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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Wireless Sensor Networks 

Advances in distributed computing, sensing, and wireless communication technologies 

led to the emergence of wireless sensor networks. Sensors observe physical and 

environmental conditions such as sound, light, temperature, pressure, motion, etc. and 

communicate the observed information amongst each other or to a remote application. 

These sensor nodes are spatially distributed to form a Wireless Sensor Network (WSN). 

Sensors communicate using wireless links and vary in size, speed, and bandwidth. These 

sensing and communicating capabilities are used in various applications such as 

healthcare monitoring, environment and habitat monitoring [8], building surveillance, 

home automation, business applications, and entertainment [4].  

1.2 Wireless Sensor and Actuator Networks 

Monitoring of a physical system remotely along with real-time controlling has become a 

necessity in recent times, facilitating rapid improvements in wireless sensor networks. 

Thus, the course of taking a decision and actuating an action in a physical system, 

depending on the sensor‟s information, has become functional in the emerging mission 

critical applications, such as an intelligent sprinkler system, autonomous animal control,
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environmental control, home automation, event detection and suppression, 

manufacturing, cyber physical systems etc. This emergence of manual initiated and/or 

sensor-triggered automatic actuation in controlling the physical system, in the form of 

Actuators, laid the foundation for Wireless Sensors and Actuator Networks (WSANs).  

Actuators perform actions to change the parameters of the environment or physical 

systems and have strong computational and communication powers with high energy and 

long battery-life, compared to sensors [1, 2]. Sensors and actuators are interconnected 

over wireless links, facilitating distributed interactions with the physical world [4]. In this 

dissertation, the terms WSANs and SANETs (Sensor and Actuator Networks) are used 

interchangeably. 

WSANs constitute a large pool of easily usable and accessible sensor/actuator resources, 

enabling communication in the network to dynamically reconfigure and perform 

distributed sensing and actuation tasks. For example, an intelligent traffic controller 

monitors congestion on the road and automatically routes upcoming traffic using 

electronic display boards to take appropriate actions and detours. The control flow of the 

sensors and actuators in SANETs is explained briefly in the next subsection. 

1.2.1 Control flow for performing sensing/actuating tasks in WSANs: 

SANET resources can be used to sense, interact, and affect the behavior of physical 

systems [6] by enabling different ways of performing sensing and actuating tasks, 

according to the requirements. The closed loop control flow in a generic architecture of a 

WSAN is shown in the figure 1. 
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Figure 1: Closed loop control flow in WSANs 

When a user initiates a task, the feedback from the sensor, i.e.; the information about the 

specific physical parameters sensed, is sent to the remote controller over the network. 

The controller enables the actuators to adjust the physical system parameters to meet an 

output response requested by the end user. For example, a user automating the system to 

turn the lights off if nobody is present in the room. The second is a manually initiated 

actuation, where the actuation is initiated by the user without depending on feedback 

from sensors about physical system parameters.  For example, a user requesting to turn 

the lights off irrespective of the presence of people inside the room.  The third is an 

example of WSNs with just the sensors monitoring the physical system. The sensor 

monitors the physical system and gets the output parameters to the user. For example, a 

user requesting to know the number of people present in the room or a doctor requesting 

to know the blood pressure of the patients. 

1.3 Motivation and Research Objective 

We envisage the world quickly advancing to an era with a connection of millions of 

Sensing and Actuating resources everywhere, performing tasks in day-to-day life. The 

ability to trigger these tasks without worrying about the ownership and availability of the 

resources as well as the process of searching and scheduling, resources, given the 
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location of the user himself, is provided by enabling Sensing and Actuating Tasks as 

services.  Cloud computing will become more dominant than the desktop in the next 

decade [14], motivating us to prospect a quick development in SANETs, to facilitate 

Sensing and Actuating resources on demand via a computer network. Thus, we propose 

an architecture called SATS (Sensing and Actuating Tasks as Service) with an ability to 

trigger Sensing and Actuating Tasks using the Internet, to perform cyber-physical tasks. 

The SANETs are owned, maintained, and used by groups such as private providers, 

research institutions, government organizations [4]. Each party offering SANET 

resources as services is named as a SANET Service Provider (SP). There could be many 

such Service Providers in the market, owning millions of sensing and actuating resources.  

A SP might own a massive number of Sensor and Actuator resources within a number of 

SANETs. The distributed resources from different SANETs communicate with each 

other using multi-hop wireless/wired links. The services are published on the web with 

specific details and protocols to guide the SANET Service Requester‟s (SR) use. This 

enables SRs to access services using a web browser regardless of their location and 

device (e.g., PC, mobile). The services provided by SPs are distributed globally and a 

service offered by one SP may require a series or combination of execution of multiple 

services provided by other SPs.  Thus, it is important that these services are 

interconnected and interoperable to provide the desired services to the SRs. These 

interoperable services offered by the Service Provider, enable the Service Requestor to 

place a request to perform an activity from anywhere in the world using an internet 

connection. Handling the request involves either simple data passing or multiple services 

coordinating some activity. The resources involved in coordinating an activity may not 
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belong to the same SP. Each SP may have multiple resources that perform the same task, 

depending on the demand of the tasks at that specific location (e.g. an SP owning more 

than one temperature sensor in the same room to find its temperature, or an SP owning 

multiple sensors to run user code for research purposes). Two or more SPs may also have 

similar resources in common, which can perform same tasks and are available at the same 

location (e.g. two SPs having multiple temperature sensors in the same room to find 

temperature). This provides a possibility of choosing an idle resource among all the 

available resources which can perform the required task. The ability to raise a request 

using the web, and choose a resource among multiple such resources which might also be 

owned by different SPs, primarily has the following advantages 

 Optimal and maximal utilization of available resources. 

 Decreases waiting time of the request by allotting an idle resource, instead of waiting 

for a busy resource to become idle. 

 Reduces cost by saving infrastructure, as an SP can choose an idle resource owned by 

another SP, to perform the task. 

 Increases flexibility for the SP, as all the possible resources that are available to 

perform the task is known, thereby decreasing the probability of “Denial of Service”. 

 More mobility to the users, who can raise a request and access the resources 

regardless of their location. 

 Increases interoperability amongst the resources. 

1.4 Challenges 

SANETS face a number of challenges as mentioned below.  
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Timing Constraint: SANET may require real-time task execution as the sensor data may 

have to be acted on by the actuators within timing constraints. So, scheduling the 

execution of tasks is a challenge. 

Search Space: As there may be millions of sensors and actuators, the search space is also 

a problem.  

Resource Conflict: There may be resource conflicts as multiple tasks may need to access 

the same resource.  

Fault tolerance: It is important as sensors in particular are liable to failure due to their 

limited resources.  

Cost effective: As the SANET resources are available as services; the selection of cost 

effective resources amongst multiple available resources is a challenge. 

As these systems deal with physical phenomenon, geographic location of sensors and 

actuators may be relevant.  

1.5 Research Contribution 

Our proposed SATS architecture focuses on the selection of the best possible resources 

available in the market to perform the request raised by the user in a minimal time to 

meet task timing requirements. In this process, we propose a Resource Selection (RS) 

algorithm to address the challenges specific to resource selection, as mentioned in last 

subsection.   

Searching for idle resources in a large clustered distributed environment with massive 

number of resources and their data, necessitates processing and generating data sets on 

large clusters. In the RS algorithm, we use the Map-Reduce framework [13] that 

simplifies data processing on large clusters by processing and generating large data sets 
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in an efficient way. It is a programming model with the implementation of map and 

reduce functions. The Map function processes the key/value pair to generate a set of 

intermediate key/value pairs, and the Reduce function processes the intermediate 

key/value pairs generated by the map function to generate the output by merging all 

intermediate values associated with the intermediate key [7]. 

The SATS architecture has three levels of communication. The sensing and actuating 

services are provided by the Service Providers as an interface where the user has to fill in 

the details of his area(s) of sensing or/and actuating tasks to be done. The request raised 

by the SR is passed to the SP (local SP) components with the execution flow and the 

details of the request. The local SP broadcasts a Search Request to all the other SPs 

(Foreign SPs) in the market and gets the response from each SP with the available 

resources owned by each of them, which is the output after applying the RS algorithm. 

Thus, the local SP will have all the available idle resources in the market that can be 

utilized in performing the requested task from each SP.  As the idle resources returned 

from two or more SPs may have the same functional features, the local SP selects the 

number of resources required from each set of similar resources, and are ranked to find 

the optimal combination according to their cost of usage. As all the requests are 

processed in parallel, there could be multiple requests on similar or same resources 

during the time of the whole resource selection process. Thus, the availability of the 

selected resources is checked again using the local registry information. This check is 

performed on all the ranked resources of each set, sequentially, until an available 

resource is found. The final selection of resources generated after applying RS algorithm 

is time and cost effective, location confined, and schedule specific.    
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1.6 Organization of the Thesis 

The rest of the dissertation is organized as follows. Chapter 2 provides background of the 

research done in the field of WSNs and WSANs related to different challenges and 

architectures proposed in the communication, control, coordination, virtualization, and 

selection areas of the SANET resources. Chapter 3 provides the architecture for the 

interoperability amongst the SPs, facilitating resource virtualization and selection to 

perform the tasks requested by the user. Chapter 4 provides the implementation of the RS 

algorithm on millions of resources owned by different SPs in the market. Chapter 5 

provides the conclusion. And, chapter 6 provides the future work.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Over the past few years, research has been done on enhancing applications and 

architectures involving Sensors and Actuator networks. 

2.1 Service Oriented Sensor and Actuator Network 

The SOSANET [4] approach builds service based customizable SANETs to handle the 

given applications. It claims that most approaches are either application-specific or 

generic. Application-specific SANETs provide limited reusability with cost 

ineffectiveness  and require reprogramming to make it useful for the application, resulting 

in tight coupling between the application and the underlying SANET, and increased 

energy efficiency and scalability. Generic SANETs require specific code be deployed on 

nodes without having pre-knowledge about the applications, resulting in decoupling of 

the application and underlying SANET, and the chance of code reusability. SOSANET 

provides the benefits of both application-specific, and generic SANETs. Customizable 

SANETs provides flexibility to combine the resources provided by nodes in one or more 

SANETs to meet the application requirements. This approach uses generic SANETs as 

backbone along with an additional software layer on each node which provides some 

functionality.  
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They deploy services directly on top of the operating system, and services are accessible 

directly by applications. It uses the Service Driven Routing (SDR), where each node 

apprehends the other node‟s potencies in providing their services. Each node has a 

Service Directory that stores all the general and availability information about the 

services provided by its reachable nodes. So, when a request is made, each node 

generates a query result and sends it to its neighbours. Each neighbor forwards it until it 

reaches the base station. The results show that it had significant improvements over 

existing architectures in energy consumption, scalability, and response time. The request 

query in the SOSANET approach is initiated at the node, thereby passing the result to 

neighbors till it reaches base station. This works well for a limited number of nodes and 

requests at each instance. As the author says, future SANETs require a new architecture. 

The disadvantage with this architecture is passing the result to neighbors, as this increases 

the communication on the wired links, resulting in message overheads, affecting the 

communication capabilities and energy. While SANETs will become undoubtebly 

ubiquitous in the future, with millions of users wanting to use the resources at the same 

time, it might face performance issues as for each request, each node tries to forward its 

reply to all its neighbors in a huge network of interconnected SANETs distributed all over 

the world. This may also lead to synchronization issues. The handling of such a massive 

network of SANETs owned by disparate SPs requires to reduce the lowest level message 

passing, amongst the energy dependent sensors and actuators. SATS archtiecture reduces 

the message passing by filtering all the resources, except the ones which are idle and have 

the capabilities to perform the task,  that is, in the first step itself. SATS is based on the 

network with a large number of Sensing and Actuating resources, and the SPs owning 



11 
 

them. The SOSANET appraoch stores the service directory at each node wasting its 

storage and capacity, whereas SATS stores local registry at each controller of all the 

WSANs, thereby increasing the capabilities of the resources. This is imporant as sensors 

have limited resources. 

2.2 Sentire middleware 

Sentire [5], a high-level application middleware, emphasizes the control and coordination 

of time dependent and time sharing SANET resources using market-based bidding 

strategies. This framework supports large-scale distributed SANETs with a design of 

development tools for providing reusable model and actuator coordination techniques to 

reduce task interference due to the integration of large-scaled SANETs.  This minimizes 

the damage to the physical world due to the use of shared resources, and performs 

uncoordinated actions with multiple actuators being close to each other, while performing 

a task. Sentire implements a market-based algorithm for resource allocation to coordinate 

the distributed actuators. The agents continuously bid against each other for the common 

actuators in the market, and wins access to use common resources. Hence, each agent is 

aware of the other agent‟s bid and each agent is aware of the next user of the shared 

resource. This reduces the task interference and selects the resource by bidding. 

2.3 Handling mobility in Wireless Sensor and Actuator Networks 

Akyildiz [3] proposed Distributed Event-driven Partitioning and Routing (DEPR), a 

distributed protocol for sensor-actor coordination that includes an adaptive mechanism to 

trade off energy consumption for delay when the event data has to be delivered to the 

actors within predetermined latency bounds. For the actor-actor coordination, an 
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optimization model was defined for a class of coordination problems in which the area to 

be acted upon is optimally split among different actors. The problem was formulated as a 

Mixed Integer Linear Program (MILP) and an auction-based localized solution of the 

problem was also presented. They extended their work by proposing a new location-

management scheme, which combines joint use of Kalman filtering and Voronoi scoping 

on the sensors and actors, for efficient geographical routing of sensor-actor 

communication. It also proposes actor-actor coordination, coordinating the motion and 

the action of the participating actors by selecting the best actor team that will cause 

minimal reconfiguration of network operations, based on the characteristics of the event. 

A model is proposed to optimally assign tasks to actors and control their motion in a 

coordinated way to accomplish the tasks based on the characteristics of the events. The 

selection of a team of actuators to optimally divide the task, coordinate, and perform 

while respecting the action-completion bound and low movement energy to complete the 

task is stated as a Multi-actor Allocation problem. The sensors that generate the 

parameters define event area, and the actuators that perform some actions define action 

area.  These areas may coincide in several applications. This approach mainly depends on 

three factors, congestion factor, directivity factor, and distance factor, to formulate a 

Mixed Integer Non-Linear Program (MINLP) and find the best actor team. Our approach 

is based on the sensor and actuator tasks, offered as services, using a trivial way of 

finding the best resources in large-scale distributed SANETs involving billions of 

resources world-wide.  

2.4 Map-Reduce Framework 
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We use the basic idea of the successful and popular Map-Reduce framework proposed by 

Google Inc [7]. Map-reduce make the data processing simplified on large clusters by 

processing and generating large data sets. It is a programming model with the 

implementation of map and reduce functions. Map function processes the key/value pair 

to generate a set of intermediate key/value pairs, and Reduce function processes the 

intermediate key/value pairs generated by the map function to generate the output by 

merging all intermediate values associated with intermediate key [7].  

Map (k1, v1)  list(k2, v2) 

Reduce (k2, list(v2))  list(v2) 

The input key K1 and values V1 are drawn from different domain than the output keys 

and values, and the intermediate keys and values are from same domain as the output 

keys and values. MapReduce enables automatic parallelization and distribution of large-

scale computations with high performance on large clusters. Partitioning of the input 

data, scheduling the program across a set of machines, handling machine failures, and 

managing inter-machine communications are handled by the real-time system. The 

implementation is highly scalable and has a capacity to process many terabytes of data on 

thousands of machines.  

2.4.1 Pseudo code of Map and Reduce functions for word count 

The pseudo code for the popular counting the number of occurrences of each word in a 

large collection of documents as given in [7] is: 

 map(String key, String value): 

// key: document name; value: document contents 
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for each word w in value: 

EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

// key: a word; values: a list of counts 

int result = 0; 

for each v in values: 

result += ParseInt(v); 

Emit(AsString(result)); 

2.4.2 Examples of Map-Reduce framework 

 The authors also mentioned few examples such as Distributed Grep, Count of URL 

access Frequency, Reverse Web-Link Graph, Inverted Index, and Distributed Sort, that 

can be expressed as MapReduce computations. The proposed SATS architecture makes 

use of the concept of the Map Reduce framework in the Inverted Index example. The 

map function parses each document, and emits a sequence of (word; document ID) pairs. 

The reduce function accepts all pairs for a given word, sorts the corresponding document 

IDs and emits a (word; list(document ID)) pair. The set of all output pairs forms a simple 

inverted index. It is easy to augment this computation to keep track of word positions. 

SATS also uses the optional Combiner function mentioned by the authors that does the 

partial merging of data before it is sent over the network. The combiner function is 

executed on each machine where the map function is performed. Combiner and reduce 

functions use the same code to implement. The output of the combiner is written into the 

intermediate file that will be sent to a reducer function. This partial combining speeds up 

certain classes of Map-Reduce operations. 
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CHAPTER III 
 

 

PROPOSED WORK 

 

3.1 Goal of SATS 

The main focus of this chapter is to present SATS as an architecture that can efficiently 

handle the requests raised by the SRs to initiate a sensing or actuating task, or a group of 

sensing and actuating tasks to perform an activity. As we are dealing with very large-

scale distributed SANETs owned by various SPs, and each SP in the market competes to 

have its own sensor and actuator resources where they are in demand, there could be a 

number of resources with similar characteristics and abilities to perform same task and 

are available at same location. The SR‟s request is performed by a group of sensors 

and/or actuators by dynamically reconfiguring as per the requirements of the user. The 

goal of SATS is to guide the process of using sensing and actuating tasks as services with 

the following contributions: 

 A high-level framework consisting of reusable managers that facilitate the flow of 

user requests within a SP instance, and data between applications and underlying 

SANET resources used.   

 Resource hiding, which protects the information about the underlying sensors and 

actuators used in executing the task, from the users. This makes the approach
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 application independent with a dynamic reconfiguration of the resources on each 

request. 

 Parallelized and distributed computations are provided with the use of RS algorithm, 

to find the idle resources from a huge network of interoperable SANETs in the market 

having multiple resources of similar characteristics at the same location, which can 

perform the user specified task. Hence, the proposed approach selects the optimal 

group of sensors and/or actuators, and performs a task or an activity as per the user 

requirements. This programmable approach can be automated by the SPs to handle 

the sensing and/or actuating requests raised by the user in the widely distributed 

SANET.   

 

Figure 2: SATS architecture for making sensor and actuating tasks as services 
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Communications in the SATS mainly takes place by its set of extensible managers as 

shown in figure 2. The figure shows the passing of request from the user to the 

underlying SANET resources through the internal and external components of the SP. 

SATS uses publish/subscribe messaging pattern in implementing the communication 

among the managers. Using a publish/subscribe pattern, senders (publishers) do not sent 

the messages directly to specific receivers (subscribers). Instead, messages are 

characterized into classes, and subscribers that show interest in one or more classes, 

receive the messages from the subscribers they are interested in.  

The problems specific to the resources are as follows: 

1) The requests raised by the user are to be performed without any delay in order to meet 

the deadlines. As there are millions of resources available in the market owned by 

disparate SPs, the selection of the resources is time-intensive as the SPs have to 

search for the available resources. Hence, searching each SP‟s huge database and 

deciding on the list of available resources in negligible time is a challenge. 

In our work, we solve this problem by using the RS algorithm based on the Map-

Reduce framework, thereby making use of parallel processing resulting in an increase 

in the computational slave nodes that process the data.   

2) Cost, levied on the usage of selected resources, is one of the important factors before 

selecting. The resources selected should be cost effective.   

In our work, we solve this problem by maintaining the cost of usage of each resource 

within the list of available resources in the selection process. Ranking is applied on 
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the cost, and the resource with the least cost (first in the ranked list) is selected to 

participate in an activity to perform the task. 

3) While the resource allocation gives the available resources to do the tasks, the system 

should also make sure that the schedule is met given the available or selected 

resources. Thus, timing constraints becomes one of the important factors in resource 

selection and should be satisfied. 

In our work we solve this problem by maintaining the scheduled events or timings of 

each resource in the local registry of each SP. These are the timings at which the 

resource is to be triggered as scheduled by some previous request.  

4) There is a possibility of service denial which could be caused due to unavailability of 

the resources requested at a specific location because the resource might be in use or 

too far away from the actual location of user‟s interest. Thus, the flexibility to search 

the resources which are close to the specified location is to be provided to decrease the 

probability of service denial. Hence, the location confinement problem should be 

addressed. 

In our work we solve this problem by calculating the locations which are within the 

proximity range of „p‟ units from the actual location requested by the user. The 

resources in these locations are also considered during the resource selection process. 

5) As the resources are subject to failure, the system has to have back-up resource    

information without having to search the SANET again for the set of available resources.  

Thus, failure tolerance should be addressed 
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In our work we solve this problem by maintaining a list of backup resources, i.e. the 

resources with the same order of ranking. 

6) As there could be many requests processing at the same time, more than one request 

may need the same resource in non-overlapping time slots. Thus, the scheduled time 

and the requested time slot is also important in allocating the resources to maximize 

the utilization of each resource. Hence, the resource selection process should also 

address this problem. 

In our work we solve this problem by rechecking the scheduled activity timings of the 

selected resource, before sending its information to the Execution Manager to carry 

out the activity or update its scheduled timings. 

The functionality of each component and the sequence of communication flow amongst 

each component of the SPs are described briefly in the following sections: 

3.2 SATS Components 

3.2.1 Interpreter Manager (IM)  

The IM serves as an interface between user request and the SP instance. IM is assumed to 

divide the request into sub-tasks, if it involves a combination of multiple services or tasks 

that could be run in parallel, and gives the logical execution plan with the flow of tasks as 

per the requirements. 

 3.2.2 Resource Manager (RM) 

The RM keeps track of the resources in the SANETs belonging to its local SPs, and 

updates their information in the Local Registry to keep it up-to-date. It is responsible for 

having the latest availability and other information of the resources owned by its SP.  
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3.2.3 Local Registry (LocReg)  

The LocReg is a dataset with all the information about the sensing and actuating 

resources owned by each SP. The following information is stored in local registry for 

each resource owned by its SPs:  

 resourceId – Unique ID assigned to the resource. 

 resourceType – The type of resource (ex. Temperature Sensor) 

 location – The geographical location of the resource. 

 sanetID – Unique ID assigned to each SANET. 

 socketID – Socket address of the resource. 

 activeFlag – The active status flag of the resource. Y for Active, N for inactive 

 availabilityFlag – The availability status flag of the resource. Y for free, N for   busy 

 cost – The cost of usage per unit time, charged when the resource performs an activity 

for  a request raised on Foreign SPs. 

 time – A series of scheduled time slots assigned to the resource to perform an activity. 

It may also be extended to store additional information such as battery life, bandwidths, 

energy levels etc. of each resource.  

3.2.4 Resource Allocation Manager (RAM) 

The RAM is the main logic of selecting the sensor and actuator resources required for 

completing the task, owned by any SPs in the market.  RAM initiates the Search Request 

by broadcasting it to the RAMs of all the other SPs (Foreign SPs) in the market. Each 

RAM executes the RS algorithm and addresses the problems specific to resource 

selection. It selects the best resource or combination of resources and passes their details 

to the scheduler. 
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3.2.5 Scheduler 

The scheduler keeps track of the scheduled activities as per the request and triggers them 

by sending the request and resource information to the Execution Manager at its 

scheduled time.  

3.2.6 Execution Manager (EM)  

The EM establishes the connection among the selected resources obtained from RAM, by 

using the address information of the resources. This serves as a control manager for the 

tasks to be performed according to the execution plan.  

3.2.7 SANET controllers  

The Controllers share the important data in the system. The controller of each SANET 

sends the changes in the current status of its sensor and actuator resources to RM in order 

to update the local registry. 

3.3 Flow of communication amongst the components in SATS: 

The communication amongst the distributed and heterogeneous SPs is implemented 

through a common channel for homogenization and orchestration of messages, the 

Enterprise Service Bus, interconnected over the internet. The flow of the communication 

amongst all the components is carried out as follows: 

Step-1: Collect user inputs. 

Step-2: Divide into sub-tasks and get execution plan. 

Step-3: Broadcast the Search Request. 

Step-4: Execute RS algorithm. 
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Step-5: Update the local registry. 

Step-6: Establish connection among selected resources. 

The detailed explanation of the control flow steps in the SATS architecture is described 

next. 

3.3.1 User Inputs  

The SR gives the necessary inputs required to handle the request through an interface 

provided by the SP using an Internet connection from anywhere in the world. The SP 

with which the request was raised is termed as the Local SP, and all the other SPs in the 

market are classified as Foreign SPs, for that particular request. There could be any 

number of such requests at a particular instance. Each user request is given a unique 

requestID to differentiate it from other requests, and the following information is 

collected from the users:  

 Event: The category of the activity to be performed (e.g. maintain temperature). 

 Condition: The conditions on which the activity is to be performed (e.g. if 

temperature < 100F). 

 Action: The actions to be performed by the SANET resources (e.g. setTemperature). 

 Duration: The duration of the SANET resources to be active performing the activity 

(e.g. 09:00-13:00). 

 Location: The exact locations of the area of event and area of action (e.g. LOC1430). 

 Time: The starting time of the activity. Instantaneous or scheduled time (e.g. 

Scheduled).  

3.3.2 Sub-tasks and Execution plan 
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 All the inputs from the user are sent to the Interpreter Manager of the Local SP. The IM 

divides the request into sub-tasks if it can be split into independent activities which can 

be executed in parallel, and the flow of execution of tasks in performing an activity 

requested by the user is attached to the request.  

3.3.3 Broadcasting the Search Request 

The resulting requests from the IM are sent to the Resource Allocation Manager of the 

Local SP. For each request, it broadcasts a Search Request to the RAMs of Foreign SPs, 

in order to get the available resources from all the SPs in the market.   

3.3.4 RS algorithm 

Each RAM applies the RS algorithm on the current data present in its local registry. The 

computations for each request in the RS algorithm are handled by the Master and Slave 

nodes in the cluster of each SP. The Master node manages the assignment of resource 

data entries (records) from the local registry to multiple slave nodes. Slave nodes perform 

map, reduce, and combine tasks and also handle data motion among these phases. Each 

Service Provider has a dedicated Master, which acts like a parent node to all its child 

nodes (slaves). The number of slave nodes is chosen by the Service Providers considering 

the number of resources to process, and the selection time of the final resources. 

An SP can have multiple such computational nodes and they can run both independently, 

in parallel. The algorithm takes the request information as input, and generates the 

number of resources required as the (location, resourceType) pairs. Master node initiates 

the processing of the request by reading the information in the local registry, and 

allocating a set of resource information in the registry to each slave node. Once the 
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process is initiated, all the slave nodes run in parallel. Each slave node filters the resource 

information record for which the availabilityFlag and activeFlag are on. The physical 

range of the locations of requested resources, within the distance of radius „k‟ units, is 

calculated in the form of (location, resourceType) pairs. These calculated new (location, 

resourceType) pairs within the radius are added to the requested (location, resourceType) 

pair, if the resource is within its proximity range of radius k. The scheduled time slots of 

the resulting resource are checked with the time of the execution of the request. If the 

resource is not busy during the time slot requested by the user, then the resource 

information is allowed to go through the next step of the algorithm. The Map and Reduce 

functions are then applied on the slave nodes as follows:  

 Map: Parses each resource details in the set of records allocated by the Master node, 

and generates a list of intermediate <resourceId, cost, (location, resourceType)> set 

for each (location, resourceType) pair. The cost is calculated and added to the list. 

The usage charge is not applied on the resources if the search request is raised by its 

local SP. For foreign SPs, cost is applied by calculating the charges for the usage time 

of the resources. 

 Input: (location, resourceType)  

 Output: <resourceId, cost, (location, resourceType)> 

 Reducer: Merges all the intermediate <resourceId, cost, (location, resourceType)> 

lists associated with the same intermediate (location, resourceType) pair. Accepts all 

the pairs generated by the Map and emits a count and sequence of <list(resourceId, 

cost), (location, resourceType)> for each (location, resourceType) pair. 
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 Input: Many <resourceId, cost, (location, resourceType)> 

 Output: One <list(resourceId, cost), (location, resourceType)> 

 

Figure 3: MapReduce framework used in SATS architecture 

 Combiner: Same as Reduce. Accepts all the pairs generated by each Reduce function 

of all the Service Providers, and emits a count and sequence of <list(resourceId, 

cost), (location, resourceType)> for each (location, resourceType) pair.  

 Input: Many <list(resourceId, cost), (location, resourceType)>  

 Output: One <list(resourceId, cost), (location, resourceType)> 

The resultant list has the information about all the resources that are idle in the market 

and capable of performing the task. Each list of the corresponding requested (location, 

resourceType) pair is ranked with the cost parameter obtained from the Map Reduce 
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function. Considering location as k1, resourceType as v1, resourceId as k2, and cost as 

v2, the Map Reduce and Combine functions are represented as 

Map (k1, v1)  (k2, v2) 

Reduce (k2,v2)  list(k2,v2) 

Combine (list(k2, v2))  list(list(k2,v2)) 

The ranking parameter can be easily extended to consider other factors such as resource 

energy, SP‟s preference list, etc. From the resultant list of ranked resources on the basis 

of cost, the first ranked resource is chosen for each requested (location, resourceType) 

pair. As there could be multiple requests on each resource at an instance, (i) the 

availability of the first ranked resource can change (ii) the first ranked resource can be 

scheduled to perform some other task with overlapping timings of the current requested 

time slot. These outcomes are possible upon the processing of other requests, while the 

selection of the current request is in process. Thus, the availability status and the 

scheduled timings of the first resource in the ranked list are checked with the entries in its 

local registry. . If the resource is scheduled to execute some other request or if it becomes 

unavailable, the algorithm selects the next ranked resource from the list and continues the 

process until the resource can be successfully mapped to the request. The resources 

selected are the best possible combination with minimal selection time. 

3.3.5 Update the local registry 

The local registries, to which the final selected resources belong to, are updated with their 

new status and scheduled time (if any).  

3.3.6 Establish connection among selected resources 
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If the request is to be handled instantaneously, the request details are sent to the 

Execution manager. Otherwise, the scheduler handles the request as per its scheduled 

time by sending the request details to the Execution Manager. 

 
Figure 4: SP-level abstract view of Map Reduce implementation in SATS architecture 
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CHAPTER IV 
 

 

SIMULATION 

 

4.1 Objective of the simulation 

The aim of the simulation is to validate the proposed RS algorithm to address problems 

specific to the Quality-of-Service parameters of the resource allocation in a large 

clustered SP environment. To achieve the goals with the minimal processing time for 

selection of resources, we implemented this algorithm on a varying number of large SPs 

in the market, with a varying number of computational nodes in each SP. For a request, 

the selection time for each combination is provided and its performance is understood 

from the graphs. For multiple overlapping resources in the requests, we provided the 

selection time for varying number of overlapping requests. 

4.2 Development tools and programming languages 

All the experiments were conducted on an AMD Opteron 2212 CPUs, with 4G of RAM 

(6G of virtual memory), running on CentOS 5.5. We implemented our algorithm in Java 

using Eclipse 3.5.1 IDE. 
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4.3 Assumptions 

The architecture of the SATS is composed of various components involving the 

functionalities such as user web interface, web services, request interpretation, generating 

execution plan, message passing among different managers, etc. Therefore, we 

implemented RS algorithm in a java package with its inputs as the user request details, 

and output as the selected resources with backup resources list. We created a large 

resource information database (each file with a number of resources ranging from 

millions to billions, with database file sizes ranging from MBs to GBs) randomly in the 

local registry of each SP used in the experiment. 

We assume each SP in the market with an equal number of resources, though each SP 

may own varying number of resources.  

4.4 Experimental Design 

We studied the effect of the RS algorithm on resource selection time and its Quality-Of-

Service such as cost, timing constraints, service denial, failure recovery, and scheduling 

the tasks, with varying number of Service Providers and their nodes, and resources.  

Our hypothesis is that the implementation of the RS algorithm in WSANs selects cost-

effective resources that satisfy the request, with a minimal resource selection time, 

provides failure tolerance, and minimal service denial. 

4.4.3 Network Units 

 Network consisting of 5, 10, 15, 20, 25, 30 SPs. 

 Each SPs consisting of 10, 20, 30, 40, 50 nodes. 

 Each SPs consisting of 10M, 100M, 1B resources (M: Millions, B: Billions). 
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 4.4.4 Independent Variables 

 Request consisting of Resource Type, Location 

 LocalSP – The SP with whom the request was raised. 

 Proximity – The radius considered from the actual location of resource requested. 

 Number of resources each SP has. 

 Number of SPs, and their nodes. 

 Time to use – Time slot that the resource should be available/dedicated to perform the 

requested task. 

4.4.5 Control 

The simulation is based on the Quality-of-Services provided by the Service Providers 

using the RS algorithm. 

4.4.6 Replication  

The experimental units have been simulated several times.  An average value of all the 

trials is taken to plot the results. 

4.4.7 Levels and Repeated Trials 

LEVELS (NO. OF SPs IN THE NEWTORK, S)  5 10 15 20 25 30   

FOR EACH LEVEL OF SP, NO. OF NODES IN THE SPs, N 10 20 30 40 50 60 

REPEATED TRIALS 30 30 30 30 30 30 

The above trails were performed for SPs with 10 Million and 100 Million resources each.  
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LEVELS (NO. OF SPs IN THE 

NEWTORK, S) 

3                                          5 

FOR EACH LEVEL OF SP, NO. OF 

NODES IN THE SPs, N 

10 20 30 40 50  100 150 200 250 300 

REPEATED TRIALS 30 30 30 30 30 30 30 30 30 30 

The above trails were performed for SPs with 1 Billion resources each. 

NO. OF NODES IN THE SPs, N  10 20 30 40 50 

NO. OF REQUESTS IN THE NETWORK 1000 2000 3000 4000 5000 

REPEATED TRIALS 30 30 30 30 30 

The above trails were performed in a network of 5 SPs, with a probability of overlapping 

requests as 1%. 

4.4.8 Dependent Variables 

 The best and the backup resource(s) are listed. 

 Time (in msec) taken to select the best resources that satisfy the QoS parameters 

specific to resources. The calculated time is the difference between the system clock 

noted during the start and completion of the process/algorithm. The speed of 

execution of the process is also dependent on the system configuration on which it is 

executed, and several other common factors which affect the speed of a system. For 

consistency, several repeated trails were made and the average time is taken to plot 

the graphs.  
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4.4.9 Simulation Steps: 

Let s be the number of SPs available in the market, n be the number of nodes available in 

each SP, p be the number of (resourceType,location) pairs requested by the user, and k be 

the number of resources, then the steps in the execution of the RS algorithm are as 

follows: 

Step-1: Each SPi cluster, where 1 ≤ i ≤ s, consisting of one Master node „M‟ and n 

number of independent Slave nodes {N1, N2, N3, …Nn}, is configured. 

Step-2: The resource type and the locations in the form {(resourceType1, location1), 

(resourceType2, location2), (resourceType3, location3),…. (resourceTypep, locationp)}, 

along with the physical radius „P‟ (optional) are collected from the user. These resource 

type and location pairs are stored in a list, list_of_resources_requested.  

for (each input = (resourceTypei, locationi)) 

 list_of_resources_requested += (resourceTypei, locationi) 

Step-3: The Master node „M‟ initiates the processing of the records in the registry {r1, r2, 

r3,….rk}, where  ri ϵ SPi. 

Step-4:  The Master node M allocates a set of records in the registry to each slave node 

allowing them to process independently. 

 for (each resource in local registry) 

  random.Allocate(slave_node Ni)   where 1≤ i ≤ n  

random.Allocate arbitrarily assigns each resource to a slave node belonging to its SP. 
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 Step-5: The registry is filtered in parallel by the slave nodes,   (rk (AvailbilityFlag)=Y 

  rk (ActiveFlag)=Y). 

 for (each resource rk assigned by its Master node) 

  if (AvailbilityFlagk == Y &&  ActiveFlagk == Y) 

   goto Step-6  

  else 

    resource_reject 

   goto Step-4 

Where resource_reject rejects the current resource to perform the requested task and 

continues the process by considering the next resource assigned by its Master node. 

Step-6: The locations {l1,l2,…lm} of the resourceTypep within the physical range „P‟ of 

the corresponding locationp are calculated. 

Step-7: The requested resource list is updated with the {lm,resourceTypep} where lm is in 

the physical range of locationp. 

if ( li ≤ coordinates(locationp ) +P  ||   li ≤ coordinates(locationp) - P) 

  list_of_resources_requested += (resourceTypei, li) 

Step-8: Map function is applied on the resulting records such that rk(location)=locationp,  

rk(resourceType)=resourceTypep, and lm ϵ rk(resourceType,location). Hence each slave 

node Nn generates intermediate_list_map, a list of intermediary (resourceType,location) 

key and (resourceId, cost) value pairs, resulting in a total of „n‟ lists; of type 

(resourceTypep, locationp).  
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  if ( locationk == locationp &&  resourceTypek == resourceTypep) 

intermediate_list_map+ = (resourceIdk, costk, (rescourceTypep, 

locationp)) 

Step-9: These n lists are combined and categorized into p sub-lists; of type 

(resourceTypep, locationp) using the reduce function. (This gives the list of available 

resources with each Service Provider, at the locations specified by the user, and also 

within the physical range of the requested locations). The resulting combined list is 

denoted as list_reduce. 

 for (each intermediate_list_map.element) 

list_reduce(resourceTypep,locationp)+= 

intermediate_list_map.element(resourceTypep,locationp)  

Step-10: Step-3 to Step-8 is repeated for each SPi, where 1 ≤ i ≤ s.  

Step-11: The list obtained from each SPi is combined to form a single list consisting of 

all the resources which can perform the requested tasks, using the Combine function. 

(This gives the list of available resources with all the Service Providers available in the 

market, at the locations specified by the user, and also within the proximity range of the 

requested locations). The resulting combined list is denoted by list_combine. 

for (each list_reduce.element)  

list_combine(resourceTypep,locationp)+= 

list_reduce.element(resourceTypep,locationp)  

 Step-12: The resulting list is ranked on the basis of cost parameter within the list. 
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   for(each list_combine(resourceTypep,locationp)) 

  sort(list_combine(resourceTypep,locationp), cost) 

Step-13: The highest ranked resource is selected from each sub-list. Its latest status and 

the scheduled time are checked. If the requested time overlaps with the scheduled time in 

the resource details in the local registry, the next ordered resource in the list is selected 

and this process continues until a resource is found without any overlapping time slots. 

The resource without any overlapping time slots is selected and the scheduled time slots 

are updated with the requested time slot.  

 for(each list_combine(resourceTypep,locationp)) 

  resource_selected=resource_list(resourceTypep,locationp).first () 

  while(resource_finalized_flag == false) 

             if (requested_time_slot in resource_selected(scheduled_time_slots)) 

resource_selected= 

resource_list(resourceTypep,locationp).next () 

   else 

    resource_selected(scheduled_time_slots).update() 

=requested_time_slot 

    resource_finalized_flag=true 

Step-14: Repeat Step-13 for each resource requested, with the list of available 

corresponding resources in the market. 

The output of the RS algorithm after step-14 is the best available resources for all the 

requested resources in the request, after considering all the QoS parameters. 
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The results of our experiments are shown below. The experiments are performed with a 

varied number of SPs, nodes, and resources available at each SP. The final graph is a 

probability of 1% of overlapping requests on a resource at an instance of time against 

varying number of nodes.  

 

Figure 5: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each 

with 10 million resources. 
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Figure 6: Selection time (in msec) vs. number of nodes in a market of 10 Service Providers, each with 10 

million resources. 

 

 

Figure 7: Selection time (in msec) vs. number of nodes in a market of 15 Service Providers, each with 10 

million resources. 
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Figure 8: Selection time (in msec) vs. number of nodes in a market of 20 Service Providers, each with 10 

million resources. 

 

 

Figure 9: Selection time (in msec) vs. number of nodes in a market of 25 Service Providers, each with 10 

million resources. 
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Figure 10: Selection time (in msec) vs. number of nodes in a market of 30 Service Providers, each with 

10 million resources. 

 

 

Figure 11: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each with 

100 million resources. 

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c 

No. of Nodes 

30 SPs with 10M resources each 

0

200

400

600

800

1000

1200

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c 

No. of Nodes 

5 SPs with 100M resources each 



40 
 

 

 

Figure 12: Selection time (in msec) vs. number of nodes in a market of 10 Service Providers, each with 

100 million resources. 

 

 

Figure 13: Selection time (in msec) vs. number of nodes in a market of 15 Service Providers, each with 

100 million resources. 
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Figure 14: Selection time (in msec) vs. number of nodes in a market of 20 Service Providers, each with 

100 million resources. 

 

 

Figure 15 Selection time (in msec) vs.  number of nodes in a market of 25 Service Providers, each with 

100 million resources. 
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Figure 16 Selection time (in msec) vs. number of nodes in a market of 30 Service Providers, each with 

100 million resources. 

 

 

Figure 17 Selection time (in msec) vs. number of nodes in a market of 3 Service Providers, each with 1 

billion resources. 
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Figure 18: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each with 1 

billion resources. 

 

 

Figure 19: Increase in selection time (in msec) vs. increase in number of overlapping resource inputs. 
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4.5 Observations 

From the graphs depicting the selection time for varying number of SPs, nodes, and 

number of resources, we observe that the selection time is affected with the change in the 

number of computational nodes, and number of resources. The selection time decreases 

significantly with the increase in the number of nodes on each SP, as parallel 

computation dominates aggregation of lists from each node. Moreover, the selection time 

varies negligibly with increase in the number of nodes after a certain limit, as the 

aggregation impacts the parallel computation.  

The number of SPs does not impact the selection time much, as they execute in parallel. 

However, there is a processing overhead due to the aggregation of data from each SP. 

 It is also observed that the increase in overlapping resource requests increases the 

selection time due to the overhead of checking the latest availability status of each 

resource in the final list of ranked resources, sequentially. This process continues until it 

finds a resource, from the final list, which has not been mapped to another request.
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CHAPTER V 
 

 

CONCLUSIONS 

 

With growing technology developments and increase in the usage of sensing and 

actuating resources in day-to-day life, there is a need for an efficient and robust 

architecture to provide these resources as services in an efficient and cost effective 

manner.    

The goal of the SATS architecture is to provide inter-operability among SP instances in 

the market, with an ability to efficiently search and schedule the resources available in 

order to execute the sensing and actuating activities requested by the user. Some of 

problems to be addressed that are specific to resource selection include satisfying the 

QoS by considering possible service denial, efficient resource utilization, satisfying 

timing constraints, resource information hiding, cost constraints, failure tolerance, 

overlapping and location dependent resource requests. In addition to addressing these 

QoS related problems, the goal is to have a minimal selection time to map the resources 

to a request. 

To support the above QoS, we proposed a RS algorithm based on a Map Reduce 

framework. We simulated an application implementing the RS algorithm on the current 
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status of each resource  belonging each available SP. Simulations to measure selection 

time while satisfying the QoS problems, the change in the selection time with varying 

number of resources, overlapping resource usage requests, etc. were conducted. The 

results demonstrate the effect of the number of nodes and resources in each SP on the 

selection time of the cost effective resources available in the market, to perform the 

requested tasks. The proposed architecture will provide the optimal selection time with 

increasing QoS. 
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CHAPTER VI 
 

 

FUTURE WORK 

 

With the rapid increase in the usage of Sensors and Actuators to perform day-to-day 

activities, future work should investigate the implementation of the SATS architecture 

with real time Sensors and Actuators, and determine its performance. The 

implementation of the Interpreter, which divides a request into sub-tasks and generates 

the execution plan, will be be addressed. The execution of the tasks as per the scheduled 

time with the selected resources should be implemented using a real-time scheduling 

algorithm that works at the resource level.   
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location-independent manner, is provided by enabling the Sensor and Actuator resources 

as services. We propose an architecture called SATS (Sensing and Actuating Tasks as 

Service) that provides the ability to trigger sensing and actuating tasks over the Internet 

by selecting the best combination from the available resources, including the resources 

owned by other Service Providers.  Selection of the best possible resources amongst the 

available resources is a challenge as many problems related to QoS have to be addressed. 

We propose a solution based on the Map-Reduce framework and develop the RS 

(Resource Selection) algorithm to address the problem of resource selection, in a network 

of service providers provide sensing and actuator services that are composed of large 

numbers of sensors and actuators. 

 

 

 

 

 

 

 

 

 

 

 

 

 


