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INTRODUCTION

This paper is an dttempt to integrate into one source the applica-
tion of the '"Abbreviated Doolittle Technique'' for solving a system of
normal equations.

Although the '"Abbreviated Doolittle' is primarily a method for
obtaining the solution to a set of equations, we shall point out many
statistical computations that come about in the process of applying
this method to a set of normal equations. Hereafter, when we refer

to a set of normal equations, we will mean that the coefficient maﬁrix
is symmetric, ':

The approach in this presentation will be confined mostly to
examples pf this method applied to the more common statistical designs.,
We will confine the examples to normal equations containihig a smali
number of unknowns to expedite the reading. This will be without loss

of generality since the ''"Technique''is identical for larger systems

of equations.



CHAPTER 1
A BRIEF HISTORY OF THE "DOOLITTLE TECHNIQUE"

In most computational work involving systems of linear equations
one is confronted with the problem of solving n equations in n unknowns,
This problem, prior to the advent of the numerous present day mecha-
nical computing aids was imposing as n became large.

Concerning this problemm M. H. Doolittle, an employee in the U. S.
Coast and Geoditic Survey Office, presented a paper dated November 9,
1878 [ 1 ].

We will present this original method in a simple example, as we
intend to do for all applications. Keep in mind these applications may
" be easily extended to n equations in n unknowns. This example will be
set up exactly as the method was presented by Doolittle in the above

paper.

Suppose we have the following system of three equations in three

unknowns:
0 = 2x+4y + 2z -6
0 = 4x+ 10y + 2z - 18 (1. 1)
0 = 2x+ 2y + 12z - 16

This solution for x, y, and z is found as follows.



Table I

Original Doolittle for solving Equations ( 1. 1)

/

A B
1 2 3- + 5 6 7 1 2 3 & 5
X y z y z
1 1 2 4 2 -6 1 3 10 2 -18
2 2 -.5 x= | =2 -1 3 2 4 -8 | -4 12
3 5 2 -2 | -6 3 7 12 16
4 6 -5 y= 1 3 4 -2 6
5 10 8 16 5 9 -2 -6
6 11 -.125| z= | =2
line
2 x= =2y =2z + 3 % = 3
4 y= z + 3 y =1 {1.1.1)
6 z= =2 z = =2

The first column in sub-tables A and B-of Table I given the number of

the line and the second column, the order of procedure.

The coefficients and absolute term of equation 1 are entered in

line 1, columns 4 to 7 of Table A. The negative reciprocal of the co=-

efficient of x, is entered in line 2,

column 3.

All the remaining num-=

bers in line 1 are multiplied by this reciprocal and the products entered

in line 2.

This gives the value of x as an explicit function of y and =z.



The coefficients and absolute term of equation 2, (omitting the
coefficient of x, already in the first equa;ion in Table A), are now
written in line 1, Table B. The coefficient of y and all the frllnwing
numbers of line 1, Table A, are now multiplied by the cov
y in line 2 of Table A, and the produlcts are written in line 2, Table B.
The algebraic sum of line 1 and 2, Table B, is now entered in.line 3,
Table A, and line 4 is formed from line 3, exactly as line 2 was formed
from line 1.

Omitting the coefficients x and vy, the remaining coefficients, and
the absolute value term of equation 3, is entered in line’' 3 of Table B.
The coefficients of z and the following numbers in li‘he 1 and 3, Table A,
are respectively multiplied by the coefficients of z in lines 2 and 4,
these products entered in line 4 and 5, Table B. The algebraic sum of
lines 3, 4, and 5 of Table B, is now entered in line 5, Table A.

Now, if there were other equations and unknowns, this process
- would be repeated. In our example, the last number in column 7, Table
A, is an approximation of the unknown z. We can now take the explicit
equations in lines 2, 4, and 6, Table A, for the approximate solution
to the set of equations (see equations 1,1.1)., We have used approximate
solution here in the sense that if we had chosen to use decimal equiva=
lent numbers instead of fractions, then we would obtain only an approﬂcz
" ximation rather than an exact solution. Decimal notation is used \-when
computations are done on a desk calculator or when the ''technique'’

is programmed for an electronic computer.
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We can summarize by stating that this '"'technique''is merely a
systematic, mechanical procedure to obtain the solution for n equations
in n unknowns. The procedure being restricted to row operationa' on

the system.



CHAPTER 1II

PROCEDURE FOR APPLYING THE ""ORDINARY' AND
"ABBREVIATED DOOLITTLE" o

2.1, The Ordinary Doolittle

As stated before, the Doolittle technique is a method of obtaining
the solution to a set of n equations in n unknowns. Before proceeding

further, let us define the terminology concerning this method, when

o

applied to a system of normal equations. -
Suppose we have the system of normal equatibns X'Xp = X'W. This

system of equations is in matrix notation where the matrices are defined

as follows:

(1) X'Xis an n x n matrix of constant coefficients and will be
referred to as the coefficient matrix, Often we are interested in find=
ing the ihverse of this matrix, and the procedure for finding the inverse
will™ .be discussed later. This matrix is always symmetric about the

main diagonal.

(2) B isan nx 1 vector of unknown parameters, whose elements

we wish to estimate by application of the Doolittle method. |
(3) X'Y is an n x 1 vector of constants.
For example, consider the following set of three equations in three
unknowns.
26‘1 + 452 + 253 = 6
4p, + 10p, + 28, = 18 ’ (2.1)

28, + 28, +_1zé3 i



Using the notation described above, this system becomes

. -—| —‘., -1 o= e
2 4 2 B 6
4 10 2 B,| =| 18 (2. 1a)
2 2 ‘12 53 - 16
j - - - - - -
or
[XX]'[Bp] = [X'Y] (2. 1b)
or
X'Xp = X'Y ; (2. lc)

Equations 2.1, 2.1la, 2.1b, and 2. lc, are equivalent expressions.

We how wi‘sh to investigate both the ordinary Doolittle and the
Abbreviated Doolittle when applied to such a system of normal equa-
tions. We want to solve for approximations to the elements of the
vector of unknowns B We define the "forward solution' as follows.
This is the procedure that triangularizes X'X. We can say then that«
the forward solution transforms X'X so that {3 may be obtained. The
actual obtaining of 6 is a conseqﬁence of, rather than a part of, the

forward solution.

Many times we are interested in obtaining the inverse of X'X.

v

This can be accomplished at the same time the forward solution is

carried out. The only difference is a tiableau change. The procedure

for obtaining the inverse of X'X is defined to be the ''backward solution. "

We will investigate this procedure later in this chapter. &

o



Using the system of equations (2. 1) for an example, let us l!apply
the ordinary Doolittle to obtain a solution for the B,- The layout for
the forward solution is as follows. Note that only the elements of

the coefficient matrix and the constant vector are used in the layout.

. Table II

Ordinary Doolittle Technique
— X'X €
Column
1 2 3
Instruction Row B [32 B X'Y Check
=, 3
g Column
R, 2 - B 2 6 14
R, %@ . 10 ¢ 2 \%8 ' 34
R, 2 2 12 .| -16 0
1/2 R, o Ry 1 z‘ 1 3 7
RZ-ZRI R5 0 2 -2 6 6
Ry-R, | R 0 -2 10. -22 -'14
R, R7 1 2 1 3 7
1/2 Rg Rg 0 1 -1 3 3
R, + Rg R9 0 0 8 -16 -8
R, Rio 1 2 1 3 7
Rg Ry 0 1 -1 3 3
1/8R9 R, 0 0 1 3 wl




The prupose of the technique is tp triangularize the X'X matrix,
using row operations on the system. This is known as the forward so-
lution. It is a well kr}own fact, that row operations on such a system
do not affect the resulting solution. The Instruction column in Table II

I

merely explains what operations on the rows of the system we are to
i

perform,
YEiwe: now consider R,o» R,» and R ,, in Table II, we have the

following system with X'X now upper triangular. From this stem f§ _

may be obtained as follows:

T- i __.— il
1z "1 8, 3
I S | éz = |3
o o 1 Byl |-2] L
B 4[] 7 i
or )
"B, + 2, + P, = 3 (2.2)
.@2 s 53 = 3 ‘ (2. 3)
| 63 = -2 ) (2‘4)

Equatiori (2.4) gives us [33 . Substituting this in Equation (2. 3), we
can obtain B ,, then substituting in Equation (2.2) for § , and ?33. we

obtain f 1’ thus, we have solved for the B vector with the following

result. _ pe=! ' r e
B, 3
B = Byl =] 1 (2.5)
B -2
L~ o
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The check column is the sum of the numbers in each row. The
P
same operations are performed on this column as on other elements.
That is, the elements of this column are treated as members of their

respective rows. After each operation, the check column must be the

sum of the elements of that particular row. This serves as a check

- against arithmetic mistakes. We will discuss the validity of this later.

AR The Abbreviated Doolittle

We now apply the Abbreviated Doolittle to the same system. The

‘primary difference being that since the coefficient matrix X'X is sym-=-

metric with respect to the main diagonal, it is not necessary‘to use

the coefficients below the main diagonal.
The layout for the Abbreviated Doolittle is shown i;'n Table III.
The computational outline for Table III is as follows:
(1) Write the X'X matrix as shown, omitting all elements below

the main diagpna.l. Designate these rows as Rl', Rz',' R3'.

Note the check column sum includes the omitted elements of
X'X. |

(2) Write down the first row of the X'X matrix to obtain Rl'

(3) Divide all elements of R, by the leading element of R, to
obtain r,. Rl and r, will be called the computational rows
associated wit? R, %

(4) Determine pivotal multiplier for obtaining R This will be

Z.
[ .
the second element in . In particular, the element marked

|
with a square.
(5) To obtain the elements of RZ' subtract the product of the pivotal
multiplier and each element of R, from the respective elements
'|



Abbreviated Doolittle Method for Solving Equations (2. 1)

Table TII

11

X'X Clieck
Instructions Row Column D Eh'S
Row Sum
1 2 3
Rl" 2 4 2 6 14
R 10 2 18 34
‘s )
R, 12 1.6 0
R, R, 2 4 2 6 14
/2R, e 1 ERIOR 3 7
o ] =
R, @Rl R, 2 2 6 6
/3. Ry 5 1 D). 3 3
I-I - -
Ry=[EDR, IR ]| R, 8 16 8
1/8 Ry ' hy 1 -2 -1

(6).

(7)

(8)

of RZ' » omitting all elements of R, to the left of the pivotal multiplier.

These are omitted because only zeros are obtained if they are used.

Again obtain r, by dividing R2 by the leading element.
Determine pivotal multipliers for obtaining R

third elements in T

with a circle.

and' r,.

3!

These will be the

In particular, the elements marked

4 Ak

-

To obtain the elements of R4 find the product of the pivotal multiplier

in r, with RZ again omitting all elements of R

2

to the left of the
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multiplier. Subtract this sum from the respective elements of |

R,'. This gives R r, is obtained by dividing R3 by its leading

3 .

element.

3" ~3

It is important to note that; in this procedure, it requires two coms=
putational rows for each row of X'X. The second of which is always
obtained'from the first by dividing each element of the first by its
leading element. We will refer to Rl and rl. .‘Rz and Ty o o Rn
and r_ as sets of computational rows. _ —

To facilitate the extension to n equations in n unknowns we will
do a three by three system in general notation.

Consider Table IV which will be analagous to Table III.

Notw: (1) For the general computational row term Rij' we have
i=(,2 ...,n)ad}j=(l,2 ..., n+1) where n is the

number of unknowns in the system. Now for i > 1 the following

formula ffields any Rij'

b i

_ full
\ i R.. = R..'=Z r, R
\

ij t B ki kj

For exa.rhple, suppose we want R33 in Table (2. Z).'*"Using the formula
s - - - . - - 1
we have Rg; = Ryy'= [T R 4 7,.R,.] 12 [@ (-2+(D) (2)]=8.

It may seem that determining the pivotal multipliers is somewhat

difficult, but we shall now formulate a rule to determine these multipliers.

Rule for Determining Pivotal Multipliers.

The number of multipliers for Rn' will be (n=1). These will be the

elements in the n=-th column of rows Too1® Fpagr = @ o0 Tpo



Table IV

Abbreviated Doolittle in General

13

X' X
Column X'y ek
Instructions Row 1 2 3 (Row
Sum)
'I ] 1 I I ] ]
Ry R [ ®a2” Mo Rig ?le
: ! U ! 3 1l I
Rz Rys: 1Roa Rag ?sz'
I 1 ' "
3 Ky R34 jER3j
' 1]
4 Ris Rip [ Rz [Rus Big ;':le
R s |
= T 1 11 ||F1z2| (*13 Tl4 i ¥
Rll J
! - . ! - (-
Rai = Mi2fy | Ry Baz" Pas R24 ?sz
tr 2123 rlZRIT
il . 1 { 23 ) R24 - _
2j 23 |'R 24 1% T
R 22 22 §
22 .
t=] 3 la -
RyzlrpgRygt Ry Has Ra4 i R3;
T3R50 (v, Rpst | [r23Rpe"
r13R13] | T13Ri]
R3i - X R34 . .
R 3 R 34 |57 3
3 33
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Examgle: 4

Suppose we want the piyotal multipliers for Rs' in a seven by seven
system. We know then that there will be four in all and they will be
the elements in the fifth column of rows Tgr T Too T

Returning to Table III we note that T T and Y3 give

2

1 2 1 FBI 3
1 o 62 =| 3

1 B )
= - o 3_] Jb -J

exactly as in the ordinary Doolittle and again

B 3_‘
J N I
63 -2
i b il

Also, note that it has taken three less computational rows in the
Abbreviated Doolittle as opposed to the Ordinary Doolittle. We again
point out that although this has been presented in the specia].' case of

three equations in three unknowns, it is most readily extended to n equa-

tions in n unknowns. The procedure is identical.

Using the Doolittle Method to Obtain the Inverse of X'X

As we shall see later, many timeaf the inverse of X'X is desired.
This can be obtained, by what we shall refer to as the backward solution
of the Abbreviated Doolittle.

To obtain the backward solution, we again apply the forward soli:ution

|
with this t-ableau change; in addition we write the n x n identity matrix to
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the right of X'Y in Table III and treat each element as members of R'l,

1 1
RZ. R3.

is increased by one. We will refer to this new section as the [X'X]

The check column is obviously different, since each Rn' now
-1

section. The forward solution is now carried out on this new layout just

as in I'Table III.

Table V *

The Abbreviated Doolittle Method for Solving Equations ( 2.1 ) and

Determining the Inverse of the Coefficient Matrix

X'X [(xx]~*
. Column ' Colu, S R
P OLumn ec ow
Instructions Row X'y (Row tdentie
2 |3 ol SHen
Sum) . | ,fication
R'|2|4]2] 6 1 |o o 15
R,' 10/ 2| 18 0 |1 0| 35
R, 12 -16 0 |o 1] 1
R, Ry |2 |4 |2] 6 1 |o o| 15 Ty
l/le ) 1 @ 3 [1/2,@ Y07 15/2 £
l- - -
R,' -[2[R, R, |. |2 |2]6 2 [1 | of s T,
/2R, r, 1 @ 3 =1 @ W 5/2 ty
I- - - - -
Ry' = CIR,-(OR,[R, R 3|1 1|-9 Ts
1/8 R, r, L=z | [/ W -9/ ty
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29 _11 ’.3
K3 ER E} |

-] 53l 5 1
(XX] "= "y | ¥ 3 | %2
- 2 L L |,
8 8 8 3

From Table V we obtain the backward solution which gives [X'X]-l, the

inverse of X'X.

1
ending with row t3. we proceed as follows; recalling that if X'X is sym=

1. Using the part of the [}'[‘X]“:L section, starting with Row T, and

metric, then [ X'X] *} 34 aan symmetric.

2. To obtain the first row of [X'X]‘l. we choose as pivotal multi=
pliers, the elements in column one and rows t3. tZ' and tl' The first
row of [X'X]‘l is designated 8 and the pivotal multipliers are distinguished
by a square. The elements of row 8, are the respective sum of products

of the pivotal,miltipliers and the corresponding elements of the rows .

' Ty T and To specifically, the first element of 5 ig|=3/8| + (=3) +

© (=2) 4 [1/2] * 1 = 29; the second element is[-3/8] + 14 [1]* 14

1/2|+ 0 = =11/8, etc.

3. For the sacond row of [X'X]-l, desigmteflzgz. we ahoose as
pivotal multipliers the elements in column two and rows t3. to and t’i‘:;
These elements will be designated with diamonds. Again, as in the
forward solution, we will not multiply any element of any row to the left
of the column in which the pivotal multiplier appears. The elements
of 8, are obtained by obtaining the sum of the products of the pivotal

multipliers and the respective elements of rows T, T,, and T;. That

1‘
is the second element of 8% (the first already obtained due to symmetry)
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|
l

is equal ‘Fo . 1+'@ 8 1+<0>' 0 = 5/8; the third element of 5,
is@-'u@- o+@- 0 = 2/8.

4. The first and second elements of 8, are now available due
to symmetry and to find the third element of 840 We choose the pivotal
multipliers in column 3, rows tss t,y and t designated with triangles.
The thirc;l element in s, then is ' -1+ W- 0+ @ + 0 =1/8.

We can now formulate the manner of finding the pivotal multipliers
in general.

(1) The number of pivotal multipliers for each'row of [X'X]-l is
n where n is the number of unknowns in the system.

(2) The location of these Iﬁultipliera will be in the same number
column as the membe1; of the row of [X'}C]m1 we are speking and they
are locatedinthe t , t ;s « « « » ty t, rows of the [}{'X]_1 section of
the layout.” *.

Consider the [X'X] -1 section of Table V. We can write this in
genera]. nlotation as in Table VI. |

,Note‘T (1) For the general aij or Tij we havei &(1, 2, . . . , n)
and j=(1, 2, . . . , n) where n is the number of unknowns in the system.

The following formula yields any 8 in [X'X] =

n
85 = 121 tei Ti

For example, suppose we want 8,4 in Table V. Using the formula we
‘have 8,5 =t T 3+t Tyg+t3T35 = ]1/2 0+ |-1] - 04 |-3/8][ - 1=-3/8.

To fully understand why' this method works, we will appeal to Bome

fundamental 'conCepta of the theory of matrices.



Table VI

[X'X] “! Section in General

' [x'x]7! Row .
Identification
1 2 3
1 0 0
0 1 0
0 0 1
T 112 T13 T3
i Y12 13 Y;
Ta L5 T3 Ty
21 t22 %23 t2;
Ty Taz Taq T35
Eii t32 t33 t3;
i {1 12 13
-1
521 822 523 = [xx]
931 ¥32 $43

18
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Consider the matrix multiplication, BA. The matri- B is called
a pre-multiplier of the matrix A. Likewise in the 10 +tion of AB,
B is called the post-ﬁﬁultiplier of A. In either case, we can say that
the matrix B transfofms the matrix A and the product can be considered
a transformation of the matrix A.

It is important to note that a pre~-multiplication of a matrix A by
a matrix B will result in a series of row operations, being performed
on the rows of matrix A. That is, in the process of matrix multiplica=
tion, the rows of the product matrix will be linear .combina.tions! of the
rows of matrix A, in fact the particular linear combinations dic,itated

|

by the elements of the rows in the pre~multiplier matrix B.

Illustration: II

1 -1 2 1 1 -3

2 1 1 4 5 6

Nc;te: (1) The first row of the product matrix C is the first row of
| matrix A minus the second row of ma.tri.:lc A. This following
from the first row of the pre-multiplier B. (1)(2) + (-1)(1) =1
and (1)(1) + (~1)(4) = (-3).
(2) The second row of C is two times the first row of A plus
the second row of A. (2)(2) + (1)(1) = 5 and (2)(1) + (1)(4) = 6.
It follows in the same manner, that if A is post-multiplied by a matrix
B, then in effect the columns of the product matrix will be linear com=
binations of the columns of the matrix A. These combinations being
dictated by the columns of the post=multiplier B.

Also, if we are given a square matrix A, it is possible to transform
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this matrix to the identity matrix by row and column operations.

We will do this by row'and column E;perations. Suppose we set
the given matrix A between two identity matrices IL and IR thusly:
ILAIR. ' Now we proceed to do column and row operations on the
matrix A to transform it into the identity matrix, simultaneously per~
forming the identical row operations on IL and column operations on
IR' that are performed on A. That is, if row one in A is subtracted

from row two in A, then row one in IL is subtracted from row two in

I. and if column one in A is added to column three in A, then column

L

one in IR is added to column three in IR' We are using the two identity

matrices as recorders of the row and column operations necessary
to transform A to the identity matrix. After completing all necessary

row and column operations on A, if we now de signate the resultant

I;, matrix as T'! and resultant Ip matrix as t, we assert with reference

" the following: |

T'At 5 1.
This is given as a theorem in most texts on elementary theory of
matrices [2].
With this theory in mind let us now investigate the Abbreviateid
Doolittle as given in Table V. Consider the rows Tl’ TZ' and T3 jc:bf
the [ X'X] “! section of the table. Use these rows to construct the |

n x n matrix which we shall call T!, then:



Now consider rows tl' tz, and t3 of the sam«

and use these rows to form thein:x n matrix, we

t! =

o~

0

L3
2
1
8

0

0

X
8

J

and

of Table V

shall call t', then:

1

& -1

2

0 1
2

0 0

—
-
—_—

i

3
8
1
8
1
8

-

Referring again to the discussion previously on pre=multipliers and

post-multipliers. we find that

then

T'X'Xt

[x'x]"1 = ¢T1

=1

XX = [T']'1 g

where T'is the row recording matrix and t is the column recording

matrix found by reducing X'X to the identity matrix by row and column
operations. This proves the validity of the Abbreviated Doolittle for

finding the inverse of X'X.

We now point out a few facts that will be referred to later.

2l

It is interesting to note that T'X'X = R where R is the matrix com=

posed of Rows Rl’ RZ' and R3 of the X'X section of Table V, and
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y .
hence T traingularizes X'X. Also t'X™X = r where r is |  matrix

composed of rows e Toe and r, of the X'X section and

1 2 1
r = 0 1 -]l <
0 0o 1

hence t' also triangularizes X'X.

A diagonal matrix is a matrix with zeros for every element except

the main diagonal.
Now T'X'XT = D,, where D, is a diagonal matrix with the diagonal

elements being the leading elements of rows Rl’ RZ' and R3. Then

Also t'X'Xt = DZ' where Dz is diagonal and whose diagonal elements

are the inverse elements of Dl' Then

L 0
2 -
1
D.=|0 - % 0
2 2
0 0 1
. 8

hence, DLDZ =1,
It is.interesting to note that the determinant of X'X is equal to the

determinant of Dl which is simply the product of the diagonal elements

of Dl'
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We will refer to these facts later as we din- 'he application
of the ﬁoolittle method to statistical designs.

To verify the validity of the check column, we can look at each
line of Table V as being an expression equated to the sum of the coeffi=
cients of the particular line. Now in the process of obtaining the for=
ward solution we are merely performing the same arithmetic operations
to both sides of the above equations. Hence,tha ;quality prevails. If
it does not, then we will not have performed the same operation to

both sides of the equation and this will indicate an arithmetic error

in our computations.



CHAPTER III

THE APPLICATION OF THE "ABBREVIATED DOOLITTLE"
TO REGRESSION

3.1. Introduction and Definitions

In this chapter \.ve shall investigate what the '"Abbreviated Doolittle!
will do for us in the analysis of what is often called '"'multiple'' regrese
sion. It is not the intent here to delve into the cor;lplaxi_ties of the stae
tistical theory concerning regression [3]. However, we will discuss
the basic assumptions and properties of regression, along with the
necessary nomg@uclature that is essential to understanding what the

""Abbreviated Doolittle'' yields computationally in a regression analysis,

Consider the matrix model
TY=XB te (3.1.1) __

where Y is an n x 1 matrix, X is n x p matrix, p is an p x 1 matrix and
e is an n x 1 matrix. We are concerned here with what is referred to
as the full rank case. By this we shall mean that the rank of Xis p < n.

We now distinguish between simple and multiple regression. If

P = 2, then an observation from the Y vector in (3.1.1) can be written
- |
Y =By ? lei+ei: (3.1. 2)

If p > 2, then an observation from the Y vector in (3.1.1) can be rritten

1

24
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Vi =Bt ByXy t P Xp 4. o #B X te (3.1.3)

Equation (3.1. 2) is the model for a '"simple!' regression while Equation
(3.1. 3) is the model for ""multiple' regression, It is easily seen that
"si:hple" regression is just a special case of ""multiple? regression.
We will present the material as applied to ""multiple'' regression on}y,

- since this is the general regression case.

3. 2. Multiple Regression

.

Suppose we have the following system of normal equations.

-~
X'Xp = X'Y (3.2.1)
wherae,

)<'J & -A 7 -

4 8 12| 8, 20

XX = |8 18 23 S B =B, X'Y = | 42

el

12 23 46 ﬁ3 56

L - .

The format for the forward solution is given in Table VII. We
will omit the instruction column since it will be exactly the same as

pre‘sented in Chapter II. (See Table VII).

The forward solution yields the following values for 3.

-6/19 %
141/2 8, =16/19

= 8% 28, + 35, = 81/19
p § =24, P,

We then obtain the prediction equation.

"

A3
&



Table YII

25a

Forward and Backward Solutions to Equations (3. 2.1)

Row XX XY [X'X]-l Check | Row
R/ 4 8 12 (17 20 1 0 0 45
R}, 18 23 |7 42 0 1 0 92
R} 46 || - 56 0 0 1 138
R, 4 8 12 20] 4| 1 o 0 45 o
0
R ! 35
I‘l 1 @ @ 5_‘ ;— 0 0 T tl
R, 2 =1 2] o -2 1 0 2 T,
| 5
_ 1
: 19 1
R, = 3| ol -4 = 1 4 T,
9
o
8 1 N o R 1 2 8 ¢
3 19 19 19 19 19 3
i /"
299 23 8
=6 19 19 %M1 %2 %13
. =3 = —2 10 L =
[X'X] % 9 19 ap By oy
19 19 19 4 Thz a3
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A s/
Y = 81/19 + 16/19}(1 - 6/19){2 (3.2, 2

A
frogn which, for any given values of X, and X, we may find Y. This

is the multiple regression of Y on Xl and X,.
A
Now let us look at equation X*Xp = X'Y in the light of its relation~

ship to sample quantities. We have

n X EXZ [51 - Eyi
XX = | ZX. EXZ EX.X T XY = | =x
1 1 X2 |  Bi=|B,; i
2 A
IX. IX.X. X 8. EX,y.
2 oy BEy 3 2
g L i L. )

) y
YW = Z'inz is called the total sum of squares. @ ‘X" is called the
: " e e
Y - 'X'Y]
n=p
experimental error used in the analysis of variance for testing hypotheses.

is:an estimate of 0° or the
|

J [Y
reduction due to B and

- The reduction due to B is denoted by R(B). v

—_— e

Returning to Table VII we define the term '"Cross Product in the -~
Doolittle. ' This is the product of the two elements in the X'Y cillumn
associated with each pair of computational rows. The number of these -
productslwill be the same as the number of parameters associated with
the X'X matrix. We designate the first cross product CPIDI. the second
cross product CE!I.DZ, etc. For example, C'J.'F’ID1 =5+ 20 =100 (See

Table VII, CPID In gfeneral, CPIDi = Ri, n$l ‘ ri. ndl where n is

1)'

the number of.pa.ra.ngafe/rs in B.

We 611&_1_1__91_mw that the Z CPID, = E'X'Y = R(p). Consider Equation
— '.\ i.---
(3.2. 1, =

Fal
X'XB = X'Y
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then )
A ol
_ B =[XX] XY
from the theory in Chapter II
eTt = [xx] L

This gives
! Y
B =tT'X™
and
A
p!a= YIXTt!
Hence X
Iy
LYY = YBOLTYXW
gince

TtY st
Now examine the right side of the two equations,

~
T'X'XB = T'X'Y

and
Fa)
t'X'Xp = tX'Y
T!'X'Y is the p x 1 vector of the elements in the X'Y column and rows
Rl’ Ros « v o Rp. t'X'Y is the p x 1 vector of the elemenis
X*Y column and rows Tio Top v v o9 T

P

Hence:?
ANo~——

i

i A
[t'Xy'T'X'Y = E CPID, = Y'XtT'X'Y = p'X'Y = R(p)

For example, we obtain R(f}) from Table VII,

27
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n

CPID, + CPID, + CPID

3
R(B) = =
1= .
5 204 2+ 1+ (-3)(-6/19)

CPID,
I . *

]

102 18/19
We obtain the Error Sum of Squares for the analysis of variance since,

Error Sum of Squares = Total Sum of Squares = R(B)

AY

Eyg = Tae = R(P)

n
= CPIDi
i=l | i=1

E
88

]
~

[
]

.n t .
where Z Y; = Y.
i=l

'The: 'standaird computing formula for the corrected total sum of v

~ squares is

n (.Z y.)
= y.z - =LA
& 1.

i=] n

Now in Table VII we see that CPID, is equal to

> 2
(Zy;)  (Zy)
1 1

(Ziivi). el o

Hence CPID1 is the correction .Ia‘r;tor.. This is sometimes referred to as vd
the reduction in sum of squares due to the mean and'isidesignated R(u)

01; R(Qi). CPIDZ is the reduction in sum of squ:;rea due to [3.2 adjusted /
for 61 designated R([iZ Iﬁl) and CF’II.'I!3 is the reduction due to [53 adjusted
for B, and B, which is designated R(p 3| BB ) | _/.,_
V/ This information is most useful for testing hypothesis concerning ./

the B vector.
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For example, I:m.ppoae we wish to test the hypothesis that [33 = 0.
For this we need R(B 3I [BIB z). To test the hypothesis that any particu-
lar elements of p = 0, we need to obtain the reduction in sum of squares

due to these elements adjusted for the remaining elements. In this case

R(B3| BB ,) = CPID,.

Now suppose we wanted to test B,=B3= 0. For this we need to
obtain R(B,B,|B,). This is equal to CPID, + CPID, from Table VII.

From this we see that we can obtain the adjusted reductions in any

ig_t_he__dogli_t;lgﬁf_or the parameters of interest occur last in the forward

solution.

If we are interested in setting confidence intervals on the point
estimates of the ﬂi, or linear combinations of the Bi' " CO=

variance matrix of the a vectot since Cov (B) = o‘z[X'X] -1. The back-

!

ward solution given in Table VII yields [ X'X] .
For example, suppose we want an estimate of:

l. Variance of El' This is ;zau =gt 29916.
' 2

AN 2
2. The Covariance of (8, B,). This is 628, = 028, = G° (~23/19)

In general:

A a2
1 Var (Bi) =078
. N a2 . )
2. Cov (pl. GJ) = U 51.] 1 #J

P A
3. Standard Error of (Bi) =7crzs..

11

We can obtain the multiple correlation coefficient R? from Table VII

by the following formula. '_
Z CPID,

2 i=o 1
Zy? - cPID
i 1

1
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Note that since CPIDI is R(p) the/den'ominator of the formula for
RZ is total sum of squares adjusted.

As was stated before it is possible to get the adjusted reduction for
any parameter or combination of parameters by rearranging the model
such that these parameters appear last. This will make the CPID
associated with these ;aarameters occur last in the forward solution.

To clarify this, consider Table VII. The arrangement of the model is
Y= ﬁlxl + pZXZ + 33'){3 + e. Hence, the last CPID = CPID3 is R(i33 ﬂl.ﬂ 2)
and R(B ,, B 4|B,) is the sum of the last two CPID ='CPID + CPID,.

Suppose, however, that we have completed the forward and backl-
ward solution for a particular arrangement of the model and then find

|
that we want the adjusted reduction of one of the parameters or ¢combi=

_na.tion of parameters whose cross products are not last in the folrward v
solution. It is not necessary to rearrange the X'X matrix (the model)

and again go through the forward solution. To illustrate this weishall
rearrange the model to Y = X, + BaX, ¢t [51}{1 + e and carry m%t the
forward solution. For this arrangement we are interested in R(51| B 20 5] 3)

and R(B, B 5|8 ,) (See Table VIII).

From Table VIII we obtain

: FaS

! | B, = 81/19

. By=1+ 32/299 61 = -6/19 | (1)
: B, =1+ 23/1353+4/981=16/19

The same as from the forward solution of Table VII.

R(B) = T CPID, = 10218/19 (2)
1
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Table VIII

Forward Solution To Equation (3. 2.1)

31

Row X 'X X'y [x'x]"! Check | Row

R! 18 | 23 |.8 |~ 42 1 0 0 92

R} < ¢| 46 | 12 || <56 0 1 0 138

R} 4 20 0 0 1 45

R, 18 | 23 8 42 1 0 0 92 T
1 18 | 9 3 18 9 1

R. 29| W f 1 .23 1 5 184 | .
2 18 9 3 18 9 2

r 1 | 32| 42| _23 | 18 0 368 .
2 299 | 299 299 | 299 299 2

R 76 || 324 | _92 |_32 L | 575 -
. 299 [ 299 299 | "299 299 3
# 1 8L ( _23 | _8 | 299 | 575 .
3 19 19 19 76 76 3

The same as from Table VII
R(B,| B8 4) = CPID, = (81/19) (324/299) = 4.62

and

R(B,,B,|B,) = CPID, + CPID, = (81/19)(324/299) + (7/3)(24/299)

4.94
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4
We shall show how these two values can be obtained from Table VII.
Consider Table VII. Suppose we wanted R({al'] B,B3). This is not
available from the forward solution as given in Table VII. Using the

value for Bl and [ X'X] "l we have

R(B,|B,B4) = B [s,]7'8,

[81/19] [767299][ 81/19]
[81/19]( 324/299]

4.62

Exactly what we' obtained for R(BII B, 3) from Table VIII.
In general the adjusted reduction sum of squares for any parameter

or combination of parameters is obtained by the following relation:
Adjusted Reduction Sum of Squares = B* 'Z-]LB'Q'= (3. 2. 2)

where B* is a column vector of estimates of the parameters of interest

and Z-I is the inverse of the matrix obtained by partitioning [ X'X] =k

according to the rows and columns associated with the elements of B*.
To illustrate,this suppose we want the R(Bl._ <] 3 Iﬂ Z) from Table VII.

We partition [X'X] ™! to find Z and

-
(299 8
% 9 13
L = =
D, 2 s 8
19 19 4 3
- J (‘:‘;
and
76 304
gl |17 Tooan
. 304 5681 \

171 342
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Now B, = 81/19 and l33 = -6/19, hence,

81/19
-6/19

B* =

Then using Equation (3. 2. 2) we have
!

R(B,84|B,) = B*27'B*

. (76 304 [ 8L
171 1M 1
= ‘—8-—1- - -—é—- 9
197 197 304 5681 | [ 6
i 171 | 342 L 19
610812
123462 - 7%

Exactly what Table VIII yields for R(B,, B3 |B,):

33

In summary we will list the information obtained from the forward

and backward solutions of the Abbreviated Doolittle when applied to

multiple linear regréssion.
We obtain the following:

1. A solution for the vector of unknowns B.

2. Reduction in sum of squares due to B.

‘— 3. Reduction in sum of squares for any parameters or combina-~

tion of parameters adjusted for the remaiyling parameters.

4. The multiple cdrrelation coefficient Rz.

5. Covariance matrix for the vector f.



CHAPTER IV

THE APPLICATION OF THE "ABBREVIATED DOOLITTLE"
TO THE TWO-WAY CLASSIFICATION

4.1. Introduction and Definitions

In this chapter we shall investigate the clomputational information
that is obtained by applying the ''"Doolittle Technique'' to the following
two-way classification models: :
| (1) without interaction;

, (2) Without interaction and with a co-variable;
(3) With interaction.

These models are classified as experimental design models of less

than full rank. By this we mean that in the model denoted by the matrix
equation

Y=XB +e o (4.1.1)

the rank of the X matrix is k < p where p is the number of parameters
in the model. This is referred to as Model 4 [3]. We are interested
in the model in the light of unequal sub-class numbers and missing data
both of which complicate ordinary methods of computing necessary sta=
tistical information.

In the m}a{del of less than full rank, X is of dimension :(% Xp) psn
of rank k € p hence X'X is of dimension (p x p) of rank k < p. This

means that X'X is singular and has no inverse. A unique solution for
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I
!

f in equation (4. 1. 1).' does not exist and we cannot obtain unbiased esti=-
mates of the ﬁi as wle did in Chapter II where we were considering the
model of full rank. However, we will show that we can obtain estimates

of linear combinations of the ﬁi.

4. 2. Two-way Clasgification Model without Interaction

Consider the model
i=1, 2, 3

where Yijk is the kwth observation in the ij~th cell; u, T ﬁJ. are une

k = 1' z. . " . ’ nij

known parameters; and eijk are random variables with the conventional
distributional properties. The ij-th cell contains nij observations.

Suppose for our example we are interested in the T;- We then rewrite

model (4. 2. 1_) as Yijk =+ ﬂj +T, 4+ LI The X matrix with the columns

labelled ‘with their respective parameters is

™
—
™
[\
e |
—
-3
[\
-3
w

m

)
)

H'w.-a.--—-ooooo
O O O O » ©O O © i
O - = =~ O O © =~ o ©
©O © O O =~ ~ O O ©

e T e
O O O O O 1 b s g

r
-
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The observed observations in the statistical layout for model (4. 2.1)
| /
are given in Table IX and the number of observations per cell layout

is given in Table X. '

Table IX Table X

Statistical Layout for Model (4. 2.1) Observations per cell Layout
for Model (4. 2. l)i

Y 1 2 ;AP Bl 2 N..
T g3 | T i
4 .
1 3 11 1 2 1 | 3
- |
| 8 |
2 5 8 30 2 1 3 4
6
3 8 19 3 2 1 3
5
YJ . 24 36 60=Y N‘j 5 5 10 =N..
The normal equations X'X\? = X'Y are
A A ~ ~
w10+ 5B+ 5B, + 37 +37,+37, = 60 = Y
. Sp+5p $27 4 Tom2t, = 24 = ¥
531. e [31 T1 T% T3 *® = X
! ~ 0 ~ ~ oA
Bo:  5p +.5{52+ T H3T,t T4 o= 36 = Y.,. i, B
A N ~ 'S - . .
T 3u+ 2B+ B, + 37, = 21 = ¥
A A A "
T, 4u + Byt 3{:}2 +4-'.r2 = 30 = YZ"
T.: 35+28 .+ P 43T, =19 = Y
3 . 1 2 3 3
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and 4

- - - - ~ -
1065 —-5- 3. %3 60 "
5 5 0 2 1t 2 24 B,

w3 B B L & U oy (@ = | P2
3 2 1 3 0 0 11 1'1
4 1 3 0 4 0 30 1'2
3.2 -1+-~0 0 3 19 7
L 0 e d L,

The forward solution Ifor this system is given in Table XI. (See Table XI)
The backward solution is of no importance since [ X'X] " does not
exist. As was stated before the X'X matrix is singular. This means
that there is a linear dependence between the rows of X'X and that there
is at least one row that is a linear combination of the other rows. We
note that the forward solution will detect these dependencies by Jielding
zero computational rows when the dependency is encountered. F;or
example, if we inspect the normal equations (4. 2. 2) we see that il:he
sum of the rows for'the ﬂi is equal to the equation for p. Hence| when
the last . equation (third row) of X'X is processed in the forward solu=-
tion we get computational rows equal to zero. (See R3 and ra of Table
Xi). Also in Equations (4. 2. 2) we see that the sum of the rows for T3
is equal to the p equation. Again when the last row for the T (sixth
row) of X'X is reached in the forward solution we obtain zero computa-

f

tional roxﬁrsl. (See R6 a__nd re of Table XI.) Whenever a zero computa=-
tional rov;r occurs we c;:ntinue to the next row.

From Table XI we can obtain the following information:

(1)  From r, we get ?3 =0

(2) Fromr, we getT, =7/15

(3) Fromr, we get "r“l = -8/3



Tablt} XI

Forward Solution to Equations (4. 2. 2)

Row X'X X'y Check
R{ 10 5 5 3 4 3 60 90
R} 5 0 2 1 2 24 39
R} 5 1 3 1 36 51
1
R} 3 0 0 1 20
Ri 4 0 30 42
R} 3 19 28
R, 10 - 5 3 4 3 60 90
. v [T A o | 2
1 2 10 10
5 5 1 1
R 21 w2 = -1 1 b -6
2 2! 2 2 2
r 1 @ .l. .E ......]:; -}_2. -.]L.Z:
2 5 5 5 5 5
R, 0 0. 0 0 0 0
A o A @ S| o |
R, -R S | PR ]
3 5 5
T 1 AN -2 . .2
4 2 10 |10
!
3 3 7 |7
R 2 ail L X
5 2 2 10 10
5 7
1 ) L i
s <> 15 15
R, 0 0 0
0 0 0
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Note: [This is one of many solutionse to the system, hence we use the
notation .;i instead {L)f :Fi which implies that we have an unbiased esti=
mate of the 7. ]
In fact:
';3 estimates T 3Ty
estimates To"T3y |

2

T
T estimates TL=T3 .
2. We find R(y) = R(p, ﬂj' 'ri) = CPJ[Di where

i=1

(60)(6) + (~6)(-12/5) + (0)(0) + (~29/5)(~29/10)
+ (7/10)(7/15) + (0)(0)
380. 32

CPID,
1 i

n Mo

i

o~

3. We find R(T lp., B) = I CPID, where
i=4 :

6 .
Z CPID, = (-29/5)(-29/10) + (7/10)(7/15) + (0)(0) = 17.15
i=d .

Under the assumption of no interaction

1
n=p

2
[z vy - R(y)]
ijk Wk

is equal to the errox: mean square and we can use this information in
our analysis of variance to test the hypothesis TI=T,="Ty The
AOV is given in Table XII. (See Table XII)

We shall now present an alternate method for applying the .”Doo-
little'' to Equations (4. 2.2). The objective is the same, that of testing

Ho: i ®Ta = Py Since there are two dependencies in the system

39

given by Equations (4. 2. 2), we may impose the non-estimable conditions



Table XII

AOQV for Testing H: 7,=7,=74
Source , dJt, Sum of Squares Mean!Square
Total 10 400. 00
R(B) 4 300. 32
R(T |uB) 2 17. 15 8.57
Error 6 19.68 3,28

:u. = 0 and ;3 = 0. The first equation for u and last equation for 7 3 will

be omitted. The resulting system is of full rank and is given by the

following equations:

4 9>

and

.'xlxz

™y >
—

-

1

A
5531

. ”~
¢ 58,
N
+ B,
n
+3p,
0o 2
5
1 3
3 0

24
36
11
30

~ la)
-+Z1'1+ Ty @ 24 = Y.
A A
+ T+ 37, = 36 = Y.
n :
-1-3'1r'1 = 1 = 'Y]LT
A
+4'rz = 30 = Y
1
g X'Y =
0
4
v

S,

The forward solution for this system is given in Table XIII.

(4.2.3)



Table XIII

Forward Solution to Equations (4. 2. 3)

|

Row X'X X'y ‘Gheck
R/ 5 0 2 1 24 32
Ry 5 1 3 36 45
R 3 0 1 17
R} 4 30 38
R, 5 0 2 1 ' 24 32
24 32
i B @ A F -
Ry 5 1 3 36 45
36 45
r, ! 1 = —_ ol
2 5 5 5
Ry . 2 -1 wild i
5 5
" 1 2 -2 .24
3 2 10 10
R, 3 A 22
2 10 10
7 22
r 1 ~ £
* 15 15

Frorﬁ Table XIII we obtain:

Q)

G
R(y) = Z

CPID, = (24)(24/5) + (36)(36/5) + (-29/5)(-29/10)

i=l

+ (7/10)(7/15)

= 380. 32

41
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4 B
Z CPID, = (-29/5)(=29/10) + (7/10)(7/15)

(2)  R(r | pp) =
. J3

=17.15

These of course are the same as obtained from Table XI.

Previously we have been only interested in testing I—ID: T{ET 5= T g
This by itself is not all the information we would like from the model.
The T, are not estix"na.ble but we may obtain estimates of contrasts of
the L which may be of interest and also set confidence intervals on

these contrasts.

We shall present the application of the Abbreviated Doolittle as a
computational aid in finding these contrasts and also finding the estimates

of variance and covariance necessary for setting confidence intervals on

these estimates.

Consider model (4. 2.1) in matrix notation and we have

Y=Xy +e

where the dimensions of the matrices are as follows:

Matrix General Dimension Dimension for
Model (4. 2.1)
' Nxl1 . 10 x 1
X N x b+t+l 10 x 6
Y (b+t+l) x 1 6 x1
XO Nxl1 10 x1
X1 | Nxb 10 x 2
XZ Nxt 10 x 3,
B bx1l Z2x1
T tx1 3x1
e N=xl1 10 x1
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where '

N = No. observations in the experiment;
X m (X Xy X5

Y'=( B )

b = Number of Blocks;

t = Number of Treatments.

We define Jnm to be an n x m matrix whose elements are all ones.

We can'write the. model (4. 2.1) as

_ N
Y-J1|.L+X1a -I-Xz'r+e

or

N b
Y=X(J pta)+X,THe
. b'_ .N . b _
since X.J. =J, . Now define (le. + a) = B and we have
Y=XB+X,7+ e (4.2.3)

Now consider the results of this on the system given by model
(4. 2.1).

(1) The p column of the X matrix will be ab,so.rbed by the ﬁi
columns, hence the dimensions of X will be 10 x (3+2).
The u column is omitted.

gZ)- We then partition X = (xlsz) where:
(a) Xl is 10 x 2 partition of the X matrix. It contains:the

columns labelled B,and B,.

(b) X2 is 10 x 3 partition of the X matrix. It con_fainn the

columns labelled Ty T and 7 3’
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The normal equations (4. 2. 3) become, 7/

A

; A
. | 1 - I
(1) . . xlxlp + Xl XZT' = XIY

>
x>
]
»
o

2 X

. A :

Solving (1) for B we get

E = [X/X ]'l[x'Y - X/X,7 ]
L 1 %27

Substituting this in (2) we have

) w1 A n
[X"?.Xl][X{Xl] [XI'Y = X{XZT] + x:ZXZT - X'ZY

(2) [XEXZ - x",_xl[xl'xl] X{XZ]':' = le'ZY - xéxl[xl'xl] XI'Y
In (2)
-1
(a) Let X)X, - xixl[xl'xl] XX, = A
(4. 2. 4)
-1
(b) and X:?'Y - Xéxl[X{X] X{Y =q
Then (2) can be written _ ' %
AT:=q

where the dimensions of the matrices are as follows:

Matrix Dimension Dimension for
' Model (4. 2.1)

txt I3x 3

%

N

tx1l 3l

q _ tx1l 3x
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Consider now the X'X matrix for the normal equations in model

(4. 2. 3) as applied to model (4. 2.1).

rs 0 ;z 1 2
i ! ] !
0 5 1 3 1
1 | |
xlx1 ,Xlxz s e B e
XX ———— = ——- 2 1 I 3 0 0
I
1 I
XX :xzxz 1. 310 4 0
L i J |
2 1 0 0 3

We note the following:

(1) Xl'Xlis diagonal with the elements on the diagonal being the
number of observations in each block.

(2) -Xl'XZ is the transpose of the matrix composed of the number

of olbservations in each cell. (See Table X). This is called the
""Incidence Matrix. " &
We will now build the A matrix in the AT = q system by a special
application of the ""Doolittle Technique.' (See Table XIV)
| The procedure for Table XIV is as follows:
(1) Rl' T RZ’ r, are obtained as usual for the forward splution.
(2) The elements of row Al in the X'X section are the elements
of the first row of the ""A'' matrix. The element in row Al of the X'Y

section is the first element of ''q'"

(3) The Al row is obtained in the same manner as though we were

carrying out the forward solution on two sets of computational rows Rl’
T and RZ‘ rz..
For example, we will determine Al The pivotal multipliers are

the elements designated by circles. ‘
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""Doolittle Technique'' for Finding the ""A'" and ''q"" Matrices for

Model (4. 2.1)

X'X
X'y
Row Bl ﬁz 1'1 '1'2 T3
R{ 5 o 1 2 1 2 24
[ %
R} 5 . 1 3 1 36
Al I 3 0 0 11
1 I
A],_ | 4 0 30
[
Al ; 3 19
R, 5 : 0 2 1 7 24
1 2] 24
r 1 23 “ L4
1 A O & [ ¢
Ry 5 1 3 1 36
1 36
r 1 o Proatined
A 2 ol R | .29
. ’ -
' 18
A -1 2 =1 ezt
2 - 5
1
A =1 -1 2 e
3 5
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(a) 1st element of Ai, “= 1st element of the lst row of the ""A!'

matrix = a,

3~[® 1+®

n

2nd element of the 1st row of the ""A"

(b) 2nd element of Al

matrix = a

=o-[@ 3+®

1]

(c) 3rd element of A 3rd element of the 1st row of the ""A"

matrix = a.

. =0-[® 1+® P

(d) 4th element of A1 = lst element of ''q'' = q

- | =1-[@o36+®

= -29/5

(4) The A, row is obtained the same except we subtract the sum

2
of the products of the pivotal multipliers and rows R1 and R2 from the
tespective elements of A:,_. ‘These multipliers are designated by diamond:

(a) 1st element of AZ = 2nd element of AI =a, =Ia12 , 8ince

"A'" is symmetric.



(b) 2nd element of Az

. (e) 3rd element of A,

_ (d) 4th element of A,

n n [ | s
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2nd élement of the 2nd row of ""A'!' = a
3 1
- — . 3 — N
- @ TO
2

3rd element of 3rd row of ""A!' = a,g

o-’[@.u@-u
wl ' .

2nd element of "'q'' = q,

30 - [ <g3>'36+ @-24]

18/5

(5) We obtain A3 by subtracting the products of the pivotal multi-

pliers, and rows R, and R, from the respective elements of A3. These

multipliers are designated by squares.

(a) 1st element of A3
(b) 2nd element of A3

(¢) 3rd element of A,

I
|

(d) 4th element of A3

3rd element of Al; a
3rd element of A

3rd element of the 3rd row of ""A''=a

3+

3rd element of ''q'' = q3

19 - [

1
5

Cl+

- 36 +

20 933

2
5

o

2
5

= a

13 %3

23

.2]

© 24] = 11/15

22

33
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From the special zipplication of the '"Doolittle Technique'' given in

o

Table XIV we can obtain the following system of t equations (in this

case t = 3) in t unknowns given by:

~
AT= ¢
or
2 'y -29/5
12 -1 7,0 = 18/5
~
-1 -1 2 T 11/5
b 'J — 3-J .
or .
~ ~ ~s - . 29
M= T TgEmomes
—~ o~ o~ - 18
-T1 + 27T 2" T3 -g—
~ ~ 11
=T =Tt eTy = ==

In this special case it is seen that the diagonal elements of A are all
equal and the off diagonal elements are t1. This does not necessarily |
occur in all designs. The diagonal elements may be unequal. Like=
wise, the off diagonals may be values other than 1. However, it will
be found that the sum of the elements in any row of the A‘matrix will
always be equal to zero.

To understand why this scheme works we will verify Equations
(4. 2. 4) by applying the '"Doolittle'' to a general system. Consider :

Table XIV in general notation as given in Table XV.
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Table XV 7

Computation of ""A'" and ''q''in General

- X 'X
Row Xy
By B2 1 T2 T3
_ |
R/ |
1 ] I
. X[X, | X/ X, XY
2 A
o — — - - e = m— -lol —————————————————————
& |
I l ] » i
AL i XX, X5Y
Aé "
I
R, Rjy Ri2 Ri3 R4 Ris Rie
" 12 i b @ T15 16
R, Ry, R;3 R4 R Roe
53 22 @ @ T 25 T26
i i | %2 %13 9
2 a2 833 323 9,
3 %3 %32 %33 93

Now comparing Table XV with Table XIV we see that [X{Xi]‘l is diagonal

and equal to



Look at
g = 0
] -
[XX] XX, = .
0 —
5
and
-1 [] P
X%, (%) XX, -
Now
and*’

[

Vl—~ vl

V|- 0l

vlw U=

Then the Doolittle application in Table XV gives

-

| Ri3 Ry
XX, [ Ry Rypy
Rig Ry

which from Table XIV becomes

-
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—'1' E r r r
5 5 || 13 14 15
3 Ll |4
5 5 23 T24 T25
2] (v o1
5
- = |1 1 1
1 |
1 1 1
5 | 1,
Ris
R 25
R23 \
R4
%
R.s
21 M2 M3
15 B . ;
. = &R By 859
25
A5 3z *s3
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3 0 o] 2 1 2 71 2 2 -1 -l
e 4 O0f- |1 3 S BT (P R T
2 &
o o 3 2 1 5 5 5 -1 -1 2
poy - - - — e

or

1 -
XX, = x'le[xl'xlr X/X, = A

which is the same as Equation (a) in Equations (4. 2. 4).

Returning to Table XV we see that

— Rie :
1R
26

and that the ''Doolittle Technique'' gives

~ -
r r q
o r13 r23 -l 1
2 14 - 24 [lg _|° q;
26
15 r25 193

which from Table XIV becomes

(0] [ez5 1/5 ] ' -29/5
24
30| - |1/5 3/5 - = 18/5
36
. _19 | |_..2/5 1/5 g L_11/5 ] =

or
I-1 -
XLY - XOX [ X[X|] "X|Y =q

which is the same as Equation (b) in Equations (4. 2.4).
/
We have verified that the special application of the ""Abbreviated

Doolittle'" will build the AT = q system of equations.
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4.3. Application of the ""Abbreviated Doolittle'' to AT = q.

The system AT = q has t equations in t unknowns. The rank of
the matrix A is (t = 1) hence there is no unique solution for fr'i. We
shall discuss with reference [)i] the methods of solving this system
for estimable contrasts of the T, and finding point estimates, along
with thé estimates of the variance and covariance, of these contrasts. ’

Since the rank of A in AT = q'is (t - 1) and the dimension of A is

t
(t x t) suppose we impose the restriction that Z T; = 0. This may be
' i=1
written Jt:fr' =0, .
Then AT = q can be written
" ' A J': 7 Pq
t ~ »
J1 0 To 0
or
CA¥TH = ¥
where
A e B B
A¥* = ¢ t and [A*]-l = . 1l 12
4y 0 4 For  Bas

Now the dimension of A* is [t+l x t+1] and it can be shown that the rank
of A¥* is t+l. Hence A* is non-singular and [A*] = exists. We can apply
the Abbreviated Doolittle to this aystem. and obtain estimates of the T,
from the forward solution and the variance-covariance constant cnatrix
from the backward solution.

It can be shown that the estimates of the ‘;i will be unbiased esti-

mates of Ty = T., Bince E(;i) miys e T.; also ;an will give estimates
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of the variance and covariance of the 'ri/.;\?. [4].

Us{ng the A matrix obtained in Table XIV we shall apply the Doo=
little Technique to find the variance-covariance constant matrix and
the estimates of (:Fi)' I

From Table XIV we get

- -29/5 2 -1 -1 1
P R | -

18/5 -1 2 -1 1

A= -1 2 -1 q* = A¥x =
| : 1/5 -1 -1 2 1

-1 -1 2 '
L 0o - 11 1 0

L J Ka J

Before applying the forward solution to the system A*T * = q* we
note that the A matrix appears as a leading principal minor of the A*
matrix, [ the. 3 x 3 matrix in the upper left hand corner of A*]. Now
from our previous knowledge of the Doolittle procedure we know that
zero computational rows occur when the third row of A* is processed
in:the forward solution (since A is singular). This can be alleviated by
interchanging the third and fourth rows and columns of A*, A* then

becomes A** where

- - E = o n
2 -1 1 -1 q |
-2 1 - |9, N Ty
Adk = q** = and T¥% = o
1 1 0 1 0 To
4 =f 1 2 q T
. - = 3 - - 3.]

We shall now apply the forward and backward solution to A**7 %= g%

from which we can obtain the following information:
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1. Estimates of the :Fi where E(?i) =T, - T.

2. [A""]-1 from which we get B), and hence covariance of (?i' '?"j)

2
ne -

3. R(‘r]pﬁ)fortestingHo: TLSTp®ns & =7

which is equal to B
¢
The tableaux is given in Table XVI. (See Table XVI)

From Table XVI we get [ A*] "l from [ A**]—l by interchanging the
third and fourth rows and columns of [ A%*] -1. Exactly the same row
and column interchange that was performed on A* to get A**is used.

— ' -

4/18 -2/18 -2/18 6/18
-2/18 4/18  -2/18  6/18
[A*] o :
-2/18 «2/18 4/18 6/18
6/18 6/18 6/18 0
e -J

From [A*]-l we obtain B, which will be the t x t matrix in the upper

I

left hand corner of [A*]-l. In our example,

4/18 -2/18 -2/18 .
B, = |-2/18 4/18 -2/18
-2/18 ~2/18 .4/1.3J

From Table XVI we get the following:

. t+1
(1) R(r ] wB)= Z CPID, (t+1 = 4)
. i=1 : i
= (33/10)(11/15) + (-22/20)(22/10) + (7/10)(7/15)
+ (-29/5)(~29/10)
=17.5

which is the same as was obtained from Table XI and Table XIII.
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Table XVI

/
Forward and Backward Solution to A%% T %% = q

Row Awx Qo [Axs]" Check
29 19
R2 2wl i - sl e 0 0 0 o
1 5 4 5
R} 2 1 e« | Bl o 1 o 9o 28
5 5
RY 0 1 0 0 0" 1 0 4
R} 2 L4 o 0o o0 1 £
5 5
R 2 -l 1L ek |22 1 0 0 o |-
1 5 5
r. 1 @ /l\ .l .29 1 0 0 0 - il
L : 2 2 10 2 10
R _3. 2 ‘.._3_ 3_. l 1 0 0 1?-
2 2 2 2 10 2 10
7 1 2 37
: 1 -1 1 3 8 0 0 2
1‘2 : A D 15 3 3 10
R, wZ w3 22 1 W, L 1 - D ot
\ 10 10
| 3 22 1 1 1 22
i 1 - — - —_— — - O —
3 L2 | 10 2 2 2 10
: 9 33 1 1 3 93
R —_— ——— - — -— —_— 1 —
4 2 10 2 2 2 10
1 1 1 1 2 31
¢ 1 = [.2 1 L £ | =
4 10 9 9 3 9 15
18 18 18 18
= | 18 18 18 18
. [A##l = 6 6 . 6
18 18 18"
.2 .2 6 4
18 18 18 18




57

(2) Each CPID in the Doolittle is associated with a parameter
of the normal equations. These parameters can be identified with
the columns of X*X. In A** we have added the J{ column and will iden~

tify the ""dummy'' parameter ";0 with this column.
N

(a) r, yields '+‘3 =11/15, hence (T3=7.)= 11/15.

(b) r, yields Tr','o = 0 [the "dummy!' parameter].
N

(c) 3 yields 7, =18/15, hence (1, = 7.) = 18/15.

/--..
(d) yualds Tl = -29/15, hence (T, = =29/15.

(3) Consider B., in general notation, then

11
by, b, b
| Bi= |Pa Paz P23
_b31 Py,  b3j

Since Bucrz is the variance=covariance matrix for the (7 = T.)
~ . .
which are estimated by the T We get estimates of variances and co=

variances of the (7, = 7.) thusly:

~ N HZ AZ
(a) Var (7,) =Var(r, =7.) = b = (4/18)c

” il "2 a2
Var (T,) = Var (1, =7.) =b, 0" = (4/18)7
. /\
Var (7 3) = Var ('r3 -T.) = b = (4/18)

S ”2

In general Var (?i) = Var (':'i = 7.) =b..cc, where the bii are the

diagonal elements of Byy: Also

(b). Cov ('71. ";z) = Cov[('rl =T i, =7.)] = -2/18 L
Cov (7 T3) = Cov[{r, =F.)u(1, -F.)] = -2/18 5e
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Cov (7 yr 74) = Covl[(1, = F.)(15 = 7.)] = -2/18 5°
In general Cov ("r‘i. "r'j) = Cov[ (75 =T D (’rj -7.)] ‘-'-‘.lzbl.Li;J\'2 (i #j), where
b,. are the off-diagonal elements of B
With this information we can set confidence intervals on (7, - T.)
or linear combinations thereof.

. We will now present an alternate method of applying the '""Doolittle
Technique' to the system AT = q. The results will be the same as just
discussed.

We shall show that if we form the matrix A = A 4+ 1/t J and apply
the forward and backward solution to the system AT = q, we obtain the
?:i where E(?"i) =(r, = ?.) from the forward solution and ['A]"1 =B+ %.T
from the backward solution. Bll is defined as before.

Applying this to AT = q as given on page 49 we have,

' 2 -1 -1 1 1 1 /3 =2/3 «2/3
X=A+ %-J = (-1 2 -1+ % 1 1 1|=|-2/3 /3 -2/3
<1 =1 2 1 3 i -2/3 -./3 . 1/3

and A7 =q is
[ -29/5
= | 18/5

r7/3 - «2/3  =2/3
-2/3 /3  -2/3
«2/3 =2/3 é/:s_l ?3_1‘ /5

Note that A is full rank hence [K]-1 exists.

“The tableaux for the forward and backward solution of the system

A 7 =qis given in Table XVII.
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Table XV"’II

Forward and Backward Solution of AT = q

Row A q [I']-l Check
Ry I =2 s w22 1 0 o | =i
1 3 3 3 5 5
§ 2 18 28

R! KLY et — 0 1 0 -
2 3 3 5 5
R! 4 R 0 0 1 2l
3 3 5 . 5
R 7 2 _2 129 1 0 - 0 219
1 3 5 5

H
—
-
N 1
()] ~Nlv) o w
1
~Nlv] o w
[ ]
wloo
03
~|w
o
o
'
%) wn
1%

18 68 2 158
R —— - — — —_— 1 Q e el
2 21 21 35 7 35
& 1 .18 68 2 2l 0 158
2 45 75 15 45 75
9 33 | 2 2 123
3 5 25 5 5 25
# 1 33 2 2 5 4l
3 45 9 9, 9 15
5 2z 2
9 9 9
a1 2 5 2
(A] = - = -
9 9 9
2 2 3 ©
9 9 9
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From Table XVII we obtain the following:
~

(1) Xy yields ?3 = 11/15 = (13 -7T.)

! . ot /\—-
r, yields 'rz=18/15 =(’rz—'r.)

o~
r, yields -';’1 -29/15 = (1, = 7.)

The same as from Table XVII

i -1 1 -1 1
(2) (A] =B, + t—.]'. Hence Bu=[7\_] - ?J'
Then
! _5/9 2/9 2/9 T T * 4/18 -2/18 =-2/18
B, =|2/9 5/9 2/9]- % 1 1 1| =l-2/18 4/18 -2/18
2/9 2/9 5/9 1 1 1 -2/18 -2/18 4/18

The same as before and Cov'("r:.L -T.) = Bucrz. Hence we obtain the esti=

mates of the variance and covariance of (r; = T.), just as we did before.
(3) From Table XVII we get

| t

Z CPID, (t = 3)

. 1

i=1

(33/25)(33/45) + (68/75)(68/35) + (-29/5)(-87/35)

R(t |p B)

=17.5

This is the same from Tables XI, XIII, and XVI.
We shall now present the application of the '""Abbreviated Dotlittle !
to AT = q such that we obtain unbiased estimates of (T = "Ft). where .

i #tand 7 _is arbitrarily chosen from the T

t
For example, consider the system AY = q obtained in Table XIV.
Suppose we are interested in obtaining estimates of the (T, =7 and

the covariance of these estimates.
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Suppose also we choose Tg ™Ty then we will be interested in esti=

mates of (1, = 7,) (i £ 3). d

As stated before A is less than full rank; hence, it is singular and
A-l does not exist. We then impose the non-estimable condition T g B 0
and omit the row and column identified with '1"3 in the system AT =q

from Table XIV. We will designate this reduced system A7 = q where

-29/5

1 [
-
18/5

ﬁ.= H ";":

A N

2

This system will be of full rank and the E(:;i} B (‘ri -7 3) and

=,-1 2
Cov('ri-'r3)=[A] o,

The tableaux for the forward and backward solution of the Céystem

~

T = qis given in Table XVIII. (See Table XVIII)

>l

From Table XVIII we obtain the following:

; tel
(1) R(r|up) = = CPID, (t=1=2)
Ci=l
= (=29/5)(=29/10) + (7/10)(7/15)
=17.15

which is the same as from Tables XI, XIII, XVI, and XVII.
s P .
(2) r,ylelds 7, = 7/15, hence (7 2= T3) = 7/15;
g ~s ] N
ry yields T = -8/3, hence (T, = 1'3) = -8/3;
which is the same as from Table XI.

(3) Since Cov (7, - T = [__;T]'lcrz, we obtain estimates:

>

(a) Var (71"1) = Var (1'1 - 1'3) = 2/3 ;‘2

N
In general, Var (;i) = Var (7, = 'rt) =a,o

diagonal elements of [T] “%



Table, XVIII

Forward and Backward Solution of A% = q

Row A q [f] = Check
R/ 2 ol .29 1 0 YA
1 5 5
R? 2 18 0 1 28

2 5 =
29 19
R, 2 1 : -
29 1 19
1 - 0 o
1 @ 10 10
3 7 1 37
o LT L3 1 =L
R> 2 10 2 10
% 1 7 1 2 37
B 15 3 3 15
2 L
=_.] 3 3
[A] =
1 2
3 3

-~ ~ ™ ~~ 2
(b) Cov (T, T,) =Cov[1‘1-'r3. T,=Ts] =1/3'¢

Cov[ry=Tw T4~ T.] GAIEY
- '\2

.0

1)
where the z'ij' are the off~diagonal elements of [i—-]'l,

In general, Cov (;i' ;j)

For the twomway classification with no interaction given by model
(4. 2.1) we can apply the '"Abbreviated Doolittle! to obtain the statistical

information in the following summary.

&2
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(1) Table XI yields R(y), R(-r] mB), and estimates of (1, <7 ).
Thus we can test Ho: T BTy B w o B T

(2) Table XIII yields R(y) and R(7T ‘p. B) and again we can test
HO: Ty FTg T e s BT ‘

(3) Table XIV is the application of the '"Doolittle' that builds the
(t xt) sysltem AT = q.

(4) Table XVI yields R(T | u, B), estimates of (ry = T.), and the

variance~covariance constant matrix for these estimates.

(5) Table XVII is an alternate application to obtain the same in=

formation as in (4).
(6) Table XVIII yields R(T | 4, B), estimates of ('1ri - Tt) (i#1),

and the variance-covariance constant matrix for these estimates.

4.3. Co=-variable in the Two~Way Classification Without Interaction

Uncontrolled environmental conditions may affect both experimental
| error and estimates of the treatment effects. If the proper assumptions
can be met and the environmental conditions can be measured even ap-
proximately, some adjustments can be made, often increasing the in=
formation!in the experiment. An appropriate statistical method is known
as covariance [4].

In this section we Ehall present an application of the '"Abbreviated
Doolittle":lto covariance analyais.'

Consider the model

i=1, 2, 3
Yijk=p.+ aZijk+'ri+ ﬁj-i-eijk ji=1 2 (4. 3.1)
k - 1' 2. L I . nij
where

(1) Yijk is the keth observation in the ij=th cell.
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(2) 2

in the ij-th cell. |

is the k~th observation ?f the co~variable Z which%appeara

(3) o T [3i. a, are unknown parameters. |

(4) .eijk arl'e random variables with the conventional distrib}.\tional
‘properties.

(5) Ithe ij=th cell contains nij observations.

The statistical layout for model (4. 3.1) is given in Table XIX and

the observation per cell layout is given in Table XX.

Table XIX ‘

Statistical Layout for model (4. 3.1)

@.
J
™ 1 2
Z Y Z Y Z;. Y
: 2, .4
1 3 4 1 2 6 10
Z X Z Y
5 7
2 3 5 6 8 21 " 29
7 9
Z Y 7z Y
. 4 6 : .
. FAY 8 11
- 3. g 5 missing
‘Z.j. 16 19 Z..=35




65

Table XX{

Observations pe? cell Layout for Model (4. 3.1)

B.
T; Y 1 A 2,. ; & &
zZ Y z Y N
1 2 2 1 1 3 ;
|
z Y zZ Y |
2 1 1 3 3 4 ‘
Z ¥ Z Y . |
3 2 2 0 0 2 ‘
N. 5 4 N..=9

Note: There is an observation of the co-variable Z associated with every
observation of Y.
Suppose we are interested in testing Ho: TI=T2 =7, in the model

(4. 3.1). for this we need R(T [ p a). The CPID, asaociafed with the
t, should appear last in the forward solution. We will, for computational
expediency, absorb the u equation and arrange columns of the X matrix
such that the column (o.)- associated with the co=variable will appear just
before the columns associated with the T The T3 columns appear last.
We write model (4. 3.1) as

Y

Yij = Y3 Y oXKine ¥ Tyt e

h /. + B.).
where sz(p. BJ)
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We point out the difference in the X matrix for this model as com=
/
pared to previously discussed two-way classification models. The
observed value of the covariable Z is placed in the a column rather than
!

!
zeros or ones as with other parameters.

The X'X and X'Y matrices in general notation are:

N., 0 Z.y. ' N, N, N, Y.,

0 N., Z.,. N, N, . . Y. .

N Zoge Yo g z2, z, Z Z,. -—a zZ'Y
N; N, z,. N,. o 0 | Y,

N, N, Z,. 0 N, 0 ‘ O
i Ny N, Z,.. 0 0 N,. | | Y,

' ' |
where.the dot in the subscript means that we have the sum over [hat sube

script.

For example,

- t
N.. = Number of observations in B, = Z n,
1 1 izl il
Nll = Number of observations in B, and T,
! t M
Z.,. =5Sum of the co-variable Z in EZ = 'E Z: ok
i=l k=0
Using the data in Table XIX we have
5 0 16 2 1 2] [247
4 19 1 i 0 26
16 19 165 6 21 8 127
XX = 2 1 6 3 0 0 XY = 10 (4. 3. 2)
3 21 0 0 29
L_2. 0 8 0 .0 Z_‘j ey

We now apply the Abbreviated Doolittle to this system. The tableaux is



given in Table

XXI. /

Table XXI

Forward Solution Equations (4. 3. 2)

67

Row X'X X'y Check
R{ 5 0 16 2 1 2 24 50
R} 4 19 1 3 0 26 53
R} 165 6 21 8 127 | 362
]
R} 3 0 0 10 22
R. 4 0 29 58
]
R/ 2 11 23
R, 5 0 16 2 1 2 24 50
r 1 @ — @ -é ﬁ 10
1 4 i \ 5 5
R, 4 19 1 3 0 26 53
r 1 L 0 16. 2
2 [ 4\ 4 4
& 471 103 71 8 1466 _199
3 20 20 20 5 20 4
) L AN AN [3Z] | 466 | 995
3 20 9 471 471 471
o 388 176 _212 | _ 10423 | 10423
4, 471 471 471 - 471 471
7\6\ 212 10423 10423
v 1 C28N S22 ] e -
4. 38}/ 388 388 388
5 328 _ 328 2216 2216
5 388 388 388 388
, . -1 2216 2216
5 328 328
0 0 0
0 0
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|

From Table XXI we obtain

i /
B
i=1 J
(2) EMS = —1—--[Ey2 - R(ps By a, 7)]
ne p :I.Jk F'. ] 1 ]
6
(3) R(r|up a)= I CPID,

i=4 ‘

From this information we can construct the AOV to test Ho: -,|'r1 =
T, =T, (The procedure is the same as discussed previously.) '

We will now construct the A‘-;: = q system by the previously discussed

special application of the '""Abbreviated Doolittle. " .
The tableaux is given in Table XXII. (See Table XXII) ;_

From Table XXII we get AT = q where

) 388 _ };?E L 212 : - 10423
471 471 471 471
& - . }l&l 478 -302 q = 7418
! 471 471 471 ' 471
, _ 212 _ 302 514 3005
471 471 471 . 471
- . -

All theory previously discussed pertaining to the system AT = q
is applicable. After the proper restrictions are imposed, we can-apply
the Abbreviated Doolittle to AT = q and find the following:

(1) Estimates of (Ti - 'rt). (i #t) I

(2) Variance and Covariance of (1).

(3) Estimates of ('7'i -7T.).

(4) Variance and Covariance of (3).

(5) R(T [P a)



Table XXII

"Doolittle Technique'' for Finding the ""A'"'and ''q'' Matrices for

Model (4. 3.1)

69

Row XX XY Check
R/ 16 2 1 2 24 50
R} 19 1 3 0 26 53
R} 165 6 21 8 127 362
Al 3 0 0 10 22
i : I
A}, 4 0 29 58
; |
A} 2 11 23
R, 5 0 16 2 1 2 24 50
2 24
| @A DB ¥
R, ' 4 19 1 3 0 26
\ 26
1 L 0 &0 23
2 /4 \ Lo 4 4
R 47 103 7 8 | 1466 | 199
3 20 20 20 5 20 4
LY
) L Ao AN [3Z] | L1466 | _995
3 / 471\ \¢7 471 471 47
i 388 _176 _212 10423
1 471 471 4N T 47
" _176 478 _ 302 _ 7418
2 471 471 471 471
A -212 _302 514 3005
3 471 471 471 . 471
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4.4, Two-Way Classification With Interaction

" In this section we will investigate the following model,

Yijk = pt T+ ]3j + (Tﬂ)ij + ®iik =1, 2 (4. 4.1)

r .
11
-
-
-
-

n..
1

|

]

where Yijk is th? k-th observation in the ij-th cell; p, Ty ﬁj, (7 mij':

are unknown parameters; and eijk are random variables with the con=
I

ventional distributional properties. The ij=th cell contains nij obser=-

vations.

The normal equations for model (4. 4.1) are:

~ |

A ) A
: B+ EN.B.+EN..7. +EN.(TB):. = Y...|
v N -“+j J[3J+ N, Tl+ijN1J(TB)1J Y |
A 5 A A 5 "~ . |
T Ni.p+jNijﬁj+ Ni.'ri+jNij('rB)ij-..Yi..-
: N. .04 N..B+ZN.7. +ZN.(1p). = Y |
Py il i Rk i U Tk

A A n Caby
_-'(Tmij' Nijp‘+. Nijﬁj+ NijTi + Nij(fﬁ)ij Yij'

©/'We will use the same statistical layout and data as given in Table

IX.
The normal equations then become as shown on the following page.

We will absorb p as before. The Forward solution is given in Table

XXIII. (See Table XXIII)



A ~ ~ ~ A‘ ~ F S ~~ II\ -~ ~ L
10p+ 5{31+ 5[32+ 3T1+ 472-!- 3T3+ 2(t [3)11-!-(7 5)12-!-(1' ;3)21+ (T [3)22+ 2(r 6)31-1-(7 [3)32= 60 =¥..

~ » A A 'S ~ ~ ' A - : '
5p458, 2104 T, 437 34 27 B)) +(1B),, +2(7 By, =24=Y..
o~ A ~ A ~ ~ - ~ ~
”~ » ~ s ~ T~
3M+2B 4 B,+37 +2(7B) +(7 B), -1n =Y,
~ A A ~ - N A
4pt B ¥3B, +471, =eER Pl ¥ A Bl =30=Y,.
BE28 5 8 T | 207 < = T8
pieet Py +37, +21B) g+ (783, = 19 = ¥,.
] A ~ LA : )
2p.+2f31 +2'r; . +2(71 ﬁ)}l = 8 = Yll
~ o ~ ~ ~
A N ”~ ~ B
pt B, t T, (1 By =5=Y,,.
~ ~ -~
3u +3[32 +31'Z + 3(r [3}22 =26=Y22.
-~ ~ ’ ~
20+ 28, +21 +2(18) 5 =1 =¥y, .
P ~ A
i t P . . % T3 +(1P)y, = 8 =Y,,

2"

1L
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Tabla XXIII

Forward Solution for Model (4. 4.1)

39
51
20
42
28
14
35

17

11

39

3_5

i

51

X'Y |Check

24
36
11
30
19
26

11

24

N

36

X'X

N0

~

TR

N

~ |

N|wn

3_5

—~ |

—~ |

Ml

—

Row

10

1

11

29
10

29
10

1
10

4
10

3
10

- — - — - — - —

2.
10




Table XXIII (Continued)

" 23

Row X'X X'Y |Check
R 5. 15 2 2 6 9 8 71| 1| 1
4 10 10 10 10 10 10 10 10 | 10 10
2 2 6 9 8 1 7
r 1 sl 2= e D e mes | e | e
4 15 15 15 15 15 15 | 15 15
R, 0o 0 0 o0 0 0 o0 0 0
rg o 0 O Oo0 o0 0 o0 0 0
R 68 68 36 36 3z 32| 268 268
6 150 150 150 150 150 150 | 150 150
§ | .1 .36 36 _32 32| 268 268
6 68 68 68 68| 68| 68
R, 0 0 O 0 0 0 0
¥ 0O 0 0 0 0 0 0
R | 24 24 24 24| 20 | 20
8 68 68 68 68| 68 |- 68
rg 1 &k sl 1 =22 |20
I, 24 24
Rg 0 0 0 0 0
rg 0 0 o0 0 0
|
Bio 0 0 0 ?
o 0 0 0 .0
Ry, 0 0 {?
ru 0 0 q




74

A

From Table XXIII we obtain, S
1
() R{u, By 7, (TB)] = T CPID, = 387.62
i=1
11
(2) R[(rp)|ppr]= Z CPID, =7.29
i=1
(3) EMS = = [z yuk R(p By 7, (T8)]
l.Jk

' With this informatmn we can test HD: the (7 B) interaction is zero.

Returning to the X'X matrix obtained from the normal equations
for model (4.4.1) we see that the last six rows contain a diagonal matrix.
These are the six rows associated with the (T ﬁ) 8 (‘See lower right
hand corner of X'X ) This means that the rank. of X'X is .at' least six.

Since we have a 12 x 12 system where the rank of the coefficient
matrix is six, we have the liberty of imposing six restrictions on the
system, The six restrictions we choose will be non-estimable functions.
These conditions when imposed wiil reduce the system dimension to
6 x 6. |

We know that if we :sum the rows of X'X associated with the ﬁj' the
sum is equal to the row associated with . We then, as previously shown,
absorb p and delete the row and column of X'X associated with u. (See
Table XXIII). This is the first condition we impose.

Likejwise the sum of the nows associated with the T is equal ﬁ'o the
B row, 80 we let a particular 7, = 0, say Ty = 0. We then delete t:he
row and column of X'X associated with T3 This is the second cor;dition
we:impose.

The degrees of freedom associated with interaction (7 B) ] is (L-l)(t 1)

where b is the number of ﬂj and t is the number of T In our casl} b =2,



t = 3. The number of degrees of freecjom associated with interaction is
the number of rows of X'X for which the '""Abbreviated Doolittle" will
not give zero computational rows. For example, in model (4. 4.i1)
(b-1)(t-1) = (1)(2) = 2, hence in Table XXIII we see that we have only two
non-zero computational rows for the six (T ﬁ)ij rows of X'X. (See rows
R6‘ Teo and RB' rg of Table XXIII). We then set four of the (7 ﬂ})ij =0
and delete the rows and columns of X'X that are associated with These
(7 Bl

Froxh this we can say that the number of rows and columns asso=-
ciated with the (7 B)ij which will not be deleted is ei;ual to (b-1)(t-1). This
product, (b=1)(t-1), is also the degrees of freedom associated with the
interactipn. The number of rows and columns in X'X that may be deleted
is bt - (b-1)(t-1). |

We will formulate a rule for choosing the rows and columns asso=
ciated with the (7 ﬁ)ij that will remain in the X'X matrix.

(1) Construct the incidence matrix table with general notation in

each cell., The layout for our particular model is given in Table X.

“ 1 2
T

1 N}, N, N,
| é Na N2 Ny
3 Nsi Niz Ny»

N. N.
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|
|

(2) Fo;- each Nij we can associate a (7 p)ij' For example.i we
associate (T ﬂ)u and Nll' (r [3)12 with le, etc. ‘

We may use the following rule for determining the rows and columns
of the (7 ﬁ)ij section of X'X that are not to be deleted. ’

Cr@ss out the last row and last column of the incidence mairix. Take
the (7 B_)ij associated with the remaining Nij' The rows and columns of
X'X associated with these elements will not be deleted. This means that
the (7 B)ij rows and columns of X'X corresponding to the Nij in the last
row and column of the incidence matrix will be deleted.

We' will apply the rule to our example. Croa:;ing out the last row
and last column of the incidence matrix we see that we have - I~ted le.

N N32. and N31. We have left Nll and NZl' This means that in X'X

22°
- we will delete the rows and columns corresponding to (1:13)12, (1‘[3)22,('1‘ 3)22,

and(T ﬂ)31.

Since NH and NZl remain in the incidence matrix, the rows and
columns of X'X associated with (7B )11 and (7 ﬂ)zl remain in the reduced
matrix. (Note that (t-1)(b-1) rows and (t=1)(b-1) columns remain in the
XX matrix. )

Applying these deletion rules to the normal equations for model

(4.4.1) we delete the following rows and columns:

'R
(2) 7,

~ o A ~
(3) TBIZ' Tﬁzzo 73320 andTB31'

The resulting matrices are:
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By Bz T Ty (B (75

P .

5 0 2 1 2 1 24

|

0 5 1 3 0 0 . 3{;

XE s | 2 1 3 o0 2 0 o 1
! 1 3 0 4 o0 1 30
2 0 2 0 2 0 8

1 0 0 1 0 1 5

Note that the corresponding element of X'Y is deleted when a row of X'X

is deleted.

We will now apply the forward solution to this reduced system.
This is given in Table XXIV. (See Table XXIV)

From Table XXIV we obtain,

6

() R(p» By 747 PB) = Z CPID, = 387.62

, i=1

._ 6
(2) R[7B[uBT)= = CPID; = 7.29
i=5

(3) EMS = —— [ y% = R(u B, 7, 78)

| © n-p Vi 2 B Ty

ijk
This is the same information as from Table XXIII.

From this we see that by imposing the proper restrictions we can
considerably reduce the size of the original system without sacrificing
any information.

The particular model (4. 4.1) that we have used for an example has
no missing plots. The procedure for applying the Abbreviated Doolittle
to such a model with missing data is the same with the exception of the

deletion rule for the incidence matrix.
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Table XXIV

Forward Splution to the Reduced System of Model (4. 4.1)

Row X'X X'Y Check
R/ 5 0 2 1 2 18 24 \ 35
R} 5., 1 3 0 0 36 \ 45
RY 3 0 2 0 1 19
R} 4 0 1 30 39

|
1 |
R¢ 2 0 8 \14
I i
R} 1 5 i
R, 5 0 4 1 2 1 24 35
1 24 35
r 1 o ok b
; Q A @ @ l_-L 5 5
R, 5 1 3 0 0 36 45
3 36 45
r 1 = 0 fctoed] ==
z A O | ¥4
6 2 29 20
R 2 -1 o - & - Al
3 5 5 5 5
A (2 _29 _20
3 ! @ <"6> 10 10 10
" 3 2 6 7| 30
4 2 10 10 10 10
12 14 60
r 1 = 14 oY
4 30 30 30
R 34 _18 134 150
5 75 75 75 75
18 134 150
r 1 —_
5 34 | 34 34

R 90 _ 15 15

6 255 255 255
e 1 - 12 15
! 90 90

78
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We shall state and give an example of a rule for determining the

v

rows and columns of the (7 p)ij section of X'X that are not to be deleted

in a model with missing plots. For example, consider the following in-

[}

cidence matrix:

1 N11 Missing N13
2 Missing NZI Missing |’ :
3 N N Missi |
31 32 1881ng !
|
. Ng N4z Ny3 |

where
(] Number of B's =b = 3; |
(2) Number of 7's =t = 4;

(3) Degrees of freedom for interaction = (b-1)(t=1) - Number of

missing plots = 6 - 4 = 2,

Rule Concerning Incidencé Matrix:

(1) Strike out all rows that contain only one Nij'
(2) In the remaining matrix strike out all columns that contain only
one N...
1)
(3) Repeat (1) and (2) respectively until the rermaining matrix con«
tains no row or column with only one Nij'

(4) In the first row of the remaining matrix circle all elements

except the last element in this row.



(5) Now strike out this top row.

] (6) Repeat (1), (2), (3), and (4) v;rith the remaining matrix until
all rows and columns are crossed out.

(7) The (T B)ij which correspond to the_ circled Nij will remain in
the reduced X'X matrix.

. Let us apply the rule to our example.

Apply (1): Striiie.- out row two leaving the following matrix:

Ny S Ny3 Ny Ni3
N3 | N3, N3 | N3z
Ny | Ngz2 | Ng3 Ny | Ngz | Ng3

Apply (2): There are no columns containing only one Nij‘
Apply (3): This step is not necessary for this example.

Apply (4): We circle N, and strike out the top row leaving:

DI

Ny | N3 N3 32

Z

Z

Z

Z
>
w

Ny | Ngz | Ng3 4 | N4z

Apply (1): This is not applicable.
Apply (2): This is not applicable.
Apply (3): This is not applicable.
Apply (4): We circle N5, and strike out the top row leaving:

80



(| s

Ng | Ng2 | N3 Ny | Ngz | Nys

Apply (1): This is not applicable.
Apply (2): We see that applying (2) three times will delete the re=
maining matrix. .

Since we circled Nll and N31 in applying the rule, we do not delete

f
&

the rows and columns in X'X associated with 78 1 and T [331. (Note the
number of rows and columns not deleted equals the number of degrees

of freedom for interaction.)

81
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FRRATA FOR REPORT ON THE DOOLITTLE TECHNIQUE

' & The last equation of the system {l1.1) should be

0u2x¢ 2y¢ 122416

~ 1l Step eight should read: To obtain the clements of R3 find the
surn of the products of the pivotal multipliers in r; with R,
vaere 1 =1, 2. Again omitting all clements of R, to tho left

of the multipliors.

The solutions for f§ at the bottom of the page are:
=z -6/19
A
al41/2h,=16/19
A A
=5-28,¢ 3[33 = 81/19

)
147}

3

| 2

A

p
LA
rp
A

S

i

2 &9 The formula for RZ:

n
T CPiID.
2 _i=2 %

il g
Ty, - C:Pal’.D1 :
© 53 The Refercnce [4] should be [3]

z0 65 The model at the bottom of the page is

Yijk = Yj ¥ a zijk & T ¢ aijk



