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CHAPTER 1
INTRODUCTION

Problem Statement

Computer modeling and simulation techniques are important to designers in every
engineering discipline. These techniques are particularly valuable to engineers
concerned with the dynamic response of physical systems. A number of numerical
integration methods are available to solve the ordinary differential equations (ODEs)
which describe a dynamical system. In the computer environment, the effect of design
changes on dynamic response can be determined without the financial consequences of
complicated "breadboard" testing. However, the time required to simulate the dynamic
response of a system does have some inherent costs. In addition, the results of these
simulations are only as accurate as the mathematical models used to represent the

physical system.

As with engineers in many other fields, fluid power system designers have turned
to computer modeling and simulation to predict the dynamic response characteristics of
hydraulic circuits. A hydraulic circuit uses pressurized fluid to provide a desired
mechanical output. In addition, the various pressure and flow control components of a
hydraulic system are mechanical in nature. A typical hydraulic circuit, therefore, is
comprised of components with widely varying time constants. As a result, the
differential equations which describe this combination of hydraulics and mechanics are
often numerically sriff. Small time constants force the use of relatively small time steps

during numerical integration. Because the differential equations are linked, the presence
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of large time constants requires a great number of these small steps to capture the overall
response. As a result, computation time becomes a concern. In the past, complex
hydraulic circuits often required hours or days to complete a single simulation.

Computation time must be reduced to enhance the value of computer analysis.

A number of numerical integration methods have been developed to decrease the
computation time required to solve stiff differential equations. Gear's method for stiff
ODE:s and Rosenbrock's semi-implicit Runge-Kutta (SIRK) method are the most
prominent among the stiff solvers[1]. The current state-of-the-art for both solvers
features an adaptive step size algorithm to further improve computation time. Both of
these methods require the calculation of Jacobian matrix for each time step. This
Jacobian matrix is not required for standard explicit solvers like Euler's method and the
Runge-Kutta (RK) method. The introduction of the Jacobian matrix creates a

compatibility problem with hydraulic systems.

Physical constraints in a hydraulic system often cause stiff ODE solvers to fail.
These constraints may be fluid-related or mechanical. For example, the turbulent flow
equation has an infinite slope at the origin. This infinite slope will produce an ill-
conditioned Jacobian matrix when a stiff ODE solver is used. Similarly, a limitation on
the displacement of a mechanical component will produce a mathematical discontinuity
in the Jacobian matrix during the integration process. These discontinuities often cause a
stiff ODE solver to fail or cause the adaptive step size routine to slow the solver

dramatically.
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A few attempts have been made to apply stiff ODE solvers to the unique
boundary constraints of hydraulic systems. Two different approaches have been
proposed to eliminate the infinite slope at the origin of the turbulent flow equation.
Ellman considers both laminar and turbulent orifice discharge coefficients with a cubic
spline used to create a mathematically smooth transition between the two tvpes of
flow[2]. Piche', Ellman, and Vilenius also used a cubic spline approach in dealing
directly with the laminar and turbulent flow equations[1]. Both of these methods are
limited to orifice flow and cannot be adapted to model other flow related discontinuities.
Bowns, Tomlinson and Dugdale have suggested a numerical integration technique to deal
with mechanical discontinuities[3]. This technique involves step size halving and
restarting procedures for the ODE solver when a discontinuity is encountered. However,
the proposed method is limited to fixed step ODE solvers and requires a modification to

the core solver algorithm.

Objective of Study

The purpose of this study is to develop a unique procedure that eliminates the
numerical integration problems caused by the fluid-related and mechanical boundary
conditions found in hydraulic systems. A unique curve fitting technique which uses
control points is used to create mathematically smooth fluid flow models. The concept
of control points involves positioning a point in such close proximity to the end point of a
curve that the difference is physically negligible. However, the relative position of the
end point and the control point determines the shape of the resulting curve. As such, the

control point is physically insignificant but mathematically important. The versatility of



this technique allows hydraulic engineers to create a greater variety of fluid flow models.
More importantly, the continuity and smoothness of the resulting mathematical models
provide compatibility with stiff ODE solvers and significantly reduce computation time.
Numerical integration problems caused by mechanical boundary conditions will
be eliminated by an Event Switching Algorithm (ESA). The ESA tracks the displacement
of any given mass. Ifa physical limit is encountered by the mass, the initial conditions
are reset and a revised set of ODEs are solved numerically. The sum of the forces acting
on the mass is monitored while the mass is at the physical limit. If this sum of forces
becomes unbalanced, the algorithm reverts back to the original set of ODEs and the
solver is automatically restarted. By continuing in this manner, numerical integration
proceeds unimpeded by the mathematical discontinuities associated with mechanical
boundaries. In addition, the ESA requires no modification to the core ODE solver code.

As a result, it is compatible with commercially available numerical integration software.




CHAPTER 2
LITERATURE REVIEW
Introduction
As with any dynamic system, hydraulic circuits are mathematicallv defined by a
series of ordinary differential equations (ODEs). Unlike most systems, however,
hydraulic systems are generally dominated by non-linearities [3]. These highly non-
linear ODE:s are, for all practical purposes, impossible to solve with conventional
analytical techniques [4]. Computerized numerical integration is the only practical
approach to solving a set of ODEs accurately describing a hydraulic system.
Unfortunately, the numerical integration of hydraulic systems is a notoriouslv slow
process. The nature of hydraulic systems requires relatively small time steps and a great
deal of computational effort.
Mathematical Stiffness
Hvdraulic svstems have been identified as mathematically s#1ff by a number of
researchers [1,3,4,5,6,7.8]. Bowns et. al. [3] and Krus [6] define stiffness as a set of
ODESs containing widely varying time constants. In other words, the system contains
both rapidly and slowly varying transient solutions [8]. The effect of mathematical
stiffness on numenical integration is well documented [1,3.4,5]. Piche' and Ellman [5]
summarized this effect for hydraulic systems by stating, "Conventional explicit numerical
integration methods such as classical Runge-Kutta schemes become numerically unstable
unless a very small time increment is used, which leads to excessively long computation

times".



Ellman [2] identified two sources of stiffness in hydraulic systems. The first
source is stiffness inherent in turbulent flow through an orifice. An orifice is the most
basic element in hydraulic control. Pressure and flow control in a hydraulic system are
performed by components which use fixed and vanable orifices. Orifice flow is
dominated by turbulence and, therefore, laminar flow is typically ignored. Turbulent

flow through an orifice is governed by the following relationship:

Q=(;;AJ3AP @1
P

Q = Flow Through the Onfice

(', = Discharge Coefficient of the Orifice
A = Flow Area of the Orifice

p = Fluid Density

AP = Pressure Drop Across the Orifice

Discharge coefficient, flow area, and fluid density are normally considered to be
constant. As such. the flow through an orifice is proportional to the square root of the
pressure drop across it. A graph of this relationship for an arbitrary orifice is shown in
Figure 2.1. The slope of the curve approaches infinity as the pressure drop approaches
zero. This characteristic is responsible for mathematical stiffness. An example

presented by Krus and Palmberg [7] effectively illustrates the problem. A volume of
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Equation

Flow Rate
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Figure 2.1: Orifice Pressure/Flow Relationship Using Turbulent Flow Equation

fluid is connected to the environment through an orifice as depicted in Figure 2.2. The

N
Pk

Pressure Fluid Oifice ||
Source Volume Resemvoir

Figure 2.2: Fluid Volume Discharge to the Atmosphere through an Orifice




time constant for emptying the volume is described by the following equation:

r= L (2.2)

BK.
r= Time Constant
J"= Fluid Volume

£ = Bulk Modulus of the Fluid

K.= —) = Flow Pressure Coefficient of the Orifice

If the turbulent orifice flow equation (2.1) is used, the term X becomes large when the
pressure drop is small. The time constant, in turn, becomes small. In a numerical
integration situation, relatively small time constants will lead to mathematical stiffness
and long computation times. If the pressure drop is zero, K, becomes infinite and the
time constant goes to zero. A zero time constant creates infinite stiffness and causes all
classical numerical integration methods to fail [4].

A second source of stiffness identified by Ellman [2] involves widely varying oil
volumes within a single system. The elasticity of pressurized hydraulic fluid is
dependent upon the volume of the trapped fluid. Flow passages within hvdraulic control
valves are orders of magnitude smaller than the hoses, tubes, housings, actuators, etc.
used to contain and utilize the majority of the working fluid. The low elasticity of the
fluid contained in these small passages is directly related to small time constants. Small
time constants among relatively large time constants within a single system lead to

mathematical stiffness.




Various researchers have developed methods to eliminate the stiffness problem
caused by the turbulent orifice equation (2.1). Technically, the turbulent orifice equation
is not appropriate at low pressure differences because the flow through an orifice is
predominantly laminar under these conditions. This fact is usuallv ignored by designers
because very low pressure drops seldom occur in steady state analysis. Dynamically,
however, it is advantageous to introduce a laminar flow mechanism at low differential
pressures to eliminate the infinite slope problem. Bowns, Tomlinson, and Dorey [8]
proposed a small linear region about the origin as depicted in Figure 2.3. This region
eliminates the infinite slope at the origin and accurately models the linearity of laminar
flow. However, the authors admitted an inherent difficulty in determining the width of

the laminar range.

Turbulent Flow
Equation

Straight
Line

Flow Rate

Turbulent Flow
Region

O Lomm Pressure

Flow Region

Figure 2.3: Ornifice Flow Model with Linear Laminar Flow Region




If the region is not wide enough, mathematical stiffness results. An excessively wide
linear region will lead to gross inaccuracy.

Based on studies conducted at the University of Bath [8], an improved laminar
flow mechanism was developed at Tempere University of Technology in Finland.
Ellman and Vilenius [2,9] proposed the use of a cubic spline to model laminar flow and
the region of transition between laminar and turbulent flow. This model was later

refined by Piche' and Ellman [5]. The resulting polynomial is presented below:

J—IS({NJ+225(A{)] 5
AP, AP, (2.3)

AN, 45( i
0= AP
T 64D ¥

where, 0 < 4P < AP,
1= Kinematic Viscosity of the Fluid
D = Diameter of the Orifice
Ng, = Transition Reynolds Number
AP = Pressure Difference for Fully Turbulent Flow

The transition to the turbulent flow equation (2.1) occurs at AP as defined below:

225N, ’pv?
= 4 (2.4)

128C,° D~
The above laminar/transition flow model for an arbitrary orifice is depicted graphically in

Figure 2.4. Piche' suggests a transition Reynolds number (Ny,) of 1000. This model

eliminates the infinite slope at the origin and provides slope continuity at the transition
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Flow Rate
-

| Turbulent Flow

| ’ Region
!
I I
b Pressure
l¢— Laminar Flow
| jRegion

Figure 2.4: Orifice Flow Model with Cubic Spline Laminar Flow Region

point (AF,).

Bowns and Wang [4] proposed an incompressible flow model to eliminate the
stiffness problem caused by small oil volumes. Pressure changes occur very rapidly
under small volume conditions. The incompressible flow model considers these pressure
changes to be instantaneous. In the absence of compressibility, the flow into a
pressunzed volume is equal to the flow exiting. Bowns and Wang implemented the
incompressible flow model with an iterative approach based on this flow continuity
property.

Several researchers pointed out an inherent problem with the incompressible flow

model [1,5,6]. The dynamic nature of hydraulic systems requires oil volumes to change




during the course of simulation. As a result, the incompressible flow model is not valid
at all times. For example, the volume of trapped oil within a hydraulic cylinder will

increase as the actuator extends (see Figure 2.5). The complexity of the model must be

v v,

1

V]<< V2

V]—+ T ! 1= V2
V1—+ : 1 V,>>V,

Figure 2.5: Volume Changes for an Extending Hydraulic Cylinder
increased to accommodate varying volumes by switching between compressible and
incompressible flow models. As stated by Piche' and Ellman [5]." The problem remains
as to how and when to make these transitions smoothly and automatically."
Numerical Integration of Stiff ODEs

In the absence of a sound modeling technique to eliminate stiffness created by

widely varying oil volumes, researchers have investigated various numerical integration
methods to improve computation time. Simulation efficiency can be improved by using
a numerical ODE solver specifically designed for stiff systems of equations. Further
efficiency gains may be realized by employing an adaptive step size algorithm.

Gear's method for solving stiff ODEs has been generally accepted as the most

efficient algorithm for simulating hydraulic systems [3.8]. The stability features of this
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ODE solver are superior to those of classic non-stiff solvers like Runge-Kutta.
Mathematically, Gear's method for stiff ODEs 1s 4-stable. A-stability means the
numerical integration method is stable for any step size as long as the set of ODEs is
stable [1]. This added stability allows the solver to use a much larger step size and,
therefore, reduces processing time. Recently, Piche’ and Eillman [1,5] proposed an /.-
stable Runge-Kutta method for use with fluid power systems. This method provides an
even higher degree of stability for use with extremely stiff systems. Although Gear's
method is A-stable, the degree of stability becomes small when the ODE system 1s
extremely stiff and problems arise in the form of numerical oscillations. An L-stable
method drives modal amplification to zero as the time constant approaches zero. As a
result, the L-stable Runge-Kutta method climinates numerical oscillations associated
with certain class of hydraulic systems.

The efficiency gains realized by Gear's method for stiff ODEs and the L-stable
Runge-Kutta method do not come without a price. Both of the methods require a
significant amount of computational effort. A general system of ODEs may be written as
follows.

X, =1 (X1,X2,X3,...Xn1) (2.5)
In order to achieve improved stability, the numerical integration method must have some
knowledge of 1 at each step [6]. This information is stored in a Jacobian matrix which

contains partial derivatives of / with respect to the state variables. The presence of this
: . ) : _
Jacobian reintroduces the term —é—;; . If the turbulent flow equation (2.1) 1s used as an

orifice model, the trend toward an infinite slope at the origin will produce an ill-
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conditioned Jacobian matrix at low pressure differences. This problem may be solved by
using a laminar flow mechanism like the one developed by Piche' and Ellman (Egs. 2.3
and 2.4).

To further improve processing time, an adaptive step size algorithm may be used
in conjunction with a stiff ODE solver. The adaptive step size algorithm automatically
adjusts the step length as integration proceeds. The size of the step is controlled by a
preset error limit. Piche' and Ellman [5] states that adaptive step size control essentially
eliminates numerical stability problems because the algorithm automatically selects a
step length small enough to give an accurate solution. Improved efficiency is achieved
because a small step size is used only when necessary. Relatively large steps may used
after the dynamics associated with small time constants are damped out.

Discontinuities and Stiff ODE Solvers

The physical nature of hydraulic systems, unfortunately, is not directly
compatible with stiff ODE solvers or adaptive step size algorithms. Numerical
integration problems arise in the form of discontinuities. Discontinuities affect both the
core ODE solver and the adaptive step size algorithm. Abrupt changes to elements in the
Jacobian matrix may produce a convergence problem within the integration routine and
cause the method to fail [1]. An adaptive step size algorithm will "hunt" around the
discontinuity until the step size is reduced sufficiently to cross the discontinuity within
the preset error limit. This hunting involves a large number of unsuccessful function

evaluations and results in considerable processing time [10].



Discontinuities may be present in the classical mathematical model of a physical
entity. A simple solution to this problem is to change the mathematical model. Bowns,
Tomlinson, and Dorey [8] have made extensive use of cubic splines to create smooth,

continuous models. A generic example is depicted in Figure 2.6. The original model

f(X)

Figure 2.6 Cubic Spline Used to Smooth a Discontinuity

contains a hard non-linearity at point B. A cubic spline connected between points A and
C 1s used to provide a smooth transition across the discontinuity. Some amount of
accuracy 1s sacrificed to improve computational efficiency by allowing a more gradual

change to the Jacobian matrix.



Discontinuities may also be encountered during the simulation process. Bowns.
Tomlinson, and Dugdale [8] identified two types of discontinuities likely to cause
problems for an ODE solver:

1) Discontinuities which occur at a known time.

2) Discontinuities which occur when a variable reaches a critical value.

Of these, the second discontinuity type is more difficult to handle because the exact time
of threshold crossing is unknown. Ellison [11] has labeled this type of discontinuity as a
state event. A state event involves a switching function which changes terms in the
original set of ODEs and defines a new integration problem starting exactly at the
switching point [10]. State events in hydraulic systems occur when actuators, loads, or
internal valve parts encounter mechanical travel limits. For example, the velocity and
acceleration of a hydraulic cylinder rod almost instantaneously drop to zero when the
stroke limit is reached. Chaney [12] has recommended restarting the ODE solver when a
state event is encountered. This procedure divides the original problem into continuous
sections and solves them in a piecewise manner. Preston and Berzins [13] later endorsed
this restarting procedure as absolutely necessary "whenever parts of a network suddenly
become (in)active."

A difficulty anses in locating the exact time at which the critical value 1s reached.
The cntical value invanably falls between two successive time steps. Special measures
must be taken to locate the time of the discontinuity, within acceptable error limits,
before integration proceeds with a new set of ODEs. It is first necessary to identify a

discontinuity by defining a discontinuity function. In practice, discontinuities are located




by monitoring sign changes [14]. For a set of ODEs of the form x, = f(x,,x5X3...X,.1). 2
discontinuity function has the form:

@, =f (X X2X3... X 1) (2.6)
where the discontinuity occurs at,

¢,=0 (2.7)
In order to locate the precise time of a zero crossing, a discontinuity handling algorithm
is necessary. The goal of this algorithm is to control the step size such that the
discontinuity occurs at the end of the step [14]. Chaney [12] proposed an iterative
interval halving procedure (bisection) to locate the discontinuity within allowable error
limits. More advanced techniques involve interpolation or regula falsi (false position)
[11.13.14,15,16.17,18].
Summary

A review of the available literature has shown the value of using cubic splines.

Potentially, cubic splines may be used to eliminate infinite slope problems and to smooth
hydraulic model discontinuities. As a result, numerical integration of hydraulic systems
can be made compatible with ODE solvers designed specifically for mathematically stiff
ODEs. However. none of the available literature provides a simple, physically
significant, method to generate a variety of cubic splines. Similarly, a physically
significant algonthm for handling state events was not contained in the available
literature. The complexity of stiff ODE solvers containing adaptive step size and event
locating algorithms has forced designers to use commercially available numencal

integration packages. These packages are generic and are not specifically designed for
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hydraulic systems. An algorithm for handling typical hydraulic system state events
would be extremely valuable to hydraulic system designers using commercial integrators.
In order to increase the value of computer analysis, steps must be taken to
facilitate compatibility between hydraulic systems and stiff ODE solvers. A versatile
cubic spline modeling tool 1s required to eliminate discontinuities in a vaniety of
function-specific component models. In addition, a procedure for handling state events
must be developed to realize the potential gains in computational efficiency offered by

stiff ODE solvers.




CHAPTER 3
MATHEMATICAL MODELS AND CUBIC SPLINES

Introduction

Infinite slopes and discontinuities in mathematical models are a source of
problems for state-of-the-art numernical integration packages. Numerical ODE solvers
specifically designed for mathematically stiff systems require a Jacobian matrix.
Unfortunately, an infinite slope leads to an ill-conditioned Jacobian matrix and causes
the solver to fail. Abrupt changes to the Jacobian matnix, in the form of model
discontinuities, also cause the ODE solver to fail. In addition, adaptive step size
algorithms become extremely inefficient when a discontinuity is encountered and

considerable computation time 1s wasted.

Cubic splines have been used to model problem causing hydraulic system
components with some success [5,8]. However, existing cubic spline models are
function specific and cannot be used as a general modeling tool. [t 1s necessary to
develop a versatile method that can be used to eliminate a variety of infinite slope
problems and to create a smooth bridge between any two discontinuous functions. In this

way, the dynamic analysis of stiff hydraulic systems can be advanced.
Background

Typically, cubic splines are used as interpolating polynomials for a set of data
points [19]. For n+/ data points, » third order polynomials are generated to interpolate

between the data points as shown in Figure 3.1. At each intenior point, the polynomials

are continuous in position, slope (1st denivative), and curvature (2nd derivative). At the




end points of the data set, no joining polynomial exists. As a result, the slope and

curvature are not constrained.

Y

Point 2

Polynomial 1

Polynomial 3 Point 4

Polynomial 2
Point 5
Point 1

Figure 3.1: Cubic Spline Interpolation of Data Points
Two-Point Cubic Splines
For modeling purposes, it is often necessary to “bridge™ two discontinuous
functions. A typical example is shown in Figure 3.2. It is desirable to generate a single

¥
f,(X)

X5¥,)

X,.Y,)
f(X)

X
Figure 3.2: Two Functions Requiring a Smooth Connecting Cubic Spline



cubic polvnomial with predetermined slope properties at the end points to provide slope

continuity as depicted in Figure 3.3. It is possible to force the end point slopes to assume

Y

f, (X)
Cubic Spline

X,.Y,)
(V)

f,(X]

X

Figure 3.3: Cubic Spline Providing Slope Continuity Between Two Functions

any desired value. The two-point form of a cubic spline with specified end point slopes
can be derived from the general case as follows:
A cubic spline connecting two points (x), v;) and (x,, y,) takes the form:
y= ar(.r-x,}3 + h(x—.r;): + o(x-x;) +d (3.1)
Where, X EXE X,
The coefficients a. b, ¢, and d are expressed in terms of the second derivatives

(curvatures) at the end points [19]:

: 1_%‘2 '-'SI

3.2
P (3.2)

a

(3.3)

>
Il
|2
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Y= _ 2AS, +AS,
h 6

c=

(3.4)

5)

Where,
S| = Second Dernivative at (x,, y,)
S, = Second Derivative at (x,, v»)
h = Interval Size: (x, —x))

For cubic spline interpolation on n- / points, the following formulas for forcing end point

slopes apply [19]:
- N Y, =¥ '
2!’?]5[ =l th: = 6[ i J (3.6)
g
" r ."lﬂd-l il dvl'l
hﬂ_;bn ¥ 2}1,,8,,,; = 6[}'"_” = -——}:—-—-—J (37)
Where, h, = 1" Interval Size: (x> - x,)

h, = n" Interval Size: (Xp-7—Xp)
S| = Second Denivative at (x;, y)

S.u-; = Second Derivative at (x,,-;, v, /)
v, = First Derivative at (x,, y|)
V,. = First Derivative at (x,. 1, v, )

These equations may be simplified for two points as follows:




LG g g,
ZS] + S] - ; [—Lh'—[ - le (38}
6 Vs — V¥V
S| +28,= =y, -—=2—L 3.9
| 2 h [_V2 h } { I
6(yv,—-y ; 6( ., ¥Yi—=n
Let e e nd =—| )y, == 3.10
g e P [ P Y| a € P Y2 5 ( )
Substituting gives:
2S|+S2: e (3.11)
S|+2S;= €y (312)
Solving these equations simultaneously produces:
s =5"& (3.13)
3
B
S, =~":3 & (3.14)

Using this result, the cubic spline coefficients from Equations 3.2, 3.3, and 3 4 may be

computed to force the slopes at the end points to the specified values of v, and y5 .

In order to link two discontinuous functions with a cubic spline and maintain
slope continuity, the first derivative of each function at the juncture points must be
determined. Unfortunately, hydraulic systems often contain highly non-linear
relationships between operating parameters. As a result, obtaining the first derivative
analytically is time consuming and impractical. Numerical calculation of the first
denivative is the most practical alternative. This task can be effectively accomplished
using the standard forward difference approximation. This technique uses a finite

approximation of the infinitesimally small change in the independent variable that




defines a derivative. Details regarding the forward difference method are available in
standard Numerical Analysis texts [19].

Four-Point Cubic Splines

In order to eliminate the first derivative requirement of the two-point method, it is
necessary to use a natural spline. A natural spline imposes no slope or curvature
requirements at the end points. As a result, the end cubics approach linearity at their
extremes. Unfortunately, a natural spline connecting only two points is a straight line.
Obviously, a straight line is not a useful modeling tool when dealing with the inherent
non-linearities of hvdraulic systems.

To correct this problem while still using natural splines, a modeling tool based on
the four-point form of cubic spline interpolation can be created. The basic concept of
this modeling tool is best illustrated with an example. Consider the four points shown in
Figure 3.4A. Assume points B and C are fixed and points A and D may be moved.
Moving points A and D effects the slopes at points B and C and changes the shaqc of the
curve between points B and C as shown in Figure 3.4B. Therefore, points A and D may
be used as "handles” to control the slopes at points B and C.

Returning to the original goal, a cubic spline for modeling purposes connects two
points with predetermined slope values at each point. Using the four-point form, the
modeler can fix the position of the endpoints with two of the four points. The other two
points may be used to control the slope values at these endpoints. This technique is
conveniently implemented by locating control points in such close proximity to the true

end points that the difference is physically insignificant. Mathematically, however, the
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Figure 3.4: Effect of Moving a End Points (A to A'and D to D')

difference is instrumental in determining the slope at the endpoints. This difference
needs only to be larger than the computational precision of the computer or program used
to generate the spline.

The four-point technique is best illustrated by returning to the example depicted
in Figure 3.2. Again, suppose it is necessary to provide a smooth connection between the
two functions. The first endpoint of the connecting spline is identified as (x,,);). This
point lies on f)(x). In order to generate a control point for this endpoint, the original
function equation ( f)(x)) is used. An initial estimate on the order of computational
precision is added to x; as follows:

X5 =X) — Ax (3.15)

where, x;c= X-coordinate of the control point



x;=  X-coordinate of the original end point

Ax= Increase in x on the order of computational precision
The function f; is then evaluated at x,. and compared to f;(x;) as shown below:

Jixie) = F(x)) = Yiagr (3.16)

where, Vg = Difference in y; as calculated by computer program
[f the computer cannot discem y 4,7 from zero, Ax is gradually increased until a
calculable difference exists. This iterative process is easily accomplished in a computing
environment. After this process is complete, the original end point (x,,v,) and the control
point (x,.y,.) will be discernibly different in x and y but the difference will be physically
negligible. This procedure must be repeated using f5(x) to obtain a control point for the
other end point. A graphical depiction of the endpoints and their control points is shown
in Figure 3.5. The relative distances have been exaggerated for visibility. (NOTE: If
fi(x) or f(x) is a horizontal line, the corresponding iteration procedure on y is not

necessary because v does not vary with x.)

¥ & Control Point
@ Original End Point f2 (X]
X,.Y,)
X,.Y,)
f,(X)
X

Figure 3.5: Cubic Spline End Points and their Control Points



The oniginal end points, along with their control points, may now be used to
generate three cubic spline polynomials using the procedure outlined in Appendix A.

The X and Y matrices take the form:

X Vi
.| = | Ve =
X= Y= (3.17)
X Vs
r:c ‘(2‘-

Because the true end points are so close to their corresponding control points, the cubics
connecting them may be ignored. As a result, the cubic bridging the middle interval 1s
assumed to connect the original endpoints. This assumption is true for all practical
purposes. Using the functions f;(x) and /5(x) to create the control points forces the slopes
at the end points to match the original functions. The resulting cubic spline model is
depicted in Figure 3.6

Y

Cubic Spline

(X5.Y5)
f,(X)

X
Figure 3.6: Cubic Spline Generated with the Four-Point Form
A complete algorithm for generating control points is displayed as a flow chart in

Figure 3.7.
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Figure 3.7: Flow Chart for Generating Control Points
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Comparison of Two-Point and Four-Point Splines

The two-point and four-point methods for generating cubic splines may both be
used as modeling tools. Each of these methods has advantages over the other in terms of
computation. The two-point method requires knowledge of end point first derivatives
while the four-point method does not require derivatives. Unlike the two-point method,

however, the four-point method requires the solution of a set of equations.

A preferred method may be determined by evaluating the resulting cubic splines.
The two-point and four-point methods may not produce the same cubic function. The
difference between the methods is best illustrated with an example. The following

straight line equations are given:
Ax)=0 (3.18)
Ax;) =0.9x-720 (3.19)

It 1s desired to generate a cubic spline between the points (720.0) on f(x;) and (825, 22.5)
on f{x,). Applying both methods to this problem produces the results shown in Figure
3.8. Slope continuity at the juncture points can be maintained adequately by using either
method. However, the cubic spline created using the two-point method “dips” below
zero before heading in a positive direction. The potential for this behavior exists when
"tight turns" are involved. This characteristic is undesirable when dealing with flow rate
on the Y-axis. The negative sign reverses the flow direction. Flow reversal does not
exist in practical hydraulic systems. The four-point spline creates a more direct bridge

between the two discontinuous functions. As a result, the four-point method is preferred
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as a modeling tool when the relatively sharp comers of a typical hydraulic model are

involved.

35 1
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Figure 3.8: Comparison of Two-Point and Four-Point Cubic Splines

Application Examples

The usefulness of cubic splines as a modeling tool will be illustrated by two
examples from the world of hydraulics. In the first example, an empirically based orifice
model is developed. The second example involves smoothing discontinuities in a relief
valve model.
Example 3.1 - An Empirically Based Orifice Flow Model
PART A

An orifice with a diameter (1) of 0.012 inch is known to have a discharge
coefficient (C, Jof 0.63. Laboratory testing was performed to determine the
pressure/flow relationship of this orifice using SAE 10W oil at 73°F (See Appendix B).
The measured data have been plotted in Figure 3.9. It is desired to develop a

mathematical model based on this experimental data.
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Figure 3.9: Experimental Results of Orifice Test
In order to develop a representative model, it 1s first necessary to determine where
the turbulent flow equation is valid. This task may be accomplished by plotting the
experimental data along with the turbulent flow equation. The turbulent flow equation is
[20]:

2

Q:(‘dAvl;‘U’ (3.20)
P

() = Flow Through the Orifice (Dependent Vanable) (in'/sec)

'y = Discharge Coefficient = 0.63

-

Dm
4

A = Flow Area of the Orifice = ( in%)

p = Fluid Density = 8.171x107 (Ibf-sec’/in*) for 10W oil at 73°F
AP = Pressure Drop Across the Orifice (Independent Variable) (psid)

The results are depicted in Figure 3.10. From Figure 3.10, the turbulent flow equation
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Figure 3.10: Comparison of Test Results and Turbulent Flow Equation

and the test data match almost exactly at 85 psid and above. Using the turbulent flow
equation at low pressure differences would obviously be inaccurate. More importantly,
the infinite slope at the origin would cause a stiff ODE solver to fail. Therefore, the
turbulent flow equation will be used to model the orifice flow at pressures above 85psid.
The turbulent flow model is not accurate at pressures lower than 85 psid because laminar
and transitional flow are dominant. In order to model the portion of the flow/pressure
relationship, a cubic spline must be used. It is first necessary to determine the end points
of the cubic spline. From Figure 3.10, the first end point is obviously at the origin. The
second end point can be determined by calculating the flow rate at 85 psid with the

turbulent flow equation (3.20).

—

S
0=CA \{:AP (3.21)
P

O = Flow Through the Orifice (in'/sec)



Cd =0.63

_0012%x

A (in’)

p=8.171x107 (Ibf-sec’/in*)
AP = 85 psid
With the two end points in place, the control points may be generated. To obtain
a smooth transition to turbulent flow at 85 psid, the control point is determined using the
turbulent flow equation (3.20) and the algorithm outlined in Figure 3.7. There are no
predetermined slope requirements at the origin because no joining function exists.
Physically, laminar flow is dominant near the origin. The equation for laminar flow is
linear [20]. Therefore, it is reasonable to choose a linear relationship to create the
control point at the origin. The slope of this line is determined using the original test
data. From Appendix B, the data point (4P,() nearest the origin is:
(2.5 psid, 0.00693 in. /sec)

The equation of a line passing through this point and the origin is simply:

G 0.00693 AP (322)
25
Simplifying gives:
() =0.00277(AP) (3.23)

The algorithm described in Figure 3.7 along with equation 3.23 may now be used to
generate a control point at the ongin.

Using a computer to calculate the end point and control point values gives:
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End Point 1: (0,0)
Control Point 1: (2.220446049250313 x 10", 6.150635556423367 x 10°'°)
End Point 2: (8.500000000000000 x 10", 1.027731761455279 x 10™")
Control Point 2: (8.500000000000222 x 10', 1.027731761455292 x 10™)
The number of significant figures has been carried to an extreme to show the difference
between the original end points and their control points. Obviously, the differences are
physically insignificant. However, these differences are critical when generating the
cubic spline because they force the slopes at the end points to the desired values.
Using these four points and the procedure outlined in Appendix A, the following
cubic spline was created:
0=1327x107 4P -2.965 x 10° AP* + 2.770 x 107 4P (3.24)
The procedure actually produces three third order polynomials. However, the cubics for
the intervals between the end points and their control points may be ignored because the
points are so close together. The resulting mathematical model is displayed in Figure
3.11.
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Figure 3.11: Cubic Spline Based Orifice Model



The model may be refined by experimenting with the departing slope at the

origin. If the slope in equation 3.23 is changed from 0.00277 to 0.00220, the model 1s

improved as shown in Figure 3.12.
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Figure 3.12: Refined Orifice Model

PART B

Using the results from Part A, it is desired to create a generalized mathematical

model] for flow through any orifice. This task may be accomplished by relating the

35

results of Part A to Reynolds Number (»,). Flow characteristics at a particular Reynolds

Number are consistent for the flow of any fluid through any size orifice. Therefore,

Reynolds Number provides a tool to generalize the orifice model developed in Part A.

The function used to force the departing slope at the origin was based on the

linearity of laminar flow. The laminar flow equation is [20]:

Q=

282 DA
pv

(3.25)
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O = Flow Through the Orifice
&= Laminar Flow Coefficient
D = Hydraulic Orifice Diameter

A = Flow Area of the Orifice = i’)‘;—z

p = Fluid Density
v=Kinematic Fluid Viscosity
AP = Pressure Drop Across the Orifice
For Reynolds Numbers less than 100, the following relationship is generally accepted
[20]:
Cs=8N, (3.26)
Rearranging gives:

( ‘lll

YNk

Substituting into Equation 3.25 produces:

o= (3.27)

T 2
Q= iy AP (3.28)
PWN
The slope of this line is simply:
2CP
slope = —< {A (3.29)
PVN g

From Part A, a slope of 0.00220 was used to generate the final mathematical model. If
this slope and the rest of the constants from Part A are substituted into Equation 3.29, it

is possible to solve for Reynolds Number. The only new parameter is kinematic viscosity
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(v). Forthe 10W oil used in Part A, kinematic viscosity is 0.1623 (in.%/sec). Performing
this calculation results in a Reynolds Number of 36.92. In the general case, therefore, the
following equation may be used to create a control point at the origin:

o= 2C.DA
= pv(3692)

—
LI ]
id
(=]
—

The position of the second end point must also be related to Reynolds Number.

Reynolds Number is defined by the following equation:

/ AD
Npm QT AVD (3.31)
Vv

From Part A, the second end point was located at:
P=85psi and (=.10277 in'/sec

Using this value for O and the known values for 4, D and v, the Reynolds Number at the
end point is easily calculated as 67.19. With this Reynolds Number known, the flow rate
at the second end point for any orifice may be calculated by rearranging Equation 3.15 as

follows:

_ 67194v
D

0 (3.32)

The corresponding pressure 1s calculated by rearranging the turbulent flow equation

(3.20):

-

ST

[ ¢ ] (3.33)
C, A
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Equations 3.32 and 3.33 represent a generalized method to calculate the location of the
second end point for any orifice/fluid combination. The turbulent flow equation (3.20)
may now be used to create the control point as outlined in Part A.

To further generalize, it is desirable to allow the user to select the Reynolds
Number at which the turbulent flow equation applies (Ng,). This feature is made possible
by using a ratio of the two Reynolds Numbers calculated above. These values are:

Reynolds Number Used in Laminar Flow Equation (Ng,) = 36.92

Reynolds Number Used in Turbulent Flow Equation (Ng,) = 67.19

2
Ratio = E&=0.55 (3.34)
67.19

Using this information, Equations 3.30 and 3.32, may be further generalized as follows:

0= _204 (3.35)
pv(055N,,)
0= Nn})’*_" (3.36)

The value of Ny, may now be defined by the modeler without effecting the basic shape of
the cubic spline model.

Example 3.1 was developed in the MATLAB computing environment. The
MATLAB script files used to complete this example are contained in Appendix C.
Example 3.2 - Static Relief Valve Model

A common direct acting pressure relief valve 1s depicted in Figure 3.13. When
the force due to pressure at port P becomes large enough to overcome the spring preload

against the poppet, fluid begins to flow to port T. This pressure is known as the cracking
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pressure. As the combined forces due to pressure and flow increase, the spring continues

to compress until the mechanical stop is reached.

Sprin

Port P

Figure 3.13: Typical Pressure Relief Valve

In many hydraulic circuits, 1t 1s acceptable to ignore the dynamics of the poppet.
The simplified mathematical model is called a static relief valve model. A typical static
relief valve model 1s presented in Figure 3.14. The flow through the valve remains at

zero until the cracking pressure (7,,) is attained. At this point, a linear relationship
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between pressure and flow is assumed as the pressure at port P works against the spring.
When the upper mechanical stop is reached (7, ). the poppet is static valve begins and

the turbulent flow equation applies.
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Figure 3.14: General Static Relief Valve Model .

The static relief valve model contains two discontinuities which could severely
limit the computational speed of a numerical ODE solver. The goal of this example 1s to

smooth these discontinuities using cubic splines. For this example, the following

information is known:
P. = 800 psi
P = 850 psi
Omae = 45.05 in'/sec
Quarer =0 in'/sec

P at Port T =0 psi
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The first step is to develop working mathematical relationships. From zero
pressure to 7., the relationship is obviously:

0=0 forO<P<P, (3.37)

The relationship from P, to P4 1s simply a straight line equation:
O=mP+b forP,<P<LPyx (3.38)

where, m = O _ 4305 _ 0.90 in"/sec-psi (3.39)
P.-P, 850-800

b= O - MP e = 45.05-0.90(850) = -719.95 in'/sec (3.40)
For pressures above P, the turbulent flow equation is utilized. The turbulent flow
equation (3.20) may be simplified by lumping the constants together as shown in
Equation 3.41. In this case, AP equals P because port T 1s at zero pressure.
Q=kJP forP2Puy (3.41)
Given P, and O, &, 15 easily calculated:

Opec _ 4505

Ve V850

With the mathematical relationships in place, 1t is now possible to generate cubic

k, = = 1.55 (in/sec)/psi'""” (3.42)

splines using the four-point method. The discontinuity at 7., will be considered first.
Reasonable end points must be selected to bridge the discontinuity. The discontinuity
occurs at P, (800 psi). End point pressure values of 720 psi and 825 psi will be selected
because this range spans the discontinuity with enough room to create a relatively smooth
curve between the functions. This choice is only one of many possibilities. Using a

computer algorithm allows the modeler to test any number of combinations. The flow



rates corresponding to the chosen endpoint pressures may be calculated using Equations
3.34 and 3.35. A computer algorithm based on Figure 3.7 was used to compute the end

point values and the control point values:

End Point 1: (7.200000000000000 x 10°.0)
Control Point 1: (7.200000000000002 x 10%,0)
End Point 2: (8.250000000000000 x 10°, 2.252250000000004 x 10")

Control Point 2: (8.500000000000002 x 10', 2.252250000000015 x 10")

An inspection of End Point 1 and its control point reveals that no migration is necessary
for flow rate (dependent variable) because the original function (Equation 3.37) has a

slope of zero.

These points may now be used to generate the cubic spline according to the
procedure outlined in Appendix A. Again, the resulting cubics between the end points
and their control points may be ignored because the difference between these points is

physically negligible. The resulting cubic spline equation for the middle interval is:
0=6440x10° P+ 1.367x 107" P*+1.943x 10" P (3.43)
To complete the model, the entire procedure must be repeated using Equations 3.38 and

3.41. Using endpoints at /” = 840 ps1 and /= 900 psi, the following cubic spline equation

1s produced:

0 =5.206x 107 P*-8592 x 107 P*+ 5.000 x 10" P + 3.604 (3.44)

‘i-ﬂ-m .‘- w‘ . .“.M..;‘I.."‘-
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The resulting static relief valve model is presented below (eqs. 3.45-3.49) and depicted
graphically in Figure 3.13. Although some small amount of accuracy is lost, the resulting
model contains no discontinuities. This feature provides compatibility with stiff ODE

solvers and adaptive step size algorithms.

0=0 for 0 psi < P < 720 psi (3.45)

0 =6.440 x 10° (P-720)’ + 1.367 x 107 (P-720)* + 1.943 x 107'° (P-720) (3.46)
for 720 psi < P < 825 psi

O =0.90P - 719.95 (3.47)
for 825 psi < P < 840 psi

() =5.206 x 107 (P-840)" - 8.592 x 107 (P-840)* + 5.000 x 10°' (P-840) + 3.604 (3.48)
for 840 psi < P <900 psi

0=1545,p (3.49)

for 900 psi < 7
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Figure 3.15: Smoothed Static Relief Valve Model




As with Example 3.1, Example 3.2 was developed in the MATLAB computing
environment. The MATLAB script files used to complete this example are contained in

Appendix D.

i
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CHAPTER 4
THE EVENT SWITCHING ALGORITHM

Background

The computational efficiency of a stiff numerical integration routine may be
severely impeded by the presence of state events. A state event is a discontinuity which
occurs when a vanable reaches a physical limit during numenical integration. State
events signal a change to the original set of ODEs. A new integration problem is defined
at the exact time the cnitical value is achieved. The sudden switch to a new set of ODEs
produces an abrupt change to the Jacobian matrix of a stiff solver. This abrupt change
often causes the ODE solver to fail. In addition, adaptive step size algorithms tend to
"hunt" around these state events in an effort to traverse them by reducing the step size.
This hunting process requires an inordinate amount of processing time.

To combat these problems, researchers have recommended restarting the ODE
solver each time a state event 1s encountered [12.13]. This process divides the original
problem into continuous sections and solves them in a piecewise manner. Several event
location routines have been devised to pinpoint the precise time at which a state event
occurs [11,12,13,14,15,16,17,18]. The goal of these routines is to control step size such
that the state event occurs at the end of the step. Commercially available integration
packages locate events by monitoring sign changes. Therefore, each state event must be
defined by a discontinuity function. The discontinuity function 1s a mathematical entity
involving the state variables of the original ODEs. The state event occurs when the

discontinuity function equals zero.
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Commercial numerical integration packages are intended to be generic. As such,

it is left to the user to define the discontinuity functions for a given application.
Hydraulic engineers would benefit greatly from a function-specific "book keeping"
approach to state event handling. This type of approach may be developed by
investigating the physical nature of hydraulic system state events.
Hydraulic System State Events

[n the field of hydraulics, state events typically occur when actuators, loads, or
internal valve parts encounter mechanical travel limits. A frictionless spring-mass-
damper system may be used to investigate the effects of these mechanical stops (See

Figure 4.1). The motton of the mass (m) is constrained by the two mechanical stops. If a

A A A Ammﬂ"ﬂikl
/ Domping Coetficient (b)
//’ Right

Ve 77r >~

X=0

N

(m)

xzxmcx

Figure 4.1: Spring-Mass-Damper System with Mechanical Stops

slowly increasing force (F) is applied to the mass, three distinct states are revealed.
These states are depicted in Figure 4.2. From Figure 4.2, State A shows a static condition

because the applied force (F) is not large enough to overcome the spring preload (/.ipa4)
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State A:
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Figure 4.2: Three States for Spring-Mass-Damper System with Mechanical Stops
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and no motion occurs. The same is true of State C. In this case, the mass 1s pinned
against the left stop because the force due to spring compression (4-x) is limited by this
mechanical stop. By definition, therefore, the velocity ( X ) and acceleration ( & )of the
mass are zero for States A and C.

If the magnitude of the applied force is between the spring preload and the
maximum spring force and the mass is not against a stop, the mass is either dynamic or
potentially dynamic. This condition is depicted as State B in Figure 4.2. The mass
would be potentially dynamic if the applied force (/) was constant. Any change in the
applied force would result in motion. The equations of motion for State B may be
developed by summing the forces acting on the mass.

mx = F - Fpretoad - kx - b (4.1)

Solving for acceleration gives:

X = (F - f‘},,.t,;,,mr - kx-bx ) {4 ‘))

1
- 2
For numerical integration, a set of first order differential equations is required. This set

of equations is obtained by introducing x, and x, as follows:

X =X (4.3)
3 A - (4.4)
Xy =Xy =ik (4.5)

Therefore, the equations of motion for State B are:

X;=X; (4.6)

«‘;'3 = l (F - ‘L:ore."oad - kxl -h.‘l':, ) (4.7)
m
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For States A and C, the velocity and acceleration are zero. The equations of motion for
these states are:

*=0 (4.8)

x,=0 (4.9)
During the course of numerical integration, therefore, it is necessary to switch between
these two sets of differential equations. The appropriate set of equations at any given
time is dictated by the magnitude of the applied force. Typically, the magnitude of the
applied force depends on time-varying hydraulic pressures. As a result, it is necessary to
track the magnitude of the applied force during integration and to switch equation sets
when a threshold value is achieved. This process assumes instant deceleration when a
mechanical stop i1s encountered. In reality, deceleration is not instantaneous but it is so
nearly instantaneous that the assumption 1s valid.

Switching between two sets of differential equations produces an abrupt change
to the Jacobian matrix of a stiff ODE solver. In addition, adaptive step size algorithms
require excessive computational effort to traverse a switch discontinuity. As a result, it is
necessary to restart the solver when a state event is detected [12,13]. Before the solver is
restarted, however, it is necessary to integrate up to the precise time of the state event.
Commercial numerical integration packages often locate events by monitoring sign
changes. In order to implement a commercial event location scheme, a discontinuity

function (@) must be created for each state event such that the discontinuity occurs when
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the function equals zero. The discontinuity functions for the spring-mass-damper system
must take the form:

ﬁx,,x__»,F)=0 (410)

More specifically, the discontinuities for each state may be written as follows:

State A: O = Foreload = & (4.11)
State B: =X —X (4.12)
or
Hh=x (4.13)
State C: b =F - Foretoad - k(X ) (4.14)

Zero initial conditions will be assumed to demonstrate the purpose of these discontinuity
functions. Under these conditions, the set of equations for State A are applicable (4.8 and
4.9). It s also assumed that the applied force (/) increases with time. At each
successive time step, the discontinuity function @, (4.11) is evaluated. If at any time ¢,
becomes negative, the event location routine is activated to pinpoint the time at which @,
equals zero. Physically, ¢, is zero when the applied force (/) is large enough to balance
the spring preload. The numerical integrator is stopped at this point. Using the state
variable values at the point of termination as initial conditions, the ODE solver 1s
restarted using the State B differential equations (4.6 and 4.7). Coinciding with the
switch to a new set of ODEs, the discontinuity function must be changed. Equations 4.12
and 4.13 are appropriate for State B. One of these discontinuity functions will cross zero
if the displacement of the mass falls outside the limits imposed by the mechanical stops.

If a sign change occurs, the event locator will again pinpoint the time at which the state

e
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change occurs and the solver may be restarted with the static equations of motion (4.8
and 4.9). In the case of an increasing applied force, the left stop will be encountered. As
such, the discontinuity function ¢ (4.14) must be invoked. If the applied force later
begins to decrease, ¢ will define the point at which the applied force is no longer large
enough to keep the mass pinned against the stop. The event location and solver restarting
procedure may then be repeated as the mass enters State B. Similarly, the entire
procedure must be repeated if the mass were to contact the right stop and enter State A.
Development of the Event Switching Algorithm

This ongoing event location and integrator restarting process may be efficiently
handled by introducing an Event Switching Algorithm (ESA). The ESA takes advantage
of physical properties to simplify the "book keeping" required to numerically integrate
systems containing state discontinuities. The ESA is developed by comparing the
discontinuity functions with the second dynamic equation of motion (eq.4.7). For State
A these equations were:

A= Frreivad = F (4.15)

kz =i(l-'-i~'pmm;—kx,-h.x3) (4.16)

The mass is pressed against the right mechanical stop while in State A. Therefore, the
displacement (x,) of the mass is zero. The velocity (x;) of the mass is also zero.

Inserting this information into Equation 4.16 gives:
! |
x, = —(F - Foretoad) (4.17)
m

If equation 4.17 is set equal to zero, the following is true:
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0=—(F-F 418

0= F - Foretoad (4.19)
The state event occurs when the discontinuity function (g, ) from equation 4.15 equals
zZero:

0= Fpretoat~F (4.20)
Comparing equations 4.19 and 4.20 reveals the following correlation between the

discontinuity function (¢#,) dynamic equation of motion ( X, ):
: .
gy =-1(x,)= ;(I* - Fpreload - kX, -bx, ) (4.21)

Consequently, the existing equation of motion (4.16) may be used as the discontinuity
function in State A. This fortunate circumstance eliminates the need for a separate
discontinuity function. In addition, the negative sign or "-1" may be used as a flag to
identify State A within the ESA. This negative sign is important because it dictates the
direction of zero crossing to the event location routine (i.e. positive to negative).

A similar analysis may be performed for State C using ¢, and ¥,. These
equations are reprinted below for convenience:

b = F - Fpretoad = k(X ey ) (4.22)

""2 = l [1' = ll}Irt'.I'uuf = kx| 'hx;- ) (423)
m

In this case, x, equals x,, because the mass is pinned against the left mechanical stop.
The velocity(x,) is again equal to zero. Substituting this information into equation 4.23

and setting both equations (4.22 and 4.23) equal to zero reveals:

.
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do=Hfa =L Fs kB (4.24)
m

Therefore, State C also does not require a separate discontinuity function (¢:). In
keeping with State A, a flag of "+1" may be used by the ESA to identify State A.

The discontinuity functions for State B (eqs. 4.12 and 4.13) are related simply to
displacement (x;). This information is readily available during the course of numerical
integration. A zero ("0") flag may be used to identify State B within the ESA.

With the discontinuity functions in place, an event location routine may be used
to locate the precise time of the state event. The ODE solver will almost always "step
over" the state event. At the time step just prior to the state event, the discontinuity
function is positive. The discontinuity function then becomes negative after the next
time step. Because the state event occurs when the discontinuity function is zero, the
actual time of the event is between the two steps. The goal of an event location
algorithm is to iteratively shorten the step size until the discontinuity function is zero at
the end of the current time step. This task is most simply performed by successively
bisecting the time step until the discontinuity function is within some tolerance of zero.

More efficient methods often involve interpolation or false position schemes.

The event location routine effectively integrates to the precise moment of the
state event. The time at which the state event occurs, as well as all of the corresponding
state values, are known. At this point, the ODE solver is stopped. The necessary changes
are made to the system of differential equations and integration is restarted using the time

and state values obtained by the event location algorithm as initial conditions. The only
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change to the initial conditions involves the velocity of the mass. This velocity must be
reset to zero when the mass is pinned against either of the mechanical stops.

The resulting Event Switching Algorithm is best represented in flow chart form.
This flow chart is displayed in Figure 4.3. The ESA contains a simple method to
seamlessly integrate numerically stiff systems containing state event discontinuities.
Although useful in many engineering disciplines, the ESA is especially valuable to

hydraulic system engineers because stiffness and state discontinuities are commonplace.
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Figure 4.3: Flow Chart for Event Switching Algorithm as Applied to General

Spring-Mass-Damper System



56

Application Example

The application of the Event Switching Algorithm will be demonstrated with an
example. This example involves a hydraulic actuator encountering a travel limit. In this
case, an arbitrary stroke limit of 2 inches is placed on the cylinder. Only cylinder
extension is considered in this example.
Example 4.1 - Hydraulic Cylinder Circuit

Consider the hydraulic circuit shown in Figure 4.4. This control circuit is
designed to impart translational motion to a load using a hydraulic cylinder. Critical

pressure nodes have been identified on the schematic. The mathematical

K N
Hydraulic 1 Mrgss _M—\
N
S m) T’j‘“:
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Relie Motor
Valve -
L || 0 psi
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Figure 4.4: Hydraulic Circuit Schematic for Example 4.1
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models for the circuit components and the resulting set of differential equations are

developed as follows:
Mathematical Models

LOAD & HYDRAULIC ACTUATOR:

A spring-mass-damper system will be used to model the load. The load mass is rigidly
fixed to the piston rod of the hydraulic cvlinder. As a result, the mass of the rod and of
the load must be combined. This combination is called a /umped load model. In this
case, the following information is known:

Lumped Load Weight (w): 3860 Ib

Spring Constant (k): 700 1b/in

Damping Coefficient (b): 200 Ib/(in/sec)
The force applied to the load is provided by hydraulic pressure acting against the piston
area. Hydraulic pressure is present on both sides of the piston. The resulting applied
force is:

I = PrApore - PiA oy (4.25)

The piston dimensions are as follows:

Bore Diameter: 4.0in.
Rod Diameter: 25in.
Therefore,
Apore = (4.0 1/ 4 (4.26)

Arod = Apore- (2.5 / 4 (4.27)
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DIRECTIONAL CONTROL VALVE:

When shifted, the directional control valve directs pressurized fluid to either the rod or
cap end of the hydraulic cylinder. Depending on the direction the valve is shifted, the
cvlinder will either extend or retract. In this case, the valve will be shifted to force the
cylinder to extend at time zero (1 = 0). The flow restriction through the open valve may
be modeled as an orifice. For this directional control valve, the effective orifice
diameter is:
Dy =0.27842 in.
Making the flow area,
Age=Dgeym/ 4 (4.28)
Given the following, an orifice model may be created as outlined in Example 3.1 Part B:
Orifice Diameter (D,,) = 0.27842 in.
Discharge Coefficient ((y) = 0.61
Fluid Density (p) = 7.95 x 107 (Ib-sec’/in*)
Kinematic Viscosity (v) =  0.02 in*/sec
Transition Reynolds Number (Ng,) = 1500
The resulting mode! is:
For 0 <(/,-P,) £1.240 psid,
Quer =9.350 x 107 (P-P)" - 4.649 x 10" (P-P2)* + 9.617 x 107 (P,-1,)  (4.29)

For (P,-P;) >1.240 psid.

e —

2
Ouer = Caue :J—(P.—lg) (4.30)
Yp
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This model will apply to flow through the valve in either direction. The retumn flow
equation 1s simply:
For 0 < (P4) < 1.240 psid,

Ouez=9.350x 107 (P,)* - 4.649 x 10° (Py)" + 9.617 x 107 (1)) (4.31)

For (P;) >1.240 psid,

2 "
\,p(x‘i) (4.32)

Qacz = CaAy:

METERING ORIFICE:

The metering orifice creates back pressure against the rod end of the cylinder. This back
pressure is responsible for controlled cylinder extension. The following information is
known:

Orifice Diameter (D,,) = 0.11277 in.

Discharge Coefficient (Cy) = 0.61

Fluid Density (p) = 7.95 x 107 (Ib-sec’/in?)

Kinematic Viscosity (v)=  0.02 in’/sec

Transition Reynolds Number (Ng,) = 1500
Given the above data, it is again possible to develop an orifice model using the general
procedure outlined in Example 3.1 Part B. The resulting model is:
For 0 < (P53-P;) < 7.560 psid,

Oor =2.031 x 107 (P3-P4)* - 5.339 x 107 (P35-P,)* + 6.390 x 10 (7:-Py)  (4.33)




For (.P;-P‘) >7.560 pSld,

[2
Qor: (‘dAm *;(Pz - PJ] (4341

RELIEF VALVE:

The relief valve simply limits pump discharge pressure. A model for this relief valve was

developed in Example 3.2. This model is as follows:

On=0 for 0 psi < P, < 720 psi (4.35)

O = 6.440 x 107 (P,-720)* + 1.367 x 107 (P,-720)* + 1.943x 1070 (P\-720)  (4.36)
for 720 psi < 7, < 825 psi

On =090 P, - 719.95 (4.37)
for 825 psi < P, < 840 psi

O =5.206 x 107 (P,-840) - 8.592 x 107 (7,-840)* + 5.000 x 10 (,-840) + 3.604

for 840 psi < P, < 900 psi (4.38)
On=1.545,/P, (4.39)

for 900 ps1 < P,

PUMP AND MOTOR:

The pump supplies the system with pressurized fluid. An ideal pump model will be used.
Ideal pumps experience no internal leakage. Therefore, the pump flow may be calculated

using the following equation:

O;» = Displacement x Rotational Speed (4.40)




ol

Given a motor speed of 1800 rpm and a pump displacement of 1.28 in'/rev, the pump

flow is:

.3 ) 5 3
O, = 1287 % 1800750 x JIIN _ gg5 21 (4.41)
rev min  60sec sec

This flow rate will be applied to the system as a step input because the direction control
valve is shifted at time zero (+=0). Prior to time zero, the flow is simply bypassed to tank

with a negligible pressure drop through the directional control valve.
Differential Equations

The governing differential equation for pressure is:
P= g(z 0) (4. 42)

P = Pressure at a Given Point

£ = Bulk Modulus of Elasticity

Fluid Volume

(= Flow Rate

=

Bulk modulus is a fluid property. In this case, a fluid with a bulk modulus of 150,000 psi
will be used. By convention, a positive flow rate enters a pressure point while a negative
flow exits. The differential equations for each pressure point may be developed as

follows:
NODE 1:

The pump discharge flow (Q,,) enters Node 1 while the flow through the relief valve and

the directional control valve exit. The volume of fluid trapped between the pump outlet
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and valve inlet is known to be 10 in’. Asa result, the differential equation for this point
is:

_ 150000
10

NODE 2:
Node 2 has one incoming flow rate and one outgoing flow rate. The incoming flow
originates from the directional control valve ((,.). The outgoing flow fills the extending
cylinder. The volume of fluid in the extending cylinder at any point in time is simply:
V= Apore - X (4.44)
Therefore. the volumetric flow rate into the cylinder is
Otin= Abore * X (4.45)
The conduit connecting the directional control valve and the cylinder is known to have a
volume of 10 in’. Given this information, the following differential cquation may be
developed:

. 150000
71044, -x

bare

(Q‘&- = Ay * X) (4.46)

NODE 3:
The differential equation for Node 3 may be developed in the same manner as Node 2.
Again, a conduit volume of 10 in’ will be used. The resulting equation is:

: 150000
P 2N pg g0 447
Y104 Aﬂu'x( rod "% ('"') ( )




NODE 4:

The flow from the metering orifice enters Node 4 and the flow through the directional
control valve exits. Given a transmission line volume of 10 in’, the differential equation
for Node 4 1s simply:

P =000, - 0,) (4.48)

The standard differential equation of motion for the spring-mass-damper system
(eq.4.2) is appropniate for the load:

% = —(F - Fppetoad - kx-b%) (4.49)

L
m
The applied force (/) is provided by the cylinder. This force was modeled as (eq. 4.25):

!" - P!“If‘nn’ - P?-Amd (450"

In this case, the preload force (Fpreas) i zero. As a result, the differential equation of

motion is:
. I . .
x=.—{ P}*’I;,,,,-,, - l“v],,,,j - kx-bhx ) (4.51)
m

System of Differential Equations
In order to create a vectorized set of differential equations for the computer

algorithm, the following substitutions were made:

x = P
xy =1
A, = P;
X3 =P,

X5i=. X




X, =X
X, = X, =X
The resulting set of linked ODEs is:
1
-i'| = 50000 (Qiu = (_)d'l - {:_)n) (452]
150000
i (s TS 453
x— 10+'4w"..“:5 (g-tt! bare rh] ( J}
150000
= DY g ) 454
x.‘ ]0+Amx5( rod Ih Lm’) ( }
0
g.=12 N . (4.55)
10
%, = x, (4.56)
‘\.'h o *I—[ P:Ai-“-..- - P}Am; - kx_;-h.r,, ) (4.57)
m

Results

This system of equations was solved using Gear's method for stiff ODEs in
conjunction with the ESA as outlined in Figure 4.3. Adaptive step control was also
utilized. The cylinder stroke limit was assumed to be 2.0 inches. Time-based plots of
cylinder rod displacement and velocity are displayed in Figures 4.5 and 4.6 respectively.
The displacement becomes constant when the stroke limit is reached. In addition, the
velocity becomes zero when the stroke limit is encountered. In the absence of the ESA,
these sharp changes would cause the stiff numerical integration and adaptive step size

algorithms to become inefficient or to fail completely. The ESA, however, produces the
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expected results in a reasonable amount of time. In fact, these results were obtained in
under 12 seconds using Pentium 200 computer with 32 megabytes of RAM. A detailed
study of computation time is left for Chapter 5 of this document. However, 12 seconds

is, bv no means, unreasonable for a system of this complexity.
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Figure 4.5: Cylinder Rod Displacement Response for Example 4.1
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Pressure transients at Nodes 1,2 and 3 are depicted in Figure 4.7. Abrupt changes
in pressure are also handled by the ESA. When the cylinder rod reaches its stroke limit.
the pressures at Nodes 1 and 2 quickly climb until the relief valve opens. Similarly,
pressure at Node 3 drops to zero because the cylinder is no longer forcing fluid through

the metering orifice.

= 600 An. -
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Figure 4.7: Pressure Responses for Example 4.1

Example 4.1 was developed and solved in the MATLAB computing environment.
All of the relevant MATLAB script files are contained in Appendix E.
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CHAPTER 5
CASE STUDY: PILOT-OPERATED RELIEF VALVE
Introduction
The four-point method for generating cubic splines was developed in this effort as
a modeling tool. Its primary function is to eliminate model discontinuities which cause
stiff ODE solvers and adaptive step size algorithms to fail or become inefficient.
Similarly, an Event Switching Algorithm was developed in this work to effectively
eliminate failures caused by abrupt changes to the Jacobian matrix of a stiff ODE solver.
When combined, these two techniques are used to create compatibility between
mathematically stiff hydraulic systems containing discontinuities and stiff ODE solvers
with adaptive step size control. These stiff ODE solvers offer a considerable advantage
over conventional solvers in terms of processing time.
Overview of Stiff ODE Solvers
Two stiff numerical integration methods are predominant. These methods are
Gear's method for stiff ODEs and the Rosenbrock method. Of these, Gear's method 1s the
most common. Gear's method is a predictor-corrector method. The predictor and
corrector are based on Backward Differentiation Formulas (BDFs) or Numerical
Differentiation Formulas (NDFs) [21]. Though closely related, the NDFs are generally
more efficient than the BDFs [22] . The order of the BDFs or NDFs affects stability.
During the course of integration, the order is varied by the solver [23]. [fa limit s
applied to the maximum order, greater stability i1s achieved. The degree of stability

decreases and efficiency increases as the order limit is raised.
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To explore the effects of order, Example 4.1 was solved using a variety of order

limits. The results are compiled in Table 5.1. A stability problem occurred when the

Table 5.1:  Simulation Results for Example 4.1 Using Different Variations of Gear's
Method.
Gear's Method: Integration Results: Processing Time'
Solver Parameters Success or Failure {seconds)
NDFs Success 39.08
Maximum Order = 1
- NDFs Success 13.98
Maximum Order = 2
NDFs Success 11.72
Maximum Order = 3
NDFs Success 11.54
Maximum Order = 4
NDFs Failure Not Applicable
Maximum Order = 5

* These results were obtained in the MATLAB computing environment using a Pentium 200 computer with
32 megabytes of RAM. The absolute and relative tolerances were set at 107 and 10™ respectively.

maximum order was set at 5. This stability problem ultimately led to failure of the
method. A review of the processing times reveals a threefold increase in efficiency as
the order limit is increased.

Although it is not as numerically efficient as Gear's method, the Rosenbrock
method has become popular for two reasons. First, the Rosenbrock method is relatively
simple. This method is a single-step solver based on the familiar Runge-Kutta scheme.
The need for complicated predictor-corrector formulas with varying order is eliminated.
As a result, the method is conceptually easy to understand. Secondly, the Rosenbrock

method has stability properties which surpass those of Gear's method. The Rosenbrock

method can often solve problems which cause Gear's method to fail.
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The Pilot-Operated Relief Valve

In an effort to investigate the advantages offered by these stiff ODE solvers, the
dynamics of a pilot-operated relief valve were studied. In addition, the costs of restarting
the numerical integrator in the ESA were explored by varying the travel limits of the

poppets. A typical pilot-operated relief valve is depicted in Figure 5.1. The valve

Orifice

Port T (O psi)

Port P

Figure 5.1: Pilot-Operated Relief Valve

functions by controlling the force balance of the main poppet. As the pressure

increases, it distributes equally on all surfaces as long as the pilot poppet remains seated.
With the aid of a light spring, the closing force is larger than the opening force and the
main poppet remains against its seat. The valve opens when the pressure becomes large
enough to lift the pilot poppet off of its seat. When the pressure becomes large enough to
overcome the pilot spring, flow is established through the orifice. The orifice creates a
pressure drop in the spring chamber of the main poppet. As a result, the opening force
becomes larger than the closing force and the main poppet lifts off of its seat. The bulk

of the flow then passes to tank by flowing around the unseated main poppet.
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Dynamically, this process is described by six first-order differential equations.

These equations are listed below. Flow forces acting on the poppets have been included

in this system of equations.

Where,

B=3% =£~(Qm-Q, -0, - 4x,) (5.1)
B =xy= ;B(Qa,+/fp.r4-gz — Ayx,) (5.2)
F=%, =x, (5.3)
¥k, = —”—ZT(A,x, = A, %3 = F iy — by %, — by x5 — f"ﬂ,,,.,) (5.4)
P=3%, =X (5.5)
V=¥, = mi(,ezz,\c2 = Fopetonis = b2%6 = kyXg = F 01 (5.6)
B= Fluid Bulk Modulus of Elasticity

V,= Fluid Volume at Inlet Port

Vy= Fluid Volume of Main Poppet Spring Chamber

Oin= Inlet Flow Rate

O = Flow Rate Over Main Poppet Seat

0, = Flow Rate Over Pilot Poppet Seat

O, = Flow Rate Through Orifice

D= Diameter of Main Poppet Seat

Dsy= Diameter of Pilot Poppet Seat




A= Area of Main Poppet Seat

A= Area of Pilot Poppet Seat

A= Area of Main Poppet on the Spring Chamber Side
my = Mass of Main Poppet

my = Mass of Pilot Poppet

Eovetiodi = Force of Main Spring Preload
Foripats™ Force of Pilot Spring Preload

Frowi = Flow Force Acting on Main Poppet
Frowz = Flow Force Acting on Pilot Poppet
b= Damping Coefficient for Main Poppet
by = Damping Coefficient for Pilot Poppet
k= Spning Rate for Main Spring

k= Spring Rate for Pilot Spring

For the test problem, the following constants are known:

A=1.03x 10’ Pa Vi =3x 10" m’
Va=1x 107 m’ Ou=1x 10" m'/sec
D;=0.017m D> =0.005 m
A,=227x10" m? A;=196x10° m’
A4,=235x 10" m’ m, = 0.045 kg

my = 0.020 kg Foretoad; = 100 N

b, = 1000 N/(m/sec) b, = 50 N/(m/sec)

k; = 5000 N/m ky = 50000 N/m




The desired cracking pressure (P,,) for the relief valve is 1 x 10 Pascal. Therefore. the
spring preload on the pilot poppet must be:
Frorviads ™ 83 “FPoy (5.7)
The flow rate through the fixed orifice ((QJ,,) requires a mathematical model. A suitable
model may be developed by using the procedure outlined in Part B of Example 3.1. In
this case, the following information is given:
Orifice Diameter (D,,) = 0.001 m
Discharge Coefficient (Cy) = 0.61
Fluid Density (p) = 845 (kg/m’)
Kinematic Viscosity (v)=  14.3 x 10° m%sec
Transition Reynolds Number (Ng,) = 1500
The following orifice flow model may be developed from this information:
For 0 < (P,-P») <5.224 x 10 ° Pa.
Oor = 3.759 x 107 (Py-P,)* - 7.014 x 1077 (P,-P,)* + 5.863 x 10" (,-,) (5.8)

For (P,-P5) >5.224 x 10 ° Pa.

I,"__.—
g_)ur (‘l.l'Aor \Jl_;(f)l - J’)3) (59)

The flow rate over the main poppet seat ((,) is essentially the flow through a variable
orifice created by the moving poppet. The flow area of this vanable orifice is a function
of poppet displacement (Eq. 5.10).

Aﬂaw] =:r»]);sin(a;)-x (5.10)




Ao = Flow Area of Main Poppet/Seat
D, = Diameter of Main Poppet Seat
a; = Half Angle of Main Poppet

X = Main Poppet Displacement

The mathematical model for this variable orifice may be developed by first assuming a
fixed orifice with a diameter equal to the diameter of the main poppet seat (1;). Using
the procedure outlined in Part B of Example 3.1, a cubic spline may be generated. The
variability of the orifice is handled by simply multiplying this cubic spline by the ratio of
the flow area (A4g,,) to the seat area (4,). In this case, a cubic spline may be developed
using the following information:

Seat Diameter (D;) = 0.017 m

Discharge Coefficient ((’y) = 0.61

Fluid Density (p) = 845 (kg/m’)

Kinematic Viscosity (v)=  14.3 x 10° m”/sec

Transition Reynolds Number (Ng,) = 1500

The resulting cubic spline is:

1.543 x 10 (P) -9.959 x 107" (#,)* + 2.881 x 107 (P)) (5.11)

Given a main poppet half angle of 30° (@, = n/6 rad.), the variable orifice model is:
For 0 <(P;)< 1.808 x 10 * Pa,

7D, sin(a | )x e P—_— .
0= — {1.543 x 1077 (P))" -9.959 x 107" (/)" + 2.881 x 107 ("))} (5.12)

“
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For (P,)>1.808 x 10 * Pa,

)".'F
£)| = (;j fr‘D;_sin(cz;)-x J:'(Pi) (5.13)
\p

The mathematical model for the varable orifice created by the pilot poppet may be
generated in the same fashion as that of the main poppet. The data for the pilot poppet 1s
as follows:
Seat Diameter ([),) = 0.0005 m
Discharge Coefficient (C;) = 0.61
Fluid Density (p) = 845 (kg/m")
Kinematic Viscosity (v)=  14.3 x 10° m¥sec
Transition Reynolds Number (Ng,) = 1500
Pilot Poppet Half Angle (a,) = n/6 radians
The resulting mathematical model is:
For 0 <(P,) <2.090 x 10 * Pa.

Jd)-. 1 - J - a2 q
0:= T—S’—;M (2.937 x 107 (P2) - 2.192 x 107 () + 7.329 x 10” (/%))

(5.14)
For (P,)>2.090 x 10 * Pa,

Q; = -d I'I)Q_Si n( a;)'}'

=
Vp(Pz) (5.15)

P
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With the mathematical models in place, the discontinuity functions can be
identified. The pilot-operated relief valve has two spring-mass-damper systems. Both of
the masses may encounter state events in the form of mechanical stops. As a result, the
ESA must be implemented twice. After each time step, the appropnate discontinuity
function for both masses 1s evaluated. If either discontinuity function becomes negative,
the integrator restarting procedure is initiated. For reasons discussed in Chapter 4 of this
document, Equations 5.4 and 5.6 will be used by the ESA as the discontinuity functions
for their respective poppets when the poppets are pinned against mechanical stops. If
either of the poppets is between its mechanical travel limits, the displacement (x; or xs) 1s
monitored until a mechanical stop is reached as dictated by the ESA.

Numerical Integration Evaluation
The pilot-operated relief valve was inserted in a simple test circuit as depicted in

Figure 5.2. Shifting the directional control valve at a predetermined time produced a

I Reliet
| Vae
LA wral
Pump
Motor
e I
Resenvoir

Figure 5.2: Pilot-Operated Relief Valve Test Circuit
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duty cycle consisting of an "on" response and an "off" response. A sernes of tests with

varying travel limits on both poppets was performed to evaluate the effectiveness of the

stiff ODE solvers and the ESA. In addition to Gear's Method for Stiff ODEs and

Rosenbrock's Method, three conventional (nonstiff) solvers were evaluated. An attempt

to solve each test problem was made using all of the following ODE solvers:

1)

2)

4)

Runge-Kutta (4,5): A single-step nonstiff solver credited to

Dormand and Prince [22]. This ODE solver uses 4th and 5th order
Runge-Kutta methods.

Runge-Kutta (2,3): A single-step nonstiff solver credited to

Bogacki and Shampine [22]. This ODE solver uses 2nd and 3rd
order Runge-Kutta methods.

Adams-Bashforth-Moulton [22]: A nonstiff multistep solver. This

ODE solver uses a variable order routine to iteratively predict and
correct at each time step.

Gear's Stiff Method [22]: A varniable-order multistep solver based

on BDFs or NDFs. For comparison, the following combinations
were tested:

a) BDFs with order limit of 2.

b) BDFs with order limit of 5.

c) NDFs with order limit of 2.

d) NDFs with order limit of 5.
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5) Rosenbrock's Method [22]: A second order, single-step stiff ODE

solver based on sem-implicit Runge-Kutta Formulas.

TEST CONDITIONS:

Each of these ODE solvers is available in the MATLAB computing package.
MATLAB provided a convenient environment to implement the ESA and test a variety of

ODE solvers. The following test conditions prevailed for each test problem:

Computer Specifications: Pentium 200 with 32 megabytes of RAM
Relative Error Tolerance: 1x10°

Absolute Error Tolerance: 1x10°

Adaptive Step Size Control: Active for all ODE solvers

Event Switching Algorithm: Utilized for all tests

Initial Conditions: Zero

Initial Time: t = 0 seconds

Final Time: t = 0.08 seconds

Imitial Direction Control Valve Position:  Open to Relief Valve

Directional Control Valve Shift Time: t = 0.04 seconds

The goal of these tests was to explore the potential advantages of using stiff ODE solvers.
For fixed-step integration, the nonstiff solvers may not require mathematically smooth
models or an event switching routine because no Jacobian matrix is present. Adaptive
step sizing, however, requires both. Because adaptive step size routines are
commonplace, adaptive step sizing was applied to all of the tests. This condition

provided commonality of mathematical models and event switching. For a given
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problem, therefore, any varnations in performance among the various ODE solvers were
solely due to the solver routines.

TEST PROBLEMS:

Travels limits for each test problem and the corresponding integration results are
presented on the following pages. The pressures and poppet displacements were of
pnimary interest. As such, only the transient responses of these parameters were
displayed graphically. In each case, the simulation results were identical (within the
specified error tolerance) for all of the integration methods. Table 5.2 contains
performance information for all of the tests. The number of ODE solver restarts required
by the ESA and the computation times for the various ODE solvers are also contained in
this table. Computation times presented in Table 5.2 are an average of three runs. As

expected, the difference in elapsed time between the three runs was negligible.



Test #1:

Main Poppet Maximum Travel Limit (x,,,) = 3 X 10~ meters

Pilot Poppet Maximum Travel Limit (Vma) = 0.5 x 10~ meters

Test #1 Solution:

2.0E+07

1.5E+07

1.0E+07

Pressure (Pa)

5.0E+06

0.0E+00

Figure 5.3: Pressure Response for Test #1

\P]

P2

I

j

.

0

002 003 004 005 006 007 0.08
Time (seconds)

5E-04

4E-04

2

Ma3in Poppet

m
®

1E-04

/

\

Poppet Displacement (meters)

OE+00

Pilot Po

et

/
F:

il

\

e

0
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Test #2:

Main Poppet Maximum Travel Limit (X,.e) = 3 X 10~ meters

Pilot Poppet Maximum Travel Limit (Vma) = 0.8 x 10™ meters

Test #2 Solution:

Pressure (Pa)

Poppet Displacement (meters)
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Figure 5.5: Pressure Response for Test #2
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Figure 5.6: Displacement Response for Test #2
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Test #3:
Main Poppet Maximum Travel Limit (x,,o) = 4.5 X 10~ meters
Pilot Poppet Maximum Travel Limit (v,,.) = 0.8 x 10 meters

Test #3 Solution:
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Figure 5.7: Pressure Response for Test #3
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Figure 5.8: Displacement Response for Test #3



Test #4:

Main Poppet Maximum Travel Limit (X,,e) = 4.75 x 10™ meters

Pilot Poppet Maximum Travel Limit (Vg) = 0.5 x 10~ meters

Test #4 Solution:

Pressure (Pa)

Poppet Displacement (meters)
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Figure 5.9: Pressure Response for Test #4
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Figure 5.10: Displacement Response for Test #4



Table5.2:  Compiled Test Results for Varations of the Pilot-Operated Relief
Valve Problem.

Computation Times (seconds)
Test Travel | Number Nonstiff ODE Stiff ODE Solvers
Number |  Limuts of Solvers
(melers) Restarts | Runge | Runge Adams Gear's Gear's Gear's Crear's Rosen-
Kutta | Kuta | Bashforth BDFs BDFs NDFs NDFs brock
p, - 4.5) 2.3 Moulton Max Max Max Max
Y ) Order=2 | Order=35 | Order=2 | Order =3
_ﬂE-"‘_‘
1 30x10 8 2399 | 3738 346.5 109 104 10.1 10.0 149
0.5x 107
2 3.0x 107 8 2404 | 3350 346.8 16.9 13.2 15.2 129 24.2
0Rx 107
3 45x 107 8 264.0 | 3350 3698 21.2 13.7 18.6 138 326
08x 107
4 475x 1(}“ 12 265.0 | 3340 360.8 218 17.3 198 174 326
05x10°

Discussion of Computation Time Results

The effectiveness of the various ODE solvers can be evaluated bv studying Table
5.2. In the presence of mathematical stiffness, Runge-Kutta (4,5) was the most effective
of the conventional nonstiff ODE solvers. The stiff ODE solvers were significantly more
efficient. At worst, an eightfold improvement was achieved when using a stiff ODE
solver. Processing speeds were over 20 times faster than that of Runge-Kutta (4,5) in
some cases. With the aid of cubic splines generated using control points and the Event
Switching Algorithm, these computational efficiency gains may be realized. The stiff
solvers would have failed due to abrupt changes in their Jacobian matrices if these tools
were absent. As such, the effort required to implement these tools is well justified. This

1s especially true of very large systems which could take days to integrate.
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Among the stiff solvers, all of the variations of Gear's method proved to be
slightly more efficient than Rosenbrock's method. This condition is problem specific.
There exists a set of problems for which Gear's method is ineffective [22]. However, the
inherent stability of Rosenbrock's method will lead to a successful solution. The ability
of Rosenbrock's method to solve a wider varnety of problems often compensates for its
slightly longer processing time.

Table 5.2 also reveals some information about the variations of Gear's method.
Numerical differentiation formulas of a given order are generally more efficient than
their corresponding backward differentiation formulas. In the two cases where the NDFs
did not perform better than the BDFs, the computation times are nearly equal. For both
BDFs and NDFs, an increase from 2™ order to 5” improved the computation time by as
little as 1% or by as much as 35% depending on the problem. Again, stability is the key
issue. Differentiation formulas of 2™ order maintain A-stability [22]. However. this
stability property 1s lost if the differentiation formula is above order two. For the pilot-
operated relief valve problem, stability is maintained through 5" order.

The Event Switching Algorithm performed eight ODE solver restarts each during
test numbers 1, 2 and 3. Despite the equal number of restarts, computation times varied
significantly between these three tests for a given stiff ODE solver. These results suggest
that restart costs are not the dominant factor in determining processing time. A careful
review of the solutions reveals the true cause of the varying computation times.
Inspection of Figure 5.4 reveals a very simple dynamic response. Both poppets spend

most of the response time against their mechanical stops during Test #1. During Test #2,
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the pilot poppet spends only a short amount of time against the upper travel limit (Figure
5.6). The dynamics of Test #2 are slightly more complex than those of Test #1. Asa
result, slightly more computation time is required. The solution for Test #3 (Figure 5.8)
is clearly more oscillatory than either Test #1 or #2. Again, the increased dvnamic
complexity is accompanied by longer processing times.

Test numbers 3 and 4 may be compared to examine the effects of restarting the
various stiff ODE solvers. Although dynamically similar, Test #4 requires four more
restarts than Test #3. The 2™ order BDFs for Gear's method required only a 2.8%
increase in processing time to accommodate the four additional restarts. Similarly, 2™
order NDFs required 6.5%. However, the 5" order BDFs and NDFs required over 26%
more processing time to accomplish the same task. The costs of restarting the low order
differentiation formulas for Gear's method are clearly much lower than those of the high
order formulas. By comparison, Rosenbrock's method required no significant
computation time to perform the additional restarts. This fortunate result is inherent to
the method itself. Rosenbrock's method is a single-step solver which requires no
historical information. As a result, the first step is virtually the same as any other step.
Gear's method is a multistep solver which requires historical information to complete a
step. When the solver 1s started, no historical information 1s available and special
measures must be introduced to start the solver.

Error Analysis
[n an effort to investigate the reliability of the stiff solvers in terms of accuracy,

one final test was performed. Test #4 was repeated using Runge-Kutta (4,5) and a step
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size limit of 107 seconds. This step size limitation is several orders of magnitude smaller
than the minimum step size produced by the adaptive step size control algorithm with no
size restrictions. Because accuracy is directly related to step size, the simulation
performed at 10”7 was considered to be "exact” for all practical purposes and served as a
baseline for comparison. The results from the inlet pressure (P;) response of Test #4
using the vanous ODE solvers were compared to the results obtained using Runge-Kutta
(4,5) with a step size restriction of 1 07 second. The results were refined to provide state
values at increments of 10™ second. At each increment, the pressure difference between
the results from the solver of interest and the "exact" solution was calculated. This

difference was used to determine error percentage as follows:

!Jsolwr - })amrr‘ ;
Percent Error = R x 100 % (5.16)
Where, Potver = Inlet Pressure (#;) as computed by the ODE solver of

interest with no step size restriction,

Picaci = Inlet Pressure (7;) as computed by Runge-Kutta (4,5) with
a step size restriction of 107 second.

The results of this error analysis, 1n terms of maximum error and average error, are
compiled in Table 5.3.

Table 5.3:  Error Analysis Results for Inlet Pressure Response of Test #4

Numerical Integration Maximum Average
Method Error Error

Runge-Kutta (4,5) 0.0294 % 0.0024 %
Adams-Bashforth-Moulton 0.1930 % 0.0077 %
Gear's:BDFs Max. Order =2 0.3932 % 0.0696 %
Gear's:BDFs Max. Order =5 0.3539 % ______0.0522 %
Gear's:NDFs Max. Order =2 1.0272 % 0.1124 %
Gear's:NDFs Max. Order =5 0.1709 % 0.0434 %
Rosenbrock's Method 0.0756 % 0.0140 %
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A graphical depiction of the error analysis results is contained in Figure 5.11.
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Figure 5.11: Comparison of Error Analysis Results

Discussion of Error Analysis Results

The worst case error was slightly over 1%. Accuracy of this magnitude is more
than adequate for hvdraulic pressure calculation. Runge-Kutta (4,5) was the most
accurate of all the solvers but this accuracy is achieved at the expense of processing time.
The Rosenbrock method provides accuracy comparable to Runge-Kutta (4,5) without
excessive processing time. Among the various forms of Gear's Method, Numerical
Differentiation Formulas (NDFs) with a 5" order limit were the most accurate. This form
of Gear's method is also the most efficient in terms of processing time making it a
powerful integration method for stiff hydraulic systems. Ultimately, stability will
determine the most suitable integration method because adequate accuracy may be

achieved using any of the stiff ODE solvers proposed in this study.
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Summary

The optimum ODE solver for hydraulic systems 1s problem specific. However,
Rosenbrock's method would be the most useful to the average hydraulic system designer.
Although not as computationally expeditious as Gear's Method, Rosenbrock's method 1s
considerably more efficient than the non-stiff solvers. The Rosenbrock method is also
conceptually easier to understand than Gear's method and its robust stability properties
facilitate the solution of a wider variety of problems. In addition, the restart costs of
Rosenbrock's method are insignificant. This characteristics makes it compatible with the
Event Switching Algorithm. For systems with a large number of components, these

restart cost could become excessive if Gear's method were used.



89

CHAPTER 6

EXPERIMENTAL VERIFICATION

Introduction

The ultimate goal of computer modeling and simulation of hyvdraulic systems 1s to
determine the dynamic response of “real-world™ hardware. This response information is
invaluable to hydraulic system designers. In the computer environment, the effect of
design changes on the dynamic response can be determined without the financial
consequences of complicated “breadboard” testing. However, computer simulation can
not completely replace laboratory tests. Computer analysis results are only as accurate as
the methods used to simulate the physical system. As a result, verification of computer
simulation results must be performed at some point in the design process. In this spirit,
the dynamic response of an actual direct-acting relief valve was simulated using the
modeling and integration techniques present in this work and then compared to available

test data.

Test Component

The hydraulic component under consideration is a direct-acting relief valve. A
typical direct-acting relief valve is represented in Figure 6.1. The flow through the valve
remains at zero until the force acting on the poppet is sufficient to lift the poppet from its
seat. Increasing pressure acting on the poppet area at Port P creates this force. As the
poppet lifts from the seat, a flow path from Port P to Port T is created and the pressure

relieved. A relief valve is typically used to limit hydraulic system pressure. Relief valves



90

protect other hydraulic system components from accidental overpressurization and

prevent injuries related to overpressurization.

Port T

Figure 6.1: Typical Direct-Acting Pressure Relief Valve

The dynamic performance of a relief valve is of paramount importance for
obvious safety reasons. As a result, performance testing of relief valves is common and
data from such tests is readily available. The availability of such test data makes the
direct-acting relief valve a perfect candidate for experimental verification of computer

simulation results.

In this case, data from a relief valve test performed at FES Incorporated in

Stillwater, Oklahoma was used. The test unit was a commercially available direct-acting
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relief valve. Testing was performed with MIL-H-5606 hydraulic fluid at 38 Celsius. As a

result of laboratory work, the following valve charactenstics were identified:

Test System

Poppet Mass (m):

Spring Rate (k):
Damping Coefficient (5):
Poppet Half-Angle (a):
Seat Diameter (d):

Cracking Pressure (P,,):

Fluid Volume at Port P (v):

Discharge Coefficient of
Poppet/Seat (Cy):

Bulk Modulus of Fluid (f):

Density of Fluid (p):

0.0031 kg
105076 N/m
35 N/(m/sec)
30°

7.75x 10" m
6.897 x 10° Pa

1x10%m’

0.61
1.8 x 10° N/m°

845 kg/m’

For testing purposes, the test unit was installed in the hydraulic system depicted

schematically in Figure 6.2. Shifting the directional control valve with an electrical
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Figure 6.2: Direct-Acting Relief Valve Test Circuit



step input sends a flow rate (();,) of 6.305 x 10™ m"/sec to the test valve. However, a step
input flow rate does not occur when the directional control valve 1s shifted. Fullv
developed flow occurs over a finite period of time. In an effort to account for this
condition, a 15 millisecond ramp to full flow was utilized for Q,,.
Mathematical Models and Differential Equations

The mathematical model for variable-orifice flow and the differential equations
for the direct-acting relief valve were developed in the same manner as those for the
pilot-operated relief valve in Chapter 5 of this study. The resulting differential equations
are as follows:

r )
‘;{l = :ﬁ’_(gm —MS].H(Q}I:LJQ - -(—14_11."3} {6] ]

=) (d-}r X —d—:EI’" —bx, = kx, —aC ,d sin(2a }.r,.r:]

Where.
x, = Pressure at Port P
x>=  Poppet Displacement
x;= Poppet Velocity

(), = Flow Rate Across Poppet Seat Arrangement

Results of Computer Analysis
A cubic spline based orifice model was used for the poppet/seat arrangement and

the Event Switching Algorithm was employed for boundary handling. Numerical
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integration of the differential equations was performed using Gear’s Method for Stiff

ODEs. Numerical Differentiation Formulas with a maximum order of 5 were utilized.
For a relief valve, the parameter of interest is the pressure at Port P. The dvnamic

response for this pressure, as predicted by employing the methods outlined in this work,

1s displayed in Figure 6.3. The following information can be gleaned from this plot:

Peak Pressure: 1.513x 10’ Pa
Peak Time: 0.0068 seconds

Steady State Pressure: 8.23x 10" Pa
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Figure 6.3: Simulation Results for Direct-Acting Relief Valve

Test Results
The dynamic response from laboratory testing is displayed in Figure 6.4. Again,

the performance characteristics may be obtained from the plot:
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Peak Pressure: 1.552 x 10 Pa
Peak Time: 0.008 seconds

Steady State Pressure (Average): 8.15x 10° Pa
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Figure 6.4: Test Results for Direct-Acting Relief Valve
The computer simulation result is superimposed over the measured dynamic

response in Figure 6.5.
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Figure 6.5: Simulation and Test Results Superimposed




Discussion of Results

A comparison of the test results to the computer simulation results reveals
excellent correlation in terms of peak pressure. The difference between the two values 1s
less than 3%. Peak pressure is the most important characteristic of relief valve
performance. Pressure spikes are often responsible for hydraulic system damage. The
predicted steady-state pressure value also closely matches the expenmental data.
Although steady-state analysis may be performed without numerical integration, the
steady-state value is a good measure of correlation between computer-generated results
and empirical results. Comparing the peak times reveals some difference in terms of
response time. The predicted response is about 0.0017 seconds faster. This slight
dispanty i1s due the way the system was modeled. The dynamics of the pressure
transducer were not considered in the system model. As a result, the measured response
lags the predicted response. A more complex model could be developed to account for

instrumentation dynamics if greater response time accuracy is desired.




CHAPTER 7
CONCLUSION AND RECOMMENDATIONS
Conclusion

Hydraulic systems are generally considered to be mathematically stiff. This
stiffness is the direct result of widely varying time constants within a single system.
During numerical integration of a stiff set of ordinary differential equations,
mathematical stiffness forces conventional ODE solvers to use very small time steps to
maintain stability. These small time steps lead to a considerable amount of
computational effort and processing time.

In an effort to reduce processing time, ODE solvers designed specifically for stiff
problems have been devised. In addition, adaptive step size routines have been
developed to improve computational efficiency. Hydraulic systems often contain
discontinuities which cause both of these advancements to fail or become inefficient.
Stiff ODE solvers use a Jacobian matrix to perpetuate a solution. Abrupt changes to the
Jacobian matrix due to discontinuities will cause the stiff solver to fail. Similarly, abrupt
changes will cause adaptive step size algorithms to "hunt" around a discontinuity until the
step size is reduced enough to traverse the problem area. This hunting process is
excessively time consuming.

In order to solve the problems caused by discontinuities, it is necessary to identify
the types of discontinuities found in hydraulic systems. Discontinuities may exist in
mathematical models or they may be encountered during the integration process. Model

discontinuities typically result from slope discontinuities in the mathematical model.
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The lack of mathematical smoothness causes abrupt changes in the Jacobian matrix and
results in solver failure. Discontinuities encountered during numerical integration have
the same disastrous effects. This type of discontinuity is termed a stare event. In
hvdraulics, state events occur when mechanical devices encounter travel limits. For
example, the differential equations describing a system will change if an actuator reaches
a mechanical stop.

In this study, two powerful techniques have been developed to overcome the
problems associated with these discontinuities. Cubic splines generated with a four-point
method were created to smooth mathematical models. In addition, an Event Switching
Algorithm (ESA) was developed to provide seamless integration over state events.

The four-point cubic spline technique provides a means to join two discontinuous
functions. This technique involves positioning a control point in such close proximity to
the true end point of a curve that the difference is physically insignificant. However, the
relative position of the control point and the true end point determines the shape of the
resulting curve. Control points may be used to force the slope continuity of a cubic
spline bridging a point of discontinuity. This new technique has proven to be both
versatile and effective. [n addition to bridging discontinuities, cubic splines may be
implemented to eliminate the infinite stiffness associated with infinite slopes.

The ESA provides a means to transcend state event discontinuities. Successful
integration is accomplished by restarting the ODE solver when a state event is
encountered. This restarting procedure eliminates abrupt changes to the Jacobian matrix.

State events are defined by discontinuity functions. The exact time of a state event
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occurs when a discontinuity function is equal to zero. For hydraulic systems, these
discontinuity functions are based on the forces applied to a mass and on its displacement.
After each step, the appropnate discontinuity functions are evaluated. If a state event 1s
encountered (as signaled by a sign change), an event location routine is invoked to
determine the precise time of the state event. Subsequently, the ODE solver is restarted
with the new set of differential equations. This technique has proven effective in the
successful integration of systems containing actuators or valve components which
encounter physical travel limits.

With the aid of the cubic spline modeling tools and the ESA. hydraulic systems
are compatible with ODE solvers specifically designed for stiff differential equations. Of
these solvers, Gear's method and Rosenbrock's method are predominant. Gear's method
has greater potential for computational efficiency. Tests performed in this study reveal
processing times over 20 times faster than conventional (nonstiff) ODE solvers. While
not as efficient as Gear's method. Rosenbrock's method has superior stability properties.
As a result, Rosenbrock's method can solve a wider variety of problems.

Suggestions for Further Study

The value of curves developed by the four-point method and of the ESA have
been demonstrated in this study. Significant gains in processing speed were realized by
implementing these techniques. However, further study would refine and improve these
techniques. A list of topics for further study is presented below:

1) The shape of the cubic spline used to bridge a model discontinuity may effect

processing speed. Curves approaching sharp comers would likely slow the ODE solver




99

significantly. However, these sharper curves would more accurately represent the
onginal discontinuous model. A study of processing speed versus model accuracy could
give insight into this relationship.

2) The ESA uses on event location scheme to pinpoint the time at which a state
event occurs. Several methods for event location are available. Among these methods
are bisection, false position, secant, linear interpolation, inverse quadratic interpolation,
and the Illinois method [18]. A comparison study of these methods may reveal
advantages in terms of computational efficiency or stability. In this effort, the Illinois
method was used exclusively.

3) If the ESA is applied to multiple objects in a single system, it is possible for more
than one state variable to cross its threshold value during a single time step. An event

location scheme designed to handle this condition would increase the versatility of the

ESA.
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Appendix A

Procedure for Generating Cubic Splines
to Interpolate Between Four Points
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In matrix form, three cubic spline polynomials connecting four points may be generated
as follows [19].
1) Define the four points in the points in Cartesian coordinates:

point 1 =(x,,y;)

point 2 = (x,y1) (A1)

point 3 = (X3,y3)

point 4 = (Xy,y4)

2) Create X and Y matrices:

X Vi
X )

X=1| " Y=|" (A.2)

[ X4 vV,
3) Generate H matnix:

X, = X, h,

H=lx;—x;|=1|h (A.3)
X, —%; h,

4) Create the RHS (night hand side) matrix:

RHS = : o (A4)




5)

6)

7)

Build the A matnx;

1 0 0 0
| A 2(!1, +h,) h, 0
o 2Am+h) K

0 0 0 |

Solve set of equations to get S matrix:

"
=l

S
8. ;
S=|' | =A"-RIIS

3

B

The three cubic spline equations are:

Between point | and point 2:

(A.5)

(A.6)

(A7)

3 S - Sl) 2(51) ( Va— W
y = (g 2 + (x- + (%= L C
g1 = (x-xy) [ 6h (x-x) > (x-x) ’

Between point 2 and point 3:

208, + h,SzJ oy
6 b

(A.8)

3‘ o t"\ > ‘r'!‘, by = Vs
g~ {x-x:.){ "6}’:‘) + (x-xg)‘( 2‘ ] i (x—xz){}“ hz'v‘

Between point 3 and point 4,

2h,8, +h_,.s;] )
” y2

(A9)

Sr —.S‘ bl S Bl
2 = (x-x3)’ [;6}: "] + (X"xsr[—;) # H"h)[h b _

h

3 3

20,8, +h,S, ]
6 =
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Appendix B

Experimental Determination of the Pressure
and Flow Relationship of an Orifice




Test System and Equipment
The hydraulic system used for this test is depicted if Figure B-1. In addition to

the hydraulic system, a stop watch and graduated cylinder were required.

. \b / Filter
Reservior _

Pump
Heat
Exchanger
Orifice
_ o
l N\
Flow Bmcss
Confrol Valve
Presyuse Vvalve

Tronscuces

Grocouaied
Cviinder

Water

Figure B-1: Hydraulic System for Orifice Testing



Test Conditions

Test Fluid: SAE 10W Oil

Fluid Temperature: 73 °F

Orifice Dimensions: Diameter = 0.012 inches Thickness = 0.010 inches

Test Procedure

5)

6)

The test system was filled with the specified test fluid.

The bypass valve was opened.

The pump drive motor was started.

Water flow rate through heat exchanger was adjusted to achieve the
desired fluid temperature.

The bypass valve and flow control valve were adjusted to obtain
incrementally larger pressure differences across the orifice.

At each increment, the flow rate through the orifice was measured and

recorded using a graduated cylinder and a stop watch.
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Test Results

Table B-1: Test Results for 0.012 Diameter Orifice

Pressure Flow Rate
Difference (in*/sec.)
(psid)
0.0 0.0000
25 0.0069
5.0 0.0135
7.5 0.0192
10.0 0.0244
12.5 0.0288
15.0 0.0335
17.5 0.0374
20.0 0.0412
22.5 0.0439
290 0.0474
30.0 0.0539
35.0 0.0593
40.0 0.0643
45.0 0.0685
50.0 0.0743
55.0 0.0801
60.0 0.0839
65.0 0.0893
70.0 0.0936
75.0 0.0970
80.0 0.0997
85.0 0.1024
90.0 0.1055
95.0 0.1084
100.0 0.1114
105.0 0.1141
110.0 0.1168
115.0 0.1196
120.0 0.1223
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Appendix C

MATLAB Script File for Example 3.1
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#File Name: spfex.m
$File Description:
MATLAB Script file used to generate cubic spline for
orifice mcdel based on experimental data (Example 3.1).
% 0.012 orifice; SAE 10W @ 73 F

* :DECLARE EMPTY MATRICES FOR PLOTTING PURPQOSES
xv=[];
xp=[]:
xpl=[];
xp2=[];
gx=[]¢
gxl=[];
gx2=[];

#=INITIALIZE VARIABLE CONSTANTS

n=4; snumber of points for cubic spline
dia=0.012; torifice diameter
area=|((dia”2)*pi)/4; $orifice flow area
ro=8.171e-5; #fluid density (lbf-sec”2/in"4)
v=.1623; 3ikinematic viscosity of fluid (in"2/sec)
cd=.63; $orifice discharge coefficient
cf=3.85;%conversion factor - in*3/sec to GPM

+: DEPARTING SLOPE AT ORIGIN
slope=.00220

#% GENERATE CONTROL POINT AT ORIGIN

$% (X1l,yl) = True end point
. (xX2,y2) = Control point

x1=0;

y1=0;

epsx=1;

x2=xl+epsx*eps;
y2=slope*x2;
while((y2-yl)<eps)
x2=x1+epsx*eps;
y2=slope*x2;
epsx=epsx*10;
end

GENERATE CONTROL POINT AT 85psid

(x3,y3) = True end point
3% (x4,y4) = Control point
x3=85; : Pressure difference at second end point
y3=cd*area*sqgrt (2/ro) *sqrt (x3); :flow rate at 85 psid
epsx=1;

x4=x3+epsx*eps;

yd=cd*area*sqrt (2/ro)*sqrt(x4);

while ((y4-y3)<eps)
x4=x3+epsx*eps;
vd=cd*area*sgrt(2/ro) *sgrt (x4);
epsx=epsx*10;

end

RESULTING 4 POINTS FOR CUBIC SPLINES
[x1;x2;x3:x4]
[vliy2;y3:y4d]

X
¥

i n oe
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*%Generate H Matrix

for i=1:1:(n-1);
k(i)=x(i+1l)-x(1);

end

h=k"';

=+ Generate RHS Matrix
rhs(l,1)=0;
rhs(n,1)=0;

for i=2:1:(n-1);
rhs(i,1)=6* ((y(i+1,1)-yv(i,1))/h (i, )-(y(i,1)~-y(i-1,1))/h(i=-1,1));
end

% Generate A matrix
a(l,1l)=1;
a(n,n)=1;

for i=2:1:(n-1)
af(i,i-1)=h(i-1,1);
af(i,i+l)=h(i,1);
a(i,i)=2*(h(i-1,1)+h(i, 1))
end

%% Solve System to get S Matrix
s=inv(a)*rhs;

Use S values to calculate coefficients of cubic splines
for i=1:1:(n-1)
interval=i;
cubeco(i)=(s(i+1,1)-s(i,1))/(6*h(i,1)):
squareco (i)=s(i,1)/2;
linco(i)=((y(i+1,1)-y(i, 1)) /h(i,1))~
(2*h(i,1)*s(i,1)+h(i,1)*s(i+1,1))/6;
end

Generate points for plotting
Only the middle interval is important
incr=2.5; %pressure increment for plot points
i=1; +% generate plot points for cubic (xp,gx)
for xv=x12,.1) fincri®{3,1)
Xpli,l)=xv;
gx(i,1)=(((xv-%(2,1))"3)*cubeco (2)+((xv-x(2,1))"2)*squareco (2)+ (xv-
»(2:1) )*1inco(2)+y (2:1) )3

** Generate plot points for Turbulent flow Equation (xpl,gxl)
xv=eps:incr:90;
Xpl=xv;
gxl=area* (cd*sgrt (2/ro) * (xv)."0.5);

Plot the original test data

express=(0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 30 35 40 45 50 55 &0
65 70 75 80 85];

exqgq=cf*[0 1.Be-3 3.5e-3 4.98e-3 6.35e-3 7.48e-3 8.7e-3 9.71e-3 1.07e-
2 1.14e-2 1.23e-2 1.40e-2 1.54e-2 1.067e-2 1,78Be-2 1.93e-2
2.08e-2 2.18e-2 2.32e-2 2.43e-2 2.52e-2 2.59%e-2 2.66e-2];

plot (express, exq, 'b');

hold



plot (express,exq, '+'):

plot (xp,gx,'r") %% plot cubic spline model
plot(xpl,gxl,'qg’') tiplot turbulent flow eqg
plot (x3,y3,'0c') %% plot transition point

xlabel ("Pressure (psid)')
ylabel ('Flow Rate (cu.in/sec)')

%% print resulting cubic spline coefficients to screen
coeffs=[cubeco(2) ;squareco (2);linco(2)]



Appendix D

MATLAB Script Files for Example 3.2
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¢File Name: staticrv3.m

iFile Description:

3 MATLABR Script file used to generate
the first of twe cubic splines for

4 the static relief valve model of

$ Example 3.2

«3DECLARE EMPTY MATRICES FOR PLOTTING PURPOSES
xv=[];

¢$INITIALIZE VARIABLE CONSTANTS

n=4; snumber of points for cubic spline

cd=.61; %orifice discharge coefficient

Pcr=800; %cracking pressure(psid)

Pmax=850; %Maximum pressure (psid)

Qmax=45.045; iMaximum flow rate (cu. in. /sec)

Kv=0max/sqrt (Pmax); %lumped constant for turb. flow EQ.

slope=Qmax/ (Pmax-Pcr); %slope (m) of linear (spring) portion of model
offset=Qmax-slope*Pmax; 3offset (b) of straight line equation

%% GENERATE CONTROL POINT AT 1st End point
1% (xl,yl) = True end peoint
: (x2,y2) = Control point

x1=720; %Desired endpoint pressure
y1l=0; %flow rate corresponding to x1
epsx=1;
XZ2=xX1l+epsx*eps;
v2=0;
while((x2-x1)<eps)
xZ2=xl+epsx*eps;
epsx=epsx*10;
end

* GENERATE CONTRQL POINT AT 2nd End point
(xl,y1l) = True end point
%% (x2,y2) = Control point

x3=825; iDesired endpoint pressure
y3=slope*x3+coffset; iflow rate corresponding to X3
epsx=1;

x4=x3+epsx*eps;

yd=slope*xd+offset;

while( (y4-y3)<eps)
x4=x3+epsx*eps;
vd=slope*xd+offset;
epsx=epsx*10;

end

+3 RESULTING 4 POINTS FOR CUBIC SPLINES
X=[xX1;x2;x3;x4]
y=I[yl;y2;y3;v4]
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tiGenerate H Matrix

for i=1:1:(n-1);
k(i)=x(i+1l)-x(1i);

end

h=k';

%+ Generate RHS Matrix
rhs(1l,1)=0;
rhs(n,1)=0;

for i=2:1:(n-1);
rhs (i, 1)=6*( (y(i+1,1)=y(i,1))/h(i,1)=(y(i,1)~y(i-1,1))/h(i-1,1));
end

** Generate A matrix
a(l,1l)=1;
a(n,n)=1;

for i=2:1:(n-1)
a(i,i-1)=h(i-1,1);
a(l; l+1}=h[1f 1];
a(i,i)=2*(h(i-1,1)+h(i, 1)}
end

%% Solve System to get S Matrix
s=inv(a) *rhs;

1% Use S values to calculate coefficients of cubic splines
for i=1:1:(n-1)
interval=i;
cubeco(i)=(s(i+1,1)-s(i,1)})/(6*h(i,1));
squareco(i)=s(i,1)/2;
linco(i)=((y(i+1,1)=-y(i,1))/hii, 1))~
(2*h(i,1)*s(i,;1)+h(i,1)*s(i+1,1))/6;
end

:x Generate points for plotting
Only the middle interval is important
incr=(x(n,1)-x(1,1))/100; %pressure increment for plot points
i=1; %% generate plot points for cubic ({(xp,gx)
for xv=x(2,1):incr:x(3,1)
xp(i, 1)=xv;
gx(i,1)=(((xv-x(2,1))"3)*cubeco(2)+((xv-x(2,1))"2)*squareco(2)+ (xv-
%x(2,1))*linco(2)+y(2,1));
i=i+l:

end

*% Generate plot points for straight line
¢ porticn of original model
xv=0:incr:Pmax+incr;
xpl=xv;
gxl=slope~*xv+offset;

Generate plot points for turb flow Eqg.
portion of original model
xv=0:incr:1.4*Pmax;

Xp2=XVv;

gx2=Kv*xp2.".5;

dO o
&40 b



plot(xp,gx,'r') %% plot cubic spline

axis ([0 1.4*Pmax 0 l.4*Qmax])

hold

plot (xp2,gx2, 'b') %% plot turbulent flow eg
plot (xpl,gxl,'g"') %% plot linear portion

%% print resulting cubic spline coefficients to screen
coeffs=[cubecoc(2) ;sguareco(2);linco(2)]
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“File Name: staticrv2.m

tFile Description:

% MATLAB Script file used to generate
3 the second of two cubic splines for
the static relief valve model of

3 Example 3.2

=

i3iDECLARE EMPTY MATRICES FOR PLOTTING PURPOSES
xv=[];

xp=1[]:

xpl=[];

xp2=[1;

gx=[];
gxl=[]:
gxa2=[];

f“INITIALIZE VARIABLE CONSTANTS

n=4; number of points for cubic spline

cd=.61; %orifice discharge coefficient

Pcr=800; #cracking pressure (psid)

Pmax=850; “Maximum pressure (psid)

Qmax=45.045; =Maximum flow rate (cu. in. /sec)

Kv=0Omax/sqgrt (Pmax); %lumped constant for turb. flow EQ.

slope=Qmax/ (Pmax-Pcr); islope (m) of linear (spring) portion of model
offset=Qmax-slope*Pmax; %*offset (b) of straight line equation

#% GENERATE CONTROL AT 1lst End point
#% (x1,yl) = True end point
+< (x2,y2) = Control point

x1=840; %Desired endpoint pressure
yl=slope*xl+offset; iflow rate corresponding to xl1
epsx=1;
®Z=xl+epsx*eps;
y2=slope*x2+offset;
while((y2-yl)<eps)
X2=xl+epsx*eps;
y2=slope*x2+offset;
epsx=epsx*10;
end

GENERATE CONTROL AT 2nd End point
(x1,y1l) = True end point
t% (x2,y2) = Control point

x3=900; :Desired endpoint pressure
y3=Kv*sqgrt (x3); =flow rate corresponding to x3
epsx=1;
x4=x3+epsx*eps;
vd4=Kv*sqgrt (x4);
while((y4-y3)<eps)
Xx4=x3+epsx*eps;
y4=Kv*sqgrt (x4);
epsx=epsx*10;
end

%% RESULTING 4 POINTS FOR CUBIC SPLINES
X=[x1;%2;x3;x%x4]
y=[yliy2;y3;yd]



118

#%Generate H Matrix
for i=1:1:(n-1);
k(i)=x(i+l)-x(i});

end

h=k"';

%% Generate RHS Matrix
rhs(l,1)=0;
rhs(n,1)=0;

for i=2:1: (n-1);
rhs(i,l)=6*((y(i+1,1)-y(i,1))/h(i,1)=-(y(i,1)-y(1i-1,1)}/h(i-1,1)}):
end

=+ Generate A matrix
a(l,1l)=1;
a(n,n)=1;

for i=2:1:(n-1)
a(i,i-1)=h(i-1,1);
a(i,i+1)=h(i,1);
a(i,i)=2*(h(i-1,1)+h(i, 1))
end

$% Solve System to get S Matrix
s=inv(a)*rhs;

Use S values to calculate coefficients of cubic splines
for i=1:1:(n~1)
interval=i;
cubeco (i)=(s(i+l,1)-s(i,1))/(6*h(i,1)):
squareco(i)=s(1i,1)/2;
linco(i)=((y(i+1,1)-y(i,1))/h(i,1))~-
{(2%h (i, 1) *s (4 1) +h(1; T)*s (11,0 )) /63
end

Generate points for plotting
Only the middle interval is important
incr=(x(n,1)-x(1,1))/20; *pressure increment for plot points
i=1; %% generate plot points for cubic (xp,gx)
for XVv=R(2,1):ingri%(3,1)
Xpli,l)=xv;
gx{i,1)=(((xv-x(2,1))"3)*cubeco (2)+((xv-x(2,1))"2)*squareco(2)+(xv-
x(2,1))*linco(2)+y(2,1));
i=i+1;
end

<+ Generate plot points for straight line
«+« portion of original model
xv=0:incr:Pmax+incr;
xpl=xv;
gxl=slope*xv+offset;

Generate plot pecints for turb flow Eqg.
portion of original model
Xxv=Pmax:incr:1l.4*Pmax;

XP2=XV;

gx2=Kv*xp2.".5;

W
o g0

o 0
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plot (xp,gx,'r') %% plot cubic spline

axis ([0 1l.4*Pmax 0 1.4*Qmax])

hold

plot (xp2,gx2,'b')%:% plot turbulent flow eg
plot (xpl,gxl,'g')%% plot linear portion

print resulting cubic spline coefficients to screen
coeffs=[cubeco(2);squareco(2);1linco(2)]
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Appendix E

MATLAB Script Files for Example 4.1




*Tile MNawe: Cyllde.w
*File Description:

MATLAD script [ile used f{ur Zaawple 4.1
’ This file is the driver for cylS.m

FIniCiallee Liwme (L) auud Sidle valiable (&) allloees
t=[1:

=117

% DEl UUL bOlver oprions
options=odeset ('Events', 'on', 'Abstol',le-7, 'RelTol', le-4, 'MaxOrder', 3);

srtart=cputime; 3% record time of day at whlicn computaLion Ls siLaried
tfinal=.75; %% time to end simulation

TsSpan=v:CtIiinal/>uUu:CtIlnal; & Tlme Span wltn rerinement

y0=[0 0 0 0 0 0]; %initial conditions

wlstaitlie—0U, =+ Iiilidl StaiLt Lidy vaiue

tel=0; % Initialize termination time

et Cule luieylaliul Luup

while(tel < tfinal) %% while termination time is less than final time
Lopau—iel leuyiitiiel) ) : Liinal/ 300 vliual; 52 Lie spdir [UL LuLlelll
section

5% Cdall Deslred ODE soulver

#% Upon termination solver returns:

Ex" Lime Step values and corespondilng state values (Ttl, Xl)

: % termination time step value(tel)

b D slale values al LelwiudaLiuu (yei)

i3 flag to identify which event caused termination (iel)

(Ll &1 Lel yel ielj-udelds | uylld’, iLspaill, yo,opLivus,miscalblic) i

t=[t' t1']'; i+ save combined results (t and x)

x={x" x1°7°%;

lecnecx=isempty(lei); ** 1I no event 1s aetected, lecneck =u;

-L:lJ.UL.ilﬂL..J'.—_GJ T_'-'. J_I L LCLMLIlllﬂLJI..UlI L:ut.'.' L.U ':U!:i.lL il:l.lLl. -‘:Ijl.lliuldi..]l.ulll!
t# tfinal has been reached
:: -:uﬂL.l: 5 J‘.D .LGﬂL..lH:L;p L‘:-Dci. J.IJJ,I.$Q;. \.-Ulll.lii.&ullb
and state flag value
iliiei==1)
yel (length (tel), 6)=0;
yu=yeliieuyLliLel) i)
mlstatic=0;
end
:: SLGLE J:L JI.D LCG\.—!JC\J; LdTOoCTL J‘.lAi'_..‘LGl I-U{'.\.;J-.L.iullb
and state flag value
Lijiei——2;
yel (length (tel), 6)=0;
yU-yel (leagLiliLel) 3 )7
mlstatic=-1;
ena
1L State C is ircacitod, LeEdtlL iuiiliadl CuUliUl Liuis
+%+ and state flag value
1L {lel—3)
yel (length(tel), 6)=0;
yO—yel leuylit(Lellr i) i
mlstatic=1;
ena
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end ¢ end iecheck

end * end while loop

stop=cputime; %% record ending time of day

elapsed=stop-start == calculate elapsed processing time
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£% File Name: cyl5.m
File Description:

%2 This file contains the differential egquations

$ 3 for integration and event location info.

%% for Example 4.1

function [outl,out2,out3]=cyl5(t,x,flag,mlstatic) ::=declare function

name
if nargin < 3 | isempty(flag)

beta=150000; %% bulk modulus

vol=10; == fluid line volumes
Qin=38.5; %% pump discharge flow
Pcr=800; t% relief valve cracking pressure

Pmax=850; %% max pressure for relief valve model
Qmax=45.05; %z max flow for relief valve model
Abore=((4"2)*pi)/4; %% cylinder bore area
Arod=RAbore-({(2.5%2)*pi)/4); %% cylinder rod end area
m=9.98965; #slumped load mass

k=700; %% load spring rate

b=200; %% load damping ratio

Ddc=0.27842; %%Effective directional control valve diameter
Dor=0.11277; %% orifice diameter

Adc=(Ddc"2*pi)/4; %% directional control valve flow area
Aor=(Dor"2*pi)/4; %% orifice flow area

ylimit=2; %% cylinder stroke limit

- transition pressure values orifice models
ptdcl=1.240278210965916e+000;
ptdc2=ptdcl:
ptfor=7.560191764662377e0;

Implement various orifice flow models and provide for reverse flow
if abs(x(1l)-x(2))>ptdcl:
templ=(.61*Adc*sqrt (2/7.95e-5) ) *sgrt(abs(x(1)-x(2)));:
else (ptdcl>=abs(x(1)=x(2)));
templ=(9.350e-001* (abs(x(1)-x(2)))"3-4.649e+000* (abs (x (1) -
x(2)))"2+9.617e+000* (abs(x{1)=-x(2)))):
end
if %(1)<0;
ul=-templ;
else
ul=templ;
end

if abs(x(3)-x(4))>ptfor;
temp2=(.61*Acr*sqrt (2/7.95e-5) ) *sqrt(abs(x(3)-X(4)));

else (ptfor>=abs(x(3)-x(4))):
temp2=(2.03le-3*(abs(x(3)-x(4)))"3-5.339%9e-2*((x(3)-x(4)))"2+6.39%90e-

I*(abs (% (3)-%(4))));

end

if (x(3)-x(4))<0;
uor=-temp2;

else
uor=temp2;

end

if (abs(x(4))>ptdc2);
temp3=(.61*Adc*sqrt(2/7.9%e-5) ) *sgrt (abs(x(4)));
else (ptdc2>=abs(x(4))):



temp3=(9.350e-001* (abs (x(4)))"3-

4.649e+000* (abs (x(4)))"2+9.617e+000* (abs (x(4))));
end
if x(4)<0;
u2=-temp3;
else
uZ=temp3;
end

%% Calculate various flow rates
Qdcl=ul;

Qdc2=u2;

Qor=uor;

Qbore=x(6) *Abore;
Qrod=x (6) *Arod;

Relief valve model
if(x(1)<=720)
Qrv=0;
end
if(x(1)>720 & x(1)<=825)
Qrv=6.440e-006* (x(1)-720)"3+(1.367e-003)*(x(1)-720)"2+1.943e~
016* (x(1)-720);
end
1f(x(1)>825 & x(1)<=840)
slope=Qmax/ (Pmax—-Pcr) ;
offset=Qmax-slope*Pmax;
Qrv=5.2061e-005* (x (1)-840) "3+ (-8.5917e-003) * (X (1)-840)"2+5.0000e-
001* (x(1)-B40)+ (slope*B840+offset):
end
if(x(1)>840 & x(1)<900)
slope=Qmax/ (Pmax-Pcr) ;
offset=Qmax-slope*Pmax;
Qrv=5.2061e-005* (x(1)-840) "3+ (-8.5917e-003)* (x(1)-840) "2+5.0000e-
001* (x(1)-840)+ (slope*B40+offset);
end
if(x(1)>900)
Qrv=1.545*sqgrt(x(1));
end

% Differential Equations

dx=zeros (6,1);

dx (1)=(beta/vol)* (Qin-Qrv-Qdcl) ;

dx (2)=(beta/vol+Abore*x(5))* (Qdcl-Qbore) ;

dx (3)=(beta/vol+Arod* (ylimit-x(5)))* (Qrod=-Qor) ;
dx (4)=(beta/vol) * (Qor-Qdc2) ;

if(mlstatic==-1 | mlstatic==1) %% if mass is pinned against stop

dx (5)=0;

dx(6)=0;

else

%% Call cylba - contains equations of motion for lumped load

dxtemp=cylb5a (t, x);
dx (5)=dxtemp (1) ;
dx (6)=dxtemp(2):

end

outl=dx; #% send function evaluations to solver

else
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switch(flag)

case 'events' %% event location info.
ylimit=2; %% travel limit

$% Discontinuity functions for lumped load
if(mlstatic==0)
ymin=x (5) ;
ymax=ylimit-x(5);
sumforces=0;
end
if (mlstatic~=0)
ymin=0;
ymax=0;
dxtemp=cylba(t,x); % call to equations of motion for load
% for use as discontinuity function
sumforces=mlstatic*dxtemp(2); %% multiply by state flag
end

%% send discontinuity functions to event locater
outl=[sumforces;ymin;ymax];
out2=[1;1:1]; %% any zerc crossing is terminal
out3=[-1;-1;-1]; %% terminate when crossing from pos. to neg.

end
end
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% File Name: cyl5a.m
% File Description:

. Contains equations of motion for lumped load
% for access as function evaluations or
& as discontinuity functions

function [xdot]=cyl5a(t,x)

#% Physical parameters
Abore=((472)*pi)/4;
Arod=Abore-(((2.5%2)*pi)/4);
m=9.98965;

=700

b=200;

=+ Equations of motion
xdot (1)=x(6) ;
xdot (2)=(1/m) * (Abore*x (2)-Arod*x (3)-k*x (5)-b*x (6) ) ;
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Appendix F

MATLAB Script Files for Pilot-Operated Relief Valve
Case Study from Chapter 5



iFile Name: relvBdr.m

iFile Description:

3 MATLAB script file used for Chapter 5 Case Study.
This file is the driver for relv8.m

tInitialize time(t) and state variable (xX) matrices
t=[];
x=[]z:

$%¢ Set ODE Solver options
options=odeset ('Events', 'on', 'RelTol',1le-3, 'AbsTol’', le~
6, 'BDF', "off', '"MaxOrder',5) ;

start=cputime; %% record time of day at which computation is started
tfinal=.08; %% time to end simulation

tspan=0:.0001:tfinal; % time span with refinement

y0=[(0 0 0 0 0 0); #*initial conditions

m2static=-1; % Initial state flag value for pilot poppet

mlstatic=-1; % Initial state flag value for main poppet

tel=0;

%% Core Integration Loop

while(tel < tfinal)%% while termination time is less than final time

tspan=tel (length(tel)):.0005:tfinal;** time span for current section
Call Desired ODE solver

%% Upon termination solver returns:

%Y time step values and coresponding state values (tl, x1)

termination time step value(tel)
% state values at termination (yel)
2% flag to identify which event caused termination (iel)
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[t1 x1 tel yel iel]=odel5s('relv8',tspan,y0,options,mlstatic,m2static);

t=[t' tl']'; %% save combined results (t and x)
Xx=[x"' x1']';
iecheck=isempty(iel); %% if no event is detected, iecheck =0;

ifliecheck==0) =+ if no termination due to event (end simulation)
tfinal has been reached

#* If state B is reached by either poppet, reset initial conditions
+* and state flag value
ifliel==1)
yel (lengthitel), 6)=0;
yO=yel (length(tel), :):
m2static=0;
end

if(iel==2)
vel(length(tel),4)=0;
yO=yel (length(tel), :);
mlstatic=0;

end

If state A is reached by either poppet, reset initial conditions
%% and state flag value
if (iel==3)

yel (length(tel), 6)=0;

yO=yel (length (tel), :);

m2static=-1;
end
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if(iel==5)
yel (length(tel),4)=0;
yO0=yel (length (tel),:);
mlstatic=-1;

end

% If state C is reached by either poppet, reset initial conditions
% and state flag value
if(iel==4)
yel (length(tel), 6)=0;
yO=yel (length{tel), :);
mZ2static=1;
end

if(iel==¢g)
yel(length(tel), 4)=0;
yO=yel (length (tel),:):

mlstatic=1;
end

end % end iecheck
end * end while loop

stop=cputime; %% record ending time of day

elapsed=stop-start %: calculate elapsed processing time
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1% File Name: relvB.m
%% File Description:

%3 This file contains the differential equations
3% for integration and event location info.
%3 for Chap. 5 Case Study.

function [outl,out2,cut3]=relv8(t,x,flag,mlstatic,m2static) =declare
function name

if nargin < 3 | isempty(flaq)

=% Tnitialize Constants

Qin=le-3;
D2=.005;
A2=(D2"2*pi)/4;
D1=.017;

Dp=1.0219*D1;
Al=(D1"2*pi)/4;
Ap=(Dp"2*pi)/4;
Dor=.001;
BAor=(Dor"2*pi)/4;
alphal=pi/6;
alpha2=pi/6;
rho=845;
vis=14.3e-6;
Ddc=0.008;

Adc=( (Ddc”~2)*pi)/4;:
V1i=3e-4;

V2=le-7;
beta=1.03e9;

* transition pressure values orifice models
ptfl=1.808e3;
ptf2=2.090e4;
ptfor=5.224e5;
ptfdc=8.163e3;

tt* Implement various orifice flow models and provide for reverse flow
if abs(x(1))>ptfl;
templ=0.61l*sqgrt(2/rho) *sqrt(abs(x(1)));
else (ptfl>=abs(x(1))):
templ=(1/Al)*(1.543e-14* (abs(x(1)))"3-9.959e~-11* (abs (x(1)))"2+2.88le-
7* (abs(x(1)))):

end

if x(1)<0;
ul=-templ;

else
ul=templ;

end

if abs(x(1)-x(2))>ptfor;
temp2=0.61*sqrt(2/rho) *sgrti(abs(x(1l)-x(2))):
else (ptfor>=abs(x(1l)-x(2))):
temp2=(1/RAor)* (3.75%-23* (abs (x(1)-x(2)))"3-7.014e-17* (abs(x (1)~
X(2)))~2+45.863e-11* (abs(x(1)-x(2))));
end
if (x(1)-x(2))<0;
uor=-tempZ;
else
uor=temp2;
end
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if abs(x(2))>ptf2;
temp3=0.61*sqrt (2/rho) *sqrt(abs(x(2))):
else (ptf2>=abs(x(2))):
temp3=(1/A2)* (2.937e-18* (abs (x(2)))"3-2.192e-13* (abs (x(2)))"2+7.32%e-
9* (abs (x(2)))):
end
if x(2)<0;
u2=-temp3;
else
u2=temp3;
end

if abs(x(1l))>ptfdc;
tempd=0.61*sqgrt(2/rho) *sqgrt(abs(x(1)));
else (ptfdc>=abs(x(1l)));
tempd4=(1/Adc)* (7.884e-17* (abs(x(1)))"3-2.298e-
12*{abs(x(1)))~2+3.002e~-8*(abs(x(1))));
end

if x(1)<0;
udc=-temp4;
else
udc=tempd;
end

Differential Equations
dx=zeros(6,1);

if(t<0.04)%% Direction contrel valve open to relief valve
dx (1)=(beta/V1)* (Qin-pi*Dl*sin(alphal)*ul*x(3)- (Aor)*uor-Al*x(4));

else %% Directional control valve shifted to bypass relief valve

dx (1)=(beta/V1)* (Qin-Adc*udc-pi*Dl*sin(alphal) *ul*x(3)- (Aor) *uor-
Al*x(4));

end

dx (2)=(beta/V2)* (Aor*uor+(Ap)*x (4)=-pi*D2*sin(alpha2)* (x(5)) *u2-
(BZ)*x:(6)):

if (mlstatic~=0) %% if main poppet is pinned against stop

dx (3)=0;

dx (4)=0;

else

%% Call relvBa - contains equations of moticon for main poppet
dxtemp=relv8a (t,x);

dx (3)=dxtemp (1) ;

dx (4)=dxtemp(2) ;

end

if (m2static~=0) %% if pilot poppet is pinned against stop
dx (5)=0;
dx (6)=0;
else
t% Call relvBb - contains equations of motion for pilot poppet
dxtemp=relvB8b(t, %)’
dx (5)=dxtemp (1) ;
dx (6)=dxtemp (2) ;
end

outl=dx; ** send function evaluations to solver




else
switch(flag)
case 'events'%% event location info.

xlimit=4.75e-4; =% travel limit for main poppet
ylimit=.5e-4; %% travel limit for pilot poppet

%% Discontinuity functions for pilot poppet
if (m2static~=0)
sftemp=relvBb(t,x); : call to equations of motion for pilot poppet
= for use as discontinuity function
sumforcesl=m2static*sftemp(2}); %% multiply by state flag
ymax=0;
ymin=0;
end

if (m2static==0)
sumforcesl=0;
ymin=x(5) ;
ymax=(ylimit)-x(5);
end

t+ Discontinuity functions for main poppet

if (mlstatic~=0)

sftemp=relvB8a(t,x);% call to equations of motion for main poppet
¢ for use as discontinuity function

sumforces2=mlstatic*sftemp(2); %* multiply by state flag
Xmax=0;
xmin=0;

end

if(mlstatic==0)
sumforces2=0;
xnin=x(3);
xmax=(xlimit)-x(3):
end

%% send discontinuity functions to event locater
outl=[sumforcesl;sumforces2;ymin; ymax;xmin; xmax];
out2=[1;1;1;1;1;1]; % any zero crossing is terminal
out3=(-1;-1;-1;-1;-1;-1]; 5= terminate when crossing from pos. to

neg.

end
end




i File Name: relvBa.m

§ File Description:

: Contains equations of motion for main poppet
for access as function evaluations or

% as discontinuity functions
function [xdot]=relB8a(t,x)

1* Physical parameters
ks1=5000;

dampl=1000;

D1=.017;

Dp=1.0219*D1;
Al=(D1"2*pi)/4;
Ap=(Dp"2*pi) /4;
alphal=pi/6;

ml=.045;

Prel=100;

%% Equations of motion

xdot (1l)=x(4);

xdot (2)=(1/ml)*((Al)*x(1)~-(Ap)*x(2)-Prel-dampl*x(4)-ksl*x(3)-
(0.61*pi*Dl*sin(2*alphal) ) *x(1)*x(3)):

File Name: relvBb.m
File Description:
Contains equations of motion for pilot poppet
: for access as function evaluations or
as discontinuity functions

function [xdot]=rel8b(t,x)

Physical parameters
ks2=50000;
dampZz=50;
Pcr=100e5;
D2=,005;
A2=(D2~2*pi)/4;
alphaZ=pi/6;
m2=.02;

== Equations of motion

Xdot (1)=x(6) ¢

xdot (2)=(1/m2) * (A2*x (2) -Pcr*A2-damp2*x (6) -ks2*x (5) -
0.61*pi*D2*sin(2*alpha2)*x(2)*x(5));
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