
 SENSING AND ACTUATING TASKS AS SERVICES

AND ITS QUALITY OF SERVICES

IN LARGE CLUSTERED ENVIRONMENTS

 By

 THRISHUKANTH DASARI

 Bachelor of Engineering in Computer Science

 Osmania University

 Hyderabad, AP, India

 2007

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 July, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215307799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

SENSING AND ACTUATING TASKS AS SERVICES

AND ITS QUALITY OF SERVICES

IN LARGE CLUSTERED ENVIRONMENTS

 Thesis Approved:

 Dr. Johnson P. Thomas

 Thesis Adviser

 Dr. Subhash Kak

 Dr. Michel Toulouse

 Dr. Mark E. Payton

 Dean of the Graduate College

iii

ACKNOWLEDGMENTS

It gives me an immense pleasure to thank everyone involved in the successful completion of my

thesis.

It is an honor for me to work under the supervision of Dr. Johnson P. Thomas, and I would like to

take this opportunity to thank him for his invaluable guidance and support throughout the thesis.

For all his help, knowledge, and patience, one could not wish for a better or friendlier advisor.

I would also like to thank the members of my committee, Dr. Subhash Kak and Dr. Michel

Toulouse for their time, support, and advices which helped me improve and complete my thesis. I

also thank Mr. Russ Smith and Ms. Dana Brunson for supporting me with the infrastructure

needed for the simulation of my work.

I feel very proud and lucky to be a part of my loving and supporting family, and I would like to

thank my parents, brothers, sister, and in-law‟s for their encouragement and belief in me. Without

their support, I would not have achieved anything.

Finally, I would like to thank Prerana Laddha, Soujanya Vullam, Vishnu, Varsha, Karthik, and

Swathi for their endless support and friendship

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Wireless Sensor Networks ...1

 1.2 Wireless Sensor and Actuator Networks ...1

 1.2.1 Control flow for performing sensing/actuating tasks in WSANs2

 1.3 Motivation and research objective ...3

 1.4 Challenges ...5

 1.5 Research Contribution ...6

 1.6 Organization of the Thesis ...8

II. REVIEW OF LITERATURE..9

 2.1 Service Oriented Sensor and Actuator Network ..9

 2.2 Sentire middleware ..11

 2.3 Handling mobility in Wireless Sensor and Actuator Networks11

 2.4 Map-Reduce Framework ...12

 2.4.1 Pseudo code of map and reduce functions for word count13

 2.4.2 Examples of Map-Reduce Framework ...14

III. PROPOSED WORK ..15

 3.1 Goal of SATS ...15

 3.2 SATS components ...19

 3.2.1 Interpreter Manager ..19

 3.2.2 Resource Manager ..19

 3.2.3 Local Registry ...20

 3.2.4 Resource Allocation Manager ...20

 3.2.5 Scheduler...21

 3.2.6 Execution Manager ...21

 3.2.7 SANET Controllers ...21

 3.3 Flow of communication amongst the components in SATS21

 3.3.1 User inputs ..22

 3.3.2 Sub-tasks and execution plan ..23

 3.3.3 Broadcasting the Search Request ..23

 3.3.4 RS algorithm ...23

v

Chapter Page

 3.3.5 Update the local registry ...27

 3.3.6 Establish connection amongst selected resources27

IV. SIMULATION ..28

 4.1 Objective of Simulation ...28

 4.2 Development tools and programming languages ...28

 4.3 Assumptions ...29

 4.4 Experimental Design ..29

 4.4.1 Network units ..29

 4.4.2 Independent variables ...30

 4.4.3 Control ..30

 4.4.4 Replication ..30

 4.4.5 Levels and repeated trials..30

 4.4.6 Dependent variables ..31

 4.4.7 Simulation steps ..32

 4.5 Observations ..44

V. CONCLUSION ...45

VI. FUTURE WORK ..47

REFERENCES ..48

vi

LIST OF FIGURES

Figure Page

1. Closed loop control flow in WSANs…..………………………………………3

2. SATS architecture for making sensor and actuating tasks as services...………….. 16

3. Map Reduce framework used in SATS architecture …..….. ……………………..25

4. SP-level abstract view of Map Reduce implementation in SATS architecture…....27

5. Selection time (in msec) vs. number of nodes in a market of 5

 Service Providers, each with 10 million resources …..……………...36

6. Selection time (in msec) vs. number of nodes in a market of 10

 Service Providers, each with 10 million resources …..……………...37

7. Selection time (in msec) vs. number of nodes in a market of 15

 Service Providers, each with 10 million resources …..……………...37

8. Selection time (in msec) vs. number of nodes in a market of 20

 Service Providers, each with 10 million resources …..……………...38

9. Selection time (in msec) vs. number of nodes in a market of 25

 Service Providers, each with 10 million resources …..……………...38

10. Selection time (in msec) vs. number of nodes in a market of 30

 Service Providers, each with 10 million resources …..……………...39

11. Selection time (in msec) vs. number of nodes in a market of 5

 Service Providers, each with 100 million resources …..……………...39

12. Selection time (in msec) vs. number of nodes in a market of 10

 Service Providers, each with 100 million resources …..……………...40

13. Selection time (in msec) vs. number of nodes in a market of 15

 Service Providers, each with 100 million resources …..……………...40

vii

Figure Page

14. Selection time (in msec) vs. number of nodes in a market of 20

 Service Providers, each with 100 million resources …..……………...41

15. Selection time (in msec) vs. number of nodes in a market of 25

 Service Providers, each with 100 million resources …..……………...41

16. Selection time (in msec) vs. number of nodes in a market of 30

 Service Providers, each with 100 million resources …..……………...42

17. Selection time (in msec) vs. number of nodes in a market of 3

 Service Providers, each with 1 billion resources …..……………...42

18. Selection time (in msec) vs. number of nodes in a market of 5

 Service Providers, each with 1 billion resources …..……………...43

19. Increase in selection time (in msec) vs. increase in number of

 Overlapping resource inputs ….. ..……………...43

1

CHAPTER I

INTRODUCTION

1.1 Wireless Sensor Networks

Advances in distributed computing, sensing, and wireless communication technologies

led to the emergence of wireless sensor networks. Sensors observe physical and

environmental conditions such as sound, light, temperature, pressure, motion, etc. and

communicate the observed information amongst each other or to a remote application.

These sensor nodes are spatially distributed to form a Wireless Sensor Network (WSN).

Sensors communicate using wireless links and vary in size, speed, and bandwidth. These

sensing and communicating capabilities are used in various applications such as

healthcare monitoring, environment and habitat monitoring [8], building surveillance,

home automation, business applications, and entertainment [4].

1.2 Wireless Sensor and Actuator Networks

Monitoring of a physical system remotely along with real-time controlling has become a

necessity in recent times, facilitating rapid improvements in wireless sensor networks.

Thus, the course of taking a decision and actuating an action in a physical system,

depending on the sensor‟s information, has become functional in the emerging mission

critical applications, such as an intelligent sprinkler system, autonomous animal control,

2

environmental control, home automation, event detection and suppression,

manufacturing, cyber physical systems etc. This emergence of manual initiated and/or

sensor-triggered automatic actuation in controlling the physical system, in the form of

Actuators, laid the foundation for Wireless Sensors and Actuator Networks (WSANs).

Actuators perform actions to change the parameters of the environment or physical

systems and have strong computational and communication powers with high energy and

long battery-life, compared to sensors [1, 2]. Sensors and actuators are interconnected

over wireless links, facilitating distributed interactions with the physical world [4]. In this

dissertation, the terms WSANs and SANETs (Sensor and Actuator Networks) are used

interchangeably.

WSANs constitute a large pool of easily usable and accessible sensor/actuator resources,

enabling communication in the network to dynamically reconfigure and perform

distributed sensing and actuation tasks. For example, an intelligent traffic controller

monitors congestion on the road and automatically routes upcoming traffic using

electronic display boards to take appropriate actions and detours. The control flow of the

sensors and actuators in SANETs is explained briefly in the next subsection.

1.2.1 Control flow for performing sensing/actuating tasks in WSANs:

SANET resources can be used to sense, interact, and affect the behavior of physical

systems [6] by enabling different ways of performing sensing and actuating tasks,

according to the requirements. The closed loop control flow in a generic architecture of a

WSAN is shown in the figure 1.

3

Figure 1: Closed loop control flow in WSANs

When a user initiates a task, the feedback from the sensor, i.e.; the information about the

specific physical parameters sensed, is sent to the remote controller over the network.

The controller enables the actuators to adjust the physical system parameters to meet an

output response requested by the end user. For example, a user automating the system to

turn the lights off if nobody is present in the room. The second is a manually initiated

actuation, where the actuation is initiated by the user without depending on feedback

from sensors about physical system parameters. For example, a user requesting to turn

the lights off irrespective of the presence of people inside the room. The third is an

example of WSNs with just the sensors monitoring the physical system. The sensor

monitors the physical system and gets the output parameters to the user. For example, a

user requesting to know the number of people present in the room or a doctor requesting

to know the blood pressure of the patients.

1.3 Motivation and Research Objective

We envisage the world quickly advancing to an era with a connection of millions of

Sensing and Actuating resources everywhere, performing tasks in day-to-day life. The

ability to trigger these tasks without worrying about the ownership and availability of the

resources as well as the process of searching and scheduling, resources, given the

4

location of the user himself, is provided by enabling Sensing and Actuating Tasks as

services. Cloud computing will become more dominant than the desktop in the next

decade [14], motivating us to prospect a quick development in SANETs, to facilitate

Sensing and Actuating resources on demand via a computer network. Thus, we propose

an architecture called SATS (Sensing and Actuating Tasks as Service) with an ability to

trigger Sensing and Actuating Tasks using the Internet, to perform cyber-physical tasks.

The SANETs are owned, maintained, and used by groups such as private providers,

research institutions, government organizations [4]. Each party offering SANET

resources as services is named as a SANET Service Provider (SP). There could be many

such Service Providers in the market, owning millions of sensing and actuating resources.

A SP might own a massive number of Sensor and Actuator resources within a number of

SANETs. The distributed resources from different SANETs communicate with each

other using multi-hop wireless/wired links. The services are published on the web with

specific details and protocols to guide the SANET Service Requester‟s (SR) use. This

enables SRs to access services using a web browser regardless of their location and

device (e.g., PC, mobile). The services provided by SPs are distributed globally and a

service offered by one SP may require a series or combination of execution of multiple

services provided by other SPs. Thus, it is important that these services are

interconnected and interoperable to provide the desired services to the SRs. These

interoperable services offered by the Service Provider, enable the Service Requestor to

place a request to perform an activity from anywhere in the world using an internet

connection. Handling the request involves either simple data passing or multiple services

coordinating some activity. The resources involved in coordinating an activity may not

5

belong to the same SP. Each SP may have multiple resources that perform the same task,

depending on the demand of the tasks at that specific location (e.g. an SP owning more

than one temperature sensor in the same room to find its temperature, or an SP owning

multiple sensors to run user code for research purposes). Two or more SPs may also have

similar resources in common, which can perform same tasks and are available at the same

location (e.g. two SPs having multiple temperature sensors in the same room to find

temperature). This provides a possibility of choosing an idle resource among all the

available resources which can perform the required task. The ability to raise a request

using the web, and choose a resource among multiple such resources which might also be

owned by different SPs, primarily has the following advantages

 Optimal and maximal utilization of available resources.

 Decreases waiting time of the request by allotting an idle resource, instead of waiting

for a busy resource to become idle.

 Reduces cost by saving infrastructure, as an SP can choose an idle resource owned by

another SP, to perform the task.

 Increases flexibility for the SP, as all the possible resources that are available to

perform the task is known, thereby decreasing the probability of “Denial of Service”.

 More mobility to the users, who can raise a request and access the resources

regardless of their location.

 Increases interoperability amongst the resources.

1.4 Challenges

SANETS face a number of challenges as mentioned below.

6

Timing Constraint: SANET may require real-time task execution as the sensor data may

have to be acted on by the actuators within timing constraints. So, scheduling the

execution of tasks is a challenge.

Search Space: As there may be millions of sensors and actuators, the search space is also

a problem.

Resource Conflict: There may be resource conflicts as multiple tasks may need to access

the same resource.

Fault tolerance: It is important as sensors in particular are liable to failure due to their

limited resources.

Cost effective: As the SANET resources are available as services; the selection of cost

effective resources amongst multiple available resources is a challenge.

As these systems deal with physical phenomenon, geographic location of sensors and

actuators may be relevant.

1.5 Research Contribution

Our proposed SATS architecture focuses on the selection of the best possible resources

available in the market to perform the request raised by the user in a minimal time to

meet task timing requirements. In this process, we propose a Resource Selection (RS)

algorithm to address the challenges specific to resource selection, as mentioned in last

subsection.

Searching for idle resources in a large clustered distributed environment with massive

number of resources and their data, necessitates processing and generating data sets on

large clusters. In the RS algorithm, we use the Map-Reduce framework [13] that

simplifies data processing on large clusters by processing and generating large data sets

7

in an efficient way. It is a programming model with the implementation of map and

reduce functions. The Map function processes the key/value pair to generate a set of

intermediate key/value pairs, and the Reduce function processes the intermediate

key/value pairs generated by the map function to generate the output by merging all

intermediate values associated with the intermediate key [7].

The SATS architecture has three levels of communication. The sensing and actuating

services are provided by the Service Providers as an interface where the user has to fill in

the details of his area(s) of sensing or/and actuating tasks to be done. The request raised

by the SR is passed to the SP (local SP) components with the execution flow and the

details of the request. The local SP broadcasts a Search Request to all the other SPs

(Foreign SPs) in the market and gets the response from each SP with the available

resources owned by each of them, which is the output after applying the RS algorithm.

Thus, the local SP will have all the available idle resources in the market that can be

utilized in performing the requested task from each SP. As the idle resources returned

from two or more SPs may have the same functional features, the local SP selects the

number of resources required from each set of similar resources, and are ranked to find

the optimal combination according to their cost of usage. As all the requests are

processed in parallel, there could be multiple requests on similar or same resources

during the time of the whole resource selection process. Thus, the availability of the

selected resources is checked again using the local registry information. This check is

performed on all the ranked resources of each set, sequentially, until an available

resource is found. The final selection of resources generated after applying RS algorithm

is time and cost effective, location confined, and schedule specific.

8

1.6 Organization of the Thesis

The rest of the dissertation is organized as follows. Chapter 2 provides background of the

research done in the field of WSNs and WSANs related to different challenges and

architectures proposed in the communication, control, coordination, virtualization, and

selection areas of the SANET resources. Chapter 3 provides the architecture for the

interoperability amongst the SPs, facilitating resource virtualization and selection to

perform the tasks requested by the user. Chapter 4 provides the implementation of the RS

algorithm on millions of resources owned by different SPs in the market. Chapter 5

provides the conclusion. And, chapter 6 provides the future work.

9

CHAPTER II

REVIEW OF LITERATURE

Over the past few years, research has been done on enhancing applications and

architectures involving Sensors and Actuator networks.

2.1 Service Oriented Sensor and Actuator Network

The SOSANET [4] approach builds service based customizable SANETs to handle the

given applications. It claims that most approaches are either application-specific or

generic. Application-specific SANETs provide limited reusability with cost

ineffectiveness and require reprogramming to make it useful for the application, resulting

in tight coupling between the application and the underlying SANET, and increased

energy efficiency and scalability. Generic SANETs require specific code be deployed on

nodes without having pre-knowledge about the applications, resulting in decoupling of

the application and underlying SANET, and the chance of code reusability. SOSANET

provides the benefits of both application-specific, and generic SANETs. Customizable

SANETs provides flexibility to combine the resources provided by nodes in one or more

SANETs to meet the application requirements. This approach uses generic SANETs as

backbone along with an additional software layer on each node which provides some

functionality.

10

They deploy services directly on top of the operating system, and services are accessible

directly by applications. It uses the Service Driven Routing (SDR), where each node

apprehends the other node‟s potencies in providing their services. Each node has a

Service Directory that stores all the general and availability information about the

services provided by its reachable nodes. So, when a request is made, each node

generates a query result and sends it to its neighbours. Each neighbor forwards it until it

reaches the base station. The results show that it had significant improvements over

existing architectures in energy consumption, scalability, and response time. The request

query in the SOSANET approach is initiated at the node, thereby passing the result to

neighbors till it reaches base station. This works well for a limited number of nodes and

requests at each instance. As the author says, future SANETs require a new architecture.

The disadvantage with this architecture is passing the result to neighbors, as this increases

the communication on the wired links, resulting in message overheads, affecting the

communication capabilities and energy. While SANETs will become undoubtebly

ubiquitous in the future, with millions of users wanting to use the resources at the same

time, it might face performance issues as for each request, each node tries to forward its

reply to all its neighbors in a huge network of interconnected SANETs distributed all over

the world. This may also lead to synchronization issues. The handling of such a massive

network of SANETs owned by disparate SPs requires to reduce the lowest level message

passing, amongst the energy dependent sensors and actuators. SATS archtiecture reduces

the message passing by filtering all the resources, except the ones which are idle and have

the capabilities to perform the task, that is, in the first step itself. SATS is based on the

network with a large number of Sensing and Actuating resources, and the SPs owning

11

them. The SOSANET appraoch stores the service directory at each node wasting its

storage and capacity, whereas SATS stores local registry at each controller of all the

WSANs, thereby increasing the capabilities of the resources. This is imporant as sensors

have limited resources.

2.2 Sentire middleware

Sentire [5], a high-level application middleware, emphasizes the control and coordination

of time dependent and time sharing SANET resources using market-based bidding

strategies. This framework supports large-scale distributed SANETs with a design of

development tools for providing reusable model and actuator coordination techniques to

reduce task interference due to the integration of large-scaled SANETs. This minimizes

the damage to the physical world due to the use of shared resources, and performs

uncoordinated actions with multiple actuators being close to each other, while performing

a task. Sentire implements a market-based algorithm for resource allocation to coordinate

the distributed actuators. The agents continuously bid against each other for the common

actuators in the market, and wins access to use common resources. Hence, each agent is

aware of the other agent‟s bid and each agent is aware of the next user of the shared

resource. This reduces the task interference and selects the resource by bidding.

2.3 Handling mobility in Wireless Sensor and Actuator Networks

Akyildiz [3] proposed Distributed Event-driven Partitioning and Routing (DEPR), a

distributed protocol for sensor-actor coordination that includes an adaptive mechanism to

trade off energy consumption for delay when the event data has to be delivered to the

actors within predetermined latency bounds. For the actor-actor coordination, an

12

optimization model was defined for a class of coordination problems in which the area to

be acted upon is optimally split among different actors. The problem was formulated as a

Mixed Integer Linear Program (MILP) and an auction-based localized solution of the

problem was also presented. They extended their work by proposing a new location-

management scheme, which combines joint use of Kalman filtering and Voronoi scoping

on the sensors and actors, for efficient geographical routing of sensor-actor

communication. It also proposes actor-actor coordination, coordinating the motion and

the action of the participating actors by selecting the best actor team that will cause

minimal reconfiguration of network operations, based on the characteristics of the event.

A model is proposed to optimally assign tasks to actors and control their motion in a

coordinated way to accomplish the tasks based on the characteristics of the events. The

selection of a team of actuators to optimally divide the task, coordinate, and perform

while respecting the action-completion bound and low movement energy to complete the

task is stated as a Multi-actor Allocation problem. The sensors that generate the

parameters define event area, and the actuators that perform some actions define action

area. These areas may coincide in several applications. This approach mainly depends on

three factors, congestion factor, directivity factor, and distance factor, to formulate a

Mixed Integer Non-Linear Program (MINLP) and find the best actor team. Our approach

is based on the sensor and actuator tasks, offered as services, using a trivial way of

finding the best resources in large-scale distributed SANETs involving billions of

resources world-wide.

2.4 Map-Reduce Framework

13

We use the basic idea of the successful and popular Map-Reduce framework proposed by

Google Inc [7]. Map-reduce make the data processing simplified on large clusters by

processing and generating large data sets. It is a programming model with the

implementation of map and reduce functions. Map function processes the key/value pair

to generate a set of intermediate key/value pairs, and Reduce function processes the

intermediate key/value pairs generated by the map function to generate the output by

merging all intermediate values associated with intermediate key [7].

Map (k1, v1) list(k2, v2)

Reduce (k2, list(v2)) list(v2)

The input key K1 and values V1 are drawn from different domain than the output keys

and values, and the intermediate keys and values are from same domain as the output

keys and values. MapReduce enables automatic parallelization and distribution of large-

scale computations with high performance on large clusters. Partitioning of the input

data, scheduling the program across a set of machines, handling machine failures, and

managing inter-machine communications are handled by the real-time system. The

implementation is highly scalable and has a capacity to process many terabytes of data on

thousands of machines.

2.4.1 Pseudo code of Map and Reduce functions for word count

The pseudo code for the popular counting the number of occurrences of each word in a

large collection of documents as given in [7] is:

 map(String key, String value):

// key: document name; value: document contents

14

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word; values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

2.4.2 Examples of Map-Reduce framework

 The authors also mentioned few examples such as Distributed Grep, Count of URL

access Frequency, Reverse Web-Link Graph, Inverted Index, and Distributed Sort, that

can be expressed as MapReduce computations. The proposed SATS architecture makes

use of the concept of the Map Reduce framework in the Inverted Index example. The

map function parses each document, and emits a sequence of (word; document ID) pairs.

The reduce function accepts all pairs for a given word, sorts the corresponding document

IDs and emits a (word; list(document ID)) pair. The set of all output pairs forms a simple

inverted index. It is easy to augment this computation to keep track of word positions.

SATS also uses the optional Combiner function mentioned by the authors that does the

partial merging of data before it is sent over the network. The combiner function is

executed on each machine where the map function is performed. Combiner and reduce

functions use the same code to implement. The output of the combiner is written into the

intermediate file that will be sent to a reducer function. This partial combining speeds up

certain classes of Map-Reduce operations.

15

CHAPTER III

PROPOSED WORK

3.1 Goal of SATS

The main focus of this chapter is to present SATS as an architecture that can efficiently

handle the requests raised by the SRs to initiate a sensing or actuating task, or a group of

sensing and actuating tasks to perform an activity. As we are dealing with very large-

scale distributed SANETs owned by various SPs, and each SP in the market competes to

have its own sensor and actuator resources where they are in demand, there could be a

number of resources with similar characteristics and abilities to perform same task and

are available at same location. The SR‟s request is performed by a group of sensors

and/or actuators by dynamically reconfiguring as per the requirements of the user. The

goal of SATS is to guide the process of using sensing and actuating tasks as services with

the following contributions:

 A high-level framework consisting of reusable managers that facilitate the flow of

user requests within a SP instance, and data between applications and underlying

SANET resources used.

 Resource hiding, which protects the information about the underlying sensors and

actuators used in executing the task, from the users. This makes the approach

16

 application independent with a dynamic reconfiguration of the resources on each

request.

 Parallelized and distributed computations are provided with the use of RS algorithm,

to find the idle resources from a huge network of interoperable SANETs in the market

having multiple resources of similar characteristics at the same location, which can

perform the user specified task. Hence, the proposed approach selects the optimal

group of sensors and/or actuators, and performs a task or an activity as per the user

requirements. This programmable approach can be automated by the SPs to handle

the sensing and/or actuating requests raised by the user in the widely distributed

SANET.

Figure 2: SATS architecture for making sensor and actuating tasks as services

17

Communications in the SATS mainly takes place by its set of extensible managers as

shown in figure 2. The figure shows the passing of request from the user to the

underlying SANET resources through the internal and external components of the SP.

SATS uses publish/subscribe messaging pattern in implementing the communication

among the managers. Using a publish/subscribe pattern, senders (publishers) do not sent

the messages directly to specific receivers (subscribers). Instead, messages are

characterized into classes, and subscribers that show interest in one or more classes,

receive the messages from the subscribers they are interested in.

The problems specific to the resources are as follows:

1) The requests raised by the user are to be performed without any delay in order to meet

the deadlines. As there are millions of resources available in the market owned by

disparate SPs, the selection of the resources is time-intensive as the SPs have to

search for the available resources. Hence, searching each SP‟s huge database and

deciding on the list of available resources in negligible time is a challenge.

In our work, we solve this problem by using the RS algorithm based on the Map-

Reduce framework, thereby making use of parallel processing resulting in an increase

in the computational slave nodes that process the data.

2) Cost, levied on the usage of selected resources, is one of the important factors before

selecting. The resources selected should be cost effective.

In our work, we solve this problem by maintaining the cost of usage of each resource

within the list of available resources in the selection process. Ranking is applied on

18

the cost, and the resource with the least cost (first in the ranked list) is selected to

participate in an activity to perform the task.

3) While the resource allocation gives the available resources to do the tasks, the system

should also make sure that the schedule is met given the available or selected

resources. Thus, timing constraints becomes one of the important factors in resource

selection and should be satisfied.

In our work we solve this problem by maintaining the scheduled events or timings of

each resource in the local registry of each SP. These are the timings at which the

resource is to be triggered as scheduled by some previous request.

4) There is a possibility of service denial which could be caused due to unavailability of

the resources requested at a specific location because the resource might be in use or

too far away from the actual location of user‟s interest. Thus, the flexibility to search

the resources which are close to the specified location is to be provided to decrease the

probability of service denial. Hence, the location confinement problem should be

addressed.

In our work we solve this problem by calculating the locations which are within the

proximity range of „p‟ units from the actual location requested by the user. The

resources in these locations are also considered during the resource selection process.

5) As the resources are subject to failure, the system has to have back-up resource

information without having to search the SANET again for the set of available resources.

Thus, failure tolerance should be addressed

19

In our work we solve this problem by maintaining a list of backup resources, i.e. the

resources with the same order of ranking.

6) As there could be many requests processing at the same time, more than one request

may need the same resource in non-overlapping time slots. Thus, the scheduled time

and the requested time slot is also important in allocating the resources to maximize

the utilization of each resource. Hence, the resource selection process should also

address this problem.

In our work we solve this problem by rechecking the scheduled activity timings of the

selected resource, before sending its information to the Execution Manager to carry

out the activity or update its scheduled timings.

The functionality of each component and the sequence of communication flow amongst

each component of the SPs are described briefly in the following sections:

3.2 SATS Components

3.2.1 Interpreter Manager (IM)

The IM serves as an interface between user request and the SP instance. IM is assumed to

divide the request into sub-tasks, if it involves a combination of multiple services or tasks

that could be run in parallel, and gives the logical execution plan with the flow of tasks as

per the requirements.

 3.2.2 Resource Manager (RM)

The RM keeps track of the resources in the SANETs belonging to its local SPs, and

updates their information in the Local Registry to keep it up-to-date. It is responsible for

having the latest availability and other information of the resources owned by its SP.

20

3.2.3 Local Registry (LocReg)

The LocReg is a dataset with all the information about the sensing and actuating

resources owned by each SP. The following information is stored in local registry for

each resource owned by its SPs:

 resourceId – Unique ID assigned to the resource.

 resourceType – The type of resource (ex. Temperature Sensor)

 location – The geographical location of the resource.

 sanetID – Unique ID assigned to each SANET.

 socketID – Socket address of the resource.

 activeFlag – The active status flag of the resource. Y for Active, N for inactive

 availabilityFlag – The availability status flag of the resource. Y for free, N for busy

 cost – The cost of usage per unit time, charged when the resource performs an activity

for a request raised on Foreign SPs.

 time – A series of scheduled time slots assigned to the resource to perform an activity.

It may also be extended to store additional information such as battery life, bandwidths,

energy levels etc. of each resource.

3.2.4 Resource Allocation Manager (RAM)

The RAM is the main logic of selecting the sensor and actuator resources required for

completing the task, owned by any SPs in the market. RAM initiates the Search Request

by broadcasting it to the RAMs of all the other SPs (Foreign SPs) in the market. Each

RAM executes the RS algorithm and addresses the problems specific to resource

selection. It selects the best resource or combination of resources and passes their details

to the scheduler.

21

3.2.5 Scheduler

The scheduler keeps track of the scheduled activities as per the request and triggers them

by sending the request and resource information to the Execution Manager at its

scheduled time.

3.2.6 Execution Manager (EM)

The EM establishes the connection among the selected resources obtained from RAM, by

using the address information of the resources. This serves as a control manager for the

tasks to be performed according to the execution plan.

3.2.7 SANET controllers

The Controllers share the important data in the system. The controller of each SANET

sends the changes in the current status of its sensor and actuator resources to RM in order

to update the local registry.

3.3 Flow of communication amongst the components in SATS:

The communication amongst the distributed and heterogeneous SPs is implemented

through a common channel for homogenization and orchestration of messages, the

Enterprise Service Bus, interconnected over the internet. The flow of the communication

amongst all the components is carried out as follows:

Step-1: Collect user inputs.

Step-2: Divide into sub-tasks and get execution plan.

Step-3: Broadcast the Search Request.

Step-4: Execute RS algorithm.

22

Step-5: Update the local registry.

Step-6: Establish connection among selected resources.

The detailed explanation of the control flow steps in the SATS architecture is described

next.

3.3.1 User Inputs

The SR gives the necessary inputs required to handle the request through an interface

provided by the SP using an Internet connection from anywhere in the world. The SP

with which the request was raised is termed as the Local SP, and all the other SPs in the

market are classified as Foreign SPs, for that particular request. There could be any

number of such requests at a particular instance. Each user request is given a unique

requestID to differentiate it from other requests, and the following information is

collected from the users:

 Event: The category of the activity to be performed (e.g. maintain temperature).

 Condition: The conditions on which the activity is to be performed (e.g. if

temperature < 100F).

 Action: The actions to be performed by the SANET resources (e.g. setTemperature).

 Duration: The duration of the SANET resources to be active performing the activity

(e.g. 09:00-13:00).

 Location: The exact locations of the area of event and area of action (e.g. LOC1430).

 Time: The starting time of the activity. Instantaneous or scheduled time (e.g.

Scheduled).

3.3.2 Sub-tasks and Execution plan

23

 All the inputs from the user are sent to the Interpreter Manager of the Local SP. The IM

divides the request into sub-tasks if it can be split into independent activities which can

be executed in parallel, and the flow of execution of tasks in performing an activity

requested by the user is attached to the request.

3.3.3 Broadcasting the Search Request

The resulting requests from the IM are sent to the Resource Allocation Manager of the

Local SP. For each request, it broadcasts a Search Request to the RAMs of Foreign SPs,

in order to get the available resources from all the SPs in the market.

3.3.4 RS algorithm

Each RAM applies the RS algorithm on the current data present in its local registry. The

computations for each request in the RS algorithm are handled by the Master and Slave

nodes in the cluster of each SP. The Master node manages the assignment of resource

data entries (records) from the local registry to multiple slave nodes. Slave nodes perform

map, reduce, and combine tasks and also handle data motion among these phases. Each

Service Provider has a dedicated Master, which acts like a parent node to all its child

nodes (slaves). The number of slave nodes is chosen by the Service Providers considering

the number of resources to process, and the selection time of the final resources.

An SP can have multiple such computational nodes and they can run both independently,

in parallel. The algorithm takes the request information as input, and generates the

number of resources required as the (location, resourceType) pairs. Master node initiates

the processing of the request by reading the information in the local registry, and

allocating a set of resource information in the registry to each slave node. Once the

24

process is initiated, all the slave nodes run in parallel. Each slave node filters the resource

information record for which the availabilityFlag and activeFlag are on. The physical

range of the locations of requested resources, within the distance of radius „k‟ units, is

calculated in the form of (location, resourceType) pairs. These calculated new (location,

resourceType) pairs within the radius are added to the requested (location, resourceType)

pair, if the resource is within its proximity range of radius k. The scheduled time slots of

the resulting resource are checked with the time of the execution of the request. If the

resource is not busy during the time slot requested by the user, then the resource

information is allowed to go through the next step of the algorithm. The Map and Reduce

functions are then applied on the slave nodes as follows:

 Map: Parses each resource details in the set of records allocated by the Master node,

and generates a list of intermediate <resourceId, cost, (location, resourceType)> set

for each (location, resourceType) pair. The cost is calculated and added to the list.

The usage charge is not applied on the resources if the search request is raised by its

local SP. For foreign SPs, cost is applied by calculating the charges for the usage time

of the resources.

 Input: (location, resourceType)

 Output: <resourceId, cost, (location, resourceType)>

 Reducer: Merges all the intermediate <resourceId, cost, (location, resourceType)>

lists associated with the same intermediate (location, resourceType) pair. Accepts all

the pairs generated by the Map and emits a count and sequence of <list(resourceId,

cost), (location, resourceType)> for each (location, resourceType) pair.

25

 Input: Many <resourceId, cost, (location, resourceType)>

 Output: One <list(resourceId, cost), (location, resourceType)>

Figure 3: MapReduce framework used in SATS architecture

 Combiner: Same as Reduce. Accepts all the pairs generated by each Reduce function

of all the Service Providers, and emits a count and sequence of <list(resourceId,

cost), (location, resourceType)> for each (location, resourceType) pair.

 Input: Many <list(resourceId, cost), (location, resourceType)>

 Output: One <list(resourceId, cost), (location, resourceType)>

The resultant list has the information about all the resources that are idle in the market

and capable of performing the task. Each list of the corresponding requested (location,

resourceType) pair is ranked with the cost parameter obtained from the Map Reduce

26

function. Considering location as k1, resourceType as v1, resourceId as k2, and cost as

v2, the Map Reduce and Combine functions are represented as

Map (k1, v1) (k2, v2)

Reduce (k2,v2) list(k2,v2)

Combine (list(k2, v2)) list(list(k2,v2))

The ranking parameter can be easily extended to consider other factors such as resource

energy, SP‟s preference list, etc. From the resultant list of ranked resources on the basis

of cost, the first ranked resource is chosen for each requested (location, resourceType)

pair. As there could be multiple requests on each resource at an instance, (i) the

availability of the first ranked resource can change (ii) the first ranked resource can be

scheduled to perform some other task with overlapping timings of the current requested

time slot. These outcomes are possible upon the processing of other requests, while the

selection of the current request is in process. Thus, the availability status and the

scheduled timings of the first resource in the ranked list are checked with the entries in its

local registry. . If the resource is scheduled to execute some other request or if it becomes

unavailable, the algorithm selects the next ranked resource from the list and continues the

process until the resource can be successfully mapped to the request. The resources

selected are the best possible combination with minimal selection time.

3.3.5 Update the local registry

The local registries, to which the final selected resources belong to, are updated with their

new status and scheduled time (if any).

3.3.6 Establish connection among selected resources

27

If the request is to be handled instantaneously, the request details are sent to the

Execution manager. Otherwise, the scheduler handles the request as per its scheduled

time by sending the request details to the Execution Manager.

Figure 4: SP-level abstract view of Map Reduce implementation in SATS architecture

28

CHAPTER IV

SIMULATION

4.1 Objective of the simulation

The aim of the simulation is to validate the proposed RS algorithm to address problems

specific to the Quality-of-Service parameters of the resource allocation in a large

clustered SP environment. To achieve the goals with the minimal processing time for

selection of resources, we implemented this algorithm on a varying number of large SPs

in the market, with a varying number of computational nodes in each SP. For a request,

the selection time for each combination is provided and its performance is understood

from the graphs. For multiple overlapping resources in the requests, we provided the

selection time for varying number of overlapping requests.

4.2 Development tools and programming languages

All the experiments were conducted on an AMD Opteron 2212 CPUs, with 4G of RAM

(6G of virtual memory), running on CentOS 5.5. We implemented our algorithm in Java

using Eclipse 3.5.1 IDE.

29

4.3 Assumptions

The architecture of the SATS is composed of various components involving the

functionalities such as user web interface, web services, request interpretation, generating

execution plan, message passing among different managers, etc. Therefore, we

implemented RS algorithm in a java package with its inputs as the user request details,

and output as the selected resources with backup resources list. We created a large

resource information database (each file with a number of resources ranging from

millions to billions, with database file sizes ranging from MBs to GBs) randomly in the

local registry of each SP used in the experiment.

We assume each SP in the market with an equal number of resources, though each SP

may own varying number of resources.

4.4 Experimental Design

We studied the effect of the RS algorithm on resource selection time and its Quality-Of-

Service such as cost, timing constraints, service denial, failure recovery, and scheduling

the tasks, with varying number of Service Providers and their nodes, and resources.

Our hypothesis is that the implementation of the RS algorithm in WSANs selects cost-

effective resources that satisfy the request, with a minimal resource selection time,

provides failure tolerance, and minimal service denial.

4.4.3 Network Units

 Network consisting of 5, 10, 15, 20, 25, 30 SPs.

 Each SPs consisting of 10, 20, 30, 40, 50 nodes.

 Each SPs consisting of 10M, 100M, 1B resources (M: Millions, B: Billions).

30

 4.4.4 Independent Variables

 Request consisting of Resource Type, Location

 LocalSP – The SP with whom the request was raised.

 Proximity – The radius considered from the actual location of resource requested.

 Number of resources each SP has.

 Number of SPs, and their nodes.

 Time to use – Time slot that the resource should be available/dedicated to perform the

requested task.

4.4.5 Control

The simulation is based on the Quality-of-Services provided by the Service Providers

using the RS algorithm.

4.4.6 Replication

The experimental units have been simulated several times. An average value of all the

trials is taken to plot the results.

4.4.7 Levels and Repeated Trials

LEVELS (NO. OF SPs IN THE NEWTORK, S) 5 10 15 20 25 30

FOR EACH LEVEL OF SP, NO. OF NODES IN THE SPs, N 10 20 30 40 50 60

REPEATED TRIALS 30 30 30 30 30 30

The above trails were performed for SPs with 10 Million and 100 Million resources each.

31

LEVELS (NO. OF SPs IN THE

NEWTORK, S)

3 5

FOR EACH LEVEL OF SP, NO. OF

NODES IN THE SPs, N

10 20 30 40 50 100 150 200 250 300

REPEATED TRIALS 30 30 30 30 30 30 30 30 30 30

The above trails were performed for SPs with 1 Billion resources each.

NO. OF NODES IN THE SPs, N 10 20 30 40 50

NO. OF REQUESTS IN THE NETWORK 1000 2000 3000 4000 5000

REPEATED TRIALS 30 30 30 30 30

The above trails were performed in a network of 5 SPs, with a probability of overlapping

requests as 1%.

4.4.8 Dependent Variables

 The best and the backup resource(s) are listed.

 Time (in msec) taken to select the best resources that satisfy the QoS parameters

specific to resources. The calculated time is the difference between the system clock

noted during the start and completion of the process/algorithm. The speed of

execution of the process is also dependent on the system configuration on which it is

executed, and several other common factors which affect the speed of a system. For

consistency, several repeated trails were made and the average time is taken to plot

the graphs.

32

4.4.9 Simulation Steps:

Let s be the number of SPs available in the market, n be the number of nodes available in

each SP, p be the number of (resourceType,location) pairs requested by the user, and k be

the number of resources, then the steps in the execution of the RS algorithm are as

follows:

Step-1: Each SPi cluster, where 1 ≤ i ≤ s, consisting of one Master node „M‟ and n

number of independent Slave nodes {N1, N2, N3, …Nn}, is configured.

Step-2: The resource type and the locations in the form {(resourceType1, location1),

(resourceType2, location2), (resourceType3, location3),…. (resourceTypep, locationp)},

along with the physical radius „P‟ (optional) are collected from the user. These resource

type and location pairs are stored in a list, list_of_resources_requested.

for (each input = (resourceTypei, locationi))

 list_of_resources_requested += (resourceTypei, locationi)

Step-3: The Master node „M‟ initiates the processing of the records in the registry {r1, r2,

r3,….rk}, where ri ϵ SPi.

Step-4: The Master node M allocates a set of records in the registry to each slave node

allowing them to process independently.

 for (each resource in local registry)

 random.Allocate(slave_node Ni) where 1≤ i ≤ n

random.Allocate arbitrarily assigns each resource to a slave node belonging to its SP.

33

 Step-5: The registry is filtered in parallel by the slave nodes, (rk (AvailbilityFlag)=Y

 rk (ActiveFlag)=Y).

 for (each resource rk assigned by its Master node)

 if (AvailbilityFlagk == Y && ActiveFlagk == Y)

 goto Step-6

 else

 resource_reject

 goto Step-4

Where resource_reject rejects the current resource to perform the requested task and

continues the process by considering the next resource assigned by its Master node.

Step-6: The locations {l1,l2,…lm} of the resourceTypep within the physical range „P‟ of

the corresponding locationp are calculated.

Step-7: The requested resource list is updated with the {lm,resourceTypep} where lm is in

the physical range of locationp.

if (li ≤ coordinates(locationp) +P || li ≤ coordinates(locationp) - P)

 list_of_resources_requested += (resourceTypei, li)

Step-8: Map function is applied on the resulting records such that rk(location)=locationp,

rk(resourceType)=resourceTypep, and lm ϵ rk(resourceType,location). Hence each slave

node Nn generates intermediate_list_map, a list of intermediary (resourceType,location)

key and (resourceId, cost) value pairs, resulting in a total of „n‟ lists; of type

(resourceTypep, locationp).

34

 if (locationk == locationp && resourceTypek == resourceTypep)

intermediate_list_map+ = (resourceIdk, costk, (rescourceTypep,

locationp))

Step-9: These n lists are combined and categorized into p sub-lists; of type

(resourceTypep, locationp) using the reduce function. (This gives the list of available

resources with each Service Provider, at the locations specified by the user, and also

within the physical range of the requested locations). The resulting combined list is

denoted as list_reduce.

 for (each intermediate_list_map.element)

list_reduce(resourceTypep,locationp)+=

intermediate_list_map.element(resourceTypep,locationp)

Step-10: Step-3 to Step-8 is repeated for each SPi, where 1 ≤ i ≤ s.

Step-11: The list obtained from each SPi is combined to form a single list consisting of

all the resources which can perform the requested tasks, using the Combine function.

(This gives the list of available resources with all the Service Providers available in the

market, at the locations specified by the user, and also within the proximity range of the

requested locations). The resulting combined list is denoted by list_combine.

for (each list_reduce.element)

list_combine(resourceTypep,locationp)+=

list_reduce.element(resourceTypep,locationp)

 Step-12: The resulting list is ranked on the basis of cost parameter within the list.

35

 for(each list_combine(resourceTypep,locationp))

 sort(list_combine(resourceTypep,locationp), cost)

Step-13: The highest ranked resource is selected from each sub-list. Its latest status and

the scheduled time are checked. If the requested time overlaps with the scheduled time in

the resource details in the local registry, the next ordered resource in the list is selected

and this process continues until a resource is found without any overlapping time slots.

The resource without any overlapping time slots is selected and the scheduled time slots

are updated with the requested time slot.

 for(each list_combine(resourceTypep,locationp))

 resource_selected=resource_list(resourceTypep,locationp).first ()

 while(resource_finalized_flag == false)

 if (requested_time_slot in resource_selected(scheduled_time_slots))

resource_selected=

resource_list(resourceTypep,locationp).next ()

 else

 resource_selected(scheduled_time_slots).update()

=requested_time_slot

 resource_finalized_flag=true

Step-14: Repeat Step-13 for each resource requested, with the list of available

corresponding resources in the market.

The output of the RS algorithm after step-14 is the best available resources for all the

requested resources in the request, after considering all the QoS parameters.

36

The results of our experiments are shown below. The experiments are performed with a

varied number of SPs, nodes, and resources available at each SP. The final graph is a

probability of 1% of overlapping requests on a resource at an instance of time against

varying number of nodes.

Figure 5: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each

with 10 million resources.

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

5 SPs with 10M resources each

37

Figure 6: Selection time (in msec) vs. number of nodes in a market of 10 Service Providers, each with 10

million resources.

Figure 7: Selection time (in msec) vs. number of nodes in a market of 15 Service Providers, each with 10

million resources.

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

10 SPs with 10M resources each

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

15 SPs with 10M resources each

38

Figure 8: Selection time (in msec) vs. number of nodes in a market of 20 Service Providers, each with 10

million resources.

Figure 9: Selection time (in msec) vs. number of nodes in a market of 25 Service Providers, each with 10

million resources.

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

20 SPs with 10M resources each

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

25 SPs with 10M resources each

39

Figure 10: Selection time (in msec) vs. number of nodes in a market of 30 Service Providers, each with

10 million resources.

Figure 11: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each with

100 million resources.

0

20

40

60

80

100

120

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

30 SPs with 10M resources each

0

200

400

600

800

1000

1200

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

5 SPs with 100M resources each

40

Figure 12: Selection time (in msec) vs. number of nodes in a market of 10 Service Providers, each with

100 million resources.

Figure 13: Selection time (in msec) vs. number of nodes in a market of 15 Service Providers, each with

100 million resources.

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of nodes

10 SPs with 100M resources each

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

15 SPs with 100M resources each

41

Figure 14: Selection time (in msec) vs. number of nodes in a market of 20 Service Providers, each with

100 million resources.

Figure 15 Selection time (in msec) vs. number of nodes in a market of 25 Service Providers, each with

100 million resources.

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 o
f

m
se

c

No. of nodes

20 SPs with 100M resources each

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

25 SPs with 100M resources each

42

Figure 16 Selection time (in msec) vs. number of nodes in a market of 30 Service Providers, each with

100 million resources.

Figure 17 Selection time (in msec) vs. number of nodes in a market of 3 Service Providers, each with 1

billion resources.

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

30 SPs with 100M resources each

0

500

1000

1500

2000

2500

3000

3500

50 100 150 200 250 300

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

3 SPs with 1B resources each

43

Figure 18: Selection time (in msec) vs. number of nodes in a market of 5 Service Providers, each with 1

billion resources.

Figure 19: Increase in selection time (in msec) vs. increase in number of overlapping resource inputs.

0

500

1000

1500

2000

2500

3000

50 100 150 200 250 300

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Nodes

5 SPs with 1B resources each

0

100

200

300

400

500

600

1000 2000 3000 4000 5000

Se
le

ct
io

n
 T

im
e

 in
 m

se
c

No. of Inputs

Selection Time Vs No. of Inputs

44

4.5 Observations

From the graphs depicting the selection time for varying number of SPs, nodes, and

number of resources, we observe that the selection time is affected with the change in the

number of computational nodes, and number of resources. The selection time decreases

significantly with the increase in the number of nodes on each SP, as parallel

computation dominates aggregation of lists from each node. Moreover, the selection time

varies negligibly with increase in the number of nodes after a certain limit, as the

aggregation impacts the parallel computation.

The number of SPs does not impact the selection time much, as they execute in parallel.

However, there is a processing overhead due to the aggregation of data from each SP.

 It is also observed that the increase in overlapping resource requests increases the

selection time due to the overhead of checking the latest availability status of each

resource in the final list of ranked resources, sequentially. This process continues until it

finds a resource, from the final list, which has not been mapped to another request.

45

CHAPTER V

CONCLUSIONS

With growing technology developments and increase in the usage of sensing and

actuating resources in day-to-day life, there is a need for an efficient and robust

architecture to provide these resources as services in an efficient and cost effective

manner.

The goal of the SATS architecture is to provide inter-operability among SP instances in

the market, with an ability to efficiently search and schedule the resources available in

order to execute the sensing and actuating activities requested by the user. Some of

problems to be addressed that are specific to resource selection include satisfying the

QoS by considering possible service denial, efficient resource utilization, satisfying

timing constraints, resource information hiding, cost constraints, failure tolerance,

overlapping and location dependent resource requests. In addition to addressing these

QoS related problems, the goal is to have a minimal selection time to map the resources

to a request.

To support the above QoS, we proposed a RS algorithm based on a Map Reduce

framework. We simulated an application implementing the RS algorithm on the current

46

status of each resource belonging each available SP. Simulations to measure selection

time while satisfying the QoS problems, the change in the selection time with varying

number of resources, overlapping resource usage requests, etc. were conducted. The

results demonstrate the effect of the number of nodes and resources in each SP on the

selection time of the cost effective resources available in the market, to perform the

requested tasks. The proposed architecture will provide the optimal selection time with

increasing QoS.

47

CHAPTER VI

FUTURE WORK

With the rapid increase in the usage of Sensors and Actuators to perform day-to-day

activities, future work should investigate the implementation of the SATS architecture

with real time Sensors and Actuators, and determine its performance. The

implementation of the Interpreter, which divides a request into sub-tasks and generates

the execution plan, will be be addressed. The execution of the tasks as per the scheduled

time with the selected resources should be implemented using a real-time scheduling

algorithm that works at the resource level.

48

REFERENCES

1. T. Melodia, D. Pompili, V. C. Gungor, A. F. Akyildiz, “Communication and

Coordination in Wireless Sensors and Actors Networks”, IEEE Transactions on

Mobile Computing, Vol. 6, No. 10, pp. 1116-1129, October 2007.

2. F. Xia, Y.C. Tian, Y.J. Li, Y.X. Sun, “Wireless Sensor/Actuator Network Design for

Mobile Control Applications”, Sensors , Vol. 7, No. 10, pp. 2157-2173. 2007

3. T. Melodia, D. Pompili, I. F. Akyildiz, “Handling Mobility in Wireless Sensor and

Actor Networks”, IEEE Transactions on Mobile Computing, Vol. 9, No. 2, pp. 160-

173, Feb 2010.

4. A. Rezgui, M. Eltoweissy, “Service-oriented sensor-actuator networks: Promises,

challenges, and the road ahead”, Computer Communications, Vol. 30, pp. 2627-

2648, 2007.

5. J.W. Branch, L. Chen, and B.K. Szymanski, “A Middleware Framework for Market-

Based Actuator Coordination in Sensor and Actuator Networks”, ACM International

Conference on Pervasive Services, Sorrento, Italy, ACM Press, pp. 101-110, July 6-

10, 2008.

6. F. Xia, “QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks”,

Sensors, Vol. 8, pp. 1099-1110, 2008.

7. J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”

6th Symposium on Operating System Design and Implementation, San Francisco, CA,

Dec. 2004.

8. Wireless sensor network, http://en.wikipedia.org/wiki/Wireless_sensor_network, (last

accessed Jan 22, 2011)

9. A. Koubaa, M. Alves, “A Two Tiered Architecture for Real-Time Communications in

Large-Scale Wireless Sensor Networks: Research Challenges”, IRISA Research

Report, number PI-1723, pp. 33-36, July 2005.

10. I. A. Ismail, I. F. Akyildiz, I. H. Kasimoglu, “Wireless sensor and actor networks:

Research challenges”, Ad Hoc Networks, Vol.2, pp. 351–367, 2004.

http://en.wikipedia.org/wiki/Wireless_sensor_network

49

11. F. Dressler, I. Dietric, R. German, B. Kruger, “A Rule-based System for

Programming Self-Organized Sensor and Actor Networks”, Elsevier Computer

Networks, Vol. 53, pp. 1737-1750, 2009.

12. S. Craciunas, A. Haas, C. Kirsch, H. Payer, H. R¨ock, A. Rottmann, A. Sokolova, R.

Trummer, J. Love, and R. Sengupta, “InformationAcquisition-as-a-service for Cyber-

physical Cloud Computing,” 2nd USENIX conference on Hot topics in cloud

computing, pp. 14, 2010.

13. M. Krüger, R. Karnapke, J. Nolte, “Controlling Sensors and Actuators Collectively

Using the COCOS-Framework”, ACM Conference on SANET, Montréal, Québec,

Canada, pp. 53-54, 2007.

14. S. Sastry, S. S. Iyenger, “SReal-Time Sensor–Actuator Networks”, International

Journal of Distributed Sensor Networks, Vol. 1, pp. 17–34, 2005.

15. The Future of Cloud Computing, http://pewresearch.org/pubs/1623/future-cloud-

computing-technology-experts (last accessed Feb 2, 2011).

16. D. Martíne, F. Blanes, J. Simo, A. Crespo, “Wireless Sensor and Actuator Networks:

Characterization and Case Study for Confined Spaces Healthcare Applications”,

International Multi-conference on Computer Science and Information Technology,

pp. 687 – 693, 2008.

17. Large Scale Data Analysis with Map/Reduce,

http://www.slideshare.net/marin_dimitrov/large-scale-data-analysis-with-mapreduce-

part-i (Last accessed Feb 6, 2011).

18. S.F. Li, “Wireless sensor actuator network for light monitoring and control

application”, 3rd IEEE Consumer Communications and Networking Conference, Vol.

2, pp. 974- 978, 2006.

19. D. I. Curiac, C. Volosencu, “Urban Traffic Control System Architecture Based on

Wireless Sensor-Actuator Networks”, 2nd International Conference on

Manufacturing Engineering, Quality and Production Systems, pp. 259-263, 2010.

20. T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka, P.I. Corke, C. Lee, J.

Henshall, K. Prayaga, J. O'Grady, M. Reed, A. Fisher,“The design and evaluation of

a mobile sensor/actuator network for autonomous animal control”, International

Conference on Information Processing in Sensor Networks (IPSN), pp. 206-215,

2007.

21. Cloudera MapReduce Algorithms, http://www.scribd.com/doc/13305093/Hadoop-

Training-5-MapReduce-Algorithm (Last accessed Feb 10, 2011).

22. Understanding Service Oriented Architecture, http://msdn.microsoft.com/en-

us/library/aa480021.aspx (Last Accessed Jan 20, 2011).

23. T. Rajendran, P. Balasubramanie, “Analysis on the Study of QoS-Aware Web

Services Discovery“, Journal Of Computing, Vol. 1, No. 1, pp. 119-130, Dec 2009.

http://pewresearch.org/pubs/1623/future-cloud-computing-technology-experts
http://pewresearch.org/pubs/1623/future-cloud-computing-technology-experts
http://www.slideshare.net/marin_dimitrov/large-scale-data-analysis-with-mapreduce-part-i
http://www.slideshare.net/marin_dimitrov/large-scale-data-analysis-with-mapreduce-part-i
http://www.scribd.com/doc/13305093/Hadoop-Training-5-MapReduce-Algorithm
http://www.scribd.com/doc/13305093/Hadoop-Training-5-MapReduce-Algorithm
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://msdn.microsoft.com/en-us/library/aa480021.aspx

VITA

Thrishukanth Dasari

Candidate for the Degree of

Master of Science

Thesis: SENSING AND ACTUATING TASKS AS SERVICES AND ITS QUALITY

OF SERVICES IN LARGE CLUSTERED ENVIRONMENTS

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in July, 2011.

Received the Bachelor of Engineering degree in Computer Science at Osmania

University, Hyderabad, AP, India in 2007.

Experience:

Graduate Technical Linux Lab Assistant at Physical Sciences, Oklahoma State

University, Stillwater, OK July 2010- May 2011

Research Assistant under Dr. Johnson P. Thomas, Oklahoma State University,

Stillwater, OK Jan 2010- June 2010

Software Engineer at Mahindra Satyam Computer Services Limited,

Hyderabad, India June 2007- July 2009

Intern at Tata Consultancy Services, Hyderabad, India Dec 2006- June 2007

ADVISER‟S APPROVAL: Dr. Johnson P. Thomas

Name: Thrishukanth Dasari Date of Degree: July, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SENSING AND ACTUATING TASKS AS SERVICES AND ITS

QUALITY OF SERVICES IN LARGE CLUSTERED ENVIRONMENTS

Pages in Study: 49 Candidate for the Degree of Master of Science

Major Field: Computer Science

With the proliferation of sensors and actuators in today's world, we envisage the world as

an inter-connected network of millions of Sensing and Actuating resources performing

multiple tasks in everyday life. These distributed resources are capable of performing

tasks that monitor and/or affect the parameters of the physical and environmental entities.

To perform a task, the user might require a single or group of sensors and/or actuators,

which are offered by multiple Service Providers in the market.

The ability to trigger these tasks without the user having to determine the owner of the

service, schedule tasks by searching and determining the availability of resources, in a

location-independent manner, is provided by enabling the Sensor and Actuator resources

as services. We propose an architecture called SATS (Sensing and Actuating Tasks as

Service) that provides the ability to trigger sensing and actuating tasks over the Internet

by selecting the best combination from the available resources, including the resources

owned by other Service Providers. Selection of the best possible resources amongst the

available resources is a challenge as many problems related to QoS have to be addressed.

We propose a solution based on the Map-Reduce framework and develop the RS

(Resource Selection) algorithm to address the problem of resource selection, in a network

of service providers provide sensing and actuator services that are composed of large

numbers of sensors and actuators.

