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INTR ODUC JION 

This paper is an attempt to integrate into one source the applica-

tion of the "Abbreviated Doolittl.e Technique II for solving a system of 

normal equations. 

Al.though the II Abbreviated Dool.ittle II is primaril.y a method f r r 

obtaining the solution to a set of equations, we shall point out many 

statistical computations that come about in the process of applyini 

this method to a set of normal. equations. Hereafter, when we ref er 

to a set of normal equations, we wil.l. mean that the coefficient ma rix 

is symmetric. 

The approach in this presentation will be confined mostly to 

examples of this method appl.ied to the more common statistical designs. 

We will confine the examples to normal equations containing a small 

number of unknowns to expedite the· reading. This wil.l be without loss 
I 

of generality since the II Technique'' is identical for larger systems 

of equation's. 

l 
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CHAPTER I 

A BRIEF HISTORY OF THE "DOOLITTLE TECHNIQUE" 

In most computational work involving systems of linear equations 

one is confronted with the problem of solving n equations in n unknowns. 

This problem, prior to the advent of the numerous present day mecha-

nical computing aids was imposing as n became large. 

Concerning this problem M. H. Doolittle, an employee in the U. S. 

Coast and Geoditlc Survey Office, presented a paper dated November 9, 

1878 [ 1 ] • 

We will present this original method in a simple example, as we 

intend to do for all applications. Keep in mind these applicati ons may 

be easily extended to n equations in n unknowns, This example will be 

set up exactly as the method was presented by Doolittle in the above 

paper, 

Suppose we have the following system of three equations in three 

unknowns: 

0 = Zx + 4y + Zz - 6 

0 = 4x + lOy + Zz 18 ( 1. 1) 

0 = Zx + Zy + 1 Zz - 16 

This solution for X!f y, and z is found as follows. 
I 

i 
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2 2 

3 5 

4 6 

5 10 

6 11 

Table I ,,. 

Original Doolittle for solving Equations ( 1. 1) 

A B 

3~ 4 5 6 7 
l 2 

3 

X y z y 

2 4 2 -6 l 3 10 

-. 5 x= -2 -1 3 2 4 -8 

2 -2 -6 3 7 

-. 5 y= l 3 4 8 

8 16 5 9 

-. 125 z= -2 

line 

2 x= -2y - z + 3 X = 3 

4 y= z + 3 y = l 

6 z= -2 z = -2 

,.._ 
C 3 

4 5 

z 

2 '!'!18 

-4 12 

12 16 

-2 6 

-2 -6 

(1.1.l} 

The first column in sub-tables A and B · of Table I given the number of 

the line and the second column, the order of pro_cedure. 

The -coefficients and absolute term of equation l are entered in 

line 1, columns 4 to 7 of Table A • . The negative reciprocal of the co-

efficient of x, is entered in line 2, column 3. All the remaining num-

bers in line l are multiplied by this reciprocal and the products entered 

in line 2. This gives 'the value of x as an explicit function of y and z. 
/, 



The coefficients and absolute term of equation 2, (omitting the 
/ 

coefficient of x, already in the first equation in Table A), are now 

4 

written in line 1, Table B. The coefficient of y and all the fol 1 owing 

numbers of line l, Table A, are now multiplied by the . c u c . · 

y in line 2 of T~ble A, and the products are written in line 2, Table B. 

The algebrak sum of line l and 2, Table B, is now entered inLline 3, 

Table A, and line 4 is for med from line 3, exactly as line . 2 was formed 

from line 1. 

Omitting the coefficients x and y, the remaining coefficients, and · 

the absolute value term of equation 3, is entered in line· 3 of Table B. 

The coefficients of z and the following numbers in 1:ke l and 3, Table A, 

are respectively multiplied by the coefficients of z in lines 2 and 4, 

these products entered in line 4 and 5, Table B'. The algebraic sum of 

lines 3, 4, and 5 of Table B, is now entered in line 5, Table A. 

Now, if there were other equations and unknowns, this process 

would be repeated. In our example, the last number in column 7, Table 

A, is an approximation of the unknown z. We can now 'take th~ explicit 

equations in lines 2, 4, and 6, Table A, for the approximate solution 

to the set of equations (see equations 1. 1. 1). We have used approximate 

solution here in the sense that if we had chosen to use deci~al equiva-
, 

,..0 
lent numbers instead of fractions, then we would obtain only an appro-

ximation rather than an exact solution. Decimal notation is used when 

computations are done on a desk calculator or when the , "te,chnique" 

is prograrl?med for an electronic computer. 
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We can summarize by stating that this ''technique" is merely 

systematic, mechanical procedure to obtain the solution for n equ,ations 

in n unknowns. The procedure being restricted to row operations on 

the system. · 

(. 
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CHAPTER II 

PROCEDURE FOR APPLYING THE "ORDINARY" ANP 

"ABBR EVIA TED DOOLITTLE" . 

2. 1, The Ordinary Doolittle 

As stated before, the Doolittle technique is a method of obtaining 

· the solution to a set of n equations in n unknowns, B·ef ore proceeding 

further, let us define the terminology concerning this method, when 
'"· ... 0 

applied to a system of normal equations. 

Suppose we have the system of normal equations X 1Xl3 = X'Y. This 

system of equations is in matrix notation where the matrices are defined ...... 
as follows: 

{ 1) X I X is an n x n matrix of constant coefficients and wil.r. be 

referred to as the coefficient matrix, Often we are interested in find-

ing the inverse of this matrix, and the procedure for ~inding the inverse 

· will:. be discussed later. This matrix is always symmetr~c about the 

main diagonal, 

(2) 13 . is an n x 1 vector of unknown parame-ters, whose elements 

we wish to estimate by application of the Doolittle method. 

{ 3) X 'Y is an n x 1 vector of constants. 

For example, consider the following set of three equations in three 

unknowns, 

1013 2 + 213 3 = 18 { 2. 1) 
... ... 

213 2 + 1213 3 = -16 
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Using the notation described above, this system becomes 
I . 

\. 2 4 2 (3 1 6 

4 10 2 (3 2 = 18 ( Z. la) 
... 

2 2 · 12 (3 3 - 16 

or 

... 
[ X.'X] · ( (3 ] = ( X' y ] (Z. lb) 

or 

X'X (3 = X'Y ( 2. le) 

Equations Z. 1, Z. la, 2. lb, and 2. le, are equivalent expressions. 

We how wish to investigate both the ordinary Doolittle and the 

Abbreviated Doolittle when applied to such a system of normal equa-

tions. We want to solve for approximations to .the elements of the 

vector of unknowns (3. We define the "forward solution" as follows. 

This is the procedure that triangularizes X 'X. -We, can say then that ¥' . 

the forward solution transforms X'X so that (3 may be .obtained. The 

actual obtaining of (3 is a consequence of, rather than a part of, the 

forward solution. 

Many times we are interested in obtaining the inverse of X 'X. 
v 

This can be accomplished at the same time the forward solution is 

carried out. The only difference is a t,ableau change. The procedure 

for obtaining the inverse of X'X is defined to be the "backward solution . ., v' 

We will investigate this procedure later in this chapter. 
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Using the system of equations ( 2. 1) for an example, let us apply 
/ 

the ordinary Doolittle to obtain a solution for the p.. The layo'ut for 
l 

the forward solution is as follows. Note that only the elements of 

the coefficient matrix and the constant vector are used in the layout. 

Table II 

Ordinary Doolittle Technique 

' X'X _; 

' / ' Column 
l 2 3 

I 

. 
Instruction Row pl p 2. P3 X'Y Check 

/ Column 

., Rl 2. 4 2 6 14 
., 

R 2. 4 10 2. ,}8 
\ 

' . ' 34 

\ 

R3 2 2. 12. -16 0 

: 

1/ 2. R l R4 1 2. 1 3 7 
: \ 

R 2-2R l 
.. 

RS 0 2 -2 6 6 
I 

R 3-Rl i R6 0 -2 10 -22 - '14 

R4 R7 . l 2 1 3 7 

1/2 RS RB 0 1 -1 3 3 

R6 +. RS R9 0 0 8 -16 -8 

R7 RlO 1 2 1 3 7 
' 

Ra R 11 0 1 -1 3 3 

l/8R 9 Rl2 0 0 1 -2 -1 

/ 

,. 
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The prupose of the technique is ~ triangularize the X 'X matrix, 

using row operations ~n the system. This is known as the forward so-

lution. It is a well known fact, that row operations on such a sy.:stem 
I 

do not affect the resulting solution. The Instruction column in Table II 
I 

merely explains what operations on the rows of the system we are to 

perform. 

If we now consider R 10 , R 11 , and R 12, in Table II, we have the 

I 

following system with X'X now upper triangular. From this stem {3 • 

may be obtained as follows: 

l 2 l 13 l 3 

0 l -1 132 = 3 
... . 

0 0 l 133 -2 

or 

13 l + 213 2 + 13 3 = 3 ( 2. 2) 

~2 13 3 = 3 . ( 2. 3) 

13 3 = -2 ( 2. 4) 

I 

( 2. 4) Equation gives us 13 3 • Substituting this in Equation (2. 3), we 

can obtain 13 2, then substituting in Equation ( 2. 2) for 13 2 and 13 3, we 
... . 

obtain 13: 1 ,' thus, we have solved for the 13 vector with the following 

result. 

13 l 3 
... 

f3 = 13 2 = l ( 2. 5) 

13 3 -2 



The check column is the sum of the numbers in each row. The 
I 

same operations are performed on this column as on other elements. 

That is, the elements of this column are treated as members of their 

respective rows. After each operation, the check column must be the 

sum of the elements of that particular row. This serves as a check 

10 

against .arithmetic mistakes. We will discuss the validity of this later. 

2. 2 The Abbreviated Doolittle 

We now apply the Abbrevi~ted Doolittle to the same system. The 

· primary difference being that since the coefficient rpatrix X'X is sym-

metric with respect to the main diagonal,. it is not necessary to use 

the coefficients below the main diagonal. 

The layout for the Abbreviated Doolittle 1s shown in Table III. 

The computational outline for Table III is as follows: 

( 1) Write the X'X matrix a.s shown, omitting all elements below 

the main diagonal. Designate these rows as R 1 •, R 2 ', R 3 '. 

Note the check column sum includes the omitted elements of 

X'X. 

(2) Write down the first row of the X 'X matrix to obtain R 1. 

(3) Divide all elements of R 1 by the leading element of R 1 to 

obtain r 1. R 1.' and r 1 will be called the computational rows 

' 
associated wit,\'l R 1 •. 

I 

(4) Determine piv1otal multiplier for obtaining R 2 . This will be 

the second ele,ment in r l '. In particular, the element marked 
I 

with a square. 

(5) To obtain the elements of R 2 , subtract the product of the pivotal 

multiplier and each element of R 1 from the respective Jlements 
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I , 
Table Ill 

Abbreviated Doolittle Method for Solving Equations (2. 1) 

. 
X'X ' 

Instructions Row Column X'Y Check 

1 2 3 Row Sum 

·. ; ' 

Rl 
I 2 4 2 6 14 

Rz 
I 10 2 18 34 c.., 

R_3 
I -· 12 -16 0 .. 

' 

~l 
I 

Rl 2 4 2 6 14 

1/2 R l rl 1 [1J 0 3 7 

Rz'-@Rl Rz 2 -2 6 6 

1/2 . R 2 rz 1 @ ~ 3 3 

R3'..:[~z~1] R3 8 -16 -8 
I ' .. 

1/8: ··R-3 
.. ' .. 

l -2. -1 h J 

of R 2 ' , omitting all elements of R 1 to 'the left of the pivotal multiplier. 

These are omitted because only zeros are obtained if they are used. 

(6): :Again obtain . r 2 by dividing R 2 by the leading element. 

(7) Determine pivotal multipliers for obtaining R 3 . These will be the 

third elements in r 1 . and r 2 . In particular, the elements marked 

with a circle. \ 
f. -1, -' 

tJ W>-

(8) To obtain the elements of R 3 find the1 product of the pivotal multiplier 

in r 2 with R 2 again- omitting all elements of R 2 to the left of the 



12 

multiplier. Subtract this sum from t~e respective elements of 
I 

R 3 '. Th,is gives R 3. r 3 is obtained by dividing R 3 by its leading 

element., 

It is important to note that, in this procedure, it requires two com• 

putational rows for each row of X'X. The second of which is always 

obtained!from the first by dividing each element of :the first by it,s 

leading element. We will refer to R 1 and r 1, R 2 and r 2 ..• Rn 

and r ~s sets of computational rows. 
n 

To facilitate the extension to n e·quations in n unknowns we will 

do a three by three system in general. notation. 

Consider Table IV which will be ranal.agous to Table III. 
I 

Notw.: ( 1) For the general. computational row term R .. , we have 
lJ 

i = (1, 2, ... , n) and j = (1, 2, •.. , n+ 1) where n is the 

number of unknowns in the system. Now for i > · 1 the following 

formula yields any 

' 

\ 
\ 

! 

R . .• 
lJ 

R .. 
lJ 

i-1 
=R '-:I: 

ij k= 1 

-----

For example, suppose we want R 33 in Table (2. 2). ;. ·using the formula 

we have R 33 = R 33 • - [r 13R 13+ r 23R 23J = 12 - [(:y · (-Z)+Q)' (2)]=8. 

It may seem that determining the pivotal. multipliers is somewhat 

difficult, but we shal.l. now formulate a rule to ~etermine these multipliers. 

Rule for Determining Pivotal Multipliers. 

The number of multipliers for R ' will be (n-1). These will be the 
n 

' 
elements in the n•th column of rows r 1, r 2, ••• , r 1• 

n• n• · 
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/ 

Table IV 

Abbreviated Doolittle in General 

X'X 
Column X'Y Check 

Instructions Row l 2 3 ' ' (Row 
.. l .. 

Sum) 

! 

R 1 · ' R 11 
I 

R 12 ' Rl3 ' 'R 14 
I ~R ~· ... 

. lJ 
I J .. 

J 
I 

~ 2j 
I ' R I R23 

I R .24 ' ~R2 . I 22 . J 
I J 

R 3j ' I 

R3/ R34 
I ~R3' ' . J . J 

Rl ' R lj Rll Rl2 Rl3 Rl4 I ~R 1· I 

. J 
J 

R 1 · EJ __L 
r lj r 11 rl3 rl4 ~ II", 1, 

R 11 
. J 
J 

R 2j 
I 

• r 12R lj R 2j R 22 
,_ 

R 23 
,_ R '.1 ~R2. 24 I . J 

r !ZR It 
J 

rlf 12 r l2R 13 

' I 

R2. 
i 

R24 
1 1 

23 1::: r 2j 
,__ 

r23 -=r r 2j 
R 22 22 

R 22 24 j 

.. 

R 3/..![r.13R 1/ R 3j R 33 
I,.; 

R34 ' - ~ R3j . I 

j 

r 23R 2) • [r2f23+ [ r23R24-
I 

rl 3Rl3] r l 3Rl4] 

R3 . 
' 

R34 
J 

r 3j l --=r ~r 

R 33 
R 34 j 3j 

33 
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Example: / 

Suppose we want the pi~otal multipliers for R 5 1 in a seven by seven 

system. We know then that there will be four in all and they will be 

the elements in the fifth column of rows r 4' r 3' r 2' r 1 • 

Returning to Table III we note that r l' r 2' and :r 3' give 
' 

.... 
1 2 1 13 1 3 

-1 -1 13 2 = 3 

1 13 3 -2 

exactly as in the ordinary Doolittle and again 

13 1 3 

= = 1 

-2 

Also, note that it has taken three less computational rows in the 

Abbreviated Doolittle as opposed to the Ordinary Doolittle. We again 

point out that although this has been presented in the special case of 

three equations in three uflknowns, it is most readily extended to n equa­

tions in n unknowns. The procedure is identical. 
I 

. I 

Using the Doolittle Method to Obtain the Inverse of X'X 

I 

As we shall see later, many times the inverse of X'X is desired. 

This can be obtained, by what we shall refer to as the backward solution 

of the Abbreviated Doolittle. 

To obtain the backward s elution, we again apply the forward tion 

with this t•ableau change; in addition we write the n x n identity ma rix to 
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the right of X'Y in Table III and treat ,,each element as members of R 11, 

R 2 •, ~ 3 '· The check column is obviously different, since each Rn' now 

is increased by one. · We will refer to this new section as the (X'X)-l 

section. The forward solution is now carried out on this new layout just 

as in 'Table III. 

Table V • 

The Abbreviated Doolittle Method for Solving. Equations ( 2. l ) and 
--. 

D t th I f th C ff . . t M t . e erm1n1ng e nvei se o e oe 1c1en a r1x 

X'X . ( X 'X] - l 

Column . 
Instructions Row Column Check Row 

l 2 3 
-X'Y 

l 2 3 (Row Identi-
- Sum) . ;fication 

R I 

l 
2. 4 2 6 l 0 0 15 

R2 
I 10 2 18 0 l 0 35 

-

R3 
I 12 -16 0 0 l l 

Rl 
I 

R 1 . 2 4 2 6 l 0 0 15 . Tl ,· 

1/2 R l rl , l IT] CD 3 UJ2) ~ w 15/ 2. tl 

R2' -0R1 R2 2 -2 6 -2 l 0 5 T 2. '. 
' ( 

~ 1/2 R 2 r2 l 0) 3 B w 5/2 t2 

R3' - ~2.-Q)l R3 8 -16 -3 l l -9 T3 , . 

1/8 R 3 r3 l -2 · j -3(i8 ~ ~ -9/8 t3 

' ," 
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29 11 / 3 
8 -r ·a 81 

• u 5 l 
8 - - 82 8 8 

3 l l . - - - 83 8 8 8 

From Table V we obtain the backward solution which gives [ X •x] •1, the 

inverse of x•x. 

l. Usi~g the part of the [X'X]•l section• starting with Row T 1 and 

ending with row t 3, we proceed as follows; recalling that if x•x is sym• 

metric, then [ X 'X] •l is also symmetric. 

2.. To obtain the ii.rat row of [X 1X] .. 1, we choose as pivotal multi• 

pliers, the elements in column one and rows t 3, t 2~ and t1. The first 

row of [ X'X] •l is designated a1 and the pivotal multipliers are distinguished 

by a square. The elements of row s1 are the respective sum of products 

of the pivotal;mliltipliers and the corresponding elements of the rows . 
·. . 

T 3• T 2, a~d T 1, specifically, the first element of s 1 isl •3/s j ·. {-~) + .. 
B · (•2) + I 1/zJ · 1 = £2.; the ~econd element is j-3/Bl· • _ l +[:I}· l +. 

/ ~ ' 

jvzj , Q ZI .. 11/s. etCe 

3. For the second row of [X 1X] • 1• designate? ~!.z• we ~oose as 

pivotal multipliers the elements in column two and rows t 3, t 2, and tr:. 
These elements will be designated with diamonds. Again, as in the 

forward solution, we will not multiply any element of any row to the left 

of the column in which the pivotal multiplier appears. The elements 

of a 2 are obtained by obtaining the sum of the products of the pivotal 

multiplier a a.nd the respective elements of raws T 3, T z.• and T 1. That 

is. the sec.end element of si• (the first already obtained due to symmetry) 



is equal to~· l +~ · l +<'.e)· o' = 5/8; the third element o1 •z 

is () · ' l + ~ · o + <e) · o = z/ 8. 

4. ·The first and :·second elements of s 3 are now available due 

to symmetry and to find the third element of s 3, we choose the pivotal 

multiplie;rs in column 3, rows t 3, t 2• and t1, designated with triangles . 

The thir~ element iri s 3 then is 'f(f · l + 'fJ ·. 0 + 'fJ • 0 = 1/8. ' 

We Gan now formulate the manner of finding the pivotal multipliers 

in general. 

(1) The number of pivotal multipliers for each 'row of [ X'X] •l is 

n where n is the number of unknowns in the system. 

' 
('2) The location of these multipliers will be in the same number 
. ' . -1 

column as the member of the row of [ X 'X] we are seeking and they 

are located in the tn, tn•l' . . . , t 2, t1 rows of the [ x•xJ •1 section of 

the layou~. · Z .. .. 

Consider the [ X 'X] -1 section of Table V. We can write this in 
,\ 

general notation as in Table VI. 

. Note: (1) For the general s .. or T .. we have i ~ '(l, 2, . . . , n) 
I . . ~ ~ 

17 

and j = (1, 2, . . • , n) where n is the number of unknowns in the system. 

The following formul~ yields any sij in [ X •x] ·l 
n 

S,. = ~ tk. Tk. 
lJ k=l l J 

For example, suppose we want s 13 in Table V, Using the formula we 

. have sl3 = tllT13 + tz1Tz3 + t31T33 = j 1;2j · 0 +El· 0 + /-3/81 · 1 = -3/8. 

To fully understand why this method works, we , will .appeal to some 

fundamental concepts of the theory of matrices. 

I . 
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/ 

Table VI 

[X 1XJ-l Section in General 

[X'X]-l Row . 
Identification 

l 2 3 

l 0 0 .. 

0 1 0 
' 

0 0 l 

Tll Tl2 Tl3 Tlj 
: 

' '1' : 
tl2 tl3 \j 11 

I 

T 21 T22 T23 T 2j 

·t ' 
21 t22 t23 t2j 

T 31 ·T32 T 33 T 3j 

' 
t3l t32 t33 t3j 

= [x•xJ ·l 
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Consider the matrix multiplicati;ori, BA. The m c1 t r i-. B is called 

a pre-multiplier of the matrix A. Likewise in the w 1J ,t tion of AB, 
I 

B is called the post-multiplier of A. In ej.ther case, we can say that 
I 

the matrix B transforms the matrix A and the product can .be considered 
I 

a trans£ ormation of ~he matrix A. 

It is important to note that a pre .. multiplication of a matTix A by 

a matrix B will result in a series of row operations, being perf
1
ormed 

on the rows of matrix A. That is, tn the process of matrix mu\tiplica• 

tion, the rows of the product matrix -will be linear ,combinations of the 

rows of matrix A, in fact the particular linear combinations di tated 

by the elements of the rows in the pre-multiplier matrix B. 

Illustration: 

B A C 

Note: (l) The first row of the product matrix C is the first row of 

matrix A minus the second row of matrix A. This following 

from the first row of the pre-multiplier B. (1)(2) + (-1)(1) = l 
and (1)(1) + (•1)(4) = (-3). 

(~) The second row of C is two times the first row of A plus 

the second row of A. ( 2)( 2) + (1)(1) = 5 and ( 2)(1) + (1)( 4) = 6 . 

It follows in the same manner, that if A is post-multiplied by a matrix 

B, then i'n effect the columns of the product matrix will be linear com-

binations of the columns of the matrix A.· These combinations being 

dictated by the columns of the post-multiplier B. 

Atso, if we are given a square matrix A, it is possible to transform 



this ma.trix to the identity matrix by row and column operations. 

. ~ 

We will do thia by row ·and column operations. Suppose we set 

the given matrix A between two Fdentity matrices IL and IR thusly: 

IL AiR; Now we proceed to do column and row operations on the 

matrix A to transform it into the identity matrix, simultaneously per".' 

forming the identical row operations on IL and column operations on 

IR, that are performed on A. That is, if row one in A is subtracted 

from row two in A, then row one in IL is subtracted from row two in 

IL and if column one in A is added to column three in A, then column 

one in IR is added to column three in IR. We are ustng the two identity 

matrices as recorders ·of the row and column operations necessary 

to transform A to the identity matrix. After completing all necessary 
! 

row and column operati_ons on A, if we now designate the resultant 
I 

IL :matrix as T I and resultant IR matrix as t, we assert with reference 

the following: 

T 1At :; I . 

This is given as a theorem in most texts on elementary theory of 

matrices [ 2 J. I 
With this theory in mind let us now investigate the Abbreviate~ 

Doolittle as given in Table V. C.ori.sider the rows T 1, T 2, and T 3 of 

the [ X 1XJ •l section of the table. .Use these rows to construct the 

n x n matrix which we shall call T 1, then: 

l 0 0 

T' = .. z l 0 

.. 3 l 

·20 
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/ 
Now consider rows t1, t 2• and t 3 of the sam,, of Table V 

and use these rows to form the,.n:x n matrix, we shall call t', then: 

1 0 0 1 -1 
3 

-z ·-2 8 

t• = .. 1 . l 
0 and t 0 l l = 2 2 8 

3 l l 0 0 l -- .... 
.a 8 8 8 

Referring again to the discussion previously on pre-multipliers and 

post-multipliers we find that 

T 'X'Xt = I 

then 

[ x•x] -l = tT • 

where T' is the row recording matrix and t is the column recording 

matrix found by reducing X 'X to the identity matrix by row and column 

operations, This proves the · validity of t,he Abbreviated Doolittle for 

finding the inverse of x•x. 

We now point out a few facts that: will be referred to later. 

It is interesting to note that T •x 'X = R where R is the matrix com• 

posed of Rows R 1, R 2, and R 3 of the X'X section of Table V, a11d 

z 4 z 
I 
I 

R :I 0 z -z 
I , ,,,. 

/ 

0 0 8 
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hence T traingularizes X'X. Also t 1X'X = r where r i a 

composed 0£ rows r 1, r 2, . and r 3 0£ the X 'X section and 

l 2. l 

r = 0 l -1 

0 0 l 

hence t I ala o triangularizes X'X. 

ro atrix 

C· 
0 

A, diagonal matrix is a matrix with zeros £or every element except 

the main diagonal. 

~ow T 'X 1XT = D1, where D 1 is a diagonal matrix with the diagonal 

elements being the leading elements 0£ rows Rl' R 2, and R 3• Then 

D = l 

2 

0 

0 

0 0 

2. 0 

0 8 

2. 2. 

Also t 1X 1Xt = Dz• where D 2 is diagonal and whose diagonal elements 

aro the inverse elements 0£ D 1• Then 

l 0 0 
2 

D - 0 l, . 0 2 - 2 

0 ,0 l 
8 

hence• D 1D 2 = I. 
It is~mteresting to note that the determinant of XIX is equal to the 

dete;rminant of D 1 which is simply the product of the diagonal elements 

0£ D1• 
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/ 
We · will refer to these facts later as we a; q, . • 1he application 

of the 0.oolittle method to statistical designs. 

To verify the validity of the check column, we can look at each 

line of Table V as being an expression equated to the sum of the coeffi­

cients of the particular line. Now in the process bf obtaining t~e for­

ward solution we are merely performing the same arithmetic operations 

to both 'sides of the above equatio~s. Hence,tha. ~ality prevails. If 

it does not. then we will not have performed the same operation to 

both sides of the equ.ation and this will indicate an arithmetic error 

in our computations. 
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CHAPTER III 

THE APPLICATION OF THE "ABBREVIATED DOOLITTLE" 
TO REGRESSION 

3. l. Introduction and Definitions --
In this chapter we shall investigate what the ''Abbreviated Doolittle" 

will do £or us in the analysis of what is often called "multiple'' regres• 

sion. It is not the intent here to delve into the complexi.ties of the eta• 

tistical theory concerning regression ( 3]. However• we will discuss 

the basic assumptions and properties of regression• along with the 
\ 

necessary n.om.!iuclature that is essential to understanding what the 

"Abbreviated Doolittl~ 11 yields computationally in a regression analysis, 

Consider the matrix model 

(3.l,l) 

where Y is an n x l matrix, X is n x p matrix, 13 is an p x 1 matrix and 

e is an n x l matrix . . We are concerned here with what is referred to 

as the full rank case. By this we shall mean that the rank o{ X .'is p ~ n, 

We now distinguish between si~ple and multiple regression( If 

p = z, then an observation from the Y vector in (.3.1. l) can be wJitten 

If p > 2, then an observation from the Y vector in (3.1. l) can be ritten 
/ 

/ 

Z4 
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y i :z 13 0 + 131 Xu + 13 zX Zi + . + 13 X i + e. p p l 
(3. l, 3) 

Equation (3. l. 2) is the model for a 1' simple" regression while Equation 

(3, l, 3) is the model for "multiple" regression. It is easily seen that 

''simple'' regression is just a special case· of "multiple'' regression. 

We 'will present the material as applied to "multiple" regres!lion only. 

since this is the general regression case. 

~- Multiple R,eg:ressio·n 

Suppose we have the following system of normal equations. 

" X'X13 :z X'Y (3. Z. l) 

wher~. 
XO '),. 

A 

4 8 lZ 131 20 
,. 

" X1X = 8 18 Z3 13 = 13-z X'Y = 42 
~ 

lZ 23 46 13 3 56 

· The format for the forward solution is given in Table VII. We 

will omit the instruction column since it will be exactly the same as 

presented in Chapter II, (See Table VIl).. · 

" .The forward solution yields the foll.owing values !or j3. 

" 13 3 . = -6/19 7 
" " ~ z = 1 + 1/2 ~ 3 = 16/19 

~ l :z f + Z ~ 2 + 3; 3 = 8l/l 9 

.s - ).(\ f' ',1 J . 

We th.en obtain the prediction equation. 

ZS 
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Table yrr 
Forward and Backward Solutions to Equations (3. 2. 1) 

' 

Row x•x X'Y [x•xJ·1 Check Row 

R' 4 8 12 1"' 20 1 . 0 0 45 I 

1 
' 

R' 18 23 4 42 0 1 0 92 2 ' 

R' . 3 46 / ,. 56 . 0 0 l . 138 

l 

Rl 4 8 l2 

ZOJ ~ 
1 0 0 45 Tl . 

0 0 l 35 
rl l · 5 .... - 0 0 - tl 4 4 

: 

R2 ' 2 -1 z] ~ -2 1 0 2 T2 

CD· 1 0 r2 1 1 N -1 - 1 t2 I 2 

19 - l 
R3 '· 

l - -3 (') ... 4 - l 4 T3 
2 "'d 2 

H 

6 t, 8 l 2 8 
r3 C 

. i -- ~ -- - - - . t3 
1~ 19 19 19 19 

- . 
;. 

b , 
I /, I ,, 

299 23 I 8 -- .. _ 
811 8 12 8 13 76 19 19 

[X'X] •l 23 10 l = -- - - = 8 21 8 22 8 23 19 19 19 

8 l 2 -- - - 8 31 8 32 8 33 19 19 19 
,...:t, 
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I\ .;' 

Y :ai 81/19 + 16/19 X1 ·• 6/19 X2 (3. 2 . ?' . 

" f~OJn which, £or any given values 0£ x1 and x2 we may !ind Y, This 

is the multiple regression of Y on x1 and x 2• 
,. 

Now let us look a.t equation x•x13 z X'Y in the light o! its relation• 
' 

ahip to a ample quantitJ;es. We have 

1::,~l 
I\ 

n I:X2 131 I:y. 
1 

1:xl " .... 
X'X • I:Xl l:XlX2 13. = 13 2. X 1Y = l;Xlyi l .. 

l:X2 " I:Xz I:X1x 2 13 3 2:X 2yi 2. 

2. ,. ' 
Y ty = l;y. is called the total sum 0£ squares, ~ •x 'Y is called the 

d ti d j i A. d [Y'Y • ~ 'X'Y] . . ' ---- f--.z--- ·rr - -

re uc on ue to t-' a.n 1s an estimate o er or e 
- --- . - - - n • p 

experimental error us.ed in the analysis of variance for testing ~ypotheses • 

. The reduction due to 13 is denoted by R(l3 ). . J / 

Returning to ;~~le--Vn we de~ine the. term 1' Cross Product i h the J ,,, 

Doolittle, " This is the product of the two elements in the X'Y c t lumn 

associated with each pair of computational rows. The number of these 
I 

products .will be the same as the number of parameters associated with 

the X'X matrix. We designate the first cross product CPID1., the second 

cx-oss product C?l,D 2, etc. For example, CPID1 = 5 · 2.0 = 100 (See 

Table VII, CPID1). In general. CPIDi = Ri, n+l · r 1• n+l where n is 

the number 0£ para~~s in 13, ' 

Consider Equation 

C 3. 2.. l). 

A 
X'X13 a X''t 

J 



then 
/ 

from the theory in Chapter II 

tT• = [x•x)"'1 

This gives 

"" 13 = tT 'X'~ 

and 
I\ 

13 1 = Y 1XTt' 

Hence ' f. 

" 13 'X 'Y = Y 'XtT 1X'Y 

since 

Tt I = tT I 

Now examine the right side of the two equations, 

"' T 1X 1Xl3 = T 'X'Y 

and 

" t 'X •x 13 = t •x •y 

T 1X'Y U the p. x l vector of the elements in the X 'Y column and rows 

R1, R z• , , . , RP, t 1X'Y is the p x l vector of the elementfi 

X 'Y column and rows r 1, r z• , . , , 
Hence: 

rv-,...---

r • 
p 

A 

(t'X'Y)'T'X'Y = ~ CPIDi = Y'XtT'X'Y = 13 1X'Y = ... !illJ 
/ i 

For example, we obtain R(A) from Table VII, . 

/ 

27 
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3 
R(l3) = .2: CPIDi = CPID1 + CPIDz. + CPID 3 _ 

1=1 . . . 
= 5 · 20 + Z. • 1 + (-3)(-6/19) 

= 102. 18/19 

We ·obtain the Error Sum of Squares for the analysis of variance since., 

Error Sum of Squares = Total Sum of Squares - l).{'3) 

n 
where :E y ~ = Y 'Y . 

i=l . l 

Ess =Tse -R(i3) 
n 2 n 

= l: y . - 1: CPID . 
. 1 1 • 1 1 1= , 1= 

. .' The: :standard computing formula for the corrected total sum of v 

squares is 

n Z. 
:E y. -

. l 1 1= n 

Now in 1Table VII we see that CPID1 is equal to 

n 
( :E y. ) 

. 1 
( :E y . ) ,_1 __ 

. 1 n 
1 

= 

2 
(:Ey.) 

. 1 
1 

n . 

28 

v Hence CPID1 is the correction fa.1:to.r .. This is- sometimes referred to as / 

/ the reduction in sum of squares due to the mean ,a.ncf..is.i.des·ignated R(µ) ._,. 

I 
or RO\>· CPID 2 is the reduction in sum of square.a due to l3 2 adju·sted 

for p1 designated R(l3 2 j p1) and CPID 3 is the redu~tion due to '3 3 adjusted J 

for p1 and p 2 w9-~ is designated R(P 3 j '3 113 2). J 
J This information is most useful for testing hypothesis_ concerning J / 

the 13 vector. 

' I 



~ 

/ 2.9 I 

' ) . 

I / 

For example, 
1
suppose we wish to test the hypothesis· that p 3 = 0. 

For this we need R;( p 3 J p 1p 2). ~o test the hypothesis that any particu­

lar elements of p = 0, we need to obtain the reduction in sum of square~ 

due to these elements adjusted for the remaining elements. In this case 
I 

R(P 3 j P1P 2) = CPID 3 . t 
Now suppose we wanted to test p 2 = p 3 = 0. For this we eed to 

obtain R(P 2 p 3 j p 1). This is equal to CPID 3 + CPID 2 from Ta
1 
le VII . 

From this we see that we can obtain the adjusted reductio~ s in any 

V order we wish by merely rearranging X'X S\!c·h tltat the crosJ! _prod_ycts . 
. - ---- -· - --· 

in the_j :lo_9litt~ f_ot _~}:le para~~ters of interest .o~cur last in th forward - - ~ 

solution. 

If .we are interested in setting confidence intervals on the point 

estimates of the p., or linear combinations of the p . , v. · .~ co-
. l ' l 

variance matrix of the S vector since Gov (P) = a- 2[X'X]-1. The back-
' 

ward ~olution given in .Table VII yields [X'XJ-1. 

For example, suppose we want an estimate of: 
I · 

1. ' " , . . "2. "2. 
Variance of pl'. ThlB 1s '1' 8 11 = a- 2.99 /J.6. 

2.. ' 
A ~ 1'2, 1\.2, A2, . 

The Covariance of (p 1 p 2). This is '1' 8 12 = '1' s 21 = '1' (-2.3/19) 

In general : 

/""'--" " 2 1. Var (P . ) = <r s .. 
l 11 

/;:;::.. " " 2 2.. Cov(p .,p.)=<rs .. i'/aj 
l J lJ 

3. Standard~or of (~.) =!7:. . 
l 11 

We can obtain the multiple correlation coefficient R 2 from Table VII 

by the following'formula. 
. ' 

~ CPID. 
2. . 

R · = 
l i = -
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/ 
Note that since CPID1 is R(µ) the denominator of the formula for 

R 2 is total sum of squares adjusted. 

As was stated before it is possible to get the adjusted reduction for 

/ any parameter or compination of parameters by r~ar_!" a_~ging the model 

such that t~e _'!_e parameters appear last. This will make the CPID 
I 

associated with these parameters occur last__in the forward solution . 
I - - ---

To clarify this, cons icier Table VII. The arrangement of the model is 
I 

Y = ~1x1 + 13 2x 2 + 13 3x 3 + e. Henc1e, the last CPID = CPID 3 is R(l3 3 1131,13 z) 

and R(l3 2, 13 3 J 13 1) is the sum of th.e last two CPID ::; ·CPID 3 + CPID 2 . 

Suppose, however, that we have completed the forward and pack-
, I 

ward solution for a particular · arrangement of the model and then find 

that we want the adjusted reduction of one of the parameters or 4 om~i-

- nation of parameters whose cross products are not last in the fo ~ward v' 
I 

solution. It is not necessary to rearrange the X 1X matrix (the n)odel) 

and again go through the forward solution. To illustrate this wej shall 

rearrange the model to Y = 13 2x 2 t 13 3x 3 + 13 1x1 t e and c~rry o t the 
I I 

forward e olution. For this arrangement wa are interested, in R( ~ 1 j 13 2, 13 3) 
I 

andR(l3 1~ 13 3 j13 2) (See Table VIII). 

From Table VIII we obtain 

A 

I ' 131 = 81/19 
~ A 

13 3 = l + 32/299 131 = -6/19 
~ A ~ 

13 2 = l + 23/1813 3 + 4/9131 = 16/19 

The same as from the forward solution of Table VII. 
' 

R ( 13 ) = I; CPID i = 10 2 18 /19 
i 

(1) 

( Z) 
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Table VIII 

Forward Solution To Equation ( 3. 2.. 1) 

Row X'X X'Y [ X 'X] -l 

R' l 18 '2.3 ' 8 _,, 4 2. l 0 0 

R' 2. 
" I ~ ' 46 12. C 56 .Q l 0 

R' \ I 4 ' 2.0 0 0 l 
3 

' 
Rl 18 23 8 42 l 0 0 

. l 23 4 7 l 0 0 rl - - - -18 9 3 18 

R 2. 
2.99 16 7 2. 3 l 0 - - · - --18 9 3 18 

l 32 42 23 18 0 r2 - -- -
299 299 299 299 

R3 
76 324 92 32 l - .. _ ·-2.99 2.99 . 2.99 2.99 

l 
81 2.3 8 2.99 

r3 - .. - --19 19 19 76 

The same as from Table VII 

and 

= 4. 94 

31 

Check Row 

9 2. 

138 

45 

92. Tl 
46 

tl -
9 

184 
T 2. -

9 

368 
t2 -

299 

575 
T3 2.99 

575 
t3 76 



I 
We shall show how these two values can be obtained from Table VII. 

. Consider Table VII. Suppose we wanted R(13 1·j 13 2 13 3). This is not 

available from the forward solution as given in Table VII. Using the 

. ~ -1 
value for 13 1 and [ X 1X] we have 

I A -1~ 
R(l31 '3 z'3 3) = '31. [s:11] '31 

= [81/19] [761299)(81/19] 

= [81/19)(324/299] 

= 4. 62 

Exactly what we· obtained for R('3 1 j 13 2 13 3) from Table VIII. 

In: general the adjusted reduction sum of squares for any parameter 

. ' 
or combination of parameters is obtained by the following relation: 

/ l 
Adjusted Reduction Sum of Squares = B* 1 z- B* (3. 2. 2) 

where B* is a column vector of estimates of the parameters of interest 

and z-l is the inverse of the matrix obtained by partitioning [ X 'X] -l 

according to the rows and columns ass ociat'e.d with the elements of B*. 

To illustrate,thi:s suppose we want the R(/31', 13 3 j 13 2) from Table VII. 

We partition [X'X] -l to find Zand 

299 8 -- 811 813 
76 19 

z = = 
8 2 -- - 8 31 8 33 19 19 

~ 

and 
76 304 
171 / 

,. 
171 -1 z = 

304 5681 --
171 342 

32 



" " / Now 13:1 = 81/19 and 13 3 = -6/19. hen'ce, 

B* = j81/19J 
l:6/19 

Then using Equation ( 3. 2. 2) we have 

= 610812 
12346 2 

76 
171 

304 
171 

= 4. 94 

Exactly what Table VIII yields for R(l3 1.13 3 j 13 2) ; 

304 
171 

5681 
' 342 

81 
19 

6 --19 

In summary we will list the information obtained from the forward 

' 
and backward solutions of the Abbreviated Doolittle when applied to 

multiple linear regression. 

We obtain the following: 
' I 

l. ' A solution for the vector of unknowns 13. 

2., Reduction in sum of squares due to 13. 

- 3. Retiuction in sum of squares for any parameters or combina­

tion of parameters adjusted for the remai7 ng parameters. 

4. The multiple cdrrelation coefficient R 2. 

5. Covariance matrix for the vector 13. 

33 
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CHAPTER IV 

THE APPLICATION OF THE "ABBREVIATED DOOLITTLE" 
TO THE TWO-WAY CLASSIFICATION 

4. l. Introduction and Definitions 

In this chapter we shall investigate the computational information 

tha~ is obtained by applying the "Doolittle Technique II to the following 

two-way classification models: 

(l)·. Without interaction; 

( 2} Without interaction and with a co-variable; 

(3} With interaction. 

These models are classified as experimental design models of less 

than full rank. By this we mean that in the model denoted by the matrix 

equation 

Y = Xl3. + e (4.1.l} 

the rank of the X matrix is k < p where p is. the number of parameters 

in the model. This is referred to as Model~ [ 3]. We are interested 

in the model in the light of unequal sub-class numbers and missing data 

both of which complicate ordinary methods of computing necessary sta• 

· tistical information. 

In the m fel of less than full rank, X is of dimension :(p.0 x p) p ~ n 

of rank k < p hence X'X is of dimension (p x .p} of rank k < p. This 

means that X'X is singular and has, no inverse: A unique solution for 

34 
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13 in equation (4. 1.1), does not exist and we cannot obtain unbiased esti• 
I 

mates of the 13 . as V(e did in Chapter II where we were considering the 
1 

' I 

35 

model .o£ full rank . . However, we will show that we can obtain estimates 

of linear combinations of the 13 .• 
1 

4. 2. Two-way Claspification Model without Interaction 

Consider the model 

i = 1, 2, 3 

Y· ·k = µ + T. + 13 . t e .. k j = l, z 
lJ . 1 J lJ 

/ k = l, 2, ... 
(4. 2.1) 

• n . . 
lJ 

. where yijk is the ~th observation in the ij-th cell; µ, Ti' '3j, are un .. 

known parameters; and e . ' k are random variables with the conventional 
lJ 

distributional propefties. The ij-th cell contains n .. observations . 
. lJ 

Suppose for our example we are interested in the Ti. We then rewrite 
I 

model (4. 2. l) as y .. k = µ + 13. + T. + e. 'k' The X matrix with the columns 
. lJ J l . lJ 

I 

labell.ecL~ith their respective parameters is · 

µ 131 13 2 7' 1 7' 2 7' 3 

l l ' 0 1 0 0 

l l 0 l 0 0 

l l 0 0 l 0 

l l 0 0 0 l 

X = l l 0 0 0 ·l 

l 0 l l 0 0 

l 0 l 0 l · 0 

·1 0 l 0 l 0 

l 0 1 0 l 0 
., 

1 0 l 0 0 l 



\ 36 

I 

The observed observations in the statistical layout for model (4. 2. l)' 
I 

I I 
are given in Table IX and the number of observations per cell layout 

I 

is given in Table X. 1 

Table IX Table X 

Statistical Layout for Model (4. 2. 1) 
I 

Observations per cell ,+,ayout 
f M d 1 (4 2 1) ' or o e . . 

.~ 
l 2 N .. 

1 ~ l 2 Y ... 
. 1 

4 . • 

l 3 11 1 2 l 3 
4 

' 8 ' 
2 

i 
; 5 8 30 2 l 3 4 

' 9 
'· 

6 
3 8 19 · 3 2 1 3 

5 
I 

I 

Y. ·:. 
J I 

24 36 60 =Y ... N 'j 5 5 10 =N .. 

' " The normal equations X 'X y = X 'Y are 

,., " " . " ,., ,.. 
60 µ: 10µ + 513 1 +513 2 ·+ 3r 1 + 3r 2 + 3r 3 = = Y ..• 

" " " " ,., 24 131: 5µ+5131 + Zr l + T Z '+ 27" 3 = = .Y. l, 
,.. ,.. ,. ,., ,. 

13 2: 5µ + 513 2 + Tl + 37" 2 + 7" 3 = 36 = Y. 2. 

" " 
,., ,., (4. 2. 2) 

7" l: 3µ + 2131 + 13 2 + 37" t - 11 = yl. '. 

" " 
,.. 

~ 
7" 2: 4µ + 131+3132 + ~7" 2 = 30 = Y2 .. 

,., " . " " ., 3: 3µ :+ 2131 + · 13 2 + 3-r 3 = 19 = Y3 .. 

/ 
/ 
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and I 

10 5 5 3 4 3 60 fJ, 

5 5 0 2 l 2 24 '31 

X'X 
5 0 5 1 3 1 X'Y 

36 '3 2 = = 'V = 
3 2 l · 3 0 0 11 7' l 
4 l 3 0 4 0 30 7' 2 
3 2. ;1 0 0 3 19 7' 3 

The forward solution for this system is given in Table XI. (See Table XI) 
I 

The backward so1ution is of no importance since [X'X]-l does not 

exist. As was stated before the X 'X rnatrix is singular. This means 

that there is a linear dependence between the rows of X 'X and thr,t there 

is at least one row that .is a linear combination of the other rows!. We 

note that the forward solution will detect these dependencies by Jelding 

zero computational rows when the dependency is encountered. -£" \Or 

example, if we inspect the norma·l equations (4. 2. 2) we see that the 

sum of the rows for ·the '3. is equal to the equation for fJ,· Hence when 
1 

the last l\ equation (third row) of X'X is .processed in the. forward solu­

tion we get computational rows equal to zero. (See R 3 and r 3 of Table 

XI), Als,o in Equations (4. 2. 2) we see that the sum of the rows for 'T. 
1 

is equal to the fJ, equation. Again when the last row for the 'T. (sixth 
1 

row) of X'X is reached in the forward. solution we ot>.tain zero computa­

tional rows. (See R 6 cl:.nd r 6 of Table XI.) Whenever a zero computa­

tional row occurs we continue to the next row. 
I 

From Table XI we can obtain the fallowing information: 

(1) , From r 6 we -get 7' 3 = 0 

( 2) :Fromr 5 we get-; 2 = 1/1s / 
.,/ 

,/ 

( 3) From r 4 we get ';1 = -8/3 
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Table XI 
I 
' 

Forward Solution to Equations ( 4. 2. 2) 

Row X'X X'Y Check 

R' 
l 

10 5 5 3. 4 3 60 90 

R' 2 5 0 2 l 2 24 39 

' R' ,• 
5 l 3 l 36 51 ,, 

3 

R' 4 3 0 0 11 20 

R' 5 4 0 30 42 

R' 3 ' 19 28 6 

' 60 Rl 10 5 ' . 5 3 4 3 90 
' . 

rl 1 GJ CD A\ m ~ 6 90 -10 
' 

R2 
5 I 5 l 

-1 l -6 -6 -- ·- -
2' 2 2 2 

I 

r2 l ' 9 Is\ ffi ¢ 12 12 -- --5 5 

I 
' 

R3 0 o,~. 0 0 0 ) 0 

r3 0 6 G) 0 0 0 

R4 2 -1 -1 i...!:J • 29 
, :s 5 

•. 

{] 0 29 29 
r4 l -- --10 10 

RS 
I 3 3 7 I 7 - -- - -
i 2 2 10 ' 10 
! 

0 7 7 
rs I l - -

15 15 

R6 0 0 0. 

r6 ! 0 0 0 
I ·,) 
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Note: [ This is one . pf many s olutioM to the system, hence we use the 

~ I ~ 
notation ., . instead pf 7'. which implies . that we have an unbiased esti-

1 1 

m.-.te of the ., .. ] 
1 

In fact: 

'; 3 estimates., - r 3 3 
,., . 
'T 2. estimates 'T 2. - 'T J 

6 

H ' 
'T 1 estimates r 1 - r 3 

2.. · We find R(y) = R(µ., 13 ., r .) = l:; CPID. where 
J l . l 1 

3. 

1= 

6 . 
:E ·cPID. = (60)(6) + ( .. 6)(-12/5) + (0)(0) + (-2.9/5)(-2.9/10) 
. l ' 
1= 1 . 

+ {7/10)(7/15) + (0)(0) 

= 380. 32. 

we find R ( T j ~. 13) = 

6 

6 
~ CPID . where 

. 4 l 1= 

~ ,CPID . = {-2.9/5)(-2.9/10) + (7/10)(7/15) + (0):(0) = 17.15 
• :A l 
l=J:£ 

Under the assumption of no interaction 
I 

l 2. 
-[ ~ y. 'k - R(y)] 
n - p "k lJ lJ 

is equal to the error mean square aruLwe c::an use this information in 

our analysis of variance to test the hypothesis 'T 1 = r 2 = 'T 3 . The 

AOV is' given in Table XII. (See Table XII) 

We shall now present an alternate method for applying the ttDoo­

little II to Equations (4. 2.. 2.). The objective is the same, that of testing 
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H 0 : 'T 1 = 'T z = r 3 . Since there are two dependencies in the system , : 

given by Eq'uations (4. 2.; 2.), we may impose the non-estimable conditions 
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Table XII 

AOV for Testing H : 
0 'T1='T2='T3 

Source d.'f. Sum of Squares Mean Square 

I 

Total 10 400.00 ' 

R( ~) 4 300. 32 

R(Tjµ.13) 2 17. 15 8.57 

Error 6 19. 68 3. 28 
' 

" " µ = 0 and 'T 3 = 0. The first equation for µ and last equation for 'T 3 will 

be omitted. The resulting system is of full rank and is given by the 

following equations: 

,. A ,. ,. 
~ 1: 513 1 ·+ 2T l + 'T 2 = 24 = Y. l. 

" 
,.. ,. I\ 

~ 2= :: 513 2 + ·'T 1 + 3T 2 = 36 = Y.2. 
,. I\ I\ " 

(4.2.3) 
'T 1 : 2131 + ~ 2 + 3T 1 = 11 = yl .. 
,. ,I\ " ,.. 
., 2: ~l .+ 313 2 + 4-r 2 = 30 = Yz .. 

and 

5 0 2 1 24 

· X'X = 0 5 l 3 
X'Y = 36 

2 1 3 0 11 

1 3 0 4 30 

The forward solution for this system is given in Table XIII. 

_/ 



Table XIII 

Forward Solution to Equations (4. 2. 3) 
I 

Row X 1X .X'Y '. ( heck 

R' 1 
5 0 2 l 24 32 

R' 2 5 1 3 36 45 

R' 3 
3 0 11 17 

R' : 4 30 38 4 
' 

Rl 5 0 2 l ' 24 32 

1 ill CD & 24 32 
rl - .,......... 

5 5 
I 

R2 , 5 1 3 36 I 45 

1 ·G) & 36 45 
r2 I - -

5 5 

R3 , 2 -1 29 24 -- --5 5 

1 & 29 24 
r3 -- --10 10 

R4 
3 7 22 - - -
2 10 . 10 

l 
7 22 

r4 - -
: 15 15 

From Table XIII we obtain: 

(1) R(y) 
4 

= ~ CPID. = (24)(24/5) + (3&)(36/5) + (-29/5)(-29/10) . l 1 . 
1= . 

,,/ 

= 380, 32 . 

+ (7/10)(7/15) 
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4 ,/ 
(2) .R(7' µ.f3) = 'E CPIDi = (-29/5)(-29/10) + (7/10)(7/15) 

j=3 
= 17. 15 

These of course are the same as obtained from Table )0. 

Previously we have been only interested in testing H 0 : 7' 1 = 7' 2 = 7' 3 . 

This by itself is no~ all the information we would like from the model. 
.. • 

The 7' . are not estimable but we may obtain estimates of contrasts of 
1 

the 7'. · which may be of interest and also set confidence intervals on 
l ! 

these contrasts. 

We shall present the application of the Abbreviated Doolittle as a 

computational aid in finding these contrasts and also finding the estimates · 

of var.iance and covariance necessary for setting c.onfidence in_tervals on 

these ·estimates. 

Consider model (4. Z. 1) in matrix notation and we have 

Y = Xy + e 

where the dimensions of the matrices are as follows: 

Matrix General Dimension Dimension for 
MocteI (4. Z. I) 

' y N X l 10 X 1 

X N X b+t+l 10 X 6 

y . (b+tf 1) X l 6 X 1 

XO N X l 10 X 1 

x1 Nxb 10 X 2 

X2 N X t 10 X 3;:¢ 

f3 b X l 2xl 

7' t X 1 3 X 1 

e N ,t l 10 X 1 



I 
where 1 

N = No. observations in the experiment; 

' x = {x0• xl' x 2); 

y'=(µ.. 13', 'T'); 

b :i: Number of Blocks i 

t = Number of Trea.tments. 

We define Jn to be an n x m matrix whose elements are all ones. , m 

We ca.n iwrite the. model ( 4. 2. 1) as 

N 
Y = J l µ. + X1 o. + X z T + e 

or 

. b · N b since X/ 1 = J 1 . Now define {J 1 µ. + a) = 13 and we have 

Now consider the results of this on the system given by. model 

(4; 2.1). 

(1) The µ. column of the X matrix will be ah,sorbed by the ~. 
1 

columns, hence the dimensions of X will be 10 x (3+2). 

The µ column is omitted. 

(2) We then partition X = (X1 j Xz) where: 

(a) x1 is 10 x 2 partition of the X matrix. It conta.ins-:J he 

columns labelled 13 1 and 13 2 , 

· (b) x 2 is 10 x 3 partition of the X matrix. It contains the 

columns labelled 'Tl' . .,. 2, and 7' 3 • 
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The normal equatioi:is (4. 2. 3) become, I 

(1) 

( 2) 

. " Solving (l) f!or '3 w~ get 

Substituting this in ( 2) we have 

In (2) 

(a) 

(b) 

Then { 2) can be written 

~ 

AT : = __ q 

where the dimensions of the matrices are as follows: 

Matz:ix Dimension' Dimension for 
Model ( 4. 2. 1) 

· A t X t 3 X 3 - t X 1 3xl T 

q t X l 3xl 
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(4. 2. 4) 



Consider now the X 'X matrix for the normal equations in model 

(4. 2..i 3) as applied to model (4.·2..1). 

I "" 
5 0 2 l 2 

I 0 5 1 3 1 
xlxl 1 X'X I 

I 1 2. ------- - - - --
X'X = -- - - ,- --- = 2. l 3 0 o· 

X2Xl x 2x 2 l . 3 0 4 0 

2. 1 0 0 3 

We note the £ ollowing: 

{l) x 1x 1is diagonal with the elements on t~e diagonal being the 

number of observations in each block. 

(2) · x 1x 2 is the transpose of the matrix composed of the number 

of observations in each cell. ( See Table X). This is called the 

"Incidence Matrix. 11 

..., 
We will now build the A matrix in the Ar = q system by a special 

application of the ''Doolittle Technique. " (See Table XIV) 

The procedure £or Table XIV is as follows: 

, (1) R1• r 1, R 2, r 2 are obtained as usual £or the forward solution. 

{ 2) The elements of row A1 in. the X 1X section are ,the elements 

of ;the first row of the ''A" matrix. The element in row A1 of the X'Y 

section is the first element of "q ''· 

45 

( 3) The A1 row is obtained in. the same manner as though we were 

carrying out the forward solution on two sets of computational rows R1, 

r 1, and R z• r z.. 
For example, we will determine A1. The pivotal multipliers are 

. , / 

the elements designated by circles : 



,I 

Table XIV 

"Doolittle Technique" for Finding the "A" and "q" Matrices for 
Model ( 4. 2. l) 

X'X 
Row 

~l ~2 
X'Y 

T2 T3 Tl 

R' 5 0 I 2 l 2 24 
l I 

I ("-

R' 5 l 3 l '36 
2 I - - - - - - - - - - - - - - - - -- - - - -- - - - -

A' I 3 0 0 11 
l • 

I 

A' 2 
I 4 0 30 

I 
A' 3 ' I 

3 19 
' 

.Rl 5 0 2 l 2 24 

rl l ~ CD ¢ l] 24 
I -
' 5 

R2 5 l 3 l 36 

r2 · l CD <v [] 36 -
5 

( 29 
, Al 2 -1 -1 --

5 . 
A2 

, . 
-1 2 -1 

18 -
5 

I 

' 11 
A3 -1 -1 2 -

5 
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(a) 1st element of A1 I = 1st element of the 1st row of the "A 11 

matrix = a 11 
=3•[CD·l+G)·Z] 

= z 

1.7 

(b) Znd element of A1 ~ 2nd element of the 1st row of the "A" 

~atrix = a12 

= o _ [ G): 3 + G} l] 

= -1 

(c) _3rd element of A 1 = 3rd element of the 1st row of the "A" 

matrix = a 13 

'o 
= 0 • [ CE) , l+ G) • Z] 

I : •l 

(d) 4th element of A1 = 1st element of "q" = q1 

=11-[CD . 5 . 

= -29/5 

36 +·(D • Z4) 5 . 

(4) The A 2 row is obtained the same except we subtract the sum 

_of the products of the pivotal multipliers and rows R1 and R 2 from the 

respective elements of A 2. These multipliers are designated by diamond1 

(a) 1st element of A 2 _s.,-Znd element of A1 = a 21 =_a 12 , since 

''A" is symmetric. 
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(b) 2.nd element of A 2 = 2.nd element of the 2nd row of 1'A 11 = a 22 

:; A\ 
= 4 - [ \el . 3 + 

~ = 2 

· .. (c) 3rd element of A 2 =. 3rd element of . 3rd row of 11 A 11 = a 23 

= 0 ~ [ ¢ , Lt <t> • Z] 

= -1 

(d) 4th element _of A 2 = 2nd element of "q" = q 
. . 2 

= 30 ' . [ ¢ ' 36 + ¢ · Z4] 

= 18/5 

(5) We obtain A 3 by subtracting the products of the pivotal multi­

pliers, and rows R 1 an~ R 2 from the respective elements ?f A 3. These 

multipliers are designated by squares. 

(a) 

(b) 

(c) 

1st element of A 3 = 3rd element of A1; a 13 = a 31 

2nd element of A 3 = 3rd element of A 2 ; a 32 =· a 23 

3rd eleme~t of A 3 =. 3rd element of the 3rd row of ''A"= a 33 
I 
I 

=3-(UI ·l+ I: I . Z] 

= 2 

( d) 4th element of A 3 = 3rd element of II q 11 = q 3 

= 19 • [ I ~ I • 36 + I : I • Z4] J 11/15 

' 



. " From the special application of the "Doolittle Technique" given in 
(b 

Table XIV we can obtain the following system of t equations (in this 

case t = 3) in t unknowns given by: 

or 

2 "'.l -1 
,.., 

-29/5 7'.'l 

-1 2 -1 
,_ 

18/5 Tl = 

-1 2 
,J 

11/5 -1 'T3 • 

or 

,.., - ,.,, 
- .?::!. Zr l Tz 'T3 = 

5 
,..; 

27' 2 
N 18 

- 'Tl + 'T 3 = 
5 

~ ,., ..,J 11 
-Tl - . Tz+ Zr 3 = -

5 

In this special case it is seen that the diagonal elements of A are all 

equal and the off diagonal elements are ! 1. This does not necessarily 

occur in all designs. The diagonal elements may be unequal. Like­

wise, the off diagonals may be values other than ! 1. However, it will 

be found that the sum of the elements in any row of the A matrix will 

always be equal to zero. 

To understand why this scheme works we will verify Equations 

( 4. 2. 4) by applying the "Doolittle" to a general system. Consider 

Table XIV in general notation as given in Table XV. 

49 
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Table XV / 

Computation of "A II and "q II in General 

x•x 
Row X'Y 

~l ~2 Tl 'T 2 'T 3 

I 

R' I 1 
xix1 xixz X'Y I l R' 2 ·' - - - - - - - - - -1 - - - - - - - . -- - --- - - - - - --

A' l . I 

A' 
I 

x1x2 ' • X'Y 
2 I 

' 
2 

I. 
A' I 3 

I 
I 

Rl Ru Rl2 R13 Rl4 Rl5 Rl6 

rl & C9 ~ ~ rl6 

, 
Rz R22 R23 R24 R25 R26 

r2 r22 Q 
· ~ 

Ir 2sj r26 

' 
Al ; ' all al2 · al3 ql 

Az a21 a22 a23 q2 

A 3, a31 a32 a33 q3 
. 

Now co~paring Table XV with Table XIV we see that [X{Xirl is diagonal 

and equal to 
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Look at 
I 

l 0 

~ 
l 

:]= 
2 l 2 

[ XlX~ -l~{Xz = 
- - rl3 rl4 rlS 

5 5 5 5 = 
l l 3 l 

0 \ --. 3 - - - rz3 r24 rzs 
5 5 5 5 

and 

z l 2 l 2 l l l 
- -

XzX1[X1Xi)-lX{Xz .= 
5 5 5 

l 3 = l l l 
l 3 l 

z l - - - l l l 5 5 5 

Now 

XiXz = ~R13 Rl4 'RlSJ 
Rz3 Rz4 Rzs 

and ' 

R13 R23 
\ · 

XZXl = Rl4 Rz4 
('b 

RlS Rzs 

. Then' the Doolittle application in Table XV give-a 

R13 · Rz3 

rl3 
all all al3 

X 1 X ' • Rl4 Rz4 
rl4 rlS J azi aiz aZJ = 

z z 

·Rl5 RZ5 
rz3 r24 rzs 

a3l a3Z a33 ., 

which fr om Table XIV becomes 

// 



3 0 0 2 l 2 ( l . 2 2 
- -

0 
5 5 5 

4 0 - l 3 - -1 
l 3 l 

0 0 3 z l 5 5 5 -1 

or 

X 2X 2 - X2X1[x1~f1x1x 2 = A 

which is' the same as Equation (a) in Equations (4. Z. 4). 
I 

Returning to Table XV we see that 
i 

and that the "Doolittle Technique" gives 

rl3 r23 

X 1 Y -2 rl4 · r24 

rl5 rZ5 

which from Table XIV becomes 

[Rl6} 
ql 

q2 
R26 

q3 

.1 

2 

-1 

11 

30 

2/5 

1/5 

Z/5 

1/5 

3/5 

1/5 

[::] = 

-29/5 

18/5 . 

19 11/5 

or 

X'Y - X'X [X'X ]-1X 1Y -q 2 2111 1-

which is the same as Equation (b) in Equations ( 4. 2. 4). 

-1 

-i 

z 

I 

· We have verified that the special application of the "Abbreviated 

Doolittle II wil1 build the AT = q system of equations. 
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4. 3. J\pplication of the "Abbreviate<i Doolittle" to A~= q. 

Th·e system Ar = q has t equations in t .unknowns. The rank of 

the matrix A is (t .. l) hence there .is no unique solution for ri. We 
3 

shall discuss with reference [.Jf] the methods of s'olving this system 

for estimable contrasts of the 'T . and finding point estimates, along 
1 

with the estimates of the variance and covariance, of these contrasts. -Since the rank of A in AT = q · is (t - 1) and the dimension of A is 
t .,; 

(t x t) s;uppose we impo~e the restriction 'that }; 'T. = 0. This may be 
. l 1 . 1= . ,.; 

written Jt 'T = 0. 
,., 

The.n AT = q can be written 

or 

. A*-r* = q * 

where 

A*= and [A*_)-1 -

Now the dimension of A* is ( ttl x t+l] and it can be shown that the rank 

53 

of A* is t+l. Hence A* is non-singular -and [A*] -l exists. We can apply . 

the Abbreviated Doolittle to this system and obtain estimates of the 'T . 
1 

from the forward solution and the variance-covariance constant '~ atrix 

from the backward solution. 

It can be shown that the estimates of the;:'. will be unbiased esti-
1 

mates of Ti - T,, since E(Ti) =Ti• T,; also .~ 2B11 will give estimates 



/"'.. 
of the variance and covariance of the T . . "- r. [ 4], 

1 

Using the A matrix obtained in Table XIV we shall apply the Doo-

little Technique to find the variance •covariance constant matrix and 

N 

the estimates of (r .). 
1 

From Table XIV we get 

2. -1 -1 

A = -1 2 -1 

~l . -1 2 

-29/5 

18/5 
q* = 

11/5 

0 

2 -1 -1 1 

-1 2 -1 1 
A*= 

-1 -1 2 1 

r 1 1 0 

Before applying the forward solution to the system A*r * = q*we 

note that the A matrix appears as a leading principal minor of the A* 
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matrix, [ . the ... 3 x 3 matrix in the upper left hand corner of A* ] . Now 

from our previous knowledge of the poolittle procedure we know that 

zero computational rows occur when the third row of A* is processed 

' 

in ~the forward solution (since A is singular). This can be alleviated by -

interchanging the third and fourth rows and columns of A*. A* then 

becomes A** where 

2 -1 1 -1 
N 

ql Tl 
, 'o 

-1 2 1 -1 rJ 

q**= 
q2 ,IV 'T2 

A** = and r** = 
1 1 0 1 0 

N 

'T 0 

-1 -1 1 2 
,J 

I q3 T'3 

. . . ~ 

We shall now apply the forward and backwar~ solution to A**r **= q** 

from which we can obtain the following information: 
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1. - N Estimates of the T . where E(7'.) = T. • T. 
l l l 

2. -1 - -;[A*] from which we get B 11 and hence covariance of (Ti' T} 

:which is equ~.l to B 11<r 2 

3. R(T / µ !3) for testing H 0 : -r 1 = -r 2 =,,, = "t' 

The tableaux is given in Table XVI. (See Table XVI) 

From Table XVI we get [A*]-l from [ A**]-l by interchanging the 

third and fourth rows and columns of [A**] -l. Exactly the same row 

and column inter.change .that .was performed on A* to get A** is used. 

4/18 .2/18 -2/18' 6/18 
t 

[A*]-1 = 
-2/18 4/18 -2/18 6/18 

-2/18 .. 2/18 4/18 6/18 

6/18 6/18 6/18 0 

From [A*j-l we obtain .BU w~ch wiH be the t x t matdx in th~ upper 

left hand corner of (A* ]-1. In our example, 

4/18 

-2/18 

-2/18 

From Table XVI we get' the following: 

t+l 
~ CPID. · 
i=l l 

-2/18 

4/18 

... 2/18 

(t+l = 4) 

-2/18 . 

.-2/18 

4/18 

~ (33/10)(11/15) + (-22/20)(22/10) ·+ (7/~0)(7/15) 

+ (-29/5)(-29/10) 

= 17. 5 / 

which is the same as was obtained from Table XI and Table XIII. 
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I I . 
I 

Table XVI 
,, ,J 

Forward and Backward Solution to A** T ** = q ** 

Row A** q ** [A**]•l Check 

Ri z -1 l -1 29 
l 0 0 0 19 ·- --5 5 

R' z l •l 
18 . 0 l 0 0 28 -2 5 ' 5 

R' 
3 

0 l 0 0 O ' l 0 4 

R' 2 11 0 0 0 l 
21 -4 5 5 

• 

Rl 2 •l l •l 
29 1 0 0 0 19 .. _ ·-5 5 

ffi & l· ~, 
r-

29 1 0 19 
rl l -- - 0 0 0 ·-10 2 10 

R2 
3 3 3 7 1 1 0 0 

37 - - -- - - -
2 2 2 10 2 10 

f 

1 fu 8J 7 1 2 0 0 
37 

r2 ' - - - -
' 15 3 3 10 

R3 . -2 -3 
22 

-1 -1 1 0 22 - -
10 10 

' 
I 

[] 22 1 1 1 22 
r3 , 1 - - -- 0 -10 2 2 2 10 

R4· 
9 · 33 1 1 3 

l 93 - - -- -- - . . -
2 10 2 2 2 10 

1 
11 l 1 l 2 31 

r4 - -- ,.._ - - -
10 9 9 3 9 15 

4 2 6 2 - - -- - --·- 18 18 18 18 
' 2 · 4 6 2 ·- -- - · - --

. [A**]-1 
18 18 18 18 

= 6 6 6 - - 0 -
18 18 18 . 

, , 2 2 6 4 -- -- - -.. 
18 18 .18 18 
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(2) Each CPID in the Doolittle1 is associated with a parameter 
I 

of the normal equations. These parameters can be identified with 

the c9lumns of X'X, In A** we have added the J~ colu~n and will iden• 

tify the '' dummy" parameter ';- 0 with this column . 
.,,-..... 

(a) r 4 yields ':f 3 = 11/15, hence ('T' 3 - r.) = 11/15. 

(b) r 3 yields r.·0 = 0 [ the ''dummy" parameter]. 
/'-.. 

(c) r 2 yields r 2. =. 18/15, hence ('T 2. ... T.) = 18/15. 
/""-

(d) r 1 !i.elds i\ = -2.9/15• hence ('T' l .. T, ) = -2.9/15. 

(3) Consider BU in general notation, then 

Since Bllcr 2 is the varianc.e•covariance matrix for the ('T' i - T.) 
N 

which are estimated by the 'T' ., we get estimates of variances and co .. 
1 

variances of the ('T'. • T..) thusly: 
1 

"' /'. " z. I .... z (a} Var (T 1 ) = Var ('T 1 .. r.) = b11cr = (4 l8)cr 

,v ~- ,.z. . I ,.z. 
Var ('T' 2) = Var (T 2. • 'T.) = b 22cr = (4 18)cr 

I 

,.J /'. - ,. z. . I " z. Var ('T 3) = Var ('T 3 • 'T'.) = b 33cr = ( 4 18)cr 

/"-. "'2. 
- In general Var (T.) = Var ('T. - T.) = b . . er , where the b . . are the 

l • 1 11 11 

di~gonal elements of Bir Also 

(b) . Cov (i\ ' . ~ 2) = Cov( ('T 1 - ;: . ), ('T 2. - ! . ) ] = -2./18 ~2. 

.cov (~ i, ,; 3) = Co~[~'T 1. - r. ). ('T 2. - -:; • ) ] = -2./18 ;2. 
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In genera\ Gov (¥ ., :; .) = Gov[ (r. - r. ), (r ... 7'.) J = b .. ~ 2 (i /. j), where 
, · 1 J 1 J : 11 

bij are thtr off-diagonal elements of B11. 

With this information we can set confidence intervals on (r. - T.) 
1 

or linear combinations thereof . 

. We will now present an alternate method of applying the "Doolittle - . Technique'' to the system Ar = q. The results will be the same as just 

· discussed. 

We shall show that if we form the matrix A = A + 1/t J and apply 

the forward and backward solution to the system Ar = q, we obtain the 

- AJ - ' • [,. ] -l l r. where E(r .) = (T. - ,. . ) from the forward solution and .I\. =B11 + -J 
1 · 1 1 . t '. 

from the backward solution. B11 is defined as before. 

Applying this to Ar = q .as given on page 49 we have, 

2 -1 -1 1 1 1 7/3 ~2/3 -2/3 

A =A+ 
1 -1 2 -l 

1 1 1 1 -2/3 7/3 -2/3 -J = + = 
t 3 

•l -1 2 l 1 1 -2/3 - :./ 3 7/3 

and AT = q is 

7/3 .. 2/3 -2/3 
,.., 

-29/5 T' 1 

-2/3 7/3 -2/3 
,J 

18/5 T' 2 = 

-2/3 -2/3 7/3 
,., 

:n/5 T' 3 

· Note that A is full rank hence (AJ-l exists. 

-The tableaux for ~he forward and ba'.ckward solution of the system 

A~ = q is given in Table XVII .' 

'o 



Row 

R{: 7 -
3 

R' 2 

! 

R' 3 

Rl 
7 -
3 

! 
rl I 1 

R2 

r2 

R3 

r3 

' 

-

/ 
Table XVII 

-N 

Forward and Backward Solution of AT = q 

A q [A] •l 

2 2 29 l 0 -- -- ·-3 · 3 5 

7 2 18 0 l - -- -
3 3 5 

7 1J, - 0 0 
3 5 . 

2 2 29 1 0 ... _ -- ·-3 3 5 

w 8J 87 3 '. 0 -- - . 
35 7 

45 lS 68 2 1 - -- - -
21 21 35 7 

[]] l · 
68 2 21 - - -

5 75 15 45 

9 33 2 2 · 
. - - - -5 25 5 5 

l 
33 2 2. - - -45 9 9, 

5 2 - -
9 9 

. [A ]-1 2 5 ,~ = - -
9 · 9 

2 ' 2 - -
9 9 
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Check 

0 19 --5 

0 28 -
5 

21 l -
5 

0 19 --5 

57 0 --5 

a 158 -
35 

0 158 -
75 

l 
123 -
25 

5 41 - -
9 15 

2 -
9 

2 -
9 

5 '2, -
9 
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From Table XVII we obtain the followiJlg: 
,,,,......... ' 

(1) r 3 yields ;: 3 = 11/15 = ('T 3 -r.) 
' ,,,,, ....... 

1'2 yields :/ 2. = 18/15 = (T 2 - T.) 
#I /°' . 

r 1 yields Tl = -29/15 = ('Tl - ;: , ) 

The same as from Table XVII 
! 

( 2) (A) •l = Bu + ~ J. Hence Bu = (A) -l - ~ J. 

Then 

5/9 2/9 2/9 l l l 4/18 · -2/18 -2/18 

Bu .~ 2/9 5/9 2/9 
1 

l l l -2/18 4/18 -2/18 - = 
3 

2/9 2/9 5/9 l l l -2/18 -2/18 4/18 

The same as before and Gov ( T. - ;; . ) = Bu<r2, Hence we obtain the esti-
1 

mates of the variance and covariance of ('T. - T. ), just as we did before. 
1 

(3) From Table XVII we get 

t 

i=l 
l; CPID. 

1 
(t = 3) 

= (33/2.5)( 33/ 45) + (68/75)(68/35) + (-29/5)(-87/35) 

= 17. 5 

This is the same from Tables XI, XIII, and XVI. 

We shall now present the application of the "Abbreviated odEHittle 11 

to AT = q such that we obtain unbiased estimates of (Ti • ;: t)' where , 

i f t and T t is arbitrarily chosen from the 'T .• 
. 1 

For example, consider the system A-:f = q obtained in Table XIV. 

Suppose we are interested in obtaining estimates of the ('Ti - 'T t)' and 

the covariance of these estimates. 
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S~ppose also we choose T t = T 3 then we will be interested in esti-

mates of (Ti - 'T 3) (i / 3). 

As stated before A is less than full rank; .'.hence, it is singular and 

A -l does not exist. We then impose the non-estimable condition T 3 = 0 

and omit the row and column identified with -,;. 3 in the system Ar = q 

from Table XIV. We will designate this reduced system Ar = q where 

-=;: = 12 
ti q = [

-29/5] 

18/5 

N 

This system will be of full rank and the E(T. r = (T. • T 3) and 
l l 

[=]-1 2 · Gov (Ti - 'T 3) = A · er • 
,.., 
0 

The tableaux for the forward and backward solution of the system 

=r-1 
AT= q is given in Table XVIII. (See Table ' XVIII) 

From Table XVIII we obtain the following: 

R(-r J ~~) = 
t-1 
2: GPID. 
i=l l 

(t - 1 = 2) 

= (-29/5)(-29/10) + (7/10)(7/15) 

= 17. 15 

which is the same as from Tables XI, XIII, XVI, and XVII. 
/'... 

(2) r2 yields ,;-2 = 7/15, hence ('Tz - 'T3) = 7/15; 
~ ' /' . 

r 1 yields 'T 1 = -8/3, hence· (T 1 - 'T 3) = -8/3; 

which is the same as from Table XI. 

(3) · Since Gov ('T.i - Tt) = [AJ-1cr 2, we obtain estimates: 

,.,, /',.. "2 
(a) Var ('T 1) = Var ('T 1 - 'T 3) = 2/3 tr 

N /',.. I ,..z 
Var (T 2) = Var (T 2 - T 3) = 2 3 cr 

,.,, ,,,,,....... - 2._i 
_In general, Var (-r i) = Var (Ti • 'T t) = aiicr (1 r t), where the aii are the 

diagonal elements of [A] -l. 
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I 
I 
I 
I 

I 
I 

f.,2 

Table1 XVIII 

Forward and Backward Solution of x:f = q 

- [AJ-1 Check Row A _q 

R'". 2 ..1 29 1 0 · 19 -- --l 5 5 

R' 2 18 0 l 28 - -2 5 s· 

2 -1 29 1 0 19 
Rl -- --5 5 

G) 
. 

l 
29 1 

0 
19 

rl -- - --10 2 10 

3 7 1 1 37 
Rz - - - -2 10 2 10 

1 7 1 2 37 
r2 - - - -

15 3 3 15 
.. 

. . . . . . . 
2 l - -

[AJ-1 3 3 
= 

l 2 - -
3 3 

..., ~ [ /". ,,,,.-.... I ,AZ 
(b) Cov (Tl' T z) = Cov Tl - T 3' T 2 - T 3 ] = l 3 er 

- ,., . [ /". ........... . ] .i. J. In general, Cov ( T . , T . ) = Cov T ... 7' t' T ... 7' t (i ,- j ,- t) 
1 J 1 J 

- "2 , = a . . CT 
lJ 

. - r=J .1 where the a .. · are the off-diagonal elements of A . , lJ 

For the two~way classification wi* no interaction given by model 

( 4. 2. 1) we can apply the "Abbreviated Doolittle II to obtain the statistical 

information in the following summary. 
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(1) Table XI yields R(y ), R(T j µ~,)3 ), and estimates of ('Ti 'T t). 

Thus we can test H 0 : Tl= 'T 2 = ... = 'T t' 

(2) Table XIII yields R(y) and R('T Iµ, '3) and again we cant st 

Ho: Tl= 'Tl=. ' ' = 'Tt, 

(3) Table XIV is the application of the "Doolittle" that buil s the 
I 

' ,.J 

(t x t) sy~tem A-r = q. 

(4) Table XVI yields R('T j µ, '3), estimates of ('Ti .. r. ), and the 

variance -covariance constant matrix for these estimates. 

(5) ['able XVII is an alternate application to obtain the same in• 

f ormatioJ',l as in ( 4). 

(6) 'if able XVIll yields R(-r j µ, '3 ), estimates of ('Ti • 'T t) (if t), 

and the variance-covariance constant matrix for these estimates. 

4. 3. Co-variable in the Two• Way Classification Without Interaction 

Uncontrolled environmental conditions may affect both experimental 

error and ' estimates of the treatment effects. If the proper assumptions 

can be met and the environmental conditions can be measured even ap­

proximately, some adjustments can be made, often increasing the in-

formation in the experiment. An appropriate statistical method is known 

as covariance [ 4]. 

In this section we shall present an application of the "Abbreviated 
i 

Doolittle 11 ' to covariance analysis. 
I 

Consider the model 

y "k = µ + Cl z .. k + 'T. + '3. + e. 'k lJ lJ 1 J lJ 

where 

{
i = 1. 'l,, 3 

j = l, 2 

k = l, 2, • • • I 

(1) y .. k is the k•th obs~rvation in the ij-th cell .. 
lJ 

(4.3.l) · 

n .. 
lJ 
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{ 2) Z. ' k is the k-th observation of the co-variable Z which appears 
lJ I 

in the ij-th cell. 

µ, 'T • , 13 . , a., are unknown parameters. 
l l 

( 3) 

( 4) e . ' k are random var.iables with the conventional distrib tional 
lJ . 

iproperties. 
! 

(5) , the ij-th cell contains n .. observations. . lJ 

The statistical layout for model (4. 3.1) is given in Table XIX and 

the observation per cell layout is given in Table XX. 

~ l 

z 
2 . 

1 · .. 
,· 3 

z 

2 
l 

3 

z 

4 
3· 

4 ' 

.·z ... 16 
J 

Y •.. 
J 

Table XIX 

Statistical Layout for model (4. 3. 1) 

y 

4 

4 

y 

5 

y 

6 

5 

24 

2 

z y 

l 2 6 

z y 

5 7 

6 8 21 

7 9 

z y 

missing 8 

19 z .. = 35 

26 

y . ,. 
l 

10 

29 

11 

Y ... = 50 
... · .. 
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Table XX 
/ 

Observations per cell Layout for Model (4. 3. 1) 

* ~ 1.'~:. 
2 . ·, ·¥··,: ,.·:;;_;'. T· . I~-:.-, ':;:A:;•,.: ,,, :,,,·'. l 

z y z y Ni. 

l 2 2 1 1 3 

z y z y 

l 1 3 3 4 

z y z y 

3 ·. 2 2 0 0 2 

N • . 5 4 N· .. = 9 
J 
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Note: There is an observation of the co.variable Z associated with every 
I 

observation of Y. 

Suppo~e we are interested in testing H 0 : T 1 = T 2 = T 3 in the model 
I 

(4. 3.1). For this we need R(-r j µ. 13 a). The CPIDi associated with the 

t. should appear last in the forward solution. We will, for computational 
1 ' 

expediency, absorb the µ. equation and arrange columns of the X matrix 

such that the column (a) associated with the co•variable will appear just 

before the ·columns associated with the T., The T. columns appear last; 
1 1 

We write model (4. 3. i) as 

y 
Yijk = . Yj + a.Xijk +Ti+ eijk 

where'(..=(µ.+ !3.). 
J J 

I . 
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We point out' the difference in the X matrix £or this model as corn­
I 

pared to previously discussed two-way classification models. The 

observed value of the covariable Z is placed in the a. column rather than 
I , 

, I 

zeros or ones as with other parameters . 
I 

The X'X and X'Y 1rnatrices in general notation are: 

N.l 0 z.1. Nll N21 N31 Y. l. 

0 N: 2 . z.2. Nl2 'N22 N32 Y. 2. 

z.1. 
2 

. zl .• . z2 .. Z3 .. z•y y. 2· z ... 
X 1Y1 = xrx = 

Nll Nl2 zl., ·. Nl. 0 0 Yl .. 

N21 N22 Zz·. 0 N2' 0 Y2 .. 

N31 N3z Z3 .. 0 0 N3· Y3" 

where:· .. the dot in the subscript means that we have the sum over hat sub• 

script. 

For !example, 
t 

,N. 1 = Number of observations in 13 1 = 1: n. 1 
i=l l 

:Nu = Number of observations in 13 1 and T 1 

z. 2 . = Sum ?f the co-variable Z in 13 2 = 

Using the data in Table XIX we have 

5 0 · 16 2 l 2 

0 4 19 1 3 0 

16 19 165 6 21 8 
X 1X = 2 l 6 3 0 0 

l 3 21 0 4 0 

2 . 0 8 0 0 2 ' 

n .. 
' t lJ 
l: l: z. ilk 
i=l k=O 

24 

26 

127 
X'Y = 10 

29 

11 

( 4. 3. 2) 

We now apply the Abbreviated Doolittle to this system. The tableaux is: 



given in Table XXI. 

Row 

R' l 

R' 2 

R' 3 

R' 4 

R' 
5 

R' 6 

r ' 3 

5 0 

4 

5 0 

l 

4 

1 

I . 

I 

Table XXI 

Forward Solution Equations (4. 3. 2) 

X'X 

16 

19 

165 

2 

l 

6 

3 

l 

3 

21 

0 

4 

X'Y 

2. 2.4 

0 2.6 

8 12.7 

0 10 

'. 0 2.9 

2 11 

16 2 1 2 24 

24 

5 ® & <ti rn 
19 1 

®/h 
471 103 

388 
471 

1 

3 0 

¢ 
71 8 

26 

26 
4 

1466 
20 

1466 
471 

176 212 10423 -- -
~ ,- ~fa _ l~:~3 

328 328. - --388 388 

l -1 

0 

0 

2216 
388 

2.216 
328 

0 

0 

Check 

50 

53 

·36 2. 

2. 2. 

58 

2.3 

50 

10 

53 

53 

4 

199 --4 

_ 995 
471 

10423 - 471 

10423 ---
388 

2216 
388 

2.216 
328 

0 

0 
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From Table XXI we oqtain 
I 

I 
6 

(1) R(µ, i3 , a .,.'T) = ~ CPID. 
i=l 

l 

( 2.) 
l 2. • R(µ, T)] EMS= - [~y .. k i3 , a, 

n • p lJ 

6 
( 3) R(T Iµ i3 ~) = ~ CPID. 

i=4 
l 

From this information we can construct the AOV to test H 0 : T 1 = 
T 2. = T 3. (The procedure is the same as discussed previously.) 
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We will now constru~t the AJ. = q system by the previously d scussed 

special application of the · 11 Abbreviated Doolittle." 

The tableaux is given in Table XXII. (See Table XXII) 

' N 
From Table XXII we get AT = q where 

388 176 212 • 10423 ---
471 471 471 471 

A 
176 . 478 · 302 7418 = --- q . = 
471 471 471 471 

212 302 514 3005 ---
471 471 471 ·471 

,., 
All theory previously discussed pertaining to the system AT = q 

is applicab~e. After · the proper restrictions are imposed. we can· appl.Y 

the Abbreviated Doolittle to Ar = q and find .the following: 

(1) Estimates of (Ti - T t). (i f t) 

( 2) Variance and Covariance of (1). 

( 3) Estimates of (T. - -:; . ) . 
l 

( 4) Variance and Covariance of (3). 

( 5) R(T Iµ i3 a). •, 
;. 
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Table Xt'Il 

"Doolittle Techniq~e" for Finding the "A'' and "q" Matrices for 
Model (4. 3. 1) 

I 

Row I x•x X'Y Che.ck 

R' 5 0 
I 

16 2 l 2 24 50 
l I 

. ' 
26 R' 4 19 l 3 0 53 

2 

R' 3 
165 6 21 . 8 127 3'62 

; 
A' 3 0 0 10 

J: l 

A' 4 0 • 29 
2 

A' 3 
2 11 23 

Rl 5 0 16 2 l 2 24 ;t 1 , G) ® & ¢ [I] 24 
rl -5 

' I 

! 
26 _Rz 4 19 1 3 0 53 

! 

® Lt ¢ I l 0 26 53 
rz - -

4 4 

. R3 
471 , 103 71 8 1466 199 - -- - - --- .,_ 

! 20 20 20 5 20 4 

l lo'h~ Gill 1466 _ 995 
r3 L.- 411 1 ---I 471 471 1 

Al 
388 176 212 10423 - -- -- --
471· 471 4:71 - 471 

' 176 478 302 7418 
AZ -- - -- --

471 471 471 471 

A·· - 212 302 514 3005 -- -- - -3 471 471 471 · 471 
' 
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I 

I 
1 

j 

I 
. J 

I 
I 

' \ 

,I 

4. 4. Two-Way Classification With Interaction 

In this section we will investigate the following model, 

i = 1, 2, 3 

Y · , k = µ ,+ 7' · + 13 , + ( 7' 13 ) . . + e .. k j = 1, 2 ( 4 . 4. 1) 
lJ ; 1 J lJ lJ 

k = 1, 2, ..• , n .. 
lJ 

where y . 'k is the k-th observ.ation in the iJ'-th cell; n, 7' . , A . , ('TA) .. , 
lJ ' . 1 I-' J I-' lJ '. 

are unknown parameters; and e. 'k are random variables with the con-
, ' lJ 

ventional distributional properties. The ij-th cell contains n .. obser-
, lJ 

vations. · 

IX. 

The normal equations for model (4. 4.1) are: 

µ: 

T .: 
1 

13 . : 
' J 

, (7' A) .. : 
' I-' lJ 
! 

· I 

" " "' N . . µ + :EN .. 13 . +:EN .. 7'. + :EN . . ('T 13 ) .. = 
, J J 1 1 . . lJ lJ 

Y .•• 
' J lJ 

" ,. 
N .. µ + :EN .. 13j + 

1 , 1 J 
J 

" " N . . 'T . + :EN .. (T 13 ) . • = ·:y . ·, 
1 1 , lJ lJ 1 

J 

" N .. µ+ " " A. ·N . . 13. + :EN .. 7'. + :EN .. (T 13 ) .. = Y . . . 
J 

" N .. µ + 
lJ 

J J i lJ 1 i lJ lJ J 

,.. 
N .. 13. + 

lJ J 
" N .. 'T. + 

lJ 1 
" N .. ('T/3) .. = Y . .. I 

lJ lJ 1 J 

.' We will use the same statistical layout and data as given in Table 
i 

: The normal equations then become as shown on the following page. 

I 

We wi ll absorb µ as before. The Forward solution is given i n Table 

· XXill. (See Table XXIII) 

7( 



A A A A . A A ,- A ,_ " ,- "-

µ: 10 µ + 5 '3 l t 5 '3 2 t 3 T l t 4 T 2 t 3 T 3 + 2 ( T '3 ) ll t ( T '3 \ 2 + ( T f3 ) 21 + 3( T '3 ) 2 z + 2 ( T f3 ) 31 t ( T f3 ) 3 l = 6 0 = Y . . • 

~ 1: 
" ,.. 

5µ+5'31 
A " "" ,... + 2-r·r+ T 2+ 3T 3+ 2(T '3)11 

,.. 
+ ( T '3) 21 

,.. 
+ 2( T f3) 31 = 24 = y ~ . / 1 

,.. " ,.. ,. ,.. 
-- ·· 13· 2: - - sµ.- +s'3 2 + T 1+3T 2 + T 3 "' + (T '3)12 

.,.. 
+ 3( T '3) 22 

,.. 
+(T [3) 32 = 36 = Y . 2 . 

T 1: " " " " 3µ+2 .'31+ f3 2 +3Tl 
-" " 

+ 2(T [3)11 + (T (3)12 = 11 =Y1 .. 

T 2: 
A A I\ 

4µ+ '31 + 3(3 2 
A 

+4.~-2 
• A A 

t-<:r_'3)21+ 3(T '3)22 =· 30 = Y 2 .. 

,.. . ,.. ,.. ,.. " ,.. 
T3: 3µ+2(31+ (32 t3T3 +2{Tf3)3l+(Tf3)32 = 19 = Y3 .. 

,. " " . ;.. 
(T 13)11: 2µ+ 2'3l t 2T l + 2(T '3)U . 

" 
,.. 

" _(T 13)12: µ + 132+ Tl 
;,,... 

t(T 13)12 

,.. " (T 13) 21: µ+ '3 1 
,. 

+ T 2 

3µ " 
(T 13) 22: + 3[3 2 

,.. 
+ 3T 2 

,. " 
(Tl3)31: 2µ+ 2 '31 

,.. 
+ 2T 3 · 

" " (T l3) 32: µ + '3 2. 
" + T 3 _ 

" + {T !3) 21 

" +3(713)22 

"" + 2(T ·l3)31 

,.. 

= 8 =Yu. 

' = 3 = y 12. 

= 5 =Y21· 

= 26 = y 22. 

=ll=Y31· 

+(T f3)3z = B = Y32 · 

-.J ..... 
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' (. 

Table XXJ:II 

Forward Solution for Model (4. 4.1) 

Row X'X X'Y Check 

R' · 1 
5 0 2 1 2 2 0 1 0 2 0 24 39 

R• 
2 

5 l 3 1 0 1 0 3 0 1 36 51 

R' 3 
3 0 0 2 1 o. 0 0 0 11 20 

R' 4 0 0 0 1 3 0 0 30 42 
4 ' I 

R' 
5 

3 0 0 0 0 a 1 19 28 

R' 2 0 0 0 0 0 8 14 
6 , 

R' : l 0 0 0 0 3 6 
7 I 

R' I l 0 0 0 5 8 
8 

I 

R' 
9 

I 
3 I 0 0 26 35 

I 

R{o I 
2 0 11 17 

I 

Rll l 8 11 

Rl 5 0 2 l 2 2 0 l 0 2 0 24 I 39 

2 
! 

l 0 2 l 2 . 
0 l 0 2 0 24 39 

rl - - - - - - -
5 5 5 5 5 5 5 5 

- . 
Rz 5 l 3 l 0 1 0 3 0 1 36 St 

l l 3 l 0 1 0 3 0 1 36 51 rz - - - - - - - -5 5 5 5 5 5 5 5 

R3 2 -1 -1 
6 4 2 3 4 1 29 29 - - -- - - -- -- --

I 5 5 5 5 5 5 5 5 
! 

l l l 6 4 2. 3 4 l _ 29 _ 29 
r3 ! -- -- - - -- -- -- --2 2 10 10 10 10 10 10 10 10 

' 



73 

Table XXIII ( Coµtinued) 

Row X'X X'Y Check 

R4 
15 . 15 2 2 6 9 8 7 7 7 - -- - ·- - - ·- -- - -
10 10 10 10 10 10 10 10 10 10 

· 1 -1 
2 2 6 9 8 7 7 7 

r4 - .. _ - - -- -- - -
15 15 15 15 15 15 15 15 

RS 0 0 0 0 0 0 0 0 0 

rs 0 0 0 0 0 0 0 0 0 

R6 
· 68 68 36 36 32 32 ·268 268 - -- -- - -- - - -
150 150 150 150 150 150 150 150 

1 -1 
36 36 . 32 32 268 268 

r6 -- - -- - -
68 68 68 68 68 68 

R7 0 0 0 0 0 0 0 

r7 0 0 0 0 0 0 0 
' 
I 

I 

24 24 24 24 20 20 
Ra ,. - --·- -- --68 68 68 68 68 · 68 

I 

I 20 20 
r8 l .;1 -1 l -- .. _ 

I 24 24 . I 

R9 0 0 0 0 0 

r9 0 0 0 0 b 
; 

RlO 0 0 0 " 
rlO 0 0 0 . ' 

RU 0 0 () 

rll 0 0 C 

' 
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From Table XXIII we obtain, 
/ 

(1) 

( 2) 

( 3) 

11 
R [ µ, 13 , T , ( T ~ ) ] = ~ CPID. = 387. 6Z · 

i=l 
11 

l 

~ CPID. = 
i= l 

l 
7. 29 

l 2 
EMS = - [ .I; . y . . k - R [ µ, ~, 'T , ( 'T 13)] 

n - p ijk lJ 

With this information we can test H : the (T ~) interaction is zero. 
0 

Returning to the X'X matrix obtained from the normal equations 

for model (4. 4. l) we see that the last six rows contain a diagonal matrix, 

These are the six_ rows associated with the (T ~ )ij' (See lower right 

hand corner of X'X.) This means that the rank .of .X'X is .aLleast six-_ 

Since we have a 12 x 12 system where the rank of the coefficient 

matrix is six, we have the. liberty of imposing six restrictions on the · 

system. The six restrictions we choose will be non-estimable £unctions. 

These conditions when imposed will reduce the system dimension to 
I 
I 

6 X 6. 
I 

We know that if we sum the rows of X'X associated with the A. ., the 
I t-'J 

sum is equal to the rovJ associated withµ. We then, as previously shown, · 

absorbµ and delete the: row and column of X 1X associate.d withµ. (See 

Table XXIII). This is the first condition we impose. 

I 
Likeiwise the sum of the nows associated with the 'Ti is equal 1° the 

µ row, so we let a particular Ti = 0, say T 3 = 0 , We then delete r• 
row and column ofX'X associated with .,. 3 , This is the second co.( ition 

we:impose . r 
· The degrees of freedom associated with interaction (T '3 )ij is ( . -l)(t-1) 

where b is ·._the number of A.. and t is the number of T . . In our cas b = 2, ,., J l ' . 

I 
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t = 3. The number of degrees of freedom associated with interaction is 
./ 

the number of rows of X 'X for which the "Abbreviated Doolittle' ' will 
I 

not give zero computational rows. For example, in model (4. 4. 11) 

(b-l)(t-1) = (1)( 2) = 2," hence in Table XXIII we see that we have of ly two 

non-zero computational rows for the six (7' 13),. rows of X'X. (S e rows 
lJ 

R 6, r 6 , ·andR 8 , r 8 ofTableXXIII). We then set four ofthe(-rl3 f ij =0 

and delete the rows and columns of X 'X that are associated with hese 

(7' 13) ... 
lJ 

' 
From this we can say that the number of rows and columns asso;-1 ·· 

ciated wi'th the (7' 13) .. which will not be deleted is equal to (b-l)(t-1). This 
lJ 

product, (b-l)(t-1), is also the degrees of freedom associated with the 

interactipn. The number of rows and columns in X .'X that may be deleted 

is bt - (b-l)(t-1). 
' 

We will formulate a rule for choosing the rows and columns asso-

ciated with the (-r 13 )ij that will remain in the X 'X matrix. 

(1) ·construct the incidence matrix table with general notation in 

each ce_ll, . The .layout for our particular model is given in Table X. 

.. 13 l 2 
T 

l Nll Nl2 

2 N21 N22 

3 N31 N32 

N,l N, 2 
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( 2.) For each N .. we can associa,te a ('T 13 ) . .. 
lJ lJ 

For example, we 

associate (-r 13 )11 and N11, ('T' 13 )12 with N12, etc. 

We may use the following rule for determining the rows an columns 

of the ('T' 13 ) .. section of X'X that are not to be deleted. 
. lJ 

Crtjss out the last row and last column of the incidence ma rix. Take 

the (r 13 ) .. associated with the remaining N... The rows and columns of .~ ~ 

X 1X associated with the·se elements will not be deleted. This means that 

the (r 13) .. rows and columns of X 'X corresponding to the N .. in the last 
-~ ~ 

row and'. column of the incidence matrix will be deleted. 

We' will apply the rule to our example. Crossing out the last row 

I 

and last column of the incidence matrix we see that we havP. ,· .. 1"ted N12, 

N 22, N 32, and N 31. We have left N11 and N 21 . This means that in X'X 

_ we will delete the rows and columns correspondin_g to (T.!3)12, (r13)22, \'T 13)22, 

and(.,. 13)31 · 

Since N11 and N 21 remain in the incidence matrix, the rows and 

columns of X 'X associated with (r 13 )11 and (r 13) 21 -remain in the reduced 

matrix. (Note that (t-l)(b-1) rows and (t-l)(b-1) columns · remain in the 

xtx matrix.) 

Applying these deletion rules to the normal equations for model 

(4. 4 . 1) we delete the following rows and columns: 

(1) i ~ 

" (2) T 3 
" "-- A ,._ 

(3) 'T' 1312• 'T' 13 22' T 13 32' and T 13 31• 

The resulting matrices are: 
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~l ~z "1" l Tz (713)11 (."13) Zl 

5 0 z l z l 

:f 
' \ 

0 5 l 3 0 0 

X'X = z ·1 3 0 z 0 ·x•y = I 

l 3 0 4 0 l 30 

2 0 z 0 z 0 8 

l 0 0 l 0 l 5 

Note that the corresponding element of X'Y is deleted when a row of X'X 
I .. ! 

1s deleted. 

We will now apply the forward solution to this reduced system. 

This is given in Table XXIV. (See Table XXIV) 

From Table XXIV we obtain, 

6 
(1) R { µ, ~ , T , T ~ ) = ~ - CPID. = 

l 
387.-62 

i=l 

( 2) 
6 

R [ -r ~ I µ ~ \ ) = ~ CPID . = 7. 29 
. 5 l 1= 

( 3) 
! 

EMS= 
l 2 

[ ~ y .. k - R ( JJ,, ~ , T , T ~ ) n-p lJ ijk 

This i!'l the same information as from Table XXIII. 

From this we see that by imposing the proper restrictions we can 

considerably reduce the size of the original system without sacrificing 

any information. 

The particular model (4. 4.1) that we have used for an example has 

no missing plots. The_ procedure for applying the Abbreviated _Doolittle 

. to such a model with missing data is the same with the exception of the 

deletion rule for the incidence matrix. 
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Tabie XXIV 
I 

Forward Splution to the Reduced System of Model (4. 4. 1) 
I 

Row X'X X'Y '?heck 

R' 1 5 0 2 1 2 L 24 35 

R' 5 ' l 3 0 0 36 45 2 •' ,, 

R' 3 3 0 2 0 11 19 

R' 4 4 0 l 30 39 

R' 5 2 0 • 8 14 

R' 6 
1 5 8 

' 

Rl 
i 5 0 2 1 2 1 24 35 
! 

0 ~ CD ~ [I] 24 35 
rl ' l - -

5 5 

' 5 36 R2 1 3 0 0 45 
! & G) ~ w 36 45 

r2 1 - -
5 5 

I 

I 6 2 -~ 20 
R3 2 -1 - - - --5 5 5 5 

l G) * ti~ j 29 - 20 
r3 --. 10 10 

R4 
3 2 6 7 30 - - - - -
2 10 10 10 10 

1. ~ ill] 14 60 
r4 - -

0 30 30 

R5 
34 18 134 150 - -- -75 75 75 75 

l GE 134 150 
rs ? - -4 34 34 

R6 ' 90 75 15 - -- -255 255 255 

r6 l - 75 15 - -
i 90 90 
' I : 
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We shall state and give an example of a rule for determining the 
I 

rows and columns of the (T ~ ) .. section of X'X that are not to be deleted 
' lJ 

in a model with mis sin~ plots. For example• consider the following in-
, 

cidence matrix: 

2 3 

l NU Missing N13 

z Missing N21 Missing 

3 N31 N32 Missing 

4 N41 N42 N43 

wh.ere 

(1) J:'lumber of ~ 's = b = 3; 

(2) Number of 7' 's = t = 4 ; 

(3) Degrees of freedom for interaction= {b-l)(t-1) Number of 

mis sing plots = 6 .- 4 = 2. 

Rule Concerning Incidence Matrix: 

(1) 

( 2) 

Strike out all rows that contain only one N . . . 
I lJ 

In the remaining matrix strike out all columns that contain only 

one N . .. lJ 
(3) Repeat (1) and (2) respectively until the remaining matrix con ... 

tains no row or column with only one N ... 
. lJ 

(4) In the first row of the remaining matrix circle all elements 

except the last element in this row. 



I 

l 
J 

l 
). 

j 

I 
(5) Now strike out this top :row. 

/ 

(6) Repeat (1), (2), (3), and (4) with the remaining matrix until 

all rows and columns are crossed out. 

( 7) The ('T ~ ) .. which correspond to the circled N .. will remain in 
~ . ~ . 

the reduced X 'X matrix. 

Let us apply the rule to our example. 

Apply (1): Strike: out row two leaving ~he following matrix: 

Nll N13 

. 
N31 · N32 

N41 N42 N43 

Apply (2): There are no columns containing only one N . .. lJ 

Apply (3): This step is not necessary for this example. 

Apply (4): We circle N11 and strike out the top row leaving: 

~ Nl3 

N31 N32 

N41 N42 N43 

Apply (1): This is not applicable. 

Apply (2): This is not applicable. 

Apply ( 3): This is not applicable. 

N31 N32 

N41 N42 N43 

Apply ( 4): We circle N 31 and strike out. the top row leaving: 

80 
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I 

(N3U N32 

N41 N42 .N43 N41 N42 N43 
' 

Apply (1): This is not applicable. · 

Apply (2): We see that applying (2) three times will delete the re-

ma.ining matrix. 

Sine~ we circled N11 and N 31 in applying the rule, we do not delete 
,.-. 
·o 

the rows and columns in X'X associated with Tl3 11 and T 13 31 . (Note the 

number of rows and columns not delete<i e.quals 'the number of degrees 

·of freedom for interaction,) 

I . . 
(. 

' 



. I 

[ l ] 

[ 2 ] 

[ 3 ] 

(4] 

/ 

BIBLIOGRAPHY 

U. S. Coast and Geodetic Survey Report, 1878. pp . 115-120. 

Hohn, Franz E . Elementary Matrix Algebra . New York: The 
MacMillan Company, 1959, pp. 97-99, 

Graybill, Franklin A. An Introduction to Linear Statistical 
Models. McGraw-Hill, 1961. 

Snedecor, George W. Statistical Methods. Ames, Iowa: The 
Iowa State College Press, 1956, pp. 394-395, · 

I ' 

·\~o..;.-~ 
/. L\) 

_,/ 

82 
· \ 



\ . 
};RRATA FOR REPORT ON THE DOOLlTTLE TECHNI QUE 

· l i: The la.st equation 0£ the system (l. 1) should b0 

.:. U StClp 0ig~t should road: T~ obtain the clements o! R 3 find the 

oum of tho producto of tho pivotal multlplicira in i', with R. 
1 · 1 

whoTG i ::1 1, Z. Again omitting all olcmento of R1 to tho loft 

of the multipliers. 

Tho solutions for fl at th~ bottom of the page aro: 
I\ 
fl 3 u -6/19 

"' " 13 2. Q l ~ 1/ 2 ~ 3 = 16 /19 
~ I\ A 

1\ m s - 2<l 2 ",lo 3f\ 3 • 81/19 

.' 2 
The formula £or R : 

n 
:E CPi D. 
1~2 1 

i 
~ Yi • CP1D1 . 

. :.:: 53 Tho Rcforcnco [ 4] should ba [ J J 

::ri 65 The model at ~e bottom 0£ the pago is 

I . 


