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Abstract 
 

Urbanization is generally understood as the process of growth in both population and 

developed areas. However, this perception is not entirely reflective of the types of 

change that are occurring in the heart of the United States. The Rust Belt region of the 

United States was once the beacon of industrial power, but today is riddled with 

shrinking cities that have experienced a dark modern history laced with loss of 

industrial economies, drastic declines in population, and crippled governments. 

Residential and commercial properties in these cities have been prone to high rates of 

abandonment, decay, and demolition. While much of the research surrounding these 

shrinking cities focuses on socio-economic effects, few studies have investigated the 

physical artifacts of drastic population loss in the United States. This research aims to 

contribute to the growing body of shrinkage research by examining two cost-efficient 

methods of monitoring the fast removal of buildings in the Rust Belt shrinking cities of 

Detroit, Michigan and Youngstown, Ohio. This goal is achieved through the use of a 

range of different data sources: Light Detection and Ranging, aerial orthoimagery, and 

GIS datasets all of which are publicly available. We map a 5-year change in Detroit as 

well as a 10-year and 19-year change in Youngstown to provide, in high detail, an 

example of how publicly available geospatial data can be applied to identify change in 

the urban landscapes of the American Rust Belt. The methods used are reproducible and 

ideal for municipalities that are aiming to monitor building removal in a cost-efficient 

manner.
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Chapter 1: Introduction to Shrinking Cities and Housing 

Abandonment in the United States 
 

Approximately 80% of the population of the United States resides in an urban 

area. With the global urban population projected to exceed 6 billion people by 2050, 

that proportion is expected to near 90% (DESA, 2014). Although more people are 

beginning to reside in urban areas, the spatial distribution of urban population growth in 

the United States is not uniform. Continuous population growth is expected to occur in 

the dominant cities of New York City, New York; Chicago, Illinois; and in cities along 

the western coast centered on Los Angeles, California. The Texas metropolises of 

Dallas, Fort Worth, Houston, Austin, and San Antonio as well as the Phoenix, Arizona 

metropolitan area are considered to be some of the fastest growing cities in the United 

States (United States Census Bureau, 2016).  

While cities experiencing the strongest growth in populations are predominantly 

scattered along the coastal and southern regions of the country, several cities in other 

areas have been declining in population for several decades. For these cities in decline, 

some have experienced population declines in excess of 50% (Robert A. Beauregard, 

2009).  

The standard term for a city that has experienced drastic and sustained 

population decline is a “shrinking city” (Hollander, 2010). Urban shrinkage is not 

isolated to the United States and a fair amount of research has focused on the rebuilding 

and restructuring of shrinking cities in post-World War II eastern European countries. 

In the United States, cities located in the “Rust Belt” region of the U.S. serve as the 

classic examples of shrinking cities. This colloquially-defined region of the country 
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spans from western New York state and Pennsylvania across the Midwestern states of 

Ohio, Michigan, and Indiana into portions of northern Illinois and far southern 

Wisconsin. The Rust Belt is home to cities such as: Detroit, Michigan, Buffalo, New 

York, Toledo and Cleveland, Ohio, Pittsburgh, Pennsylvania, and Indianapolis, Indiana 

which are all major industrial centers for automotive and mining industries. Smaller 

cities such as Youngstown, Ohio; Parkersburg, West Virginia; and Gary, Indiana help to 

make up the predominantly industrial, also referred to as “blue collar” workforce of this 

region. Prior to the 1930s, very few cities in the United States experienced shrinkage 

and those that did were because of relocation of port and railroad businesses (Robert A 

Beauregard, 2003). While the cities of Chicago and Indianapolis have continued to 

grow in population, most of the other cities within the Rust Belt have been declining 

significantly since their peak populations were reached, respectively (Table 1). The 

causes of shrinkage varies from city to city, but the most common cause in Rust Belt 

cities is economic struggle induced by the decline of mining operations, technological 

advancements that lured employees away from the city, and the decentralization and 

relocation of industrial corporations (Martinez-Fernandez, Audirac, Fol, & 

Cunningham-Sabot, 2012; Siljanoska, Korobar, & Stefanovska, 2012; Wiechmann & 

Pallagst, 2012). 
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Table 1: Population Changes from Peak-2010 in Rust Belt Cities 

 

Detroit, Michigan has long served as the poster-child for urban shrinkage. 

Following a rapid population increase as a result of the military buildup associated with 

World War II, racial tension began to flare in the predominantly white city. The Race 

Riots of 1943 served as the crux for population decline. Post-WWII Detroit saw the 

beginnings of the “white flight” out of the city center into suburbia (Jego, 2006; Sugrue, 

2014; Thomas & Bekkering, 2015; Thompson, 2004). With this flight came economic 

downturn when several large automotive plants, such as the Packard Plant, were forced 

to declare bankruptcy and eventually close. Population loss and economic decline were 

perpetuated following the second round of race riots in 1967 in which thousands of 

businesses were vandalized or destroyed, causing upwards of $50 million in damages to 

the city. The 1967 riots continued to push financially stable families from the city into a 

safer suburbia and resulted in low income peoples moving into the city center (Jego, 

2006; Sugrue, 2014; Thomas & Bekkering, 2015; Thompson, 2004). Unable to produce 

enough tax revenue to revitalize businesses that were lost in the riots, Detroit’s 

economy continued to flounder with increasing numbers of job and urban population 

losses. 

City Peak Population (Year) Population 2010 
% 

Change 

Detroit, Michigan 1,849,568 (1950) 713,777 -61% 

Youngstown, Ohio 170,002 (1930) 66,982 -61% 

Cleveland, Ohio 914,808 (1950) 396,815 -57% 

Pittsburgh, Pennsylvania 676,806 (1950) 305,704 -55% 

Buffalo, New Yok 580,132 (1950) 261,310 -55% 

Gary, Indiana 178,320 (1960) 80, 294 -55% 

Toledo, Ohio 383,818 (1970) 287,208 -31% 

Parkersburg, West Virginia 44,797 (1960) 31,492 -30% 
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Once known as the gem of “Steel Valley,” the city of Youngstown has 

continued to lose population since its peak in 1930. During the 1930s and 1940s, the 

decline in population occurred at a slow rate, but following a strike of steel mill workers 

during the height of the Korean War in the early 1950s, the rate of decline increased 

rapidly. Youngstown’s economy crumbled following the seizure of the city’s steel mills 

at the hands of the federal government during the strike. In addition to difficult 

employment conditions, extreme segregation in the city provoked the destruction of 

black neighborhoods in exchange for ghettos. Much like Detroit, the turbulent 

environment led to race riots in the early 1960s and assisted in people leaving the city. 

During this period, organized crime seized control of many facets of the government up 

through the 1990s, encouraging and increase in violent crime rates for which the city is 

still notorious.  

The consistently declining populations in addition to the lack of economic 

opportunity have led to an increase in the number of vacant and abandoned properties in 

shrinking cities, most notably in Detroit and Youngstown. Although the struggles with 

land abandonment have been plaguing the rust belt for decades, the number of vacant 

and abandoned homes increased significantly in shrinking cities following the 2008 

housing crisis which struck the United States which caused hundreds of thousands of 

home foreclosures following (Martinez-Fernandez et al., 2012; Ryan, 2008). While 

some of the literature uses the terms “vacant” and “abandoned” interchangeably, here 

the definitions outlined in (Hillier, Culhane, Smith, & Tomlin, 2003) are adopted; where 

vacancy is identified as a temporary state and abandoned indicates a permanent state. 

Vacancy most commonly refers to vacant lots in which a building once stood, but has 
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been removed and where development projects could potentially occur. Physical 

abandonment of a home occurs when no persons have resided in the property for at least 

two years (Hollander, Pallagst, Schwarz, & Popper, 2009) and the property itself has 

been neglected (i.e. overgrown vegetation, broken windows, missing roof shingles, 

etc.). Financial abandonment occurs when a person has discontinued their financial 

responsibility (most commonly a mortgage loan). In most cases, financial abandonment 

leads to physical abandonment (Hillier et al., 2003). Unattractive homes become 

difficult to sell which then leads to a continued lack of physical maintenance and 

ultimately puts a building on the path to becoming structurally compromised, eventually 

disintegrating into shambles and posing a threat to neighborhood residents (Alsup, 

2016). As a result, recent literature has begun to call for research on the changing land 

cover patterns that are emerging in shrinking cities (Frazier, Bagchi-Sen, & Knight, 

2013; Großmann, Bontje, Haase, & Mykhnenko, 2013; D. Haase, 2013). 

Most cities have an independent form of managing changes in development, but 

the most common approach that still exists in shrinking cities is a pro-growth strategy 

which encourages the sale of land to be used in development. Criticisms of pro-growth 

strategies show that its roots lie in trickle-down economics which has often been 

accused of favoring the wealthy, however such an approach could help jumpstart the 

struggling economies of shrinking cities (Weaver, Bagchi-Sen, Knight, & Frazier, 

2017). Detroit has made strides to promote the revitalization of their downtown region 

through large scale development projects such as the building of the Cabo Center, 

which cost roughly 280 million dollars, in an effort to encourage private investments in 

developments.  
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Detroit uses a pro-growth strategy that manages vacant lots and abandoned 

properties through two main approaches. The first focuses on the cheap sale at of 

properties at auctions, however these auctions often do not occur in the most distressed 

areas of the city. Dewar and Thomas (2012) found that from 2002-2010, only 18% of 

the properties from neighborhoods with high rates of vacant and abandoned properties 

available at auction were purchased and an overwhelming majority of those were sold 

to real estate companies in hopes that it would increase the amount of urban 

development. The second pro-growth strategy used in Detroit is one of demolition - 

intentionally clearing vacant and abandoned properties owned by the city to be used for 

private development. While both strategies aim to achieve economic growth by 

encouraging redevelopment, the demolition course has been heavily favored over 

auction based sales of land (Dewar & Thomas, 2012; Weaver et al., 2017). 

Additionally, neither of these methods have alleviated the declining population. The 

United States Census Bureau (2015) estimates suggest that the population is still 

declining, reaching its lowest population since the early 1900s. 

Although several shrinking cities have adopted pro-growth strategies, 

Youngstown, has blazed the trail toward a management strategy that aims to provide a 

sustainable future for the residents of their city rather than the encourage the growth of 

new populations. This approach, known as “smart-decline” (Hollander et al., 2009; 

Rhodes & Russo, 2013), allows urban planners to plan for fewer people, making their 

job focus more on sustainable small scale development rather attempting to plan large 

scale development that may never come. Similar to pro-growth strategies, smart-decline 

has a strong focus on demolition of abandoned properties and favors vacant lands for 
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alternative uses such as community gardens and parks in lieu of heavy redevelopment 

(Schilling & Logan, 2008).  

Many of America’s Rust Belt cities have been consistently declining in 

population for over 50 years primarily as a result of the decentralization and relocation 

of industrial jobs, racial tensions, and increase crime rates within the city. Combined, 

these issues have led to an increase in the number of vacant and abandoned properties 

which have been left to rot. The presence of these properties makes it challenging for 

cities to encourage investment from private industry and convince new people to move 

into their city (Hackworth, 2015; Hackworth & Nowakowski, 2015; Rhodes & Russo, 

2013). Multiple management styles exist for handling these abandoned lands. Two 

notable approaches are that of pro-growth that is used in Detroit and smart-decline 

which is used in Youngstown. While both aim to assist their respective economy and 

influence declining populations in different ways, they are common in that they both 

include strong demolition efforts to fight blight in their cities. These programs have 

encouraged the rapid removal of buildings over the course of the last decade and have 

increased the number of vacant lots. The fast paced demolition of structures could 

potentially have environmental impacts (A. Haase, Rink, Grossmann, Bernt, & 

Mykhnenko, 2014; D. Haase & Schetke, 2010) that have yet to be explored in shrinking 

cities, thus monitoring where building removal is occurring is important to the body of 

shrinkage literature. This research aims to explore methods for which building removal 

can be monitored in a cost effective manner and attempts to provide city-wide maps of 

changes in urban land cover of two Rust Belt shrinking cities.  
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Chapter 2: Tracking the Removal of Buildings in Rust Belt Cities with 

Open-Source and Public Geospatial Data 
 

2.1. Introduction 

Exploring changes in urban land cover is important for understanding how 

human-environmental interactions impact natural processes and biodiversity in a region. 

In addition to removing native plant and animal species, the introduction of built 

environment can alter air quality and have damaging downstream effects on water 

quality and quantity (Foley et al., 2005; Grimm et al., 2008; Kowarik, 2011; McKinney, 

2008). Because the global urban population is projected to increase to nearly 5 billion 

people by 2030, undoubtedly placing significant stress on already strained resources 

(Seto, Güneralp, & Hutyra, 2012), many urban land cover change studies tend to focus 

on rapidly urbanizing regions (Bhatta, Saraswati, & Bandyopadhyay, 2010; Hegazy & 

Kaloop, 2015; Jat, Garg, & Khare, 2008; Xu & Min, 2013). However, over the course 

of the last half-century, a dichotomy of urban environments has emerged in multiple 

regions of the world (A. Haase et al., 2014), but most notably in the United States. 

While the U.S. is home to several rapidly expanding metropolises, once-prosperous 

industrial centers are overshadowed and have steadily lost population. 

A city experiencing significant population decline in addition to decline in 

economic prosperity is known as a “shrinking city” (Robert A. Beauregard, 2009; 

Pallagst et al., 2009). The research surrounding the causes of shrinkage is vast, with 

many studies noting that the decentralization of industry, demographic tensions, crime, 

political corruption, and the shift in industrial power have contributed to the shrinkage 

problem across several areas of the globe (Rieniets, 2009; Ringel, 2014; Schetke & 



9 

Haase, 2008; Weaver & Holtkamp, 2015; Wiechmann & Pallagst, 2012). The majority 

of the most significantly shrinking cities in the U.S. are isolated to the Rust Belt region. 

This colloquial region spans roughly 500 miles across the heart of the U.S. and 

represents the spatial extent of the early twentieth century’s economic backbone. Much 

of the shrinkage research focusing on the U.S. examines cities such as Pittsburgh, 

Pennsylvania; Cleveland, Ohio; Detroit, Michigan; and Buffalo, New York which are 

all located within the Rust Belt (Rosenthal, 2008; Schilling & Logan, 2008; Weaver et 

al., 2017; Zingale & Riemann, 2013).  

Almost exclusively, the body of U.S. shrinkage research discusses the 

aforementioned contributors to population decline, but there has been a push toward 

examining the shifts in land use as a result of population loss (Hollander et al., 2009; 

Pallagst, 2010). Thomas and Bekkering (2015) used historical maps to show the 

progression of urbanization in Detroit. Additionally, they mapped historical land use in 

the city, but this does not provide much information on the actual presence of buildings. 

They did examine the presence of buildings on parcels of land in some portions of the 

city, but this was limited due to the datasets being used. Hollander (2010) conducted a 

case study of three neighborhoods in Flint, MI in which in-situ photographs were 

compared to population dynamics to examine reflections of population shifts on 

housing density. While this study was effective for the small study areas, the approach 

would not be ideal for an entire city. Hillier et al. (2003) used a large information 

system to monitor risk of housing abandonment in Philadelphia, PA. This study is 

notable in that it not only makes use of a large database, but it also identifies indicators 

of physical abandonment of a property such as overgrown vegetation. Most cities have 
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property information systems available through tax assessors, but they do not often 

contain property characteristics other than basic ownership, lot size, and address 

information. Replication of this study in a region with limited resources would require a 

significant amount of ancillary data. Ryznar and Wagner (2001) used remote sensing 

data (Landsat) to map urban greenness in Detroit, Michigan as a proxy for shifts in 

demography. This study found increased greenness in areas of suspected abandonment 

in addition to moderate to higher income areas. Although this study provides a snapshot 

of how the removal of the human influence from a property can change its land cover 

and biodiversity, it provides no information about the impacts of abandonment on the 

built environment.  

Urban shrinkage is not limited to the USA only. For example, D. Haase, Seppelt, 

and Haase (2008) examine land use changes in Leipzig, Germany as a result of 

shrinkage while suggesting that demolition of the built environment could influence 

fragmentation and ecological restoration. This suggests that examining the changes in 

the built environment is key to understanding how population loss not only influences 

the landscape, but also how that relationship provides positive feedback to natural 

processes that take place in these regions. Additionally, examining changes in built 

environment over time could assist in smart and sustainable shrinkage that will 

maximize environmental benefits (Rhodes & Russo, 2013). 

The manner in which land cover change studies are conducted in urban areas 

varies based on the nature of the environment being explored, but some of the most 

effective ways to analyze changes in urban land cover characteristics are through the 

use of remotely sensed and GIS datasets which allow the landscapes to be displayed in 
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high detail (Xiao et al., 2006; Yang, Xian, Klaver, & Deal, 2003; Yuan, Sawaya, 

Loeffelholz, & Bauer, 2005). Many studies use remotely sensed products such as 

Landsat data with a moderate resolution of 30-meters to examine urban land cover for 

multiple years (Fu & Weng, 2016; Sexton et al., 2013; Song, Sexton, Huang, Channan, 

& Townshend, 2016; Stefanov, Ramsey, & Christensen, 2001). While this publicly 

available product has been proven to be effective at analyzing large scale changes 

across urbanizing areas, the moderate resolution proves to be too coarse to use in 

shrinking cities research due to the overgeneralization of the landscape which misses 

small details on the surface (e.g. the removal of a small, singular structure such as a 

residential home). 

Classified products such as the National Land Cover Database (NLCD), a 

Landsat-derived product generated by the U.S. Geological Survey which contains 16 

land cover classes and has a 30-meter resolution (Homer et al., 2015), have appeared in 

the literature throughout the last decade and showcases density of the built environment 

with four different classes (Milesi, Elvidge, Nemani, & Running, 2003; Mitsova, 

Shuster, & Wang, 2011). As mentioned previously, spatial resolution is a problem, but 

even more so is the NLCD’s inability to revert a pixel in its urban density (Jin et al., 

2013), that is, once a pixel is classified as a certain urban density, it will either remain 

unchanged or increase in density from year to year. Thus, using the NLCD to examine 

changes in the built environment in a shrinking city would yield inaccurate results. 

Technological advances over the years have allowed for high and very high 

resolution products such as WorldView, Quickbird, and Ikonos to be used to analyze 

change in great detail, however, these products are often not freely available and can 
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become quite costly when the aim of a study is to explore the landscape of an entire city 

(Herold, Couclelis, & Clarke, 2005; Myint, Gober, Brazel, Grossman-Clarke, & Weng, 

2011; Novack, Esch, Kux, & Stilla, 2011; Pu, Landry, & Yu, 2011; Zhou, Huang, Troy, 

& Cadenasso, 2009). Using products such as these would yield results in high detail, but 

would be not be an ideal expenditure for cities that are struggling financially. 

Orthophotos are a viable alternative (Taylor & Lovell, 2012). Ortho imagery is often 

publicly available for multiple years and are usually flown at very high resolutions such 

as 1-foot or 0.5-foot resolutions, making features on the landscape easy to visually 

identify. 

An additional alternative is to use Light Detection and Ranging (LiDAR) data 

which is also publicly available and has the ability to showcase small details on the 

landscape at a very high resolution. LiDAR data provides the opportunity for complex 

landscapes to be identified while avoiding classification limitations associated with 

mixed spectral signatures. Much of the literature surrounding LiDAR research with 

respect to urban environments focuses on building detection and feature extraction 

(O'Neil-Dunne, MacFaden, Royar, & Pelletier, 2013; Verma, Kumar, & Hsu, 2006). 

Features can be extracted from the LiDAR point cloud (Tarsha-Kurdi, Landes, 

Grussenmeyer, & Koehl, 2007), from a digital surface model derived from the point 

cloud (Priestnall, Jaafar, & Duncan, 2000), or by using a combination of LiDAR data 

and other products such as aerial imagery, high resolution satellite imagery, and GIS 

databases (Cheng, Gong, Li, & Liu, 2011; Singh, Vogler, Shoemaker, & Meentemeyer, 

2012; Sohn & Dowman, 2007; Wu, Sun, Yang, & Yu, 2016). Building feature 

extraction has been shown to be an effective means of analyzing the landscape, but we 
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have not found any literature that explores the use of building feature extraction from 

LiDAR data to analyze shrinking cities. 

Here, we use publicly available LiDAR data, orthophotos, and GIS databases to 

identify the removal of structures in two U.S. shrinking cities and explore the rates at 

which shrinking cities are removing structures through demolition. In our first case 

study, we use extracted building footprints from LiDAR in combination with GIS 

survey data to classify changes in parcels. In our second case study, we use aerial 

imagery and demolition records to identify changes in parcels. As mentioned 

previously, while there are examples of some studies that have examined land use 

change in shrinking cities, we have not been able to find a city-wide analysis of how the 

presence of structures is shifting in the literature. We aim to map changes at various 

time scales and providing a snapshot of the contemporary urban landscape in the Rust 

Belt region of the United States. 

2.2 Study Region 

 The Rust Belt of the United States stretches from western New York state to far 

east Illinois and includes areas of western Pennsylvania as well as the states of Ohio, 

Michigan, and Indiana. The cities within this region were once primarily populated by 

the workers of the automobile and steel manufacturing industries, but many of them 

have been losing their populations since the height of the twentieth century. Figure 1 

shows the span of the Rest Belt for reference in this study. Because this region does not 

have a formal administrative boundary we created this figure by selecting cities that 

were identified as being typical Rust Belt manufacturing locations in Hobor (2013). A 

20 mile (32.2 km) buffer was created around each city to represent the mean U.S. 
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commuter distance to work which was identified in Rapino and Fields (2013). We then 

used the outermost portions of the buffers to create a boundary which encompasses all 

of the cities selected. Although the Rust Belt was once the standard for success in the 

industrial age, it is now characterized by its financial hardship and steady population 

decline. Notably contained within the region are the cities of Detroit, Michigan and 

Youngstown, Ohio which have been selected for analysis in this study. 

 

 

 

 

 

Figure 1: Rust Belt Region of the United States. The Rust Belt Region of the United 

States spans hundreds of kilometers and includes industrial centers of the metals and 

automotive industries. Basemap and Urban Areas © ESRI. 
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Detroit often serves as the prime example for shrinkage (Wiechmann & Pallagst, 

2012) because of its early rise to prominence in the automobile industry followed by its 

decades long spiral into socio-economic hardship. Detroit has an estimated current 

population of less than 690,000, but it has been grappling with drastic population loss 

since the height of the twentieth century. The city reached its peak population of 1.85 

million in 1950 and suffered a 61% decline to 711,000 by 2010 (United States Census 

Bureau).  The significant shrinkage came as a result of the decentralization and 

dispersion of the automobile industry, increased crime rates, political corruption, and 

economic downturn (Martinez-Fernandez et al., 2012; Siljanoska et al., 2012). Although 

Detroit continues to lose population, it has made significant strides to monitor the 

impacts of population decline on the landscape. 

Similar to expansive Detroit, Youngstown (estimated population of 65,000) has 

grappled with socio-economic challenges, but on a much smaller scale. Youngstown 

reached its peak population of 170,000 in 1930. By 2010, the population of the steel 

town had fallen by 60% to 67,000 (United States Census Bureau, 2010). Also like 

Detroit, Youngstown has made significant efforts to fight blight by adopting a smart 

shrinkage plan which emphasizes the removal of abandoned structures in an effort to 

make the city more sustainable (Rhodes & Russo, 2013). 

Detroit and Youngstown were selected for this study in an effort to provide a 

dichotomy of sizes – showing that not just large cities are impacted by the shrinkage 

problem. Additionally, the differences in data availability for each city made for 

interesting comparison and the need for different methods of analysis. 
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Detroit is contained within Wayne County in southeast Michigan and is nested along 

the Detroit River, which flows into Lake St. Clair to the Northeast and Lake Erie to the 

Southeast. For this study, we use the official municipal boundary of the City of Detroit, 

which expands 370 km2 (Figure 2a.), while neglecting the centralized communities of 

Hamtrack and Highland Park as well as all communities surrounding the city.  

Youngstown is contained primarily in Mahoning County is eastern Ohio, but a 

small fraction of the city expands into Trumbull County. Again, we will use the official 

municipal boundary for the City of Youngstown. This boundary has an area of 90 km2 

(Figure 2b.)
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Figure 2: a) Municipal boundary of Detroit, Michigan. b) Municipal boundary of 

Youngstown Ohio. Basemap source: © OpenStreetMap contributors, CC-BY-SA. 

 

a

) 

b) 
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2.3. Data 

2.3.1 Parcel Data 

 We used administrative parcel data that is survey grade in both Detroit and 

Youngstown. Residential parcels are approximately half the width of a 30-meter 

resolution pixel and allowed for a higher resolution classification that considered small 

details, i.e. residential structures, on the surface. Parcel data for Detroit was retrieved 

from the Data Driven Detroit (D3) web portal (http://datadrivendetroit.org/). Parcel data 

for Youngstown was retrieved from the Youngstown State University GIS Mapping and 

Data Center (http://cms.ysu.edu/administrative-offices/redi/gis-mapping-and-data-

center).  

2.3.2 LiDAR Data 

Airborne Light Detection and Ranging (LiDAR) data is a remote sensing 

product generated by using pulses of laser (LAS) light to sample the Earth’s surface and 

provide three dimensional point data of the terrain (Liu, 2008). Typically collected via 

aircraft, LiDAR gathers z coordinate (elevation above the surface) point data by 

transmitting pulses of light on an x,y (latitudinal, longitudinal) grid and recording the 

time elapsed from transmission to reception by the receiver (Zhang et al., 2003). 

LiDAR points can have many returns of the light pulses, but the first return 

measures the highest point the light contacts. The first return points often represent the 

rooftop of a building, top of vegetation canopy, or ground (if vegetation such as trees 

are not present). Because they are solid features, buildings often only have one return 

that represents the rooftop due to the inability of light to penetrate beyond that point 

(Zhang, Yan, & Chen, 2006). A point may have multiple returns if it has a complex 

http://datadrivendetroit.org/
http://cms.ysu.edu/administrative-offices/redi/gis-mapping-and-data-center
http://cms.ysu.edu/administrative-offices/redi/gis-mapping-and-data-center
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structure of multiple elevations. For example, LiDAR data can be used to identify trees 

because they often have many returns due to their complex spatial structure (Guo, 

Chehata, Mallet, & Boukir, 2011).  

We retrieved 205 2.25 km2 LiDAR scenes, Figure 3, from the USGS Earth 

Explorer website (http://earthexplorer.usgs.gov/) for Detroit from the 2009 USGS 

Wayne County LiDAR dataset. This scene shows a typical LiDAR point cloud 

classified by elevation (meters). The LiDAR for this project was flown from 16 April 

2009 through 3 May 2009. This topographic LiDAR dataset was collected as part of the 

3D Elevation Program under the USGS’ The National Map initiative. Following 

collection, points were classified to LAS version format specifications outlined by the 

American Society for Photogrammetry and Remote Sensing (ASPRS). The number of 

classes has grown considerably in recent years with updates to LAS format versions. 

Classes in current ASPRS format versions are extensive and include highly detailed 

information such as power lines. Previous formats were more limited in classification 

classes. Table 2 outlines classes included in ASPRS LAS version1.1. The raw LIDAR 

point clouds for Detroit were downloaded in ASPRS LAS format version 1.1 and 

included the following classes: 1-Unclassified, 2-Ground, 7-Low Point (noise), 8-Model 

key-point (mass point), and 12-Overlap Points. According to ASPRS (2005), points 

classified  as 1-Unclassified could be classified as structures, but were not explicitly 

assigned as such by the building classification algorithm that is used. This data was 

collected at a minimum resolution of one point per square meter and has a vertical 

accuracy RMSE of 18 cm. 

 

http://earthexplorer.usgs.gov/
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Table 2: LIDAR classification descriptions adapted from (ASPRS, 2005) 

Classification Description 

0 Never Classified 

1 Unclassified* 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

9 Water 
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Figure 3: LIDAR scenes that were used for building detection in Detroit, MI. The 

shaded box denoted in on the city map (left) represents the geographic location of the 

inset sample LIDAR scene (right). Inset shows the point cloud classified by elevation 

for one 1.5 km2 scene. 
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2.3.3 Orthoimagery in Youngstown 

Orthophotography for 1998, 2006, and 2013 was used in lieu of LiDAR data for 

the City of Youngstown. Orthophotos are aerial photographs that have been digitally 

corrected to account for feature displacement (USGS) 

(https://lta.cr.usgs.gov/high_res_ortho). These images were collected as part of the Ohio 

Statewide Imagery Program (OSIP). The 1998 and 2006 images have resolutions of 1 

foot while the most recent 2013 product has a resolution of 0.5 feet. Data was accessed 

through the Ohio Geographically Reference Information Program (OGRIP) web portal 

(http://ogrip.oit.ohio.gov/). 

The 2006 orthophotos were flown by the State of Ohio in the months of March 

and April in leaf-off conditions. The 2013 orthophotos were flown by Mahoning 

County in partnership with the Ohio Statewide Imagery Program as part of the 2013 

Mahoning County Digital Orthoimagery Project. Similarly to the 2006 dataset, the 2013 

images were gathered in the spring during leaf-off conditions. 

2.3.4 Survey Data in Detroit 

2.3.4.1 2009 Detroit Residential Parcel Survey 

The Detroit Residential Parcel Survey (DRPS) was one of largest surveys ever 

conducted in Detroit at the time of its collection in 2009. This survey explored 

residential properties that contained four or fewer units (i.e. it excluded large apartment 

complexes) in an effort to combat blight occurring within the city 

(http://www.detroitparcelsurvey.org). This data is gathered at the parcel level and is 

provided as a vector dataset. Information from this survey includes building type, 

condition, and vacancy. Additionally, this survey included a count of vacant lots. In 

https://lta.cr.usgs.gov/high_res_ortho)
http://ogrip.oit.ohio.gov/
http://www.detroitparcelsurvey.org/
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total, the DRPS surveyed 90% of the parcels in the city, excluding large multi-unit 

residential properties and commercial properties. The DRPS was collected in August 

and September 2009. The data was accessed through the Data Driven Detroit (D3) web 

portal and, for this study, was used as a validation dataset for the LiDAR building 

detection method.  

2.3.4.2 2014 Motor City Mapping Survey 

In order to examine land cover change over a period of time, the Motor City 

Mapping Winter 2013-2014 Certified Results dataset was used in conjunction with the 

2009 LIDAR data. This data was also accessed through the D3 web portal. The Motor 

City Mapping project, which will henceforth be referred to as MCM, was a 

collaborative effort amongst multiple Detroit and Michigan based organizations to 

provide detailed information for the 379,549 property parcels in Detroit. Initial data 

collection occurred from December 2013 through February 2014 and included data such 

as residency status, property type, structural status, structural condition, fire damage, 

etc. This survey was conducted in an effort to track and combat the property vacancy 

problem that has been plaguing the city for nearly six decades. 

Although the survey includes extensive information, for the sake of this study 

we focused solely on the structure data that was provided. Simply, this information 

allowed us to identify if a structure (residential and commercial) was present on a parcel 

in the 2013-2014 timeframe. The MCM was performed approximately 5 years after the 

LiDAR data was collected for this area.  
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2.3.5 GIS Data in Youngstown 

Demolition data was collected by the City of Youngstown Property Code 

Enforcement and Demolition Office and retrieved from the Youngstown State 

University Regional Property Information System (http://cms.ysu.edu/administrative-

offices/redi/regional-property-information-system-rpis). The demolition dataset 

includes is presented as spatial point data beginning in 2006 and is updated frequently 

as new demolition projects are added. Currently, the dataset includes completed projects 

through spring of 2016. 

2.4. Methods 

The research methods for these case studies specifically focus on the presence or 

lack of buildings (i.e. we do not acknowledge vegetation). In both case studies, we 

classify parcels of land by determining if a structure was present on the land at specified 

time periods. In Detroit, we used LiDAR data to extract building features from the 

surface, which were then used to classify parcels of land, as well as data from the MCM 

survey. In Youngstown, we used orthophotographs and spatial demolition records to 

classify parcels. In both studies, the classified datasets were used to create change maps. 

2.4.1 LiDAR Feature Extraction in Detroit 

Building footprints for Detroit were extracted from the LiDAR dataset by using 

a point cloud based data-driven extraction method (Le, Kholdi, Xie, Dong, & Vega, 

2016). Briefly, the LiDAR data points were divided according to their classifications, 

listed above. This division separates building points from bare-earth, vegetation, 

roadway, and other feature points. After the points are divided, non-building points are 

removed and points believed to be building points are isolated and grouped. Here, we 

http://cms.ysu.edu/administrative-offices/redi/regional-property-information-system-rpis
http://cms.ysu.edu/administrative-offices/redi/regional-property-information-system-rpis
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focus specifically on above-ground groupings of point class 1-Unclassified due to a lack 

of a building class. As mentioned previously, in some LiDAR formats, the 1-

Unclassified class is used in lieu of the 6-Buildilngs class. Using the grouped building 

points, line segmentation and smoothing techniques that will connect the boundary 

points of the building groups to create a building footprint polygon are applied (Cheng 

et al., 2011; Miliaresis & Kokkas, 2007; Sampath & Shan, 2007; Wang & Shan, 2009). 

The created building footprints are exported as a GIS shapefile. This methodology is 

made available in the ENVI LiDAR feature extraction workflow (Exelis Visual 

Information Solutions) and has been visualized in Figure 4.1 and 4.2. 

2.4.2 Parcel Classification in Detroit 

 While independent usage of LiDAR extracted building footprints provides a 

snapshot of the urban landscape of Detroit in 2009, it suggests little in terms of how the 

built environment has changed since then. In order to provide a uniform base from 

which to explore changes in the built environment as well as provide a more recent 

visual of the urban landscape for the majority of Detroit, we chose to classify parcels for 

the years 2009 and 2014 using the building footprints extracted from LIDAR and the 

MCM survey respectively.  

 Parcels for 2009 were classified using a data layer intersection method. Here we 

overlaid footprint data on parcels and identified where present footprints intersected 

with a parcel. The parcels were classified using a “footprints” or “no footprints” code 

(Figures 4.2 and 4.3). 

 Parcels for 2014 were classified by performing an attribute selection using the 

“Structure” field from the MCM. Here we classified the parcels with a “structure” or 



26 

“no structure” code and removed parcels (for both 2009 and 2014) that were identified 

as “unknown.” 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Workflow of feature extraction to parcel classification. 4.1. Raw LIDAR 

point cloud for a 1.5 km2 scene (see Figure 3 for scene reference). 4.2. Building points 

are identified and perimeter contours are drawn. 4.3. Building footprints are extracted 

from the identified perimeter contours. Here the building footprints are overlaid on the 

matching property parcels. 4.4. Parcels are classified through intersection with the 

footprints as containing a building or not containing a building. 
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2.4.3 Orthophotography in Youngstown 

 Contrary to Detroit, Youngstown does not maintain a city-wide survey dataset 

with structure information and available LiDAR from 2006 had very low point density 

(~2/10m2) which made the use of the previously specified feature extraction tool 

ineffective. Therefore, different data were required to examine changes to the built 

environment through time.  

Instead, we manually classified parcels using orthoimagery for three non-

consecutive years: 1994, 2006, and 2013. We again chose to use parcel level data to 

provide uniformity throughout the years and allow for a comparison with other cities 

such as Detroit. The parcel data used is from 2016, however the administrative parcel 

sizes and locations are not likely to change throughout time, especially in established 

cities such as Youngstown. Parcel data was overlaid onto imagery and structures were 

identified in the images. We used a binary classifier where 1 = structure present and 0 = 

no structure present to study 6,474 parcels in south central Youngstown. 

2.4.4 Demolition Records in Youngstown 

In addition to orthoimagery, parcels were classified using Youngstown 

demolition records. To combine the demolition point data with parcels, a spatial join 

was performed using ArcGIS software. We then identified the total number of parcels in 

which a demolition record was present and classified them using a “demolished 

structure” code.  
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2.5. Results 

2.5.1 Feature Extraction Validation using the Detroit Residential Parcel Survey 

The LiDAR feature extraction was validated using 339,983 parcels that were 

surveyed in the 2009 DRPS. Because the survey dataset was developed via in-situ data 

collection, we accept the DRPS as a ground truth dataset. As mentioned previously, this 

survey examined residential properties (excluding large apartment complexes and other 

types of private or commercial properties). This survey also accounted for vacant 

parcels. 

 We identified the number of parcels in which both the DRPS and the feature 

extraction tool identified a structure; the number of parcels in which the DRPS 

identified a structure and the feature extraction tool did not (and vice versa). We 

examined similar characteristics of vacant properties (Table 3). The feature extraction 

workflow yielded a producer’s accuracy of 85% with a user’s accuracy of 76%. Here, 

the producer’s accuracy represents the ratio of correctly identified buildings to all 

identified buildings in the ground truth dataset. Additionally, the user’s accuracy 

represents the ratio of correctly identified buildings to all classes in the ground truth 

datasets (Janssen & Vanderwel, 1994). When tested, the validation yielded a kappa 

coefficient of 0.62. Here, the kappa coefficient was used because it accounts for the 

possibility that a classification could have occurred by random chance (Foody, 2002). 

The kappa measure of 0.62 indicates that there the buildings identified in the feature 

extraction workflow are substantially representative of what is actually present.  

We then used the DRPS to correct inaccurately classified parcels from the 

LIDAR validation dataset to minimize the error in the final change analysis. The final 
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2009 baseline for change analysis consists of a combination of LIDAR classified 

parcels and some corrected DRPS parcels. 

 

Table 3: Validation of LIDAR building detection using the 2009 Detroit Residential 

Parcel Survey (DRPS). Only parcels that were classified as "residential" were used for 

validation. This accounts for approximately 80% of the total parcels. The building 

detection workflow correctly identified 85% of the parcels (both as containing or not 

containing a structure). 

 

LIDAR DRPS Structure DRPS Vacant 

Structure 222176 23350 

Vacant 27952 66505 
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2.5.2 Five-year Change in Detroit 

Using the classified 2009 and 2014 parcels in Detroit, a five-year change map 

was created with four categories: structure, vacant lot, new structure, and demolished 

structure. Here “structure” represents parcels that contained a structure in 2009 and 

2014 while “vacant lot” represents parcels that did not contain a structure in 2009 nor 

2014. The “new structure” category is reserved for the small number of parcels in which 

a structure was not present in 2009, but was present in 2014. Lastly, “demolished 

structure” represents parcels where a structure was present in 2009, but was removed by 

2014. In this study, we define the word structure to mean residential or commercial 

buildings. 

We examined 379,549 parcels in Detroit from 2009-2014 and found that 87.6% 

of the parcels did not change between the years. Figure 5 shows the categorized change 

in each parcel for the entire city. We found 299,784 parcels that were classified as 

containing a structure in 2009. In 2014, 12.9% (37,453) of these parcels lost their 

structure. These demolished parcels accounted for 9.9% of the total number of parcels 

in the city. The decrease in the number of parcels containing a structure led to a 52.6% 

increase in the number of vacant lots. New builds were drastically overshadowed by the 

demolished structures, accounting for <1% of the total number of parcels in the city.  
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Figure 5: Five-year change map of Detroit using LIDAR and DRPS parcels from 2009 

and the 2014 Motor City Mapping project. Inset shows a 1 km2 sample area. Parcels 

classified as “Structure” contained a structure in both 2009 and 2014. Parcels identified 

as “Vacant Lot” were classified as being such in both 2009 and 2014. Parcels classified 

as “New Structure” or “Demolished Structure” saw the addition or removal of a 

structure from 2009-2014. As can be seen by the 1 km2 sample area, vacant parcels 

were present prior to this analysis, which 
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2.5.3 Change in Youngstown 

2.5.3.1 Orthophotography Change 

 Of the 6,474 parcels that were manually classified for 1994, 2006 and 2013 we 

found that 5,149 (79.53%) remained unchanged (Table 4a) for all three years. From 

1994 to 2006, we identified that 8% of the parcels had structures removed while 5% 

saw new builds (Table 4b.). The timeframe from 2006 to 2013 also saw an approximate 

8% removal of structures and 15% of which were parcels where a new build occurred 

from 1994 to 2006. During this time only 2% of parcels saw new builds and of these 

39% were on parcels that had previously had a structure demolished. The year-to-year 

changes are highlighted in Figure 6 where 1 = structure present and 0 = no structure. 
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 Number of Parcels 

Year Structure 

No 

Structure 

Total 

Unchanged 

Demolished 

New 

Build 

1994 3128 3346 - - - 

2006 3507 2967 5653 491 330 

2013 3856 2618 5837 493 144 

 

 

 

Table 4b: Changes in the number of parcels that contained a structure or did not 

contain a structure. Total Unchanged, Demolished, and New Build are based upon the 

previous time step. 
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Figure 6: Top left: Box denotes 9 km2 study region in south central Youngstown, Ohio 

used for study. Top right: Orthoimagery for 1994 and 2006. Right: Orthoimagery for 

2013. Bottom: 6,474 manually classified parcels showcasing the change in structure 

presence from the aforementioned years where 1 = structure present and 0 = no 

structure. 
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2.5.3.2 Ten-year Demolition Change 

 Due to the labor intensive task of manually classifying parcels with aerial 

imagery, we chose to examine additional data sources.  Here we demonstrate that 

demolition records can be applied to identify parcels that had a structure removed. This 

change can be viewed in Figure 7 where a 1 km2 sample region is presented to show 

the change in higher detail. The demolition records indicated that of the 61,387 total 

parcels in the city, 4,002 had structures removed during the decade from 2006-2016. 

This accounts for 6.52% of the total parcels. Although this data is useful for tracking 

demolished structures, it provides no insight into other parcel classifications such as 

continued structure presence. However, this type of data can be used to validate 

classified products. Here we use the demolition data to validate the orthoimagery 

classification for the 2006-2013 range. We removed demolition records prior to 

acquisition date of the 2006 imagery and after the acquisition date of the 2013 imagery. 

The validation yielded a user’s accuracy of 71% and a producer’s accuracy of 79%. 
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Figure 7: Ten-year change map of Youngstown using City of Youngstown demolition 

records. This change only highlights parcels that have had structures removed. 
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2.6. Discussion 

We have found dearth in shrinkage literature which acknowledges the impact of 

drastic population declines on land cover in the United States. If studied using 

conventional approaches to urban land cover change such as the use of products with 

resolutions of 30 meters or coarser, small details on the surface are likely to be 

overlooked. High resolution and very high resolution satellite products are available, 

but often at a high cost due to the vast size of many of these shrinking cities. The use of 

publically accessible data at no-cost, such as LiDAR, GIS datasets and aerial 

orthophotos, are the most cost efficient means of performing a simple land cover change 

analysis for an extended period of time.  

LiDAR is accessible via the USGS and can be used to extract features and create 

digital elevation and surface models at very high resolutions. The manner in which 

LIDAR point clouds are classified has changed throughout the years, causing 

inconsistencies in the representation and user-friendliness of the data. Additionally, low 

point density occasionally makes it difficult to identify specific features. In this study, 

LIDAR data for 2006 is available in Youngstown, however the feature extraction 

method we applied in Detroit was unable to accurately identify structures in 

Youngstown due to the lower point density (~2 points/10m2). Perhaps the most 

significant challenge when using LiDAR data in land cover change studies is the lack 

multiple years from which to draw data. In this study, we were only able to use LIDAR 

from 2009 in Detroit. Like many land cover studies that use LiDAR, ancillary data was 

also needed (McCarley et al.; Radoux & Defourny; Singh et al., 2012; Sturari et al., 

2017; Wu et al., 2016; Zhou et al., 2009). The use of LIDAR in combination with 
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survey data from the MCM allowed us to generate a city-wide map showcasing the 

changes occurring on the urban landscape in Detroit. While this study allowed us to 

capture a snapshot of the arguable reversal of urbanization in the heart of the United 

States, the addition of multiple LIDAR years would have been beneficial. 

Ancillary data in Detroit is far more available than for other shrinking cities, 

thanks primarily to efforts of blight task force organizations committed to preserving 

history and ridding the city of decay. Unlike Detroit, Youngstown does not possess a 

city-wide survey dataset that contains detailed information about each property, but we 

found that the use of freely available orthoimagery and GIS datasets were useful when 

looking for alternative data sources. In this study we used a combination of 

orthoimagery and demolition records to examine the shifting landscape in Youngstown. 

Orthoimagery is advantageous in that it is captured at a high spatial resolution and is 

often available for periods of time stretching multiple decades. In examining a shrinking 

city, using historic orthoimagery to monitor urban land cover change could provide 

more insight into the relationship between human environmental interactions (Geri, 

Amici, & Rocchini, 2010). However, using orthoimagery can be challenging and labor 

intensive because land cover types are not distinctly differentiated. Additionally, using 

older and coarser imagery makes features difficult to visualize and this could increase 

error rates. Manual classification is entirely based on human interpretation and without 

ancillary data to validate against, it is difficult to tell if the land cover is being 

accurately represented.  

Youngstown consistently updates their public GIS databases, such as demolition 

records, allowing researchers and the municipality to monitor the landscape changes 
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frequently. In Detroit, the last major update of in-situ data was carried out in 2013. 

While this short change in time may seem trivial, we have demonstrated that Detroit 

saw the removal of structures on approximately 7,500 parcels per year, suggesting that 

there is a need for frequent updates to geospatial databases. 

2.7. Conclusion 

The urban landscape in the United States is constantly changing, but not always 

in the typically researched context of urbanization and growth of built environment. 

Many cities in the Midwestern region of the country, such as Detroit and Youngstown, 

have been experiencing drastic population losses for over a half-century. While these 

areas have been thoroughly studied in terms of socio-economic implications of 

population loss, few studies to date have explored how the shifting dynamics are 

impacting the built environment in these shrinking. This study maps at the parcel scale 

how the presence of residential and commercial structures has changed in Detroit and 

Youngstown throughout various time periods. The use of LiDAR data in conjunction 

with the MCM survey data to classify parcels in Detroit allowed this study to map a 

five-year change for the entire city at a higher resolution than other publicly accessible 

data products. In Youngstown, the use of orthoimagery in conjunction with GIS data 

showed respective nineteen-year and ten-year changes in the presence of structures.  

The minimal overall availability of current and publicly accessible data could 

inhibit financially limited municipalities from conducting these types of studies. There 

is a strong need within the scientific community to increase availability of high quality 

datasets. Programs such as the USGS’ 3DEP initiative are productive in increasing the 

coverage of data available, but there is still a problem with limited timeframes. It is 
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understood that historically, the cost of collecting airborne LiDAR data has been high, 

but technological advances have begun to lower those costs (Chen, 2007). This study 

has shown that the rate of loss of structures in these cities is significantly higher than the 

rate of structure replacement. The fast removal of the built environments could 

potentially have environmental implications in shrinking cities, suggesting a need for 

the continued monitoring of the shrinking urban landscape in these regions (D. Haase, 

2013; Schetke & Haase, 2008). 
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