and EIR process models.

41

II

1\ / II
~ V

\ 1\ f\.. 11\ / \ /
\/ \ / \ /\1 \ / \ /1\ J
v~ 1\/ \ I \/ V V \ I

\/ \V ~ V

c- rr ~

II ~ r- ---,
LJ L rn

'--

_ U L - I rLJ
~

I--
'-- l--

LL
:8 100
~
~ 95
~
~ 90
.;3,
~' 85
Q)
0-
E 80
Q)

t 75
~
I1l 70
~ 0

~ 1
(ij

>1: 0.8
11l

g 0.6
u
.s
(ii 0.4
c
Cl

U5 0.2
:;
0­
J; 0

o

50

50

100

100

150
Time (min)

150
Time (min)

200

200

250

250

300

300

Figure 11. Step Test Data Used as Training Data for all Step-Trained Inverse Process
Models

42

300250200150
Time (min)

10050

LL
III 100 ,-----r"""""--,-----,------,----.,..-------,-------,
Q)

~
~ 95/----;/'----+--+------.~----+---_I_-#-----+------I
~
~ 90/--+----+-----'\-----r"'-t+-----1-'H----+-++-----t------I

~ 85 /------+----+-+--+----\-------I~-H--_++_-t+_t----+I
Cii
c.
E 80 1------+------+---I--f---+-->..<.--+-+-+---\r--:.;----+--+I'--~----+-1
Q)

f­
.... 75 /------+----+------lL---+--...l!--+-----t--+-~--+--l
tl
co 70 '-------'-----"'-------'------'-------'-------'& 0

Jl - -.f
f--

I ~
-

~

U -, - I J
I I u nL-

r- U

~ 1
co
>
C 0.8
m

g 0.6
o
.B
(ij 0.4
c
OJ

en 0..2
'5
~ a

o 50 100 150
Time (min)

200 250 300

Figure 12. Step Test Data Used as Validation Data for all Step-Trained Inverse Process
Models

43

300250200150
Time (min)

10050

u::-
:[:100r------r-------,----,-----,----___,,------,

~
OJ 95 f------,"'lt------+----t------t---f'Ir---1-----j
Q.l

:3­
~ 90 j----;f--\--r---Ir------+----+----...,.,j--+---\-----1f-------+i

.a
~ 85 f------t-I--+-\----+---:~'r_+---___,H\-__f--+-----1I------f-l
Q.l
0­
E 80 f------+--=----\----\---+---+-+--+--\--f--Hr-+-----\-"7'--Ir----f--I

~..9 75 f-------+--------..:l,----+.~:.L.---+-+-,I------U--+-------1f-lr-"7""""'..L----l

u
l'll
Q.l

0:::

,...,

fln .--

! \) n I \ n I
U

~ I\, I fI f\
j V, I \J J \ I rJ

V \I ~
~

U

~ 1
(ij

>C 0.8
l'll

g 06
o
S
(ij 0.4
c
OJ

(f.j 0.2
:5
a.
.£ 0

o 50 100 150
lime (min)

200 250 300

Figure 13. Ramp Test Data Used as Training Data for all Ramp-Trained Inverse Process
Models

44

;---~ (1

/ \ / f\ I
J V \ 1\ I \ f\f\ r

\ I \J\/ \ / \ \ /
V v V \..-/ \ I

\./'-.J

J\ n ./
"""\

I \ /\ h

n I

V h I ~ !\) \ I
\ / \J I V [\

I-J U

LL
gJ 100
II)

0, 95
II)

-c
'; 90

~ 85
II)
Q.
E 80
II)

I-
... 75
~
t1I 70
~ 0

~ 1
(ij
>C 0.8
(tI

g 0.6
o
.s
«i 0.4
c
Cl

i:i) 0.2
'5
Q.

.£ 0
o

50

50

100

100

150
Time (min)

150
Time (min)

200

200

250

250

300

300

Figure 14. Ramp Test Data Used as Validation Data for all Ramp-Trained Inverse
Process Models

45

Comparison of IS, IR and EIR Models for Setpoint Changes

Model mismatch correction was not enabled during these tests. Disturbance

rejection capabilities were evaluated in later tests, with model mismatch correction

enabled.

IS Models

Two different IS controllers were generated. Both had II inputs and I output.

The only difference was in one of the inputs - T(t+i) where i represents the control

horizon. For this study, the horizons were chosen to be two and three times the dead

time. The sampling time was equal to the dead time. Therefore, two times the delay, or

two sampling periods, was the smallest possible horizon and provides the most aggressive

control horizon. Three times the sampling period was chosen as the other horizon for this

study, since it was found through empirical observations that controller performance

became much less aggressive (i. e. more sluggish) and, as a result, less favorable, the

farther out the horizon was set.

Figure 15 shows the sum-squared prediction error for the T(t+2) IS model versus

the number of epochs trained. All networks were trained until the sum-squared error of

the test set began to increase. Training was always halted at this point, since any further

training would degrade the networks ability to generalize. Figure 16 shows the T(t+2) IS

controller predicted input versus the actual input for the training set. Thi.s figure is

representative of the type of spiking that occurs when step data are used for training

purposes. Figure 17 shows the networks predicted input versus the actual input for the

test set. This prediction is not as good as the one for the training data and exhibits even

more spiking behavior. Figure 18 shows the results of a series of setpoint changes for the

46

10
2
rr--...,---------,,---,---,------r--...,-------"T----,---,-----,

10'

~
....

W
'0
Q)

:a 10°
::l
C'"

(J)

~
::l

(J)

10"

~------ .. ------

1009080
10.2 L..--_...l...-_---'__-'-__-'--_-l...__-'--_---'-__-'--__'--_---'

10 20 30 40 50 60 70
Epochs

Figure 15. T(t+2) Step-Trained Inverse Process Model Sum-Squared Error as a Function
of the Number of Epochs for the Training Set (-) and Test Set (--)

47

f rr
F

f:;:= fF ~
,

~
Il== ff==

, It--
,

"t==
t ,

~ ,

\II-

fl'-

tL~
~

l!=- t:
rr::

rI
~ ,

y::
f(

"

0.9

O.B

~ 0.7
"iii
>
~ 0.6
"0
o
u.s 05
"iii
c:
.~0.4
(J)

"S
~0.3

0.2

0.1

ao 50 100 150
Time (min)

200 250 300

I'"'.,'.
, '.•

Figure 16. T(t+2) Step-Trained Inverse Process Model Training Set Prediction

48

0.9

0.8

~ 0.7
(ij
>
~ 0.6
(5
o
o.s 0.5
(ij
r:::
.2'0.4
en
"S
~0.3

0.2

0.1

I,
:1

Ii.
II.".'.'.30025020010050

0'--------'-----"------1..-----1--------'---11'-----'
o

Figure 17. T(t+2) Step-Trained Inverse Process Model Test Set Prediction

49

/ VV\\
I

/ 1\/1
V\. VVVVVI\

i/ \ A A ~

I jV\ VVVVV
\1\ A 1\ 1\ 1\ /I /I /ITl

vvvv vvv

T 1

: ,

G:'
en 100
Q)

~
OJ
Q)

~ 95
~

~ 90
Qj
a.
E
~ 85
....
~
ro 80
~ 0

~ 1
ro
>c 08
('0

g 06
()

.sro 0.4
t:
OJ

Vi 0.2
:l
a.

of: 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 18. Setpoint Change Performance of the T(t+2) Step-Trained Inverse Process
Model

50

T(t+2) IS controller. The network is clearly unstable at other operating points and has a

high sensitivity, resulting in osciHation and poor tracking.

Figure 19 shows the sum-squared prediction error for the T(t+3) IS model versus

the number of epochs trained. Figure 20 shows the networks predicted input versus the

actual input for the training set. This figure shows the effects of extending the control

horizon on the spiking in the networks predictions. The spiking is much less pronounced

and a better overall prediction was obtained. These effects make sense, since extending

the horizon should give the model a better opportunity to learn the dynamics of the

system. Figure 21 shows the networks predicted input versus the actual input for the test

set. Since it provides test set predictions that are much closer in accuracy to those of the

training set, it can be seen that this model does a better job ofgeneralizing. Figure 22

shows the results of a series of setpoint changes for the T(t+3) IS model. This network is

more stable at other operating points, but is still more sensitive than desired.

Figure 23 shows the same series of setpoint changes with a 50% increase in the

process dead time. While the overshoot and settling time for each setpoint change

increased, the controller still performed well. Figure 24 shows the setpoint change series

with the process dead time decreased by 50%. Three of the four setpoint changes had less

overshoot and smaller settling times than those in Figure 22. However, the controller

performance for the third setpoint change became unstable. The sensitivity problems of

the step-trained models are again seen in the last two setpoint changes.

Figure 25 shows the resuhs of the setpoint change series with the heat of reaction

increased by 10%. This figure shows an increase in the overshoot and settling time for

each step and excessive sensitivity during the last two setpoint changes, where the

51

102
....---.,.-----,--__,_-----,----.,.-----,~-__,_--__r_--_r_l

------._._---- -------_._-----

5 10 15 45

Figure 19. T(t+3) Step-Trained Inverse Process Model Sum-Squared Error as a Function
of the Number of Epochs for the Training Set (-) and Test Set (--)

52

0.9

0.8 r=

~ 0.7
ro
>
~ 0.61­
<5
<3 ,.
.B 0.5
roc
.~0.4
(/)

~

~0.3

0.2

0.1

300250200150
Time (min}

10050
oL.-I...- -L__-----I~ ._...J ..L_ ...J

o

Figure 20. T(t+3) Step-Trained Inverse Process Model Training Set Prediction

53

,-- J0.9

F=- LJ=0.8

~ 0.7
Iii
>
~ 0.6 f-

a
0
u r0-
0 0.5

tr L-Iii
c
.21 0.4 ,......
en
"5
~0.3 F"1

0.2
~ \:;:::

0.1

0
~

0 50 100 150 200 250 300
Time (min)

Figure 21. T(t+3) Step-Trained Inverse Process Model Test Set Prediction

54

/ 1\

/ 1\ A
v

1\

V \ "
1/

\-.. II

\r- '(

V

I If\ 1\
" r~fV\Nv

If
JVV' I

I

LL
(/) 100
Q)

e
C)
Q)

:E.. 95
e

."3
~ 90
Q)
Q.

E
~ 85
L..

~
(lJ 80
~ a

~ 1
(ij
>C 0.8
(lJ

g 0.6
()

E
(ij 0.4
c
01

co 0.2
"'5
Q.

£ 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 22, Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model

55

~

/ n
/ 1\ Av

1\
lJ \ /'\

11/
\" 17

\ r l
""V r
~

y
11\ l(

i

LL
~ 100
~
Cl
lU
~ 95
e
~
~ 90
Q)

a.
E
~ 85...
~
('ll 80
&! 0

~ 1
m
>C 0.8
(lJ

g 0.6
()

.Bm0.4
c::
Cl

U5 0.2
"S
a.
J;; 0

o

20

20

40

40

60
TIme (min)

60
Time (min)

80

80

100

100

120

120

Figure 23. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model with a 50% Increase of the Process Dead Time

56

/ 1\ I

/ 1\ "-

v 1\ r7
" - ~ ~ j!

\ 1 ,

v

I~ ~

~ t J\ 1'1 JI. r'I ,., '"

" VU VlfUvuVIJ

i:L
<Il 100
Q)

~
Cl
Q)

~ 95

~
~ 90
Q)
Q.
E
~ 85...
4J
(II 80
~ a

~ 1
(ij
>C 0.8
ctI

g 0.6
o
.s
(ij 0.4
c
CI

(j) 0.2
'5
Q.
.£ a

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 24. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model with a 50% Decrease of the Process Dead Time

57

A

/ 1\

/ 1\/\
1\

,Y \ f\

II
\-,.. If

\ ~ 1

\IV ~ "u

AAA~JJ II IJV\.f'v'vv
~ 1'11'11\

U~ ~ \I 'II I\J 'IJ 11

LL

:3 100
Q)

OJ
Q)

~ 95
~
~
~ 90
Q)
c.
E
~ 85
....
~
<1l 80
~ 0

~ 1
(ij
>C 0.8
(lJ

o
<3 0.6

oS
(ij 0.4
c
OJ

(j) 0.2
"'5
~ 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 25. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model with a 10% Increase in the Heat of Reaction

58

controller is only marginally stable. Also, while there has been some model mismatch for

all the setpoint changes so far, Figure 25 shows this mismatch much more profoundly.

Figure 26 shows the setpoint change series with the overall heat transfer

coefficient of the cooling jacket decreased by 25%. The effects of changing the heat

transfer coefficient were very similar to those obtained by changing the heat of reaction.

As before, the controller shows an inability to fully compensate for model mismatch and

remains marginally stable after the third setpoint change, where the process dynamics are

the fastest.

IRModels

Two different IR models were also generated. Like the IS models, both had II

inputs and 1 output with the only difference being the control horizons of two and three

times the dead time. The series of setpoint change tests used to study the IR controllers

performance were the same as those used to evaluate the IS controllers.

Figure 27 shows the sum-squared prediction error for the T(t+2) IR model versus

the number of epochs trained. As before, training was halted when the sum-squared error

of the test set began to increase. Note that the final sum-squared error of the ramp model

was an order of magnitude less than that of the step model (0.074 vS'. 0.62). Figure 28

shows the networks predicted input versus the actual input for the training set. While this

figure does show some spiking behavior similar to that with the step-trained model, it

almost always occurs immediately after the ramp levels out, whereas the spiking seen

associated with step inputs is much more erratic and seen well into the level part of the

steps. Figure 29 shows the networks predicted input versus the actual input for the test

set. This test prediction has a sum-squared error less than that of the training set (0.061

59

.,
"

",
"
""
II •

"
II
"
"

/ 1\

/ I~

\
!/ \

II
'-.. JI

\ ~
\

V 1(\
If

nn~AA{l VV lJJ\.
In nI'iJl.

lJ U ''1'-.1 I} ~ 11 'lI

r

LL
::l100
ll::
Ol
CI>
~ 95
~
~
~ 90
CI>
a.
E
~ 85
....
~
til 80
~ 0

~ 1
(ij
>
C 0.8
ro

g06u .
.s
(ij 0.4
c:
Cl

i:ii 0.2
~
a.
.£ 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

" ..

Figure 26. Setpoint Change Perfonnance of the T(t+3) Step-Trained Inverse Process
Model with a 25% Decrease in the Overall Heat Transfer Coefficient of the Cooling
Jacket

60

102
r----r-----.------.----,--------,-----r--------,,.-----,

"
"

,
,
,

-'-

10.2 L----'- --'---__---I. -'-__---I. -'-__----''--__-l

2 4 6 8 10 12 14 16
Epochs

Figure 27. T(t+2) Ramp-Trained Inverse Process Model Sum-Squared Error as a
FWlction of the Number ofEpochs for the Training Set (-) and Test Set (--)

61

,
4'

II••

0.9 J0.8 ~ t ~

~O.7

UI(ij n>
~ 0.6
(5
0
(J.s 0.5
ro M
c h.~0.4

C/)

J1"5
~0.3

~

0.2 'r= pd

~
, ,
; :~

0.1
~ l.J "ll

"
0 ~l

, !t4t

0 50 100 150 200 250 300 I III'

Time (min)

Figure 28. T(t+2) Ramp-Trained Inverse Process Model Training Set Prediction

62

I
I

I
I!
II:
dll

","III'

"I,
,'It

"I
::11
'III

30025020010050
Ol-- ---.J- .l- --'- ..L- ---L--'-__----'

o

0.2

0.9

0.8

0.1

~ 0.7
tii
>
~ 0.6
(5
o
U
S 0.5
tiic
!:!lOA

(/)

~

~0.3

Figure 29. T(t+2) Ramp-Trained Inverse Process Model Test Set Prediction

63

VS. 0.074), whereas the sum-squared error of the test prediction for the step model was

approximately the same as that of the training set (see Figure 15).

Figure 30 shows the results of a series of setpoint changes for the T(t+2) IR

model. While the results presented in Figures 27 through 29 made this network appear to

have much better control potential, it was actually unstable and not suitable for control.

During the course of this research, numerous IS and IR models using a control horizon of

T(t+2) had been previously obtained. Most of these were successfully implemented into

the control scheme. The behavior exhibited in Figure 30 is most likely explained by

assuming that the set of initial weights used to obtain the models was not favorable for

training models that used a control horizon ofT(t+2).

Figure 31 shows the sum-squared error for the T(t+3) IR model versus the number

of epochs trained. Figure 32 shows the networks predicted input versus the actual input

for the training set. Extending the control horizon for the IR models results in a prediction

with virtually no spiking. As before, this improvement can be attributed to the networks

ability to better learn the process dynamics as a result of the control horizon being moved

farther out. Similar to the T(t+2) IR model, the sum-squared error of the T(t+3) IR model

was an order of magnitude less than that for the IS model. Figure 33 shows the networks

predicted input versus the actual input for the test set. From this figure, it is evident that

this model has learned to generalize well using the ramp inputs. The accuracy of the

prediction for the test set is almost identical to that of the training set.

Figure 34 shows the results of a series of setpoint changes for the T(t+3) IR

model. This model is stable at all operating points and does not exhibit excessive

sensitivity characteristics, especially at the lower operating temperatures, where the

64

I
I
I
I
Ii

II:
'":a."
: ~!

:~ ~
"'.",,,.,

:a,"
iH
II
I,

""I,,,'

\ f'Jv I

~ "

\-II
I---

I

11f

~

~I\/
/ I \

\ 1/""\
.I v ~\ I f k

~

~
~ 7

~

LL
lJ) 100
Q.)

~
Cl
Q.)

~ 95
Q.).a
~ 90
Q.)
c.
E
~ 85...
~
til 80
~ 0

~ 1
(ij

>c: 0.8
til

g 06
() .
.s
(ij 0.4
c
Cl

U5 0.2
'5
a.
.& 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 30. Setpoint Change Performance of the T(t+2) Ramp-Trained Inverse Process
Model

65

10
2

:\ .
I:

10
1 I

I:
I:

~
II.:
I :i!w '"

"0 ".1
4)

; "Ilii 10°
::::l ~ ~ I
C'" 01
UJ

"~ 'I
::::l ' I

UJ II.
II

"
10"

., :
" ,

I: III
"""::)----- -- .. - ---

10.2 L..-_-J.....__'--_-----'--__...l..-_----L__--'--_---'__-J.....__.-'-._-_-------l

20 40 60 80 100 120
Epochs

140 160 180 200

Figure 31. T(t+3) Ramp-Trained Inverse Process Model Sum-Squared Error as a
Function of the Number ofEpochs for the Training Set (-) and Test Set (- -)

66

0.1
\-'

0 I
0 50 100 150 200 250 300

Time (min)

0.9

roc
.~0.4
(/)

~

~0.3

0.2

h

u

h

(

u

J
,..,

N

,
I
I
I
I·

k
1
1-'
I·

I I:, .
'.,, I

I ~.:

, '~
, I
• I
• I

,po
'!

"
, :
, I

, .
It
I!
, .
, .,
, I
, ,)

Figure 32. T(t+3) Ramp-Trained Inverse Process Model Training Set Prediction

67

0.9

0.8

~ 0.7
(ij

>
~ 0.6
o
o
o.s 0.5
(ij
c:
.~0.4
en
:;
~0.3

0.2

0.1
'.10

'.

300250200150
Time (min)

10050

0'L- -'-- '- ---'- -'- ..L.- -'

o

Figure 33. T(t+3) Ramp-Trained Inverse Process Model Test Set Prediction

68

,

/ 1\ I

/ I \ ""v

\
.J \ II

\ 1/

\~ M I

v

\(V-
A

r V

f
I

f

iL
en 100
GJ

~
Cl
GJ
~ 95
GJ

~
~ 90
GJ
0-
E
~ 85
"--

~
to 80
~ 0

~ 1
ro
>c 0.8
('ll

o
00.6o
.8
ro 0.4
c
Cl

i:ii 0.2
:;
0­
J; 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

I
I

I

I

I~
I.,'"'....
'Ill
''''..
' ..

Figure 34. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model

69

process dynamics are faster. Figure 35 shows the same series of setpoint changes with a

50% increase in the process dead time. The settling time increased for each setpoint

change. However, model sensitivity did not become a problem as it did with the step

models. Figure 36 shows the setpoint change series with the process dead time decreased

by 50%. The resulting control was superior to that of the base case. While this type of

response makes sense - decrease the delay and overshoot and the settling time should

correspondingly decrease - this was not the case when analyzing the IS model results. The

IS model actually performed more poorly than both the base case and the case where the

process dead time had been increased by 50%. This is because the IS model is too

sensitive and becomes too aggressive, resulting in marginal stability at lower operating

temperatures.

Figure 37 shows the results of the setpoint change series with the heat of reaction

increased by 10%. This figure shows an almost negligible change in the performance of

the controller. Only a slight increase in overshoot and offset for a few of the setpoint

changes occurred. Furthermore, there was no evidence of any stability problems and the

sensitivity of the model looked good. Finally, Figure 38 shows the setpoint change series

for the case where the overall heat transfer coefficient of the cooling jacket has been

decreased by 25%. Decreasing the heat transfer coefficient was similar to increasing the

dead time of the process, since the dynamics were slowed down. Performance was very

good, with only a slight increase in the rise times distinguishing these results from those of

the base case. Again, model sensitivity and stability were good with no apparent

problems.

70

/ 1\

/ I \ /'\ ~

v 1\
II \ A

I / ~

\ ,.... 1/
~

\ r A
I

"-
V ~

j~
" f "-

\J
I~ V 'V

I

j

u:-
:8 100
~
C)
Q)

~ 95
~.a
1Il 90:v
a.
E
~ 65
....
~
CO 60
~ 0

~ 1
(ij
>
C 0.8
co
g 0.6
o
.B
(ij 0.4
r:::
01

en 0.2
"5
a.
.& 0

o

20

20

40

40

60
Time (min)

60
Time {min)

80

80

100

100

120

120

Figure 35. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model with a 50% Increase of the Process Dead Time

71

/ 1\

/ 1\

i\
iV \ II ,

\ 'II

\
,

I
~

f\0 (\

r Vv

I
I

LL
~ 100
~
Cl

~ 95
~.a
~ 90
Q)
a.
E
~ 85...
~
l1J 80
~ 0

~ 1
(ij
>c: 0.8
l1J

g 0.6
o
.B
(ij 0.4
l:
Cl

U5 0.2
15
a.

.& 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 36. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model with a 50% Decrease of the Process Dead Time

72

\
\r ~f'

V 1('-i"- ,
II I

~

/ 1\

/ I \ '"
1\

IJ \ '"
II

\ II
I

LL
l/) 100
OJ
~
Ol
OJ
~ 95
~.a
~ 90
II>
0-
E
~ 85

~
III 80
&! 0

~ 1
"iii
>C 0.8
III

g 0.6
o
E
"iii 0.4
c:
Ol

en 0.2
"5
0-

J;;; 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 37. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model with a 10% Increase in the Heat of Reaction

73

\
V

if"
/"<-..

V-
I

r
/ I

/ 1\

/ I \

1\
v !\ -

II
\ 1/

u::­
III 100
Q)

~
lJ)
Ql
~ 95
~.a
~ 90
Ql
a.
E
~ 85
....
~
til 80
~ 0

~ 1
(ij

>C 0.8
ro

g 06o .
o
i 04
c:
C>

en 0.2
"S
a.
.f; 0

o

20

20

40

40

60
Time (min)

60
Time (min)

60

80

100

100

120

120

Figure 38. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model with a 25% Decrease in the Overall Heat Transfer Coefficient of the Cooling
Jacket

74

EIRModeis

As previously discussed, the EIR models were generated to demonstrate that

better control performance is linked to model error, The two different EIR models were

generated by training IR models until they had approximately the same integral absolute

error as the corresponding IS models. Results should show that EIR models perform

similar to IS models and that the IR models do provide better performance than both the

IS and EIR models. Table I summarizes the integral absolute error of all of the models.

Like the previous models, both EIR models had II inputs and I output, with the only

difference being the control horizons of two and three times the dead time. The series of

setpoint change tests used to study the EIR controllers performance were the same as

those used to evaluate the IS and IR controllers. Figure 39 shows the sum-squared

prediction error for the T(t+2) EIR model versus the number of epochs trained. One can

see from the plot that network training was halted when the sum-squared error was still

decreasing at a very high rate. This illustrates how the IR models are able to achieve

much lower training errors in fewer epochs. Figure 40 shows the networks predicted

input versus the actual input for the training set. While the prediction is not as accurate as

that of the original ramp-trained inverse model, it is still much better at prediction than the

step-trained inverse model with a similar integral absolute error.

Figure 41 shows the networks predicted input versus the actual input for the test

set. This prediction spikes some, much like the prediction using the ramp-trained inverse

model, with the main difference being the prediction offset at some points. The prediction

is still much more accurate than the one provided by the IS model, since it not only has

less spiking but is also not as erratic during the sustained part of each step. However, it

75

:::
"

".,
'"
'"
"
',~

'"

,
ill
'"I,
"

III

'.

Table 1. Summary of IS, IR, and EIR Integral Absolute Errors

Integral Absolute Error
T(t+2) IS 4.7686
T(t+2) IR 1.5719

T(t+2) EIR 2.4774
T(t+3) IS 4.4139
T(t+3) IR 0.6491

T(t+3) EIR 1.4321

76

,
:: !
'. ~
;1 r
'I

10
2

------~-
-.~

....

.... ',.
"- :

'.
10

1
....

: '-~.
: ,~

~
::=

~...
UJ
"C
4)

ii 10° ,
:::I
C' ,

(IJ ,
~
:::I "-

(IJ "-

:'i0'.'
10" ::)

:~

I'
I

10.2
1 2 3 4 5 6 7

Epochs

Figure 39. T(t+2) Equivalent Ramp-Trained Inverse Process Model Sum-Squared Error
as a Function of the Number of Epochs for the Training Set (-) and Test Set (--)

77

, .~

300250200150
Time (min)

10050
OL.--__-'-- L.-__---40"-'- ..L...- ---'- --'

o

0.8

02

0.1

0.9

~ 0.7
li'i
>
~ 0.6
o
o
()
0 0.5-ro
c
.~0.4
en
:5
~0.3

Figure 40. T(t+2) Equivalent Ramp-Trained Inverse Process Model Training Set
Prediction

78

0.9

0.8

~ 0.7
co
>
~ 0,6
o
o
o
0 0,5
..-
co
c:
.~0.4
(/)

'5
~0.3

0.2

I, ••

'"
","
'~

'II;.
""I

, .
"'l,

'., :~

0.1

30025020010050
O'---- --'-- .L.- --L J.- ----J.--'-__---'

o

Figure 41. T(t+2) Equivalent Ramp-Trained Inverse Process Model Test Set Prediction

79

should again be noted that two different types of predictions with equivalent integral

absolute errors should appear to have the same error, whereas two models might have

very different sum-squared errors and still look very similar in their ability to provide

accurate predictions.

Figure 42 shows the results of setpoint changes for the T(t+2) EIR modef ustng

the same series of setpoint changes that were used to evaluate the IS and IR models. The

performance of the network was not as good as that of the IS model and was very similar

to that of the IR model. Again, this behavior is attributed to bad initial weight selection.

The network is too sensitive and results in unstable control, especially at the lower

operating temperatures.

Figure 43 shows the sum-squared error for the T(t+3) EIR model versus the

number of epochs trained. As was the case with the T(t+2) ErR model, training was

halted while the error was stilt decreasing at a high rate in order to achieve an integral

absolute error as close as possible to that of the IS model. Figure 44 shows the networks

predicted input versus the actual input for the training set. Much like the IR model, this

prediction has very little spiking in it and is very accurate. Also, when compared to the IS,

the overall prediction is much better.

Figure 45 shows the networks predicted input versus the actual input for the test

set. It can be seen from this figure that this model does an adequate job of generalizing.

The most noticeable difference between the EIR and the IR models test set predictions is

the amount of prediction offset. Figure 46 shows the results of the setpoint series for the

T(t+3) EIR model. The controller exhibits some sensitivity problems at the lower

80

::1
"1'.",
'I
:1
I

1•.

'"
'"

" ..
"
'.
lIt.

'-'''C
''t
;~

'"if
'I

~I
~

I'

120

120

100

10080

80

60
Time (min)

60
Time (min)

40

40

20

20

/'.. ~

/ J ~

/ 1 \ V\ /'\

\ / v \.,\
J v \ I I "\ ./'

\ J~
v

\/"" ." i
,f\I\.VVJ

..-

\ 1/\)
I' n I

W
I

'v " \ (\ I\ V r~

W W ,
I

,

~ 1
C1l
>C 08
I1l
"0
00.6
u
B
(ii 0.4
c:
Ol

en 0,2
:;
c.
J; a

a

u::-
:g 100
~
Ol
III
~ 95
~
~
~ 90
III
D-
E
~ 85...
48

C1l 80
~ 0

Figure 42. Setpoint Change Performance of the T(t+2) Equivalent Ramp-Trained Inverse
Process Model

81

102
.-----r----,----,------r----,------,------,--...------,----,

"
'"
'"

10
1

II

I,.
"

j,'.::..

~ I,

W ",
'C ' "
Il) "...

10° "
a:l ,.~
:::l
C'" ' '~

(JJ , ':
~ :'
:::l ',I

(JJ 'I,
:11
"

10.1 ~ 01

I,

10·2 '--------'------'----L....-------'------'------'----'---....I.-----'----'
1 2 3 4 5 6 7 8 9 10 11

Epochs

Figw-e 43. T(t+3) Equivalent Ramp-Trained Inverse Process Model Sum-Squared Error
as a Function of the Number of Epochs for the Training Set (-) and Test Set (--)

82

0.9

0.8 r

0 0.5-(ij
c:
.~0.4
(J)

~

~0.3

0.2

h
h

J

N

.,

.'~
' ..
' ..

, o~

,0/
.',
,~

0.1 \.'" 1,.01

a J
0 50 100 150 200 250 300

Time (min)

Figure 44. T(t+3) Equivalent Ramp-Trained Inverse Process Model Training Set
Prediction

83

,"
•,""l

",~

.. ,

.'~

".'I
" ;~
''It

30025020010050
0'------'------'------'--------'---------'-----'
o

0.8

0.1

0.2

0.9

~ 0.7
m
>
~ 0.6
o
o
U
0 0.5-m
c::
!:!'0.4
en
S
~0.3

Figure 45. T(t+3) Equivalent Ramp-Trained Inverse Process Model Test Set Prediction

84

\ ,~ f\ f\
v J ~

./~ f\ \ 11\ ~
·v

1 \ j'~V
"'7

V
\AI

/

-
/ 1\

/ I \ / " -V '-"

1\
l/

1\
f\

1/ v

\ /'... 17
V ~

u::­
Ul 100
QJ

~
Cl
QJ
~ 95
~
.2
~ 90
QJ
Q.

E
~ 85
L..

~
ro 80
~ 0

~ 1
ro
>c: 0.8
ro

g 0.6
o
.sro 0.4
t:
OJ

U5 0.2
"5
Q.

of; 0
a

20

20

40

40

60
TIme (min)

60
Time (min)

80

80

100

100

120

120

.,
"....~

',:J

.,
'1
'I

"1

'II

Figure 46. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model

85

operating temperatures and overshoots more with a larger settling time than both the IS

and IR models.

Figure 47 shows the setpoint change series for the EIR. model with the process

dead time increased by 50%. As one would expect, the response is more sluggish

resulting in increased overshoot and settling time. Also, because of the delay increase, the

controller is effectively detuned and consequently does not appear to have any significant

problems with model sensitivity. Figure 48 shows the series of setpoint changes with the

process dead time decreased by 50%. The controller is able to decrease the overshoot and

reduce the settling time for each setpoint change. However, as can be seen in the second

setpoint change, the model is now too sensitive for the decreased dead time and results in

an overaggressive controller at lower temperatures.

Figure 49 shows the results of setpoint changes with the heat of reaction increased

by 10%. The controller performed similar to the base case, with a much more noticeable

offset due to the increased model mismatch. Again, sensitivity problems were observed.

Finally, Figure 50 shows the setpoint change series performance with the overall heat

transfer coefficient of the cooling jacket decreased by 25%. Increased offset due to the

added model mismatch is apparent, while the general aggressiveness of the controller is

similar to that of the base case. However, one should note that the controller performed

much better at the lower operating temperatures. This is because the decreased heat

transfer coefficient helped the stability of the controller when the process dynamics were

much faster. However, the controller exhibited sensitivity problems during the second

step where the dynamics are slower.

86

'.
'.,

.,.--...

/ T\

/ I \ ~

\/ '-./-
\

.J \ /\ /"'\. -
II J

\ /\ v--... LIV "-/

\ ~ \ J\ II

'" '" "V 1\)\
\ A \ 1(\ 1\

v

\ / 1\/ \/
V V

/

~ V

, I

iL
l/I 100
CII
~
Cl
CII
~ 95
~

~ 90
Q)
a.
E
~ 85...
~
ro 80
~ 0

~ 1
(ij
>C 0.8
ro

g 0.6
u
.s
(ij 0.4
c
Cl

en 0.2
:;
~ 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

,
"°o,

'"'OJ

;;1
:l'
'I
'I
I,
I
I

Figure 47. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model with a 50% Increase of the Process Dead Time

87

/ l\

/ I \ /'
V \

V \ A I

II
\ ./"-... II
V

\ ~_ M J\
'-'

II '~WfMI LnUI d \"'VI' "n fl I\..
,

I \r I V
~

r

~ I
J

LL
:G 100
~
OJ
OJ
~ 95
~
.i3
~ 90
OJ
c..
E
~ 85
'-

~
ro 80
~ 0

~ 1
ro
>C 0.8
CIl
o
8 0.6

.s
ro 0.4
c:
OJ

en 0.2
'!5
c..

.J;; 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

'.I,.
",
,.)

'I
I.

I.

Figure 48. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model with a 50% Decrease of the Process Dead Time

88

A
~I\/

/ I \ / i\ /"-.. ____

v \ I ~

-<I \ I \ ./"'0.. -

II
\ f'..... "- J/
v

\ " M II
V ~'-" \ A.~~ \

I

/\1\

~lW v 1\ /' \ I
V~

~

,(I V
\.J

I,
/

po

u.
g:100
e
Ol
ell
~ 95

~
.a
~ 90
Q)
c.
E
~ 85...
~
1Il 80
~ 0

~ 1
co
>C 0.8
1Il
o
00.6
(J

.B
co 0.4
c:
Ol

i:i5 0.2
~
c.
.& 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

I

l

l

Figure 49. Setpoint Change Performance of the T(t+3) Equivalent Rarnp-Trained Inverse
Process Model with a 10% Increase in the Heat of Reaction

89

,,-....

/ 1\
/ I \ / r--...

v \
,; \ /'\

1/
\F'-- 1/
~

\ ~ J\
V ~UA~ IA~/I.l1 \VVVVY l Y\J1 A

r
'V I

f\ \I/~>--

~ /
.......

I)

u::-
g: 100
~
Cl
Q)

~ 95
~

~ 90
Cii
c.
E

:::. 85
~

~
l\'I 80& 0

~ 1
(ij

>C 0.8
(Il

806

.E
iii 0.4
c::
Cl

en 0.2
:i
c.
.£ 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

ilOO

100

120

120

Figure 50. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model with a 25% Decrease in the Overall Heat Transfer Coefficient of the
Cooling Jacket

90

Comparison ojIS, IR, and EJR Results

Overall, both the T(t+2) and T(t+3) IS controllers exhibited some instability, were

highJy sensitive, and demonstrated poor performance in many instances. This could be

seen in many of the setpoint changes in which the controller became unstable and never

settled to the new setpoint, oscillating about it instead. It was more evident in the T(t+2)

controller than the T(t+3) controller. This is because the model using the T(t+2) control

horizon was closer to the dynamics of the process, resulting in much more aggressive

control actions. Furthermore, it becomes more difficult to learn the process dynamics as

the control horizon approaches the process dead time. Overall, the T(t+3) IS controller

performed much better than the T(t+2) IS controller. The sensitivity ofthe IS models was

calculated for comparison with the IR and EIR models. This was done by simulating a

step change in the setpoint for each network. The resulting change in the network output

was then divided into this setpoint change to obtain the sensitivity of the particular

network. The sensitivity of the step models was much higher than that of both ramp­

trained models. This was expected due to the nature of the function being approximated.

The T(t+2) IR and T(t+2) EIR controllers were not able to provide stable control.

This unstable behavior for both of the T(t+2) ramp models and the T(t+2) step controller

was assumed to be the result of bad initial weight selection. However, the T(t+3) IR and

T(t+3) EIR controllers were able to virtually eliminate these problems and provide

adequate control.

Overall, the T(t+3) IR controller exhibited desirable performance for all setpoint

changes. The IR model also demonstrated a low sensitivity, with good performance even

91

in conditions of significant model mismatch. The T(t+3) IR controller did not oscillate

about the new setpoints and did not exhibit any significant sensitivity problems.

Compared to the T(t+3) IS controller, less overshoot and smaller settling times were

observed. Finally, as was the case with the IS controllers, the T(t+3) controller was less

aggressive and, overall, performed much better. However, one should be aware of the

fact that the future goal can be moved forward or backward to an optimum number of

sampling times for both positive and negative setpoint changes. In this sense, the control

horizon is like a tuning parameter for setpoint changes. One should keep in mind,

however, that any disturbance rejection capabilities will degrade the farther out the control

horizon is moved due to the decrease in control action aggressiveness.

A comparison of the two types of controllers, IS and IR, operating in a dosed­

loop mode without model mismatch correction allows one to observe three things. First,

the T(t+3) IR model appeared inherently stable whereas the T(t+3) IS model did not.

Second, the IR is less sensitive due to the nature of the type of control action it has

learned and is implementing, This results in less overshoot, smaller settling times, and

better tracking about setpoints, Third, the ramp-trained models are able to achieve much

lower errors than the step-trained models, which results in less offset due to model

mismatch. The combined effect of these improvements allows the IR to provide overall

better performance.

A summary of the IS and IR neural network models used in this study is provided

in Table 11 The table includes the number of epochs that the network trained, the sum­

squared and integral absolute errors for the network, and the network sensitivity.

92

po

Table II. Summary ofIS, IR, and EIR NeuraL Network ModeLs Studied

Epochs Sum-Squared Error Integral Absolute Error Sensitivity
T(t+2) IS 100 0.6162 4.7686 64.7
T(t+2) IR 16 0.0739 1.5719 4.7

T(t+2) EIR 7 0.0961 2.4774 6.4
T(t+3) IS 46 0.7489 4.4139 22.4
T(t+3) IR 200 0.0123 0.6491 13.8

i

T(t+3) EIR 11 0.0439 1.4321 8.2

93

Sensitivity is in units of (% change of input signal to coolant valve per of change in
setpoint) at steady state conditions.

94

-

CHAPTER N. APPLICATION OF INVERSE PROCESS MODELS FOR
CONTROL

Integration of an Inverse Model into an IM.C Control Strategy

Control Algorithm

The neural network control algorithm serves two purposes. First, it calculates a

value for the future temperature as defined by Equation (2). Second, it takes process

infonnation and calculates the adjustment necessary to correct for model mismatch. More

precisely, the algorithm takes the actual temperature that was achieved, goes back the

corresponding number of sampling periods, calculates the control action that the neural

network model would have specified to achieve that temperature, takes the difference

between that value and the control input that was actually used, and then adds or subtracts

this difference, accordingly, to the current control action. This will drive the controlled

variable to the setpoint through the addition of the correction for model mismatch.

Tuning Parameters and Model Mismatch

There are two ways that one can go about tuning an inverse neural network model

controller: modification of the control horizon and implementation of a filter. When

implementing a classic IMC controller, a filter is always added to the inverse of the plant

model after it has been made proper in order to avoid derivative control. This helps

ensure stability. However, in the case of a neural network process model, whether it is a

forward or an inverse one, addition of a filter is not as straightforward. One cannot look

at a neural network model like one can the inverse of a transfer function and tell what

order ofmter, if any, is necessary to help ensure stability.

95

-

While the IS neural network models showed some instability, especially the one

that utilized the shorter control horizon of two sampling periods, filtering them would still

be less desirable than adjusting the control horizon. This is because the filter could have a

more adverse effect on the controllers ability to reject disturbances and make setpoint

changes than simply adjusting the control horizon. It is always preferable to manipulate

the control horizon rather than filter the controller. For example, ifone wanted to make a

setpoint change large enough that it could not be physically achieved over a period of one

control horizon, and one had employed a filter, the rise time would be longer than that of

the same controller without the filter and any control horizon with a length that is smaller

than or equal to the actual settling time. Therefore, the controller would have a less

favorable response.

A discussion on the control horizon and the method used to manipulate it (defined

by Equation (2» can be found in the earlier section "Why Use an Inverse Process Model"

Unlike implementing a filter, changing the control horizon does not affect a neural

network models inherent anti-windup capability, and it allows the model to provide better

performance through faster rise times, less overshoot, and smaller settling times.

One might ask how a controller that is using a modified control horizon could ever

reach the actual setpoint if it is always moving only towards to the setpoint instead of to

the setpoint. The answer is that because the controller corrects for model mismatch

several moves after the correction was actually needed, the controller never realJy

maintains the setpoint, but instead tracks closely around it. In other words, this correction

delay makes the controller bypass the setpoint by overcompensating too much at the

96

current sampling period. While this correction scheme was not the most desirable one due

to the delayed model mismatch correction that involved tracking of the setpoint rather

than actually maintaining it, it should be understood that this control strategy was still

valid for evaluation and comparison of the IS and IR neural network process models.

Closed-loop Performance with Model Mismatch Correction

Setpoint Changes

The IR models performed much better during setpoint changes than the IS models.

This was expected, since the ramp-trained models exhibited better performance during

closed-loop tests without model mismatch. Using IR models resulted in less overshoot,

decreased sensitivity, and better performance at various operating points. While the

addition of model mismatch correction capabilities provided offset-free control and

allowed for disturbance rejection some additional tuning parameters were employed.

The tuning parameters can make the controllers more or less aggressive, whether

through the use of a filter or through the modification of the control horizon. As stated

before, it is always preferable to avoid using a filter unless absolutely necessaty. It was

observed that the controllers with models using a larger number of sampling periods for

the horizon performed better than those using fewer. It was also observed that the

controllers had to be tuned by adjusting the control horizon in order to achieve the best

response, that which would minimize rise time, overshoot, and settling time.

Providing feedback to correct for model mismatch in order to eliminate offset after

a setpoint change was effective but did have one unfavorable consequence. While there

97

was no steady offset, the resulting controller would track closely around the setpoint. As

previously discussed, this behavior can be attributed to the control algorithm that was

implemented. It occurred because the controller was not able to compensate for the

model error until the actual value of the controlled variable could be obtained for

comparison. Thus, the controller drove the controlled variable to the setpoint, where it

eventually calculated that there was no model mismatch, which then allowed the

controlled variable to wander from setpoint, after which it began correcting for model

mismatch again, thus completing the cycle.

Comparison of IS, IR, and EIR Models for Setpoint Changes

The closed loop performance with model mismatch of the T(t+3) IS, IR, and EIR

models was evaluated by activating the control algorithms model mismatch correction

feature. Adding the model mismatch correction allowed the controller to reach steady

state without offset and to reject disturbances. Preliminary tests using the T(t+2) rs, IR,

and EIR models showed that they were not stable enough to enable mismatch correction.

When enabled, the controllers were adversely affected. Before turning on the model

mismatch, it was important to detune the controllers by adjusting the control horizon.

Increasing the control horizon caused the controller to act more sluggish but did provide

help in keeping the effects of model sensitivity, once the model mismatch correction was

added, minimized.

The same setpoint change series used in the previous tests was again utilized.

After some trial and error, it was determined that for these T(t+3) models, a control

horizon scaling factor (CHSF) of2 would be best. This effectively makes the models

98

behave as ifthey were trained with a control horizon twice that of the one they actually

were. In this case, the effective horizon would be T(t+6).

Figure 51 shows the setpoint change performance of the T(t+3) IS model with a

CHSF of 2. Comparing Figure 51 to Figure 22, one can see that the controllers response

is more sluggish. Also, the sensitivity problem seen earlier after the third step has been

alleviated. To gain a better understanding of how the control horizon adjustment affects

controller performance with more model mismatch, the setpoint changes were again made

with a 50% increase in the process dead time. Figure 52 shows the results of this test.

The same phenomena are again observed: controller response is more sluggish and

previous sensitivity problems have diminished. A comparison ofFigure 52 and Figure 51

shows that the controller has handled the dead time increase very effectively, with only the

slightest decrease in performance. Now that the effects of the control horizon adjustment

were better understood, the model mismatch was turned on. Figure 53 shows the setpoint

change performance of the T(H3) IS model with both the horizon adjustment and model

mismatch correction implemented. One can easily see that turning on the correction

resulted in the controller becoming unstable. This behavior is attributed to the IS models

high sensitivity, which becomes even more pronounced with the model mismatch enabled,

Figure 54 shows the setpoint change performance of the T(t+3) IR model with a

CHSF of2. As was the case with the IS model, the controllers response i,s now more

sluggish. Figure 55 shows the results of the setpoint change series with a 50% increase in

the process dead time. Comparing the controller responses ofFigures 55 and 54, one sees

that, much like the T(t+3) IS controller, the only noticeable effect is a slight decrease in

99

/ 1\

/ 1"-
1\

v \ If
"'-.. 1/

I'

\ n \
11r \

nn(tfv
IV

'I

Ii

iL
:11 100
~
Cl
41
~ 95

~
~ 90
Ql
0-
E
~ 85...
~
41 80

0::: 0

~ 1
(ij
>C 0.8
<U

g 0.6
u
.B
(ij 0.4
c
Cl

en 0.2
"5
0­

J;; 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 51. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model Using a CHSF of 2 without Model Mismatch Correction Enabled

100

/ 1\

/ l \........
1\

lJ \ r7
"- 1/

\ \
.~ : \

:
L7

1,t}V' ~11 v
\I

,

r

LL
I/) 100
CD

e
Ol
CD
:£. 95
e
.i3
~ 90
Ql
0.
E
~ 85...
-§
III 80
~ 0

~ 1
(ij
>1: 0.8
III

g 0.6
()

.s
(ij 0.4
<::
Ol

en 0.2
"5
2- 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 52. Setpoint Change Performance of the T(t+3) Step-Trained Inverse Process
Model Using a CHSF of2 with a 50% Increase ofthe Process Dead Time without Model
Mismatch Correction Enabled

101

,

/ n
/ I~

lAJI A

1\

, l/ 1\ I /'" IIjI/VVV v

~I\ AAA/
V~ 'v

iL
~ 100
~
OJ
Q)

~ 95
~

~ 90
Q)
a.
E
~ 85...
~
tV 80
~ 0 20 40 60

Time (min)
80 100 120

~ 1----,,--...,----­
co
>t: 0.8 1-+------'I,,-L---..JqILIlJ

tV

g 06 f-L------+-­
o
.sco O.4I------+-~HH!_H__lI_II_~H_+H_II_4!+Pt+lrlf+HH+I~Hl+_lHHI+___1_#_llI_IHHHHl_H__H+Il

c:
OJ
en O.2I------+----Ir-Il-+------tl~__1:I_''_Il_.:..jI_Hl+_lHHI_II_-iI_fI'~I_II_H_lI_4_..ll..JI...:.l

~

~O'-----------'------'---------'-'--"-JJ---"--"-..LLJ.Ul..JI...L.----'--------'
o 20 40 60 80 100 120

Time (min)

Figure 53. Setpoint Change Perfonnance of the T(t+3) Step-Trained Inverse Process
Model Using a CHSF of2 with Model Mismatch Correction Enabled

102

/ 1\

/ \"'-.

1\
l/ \ r7

"- II
,

\ A
Lr

V /

(
Vi i

iL
gj 100
Gl
0,
Q)

~ 95

j 90
Q)

a.
E
~ 85
~

.B
u
co 80
~ a

~ 1
co
>1:: 0.8
CIl

g 0.6
o
.B
"iii 0.4
c
OJ

U5 0.2
15
~ 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 54. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of2 without Model Mismatch Correction Enabled

103

/ 1\

/ I\.
\

./ \ If
"'- 1/

\ 1\
(' \

V /

r
l~

u:-
rn 100
Ql

~
Cl
Ql
~ 95
~.z
~ 90
Ql
C.
E
~ 85...
~
tV 80
~ 0

~ 1
til
>C 0.8
til

g 06
o'
.8ro 0.4
~

OJ

en 0.2
"5
c.

J;; 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 55. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of2 with a 50% Increase of the Process Dead Time without Model
Mismatch Correction Enabled

104

the controllers performance. Figure 56 shows the setpoint change perfonnance of the

T(t+3) IR, where both the control horizon adjustment and model mismatch correction

were active. Unlike the T(t+3) IS model, the IR model has a much smaller sensitivity that

allows it to provide offset-free control while still remaining stable. The model sensitivity

effects can be seen in the last three setpoint changes. While there is some excessive valve

movement, it should be noted that the IR model remains stable, unlike the T(t+3) IS

model.

Figure 57 shows the setpoint change performance of the T(t+3) EIR model with a

CHSF of 2. Comparing Figure 57 to Figure 46, one can observe that the controller

provides a much more favorable response. In this case, the overshoot is minimal and the

settling times are small, whereas before the overshoot was bigger for each setpoint change

and the settling times were much longer. Figure 58 shows the setpoint change

performance with the process dead time increased by 50%. As with the IS and IR

controllers, the increase in dead time resulted in slightly more overshoot and longer

settling times. Figure 59 shows the result of performing the setpoint change series with

both the control horizon adjustment and model mismatch correction in use. Much like the

IS controller, the EIR model is too sensitive for this mode of control and becomes very •

unstable.

Disturbance Rejection

The previously discussed closed-loop controller with model mismatch correction

can also provide disturbance rejection capabilities. Because both model mismatch

correction also i.mparts distUrbance-rejection capability, one must also consider, when

105

/ I\..

/ I "-.
\

'.I \ II""
'--....... 1/

\ ~

IlN V' L ,I

II.A I V " I

,r v ,.

I!~

LL:'
III 100
Ql
Ql

tn
Q)

~ 95

~
~ 90
<I)

0-
E
~ 85
~

~
~ 80
cr 0

!J;! 1
(ij
>
C 08
III

g 0.6
u
S
(ij 0.4
c
Cl

en 0.2
i::J
0-

J;; 0
o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 56. Setpoint Change Performance of the T(t+3) Ramp-Trained Inverse Process
Model Using a CHSF of2 with Model Mismatch Correction Enabled

106

/ 1\

/ I \

1\
1J \ -

f7
\ 1/

I

\ Ak

\ /'" I, I
~'W~'rv 11.

~. AM, I 'v' vv
, W

1\ j
'fI

u.
CIl 100
III
~
Cl
III
~ 95

i 90
III
a.
E
~ 85...
~
(1l 80

&! a

!: 1
(ii

>C 0.8
ltl

g 0.6
u
.s
tii 0.4
c:
Cl

en 0.2
"!J
c.
~ 0

a

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 57. Setpoint Change Performance ofthe T(t+3) Equivalent Ramp-Trained Inverse
Process Model Using a CHSF of 2 without Model Mismatch Correction Enabled

107

/ \\

/ 1 \
'-' \

lJ \
,....

II
\. 17

'--'"

\ ~~..

lfFY
fA I

7~'n° , !A,

'I -~ T II~~'

l.f
w

LL
gj 100
~
01
Q,)

~ 95
Q,).a
~ 90
Q,)
a.
E
t! 85
~

~
co 80
~ 0

~ 1
"iii
>C 0.8
ro

80.6

£
(jj 0.4
c:
01

en 0.2
'5
a.
.& 0

o

20

20

40

40

60
Time (min)

60
Time (min)

80

80

100

100

120

120

Figure 58. Setpoint Change Perfonnance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model Using a CHSF of 2 with a 50% Increase of the Process Dead Time without
Model Mismatch Correction Enabled

108

/ 1\
/ I \.

\
l/ ~r\I I

'"\.... I ,,,",

'"""," .Mf'1 "V·v

~

\ '·!'I ~ ,

~

II
HH

~

po

LL
II) 100
CD

~
Ol
C1l
~ 95
~.a
~ 90
CD
a.
E
(!!. B5

~
co 80
~ 0

~ 1
ro
>c O.B
1Il

g06
o'
B
(ij 0.4
c:
Ol

en 0.2
:;
a.

.&; a
o

20

20

40

40

60
TIme (min)

60
TIme (min)

BO

BO

100

100

120

120

Figure 59. Setpoint Change Performance of the T(t+3) Equivalent Ramp-Trained Inverse
Process Model Using a CHSF of2 with Model Mismatch Correction Enabled

109

designing and tuning a neural network controller, how well it will be able to handle

disturbances.

When designing an inverse process model neural network controller, the selection

ofhow many sampling periods to set the future goal at is quite crucial to the disturbance

rejection capabilities of the controller. The farther out the future goal is set, the less

aggressive the controller will be, and, as a result, the disturbance rejection capabilities will

degrade. It should also be noted that the selection of the number of sampling periods

associated with the future goal is pennanent once the model is generated and can only be

effectively changed by adjusting the control horizon. One can never use a control horizon

any shorter than that for which the model was trained. Thus, one should try to choose the

number of sampling periods associated with the future goal as close to the system delay as

possible for the best, or most aggressive, disturbance rejection. However, one must also

consider how well the controller will perform setpoint changes, which usually results in the

future goal being set farther out.

Once the architecture of the inverse process model is set, the controller can be

tuned by changing the control horizon or adding a filter. As previously discussed, it is

always preferred to adjust the control horizon over using a filter. While both can make the

controller less aggressive, only adjusting the control horizon stiU utilizes the full potential

of the dynamics in the neural network model. However, as was the case when tuning for

setpoint changes, one must try to find a set of tuning parameters that will achieve both

control objectives, setpoint changes and disturbance rejection, well.

110

Comparison ons, IR and EIR Models for Disturbance Rejection

The T(t+2) inverse process models were not considered due to their instability

problems. However, previous experience has shown that T(t+2) inverse process models

are much more aggressive at rejecting disturbances than those using three sampling

periods.

The IS models were more responsive to disturbances than the IR models. This

type of behavior was anticipated, since the IS models were more sensitive than IR ones

and should therefore have responded more vigorously. However, while this might sound

more desirable, it is not. If the controller overreacts to the disturbance, it will simply take

longer to achieve steady state again. This is usually the case with the IS models, especially

the one using two sampling periods for the future goal. Also, the controller can become

unstable if the disturbance is large enough and, as a result, will oscillate and possibly

become unstable.

Three different disturbances were used to test each controller. The first, a three

degree increase in the inlet temperature of the feed, occurred at 0 minutes. The second, a

three degree increase in the cooling water inlet temperature, occurred at 10 minutes. The

third and final disturbance, a 3% increase in the inlet concentration, occurred at 20

minutes. All of the disturbances accumulated throughout the simulation so that, at the

end, the controller was rejecting three disturbances simultaneously.

Consider Figure 60, which shows the performance of the T(t+3) IR model with a

CHSF of 1 and without model mismatch correction, as an example of why model

mismatch correction is necessary to reject disturbances. The controller can only partially

III

u::-
I/) 90.------,------r-----r-----,--------...,r----­
Ql
Ql

0,
~ 891------+-----+----+------!----~"----~

~

~88 ~...
Ql
Cl.
E
~ 871------+-----+----+------!----~"----~

30252015
Time (min)

105

....
~III 86 '-- ---"- ---L ..L-- ---l.- ---Jl.-.-__----I

~ 0

~

I

~ 1
ro
>c 0.8
III

g 0.6
o
o
~ 04
c:
OJ

en 0.2
:i
2" 0

a 5 10 15
Time (min)

20 25 3D

Figure 60. Disturbance Rejection Performance of the T(t+3) Ramp-Trained Inverse
Process Model Using a CHSF of] with Model Mismatch Correction Disabled

112

compensate for each disturbance and, as a result, the amount of offset increases as each

new disturbance is encountered. However, the remaining offset can be eliminated, and the

disturbance completely rejected, through the use of model mismatch correction, in which

the controller will attribute the remaining offset to model mismatch.

Figure 61 shows the disturbance rejection performance of the T(t+3) IS model at

the same operating temperature that was used during training. The controller used a

CHSF of2 and model mismatch correction to reject the disturbances. The controller was

already becoming unstable from trying to compensate for the first disturbance when the

second one started. The second and third disturbances simply caused the controller to

become unstable.

The T(t+3) IR model reacted less aggressively and was able to provide a much

smoother rejection of disturbances while also minimizing excessive valve movement.

Figure 62 shows the disturbance rejection performance of the IR controller. As with the

IS model, a CHSF of2 and model mismatch correction were used. The controller was

able to successfully reject all three disturbances without excessive valve movement. To

illustrate the IR models robustness, the same test was performed at 10 degrees above and

below the operating point at which the model was trained. Figure 63 shows the results of

the disturbance rejection test 10 degrees above the original operating point. The

controHer was again able to compensate for all three disturbances without becoming too

aggressive or unstable. Figure 64 shows the results of the disturbance rejection test 10

degrees below the original operating point. While the controller does successfully drive

113

..

30252015
Time (min)

105

iL
:8 90.-------,------.-----.,-----~-------,~---
~
Cl

~89f------+-----+----+------+------If---~

~

~ 881---...::~-=::=::p:,-"""=~q~I______I_+-_I__+__I_~_J.~r__I~it--I__+__..J..__j....
Q)

c.
E
~ 87f------+------+----+-----l------If----.-j
....
~co 86 L- --L- --l -.L-L. -----JL- _

~ 0

U ,11 IT J IT r1-
rl JL L L

rL

~--1 V~ l I I

L
'L..

I 'L LI- e- r L,... r
t.J IT

~ 1
t1i
>C 0.8
co
g 06
u
.s
t1i 0.4
c:
Cl

en 0.2
'5
c.
~ 0

o 5 10 15
Time (min)

20 25 30

Figure 61. Disturbance Rejection Performance of the T(t+3) Step-Trained Inverse
Process Model Using a CHSF of2 with Model Mismatch Correction Enabled

114

,I

~

I,

~

u:::-
IJl 90
Q)

~
Ol

~ 89

~

~ 88....
Q)

a.
E

f!!. 87
....
~
m 86
~ 0

~ 1
"iii
>
C 08
m
g 0.6
o
.s
"iii 0.4
c:
Ol

(J) 0.2
:;
a.
1; 0

o

5

5

10

10

15
Time (min)

15
Time (min)

20

20

25

25

30

30

Figure 62. Disturbance Rejection Performance of the T(t+3) Ramp-Trained Inverse
Process Model Using a CHSF of 2 with Model Mismatch Correction Enabled

li5

I ,I

~ -'--,..-

u..
ID 100
e
C)
Ql
~ 99
e
~
~ 98
Ql
0-
E
~ 97...
~
(II 96
&! 0 5 10 15

Time (min)
20 25 30

--...

~
............... I

~ 1
"iii
>
1: 08
(II

g 06
u
.s
"iii 0.4
c:
C)

<i5 0.2
:;
0-
J;; 0

o 5 10 15
Time (min)

20 25 30

Figure 63. Disturbance Rejection Performance of the T(t+3) Ramp-Trained Inverse
Process Model 10 Degrees Above the Operating Point of the Training Data Using a CHSF
of2 with Model Mismatch Correction Enabled

116

,

~

I

~

LL
lfl 80
CD

~
OJ

~ 79
CD

.3
~ 78
CD
c.
E
f!!.77...
J8
co 76
~ 0

~ 1
(U
>C 0.8
co

g 0.6
o
.s
10 0.4
c
OJ

Ci.i 0.2
"5
0-

J;; 0
o

5

5

10

10

15
Time (min)

15
Time (min)

20

20

25

25

30

30

Figure 64. Disturbance Rejection Performance ofthe T(t+3) Ramp-Trained Inverse
Process ModellO Degrees Below the Operating Point of the Training Data Using a CHSF
of2 with M.odel Mismatch Correction Enabled

117

the temperature back to the setpoint, the control actions are a little more aggressive in this

case due to the faster process dynamics.

Finally, the T(t+3) EIR controller was evaluated to determine its disturbance

rejection capabilities. Figure 65 shows the disturbance rejection perfonnance of the

equivalent ramp controller at the original operating point. Initially, the controller appeared

to be capable of compensating for the first disturbance. However, one can see that, as the

temperature moved back to the setpoint, the controller action became more aggressive.

When the second disturbance started, the controller showed a further increase in its over­

manipulation of the coolant valve. By the time the third disturbance started, the controller

was already appearing to go unstable. The third disturbance resulted in the controller

becoming completely unstable.

Overall, only the T(t+3) IR controller was able to provide any disturbance

rejection capabilities. Furthermore, it was able to reject disturbance at operating points 10

degrees above and 10 degrees below the operating point at which the model was trained.

The poor performance of the T(t+3) IS and T(t+3) EIR controllers can be attributed to

their high sensitivities.

118

~ A

'-"" 'V \

,~
\

I,

A A " ~
--- ~ -.....A..r-.JV\jV ~ \/ \

,
V v

I~ \I

i:L
lG 90
e
01

~89
~

~ 88
Qj
0-
E
~ 87
....
-§
('ll 86

&! 0

~ 1
(ij

>1: 0.8
('ll

g 0.6
u
o
i 0.4
c
01

U5 0.2
~
0-
J: 0

o

5

5

10 15
Time (min)

15
Time (min)

20

20

25

25

30

30

Figure 65. Disturbance Rejection Performance of the T(t+3) Equivalent Ramp·Trained
Inverse Process Model Using a CHSF of2 with Model Mismatch Correction Enabled

119

CHAPTER V. CONCLUSIONS

This study has shown that inverse neural network controller training sets that use

ramp inputs instead of step inputs to obtain inverse process models have three important

advantages: better modeling capability, decreased model sensitivity to system changes,

and increased overall performance of the controller. Furthermore, this study demonstrated

that decreased model prediction error results in better control system performance.

Based on the literature review, this is the first study to evaluate the use of ramp

inputs to generate neural network training data. Direct inverse model neural network

controllers have not been widely employed due to the problems encountered when trying

to approximate a highly excited input signal. Much of the difficulty in approximating an

input signal can be attributed to the fact that a typical input signal, whether it is step

inputs, PRBS, or even random noise, contains many po~nts at which the slope is infinite.

This type offunction is extremely difficult to approximate. On the other hand, a signal

that uses ramp inputs is easier to approximate since it contains no infinite slopes. As a

result, inverse neural network models trained using ramp input signals can achieve much

lower prediction errors, typically an order of magnitude less, than models generated using

step input data. The improved modeling capability, which is due to smaller model error,

results in superior controller performance for setpoint changes and disturbance rejection in

the form of decreased overshoot and settling times.

Due to the nature of the ramp input training signal, which requires the network to

learn and use a less aggressive control behavior, the ramp-trained inverse process models

120

are less sensitive to system changes and are more stable when rejecting disturbances and

making setpoint changes. In other words, a neural network can more accurately learn a

less aggressive control behavior while simultaneously reaching a lower model error that

results in better tracking and disturbance rejection capabilities.

Using ramp tests to generate inverse neural network process model training data

provides one with a powerful tool for obtaining more accurate and better behaved inverse

neural network controllers. The benefits of using ramp tests were demonstrated in this

study by making a direct comparison with neural network models obtained using

traditional step test data.

121

CHAPTER VI. RECOMMENDATIONS

Three recommendations to improve this work are as follows: improve the

network structure, produce a more sophisticated model mismatch algorithm to

complement the inverse neural network controller, and better quantify the relationship

between model error and overall performance.

While the effects on the selection and type of inputs and how much information for

each type of input should be provided to obtain a good inverse process model was

considered in this study, improvement of the network structure needs to be further

evaluated. A rigorous analysis of the effects of varying network parameters, such as the

number of neurons, the number oflayers, etc., on controller performance would help

establish guidelines that would aide in generalizing the process to obtain an inverse neural

network controller. Investigation concerning the type and amount of process information

necessary to allow the model to generalize well would further contribute to the

development ofa framework of inverse model controller development. In addition,

studying how different desired future reactor temperatures (e.g. T(t+2), T(t+3), etc.)

effect controller performance and tuning would be useful.

In this study, the algorithm used to correct for model mismatch was

straightforward. While it has its shortcomings, it did allow the two types of inverse

models to be compared in a disturbance rejection mode of operation. However, some

tracking problems were evident when there was a significant amount of model mismatch.

A relationship between model error and network sensitivity was observed and

analyzed quantitatively while the influence ofmodel error on network performance was

122

only analyzed qualitatively. The theoretical development of a framework, consistent with

the results of this study, that quantitatively relates specific effects ofmodel error on

aspects of controller performance such as overshoot and settling time would be usefuL.

123

REFERENCES

Caudill, M. Expert Networks. Byte 16, 108-116 (1991),

Cheung, T. F., Kwapong, 0., and 1. I. Elsey. Building Empirical M.odels of Process Plant
Data by Regression or Neural Network. Proceedings of the American Control
Conference, Chicago, IL, 3-1922-1925 (1992).

Demuth, H., and M. Beale, Neural Network Toolbox User's Guide. The MathWorks,
Inc" Natick, MA (1992).

Downs, 1. J., and E. F. Vogel. A Plant-Wide Industrial Process Control Problem.
Computers Chem. Engng 17, 245-255 (1993).

Eskandarian, A, Bedewi, N. E., Kramer, B. M., and A. J. Barbera. Dynamics Modeling
ofRobotic Manipulators Using an Artificial Neural Network. Journal ofRobotic Systems
11,41-56 (1994).

Farotimi, 0., Dembo, A, and T. Kailath. A General Weight M.atrix Formulation Using
Optimal Control. IEEE Trans. Neural Netw. 2,378-394 (1991).

Garcia, C. E., Prett, D. M., and M. Morari. Model Predictive Control: Theory and
Practice--a Survey. Automatica 25, 335-348 (1989).

Garcia, C. E., Ramaker, B. and J. Pollard. TotaJ Process Control - Beyond the Design of
Predictive Controllers. Chemical Process Control- CPCIV, Padre Island, Texas, 335­
361 (1991).

Hammerstrom, D. Working with Neural Networks. IEEE Spectrum 30,46-53 (1993).

Hernandez, E., and Y. Arkun. Neural Network Modeling and an Extended DMC
Algorithm to Control Nonlinear Systems. Proceedings of the American Control
Conference, Chicago, IL, 3-2454-2459 (1990).

Hernandez, E., and Y. Arkun. Study of the Control-Relevant Properties of
Backpropagation Neural Network Models ofNonlinear Dynamical Systems. Computers
Chem. Engng 16,227-240 (1992).

124

Himmelblau, D. M. Fault Detection in Heat Exchangers. Proceedings ofthe American
Control Conference, Chicago, IL, 3-2369-2372 (1992).

Hofland, A. G., Morris, A. 1., and G. A. Montague. Radial Basis Function Networks
Applied to Process Control. Proceedings ofthe American Control Conference, Chicago,
IL, 1-480-484 (1992).

Hoskins,1. c., and D. M. Himmelblau. Process Control Via Artificial Neural Networks
and Reinforcement Learning. Computers Chem. Engng 16,241-251 (1992).

Hsu, Y, and C. Yu. A Self-Learning Fault Diagnosis System Based on Reinforcement
Learning. Ind Eng. Chem. Res. 31, 1937-1946 (1992).

Ishida, M., and J. Zhan. Characteristics ofPolicy-and-Experience-Driven NeuraL Network
when Applied to Level Control. Journal ofChemical Engineering ofJapan 25, 485­
489 (1992a).

Ishida, M., and 1. Zhan. ControL of a Process with Time Delay by Policy-and-Experience­
Driven Neural Networks. Journal ofChemical Engineering ofJapan 25, 763-766
(1 992b).

Ishida, M., and J. Zhan. Neural Network Control for a MIMO Process with Time Delay.
Journal 01Chemical Engineering ofJapan 26,337-339 (1993).

Joseph, B., and F. W. Hanratty. Predictive Control of Quality in a Batch Manufacturing
Process Using Artificial Neural Network Models. lnd Eng. hem. Res. 32, 195] -1961
(1993).

Karim, M. N., and S. L. Rivera. Application of Neural Networks in Bioprocess State
Estimation. Proceedings of the American Control Conference, Chicago, IL, 1-495-499
(1992).

Kasparian, v., and C. Batur. Neural Network Structure for Process Control Using Direct
and Inverse Process Model. Proceedings 01 the American Control Conference, Chicago,
IL, 1-562-566 (1992).

Kavuri, S. N., and V. Venkatasubramanian. Representing Bounded Fault Classes Using
Neural Networks with Ellipsoidal Activation Functions. Computers Chem. Engng 17,
139-163 (1993).

Kramer, M. A. Autoassociative Neural Networks. Computers Chem. Engng 16, 313­
328 (1992a).

125

...--

Kramer, M. A., Thompson, M. L., and P. M. Bhagat. Embedding Theoretical Models in
Neural Networks. Proceedings of the American Control Conference, Chicago, IL, 1­
475-479 (1992b).

Krieger, 1. Chemical Engineering Seeks to Address Worldwide Concerns. Chemical &
Engineering News 69, 16-22 (1991).

Kyung, K. H., Lee, B. H., and M. S. Ko. Acceleration Based Learning Control of
Robotic Manipulators Using a Multi-Layered Neural Network. IEEE Transactions 0/1

Systems Man and Cybernetics 24, 1265-1272 (1994).

Levin, A. 0., and K. S. Narendra. Control of Nonlinear Dynamical Systems Using Neural
Networks: Controllability and Stabilization. IEEE Trans. Neural Netw. 4, 192-206
(1993).

Lu, Y. The New Generation of Advanced Process Control. Control Engineering 39,
21-23 (1992).

Marquardt, D. An Algorithm for Least Squares Estimation of Non-Linear Parameters. 1.
Soc. Ind Appl. Math. 431-441 (1963).

Mavrovouniotis, M. L., and S. Chang. Hierarchical Neural Networks. Computers Chern.
Engng 16,347-369 (1992).

Moran, A., and M. Nagai. Optimal Preview Control of Rear Suspension Using Nonlinear
Neural Networks. Vehicle System Dynamics 22,321-334 (1993).

Morari, M., and E. Zafiriou. Robust Process Control. Prentice Hall, Englewood Cliffs,
NJ (1989).

Morris, A. 1., Montague, G. A., and M. 1. Willis. Artificial Neural Networks: Studies in
Process Modeling and Control. Chemical Engineering Research & Design 72, 3-19
(1994).

Nahas, E. P., Henson, M. A., and D. E. Seborg. Nonlinear Internal Model Control
Strategy for Neural Network Models. Computers Chern. Engng 16, 1039-1057 (1991).

Nikolaou, M., and V. Hanagandi. Control of Nonlinear Dynamical Systems Modeled by
Recurrent Neural Networks. AIChE 1. 39, 1890-1894 (1993).

Normandin, A., Thibault, 1., and B. P. A. Grandjean. Optimizing Control of a Continuous
Stirred Tank Fermenter Using a Neural Network. Bioprocess Engineering 10, 109-113
(1994).

126

Osborne, D. A. Neural Networks Provide More Accurate Reservoir Permeability. Oil &
Gas Journal 90,80-83 (1992).

Piovoso, M. 1., Kosanovich, K. A., Rokhlenko, V., and A. Guez. A Comparison of Three
Nonlinear Controller Designs Applied to a Non-Adiabatic First-Order Exothermic
Reaction in a CSTR. Proceedings ofthe American Control Conference, Chicago, IL, 1­
490-494 (1992).

Psichogios, D. c., and L. H. Ungar. Direct and Indirect Model Based Control Using
Artificial Neural Networks. Ind. Eng. Chern. Res. 30,2564-2573 (1991).

Ray, W. H. Advanced Process Control. McGraw-Hill, New York (1981).

Rehbein, D. A., Maze, S. M., and 1. P. Havener. The Application of Neural Networks in
the Process Industry. ISA Transactions 31, 7-13 (1992).

Richalet, 1., Rault, A., Testud, 1. L., and 1. Papon. Model Predictive Heuristic Control:
Applications to Industrial Processes. Automatica 14,413-428 (J 978).

Ricker, N. L. Model-Predictive Control: State of the Art. Chemical Process Control­
CPCIV, Padre Island, Texas, 271-296 (1991).

Rouhani, R. and R. K. Mehra. Model Algorithmic Control (MAC)~ Basic Theoretical
Properties. Automatica 18,401-414 (1982).

Rudd, 1. B. Using a Neural Network System for Advanced Process Control. 7appi
Journal 74,153-159 (1991).

Seborg, D. E., Edgar, T. F., and D. A. Mellichamp. Process Dynamics and Control.
John Wiley & Sons, New York, NY (1989).

Sheppard, C. P., Gent, C. R., and R. M. Ward. A Neural Network Based Furnace Control
System. Proceedings ofthe American Control Conference, Chicago, IL, 1-500-504
(1992).

Sorsa, T., and H. N. Koivo. Application of Artificial Neural Networks in Process Fault
Diagnosis. Automatica 29, 843-849 (I993).

Su, H., Minderman, Jr., P. A., and T. 1. McAvoy. Control and System Identification
Using Elements of Neural Network Computation Engineering. Proceedings of the
American Control Conference, Chicago, IL, 1-485-489 (I992a).

Su, H., McAvoy, T. 1., and P. Werbos. Long-Term Predictions of Chemical Processes
Using Recurrent Neural Networks: A Parallel Training Approach. Ind. Eng. Chern. Res.
31, 1338-1352 (1992b).

127

Thibault, 1. and B. P. A. Grandjean. Neural Networks in Process Control- a Survey.
Advanced Control ofChemical Processes - ADCHEM'9I, Toulouse, FR., 8-251-260
(1991).

Zhang, Q., Reid, 1. F., Litchfield, 1. B., Ren, J. and S. Chang. A Prototype Neural
Network Supervised Control System for Bacillus thuringiensis Fermentations.
Biotechnology and Bioengineering 43,483-489 (1994).

Zurada, J. M. Introduction to Artificial Neural Systems. West Publishing Company, New
York, NY (1992).

128

APPENDIX A

129

Neural Network Mechanics

Neural network terminology, structure and function are discussed here. These are

important concepts necessary for understanding how a neural network inverse process

model is obtained and implemented in an fMC control strategy. A neural network

performs a transformation on a set of inputs to produce a set ofoutputs. A neural

networks ability to utilize nonlinear monotonic functions allows these transformations to

be nonlinear and, as a result, gives them a great advantage over classical modeling

methods. The function associated with a neuron is referred to as its activation function.

This function can be linear and as simple as f(x)=x, which results in an output equal to the

input. However, activation functions are usually nonlinear, such as

f(x)=l/(l+exp(-x)), which is commonly referred to as a logarithmic-sigmoidal function.

A neural network consists of three types oflayers, these are the input layer, hidden

layer(s), and an output layer. The input layer merely propagates the inputs to the first

hidden Layer. Hidden layers contain the neurons where intermediate inputs and outputs are

processed. The output layer is simply the outputs of the last hidden layer. The inputs are

usually normalized to aide the networks ability to learn, while the range of values of the

outputs is dependent on the type of activation function used in the last hidden layer.

Typically, a feedforward network will have no more than two hidden layers of neurons. In

fact, it is recommended that no more than three hidden layers of neurons be used, since

there is no real gain in generalizability seen when using more than three hidden layers. All

neurons in a hidden or output layer are connected to all of the inputs from the previous

layer. Each connection has a weighting factor associated with it. The value of these

130

weights is changed during the learning phase until the network has properly learned the

desired relationship between the inputs and corresponding outputs. It should be noted

that the initial values of the weights are randomly selected values between negative one

and plus one. This, in combination with nonnalization of the inputs, keeps the network

from having to excessively change the weights and, as a result, greatly reduces training

time. Also, each neuron has its own bias, which is also changed during the training phase

and further enhances the networks ability to learn.

A Single Neuron

Figure A-I shows a graphical representation of a single neuron with multiple

inputs. The neuron takes the input N, which is equal to the sum of input P(I) multiplied

by weight W(I, I) through input peR) multiplied by weight W(1,R) plus a bias B, and

calculates an output A using an activation function F. The inputs, pel) through PeR) can

be outputs from another hidden layer or from the input layer. This output is then

propagated to the next layer of the network whether it is another hidden layer or the

output layer. When dealing with complex networks it is often helpful to quantify the

network using matrices and vectors. For example, as shown in Figure A-I, the output of

the neuron could be written as A=F(W*P+B) where F is the activation function, A is a J

by 1 vector containing the output, B is a J by 1 vector with the bias, P is a R by 1 vector

of inputs, and W i.s a 1 by R vector whose values represent the weights for each

connection between the inputs and the neuron. This is the notation used in the Matlab

Neural Network Toolbox (Demuth and Beale, 1992). Figure A-2 shows an equivalent

Matlab representation of Figure A-I. The equivalent Matlab notation is being included for

131

Neuron
P (1)

I wCL1)
N
P wCL2) N

F
A

P(2)

U
T \JeLR)

PCR)
1

A=FCw P+ B)

Figure A-I. A Multiple Input Neuron

132

Neuron
I p

\;jN Rxl lxl

P lxR F
U 1 B lxl
T lxl

Figure A-2. Matlab Representation of a Multiple Input Neuron

133

two reasons. First, it provides an efficient method of defining a neural network. All

weights, biases, and outputs can be easily put into matrices or vectors for analysis.

Second, it allows one to focus more on how the network functions without getting caught

up in detailed calculations. The Matlab neural network toolbox was used exclusively in

this study. Now that we have a better understanding of neural network basics, the next

logical steps are to look at how a layer of multiple input neurons functions and how

multiple layers of multiple input neurons function.

A Layer ofNeurons

A neuron in a layer of neurons functions just like a single multiple input neuron.

The primary difference, as can be seen in Figure A-3, is that there are more outputs

generated, one from each neuron. Also, there are many more weights due to the increased

number of connections between the inputs and the neurons. As previously shown, for a

layer with S neurons in it, the output of the layer could be written as A=F(W*P+B) where

F is the activation function, A is now a S by] vector containing the outputs B is now a S

by 1 vector with the biases, P is a R by 1 vector of inputs and W is now a S by R vector

whose values represent the weights for each connection between the inputs and the

neuron. Figure A-4 shows an equivalent Matlab representation of Figure A-3.

Multiple Layers of Neurons

Multiple layers ofmultiple i.nput neurons are typically used to form complex

networks capable of learning very nonlinear relationships. Each layer of neurons

processes its inputs using the method previously discussed and then propagates its outputs

to the next layer, whether it be a hidden or an output layer. One should understand that a

134

Neuron LQyer

ACS)

AeJ)
F

F

(1)

NCS)

weLl)
P(1)

PCR)

P(2)
1

I
N PC])

N(2) A(2)
P F
U P(4)
T

1

1

Figure A-3. A Layer ofMultiple Input Neurons

135

Neuron
I p A

WN Rxl S xl Sxl

P SxR F
U 1 B Sxl
T Sxl

Figure A-4. Matlab Representation of a Layer of Multiple Input Neurons

136

neural network can be as simple as a single input to a single neuron with a single output.

On the other hand, a neural network can be as complex as the one shown in Figure A-5.

The network in Figure A-5 has one input layer, three hidden layers, and one output layer.

Figure A-6 shows an equivalent Matlab representation of Figure A-5.

Characteristics ofNeural Networks

Neural networks exhibit many characteristics that make them desirable for use in

IMC as well as other applications and advanced control strategies. Neural networks,

unlike conventional data processing techniques, are very powerful when applied to

problems whose solution requires knowledge that is difficult to specify, but for which

there is an abundance of examples. Many complex process control problems fit this

criterion, as examples of system response to different control system stimuli are readily

available and most industrial process infonnation is saved continuously. Another

capability of neural networks is the finding of solutions to complex nonlinear problems

without the need for any a priori knowledge as to the nature of the solution. This is

especially important when supervised learning or the aid of an expert is either not feasible

or impossible. Neural networks also have the ability to generalize from examples, thus

giving them the capability to interpolate and extrapolate. However, great caution should

be taken when using a neural network for extrapolation, Neural networks are also capable

of extracting essential infonnation from noisy data and performing gross error removal.

These are just a few of the many abilities of neural networks. They have great

potential when used carefully and intelligently. The section "Neural Networks in Control"

in Chapter 2 provides a sample of how they have already been studied and utilized in

various applications.

137

Neuron Loyer 1 Neuron Loyer 2 Neuron Layer 3

PC])

P(2)

I
N P(3)

Al(2) A3(2)
P
U P(4)

T A2=F2CW'2*Al + B2)

PCRl
AlCS) AJ<S)

Al=Fl(Vl P+BD A]=F"](\.J] A2+ 8])

Figure A-5. Multiple Layers of Neurons

138

euron Loyer 1 Neuron Loyer 2 Neuron Loyer 3

] At A2 A3
N Slxl Slxl S2xJ S2xl S]xl SJxl

P SlxR Fl S2xSJ F2 S3xS2 FJ
U Slxl S2xl S3xl
T Slxl S2xl S3xl

Al=F\(Vl*P+BJ) A2=F2('v/2WA1+B2) AJ=F3('v/3 A2+ BJ)

Figure A-6. Matlab Representation of Multiple Layers of Neurons

139

APPENDIXB

140

How to Obtain an Inverse Process Model Using Neural Networks

The method used to obtain an inverse process model is not straightforward. While

each step in the process is not difficult, there are many decisions along the way that must

be made without any general rules of guidance. Some of these include the type of neural

network, the architecture of the network, the type of activation functions in the network,

proper initialization of the network weights and biases, the training method to be used, the

training algorithm to be used, what process variables will be network inputs what process

variables will be network outputs, the structure of the network inputs and outputs, and

where and how to obtain training data. Each of these items is very crucial to the overall

success of the model development. While there might be many different combinations that

would work for one process, some processes are much less flexible.

Neural Network Type

The neural networks used in this study are all feed forward networks. In a feed

forward network, aU inputs propagate through the first layer of the network, with the

outputs from the first layer propagating through each of the remaining layers until the

output layer is reached. This is the most popular type of neural network and is commonly

used with a variety of training algorithms. While there are an almost unlimited number of

neural network types, such as radial basis function networks, Hamming networks,

perceptrons, ART, etc., the basic idea is the same: to perform a nonlinear transformation

on a given set of inputs and map them to a corresponding set of outputs.

141

Neural Network Architecture

There is no set of rules for choosing the architecture of the network. However,

one typically begins by considering the number of network inputs and outputs. There are

two things that must be considered: the number of layers in the network and the number

of neurons in each layer. Usually the number ofhidden layers, which are those between

the input and output layers, will not exceed three. This is because using more than three

hidden layers becomes computationally inefficient during the training stage, with minimal

benefits in terms ofgeneralization. If the network is too big, it will simply memorize the

training set. This phenomenon is checked for by verifying that none of the values of the

weights have become approximately zero after the training process. The goal is to use as

few hidden layers and neurons as possible. This will maximize the ability of the network

to generalize and be more computationally efficient. However, care should be taken that

the network is not reduced too much in size, since this could result in poor performance

and high training errors.

Neural Network Activation Functions

Care should also be taken in the selection of the type of activation function(s) that

will be used in the network. Activation functions are usually chosen so that all neurons in

a given layer have the same type of activation function. While linear activation functions,

such as hard-limits and pure-linears can be used, and are sometimes ideal for a particular

application, nonlinear functions, such as logarithmic-sigmoidal and tangential-sigmoidal,

are more commonly used.

142

The type of inputs and desired outputs is important in the selection of the

activation function. For example, if one desires outputs between zero and one, a

logarithmic-sigmoidal function would be ideal, since it provides only values in tms range,

whereas a tangential-sigmoidal function provide values between negative one and one. [f

tangential-sigmoidal activation functions were used, the network would not train as

efficiently and would probably require more neurons than one using logarithmic-sigmoidal

ones. The shape of the activation function used also becomes very important during

training, since the derivative of the activation function is utilized. For example, if a

network has only linear activation functions, it will only be capable of learning a linear

mapping, and will therefore not be very useful for nonlinear applications.

[t should be noted that the use of nonlinear activation functions in a parallel

processing environment is where neural networks derive their power. For example, a

neural network with any number of hidden layers utilizing linear neurons can do no better

than a neural network with only one hidden layer containing a single linear neuron. Since

most systems are nonlinear, and one of the motivations to use a neural network as a

process model is its ability to model nonlinearities, the activation functions used in this

study were logarithmic-sigmoidal.

Neural Network Initialization

One of the most important steps in the process of training a neural network is the

proper initialization of the network weights and biases. If this is not done properly, it can

greatly increase the training time or, in some cases, keep the network from converging at

all. For example, if a given neuron has a logarithmic-sigmoidal activation function, the

143

derivative is very small at values close to zero and one. Thus, the initial bias and weight

values for the neuron should be chosen so that the initial output of the neuron is close to

0.5, where the derivative is greatest and the neuron can be more easily adjusted during

training. While there are numerous methods for initializing weights and biases, there is no

"best" method that can be used in every case. This is because many of the initialization

procedures are tailored to certain types ofnetworks, network architectures, and activation

functions. The procedure used to initialize the weights and biases for the networks used in

this study was very simple. All weight matrices and bias vectors were randomly generated

to be symmetric, with values between one and negative one.

Neural Network Training Method

There two ways to present training data to a neural network during the learning

phase. If the network weights and biases are adjusted after each data set has been

presented to the network, the training method is termed incremental training. If the entire

set of data is presented to the network before any updates to the network weights and

biases are made, the training method is referred to as batch training. In batch training, the

changes for each data set are stored and then summed up to determine a net change for all

weights and biases. Batch training will usually result in a much more stable and quicker

network convergence than incremental training, since it is less susceptible to bad data sets

and allows the network to learn in a more generalized fashion. The batch training method

was used for training all networks in this study.

144

Neural Network Training Algorithms

There is a great variety of training algorithms to choose from for feed forward

networks. Training algorithms simply decrease the error of the training data by adjusting

the values of the network weights and biases until the error reaches some preset value,

referred to as the convergence criterion. There are a number of ways to look at the error

ofa network: root-mean-squared error, sum-squared error, integral absolute error, etc.

The sum-squared error provides an accurate representation of how well the network will

perform based on the magnitude of the final error. The integral absolute error was used in

this study to obtain equivalently-trained step and ramp inverse neural network models for

a baseline comparison of performance between the two types oftraining signals. The

training data for each model consisted of two sets of test data. One set, the training data,

was used to actually obtain the neural network model while the other, the test data, was

used to validate the model. Training of the network continued until the sum-squared error

of the test data began to increase, since further training would only decrease the networks

ability to generalize from the training data.

Selection of a training algorithm is very dependent upon the type of network, the

activation functions and the mode ofuse intended for the trained network. Training

algorithms, much like initialization techniques, are better suited to some combinations of

the above items than others. Furthermore, the way training algorithms work also varies.

For example, one might use a steepest descent method while another uses a conjugate

gradient descent method. The networks in this study were trained using the Levenberg-

145

Marquardt algorithm, a conjugate gradient descent method, and were validated using an

independent set of test data.

What to use as Network Inputs and Outputs

After all of these network parameters, the type of neural network, the architecture

of the network, the type of activation functions in the network, proper initialization of the

network weights and biases, the training method to be used, and the training algorithm to

be used have been determined, one must decide what process variables will be used as

network inputs and outputs. Before this can be done, one must know which variables are

to be manipulated and which variables are to be controlled. This discussion will consider a

single input, single output (SISO) system. Thus, there will be only one manipulated

variable and one controlled variable. However, it should be kept in mind that the same

ideas apply to systems with multiple inputs, multiple outputs, or both.

While there might be a wealth of process information available for input into the

network, one does not want to burden the learning process with redundant information

that will simply waste network resources. For example, consider digital control of the

CSTR with time delay shown in Figure B-1, where one has process information on the

height (H), volume (V), and exit concentration (CaUL) of the tank readily available. If one

were interested in controlling the exit concentration, one might regulate the height of the

tarue Thus, one would want to input information on the height of the tank. However, one

would not want to also input the volume of the tank, since this would simply require the

network to learn the relationship between the height and diameter of the tank, which is

fixed. Furthermore, one would not want to use only the volume of the tank, even though

146

1C:::J--i)!(J--- Coolant In

l.---.---\XI----e::;.~ Product

Feed -------,

Coolant Out <=r-----I

Cout

Figure B-1. Nonlinear Continuous Stirred-Tank Reactor

147

that is what directly effects the exit concentration, because it is not the manipulated

variable. The output of the network would simply be the control move necessary to keep

the controlled variable, the exit concentration, at the setpoint or move it back to the

setpoint. This then raises the question ofhow the network knows what the setpoint is.

The network must have a goal so that it has a basis to determine what control move must

be made in an effort to either achieve the setpoint or at least decrease the error between

the setpoint and the controlled variable. Thus, the setpoint must also be input to the

network. However, the input/output determination process does not end there.

Neural Network Structure

If the setpoint and controlled variable were the only network inputs, the

manipulated variable, or output, would be very erratic. This is because the network would

only know that there is either no error or an error of some magnitude. The greater the

magnitude of the error, the more aggressive the output would change. This type of

behavior would lead to instability. Thus, something else needs to be input to make the

network function more smoothly. This is where consideration of the structure of the

inputs and outputs comes into play. It is not enough to simply determine what variables

are being controlled and what variables going to be manipulated. In other words, one

cannot simply input the value of the controlled variable and the setpoint and output the

manipulated variable and expect the network to function properly. This is where one must

think about what is making the network behave erratically and what can be done to

remedy this behavior. There is no set of rules for how this is done. However, common

148

sense and a knowledge of the process, as with virtually all steps of the model development

process, will provide some answers as to how one should proceed.

The .first thing that can be done to improve the output of the network is to provide

it with some past values, as well as the current one, of the controlled variable. This will

make the network more stable, since it will learn the relationship between the rate of

change of the controlled variable and the necessary aggressiveness of the control move

relative to the last control action. However, this brings another parameter into play: how

much past information about the controlled variable needs to be supplied. Since this

example has time delay, as most chemical engineering processes do, one will need to

provide at least enough information so that the effects of any given control action can be

seen. For example, if the digital control system was using a sampling time of six seconds

and had a time delay of30 seconds, one would have to provide at least five sampling times

worth of process information. While this modification to the input side of the network

will result in a more stable model, one can still do much more to improve the performance

and stability of the network.

As with the controlled variable, a history of the manipulated variable can also be

supplied to the network. This will allow the network to learn the effect of the rate of

change of the manipulated variable on the rate of change of the controlled variable. As

with the controlled variable history, the number of sampling periods worth of manipulated

variable information should be provided to the network is not arbitrary. The amount of

information supplied should exceed the time delay window so that the network can see the

effects of all control actions. At this point, it should be emphasized that the number of

149

inputs should be minimized, since too many inputs simply burden the network with

redundant infonnation and make it computationally less efficient. It has been this

researcher's experience that one should input more information on the manipulated

variable than the controlled variable in order to enhance the ability of the network to learn

the relationships described above. In other words, one does not want a network that has

learned how the controlled variable effects the manipulated variable. It should be apparent

by now that there are no rules of thumb or simple and straightforward answers concerning

the development ofan inverse process model, but that common sense, intuition, and a

sound understanding of neural network fundamentals are one's most powerful tools.

The output of the neural network model for this example is simply the manipulated

variable, which is the control signal to the valve that regulates the height of the tank. As

previously mentioned, for a multiple output system, the network would generate values

for all manipulated process variables. Unlike the inputs to the network, the outputs can be

directly determined.

How to Obtain Neural Network Training Data

A good data set for use in training a neural network should meet the following two

criteria. First, it must provide sufficient excitation of the system so that the network can

learn the process dynamics. If the training set is not rich enough, the resulting network

will be inadequate for robust control. Second, the size of the training set should be kept

as small as possible because, the larger the training set, the longer the time it will take to

train the network due to the increased computational requirements. As a training set gets

150

larger, it begins to acquire redundant information as to how the process behaves in certain

situations and at various operating conditions.

One must also determine what type of open-loop tests will be performed to obtain

a rich data set. Traditionally, pulsed and stepped inputs have been used to excite a system.

However, this study has considered the use of ramped inputs as an alternative. Figure B-2

shows pulsed, stepped, and ramped input signals. Before we can discuss the benefits of

using ramped inputs, we must first understand what the process is trying to achieve.

As previously discussed, a neural network is usually utilized to either map inputs

from one space to another or to perform what is known as function approximation. When

using a neural network in a model-based control strategy, one is concerned with its ability

to approximate functions. These functions are simply the outputs of the system during

open-loop testing. Consider the same SISO system already discussed, since it is a base

case for more complex systems. Because one wants the neural network process model to

provide one with the control signal at each sampling period, the manipulated variable will

be the network output. The step and ramp test procedures will be the same whether the

system actually exists or is simply a computer simulation.

To begin, all controllers that are to receive their signal from the process model

must be taken off-line. This should be done once the system has reached steady-state at

the desired operating point. The remaining controllers should stay at the steady-state

signal during the testing period. This will allow the controllers that are to be neural

network-regulated to be stimulated as necessary to perform the step tests. This allows the

system to respond in an open-loop mode. It is important that the step test provide a rich

151

1.6 1.6 1.6

1.4 1.4 1.4

1.2 1.2 1.2

l 1 r--- .., I
Cll 1 1 f-- '- ..--
u:e
0..
E
~ 0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2
0 50 100 0 50 100 0 50 100

Time

Figure B-2. A Sample ofPulsed, Stepped, and Ramped Signals

152

enough training set so that the neural network can learn the process dynamics. However,

there is no standard method in which the steps should be carried out. lmportant

parameters in the step tests include the frequency and magnitude of the steps. As before,

one should know what the delay of the system is so that a proper step time can be chosen.

The frequency should not be less than the delay, since it will make it impossible for the

network to learn how the input affects the output. The magnitudes should vary over the

full range of possible control signals in order to provide a more robust network. The

procedure for performing the ramp tests is the same except that the signal is discretely

changed in five equal steps instead of a single step.

153

~

VITA d:

Paul A Belcher

Candidate for the Degree of

Master of Science

Thesis: USE OF RAMP TESTS TO OBTAIN INVERSE NEURAL NETWORK
PROCESS MODELS

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Jacksonville, North Carolina, on June 5, 1970, the son of
Gerald and Clara Belcher.

Education: Graduated from Pioneer High School, Waukomis, Oklahoma in May 1988;
received Bachelor of Science degree in Mechanical Engineering from Oklahoma
State University, Stillwater, Oklahoma in May 1993. Completed the requirements
for the Master of Science degree with a major in Chemical Engineering at
Oklahoma State University in May 1996.

Experience: Advanced Process Control Engineer for Conoco Inc.

Professional Memberships: American Society of Mechanical Engineers, American
Institute of Chemical Engineers, Omega Chi Epsilon

