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CHAPTER 1

INTRODUCTION

Problem Statement

Computer modeling and simulation techniques are important to designers in every

engineering discipline. These techniques are particularly valuable to engineers

concerned with the dynamic response of physical systems. A number of numerical

integration methods are available to solve the ordinary differential equations (ODEs)

which describe a dynamical system. In the computer environment the effect of design

changes on dynamic response can be determined without the financial consequences of

complicated "breadboard" testing. However, the time required to simulate the dynamic

response of a system does have some inherent costs. In addition, the results of these

simulations are only as accurate as the mathematical models used to represent the

physical system.

As with engineers in many other fields, fluid power system desif,rners have turned

to computer modeling and simulation to predict the dynamic response characteristics of

hydraulic circuits. A hydraulic circuit uses pressurized fluid to provide a desired

mechanical output. In addition, the various pressure and flow control components of a

hydraulic system are mechanical in nature. A typical hydraulic circuit, therefore, is

comprised ofcomponents with widely varying time constants. As a result, the

differential equations which describe this combination of hydraulics and mechanics are

often numerically stiff. Small time constants force the use of relatively small time steps

during numerical integration. Because the differential equations are linked, the presence
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of large time constants requires a great number of these small steps to capture the overall

response. As a result, computation time becomes a concern. In the past complex

hydraulic circuits often required hours or days to complete a single simulati.on.

Computation time must be reduced to enhance the value of computer analysi .

A number of numerical integration methods have been developed to decrease the

computation time required to solve stiffdifferential equations. Gear's method for stiff

ODEs and Rosenbrock's semi-implicit Runge-Kutta (SIRK) method are the most

prominent among the stiff solvers[l]. The current state-of-the-art for both solvers

features an adaptive step size algorithm to further improve computation time. Both of

these methods require the calculation of Jacobian matrix for each time step. This

Jacobian matrix is not required for standard explicit solvers like Euler's method and the

Runge-Kutta (RK) method. The introduction of the Jacobian matrix creates a

compatibility problem with hydraulic systems.

Physical constraints in a hydraulic system often cause stiff ODE solvers to fail.

These constraints may be fluid-related or mechanical. For example, the turbulent flow

equation has an infinite slope at the origin. This infinite slope will produce an ill­

conditioned Jacobian matrix when a stiff ODE solver is used. Similarly, a limitation on

the displacement of a mechanical component will produce a mathematical discontinuity

in the Jacobian matrix during the integration process. These discontinuities often cause a

stiff ODE solver to fail or cause the adaptive step size routine to slow the solver

dramatically.



A few attempts have been made to apply stiffODE solv rs to th umqu

boundary constraints of hydraulic systems. Two different approaches have b n

proposed to eliminate the infinite stope at the origin of the turbulent flow equation.

Ellman considers both laminar and turbulent orifice discharge coefficients with a cubic

spline used to create a mathematicaJJy smooth transition between the two types of

flow[2]. Piche', Ellman, and Vilenius also used a cubic spline approach in dealing

directly with the laminar and turbulent flow equations[l]. Both of these methods are

limited to orifice flow and cannot be adapted to model other flow related discontinuities.

Bowns, Tomlinson and Dugdale have suggested a numerical integration technique to deal

with mechanical discontinuities[3]. This technique involves step size halving and

restarting procedures for the ODE solver when a discontinuity is encountered. However,

the proposed method is limited to fixed step ODE solvers and requires a modification to

the core solver algorithm.

Objective of Study

The purpose of this study is to develop a unique procedure that eliminate the

numerical integration problems caused by the fluid-related and mechanical boundary

conditions found in hydraulic systems. A unique curve fitting technique which uses

control points is used to create mathematically smooth fluid flow models. The concept

of control points involves positioning a point in such close proximity to the end point of a

curve that the difference is physicallly negligible. However, the relative position of the

end point and the control point determines the shape of the resulting curve. As such, the

control point is physically insignificant but mathematically important. The versatility of
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this technique allows hydraulic engineers to create a greater variety of fluid flow model.

More importantly, the continuity and smoothness of the resulting mathematical models

provide compatibility with stiff ODE solvers and significantly reduce computation time.

Numerical integration problems caused b mechanical boundary condition will

be eliminated by an Event SWitch;n~ AI~orithm (ESA). The ESA tracks the displacement

of any given mass. If a physical limit is encountered by the mass, the initial conditions

are reset and a revised set of ODEs are solved numerically. The sum of the forces acting

on the mass is monitored while the mass is, at the physical limit. If this sum of forces

becomes unbalanced, the algorithm reverts back to the original set of ODEs and the

solver is automatically restarted. By continuing in this manner numerical integration

proceeds unimpeded by the mathematical discontinuities associated with mechanical

boundaries. In addition, the ESA requires no modification to the core ODE solver code.

As a result, it is compatible with commercially available numerical integration software.



CHAPTER 2

LITERATURE REVIEW

Introduction

As with any dynamic system, hydraulic circuits are mathematically d fined by a

series ofordinary differential equations (ODEs). Unlike most systems, however,

hydraulic systems are generally dominated by non-linearities [3]. These highly non­

linear ODEs are, for all practical purposes, impossible to solve with conventional

analytical techniques r4]. Computeri.zed numerical integration is the only practical

approach to solving a set ofODEs accurately describing a hydraulic system.

Unfortunately, the numerical integration of hydraulic systems is a notoriously slow

process. The nature of hydraulic systems requires relatively small time steps and a great

deal of computational effort.

Mathematical Stiffness

Hydraulic systems have been identified as mathematically stiflby a number of

researchers [1,3,4,5,6,7,8]. Bowns et. al. [3] and Krus [6] define stiffness as a set of

ODEs containing widely varying time constants. In other words, the system contains

both rapidly and slowly varying transient solutions [8]. The effect of mathematical

stiffness on numerical integration is well documented [1,3,4,5]. Piche' and Ellman [5]

summarized this effect for hydraulic systems by stating, "Conventional explicit numerical

integration methods such as classical Runge-Kutta schemes become numerically unstable

unless a very small time increment is used, which leads to excessively long computation

times".



Ellman [2] identified two sources of stiffness in hydraulic systems. The first

source is stiffuess inherent 1n turbulent flow through an orifice. An orifice 1S the most

basic element in hydraulic control. Pressure and flow control in a hydraulic system are

performed by components which use fixed and variable orifices. Orifice flow is

dominated by turbulence and, therefore, laminar flow is typically ignored. Turbulent

flow through an orifice is governed by the following relationship:

6

(2.1)

Q = Flow Through the Orifice

Cd = Discharge Coefficient of the Orifice

A = Flow Area of the Orifice

p = Fluid Density

t1P = Pressure Drop Across the Orifice

Discharge coefficient, flow area, and fluid density are normally consi.dered to be

constant. As such, the flow through an orifice is proportional to the square root of the

pressure drop across it. A graph of this relationship for an arbitrary orifice is shown in

Figure 2.1. The slope of the curve approaches infinity as the pressure drop approaches

zero. This characteristic is responsible for mathematical stiffness. An example

presented by Krus and Palmberg [7] effectively illustrates the problem. A volume of
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Turbulent Flow
Equation

Pressure

7

Figure 2. 1: Orifice PressurelFlow Relationship Using Turbulent Flow Equation

fluid is connected to the environment through an orifice as depicted in Figure 2.2. The

0 .( J
~

/'.....
~Pressure Fluid Orifice

Source Volume Reservoir

Figure 2.2: Fluid Volume Discharge to the Atmosphere through an Orifice



time constant for emptying the volume is described by the following equation:

8

(2.2)

r= Time Constant

v = Fluid Volume

p= Bulk Modulus of the Fluid

Kc = qj = Flow Pressure Coefficient of the Orifice
cP

If the turbulent orifice flow equation (2.1) is used, the tenn Kc becomes large when the

pressure drop is small. The time constant, in turn, becomes small. In a numerical

integration situation, relatively small time constants will lead to mathematical stiffness

and long computation times. If the pressure drop is zero, Kc becomes infinite and the

time constant goes to zero. A zero time constant creates infinite stiffness and causes all

classical numerical integration methods to fail [4].

A second source of stiffness identified by Ellman [2] involves widely varying oil

volumes within a single system. The elasticity of pressurized hydraulic fluid is

dependent upon the volume ofthe trapped fluid. Flow passages within hydraulic control

valves are orders of magnitude smaller than the hoses, tubes, housings, actuators, etc.

used to contain and utilize the maj'ority of the working fluid. The low elasticity of the

fluid contained in these small passages is directly related to small time constants. Small

time constants among relatively large time constants within a single system lead to

mathematical stiffness.



Various researchers have developed methods to eliminate the stiffuess problem

caused by the turbulent orifice equation (2.1). Technically the turbulent orifice equation

is not appropriate at low pressure differences because the flow through an orifice is

predominantly laminar under these conditions. This fact is usually ignored by designers

because very low pressure drops seldom occur in steady state analysis. Dynamically,

however, it is advantageous to introduce a laminar flow mechanism at low differential

pressures to eliminate the infinite slope problem. Bowns, Tomlinson, and Dorey [8]

proposed a small linear region about the origin as depicted in Figure 2.3. This region

eliminates the infinite slope at the origin and accurately models the linearity of laminar

flow. However, the authors admitted an inherent difficulty in detennining the width of

the laminar range.

4 Turbulent Flow
I Region

I

(1)
;-

a
~

~o-LL

oI I

~Laminar

I IFlow Region

Turbulent Flow
Equation

Pressure

Figure 2.3: Orifice Flow Model with Linear Laminar Flow Re!:,rlon
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If the region is not wide enough, mathematical stiffitess results. An excessively wide

linear region will lead to gross inaccuracy.

Based on studies conducted at the University of Bath [8], an improved laminar

flow mechanism was developed at Tempere University of Technology in Finland.

Ellman and Vilenius [2,9] proposed the use of a cubic spline to model laminar flow and

the region of transition between laminar and turbulent flow. This model was later

refined by Piche' and EHman [5]. The resulting polynomial is presented below:

(2.3)

where,

IF Kinematic Viscosity of the Fluid

D = Diameter of the Orifice

NR1 = Transition Reynolds Number

&>/f= Pressure Difference for Fully Turbulent Flow

The transition to the turbulent flow equation (2. I) occurs at U /fas defined below:

(2.4 )

The above laminar/transition flow model for an arbitrary orifice is depicted graphically in

Figure 2.4. Piche' suggests a transition Reynolds number (NR1) of 1000. This model

eliminates the infinite slope at the origin and provides slope continuity at the transition



11

Turbulent Flow
Equation

':-. Turbulent Flow
I Region

I

Cubic
Spline

0,1: Pressure
~Laminar Flow
I IRegion

(1)
+-o
~

~o-LL

Figure 2.4: Orifice Flow Model with Cubic Spline Laminar Flow Region

point (L1P1/)'

Bowns and Wang [4] proposed an incompressible flow model to eliminate the

stiffness problem caused by small oil volumes. Pressure changes occur very rapidly

under small volume conditions. The incompressible flow model considers these pressure

changes to be instantaneous. In the absence of compressibility, the flow into a

pressurized volume is equal to the flow exiting. Bowns and Wang implemented the

incompressible flow model with an iterative approach based on this flow continuity

property.

Several researchers pointed out an inherent problem with the incompressible flow

model [1,5,6]. The dynamic nature of hydraulic systems requires oil volumes to change



during the course of simulation. As a result the incompressible flo mod I is not valid

at all times. For example, the volume of trapped oil within a hydraulic c Iinder will

increase as the actuator extends (see Figure 2.5). The complexity of the model must be

L

VI)} :(V2

V1----t [J g=;V2

'ITcV1----f
V2

Figure 2.5: Volume Changes for an Extending Hydraulic Cylinder

increased to accommodate varying volumes by switching between compressible and

incompressible flow models. As stated by Piche' and Ellman [5]," The problem remain

as to how and when to make these transitions smoothly and automatically."

Numerical Integration of Stiff ODEs

In the absence of a sound modeling technique to eliminate stiffness created by

widely varying oil volumes, researchers have investigated various numerical integration

methods to improve computation time. Simulation efficiency can be improved by using

a numerical ODE solver specifically designed for stiff systems of equations. Further

efficiency gains may be realized by employing an adaptive step size algorithm.

Gear's method for solving stiff ODEs has been generally accepted as the most

efficient algorithm for simulating hydraulic systems [3,8]. The stability features of this
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ODE solver are superior to those of classic non-stiff solvers like Runge-Kutta.

MathematicaUy, Gear's method for stiff ODEs is A- table. A-stabili means the

numerical integration method is stable for any step size as long as the set ofODEs is

stable [I]. This added stability allows the solver to use a much larger step size and

therefore, reduces processing time. Recently, Piche' and Ellman [1,5] proposed an L-

stable Runge-Kutta method for use with fluid power systems. This method provides an

even higher degree of stability for use with extremely stiff systems. Although Gear's

method is A-stable, the degree of stability becomes small when the ODE system is

extremely stiff and problems arise in the form ofnumerical oscillations. An L-stable

method drives modal amplification to zero as the time constant approaches zero. As a

result, the L-stable Runge-Kutta method eliminates numerical oscillations associated

with certain class of hydraulic systems.

The efficiency gains realized by Gear's method for stiffODEs and the L-stable

Runge-Kutta method do not come without a price. Both ofthe methods require a

significant amount of computational effort. A general system of ODEs may be written as

follows.

(2.5)

In order to achieve improved stability, the numerical integration method must have some

knowledge offat each step [6]. This information is stored in a Jacobian matrix which

contains partial derivatives of/with respect to the state variables. The presence ofthis

Jacobian reintroduces the term CQ. If the turbulent flow equation (2.1) is used as an
iP

orifice model, the trend toward an infinite slope at the origin will produce an il1-



14

conditioned Jacobian matrix at low pressure differences. This problem may be solved b

using a laminar flow mechanism hke the one developed by Piche' and Ellman (Eq .2.3

and 2.4).

To further improve processing time, an adaptive step size algorithm may be used

in conjunction with a stiff ODE solver. The adaptive step size algorithm automatically

adjusts the step length as integration proceeds. The size of the step is controlled by a

preset error limit. Piche' and Ellman [5] states that adaptive step size control essentially

eliminates numerical stability problems because the algorithm automatically selects a

step length small enough to give an accurate solution. Improved efficiency is achieved

because a small step size is used only when necessary. Relatively large steps may used

after the dynamics associated with small time constants are damped out.

Discontinuities and StiffODE Solvers

The physical nature of hydraulic systems, unfortunately, is not directly

compatible with stiffODE solvers or adaptive step size algorithms. Numerical

integration problems arise in the form ofdiscontinuities. Discontinuities affect both the

core ODE solver and the adaptive step size algorithm. Abrupt changes to elements in the

Jacobian matrix may produce a convergence problem within the integration routine and

cause the method to fail [1). An adaptive step size algorithm will "hunt" around the

discontinuity until the step size is reduced sufficiently to cross the discontinuity within

the preset error limit. This hunting involves a large number of unsuccessful function

evaluations and results in considerable processing time [10].



Discontinuities may be present in the classical mathematical mod I ofa ph ical

entity. A simple solution to this problem is to change the mathematical mod I. Bowns,

Tomlinson, and Dorey [8] have made extensive use of cubic splines to create smooth,

continuous models. A generic example is depicted in Figure 2.6. The onginaI model

f(X)
B C

x
Figure 2.6 Cubic Spline Used to Smooth a Discontinuity

contains a hard non-linearity at point B. A cubic spline connected between points A and

C is used to provide a smooth transition across the discontinuity. Some amount of

accuracy is sacrificed to improve computational efficiency by allowing a more gradual

change to the Jacobian matrix.



Discontinuities may also be encountered during the simulation process. Bown

Tomlinson, and Dugdale [8) identified two types of discontinuities likely to cause

problems for an ODE solver:

1) Discontinuities which occur at a known time.

2) Discontinuities which occur when a variable reaches a critical value.

Ofthese, the second discontinuity type is more difficult to handle because the exact time

of threshold crossing is unknown. Ellison [11] has labeled this type of discontinuity as a

slale event. A state event involves a switching function which changes terms in the

original set of ODEs and defines a new integration problem starting exactly at the

switching point [10]. State events in hydraulic systems occur when actuators, loads, or

internal valve parts encounter mechanical travel limits. For example, the velocity and

acceleration of a hydraulic cylinder rod almost Instantaneously drop to zero when the

stroke limit is reached. Chaney [12) has recommended restarting the ODE solver when a

state event is encountered. This procedure divides the original problem into continuous

sections and solves them in a piecewise manner. Preston and Berzins [13] later endorsed

this restarting procedure as absolutely necessary "whenever parts of a network uddenly

become (in)active."

A difficulty arises in locating the exact time at which the critical value is reached.

The critical value invariably falls between two successive time steps. Special measures

must be taken to locate the time of the discontinuity, within acceptable error limits.

before integration proceeds with a new set of ODEs. It is first necessary to identify a

discontinuity by defining a discontinuity function. In practice, discontinuities are located
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by monitoring sign changes [14]. For a set ofODEs of the fonni i =!(X"X2tX3....X,,,f). a

discontinuity function has the form:

¢II = !(X"X2,X3, ...X",I) (1.6)

where the discontinuity occurs at,

(1.7)

In order to locate the precise time of a zero crossing, a discontinuity handling algorithm

is necessary. The goal of this algorithm is to control the step size such that the

discontinuity occurs at the end of the step [14]. Chaney [12] proposed an iterative

interval halving procedure (bisection) to locate the discontinuity within allowable error

limits. More advanced techniques involve interpolation or regula falsi (false position)

[11,13,14,15,16,17,18].

Summary

A review of the available literature has shown the value of using cubic splines.

Potentially, cubic splines may be used to eliminate infinite slope problems and to smooth

hydraulic model discontinuities. As a result, numerical integration of hydraulic ystem

can be made compatible with ODE solvers designed specifically for mathematically stitT

ODEs. However, none of the available literature provides a simple, physically

significant, method to generate a variety of cubic splines. Similarly, a physically

significant algorithm for handling state events was not contained in the available

literature. The complexity of stiff ODE solvers containing adaptive step size and event

locating algorithms has forced designers to use commercially available numerical

integration packages. These packages are generic and are not specifically designed for
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hydraulic systems. An algorithm for handling typical hydraulic system state e nts

would be extremely valuable to hydraulic system designers using commercial integrators.

In order to increase the value of computer analysis, steps must be taken to

facilitate compatibility between hydraulic systems and stiff ODE solvers. Aver atile

cubic spline modeling tool is required to eliminate discontinuities in a variety of

function-specific component models. In addition, a procedure for handling state events

must be developed to realize the potential gains in computational efficiency offered by

stiff ODE solvers.



CHAPTER 3

MATHEMATICAL MODELS AND CUBIC SPLINES

Introduction

Infinite slopes and discontinuities in mathematical models are a source of

problems for state-of-the-art numerical integration packages. Numerical ODE solvers

specifically designed for mathematically stiff systems require a Jacobian matrix.

Unfortunately, an infinite slope leads to an ill-conditioned Jacobian matrix and causes

the sol ver to fail. Abrupt changes to the Jacobian matrix, in the fonn of model

discontinuities, also cause the ODE solver to fail. In addition, adaptive step size

algorithms become extremely inefficient when a discontinuity is encountered and

considerable computation time is wasted.

Cubic splines have been used to model problem causing hydraulic system

components with some success [5,8]. However, existing cubic spline models are

function specific and cannot be used as a general modeling tool. It is necessary to

develop a versatile method that can be used to eliminate a variety of infinite slope

problems and to create a smooth bridge between any two discontinuous functions. In this

way, the dynamic analysis of stiff hydraulic systems can be advanced.

Background

Typically, cubic splines are used as interpolating polynomials for a set of data

points [19]. For n+ f data points, n third order polynomials are generated to interpolate

between the data points as shown in Figure 3.1. At each intenor point, the polynomials

are continuous in position, slope (I st derivative), and curvature (2nd derivative). At the
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end points of the data set, no joining polynomial exists. As a result, the slope and

curvature are not constrained.

y

Point 2

Point 1

x
Figure 3. 1: Cubic Spline Interpolation of Data Points

Two-Point Cobie Splines

For modeling purposes, it is often necessary to "bridge" two discontinuous

functions. A typical example is shown in Figure 3.2. It is desirable to generate a single

y

X
Figure 3.2: Two Functions Requiring a Smooth Connecting Cubic Spline
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cubic polynomial with predetennined slope properties at the end points to provide slope

continuity as depicted in Figure 3.3. It is possible to force the end point slopes to assume

y

Cubic Spline

x

Figure 3.3: Cubic Spline Providing Slope Continuity Between Two Functions

any desired value. The two-point fonn of a cubic spline with specified end point slopes

can be derived from the general case as follows:

A cubic spline connecting two points (XI, Yl) and (X2, Y2) takes the fonn:

Where,

(3.1)

The coefficients G, h, c, and d are expressed in terms of the second derivatives

(curvatures) at the end points [19]:

h=~
2

(3.2)

(3.3)



Where,

_ Y2 -YI 2hSi +h 2c - - ----'--~

h 6

SI = Second Derivative at (Xl, YI)

S2 = Second Derivative at (Xl, Y2)

h = Interval Size: (Xl-X,)

(3.4

(3.5)

For cubic spline interpolation on n+ 1 points, the following formulas for forcing end point

slopes apply [19]:

Where,

I S+ 2h (' - 6(' YII+I - Y" )1,,-1 n 1"f'J,,+1 - YII+I - h"

h}/ = n lSJ Interval Size: (Xn-I- XII)

S\ = Second Derivative at (Xl, yd

Sn-I = Second Derivative at (Xn-I,Yn-/)

Y; = First Derivative at (x J, YI)

Y;,+J = First Derivative at (Xtl ·1, YII' J)

(3.6)

(3.7)

These equations may be simplified fOT two points as follows:



25 +5 = 6 (Y2-YI _Y')
1 2 h h I

(3.8)

(3.9)

Let, (3.10)

Substituting gives:

Solving these equations simultaneously produces:

(3.\1 )

(3.12)

(3.13)

(3.14)

Using this result, the cubic spline coefficients from Equations 3.2, 3.3, and 3.4 may be

computed to force the slopes at the end points to the specified values of y; and y; .

In order to link two discontinuous functions with a cubic spline and maintain

slope continuity, the first derivative of each function at the juncture points must be

detennined. Unfortunately, hydraulic systems oft~n contain highly non-linear

relationships between operating parameters. As a result, obtaining the first derivative

analytically is time consuming and impractical. Numerical calculation of the first

derivative is the most practical alternative. This task can be effectively accomplished

using the standard forward difference approximation. This technique uses a finite

approximation of the infinitesimally small change in the independent variable that
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defines a derivative. Details regarding the forward difference method are available in

standard Numerical Analysis texts [19].

Four-Point Cubic Splines

In order to eliminate the first derivative requirement of the two-point method it is

necessary to use a natural spline. A natural spline imposes no slope or curvature

requirements at the end points. As a result, the end cubics approach linearity at their

extremes. Unfortunately, a natural spline connecting only two points is a straight line.

Obviously, a straight line is not a useful modeling tool when dealing with the inherent

non-Iinearities of hydraulic systems.

To correct this problem while still using natural splines a modeling tool based on

the four-point fonn of cubic spline interpolation can be created. The basic concept of

this modeling tool is best illustrated with an example. Consider tne four points shown in

Figure 3.4A. Assume points Band C are fixed and points A and D may be moved.

Moving points A and 0 effects the slopes at points Band C and changes the shape of the

curve between points Band C as shown in Figure 3.4B. Therefore, points A and D may

be used as "handles" to control the slopes at points Band C.

Returning to the original goal, a cubic spline for modeling purposes connects two

points with predetennined slope values at each point. Using the four-point fonn, the

modeler can fix the position of the endpoints with two of the four points. The other two

points may be used to control the slope val ues at these endpoints. This technique is

conveniently implemented by locating control points in such close proximity to the true

end points that the difference is physically insignificant. Mathematically, however, the
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Figure 3.4: Effect ofMoving a End Points (A to A' and D to D')

di fTerence is instrumental in detennining the slope at the endpoints. This di fference

needs only to be larger than the computational precision of the computer or program used

to generate the spline.

The four-point technique is best illustrated by returning to the example depicted

in Figure 3.2. Again, suppose it is necessary to provide a smooth connection between the

two functions. The first endpoint of the connecting spline is identified as (x /.y /). This

point lies onfi(x). In order to generate a control point for this endpoint, the original

function equation (fi(x» is used. An initial estimate on the order of computational

precision is added to x I as follows:

where, X Ie = X-coordinate of the control point

(3. 15)
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XI = X-coordinate of the original end point

L1x = Increase in x on the order of computational pr cision

The functionIi is then evaluated at X Ie and compared to fi(x I) as shown below:

where, Yldif/ = Difference inYI as calculated by computer program

(3.16)

[fthe computer cannot discernYldif/fi"om zero, Ax is gradually increased until a

calculable difference exists. This iterative process is easily accomplished in a computing

environment. After this process is complete, the original end point (Xf,YI) and the control

point (XlcoYIJ wi]] be discernibly different in x and y but the difference will be physicaJly

negligible. Th.is procedure must be repeated using/ix) to obtain a control point for the

other end point. A graphical depiction of the endpoints and their control points is shown

in Figure 3.5. The relative distances have been exaggerated for visibility. (NOTE: If

jj(x) or/i-x) is a horizontal line, the corresponding iteration procedure ony is not

necessary because Y does not vary with x.)

y
• Control Point

• Original End Point

x

Figure 3.5: Cubic Spline End Points and their Control Points
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The original end points, along with their control points. may now be used to

generate three cubic spline polynomials using the procedure outlined in Appendix A.

The X and Y matrices take the form:

XI

X=
x lc

X

X 2c

(3.17)

Because the true end points are so close to their corresponding control points, the cubics

connecting them may be ignored. As a result, !he cubic bridging the middle interval is

assumed to connect the original endpoints. This assumption is true for all practical

purposes. Using the functionsjj(x) andh(x) to create the control points forces the slopes

at the end points to match the original functions. The resulting cubic spline model is

depicted in Figure 3.6

y

Cubic Spline

x

Figure 3.6: Cubic Spline Generated with the Four-Point Fonn

A complete algorithm for generating control points is displayed as a flow cha,rt in

Figure 3.7.
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Comparison of Two-Point and, ,Four-Point Splines

The two-point and four-point methods for generating cubic splines rna both be

used as modellng tools. Each of these methods has advantages over the other in tenns of

computation, The two-point method requires knowledge of end point first derivatives

while the four-point method does not require derivatives. Unlike the two-point method,

however, the four-point method requires the solution of a set of equations.

A preferred method may be detennined by evaluating the resulting cubic spline .

The two-point and four-point methods may not produce the same cubic function. The

difference between the methods is best illustrated with an example. The following

straight line equations are given:

j(x,) = 0

j(X2) = 0.9x -720

(3.18)

(3.19)

It is desired to generate a cubic spllne between the points (720,0) onj(xf) and (825, 22.5)

onj(x}). Applying both methods to this problem produces the results shown in Figure

3.8. Slope continuity at the juncture points can be maintained adequately by using either

method. However, the cubic spline created using the two-point method "dips" below

zero before heading in a positive direction. The potential for this behavior exists when

"tight turns" are involved. This characteristic is undesirable when dealing with flow rate

on the Y-axis. The negative sign reverses the flow direction. Flow reversal does not

exist in practical hydraulic systems. The four-point spline creates a more direct bridge

between the two discontinuous functions. As a result, the four-point method is preferred
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as a modeling tool when the relatively sharp comers of a typical hydraulic model are

involved.
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Figure 3.8: Comparison of Two-Point and Four-Point Cubic Splines

Application Examples

The usefulness of cubic splines as a modeling tool will be illustrated by two

examples from the world of hydraulics. In the first example, an empirically based orifice

model is developed. The second example involves smoothing discontinuities in a relief

valve model.

Example 3.1 - An Empirically Based Orifice Flow Model

PART A

An orifice with a diameter (D) ofa.0] 2 inch is known to have a discharge

coefficient (Cd )ofO.63. Laboratory testing was perfonned to determine the

pressureltlow relationship of this orifice using SAE lOW oil at 73°F (See Appendix B).

The measured data have been plotted in Figure 3.9. It is desired to develop a

mathematical model based on this experimental data.
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Figure 3.9: Experimental Results of Orifice Test

In order to develop a representative model, it is first necessary to determine where

the turbulent flow equation is valid. This task may be accomplished by plotting the

experimental data along with the turbul.ent flow equation. The turbulent flow equation is

[20]:

(3.20)

Q= Flow Through the Orifice (Dependent Variable) (in3/sec)

Cd = Discharge Coefficient = 0.63

A = Flow Area of the Orifice = D
2

Jr (in2
)

4

p = Fluid Density = 8.171x 10-5 (lbf-sec2Iin4
) for lOW oil at 73°F

t1P = Pressure Drop Across the Orifice (Independent Variable) (psid)

The results are depicted in Figure 3.10. From Figure 3.10, the turbulent flow equation
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Figure 3.10: Comparison of Test Results and Turbulent Flow Equation

and the test data match almost exactly at 85 psid and above. Using the turbulent flow

equation at low pressure differences would obviously be inaccurate. More importantly,

the infinite slope at the origin would cause a stiff ODE solver to fail. Therefore, the

turbulent flow equation will be used to model the orifice flow at pressures above 85psid.

The turbulent flow model is not accurate at pressures lower than 85 psid because laminar

and transitional flow are dominant. In order to model the portion of the flow/pressure

relationship, a cubic spline must be used. It is first necessary to detennine the end points

of the cubic spline. From Figure 3.10, the first end point is obviously at the origin. The

second end point can be detennined by calculating the flow rate at 85 psid with the

turbulent flow equation (3.20).

(3.21 )

Q= Flow Through the Orifice (in)/sec)



,1P = 85 psid

With the two end points in place, the control points may be generated. To obtain

a smooth transition to turbulent flow at 85 psid, the control point is detennined using the

turbulent flow equation (3.20) and the algorithm outlined in Figure 3.7. There are no

predetennined slope requirements at the origin because no joining function exists.

Physically, laminar flow is dominant near the origin. The equation for laminar flow is

linear [20]. Therefore, it is reasonable to choose a linear relationship to create the

control point at the origin. The slope of this line is detennined using the original test

data. From Appendix B, the data point (,1P, Q) nearest the origin is:

(2.5 psid, 0.00693 in. 3/sec)

The equation of a line passing through this point and the origin is simply:

Q = 0.00693 .1P
2.5

Simplifying gives:

Q = O.00277(LtP)

(3.22)

(3.23)

The algorithm described in Figure 3.7 along with equation 3.23 may now be used to

generate a control point at the origin.

Using a computer to calculate the end point and control point values gives:



End Point 1: (0.0)

Control Point 1: (2.220446049250313 x 10'13.6.150635556423367 lO'16)

End Point 2: (8.500000000000000 x 10 1, 1.027731761455279 x 10")

Control Point 2: (8.500000000000222 x IO J
, 1.027731761455292 x 10,1)

The number of significant figures has been carried to an extreme to show the difference

between the original end points and their control points. Obviously, the differences are

physically insignificant. However, these differences are critical when generating the

cubic splin~ because they force the slopes at the end points to the desired values.

Using these fOUT points and the procedure outlined in Appendix A, the following

cubic spline was created:

Q = 1.327 X 10,7 9 3 -2.965 X 10'5~ + 2.770 X 10'3 t1P (3.24)

The procedure actually produces three third order polynomials. However, the cubics for

the intervals between the end points and their control points may be ignored because the

points are so close together. The resulting mathematical model is displayed in Figure

3.11.
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The model may be refined by experimenting with the departing slope at the

origin. If the slope in equation 3.23 is changed from 0.00277 to 0.00220, the model is

improved as shown in Figure 3.12.
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Figure 3. 12: Refined Orifice Model

PARTS

Using the results from Part A, it is desired to create a generalized mathematical

model for flow through any orifice. This task may be accomplished by relating the

results of Part A to Reynolds Number (Nr ). Flow characteristics at a particular Reynolds

Number are consistent for the flow of any fluid through any size orifice. Therefore,

Reynolds Number provides a tool to generalize the orifice model developed in Part A.

The function used to force the departing slope at the origin was based on the

linearity oflaminar flow. The laminar flow equation is [20]:

(3.25)
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Q = Flow Through the Orifice

8 = Laminar Flow Coefficient

D = Hydraulic Orifice Diameter

D2
J[

A = Flow Area of the Orifice = -­
4

p= Fluid Density

v= Kinematic Fluid Viscosity

AP = Pressure Drop Across the Orifice

For Reynolds Numbers less than 100, the following relationship is generally accepted

[20]:

Rearranging gives:

Substituting into Equation 3.25 produces:

Q= 2Cd
2
DA AP

pvNR

The slope of this line is simply:

2C/DA
slope =

pvNR

(3.26)

(3.27)

(3.28)

(3.29)

From Part A, a slope of 0.00220 was used to generate the final mathematical model. [f

this slope and the rest of the constants from Part A are substituted into Equation 3.29, it

is possible to solve for Reynolds Number. The only new parameter is kinematic viscosity
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(v). For the lOW oil used in Part A, kinematic viscosity is 0.1623 (,in. 2/sec). Performing

this calcuJation resuJts in a Reynolds Number of 36.92. In the general ca e, th refor the

following equation may be used to create a control point at the origin:

0= 2C/DA L1P
- pv(36.92)

(3.30)

The position of the second end point must also be related to Reynolds Number.

Reynolds Number is defined by the following equation:

(3.31)

From Part A, the second end point was located at:

P = 85 psi and Q = .10277 inJ/sec

Using this value for Qand the known values for A, D and v, the Reynolds Number at the

end point is easily calculated as 67.19. With this Reynolds Number known, the flow rat

at the second end point for any orifice may be calculated by rearranging Equation 3.15 as

follows:

Q= 67.19Av

D
(3.32)

The corresponding pressure is calculated by rearranging the turbulent flow equation

(3.20):

(3.33)
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Equations 3.32 and 3.33 represent a generalized method to calculate the location ofth

second end point for any orifice/fluid combination. The turbulent flow equation (3.20)

may now be used to create the control point as outlined in Part A.

To further generalize, it is desirable to allow the user to select the Reynold

Number at which the turbulent flow equation applies (NRr). This feature is made possible

by using a ratio of the two Reynolds Numbers calculated above. These values are:

Reynolds Number Used in Laminar Flow Equation (NRI) = 36.92

Reynolds Number Used in Turbulent Flow Equation (NRr) = 67.19

. 36.92 055Rauo= --= .
67.19

(3.34)

Using this infonnation, Equations 3.30 and 3.32, may be further generalized as follows:

Q= 2C/DA t1P
pv(0.55NRr)

NR,Av
Q=------'-"'--

D

(3.35)

(3.36)

The value ofNRr may now be defined by the modeler without effecting the basic shape of

the cubic spline model.

Example 3. I was developed in the MATLAB computing environment. The

MATLAB script files used to complete this example are contained in Appendix C.

Example 3.2 - Static Relief Valve Model

A common direct acting pressure relief valve is depicted in Figure 3.13. When

the force due to pressure at port P becomes large enough to overcome the spring preload

against the poppet, fluid begins to flow to port T. This pressure is known as the cracking



pressure. As the combined forces due to pressure and flow increase the spring continu

to compress until the mechanical stop is reached.

Port T

Port P

Figure 3.13: Typical Pressure Relief Valve

In many hydraulic circuits, it is acceptable to ignore the dynamics of the poppet.

The simplified mathematical model is called a sialic reliefvalve model. A typical static

relief valve model is presented in Figure 3.14. The flow through the valve remains at

zero until the cracking pressure (Per) is attained. At this point, a linear relationship
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between pressure and flow is assumed as the pressure at port P works against th prtng.

When the upper mechanical stop is reached (PmlCf) the poppet is static valve begins and

the turbulent flow equation applies.

Figure 3.14: General Static Relief Valve Model
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The static relief valve model contains two discontinuities which could severely

Iimit the computational speed of a numerical ODE solver. The goal of this example i to

smooth these discontinuities using cubic splines. For this example, the following

infonnation is known:

Per 800 psi

Pmax = 850 psi

Qma'C = 45.05 in3/sec

Q@Per = 0 in
J
/sec

P at Port T = 0' psi
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The first step is to develop working mathematical relationships. From zero

pressure to Per the relationship is obviously:

Q=O for 0 ~ P ~ Per (3.37)

The relationship from Per to Pmax is simply a straight line equation:

Q = mP + b for Per ~ P ~ Pmax (3.38)

where, 45.05 0 90' 'I .
-8-50---8-0-0 =. In' see-psI (3.39)

b= Qmax - mPmax = 45.05-0.90(850) = -719.95 inJ/sec (3.40)

For pressures above Pmax the turbulent flow equation is utilized. The turbulent flow

equation (3.20) may be simplified by lumping the constants together as shown in

Equation 3.41. In this case, i1P equals P because port T is at zero pressure.

for P ~ Pmax (3.41 )

Given Pma"( and Qman kv is easily calculated:

(3.42)

With the mathematical relationships in place, it is now possible to generate cubic

splines using the four-point method. The discontinuity at Per will be considered tirst.

Reasonable end points must be selected to bridge the discontinuity. The discontinuity

occurs at Per (800 psi). End point pressure values of 720 psi and 825 psi will be selected

hecause this range spans the discontinuity with enough room to create a relatively smooth

curve between the functions. This choice is only one of many possibilities. Using a

computer algorithm allows the modeler to test any number of combinations. The flow
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rates corresponding to the chosen endpoint pressures may be calculated using Equation

3.34 and 3.35. A computer algorithm based on Figure 3.7 wa used to compuli the end

point values and the control point values:

End Point 1: (7.200000000000000 x ]02,0)

Control Point I: (7.200000000000002 x 102,0)

End Point 2: (8.250000000000000 x 102, 2.252250000000004 x 10 1
)

Control Point 2: (8.500000000000002 x ]01,2.252250000000015 X ]01)

An inspection of End Point 1 and its control point reveals that no migration is necessary

for flow rate (dependent variable) because the original function (Equation 3.37) has a

slope of zero.

These points may now be used to generate the cubic spline according to the

procedure outlined in Appendix A. Again, the resulting cubics between the end point

and their control points may be ignored because the difference between these points is

physically negligible. The resulting cubic spline equation for the middle interval is:

Q = 6.440 X 10-6 p3 + 1.367 X 10-3 p2 + 1.943 X 10-16 P (3.43 )

To complete the model, the entire procedure must be repeated using Equations 3.38 and

3.41. Using endpoints at P = 840 psi and P= 900 psi, the following cubic spline equation

is produced:

Q= 5.206 X 10-5 p3
- 8.592 X 10-3 p2 + 5.000 X 10-1 P + 3.604 (3.44)



The resulting static reliefvalve model is presented below (eqs. 3.45-3.49) and d picted

graphically in Figure 3.] 3. Although some small amount of accuracy i lost, th re ulting

model contains no discontinuities. This feature provides compatibility with sti fT ODE

solvers and adaptive step size algorithms.

Q=O for 0 psi s P s 720 psi (3.45)

Q = 6.440 X 1O.Q (p_720)3 + 1.367 X 10-3 (p-720i + 1.943 x 10-16 (P-720) (3.46)

Q= 5.206 X 10-5 (P-840)3 - 8.592 X 10-3 (P-840)2 + 5.000 X 10'\ (P-840) + 3.604 (3.48)

for 720 psi < P s 825 psi

Q = 0.90P - 719.95

for 825 psi < P s 840 psi

for 840 psi < P s 900 psi

(3.47)

Q = 1.545 JP (3.49)

for 900 psi < P
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Figure 3.15: Smoothed Static ReJiefYalve Model
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As with Example 3.1, Example 3.2 was developed in the MATLAB computing

environment. The MATLAB script files used to complete this example are contained in

Appendix D.
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CHAPTER 4

THE EVENT SWlTCHING ALGORITHM

Background

The computational efficiency of a stiff numerical integration routine may be

severely impeded by the presence of state events. A state event is a discontinuity which

occurs when a variable reaches a physical limit during numerical integration. State

events signal a change to the original set of ODEs. A new integration problem is defined

at the exact time the critical value is achieved. The sudden switch to a new set of ODEs

produces an abrupt change to the Jacobian matrix of a stiff solver. This abrupt change

often causes the ODE solver to fail. In addition, adaptive step size algorithms tend to

"hunt" around these state events in an effort to traverse them by reducing the step size.

This hunting process requires an inordinate amount of processing time.

To combat these problems, researchers have recommended restarting the ODE

solver each time a state event is encountered (12,13]. This process divides the original

problem into continuous sections and solves them in a piecewise manner. Several event

location routines have been devised to pinpoint the precise time at which a state event

occurs (11,12,] 3,]4,15,16,17,18]. The goal of these routines is to control step size such

that the state event occurs at the end ofthe step. Commercially available integration

packages locate events by monitoring sign changes. Therefore, each state event must be

defined by a discontinuity[unction. The discontinuity function is a mathematical entity

involving the state variables of the original ODEs. The state event occurs when the

discontinuity function equals zero.
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Commercial numerical integration packages are intended to be generic. As such

it is left to the user to define the discontinuity functions for a given application.

Hydraulic engineers would benefit greatly from a function-specific "book keeping"

approach to state event handling. This type of approach may be developed b_

investigating the physical nature ofhydraulic system state events.

Hydraulic System State Events

fn the field of hydraulics, state events typically occur when actuators loads or

internal valve parts encounter mechanical travel limits. A frictionless spring-mass- ·~··
damper system may be used to investigate the effects of these mechanical stops (See

Figure 4.1). The motion of the mass (m) is constrained by the two mechanical stops. ff a

Mass
(m)

Dclrnp;lg C08!tIclent (bl

X=Xmax
X=Q

Figure 4. ] : Spring-Mass-Damper System with Mechanical Stops

slowly increasing force (F) is applied to the mass, three distinct states are revealed.

These states are depicted in Figure 4.2. From Figure 4.2, State A shows a static condition

because the applied force (F) is not large enough to overcome the spring preload (f~reload)
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State A:

Applied Force (F]

Mass.....------..of (m)

State B:

Applied Force (F)

Mass
(m)

State C:

Applied Force WI

Mass
(m]

Figure 4.2: Three States for Spring-Mass-Damper System with Mechanical Stops
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and no motion occurs. The same is true of State C. In this case, the mass is pinned

against the left stop because the force due to spring compression (k·x) is limited by this

mechanical stop. By definition, therefore, the velocity ( i ) and acceleration (j )of the

mass are zero for States A and C.

If the magnitude ofthe applied force is between the spring preload and the

maximum spring force and the mass is not against a stop, the mass is either dynamic or

potentially dynamic. This condition is depicted as State B in Figure 4.2. The mass

would be potentially dynamic if the applied force (F) was constant. Any change in the

applied force would result in motion. The equations of motion for State B may be

48

developed by summing the forces acting on the mass.

mi = F - Fprdoad- kx· bi

Solving for acceleration gives:

,t = .! (F - FpreloQlr Iex-bi )
m

(4.] )

(4.2)

··•
~,

·
•· '

For numerical integration, a set of first order differential equations is required. This set

ofequations is obtained by introducing XI and X2 as follows:

(4.3)

(4.4)

(4.5)

Therefore, the equations of motion for State Bare:

(4.6)

(4.7)
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For States A and C. the velocity and acceleration are zero. The equations of motion for

these states are:

(4.8)

(4.9)

During the course of numerical integration, therefore, it is necessary to switch between

these two sets of differential equations. The appropriate set ofequations at any given

time is dictated by the magnitude of the applied force. Typically, the magnitude of the

applied force depends on time-varying hydraulic pressures. As a result, it is necessary to

track the magnitude of the applied force during integration and to switch equation sets

when a threshold value is achieved. This process assumes instant deceleration when a

mechanical stop is encountered. In reality, deceleration is not instantaneous but it is so

nearly instantaneous that the assumption is valid.

Switching between two sets of differential equations produces an abrupt change

to the Jacobian matrix of a stiff ODE solver. In addition, adaptive step size algorithms

require excessive computational effort to traverse a switch discontinuity. As a result, it is

necessary to restart the solver when a state event is detected [12,13]. Before the solver is

restarted, however, it is necessary to integrate up to the precise time of the state event.

Commercial numerical integration packages often locate events by monitoring sigll

changes. In order to implement a commercial event location scheme, a discontinuity

function (t/J) must be created for each state event such that the discontinuity occurs when

'I

..
'I
'. J
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the function equals zero. The discontinu"ty functions for the spring-mas -damper yst m

must take the fonn:

More specifically, the discontinuities for each state may be written as follows:

(4.10)

State A:

State B:

State C:

¢a = X max - X

or

¢s= x

¢c = F - FpreloaJ- k(xmax)

(4.11 )

(4.12)

(4.13)

(4.14) .
:'

Zero initial conditions will be assumed to demonstrate the purpose of these discontinuity

functions. Under these conditions, the set of equations for State A are applicable (4.8 and

4.9). It is also assumed that the applied force (F) increases with time. At each

successive time step, the discontinuity function tPA (4.11) is evaluated. If at any time ¢A

becomes negative, the event location routine is activated to pinpoint the time at which ¢A

equals zero. Physically, ¢A is zero when the applied force (F) is large enough to balance

the spring preload. The numerical integrator is stopped at this point. Using the state

variable values at the point oftennination as initial conditions, the ODE solver is

restarted using the State B differential equations (4.6 and 4.7). Coinciding with the

switch to a new set of ODEs, the discontinuity function must be changed. Equations 4.12

and 4.13 are appropriate for State B. One of these discontinuity functions will cross zero

if the displacement of the mass fans outside the limits imposed by the mechanical stops.

ff a sign change occurs, the event locator will again pinpoint the time at which the state

I
'1



change occurs and the solver may be restarted with the static equations of motion (4.8

and 4.9). In the case of an increasing applied force, the left stop will be encountered. A

such, the discontinuity function r/Jc (4.14) must be invoked. If the applied force later

begins to decrease, ¢c will define the point at which the applied force is no longer large

enough to keep the mass pinned against the stop. The event location and solver restarting

procedure may then be repeated as the mass enters State B. Similarly, the entire

procedure must be repeated if the mass were to contact the right stop and enter State A.

Development of the Event Switching Algorithm

This ongoing event location and integrator restarting process may be efficiently

handled by introducing an F;vent Switching Algorithm (ESA). The ESA takes advantage

of physical properties to simplify the "book keeping" required to numerically integrate

systems containing state discontinuities. The ESA is developed by comparing the

discontinuity functions with the second dynamic equation of motion (eq.4.7). For State

A these equations were:

::

¢A = Fpreload - F (4.15)

(4.16)

The mass is pressed against the right mechanical stop while in State A. Therefore, the

displacement (XI) of the mass is zero. The velocity (X2) of the mass is also zero.

Inserting this information into Equation 4. l6 gives:

(4.17)

If equation 4.17 is set equal to zero, the following is true:
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1
0= - (F - Fpre1oot/)

m

o= F - Fpreload

.18)

(4.19)

The state event occurs when the discontjnuity function (tPA) from equation 4.15 equals

zero:

o= Fpreload - F

Comparing equations 4.19 and 4.20 reveals the following correlation between the

discontinuity function (tPA) dynamic equation of motion ( ;(2 ):

(4.20)

(4.21 )

Consequently, the existing equation of motion (4.16) may be used as the discontinuity

function in State A. This fortunate circumstance eliminates the need for a separate

discontinuity function. rn addition, the negative sign or "-1" may be used as a flag to

identitY State A within the ESA. This negative sib'll is important because it dictates the

direction of zero crossing to the event location routine (i.e. positive to negative).

A similar analysis may be performed for State C using rPc and x2 . These

equations are reprinted below for convenience:

t/Jc = F - f~rdoad - k (x max ) (4.22)

(4.23)

In this case, Xl equals Xmax because the mass is pinned against the left mechanical stop.

The velocity(x2} is again equal to zero. Substituting this information into equation 4.23

and setting both equations (4.22 and 4.23) equal to zero reveals:
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(4.24

Therefore, State C also does not requjre a separate discontinuity function (tA:). In

keeping with State A, a flag of U+ 1"may be used by the ESA to identify State A.

The discontinuity functions for State B (eqs. 4.12 and 4.13) are related simply to

displacement (Xl)' This information is readily available during the course of numerical

integration. A zero ("0") flag may be used to identify State B within the ESA.

With the discontinuity functions in place, an event location routine may be used

to locate the precise time of the state event. The ODE solver will almost always "step

over" the state event. At the time step just prior to the state event, the discontinuity

function is positive. The discontinuity function then becomes negative after the next

time step. Because the state event occurs when the discontinuity function is zero, the

actual time of the event is between the two steps. The goal of an event location

algorithm is to iteratively shorten the step size until the discontinuity function is zero at

the end of the current time step. This task is most simply performed by uccessively

bisecting the time step until the discontinuity function is within some tolerance ofzero.

More efficient methods often involve interpolation or false position schemes.

The event location routine effectively integrates to the precise moment of the

state event. The time at which the state event occurs, as well as all of the corresponding

state values, are known. At this point, the ODE solver is stopped. The necessary changes

are made to the system of differential equations and integration is restarted using the time

and state values obtained by the event location algorithm as initial conditions. The only
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change to the initial conditions involves the velocity of the mass. This vel.ocity must be

reset to zero when the mass is pinned against either of the mechanical stops.

The resulting Event Switching Algorithm is best represented in flow chart form.

This flow chart is displayed in Figure 4.3. The ESA contains a simple method to

seamlessly integrate numerically stiff systems containing state event discontinuities.

Although useful in many engineering disciplines, the ESA is especially valuable to

hydraulic system engineers because stiffness and state discontinuities are commonplace.
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Application Example

The application of the Event Switching Algorithm will be demonstrated with an

example. This example involves a hydraulic actuator encountering a travel limit. In this

case, an arbitrary stroke limit of 2 inches is placed on the cylinder. Only cylinder

extension is considered in this example.

Example 4. J - Hydraulic Cylinder Circuit

Consider the hydrau.lic circuit shown in Figure 4.4. This control circu.it is

designed to impart translational motion to a load using a hydraulic cylinder. Critical

pressure nodes have been identified on the schematic. The mathematical

Hydraulic
Cylinder r-TE=~::JMass 1o--o-IIW\r-L

(m)

Meterlng\ <
Orifice /

L.:.:...:..J 0 psi

Reservoir

Figure 4.4: Hydraulic Circuit Schematic for Example 4.1
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models for the circuit components and the resulting set ofdifferential equations are

developed as follows:

Mathematical Models

LOAD & HYDRAULIC ACTUATOR:

A spring-mass-damper system will be used to model the load. The load mass is rigidly

fixed to the piston rod ofthe hydrauhc cylinder. As a result, the mass of the rod and of

the load must be combined. This combination is called a lumped load model. In this

case, the following information is known:

Lumped Load Weight (w): 3860lb

Spring Constant (k): 700 Iblin

Damping Coefficient (b): 200Ib/(inlsec)

The force applied to the load is provided by hydrauhc pressure acting against the piston

area. Hydraulic pressure is present on both sides of the piston. The resulting applied

force is:

7

(4.25)

The piston dimensions are as follows:

Bore Diameter:

Rod Diameter:

Therefore,

4.0 in.

2.5 in.

Abore = (4.0)2.]t /4

Arod = Abore - (2.5f1t /4

(4.26)

(4.27)
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DIRECTIONAL CONTROL VALVE:.

When shifted, the directional control valve directs pressurized fluid to either the rod or

cap end ofthe hydraulic cylinder. Depending on the direction the valve is shifted, the

cylinder will either extend or retract. In this case, the valve will be shifted to force the

cylinder to extend at time zero (t = 0). The flow restriction through the open valve rna

be modeled as an orifice. For this directional control valve, the effective orifice

diameter is:

Ddc = 0.27842 in.

Given the following, an orifice model may be created as outlined in Example 3.1 Part B:

Making the flow area,

(4.28)

0.27842 in.Orifice Diameter (DoT) =

Discharge Coefficient (Cd) = 0.61

Fluid Density (p) = 7.95 X to-5 (Ibosec2lin4
)

Kinematic Viscosity (v) = 0.02 in2/sec

Transition Reynolds Number (NRt ) = 1500

The resulting model is:

(4.30)



This model will apply to flow through the valve in either direction. The return £10\

equation is simply:

For 0:::; (P4) :::; 1.240 psid,

Qdc2 = 9.350 X 10- 1 (P4)3 - 4.649 x 10° (P4)2 + 9.617 X 10-2 (P4)

For CP4 ) >1.240 psid,

(4.31 )

(4.32)

METERING ORIFICE:

The metering orifice creates back pressure against the rod end of the cylinder. This back

pressure is responsible for controlled cylinder extension. The following infonnation is

known:

Orifice Diameter (Dur) = 0.11277 in.

Discharge Coefficient ( d) = 0.61

Fluid Density (P) = 7.95 x ]0-5 (Ibosec2/in-l)

Kinematic Viscosity (v) = 0.02 in2/sec

Transition Reynolds Number (NRr ) = 1500

Given the above data, it is again possible to develop an orifice model using the general

procedure outlined in Example 3. t Part B. The resulting model is:
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For (P3-P4) >7.560 psid,

Q~ ~ C.,4~ ~~ (p, - p.,) (4.34)

RELIEF VAtVE:

The relief valve simply limits pump discharge pressure. A model for this relief valve was

developed in Example 3.2. This model is as follows:

(4.37)

(4.35)

(4.36)

for 0 psi ~ PI ~ 720 psi

Qrv = 6.440 X 1O~1 (P I-720)3 + 1.367 X 10-3 (P\-720)2 + 1.943 X 10-16 (P I-720)

for 720 psi < PI ~ 825 psi

Qr.' = 0.90 P1 - 719.95

for 825 psi < PI ~ 840 psi

Qr. = 5.206 X 10-5 (P\-840)3 - 8.592 X 10-3 (P,-840i + 5.000 x 10-\ (P,-840) + 3.604

for 840 psi < PI ~ 900 psi (4.38)

Qrv = 1.545 JP: (4.39)

for 900 psi < PI

PUMP AND MOTOR:

The pump supplies the system with pressurized fluid. An ideal pump model will be used.

Ideal pumps experience no internal leakage. Therefore, the pump flow may be calculated

using the following equation:

Qin = Displacement x Rotational Speed (4.40 )
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Given a motor speed of 1800 rpm and a pump displacement of 1.28 in3/re ,the pump

flow is:

Qm = 1.28 in
3

x 1800 rev x 1min = 38.5 in
J

rev min 60 sec sec
(4.41 )

This flow rate will be applied to the system as a step input because the direction control

valve is shifted at time zero (t=O). Prior to time zero, the flow is simply bypassed to tank

with a negligible pressure drop through the directional control valve.

Differential Equations

The governing differential equation for pressure is:

p= ~(LQ) (4.42)

p= Pressure at a Given Point ~

13= Bulk Modulus of Elasticity

v= Fluid Volume

Q= Flow Rate

Bulk modulus is a fluid property. In this case, a fluid with a bulk modulus of 150,000 psi

will he used. By convention, a positive flow rate enters a pressure point while a negative

flow exits. The differential equations for each pressure point may be developed as

follows:

NODE I:

The pump discharge flow (Qit,) enters Node I while the flow through the relief valve and

the directional control valve exit. The volume of fluid trapped between the pump outlet
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and valve inlet is known to be 10 in3
. As a result, the differential equation for this point

15:

NODE 2:

p. _ 150000(0 _Q _Q )
I - 10 _ill de rv (4.43)

Node 2 has one incoming flow rate and one outgoing flow rate. The incoming flow

originates from the directional control valve (Qdc)' The outgoing flow fills the extending

cylinder. The volume of fluid in the extending cylinder at any point in time is simply:

The conduit connecting the directional control valve and the cylinder is known to have a

v = Abore oX

Therefore, the volumetric flow rate into the cylinder is

Qcyl in = Abort' 0 i

(4.44)

(4.45)

..
•
)

3
..

volume of 10 in3
. Given this information, the following differential equation may be

developed:

(4.46)

NODE 3:

The differential equation for Node 3 may be developed in the same manner as Node 2.

Again, a conduit volume of] 0 in) will be used. The resulting equation is:

jJ = 150000 (A 0 i _ Q )
.\ 10 A. rod nr+ rod X

(4.47)
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NODE 4:

The flow from the metering orifice enters Node 4 and the flow through the directional

control valve exits. Given a transmission line volume of lO in3
, the differential equation

for Node 4 is simply:

p = 150000(0 _ Q )
4 10 _or de (4.48)

The standard differential equation of motion for the spring-mass-damper system

(eq.4.2) is appropriate for the load:

.t = ~ (F - Fpreload - k.x-bi )
m

(4.49)

The applied force (F) is provided by the cylinder. This force was modeled as (eq. 4.25):

(4.50)

In this case, the preload force (Fpreload) is zero. As a result, the differential equation of

motion is:

.; - ] (l) A }) A k.x. h . ).x - - :2 hore - yt rod - - X
m

System ofDifferential Equations

(4.51 )

In order to create a vectorized set ofdifferential equations for the computer

algorithm, the following substitutions were made:

.\'5 = x
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The resulting set of linked ODEs is:

Results

x = 150000 (A .x -Q )
3 ]0 A. rod Ii flr+ rod X j

•\- = ]50000 (0 _Q ,)
4 10 _or de ..

x = ~ (P.,Abo - P1A od - k.x5-bx )Ii _ re.r (,
m

This system of equations was solved using Gear's method for stiff ODEs in

(4.52)

(4.53)

(4.54)

(4.55)

(4.56 )

(4.57)

:,

'.,
~ .
.)
l,....
•,
•
it

conjunction with the ESA as outlined in Figure 4.3. Adaptive step control was also

utilized. The cylinder stroke limit was assumed to be 2.0 inches. Time-based plots of

cylinder rod displacement and velocity are displayed in Figures 4.5 and 4.6 respectively.

The displacement becomes constant when the stroke limit is reached. In addition, the

velocity becomes zero when the stroke limit is encountered. In the absence of the ESA,

these sharp changes would cause the stiff numerical integration and adaptive step size

algorithms to become inefficient or to fail completely. The ESA, however, produces the
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expected results in a reasonable amount of time. In fact, these results were obtained in

under 12 seconds using Pentium 200 computer with 32 megabytes of RAM. A detailed

study of computation time is left for Chapter 5 of this document. However, 12 second

is, by no means, unreasonable for a system of this complexity.

Figure 4.5: Cylinder Rod Displacement Response fOT Example 4.1
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Figure 4.6: Cylinder Rod Velocity Response for Example 4.1
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Pressure transients at Nodes 1 2 and 3 are depicted in Figure 4.7. Abrupt change

in pressure are also handled by the ESA When the cylinder rod reaches it stroke limit

the pressures at Nodes 1 and 2 quickly climb until the relief valve opens. Similarl

pressure at Node 3 drops to zero because the cylinder is no longer forcing fluid through

the metering orifice.

":1
,0.70.60.2 0.3 0.4 0.5

Time (seconds)
0.1
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Y
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~
~
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800
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Figure 4.7: Pressure Responses for Example 4.1

Example 4.1 was developed and solved in the MATLAB computing environment.
All of the relevant MATLAB script files are contained in Appendix E.
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CHAPTER 5

CASE STUDY: PILOT-OPERATEDRELIEF VALVE

Introduction

The four-point method for generating cubic splines was developed in this effort a

a modeling tool. Its primary function is to eliminate model discontinuities which cause

stiff ODE solvers and adaptive step size algorithms to fail or become inefficient.

Similarly, an Event Switching Algorithm was developed in this work to effectively

eliminate failures caused by abrupt changes to the Jacobian matrix ofa stiff ODE solver,

When combined~ these two techniques are used to create compatibility between

mathematically stiff hydraulic systems containing discontinuities and stiff ODE solvers

with adaptive step size control. These stiff ODE solvers offer a considerable advantage

over conventional solvers in tenns of processing time.

Overview of Stiff ODE Solvers

Two stiff numerical integration methods are predominant. These methods are

Gear's method for stiff ODEs and the Rosenbrock method, Of these, Gear's method is the

most common. Gear's method is a predictor-corrector method. The predictor and

corrector are based on Backward Differentiation Fonnulas (BDFs) or Numerical

Differentiation Formulas (NDFs) [21]. Though closely related, the NDFs are generally

more efficient than the BDFs [22]. The order of the BDFs or NDFs affects stability.

During the course of integration, the order is varied by the solver [23]. If a Iimit is

applied to the maximum order, greater stability is achieved. The degree of stability

decreases and efficiency increases as the order limit is raised.

II,

",

..,
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"

"
"



To explore the effects oforder Example 4.1 was solved using a varie of order

limits. The results are compiled in Table 5.1. A stability problem occurred when th

Table 5.1: Simulation Results for Example 4. 1 Using Different Variation of G ar'
Method.

Gear's Method: Integration Results: Processing Time•

Solver Parameters Success or Failure (seconds)
NDFs Success 39.08

Maximum Order = 1
NDFs Success 13.98

Maximum Order = 2
NDFs Success 11.72

Maxi mum Order = 3
NDFs Success 11.54

Maximum Order = 4
NDFs Failure Not Applicable

Maximum Order = 5
* These results were obtained in the MATLAB computing environment using a Pentium 200 computer with
32 megabytes of RAM. The absolute and relative tolerances were set at 10'7 and 10-4 respectively.

maximum order was set at 5. This stability problem ultimately led to failure of the

method. A review of the processing times reveals a threefold increase in efficiency a

the order limit is increased.

Although it is not as numerically efficient as Gear's method, the Rosenbrock

method has become popular for two reasons. First, the Rosenbrock method is relatively

simple. This method is a single-step solver based on the familiar Runge-Kutta scheme.

The need for complicated predictor-corrector fonnulas with varying order is eliminated.

As a result, the method is conceptually easy to understand. Secondly, the Rosenbrock

method has stability properties which surpass those of Gear's method. The Rosenbrock

method can often solve problems which cause Gear's method to fail.

"
'II
'.
.:;
"

:~



Tbe Pilot-operated Relief Valve

In an effort to investlgate the advantages offered b the e stiffODE 01 ers, the

dynamics ofa pilot-operated relief valve were studied. In addition, the costs of restarting

the numerical integrator in the ESA were explored by varying the travel limits of the

poppets. A typical pilot-operated relief valve is depIcted in Figure 5.1. The valve

Orifice

Port T (0 psij

~
Port P

Figure 5.1: Pilot-Operated Relief Valve

functions by controlling the force balance of the main poppet. As the pressure

increases, it distributes equally on all surfaces as long as the pilot poppet remains seated.

With the aid of a light spring, the closing force is larger than the opening force and the

main poppet remains against its seat. The valve opens when the pressure becomes large

enough to lift the pilot poppet off of its seat. When the pressure becomes large enough to

overcome the pilot spring, flow is established through the orifice. The orifice creates a

pressure drop in the spring chamber of the main poppet. As a result, the opening force

becomes larger than the closing force and the main poppet lifts offof its seat. The bulk

of the flow then passes to tank by flowing around the unseated main poppet.

". :
; I

•
~
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Dynamically, this process is described by six first~rder differential equations.

These equations are listed below. Flow forces actjng on the poppets have been included

in this system of equations.

Where,

f3 = Fluid Bulk Modulus of Elasticity

VI = Fluid Volume at Inlet Port

V2 = Fluid Volume of Main Poppet Spring Chamber

Qil7 = Inlet Flow Rate

QI = Flow Rate Over Main Poppet Seat

Q2 = Flow Rate Over Pilot Poppet Seat

QaT = Flow Rate Through Orifice

D) = Diameter of Main Poppet Seat

D2 = Diameter of Pilot Poppet Seat

(5. I)

(5.1)

(5.3)

(5.4)

.~

(5.5)

I,

(5.6) " ,
'h
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A =p

Fpre/oadl =

Fpre/oatll. =

Fflowl =

Area ofMain Poppet Seat

Area ofPilot Poppet Seat

Area of Main Poppet on the Spring Chamber Side

Mass ofMain Poppet

Mass of Pilot Poppet

Force of Main Spring Preload

Force of Pilot Spring Preload

Flow Force Acting on Main Poppet

Flow Force Acting on Pilot Poppet

Damping Coefficient for Main Poppet

Damping Coefficient for Pilot Poppet

Spring Rate for Main Spring

Spring Rate for Pilot Spring

71

For the test problem, the following constants are known:

/3= 1.03 X 109 Pa VI = 3 X 104 m3

V2 = 1 x 10-7 mJ Q. = 1 X 10-3 m3/sec/II

D j =0.017m D2 =0.005 m

AI = 2.27 X 10-4 m2 • J

A2 = 1.96 x 10- m-

Ap = 2.35 X 10-4 m2
ml = 0.045 kg

m2 = 0.020 kg f~reloadl = 100 N

b l = 1000 N/(m/sec) b2 = 50 N/(m/sec)

k) = 5000 N/m k2 = 50000 N/m



....

7

The desired cracking pressure (Per) for the relief valve is 1x 107 Pascal. Therefore the

spring preload on the pilot poppet must be:

(5.7)

The flow rate through the fixed orifice (Qor) requires a mathematical model. A suitable

model may be developed by using the procedure outlined in Part B ofExample 3.1. In

this case, the following information is given:

Orifice Diameter (Dor) = 0.001 m

Discharge Coefficient (Cd) = 0.6]

Fluid Density (p) = 845 (kg/m3
)

Kinematic Viscosity (v) = 14.3 X 10-6 m2/sec

Transition Reynolds Number (NR1) = 1500

The following orifice flow model may be developed from this information:

For 0 ~ (PI-P2) ~ 5.224 x 10 5 Pa.

Qor = 3.759 X 10-23 (PI_P2)3 - 7.0]4 X 10-17 (P1-P2i + 5.863 x 10- 11 (1"',-1'2) (5.8)

For (PI-P2) >5.224 x 10 5 Pa.

Q" ~ c~o, ~~(Ii - p,) (5.9)

The flow rate over the main poppet seat (QI) is essentially the flow through a variable

orifice created by the moving poppet. The flow area of this variable orifice is a function

of poppet displacement (Eq. 5.10).

(5.10)
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T'

=

Flow Area ofMain Poppet/Seat

Diameter of Main Poppet Seat

Half Angle of Main Poppet

Main Poppet Displacement

The mathematical model for this variable orifice may be developed by first assuming a

fixed orifice with a diameter equal to the diameter of the main poppet seat (D!). Using

the procedure outlined in Part 8 of Example 3.1, a cubic spline may be generated. The

variability of the orifice is handled by simply multiplying this cubic spline by the ratio of

the flow area (Ajlowd to the seat area (AI). In this case, a cubic spline may be developed

using the following information:

Seat Diameter (D I ) = 0.017 m

Discharge Coefficient (Cd) = 0.61

Fluid Density (p) = 845 (kg/m3
)

Kinematic Viscosity (v) = 14.3 X 10-6 m2/sec

Transition Reynolds Number (NR1) = 1500

The resulting cubic spline is:

(5.11 )

"

:1
"
:1
;1
"
I',I
Ii'.
"

Given a main poppet half angle of 30° (aJ = Tt/6 rad.), the variable orifice model is:

For 0 ~ (Pd ~ 1.808 x 10 3 Pa,

mJ) sin(a l Jx 14 3 II' 7
Ql= {1.543 x 10- (Pd -9.959xlO- (Pd~+2.88)xlO- (Pd}(5.12)

AI
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For (PI) >1.808 x 10 3 Pa,

(5.13)

The mathematical model for the variable orifice created by the pilot poppet rna be

generated in the same fashion as that ofthe main poppet. The data for the pilot poppet is

as follows:

Seat Diameter (D2) = 0.0005 m

Discharge Coefficient (Cd) = 0.6]

Fluid Density (P) = 845 (kglmJ
)

Kinematic Viscosity (v) = 14.3 x 1O~ m2/sec

Transition Reynolds Number (NRt) = ]500 II

Q2 = ;rD2 s:(a2 )y {2.937 x 10-18 (P2)J - 2.192 X 10-13 (P2)~ + 7.329 X 10-<) (J12)1
2

Pilot Poppet Half Angle (a2) =

The resulting mathematical model is:

For 0 S; (P2) S; 2.090 x 10 4 Pa.

1C/6 radians

(5.14 )

For (P2) >2.090 x 10 4 Pa,

(5.15)
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With the mathematical models in place, the discontinuity functions can b

identified. The pilot-operated relief valve has two spring-mass-damper stems. Both of

the masses may encounter state events in the fonn of mechanical stops. As a result the

ESA must be implemented twice. After each time step, the appropriate discontinuity

function for both masses is evaluated. If either discontinuity function becomes negative,

the integrator restarting procedure is initiated. For reasons discussed in Chapter 4 of this

document, Equations 5.4 and 5.6 will be used by the ESA as the discontinuity functions

for their respective poppets when the poppets are pinned against mechanical stops. If

either of the poppets is between its mechanical travel limits, the displacement (X3 or xs) is

monitored until a mechanical stop is reached as dictated by the ESA.

Numerical Integration Evaluation

The pilot-operated relief valve was inserted in a simple test circuit as depicted in

Figure 5.2. Shifting the directional control valve at a predetermined time produced a

~
Reservoir

Figure 5.2: Pilot-Operated Relief Valve Test Circuit
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duty cycle consisting of an "on" response and an "off' response. A series oft :ts with

varying travel limits on both poppets was perfonned to evaJuate the effectiveness of the

stiff ODE solvers and the ESA. In addition to Gear's Method for Stiff ODEs and

Rosenbrock's Method, three conventional (nonstift) solvers were evaluated. An attempt

to solve each test problem was made using all of the following ODE solvers:

1) Runge-Kutta (4,5): A single-step nonstiff soJver credited to

Dormand and Prince [22]. This ODE solver uses 4th and 5th order

Runge-Kutta methods.

2) Runge-Kutta (2,3): A single-step nonstiffsolver credited to

Bogacki and Shampine [22]. This ODE solver uses 2nd and 3rd

order Runge-Kutta methods.

3) Adams-Bashforth-Moulton [22]: A nonstiffmultistep solver. This

ODE solver uses a variable order routine to iteratively predict and

correct at each time step.

4) Gear's Stiff Method (22): A variable-order multistep solver based

on BDFs or NDFs. For comparison, the following combinations

were tested:

a) BDFs with order limit of2.

b) BDFs with order Iimit of 5.

c) NDFs with order limit of2.

d) NDFs with order limit of 5.
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5) Rosenbrock's Method [22): A second order, single-step stitT ODE

solver based on semi-implicit Runge-Kutta Fonnulas.

TEST CONDITIONS:

Each of these ODE solvers is available in the MATLAB computing package.

MATLAB provided a convenient environment to implement the ESA and test a variety of

ODE solvers. The following test conditions prevailed for each test problem:

Computer Specifications: Pentium 200 with 32 megabytes of RAM

Relative Error Tolerance: 1 x 10-3

Absolute Error Tolerance: 1 x 1O-{i

Adaptive Step Size Control:

Event Switching Algorithm:

Initial Conditions:

Initial Time:

Final Time:

Active for all ODE solvers

Utilized for all tests

Zero

t = 0 seconds

t = 0.08 seconds

Initial Direction Control Valve Position:

Directional Control Valve Shift Time:

Open to Rehef Valve

t = 0.04 seconds

The goal of these tests was to explore the potential advantages of using stitT ODE solvers.

For fixed-step integration, the nonstiff solvers may not require mathematically smooth

models or an event switching routine because no Jacobian matrix is present. Adaptive

step sizing, however, requires both. Because adaptive step size routines are

commonplace, adaptive step sizing was applied to all of the tests. This condition

provided commonality of mathematical models and event switching. For a given
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problem, therefore, any variations in performance among the various ODE solvers were

solely due to the solver routines.

TEST PROBLEMS:

Travels limits for each test problem and the corresponding integration results ar

presented on the following pages. The pressures and poppet displacements were of

primary interest As such, only the transient responses of these parameters were

displayed graphically. In each case, the simulation results were identical (within the

specified error tolerance) for all of the integration methods. Table 5.2 contains

performance information for all of the tests. The number of ODE solver restarts required

by the ESA and the computation times for the various ODE solvers are also contained in

this table. Computation times presented in Table 5.2 are an average of three runs. As

expected, the difference in elapsed time between the three runs was negligible.
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Test #1:

Main Poppet Maximum Travel Limit (x"rar) = 3 X 104 meters

Pilot Poppet Maximum Travel Limit (Ymar) = 0.5 X 10-4 meters

Test #1 Solution:
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Figure 5.3: Pressure Response for Test #1
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Figure 5.4: Displacement Response for Test #1
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Test #2:

Main Poppet Maximum Travel Limit (xmm-) = 3 x 10-4 meters

Pilot Poppet Maximum Travel Limit (Ymar) = 0.8 X 10-4 meters

Test #2 Solution:
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Figure 5.5: Pressure Response for Test #2
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Figure 5.6: Displacement Response for Test #2
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Test #3:

Main Poppet Maximum Travel Limit (xmar) = 4.5 X 10-4 meters

Pilot Poppet Maximum Travel Limit (Ymar) = 0.8 x 10"" meters

Test #3 Solution:
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Figure 5.7: Pressure Response for Test #3
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Figure 5.8: Displacement Response for Test #3
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Test #4:

Main Poppet Maximum Travel Limit (x1Tun') = 4.75 x 10-4 meters

Pilot Poppet Maximum Travel Limit (Ymar) = 0.5 X 10-4 meters

Test #4 Solution:
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Figure 5.9: Pressure Response for Test #4
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Figure 5. 10: Displacement Response for Test #4



Table 5.2: Compiled Test Results for Variations of the Pilot-Operated Relief
Valve Problem

Computation Times (seconds)

Test Travel Number Nonstiff ODE StiffODE Solvers
Number Limits Of Solvers

(meters) Restarts Runge RWliIe Adams Gear's Gear's Gear's Gear's Rosen-
Kutta Kutta Bashforth BDFs BDFs NDFs NDFs brock

Xma..x (4,5) (2.3) Moulton Ma~ Ma~ Max Max

Ymax
Order =2 Order =5 Order =2 Order "'5

1 3.0x 10'" 8 239.9 373.8 346.5 10.9 10.4 10.1 10.0 14.9
0.5 x 10-4

2 3:0x 10'" 8 240.4 335.0 346.8 16.9 13.2 15.2 12.9 24.2
0.8 x 10'"

.... 4.5 x ]0'" 8 264.0 335.0 369.8 21.2 13.7 18.6 IJ8 32.6-' 0.8 x 10'·

4 4.75 x 10" 12 265.0 334.0 360.8 21.8 17.3 19.8 17.4 32.6
0.5 x 10'"

Discussion of Computation Time Results

The effectiveness ofthe various ODE solvers can be evaluated by studying Table

5.2. In the presence of mathematical stiffness, Runge-Kutta (4,5) was the most effective

of the conventional nonstiffODE solvers. The stiff ODE solvers were significantly more

efficient. At worst, an eightfold improvement was achieved when using a stiff ODE

solver. Processing speeds were over 20 times faster than that of Runge-Kutta (4,5) in

some cases. With the aid ofcubic splines generated using control points and the Event

Switching Algorithm, these computational efficiency gains may be realized. The stitT

solvers would have failed due to abrupt changes in their Jacobian matrices if these tools

were absent. As such, the effort required to implement these tools is well justified. This

is especially true of very large systems which could take days to inteblTate.
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Among the stiff solvers, all of the variations ofGear's method proved to be

slightly more efficient than Rosenbrock's method. This condition is problem specific.

There exists a set of problems for which Gear's method is ineffective [22]. However th

inherent stability ofRosenbrock's method will lead to a successful solution. The ability

of Rosenbrock's method to solve a wider variety of problems oft,en compensates for its

slightly longer processing time.

Table 5.2 also reveals some information about the variations of Gear's method.

Numerical differentiation fonnulas of a given order are generally more efficient than

their corresponding backward differentiation formulas. In the two cases where the NDFs

did not perfonn better than the BDFs, the computation times are nearly equal. For both

BDFs and NDFs, an increase from 2nd order to 5lh improved the computation time by as

little as I% or by as much as 35% depending on the problem. Again, stability is the key

issue. Differentiation formulas of 2nd order maintain A-stability [22]. However, this

stability property is lost if the differentiation fonnula is above order two. For the pilot­

operated relief valve problem, stability is maintained through 5th order.

The Event Switching Algorithm performed eight ODE solver restarts each during

test numbers I, 2 and 3. Despite the equal number of restarts, computation times varied

significantly between these three tests for a given stiffODE solver. These results suggest

that restart costs are not the dominant factor in determining processing time. A careful

review of the solutions reveals the true cause of the varying computation times.

Inspection of Figure 5,4 reveals a very simple dynamic response. Both poppets spend

most of the response time against their mechanical stops during Test #1. During Test #2,
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the pilot poppet spends only a short amount of time against the upper tra ellimit (Figure

5.6). The dynamics ofTest #2 are slightly more complex than tho e ofTest #1. As a

result, slightly more computation time is required The solution for Test #3 (Figure 5.8)

is clearly more oscillatory than either Test #1 or #2. Again, the increased dynamic

complexity is accompanied by longer processing times.

Test numbers 3 and 4 may be compared to examine the effects of restarting the

various stiff ODE solvers. Although dynamically similar, Test #4 requires four more

restarts than Test #3. The 2nd order BDFs for Gear's method required only a 2.8%

increase in processing time to accommodate the four additional restarts. Similarly, 2nd

order NDFs required 6.5%. However, the 5th order BDFs and NDFs required over 26%

more processing time to accomplish the same task. The costs of restarting the low order

differentiation formulas for Gear's method are clearly much lower than those of the high

order formulas. By comparison, Rosenbrock's method required no significant

computation time to perfonn the additional restarts. This fortunate result i inher nt to

the method itself Rosenbrock's method is a single-step solver which requires no

historical information. As a result, the first step is virtually the same as any other step.

Gear's method is a multistep solver which requires historical information to complete a

step. When the solver is started, no historical information is available and special

measures must be introduced to start the solver.

Error Analysis

In an effort to investigate the reliability of the stiff solvers in terms of accuracy,

one final test was performed. Test #4 was repeated using Runge-Kutta (4,5) and a step
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size limit of )0-7 seconds. This step size limitation is several orders of magnitude smaller

than the minimum step size produced by the adaptive step size control algorithm with no

size restrictions. Because accuracy is directly related to step size, the simulation

performed at 10-7 was considered to be "exact" for all practical purposes and s rved as a

baseline for comparison. The results from the inlet pressure (PI) response of Test #4

using the various ODE solvers were compared to the results obtained using Runge-Kutta

(4,5) with a step size restriction of 10-7 second. The results were refined to provide state

values at increments of 10-4 second. At each increment, the pressure difference between

the results from the solver of interest and the "exact" solution was calculated. This

difference was used to determine error percentage as follows:

IPsc/v",. - Pt!:U>C/ I
Percent Error = x 100 %

PUQC/

(5.16)

Vvllere, Inlet Pressure (PI) as computed by the ODE solver of
interest with no step size restriction.

Pe:rac/= Inlet Pressure (PI) as computed by Runge-Kutta (4,5) with
a step size restriction of 10.7 second.

The results of this error analysis, in terms of maximum error and average error are

compiled in Table 5.3.

fT #4RAnI'R IfiIIPET bl 53a e . rror alYSlS esu ts or net ressure es lonse 0 est. .
Numerical Integration Maximum Average

Method Error Error
Runge-Kutta (4,5) 0.0294 % 0.0024 %
Adams-Bashforth-Moulton 0.1930% 0.0077 %
Gear's:BDFs Max. Order =2 0.3932 % 0.0696 %
Gear's:BDFs Max. Order =5 0.3539 % 0.0522 %_.._---_.
Gear's:NDFs Max. Order =2 1.0272 % 0.1124 %
Gear's:NDFs Max. Order =5 0.1709 % 0.0434 %
Rosenbrock's Method 0.0756 % 0.0140 %
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A graphical depiction of the error analysis results is contained in Figure 5. ] 1.

Adams Gear's Gear's Gear's Gear' Rosenbrock
Bash/orth BDFs BDFs NUFs NDFs
Moulton Max. Max. MELx. Max.

Order =2 Order =5 Order =2 Order =5

ID Maximum Error • Average Error I

,.....

-
~ ~

It IlLn....... • ..a
RlUlge
KutUl

(4,5)

0.2

~

eO.8..
w
~O.6
Cb
u..
~O.4

1.2

1

Figure 5. J]: Comparison of Error Analysis Results

Discussion of Error Analysis Results

The worst case error was slightly over] %. Accuracy of this magnitude is more

than adequate for hydraulic pressure calculation. Runge-Kutta (4,5) wa the most

accurate of all the solvers but this accuracy is achieved at the expense of processing time.

The Rosenbrock method provides accuracy comparable to Runge-Kutta (4,5) without

excessive processing time. Among the various fonns ofGear's Method, Numerical

Differentiation Formul.as (NDFs) with a 5th order limit were the most accurate. This fonn

of Gear's method is also the most efficient in tenns of processing time making it a

powerful integration method for stiff hydraulic systems. Ultimately, stability will

determine the most suitable integration method because adequate accuracy may be

achieved using any of the stiff ODE solvers proposed in this study.



Summary

The optimum ODE solver for hydraulic systems is problem specific. However

Rosenbrock's method would be the most useful to the average hydraulic system designer.

Although not as computationally expeditious as Gear's Method, Rosenbrock's method is

considerably more efficient than the non-stiff solvers. The Rosenbrock method is al 0

conceptually easier to understand than Gear's method and its robust stability properties

facilitate the solution ofa wider variety of problems. In addition, the restart costs of

Rosenbrock's method are insignificant. This characteristics makes it compatible with the

Event Switching Algorithm. For systems with a large number of components, these

restart cost could become excessive if Gear's method were used.
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CHAPTER 6

EXPERIMENTAL VERIFICATION

Introduction

The ultimate goal of computer modeling and simulation of hydraul ic systems is to

determine the dynamic response of"real-world" hardware. This response information is

invaluable to hydraulic system designers. In the computer environment, the effect of

design changes on the dynamic response can be detennined without the financial

consequences of complicated "breadboard" testing. However, computer simulation can

not completely replace laboratory tests. Computer analysis results are only as accurate as

the methods used to simulate the physical system. As a result, verification of computer

simulation results must be performed at some point in the design process. In this spirit,

the dynamic response of an actual direct-acting relief valve was simulated using the

modeling and integration techniques present in this work and then compared to available

test data.

Test Component

The hydraulic component under consideration is a direct-acting relief valve. A

typical direct-acting relief valve is represented in Figure 6.1. The flow through the valve

remains at zero until the force acting on the poppet is sufficient to lift the poppet from its

seat. Increasing pressure acting on the poppet area at Port P creates this force. As the

poppet lifts from the seat, a flow path from Port P to Port T is created and the pressure

relieved. A relief valve is typically used to limit hydraulic system pressure. Relief valves
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protect other hydraulic system components from accidental overpre surization and

prevent injuries related to overpressurization.

Port T

Port P

Figure 6.1: Typical Direct-Acting Pressure Relief Valve

The dynamic performance of a relief valve is of paramount importance for

obvious safety reasons. As a result, performance testing of relief valves is common and

data from such tests is readily available. The availability of such test data makes the

direct-acting relief valve a perfect candidate for experimental verification of computer

simulation results.

In this case, data from a relief valve test performed at FES Incorporated in

Stillwater, Oklahoma was used. The test unit was a commercially available direct-acting
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relief valve. Testing was performed with MIL-H-5606 hydraulic fluid at 38 Celsiu . As a

result of laboratory work, the following valve characteristics were identified:

Test System

Poppet Mass (m):

Spring Rate (k):

Damping Coefficient (b):

Poppet Half-Angle (a):

Seat Diameter (d):

Cracking Pressure (Perl

Fluid Volume at Port P (v):

Discharge Coefficient of
Poppet/Seat (Cd):

Bulk Modulus of Fluid (/1):

Density of Fluid (p):

0.0031 kg

105076 N/m

35 N/(m/sec)

7.75 X 10-3 m

0.61

For testing purposes, the test unit was installed in the hydraulic system depicted

schematically in Figure 6.2. Shifting the directional control valve with an electrical

Plug

1

~
Reservoir

Figure 6.2: Direct-Acting Relief Valve Test Circuit



step input sends a flow rate (Qin) of6.305 x 10-4 m3/sec to the test valve. Ho\

input flow rate does not occur when the directional control val e is shifted. Full.

developed flow occurs over a finite period of time. In an effort to account for thi

condition, a 15 millisecond ramp to full flow was utilized for Qin.

Mathematical Models and Differential Equations

r a step

The mathematical model for variable-orifice flow and the differential equations

for the direct-acting relief valve were developed in the same manner as those for the

pilot-operated relief valve in Chapter 5 of this study. The resulting differential equations

are as [0110\\'5:

(6.1 )

(6.2)

(6.3)

Where,

X I = Pressure at Port P

X2 = Poppet Displacement

X3 = Poppet Velocity

Q2 = Flow Rate Across Poppet Seat Arrangement

Results of Computer Analysis

A cubic spline based orifice model was used for the poppet/seat arrangement and

the Event Switching Algorithm was employed for boundary handling. Numerical
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integration of the differential equations was perfonned using Gear s Method for Stiff

ODEs. Numerical Differentiation Fonnulas with a maximum order of 5 were utilized.

For a relief valve, the parameter of interest is the pressure at Port P. The dynamic

response for this pressure, as predicted by employing the methods outlined in this work,

is displayed in Figure 6.3. The following infonnation can be gleaned from this plot:

Peak Pressure:

Peak Time:

Steady State Pressure:

1.513 x 107 Pa

0.0068 seconds

8.23 X 106 Pa

~ -
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Figure 6.3: Simulation Results for Direct-Acting Relief Valve

Test Results

The dynamic response from laboratory testing is displayed in Figure 6.4. Again,

the perfonnance characteristics may be obtained from the plot:



Peak Pressure:

Peak Time:

Steady State Pressure (Average):

1.552 X 107 Pa

0.008 seconds
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Figure 6.4: Test Results for Direct-Acting Relief Valve

The computer simulation result is superimposed over the measured dynamic

response in Figure 6.5.
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Figure 6.5: Simulation and Test Results Superimposed
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Discussion of Results

A comparison ofthe test results to the computer simulation results reveals

excellent correlation in tenns of peak pressure. The difference between the two value IS

less than 3%. Peak pressure is the most important characteristic of relief valve

performance. Pressure spikes are often responsible for hydraulic system damage. The

predicted steady-state pressure value also closely matches the experimental data.

Although steady-state analysis may be performed without numerical integration, the

steady-state value is a good measure of correlation between computer-generated results

and empirical results. Comparing the peak times reveals some difference in terms of

response time. The predicted response is about 0.00 I7 seconds faster. This slight

disparity is due the way the system was modeled. The dynamics of the pressure

transducer were not considered in the system model. As a result, the measured response

lags the predicted response. A more complex model could be developed to account for

instrumentation dynamics if greater response time accuracy is desired.



CHAPTER 7

CONCLUSION AND RECOMMENDAnONS

Conclusion

Hydraulic systems are generally considered to be mathematically stiff. This

stiffness is the direct result of widely varying time constants within a single system.

During numerical integration of a stiff set of ordinary differential equations,

mathematical stiffness forces conventional ODE solvers to use very smaJi time steps to

maintain stability. These small time steps lead to a considerable amount of

computational effort and processing time.

In an effort to reduce processing time, ODE solvers designed specifically for stiff

problems have been devised. In addition, adaptive step size routines have been

developed to improve computational efficiency. Hydraulic systems often contain

discontinuities which cause both ofthese advancements to fail or become inefficient.

Stiff ODE solvers use a Jacobian matrix to perpetuate a solution. Abrupt changes to the

Jacobian matrix due to discontinuities will cause the stiff solver to fail. Similarly, abrupt

changes will cause adaptive step size algorithms to "hunt" around a discontinuity until the

step size is reduced enough to traverse the problem area. This hunting process is

excessively time consuming.

In order to solve the problems caused by discontinuities, it is necessary to identify

the types of discontinuities found in hydraulic systems. Discontinuities may exist in

mathematical models or they may be encountered during the integration process. Model

discontinuities typically result from slope discontinuities in the mathematical model.



97

The lack of mathematical smoothness causes abrupt changes in the Jacobian matri and

results in solver failure. Discontinuities encountered during numerical integration ha e

the same disastrous effects. This type of discontinuity is termed a state nt. In

hydraulics, state events occur when mechanical devices encounter travel limits. For

example, the differential equations describing a system will change if an actuator reaches

a mechanical stop.

In this study, two powerful techniques have been developed to overcome the

problems associated with these discontinuities. Cubic splines generated with a four-point

method were created to smooth mathematical models. In addition, an Evenl Switching

Algorithm (ESA) was developed to provide seamless integration over state events.

The four-point cubic spline technique provides a means to join two discontinuous

functions. This technique involves positioning a control point in such close proximity to

the true end point of a curve that the difference is physically insignificant. However, the

relative position of the control point and the true end point determines the shape of the

resulting curve. Control points may be used to force the slope continuity of a cubic

spline bridging a point of discontinuity. This new technique has proven to be both

versatile and effective. In addition to bridging discontinuities, cubic splines may be

implemented to eliminate the infinite stiffness assoc1ated with infinite slopes.

The ESA provides a means to transcend state event discontinuities. Successful

integration is accomplished by restarting the ODE solver when a state event is

encountered. This restarting procedure eliminates abrupt changes to the Jacobian matrix.

State events are defined by discontinuity functions. The exact time ofa state event
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occurs when a discontinuity function is equal to zero. For hydraulic systems these

discontinuity functions are based on the forces applied to a mass and on its displac ment.

After each step, the appropriate discontinuity functions are evaluated. If a stat event is

encountered (as signaled by a sign change), an event location routine is invo ed to

determine the precise time of the state event. Subsequently, the ODE olver is restarted

with the new set of differential equations. This technique has proven effective in the

successful integration of systems containing actuators or valve components which

t:ncounter physical travel limits.

With the aid of the cubic spline modeling tools and the ESA, hydraulic systems

are compatible with ODE solvers specifically designed for stiff differential equations. Of

these solvers, Gear's method and Rosenbrock's method are predominant. Gear's method

has greater potential for computational efficiency. Tests performed in this study reveal

processing times over 20 times faster than conventional (nonstifl) ODE solvers. While

not as efficient as Gear's method, Rosenbrock's method has superior stabil1ty properties.

As a result, Rosenbrock's method can solve a wider variety of problems.

Suggestions for Further Study

The value of curves developed by the four-point method and of the ESA have

been demonstrated in this study. Significant gains in processing speed were realized by

implementing these techniques. However, further study would refine and improve these

techniques. A list of topics for further study is presented below

1) The shape of the cubic spline used to bridge a model discontinuity may effect

processing speed. Curves approaching sharp corners would likely slow the ODE solver



significantly. However, these sharper curves would more accuratel represent the

original discontinuous model. A study of processing speed versus model accurac. could

give insight into this relationship.

2) The ESA uses on event location scheme to pinpoint the time at which a tate

event occurs. Several methods for event location are available. Among these methods

are bisection, false position, secant linear interpolation, inverse quadratic interpolation,

and the Illinois method [18]. A comparison study of these methods may reveal

advantages in terms of computational efficiency or stability. In this effort, the Illinois

method was used exclusively.

3) If the ESA is applied to multiple objects in a single system it is possible for more

than one state variable to cross its threshold value during a single time step. An event

location scheme designed to handle this condition would increase the versatility of the

ESA.
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Appendix A

Procedure for Generating Cubic Splines
to Interpolate Between Four Points

10.
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In matrix fonn, three cubic spline polynomials connecting four points rna be gen rated

as follows [19].

]) Define the four points in the points in Cartesian coordinates:

(A. I)

2) Create X and Ymatrices:

XI YI

x=
x 2 Y= Y2 (A.2)
x 3 y,

x-l Y-l

3) Generate H matrix:

4) Create the RHS (right hand side) matrix:

(A.3)

RHS= (A4)



5) Build the A matrix:

0 0 0

h) 2(111 +112 ) h2 0
A= (A.5)

a h2 2(~ + hJ ) h)
a a 0

6) Solve set of equations to get S matrix:

104

7) The three cubic spline equations are:

Between point 1 and point 2:

(A.6)

(A.7)

Beh.veen point 2 and point 3: (A.S)

Between point 3 and point 4; (A.9)



Appendix B

Experimental Determination of the Pressure
and Flow Relationship of an Orifice

10



Test System and Equipment

The hydraulic system used for this test is depicted if Figure B-1. In addition to

the hydraulic system, a stop watch and graduated cylinder were required.
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Pump

Heat
Exchanger

Orifice
V

Flow
Cantlal
Valve

GrOdUOled
CYlinder

Water

Figure B-1: Hydraulic System for Orifice Testing



Test Conditions

Test Fluid: SAE lOW Oil

Fluid Temperature: 73 of

Orifice Dimensions: Diameter = 0.012 inches Thickness = 0.010 inches

107

Test Procedure

1) The test system was filled with the specified test fluid.

2) The bypass valve was opened.

3) The pump drive motor was started.

4) Water flow rate through heat exchanger was adjusted to achieve the

desired fluid temperature.

5) The bypass valve and flow control valve were adjusted to obtain

incrementally larger pressure differences across the orifice.

6) At each increment, the flow rate through the orifice was measured and

recorded using a graduated cylinder and a stop watch.



Test Results

Table B-1: Test Results for 0.012 Diameter Orifice

Pressure

I
Flow Rate

Difference (inJ/sec.)
(psid)

0.0 0.0000
2.5 0.0069
5.0 0.0135
7.5
10.0
12.5 0.0288
15.0 0.0335
17.5 0.0374

10

20.0
22.5
25.0
30.0

0.0412
0.0439
0.0474
0.0539

35.0 0.0593
40.0 0.0643
45.0 0.0685
50.0 0.0743
55.0 0.0801
60.0 0.0839
65.0 0.0893
70.0 0.0936
75.0 0.0970
80.0 0.0997
85.0 0.1024
90.0 0.1055
95.0 0.1084
100.0 0.1114
105.0
110.0
115.0
120.0

0.1141
0.1168
0.1196
0.1223
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MATLAB Script File for Example 3.1
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%File Name: sp8ex.m
%File Description:
% MATLAB Script file used to generate cubi spline for
~ orifice model based on experimental data (Example 3.1).
% 0.012 orifice; SAE lOW @ 73 F

%%DECLARE EMPTY MATRICES FOR PLOTTING PURPOSES
xv= [] ;
xp= [J;
xp1=[] ;
xp2=( ) ;
gx= [] ;
gxl=[ J;
gx2=[] ;

*%INITIALIZE VARIABLE CONSTANTS
n=4; %nurnber of points for cubic spline
dia=O.Ol2; %orifice diameter
area=((dia~2)*pi)/4i %orifice flow area
ro=8.l7le-5; %fluid density (lbf-sec~2/in~4)

v=.1623; %kinematic viscosity of fluid (in~2/sec)

cd=.63i %orifice discharge coefficient
cf=3.85i%conversion factor - in~3/sec to GPM

%% DEPARTING SLOPE AT ORIGIN
slope=.00220

%% GENERATE CONTROL POINT AT ORIGIN
%% (xl,yll True end point
~% (x2,y2) = Control point

xl=O;
yl=O;
epsx=l i
x2=xl+epsx*eps;
y2=slope*x2i
while( (y2-yl)<eps)

x2=xl+epsx*eps:
y2=slope*x2i
epsx=epsx*lO;

end

~~ GENERATE CONTROL POINT AT 85psid
• ~ (x3, y3) True end point
%% (x4,y4) = Control point

x3=85; t Pressure difference at second end point
y3=cd*area*sqrt(2/rol*sqrt(x3) i tflow rate at 85 psid
epsx=li
x4=x3+epsx*epsi
y4=cd*area*sqrt(2/rol*sqrt(x4) :
whOle((y4-y3)<eps)

x4=x3+epsx*eps;
y4=cd*area*sqrt(2/ro)*sqrt(x4) ;
epsx=epsx*lO;

end

%% RESULTING 4 POINTS FOR CUBIC SPLINES
X=[XliX2;x3;x4j
y=[yl:y2;y3;y4]
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III

%%Generate H Matrix
for i=I:I:(n-l);

k(i)=x(i+l)-x(i) ;
end
h=k' ;

~~ Generate RHS Matrix
rhs (1,l) =0;
rhs(n,I)=O;

for i=2:1:(n-l);
rhs (i, 1) = 6* ( (y (i +1, 1) -y (i, 1) ) Ih (i, 1) - (y (i, 1) -y (i -1, 1) ) 1h (i -1, 1) ) ;

end

~% Generate A matrix
a(I,l)=I;
a(n,n)=I;

for i=2:1: (n-l)
a (i, i-I) =h (i -1, 1) ;
a (i, i +1) =h (i, 1) ;
a (i, i) =2 * (h (i -1, 1) +h (i, 1) ) ;

end

%% Solve System to get S Matrix
s=inv(a)*rhs;

!~ Use S values to ca culate coefficients of cubic splines
for i=I:1: (n-l)

interval=i;
cubeco (i ) = (s ( i +I, 1 ) - s (i, 1) ) 1 (6*h ( i , 1 ) ) ;
squareco(i)=s(i,1)/2;

'nco(i)=((y(i+l, )-y(i,1))/h(i,I))-
(2 *h (i, 1) *s (i, 1) +h (i, 1) *s (i+1, 1) ) /6;

end

;~ Generate points for plotting
t~ Only the middle interval is important
incr=2.5; %pressure increment for plot points
i=l; ~~ generate plot points for cubic (xp,gx)
for xv=x(2,1) :ncr:x(3,1)

xp(i,I)=xv;
gx(i,I)=(( (xv-x(2,1) )A3)*cubeco(2)+((xv-x(2,1))A2)*squareco(2)+(xv­

y. (2,1)) *linco (2) +y(2, 1));
i=i+l;

end

~~ Generate plot points for Turbulent flow Equation (xpl,gxl)
xv=eps:incr:90;
xpl=xv;
gxl=area* (cd*sqrt(2/ro)*(xv) .AO.5);

~ Plot the original test data
express=[O 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 30 35 40 45 50 55 60

65 70 75 80 85];
exq=cf*[O 1.8e-3 3.5e-3 4.98e-3 6.35e-3 7.48e-3 8.7e-3 9.71e-3 1.07e­

2 1.14e-2 1.23e-2 1.40e-2 1.54e-2 1.67e-2 1.78e-2 1.93e-2
2.08e-2 2.18e-2 2.32e-2 2.43e-2 2.52e-2 2.5ge-2 2.66e-2];

plot (express,exq, 'b');
hold



plot (express, exq, '+') i

plot (xp,gx, 'r') %% plot cubic spline model
plot(xpl,gxl, 'g') %%plot turbulent flow eq
plot(x3,y3, '0') %% plot transition point

xlabel('Pressure (psid) ')
ylabel('Flow Rate (cu.in/sec) ')

%% print resulting cubic spline coefficients to screen
coeffs=[cubeco(2)isquareco(2)ilinco(2)1
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MATLAB Scn.pt Files for Example 3.2
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%File Name: staticrv3.m
%File Description:
% MATLAB Script file used to generate
~ the first of two cubic splines for
% the static relief valve model of
% Example 3.2

%%DECLARE EMPTY MATRICES FOR PLOTTING PURPOSES
xv= (]:
xp= [];
xpl=[];
xp2= [] ;
gx= (];
gxl=[] :
gx2=[] ;

%%INITIALIZE VARIABLE CONSTANTS
n=4; %nurnber of points for cubic spline
cd=.61; %orifice discharge coefficient
Pcr=800i %cracking pressure (psid)
Pmax=850; %Maximum pressure (psid)
Qmax=45.045; %Maximum flow rate (cu. in. !sec)
Kv=Qmax!sqrt(Pmax); %lumped constant for turbo flow EQ.
slope=Qmax!(Pmax-Pcr) i %slope (m) of linear (spring) portion of model
offset=Qmax-slope*Pmaxi %offset (b) of straight line equation

%% GENERATE CONTROL POINT AT 1st End point
%% (xl,y1) True end point
%% (x2,y2) = Control point

x1=720; %Desired endpoint pressure
yl=O; %flow rate corresponding to xl
epsx=l;
x2=x1+epsx*eps;
y2=O;
while ( (x2-xl)<eps)

x2=xl+epsx*eps;
epsx=epsx*IO:

end

~% GENERATE CONTROL POINT AT 2nd End point
~~ (xl,yl) True end point
%% (x2,y2) = Control point

x3=825; %Desired endpoint pressure
y3=slope*x3+offset: ~flow rate corresponding to x3
epsx=l;
x4=x3+epsx*epsi
y4=slope*x4+offset;

while( (y4-y3)<eps)
x4=x3+epsx*epsi
y4=slope*x4+offset;
epsx=epsx*lO;

end

~% RESULTING 4 POINTS FOR CUBIC SPLINES
x=[xI:x2;x3;x4j
y=[yl;y2;y3;y4]
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%%Generate H Matrix
for i=l: 1: (n-1) ;

k ( i ) =x (i +1 ) - x (i) ;
end
h=k' ;

%% Generate RHS Matrix
rhs(l,I)=O;
rhs(n,ll=O;

for i=2:1:(n-1);
rhs (i, 1) =6* ( (y (i +1, 1) - Y ( i, 1) ) Ih (i, 1) - (y (i, 1) -y (i -1, 1) ) /h (i -1, 1) ) ;

end

%% Generate A matrix
a(l,l)=l;
a(n,n)=l;

for i=2:1: (n-l)
a(i,i-1)=h(i-1,1) ;
a (i, i +1) =h (i, 1) ;
a(i,i)=2*(h(i-1,1)+h(i,1));

end

%% Solve System to get S Matrix
s=inv(a)*rhs;

%% Use S values to calculate coefficients of cubic splines
for i=l:l: (n-l)

interval=i;
cubeco (i) = (s (i +1, 1) - s (i, 1) ) I (6*h (i , 1) ) ;
squareco(i)=s(i,1)/2i
1 i nco (i ) = ( (y (i +1 , 1 ) - Y (i, 1) ) I h (i, 1) ) ­

(2*h (i, 1) *s (i, 1) +h (i, 1) *s (i +1, 1) ) /6;
end

II

~% Generate points for plotting
.~:~ Only the middle interval is important
incr=(x(n,l)-x(l,l) )/100; %pressure increment for plot points
i=l; %% generate plot points for cubic (xp,gx)
for xv=x(2,1) :incr:x(3, 1)

xp (i, 1) =x v ;
gx(i,1)=(((xv-x(2,1) )A3)*cubeco(2)+((xv-x(2,1))~2)*squareco(2)+(xv­

x(2,1) )*linco(2)+y(2,1));
i=i+1;

end

~% Generate plot points for straight line
~% portion of original model

xv=O:incr:Pmax+incri
xp1=xv;
gxl=slope*xv+offset;

%% Generate plot points for turb flow Eq.
%% portion of original model

xv=O:incr:1.4*Pmax;
xp2=xv;
gx2=Kv*xp2.~.5;



plot (xp,gx, 'r') %% plot cubic spline
axis([O 1.4*Pmax 0 1.4*Qmax))
hold
plot(xp2,gx2, 'b')%% plot turbu ent flow eq
plot(xpl,gxl, 'g')%% plot linear portion

%% print resulting cubic spline coefficients to screen
coeffs=[cubeco(2);squareco(2);linco(2)]
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%File Name: staticrv2.m
%File Description:
~ MATLAB Script file used to generate
~ the second of two cubic splines for
% the static relief valve model of
% Example 3.2

~%DECLARE EMPTY MATRICES FOR PLOTTING PURPOSES
xv=[] ;
xp=[];
xpl=[];
xp2= [] ;
gx= [] ;
gxl= [ J ;
gx2=[];

~~INITIALIZE VARIABLE CONSTANTS
n=4; ~nurnber of points for cubic spline
cd=.6l; %orifice discharge coefficient
Pcr=800; %cracking pressure (psid)
Pmax=850; %Maximum pressure (psid)
Qmax=45.045; %Maximum flow rate (cu. in. /secl
KV=Qmax/sqrt(Pmax); %lumped constant for turbo flow EQ.
slope=Qmax/(Pmax-Pcr); %slope (m) of linear (spring) portion of model
offset=Qmax-slope*Pmax; ~offset (b) of straight line equation

%% GENERATE CONTROL AT 1st End point
%% (xl,yl) True end point
~~ (x2,y2) = Control point

xl=840; %Desired endpoint pressure
yl=slope*xl+offset; %flow rate corresponding to xl
epsx=l;
x2=xl+epsx*eps;
y2=slope*x2+offset;
while( (y2-yl)<eps)

x2=xl+epsx*eps;
y2=slope*x2+offset;
epsx=epsx*lO;

end

~~ GENERATE CONTROL AT 2nd End point
~;, (xl,yl) True end point
%~ (x2,y2) = Control point

x3=900; ~Desired endpoint pressure
y3=Kv*sqrt(x3); ~flow rate corresponding to x3
epsx=l;
x4=x3+epsx*eps;
y4=Kv*sqrt(x4);
while((y4-y3)<eps)

x4=x3+epsx*eps;
y4=Kv*sqrt(x4) i
epsx=epsx*lO;

end

%% RESULTING 4 POINTS FOR CUBIC SPLINES
X=[XliX2;x3;x4]
y=[yl;y2iy3;y4]
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%%Generate H Matrix
for i=l:l: (n-I);

k(i}=x(i+l}-x(i) ;
end
h=k' ;

%% Generate RHS Matrix
rhs(I,1}=O;
rhs(n,1}=O;

for i=2:1:(n-l};
rhs (i, 1) = 6* ( (y (i+ , 1) -y (i, 1) } /h (i, 1) - (y ( i, 1) -y ( i -1, 1) ) /h (i -1, 1) ) ;

end

~~ Generate A matrix
a(l,I)=I;
a(n,n)=I;

for i=2: 1: (n-l)
a (i, i-I) =h (i-I, 1) ;
a (i, i +1) =h (i, 1) ;
a (i, i) =2 * (h (i-I, 1) +h (i , 1) ) ;

end

%% Solve System to get S Matrix
s=inv(a)*rhs;

~~ Use S values to calculate coefficients of cubic splines
for i= : 1: (n-l)

interval=i;
cubeco (i) = (s (i+ 1,1) -s (i, 1) ) / (6*h (i, 1) ) ;
sguareco(i)=s(i,I)/2;
1 inca (i) = ( (y ( i +1, 1) - Y (i, 1) ) / h (i, 1) )­

(2 *h (i, 1) *s (i, 1) +h (i, 1) *s (i +1, 1) ) /6;
end
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i. Generate points for plotting
,~ Only the middle interval is important
incr=(x(n,1)-x(I,I))/20; ~pressure increment for plot points
i=l; %~ generate plot points for cubic (xp,gx)
for xv=x(2,1) :incr:x(3,1)

xp (i, ) =xv;
gx(i,I)=( ((xv-x(2,1) )~3)*cubeco(2)+((xv-x(2,l))h2)*sguareco(2)+(xv­

x (2, I) ) *1 inca (2 ) +Y (2, 1) ) ;
i=i+l;

end

~% Generate plot points for straight line
%~ portion of original model

xv=O:incr:Prnax+incr;
xpl=xv;
gxl=slope*xv+offset;

%% Generate plot points for turb flow Eg.
%% portion of original model

xv=Prnax:incr:l.4*Pmax;
xp2=xv;
gx2=Kv*xp2. h .5;



plot (xp, gx, 'r') %% plot cubic spline
axis([O 1.4*Pmax a 1.4*Qmax))
hold
plot (xp2,gx2, 'b'l%% plot turbu ent flow eq
plot (xpl,gxl, 'g')%% plot linear portion

%% print resulting cubic spline coefficients to screen
coeffs=[cubeco 2);squareco(2);linco(2) 1
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MATLAB Script Files for Example 4.1
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'tlr .l..U:: ;';c1illt::; \.;y.i.'::'U.l..lll

%File Description:
:;; MA7LAn til:I. .LtJi. .L.Ll.e utieu LUI. :C;.II.dllltJie ';.

~ This file is the driver for cy15.m

t,:i:H.Li:.Lc:i.l..u:.e i..l.J.lLt:: i i.; c1JlU ~Lc1Lt:: Vc:iL.l.c1U.l.t:: \AI lUc1L1. .l.\..I:::~

t= [] ;
.11.= L j ;

~~ 0ee uD~ 00iver opeions
options=odeset('Events', 'on', 'Abstol',le-7, 'RelTol',le-4, 'MaxOrder',3)

sCarc=cpuLime; ~~ record Lime of day aL wnicn comp LaLion is SLarLe
tfinal=.75; %% time to end simulation
espan=u:eiinaliSuu:eiinai; ~ elme span Wlen reilnemene
yO=[O 0 0 000]; %initial conditions... ,.. ... - .,.... ........ ..
llL1.o~:H ... aLJ..'--U; ~ .l.J.l..LL....L.d.L o'::>l.OLt=' l..l.dy VC1.1.Ut=

teI=O; % Initialize termination time

bb LU..l.t' .1.ULtYl.C1L.l.Ull

while(tel < tfinal)
.1.JUUtJ

%% while termination time is less than final time
L.i.llll::: ;:,tJc1i1 .LU1. \"UL.l. t::JlL

- ... .... . .. 1.-....... ..
L;:,tJc:i1l-LI:::.l. \.l.I:::JlYL1l\Lt::.l.1 I ; L1..l.11c1.l./JUV;L.l..l.1lc:i.l.;

section
~~ Cc1l.l. ueti.l.I.eu 0u~ tiol.vei.

%% Upon termination solver returns:
~~ eime seep vaiues and coresponding scaee vaiues
~% termination time step value(tel)

\el, xi}

" ., .'
'tlt> ~L.a.Lt::::: VCl..LUt'v elL LeLJLl.l...UClL...LU.Ll \yt:::::.l.J

%% flag to identify which event caused termination (ieI)
lL.l. ..... i. Lt::l. yt::i. .Lt::.l.j-uut::.l.J;:'\'cy.i.-·, L;:,tJc:iJl,yV,UtJL.l.UJl~,Illi.;:'LdL.J.\..1

t=[t' tI'] '; i% save combined results (t and x)
.11.= LX' .II..l' j :;

iecnecx=isempCYlie.l}; ~~ it no evene is deeeceed, lecnecK =u;

%% tfinal has been reached
.L..L. \ .l.t'L.ut::L.1-..--U J .LL llU l.'t::: 1. UL.1.11o. L. .l.UlJ. UUt:: LU t::vt::UL. \t::1LU

,. .
,::, .LUIU.La L .LUlJ,

J.J. .;:)L..OLC D .1.':' l.t::UL.JJCU,
. ,

.1.l!:::.;:)CL .J.U. ..Ll..J..o..L \""'U.l.J.U.LL....L.UJ1.:::»

,i and state flag value
.1..1. \ .I..t::1.--.J.1

yeI(length(tel),6)=0;
yV-"-yt::.l. \.l.t::IlI,jLil (Lei.I,; I;

mIstatic=O;
end

,...H .. Qt-t: ~ .1.C:~CL .J..J.l.1.\-.J..O.J. ...... uJ..1u.J.l....I-Vu,:;,

%% and state flag value
.l.1.\.J.t::i.-=-2i

yeI(length(teI),6J=0;
yv-ye.ll.J.ellyl..Ll \ Lt::.J.) ,;) ;

mI s tatic=-l;
ena

~:"C ..1...1. .,)c.ot..~ C ..L.:l J..COI.--JJcu,

%% and state flag value
.I...l.\.l.l:::.l.--":>}

yel(length(telJ,6)=O;
y0-yt::i. i l.t::J1I,jLl1 (Lei. i , ; I ;

mIstatic=l;
ena

l.'C.::>c:"
,

.J.J.J..L..L.J..O..L Io-UUU.J..L.J..UU':'



end % end iecheck

end t end while loop

stop=cputime; %% record ending time of day

elapsed=stop-start %% calcu ate elapsed processing time



%% File Name: cy15.m
%% File Description:
%% This file contains the differential equations
~% for integration and event location info.
%% for Example 4.1

function [out1,out2,out3]=cyI5(t,x,flag,m1static) t~declare function
name

if nargin < 3 I isempty(flag)

beta=150000; %% bulk modulus
vol=10; %~ fluid line volumes
Qin=38.5; %% pump discharge flow
Pcr=800; %% relief valve cracking pressure
Pmax=850; %% max pressure for relief valve model
Qmax=45.05; %% max flow for relief valve model
Abore=((4~2)*pi)/4; %% cylinder bore area
Arod=Abore-(( (2.5~2)*pi)/4); %% cylinder rod end area
m=9.98965; %%lumped load mass
k=700; %% load spring rate
b=200; %% load damping ratio
Ddc=0.27842; %%Effective directional control valve diameter
Dor=0.11277; %~ orifice diameter
Adc=(Ddc~2*pi)/4; %% directional control valve flow area
Aor=(Dor A2*pi)/4; %% orifice flow area
ylimit=2; %% cylinder stroke limit

t~ transition pressure values orifice models
ptdc1=1.240278210965916e+OOO;
ptdc2=ptdc1;
ptfor=7.560191764662377eO;

Implement various orifice flow models and provide for reverse flow
if abs(x(1)-x(2) »ptdc1;

temp1=(.61*Adc*sqrt(2/7.9Se-S) )*sqrt(abs(x(1)-x(2)));
else (ptdcl>=abs(x(1)-x(2)));

temp1=(9.350e-001*(abs(x(1)-x(2) ))A3-4.64ge+OOO*(abs(x(1)­
x (2)) A2+9. 617e+000* (abs (x (1) -x (2))));

end
if x(l)<O;

ul=-temp1;
else

u1=temp1;
end
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if abs(x(3)-x(4) »ptfor;
temp2=(.61*Aor*sqrt(2/7.95e-S))*sqrt(abs(x(3)-x(4)));

else (ptfor>=abs(x(3)-x(4»));
temp2=(2.031e-3*(abs(x(3)-x(4)) )A3-5.33ge-2* ((x(3)-x(4)) )A2+6.390e­

1* (abs (x (3) -x (4) ) ) ) ;
end
if (x(3)-x(4) )<0;

uor=-temp2;
else

uor=temp2;
end

if (abs(x(4) »ptdc2);
temp3=(.61*Adc*sqrt(2/7.9Se-5) )*sqrt(abs(x(4));

else (ptdc2>=abs(x(4»);

------'



temp3=(9.350e-OOl*(abs(x(4) ))~3-

4.64ge+OOO*(abs(x(4) ))~2+9.617e+000*(abs(x(4))));
end
if x (4) <0;

u2=-temp3;
else

u2=temp3;
end

%% Calculate various flow rates
Qdcl=ul;
Qdc2=u2;
Qor=uor;
Qbore=x(6)*Abore:
Qrod=x (6) *Arod;

~% Relief valve model
if(x(l)<=720)

Qrv=O;
end
if(x(l»720 & x(l)<=825)

Qrv=6.440e-006*(x(1)-720)A3+(1.367e-003)*(x(1)-720)A2+1.943e­
016* (x (1) -720);

end
if(x(1»825 & x(1)<=840)

slope=Qmax!(Pmax-Pcr);
offset=Qroax-slope*Proax;
Qrv=5.206le-005*(x(1)-840)A3+(-8.5917e-003)* (x(1)-840)A2+5.0000e-

OOl*(x(1)-840)+(slope*S40+offset) ;
end
if(x(1»840 & x(1)<900)

slope=Qroax!(Proax-Pcr) ;
offset=Qmax-slope*Pmax;

rv=5.206le-005* (x(l)-840)A3+(-8.5917e-003)*(x(l)-840)A2+5.0000e­
OOl*(x(l)-840)+(slope*840+offset) ;

end
if(x(1»900)

Qrv=1.545*sqrt(x(1) );
end

~% ifferential Equations
dx=zeros(6,1) ;
dx(l)=(beta!vol)* (Qin-Qrv-Qdcl);
dx(2)=(beta!vol+Abore*x(5))* (Qdcl-Qbore);
dx(3)=(beta!vol+Arod*(ylimit-x(5) ))*( rod- or);
dx(4)=(beta!vol)* (Qor-Qdc2);

if(mlstatic==-l I mlstatic==l) %% if mass is pinned against stop
dx(5)=0;
dx(6)=0;
else

%% Call cy15a - contains equations of motion for lumped load
dxtemp=cyl5a(t,x);
dx (5) =dxtemp (I) ;
dx(6)=dxtemp(2) ;

end

outl=dx; ~~ send function evaluations to solver

else
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swi tch (flag)

case 'events' %% event location info.
ylimit=2; %% travel limit

%% Discontinuity functions for lumped load
if (mlstatic==O)

ymin=x(5);
ymax=ylimit-x(5) ;
sumforces=O;

end
if (mlstatic-=O)

ymin=O;
ymax=O;
dxtemp=cy15a(t,x); % call to equations of motion for load

% for use as discontinuity function
sumforces=mlstatic*dxtemp(2); %% multiply by state flag

end

%% send discontinuity functions to event locater
outl=[sumforces;ymin;ymax];
out2=[1;1;1]; %% any zero crossing is terminal
out3=[-1;-1;-1]; ~% terminate when crossing from pos. to neg.

end
end
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% File Name: cy15a.m
% File Description:
% Contains equations of motion for umped load
% for access as function eva uations or
% as discontinuity functions
function [xdot)=cy15a(t,xl

%% Physical parameters
Abore=((4 A 2l*pi)/4i
Arod=Abore-(((2.5 A 2)*pil/4l i
m=9.98965;
k=700;
b=200 i

%% Equations of motion
xdot(ll=x(6) ;
xdot(2l=(1/ml*(Abore*x(2l-Arod*x(3l-k*x(5l-b*x(6l li
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Appendix F

MATLAB Script Files for Pilot-Operated Relief Valve
Case Study from Chapter 5
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%File Name: relv8dr.m
%File Description:
~ MATLAB script file used for Chapter 5 Case Study.
% This file is the driver for relv8.m

%Initialize time(t} and state variable (x) matrices
t= [) ;
x= [) ;

%% Set ODE Solver options
options=odeset('Events', 'on', 'RelTol',le-3, 'AbsTol',le­

6, 'BDF', 'off', 'MaxOrder', 5);

start=cputime; %% record time of day at which computation is started
tfinal=.08; %% time to end simulation
tspan=O: .0001:tfinal; % time span with refinement
yO=[O 0 a 0 a a); %initial conditions
m2static=-I; % Initial state flag value for pilot poppet
mlstatic=-l; % Initial state flag value for main poppet
tel=O;

%% Core Integration Loop
while(tel < tfinal)%% while termination time is less than final time
tspan=tel(length(tel}}: .0005:tfinal;i~ time span for current section
%% Call Desired ODE solver
%% Upon termination solver returns:
%% time step values and coresponding state values (tl, xl)
~o termination time step value(tel)
~~ state values at termination (yel)
%~ flag to identify which event caused termination (iel)
[tl xl tel yel ieIJ=odeI5s('relv8',tspan,yO,options,mlstatic,m2static);
t=[t' tl') '; %% save combined results (t and x)
x=[x' xl'l';
iecheck=isempty(iel}; %% if no event is detected, iecheck =0;

if(iecheck==O) ~~ if no termination due to event (end simulation)
'i tfinal has been reached

~~ If state B is reached by either poppet, reset initial conditions
~~ and state flag value
if (iel==l)

yel(length(tel),6)=0;
yO=yel(length(tel},:} ;
m2static=0;

end

if(iel==2}
yel(length(tel},4}=0;
yO=yel(length(tel},:} ;
mlstatic=O;

end

~~ If state A is reached by either poppet, reset initial conditions
%t and state flag value
if(iel==3}

yel(length(tel},6}=O;
yO=yel(length(tel}, :};
m2static=-1;

end



if (iel==5)
yel(length(tel),4)=O;
yO=yel(length(tel), :);
mlstatic=-l;

end

%% If state C is reached by either poppet, reset initial conditions
%% and state flag value
if (iel==4)

yel(length(tel),6)=O;
yO=yel(length(tel),:) ;
m2static=1:

end

if (iel==6)
yel(length(tel),4)=O;
yO=yel(length(tel),:) ;
mlstatic=l;

end

end % end iecheck

end % end while loop

stop=cputime; %% record ending time of day

elapsed=stop-start %! calculate elapsed processing time
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%% File Name: relv8.m
%% File Description:
%% This file contains the differential equations
%% for integration and event ocation info.
%% for Chap. 5 Case Study.

function [out1,out2,out3j=relv8(t,x,flag,m static,m2static)c~dec1are

function name

if nargin < 3 I isempty(flag)

%% Initialize Constants
Qin=le-3;
D2=.005;
A2.=(D2"2*pi)/4;
01=.017;
Dp=1.0219*D1;
A1=(Dl"2*pi)/4;
Ap=(Dp"2*pi)/4;
Dor=.OOl;
Aor=(Dor"2*pi)/4;
alphal=pi/6;
alpha2=pi/6;
rho=845;
vis=14.3e-6;
Ddc=0.008;
Adc=( (Ddc"2)*pi)/4;
V1=3e-4;
V2=le-7;
beta=1.03e9;

%* transition pressure values orifice models
ptfl=l. B08e3;
ptf2=2.090e4;
ptfor=5.224e5;
ptfdc=B. 163e3;

%% Implement various orifice flow models and provide for reverse flow
if abs(x(1))>ptf1;

temp1=0.61*sqrt(2/rho)*sqrt(abs(x(1))) ;
else (ptf1>=abs(x(1)));

temp1=(1/Al)* (1.543e-14*(abs(x(1)))"3-9.95ge-ll*(abs(x(1)) )"2+2.881e­
7* (abs (x (l) ) ) ) ;

end
if x(l)<O;

ul=-temp1;
else

ul=templ;
end

if abs(x(1)-x(2) »ptfor;
temp2=O.61*sqrt(2/rho)*sqrt(abs(x(1)-x(2))) ;

else (ptfor>=abs(x(1)-x(2)));
temp2=(1/Aor)* (3.75ge-23* (abs(x(1)-x(2)))"3-7.0l4e-17*(abs(x(1)­

x (2) ) ) "2+ 5 . 863e-ll * (abs (x (1) -x (2) ) ) ) ;
end
if (x(1)-x(2))<O;

uor=-temp2;
else

uor=temp2;
end
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if abs(x(2))>ptf2;
temp3=O.61*sqrt(2/rho)*sqrt(abs(x(2))) ;

else (ptf2>=abs(x(2)));
temp3=(1/A2)* (2.937e-18* (abs(x(2))"3-2.I92e-13*(abs(x(2)) )"2+7.32ge­

9* (abs (x(2))));
end
ifx(2)<0;

u2=-temp3;
else

u2=temp3;
end

if abs(x(l) »ptfdc;
temp4=O.61*sqrt(2/rho)*sqrt(abs(x(I)) );

else (ptfdc>=abs(x(l»);
temp4=(1/Adc)*(7.884e-17*(abs(x(1») )~3-2.298e-

12 * (abs (x (1) ) ) ~ 2+3 . 002 e - 8* (abs (x (1) ) ) ) ;
end

if x(l)<O;
udc=-temp4;

else
udc=temp4;

end

~i Differential Equari~~s

dx=zeros(6,1);

if(t<0.04)%% Direction control valve open to relief valve
dx(1)=(beta/VI)* (Qin-pi*Dl*sin(alphal)*ul*x(3)-(Aor)*uor-AI*x(4));
else %% Directional control valve shifted to bypass relief valve
dx(1)=(beta/Vl)* (Qin-Adc*udc-pi*Dl*sin(alphal)*ul*x(3)-(Aor)*uor-

Al * x (4) ) ;

end
dx(2)=(beta/V2)* (Aor*uor+(Ap)*x(4)-pi*D2*sin(alpha2)* (x(S»*u2­

(A2 ) * x (6) ) ;

if (mlstatic-=O) %% if main poppet is pinned against stop
dx(3)=0;
dx(4)=0;
else
%% Call relv8a - contains equations of motion for main poppet
dxtemp=relv8a(t,x);
dx (3) =dxtemp (1) ;
dx (4 ) =dx temp (2) ;
end

if(m2static-=0) %% if pilot poppet is pinned against stop
dx (5) =0;
dx(6)=0;
else
%~ Call relv8b - contains equations of motion for pilot poppet

dxtemp=relv8b(t,x) ;
dx(5)=dxtemp(1) ;
dx(6)=dxtemp(2) ;
end

outl=dx; ~% send function evaluations to solver

-



else

switch (flag)

case 'events'%% event location info.

xlimit=4.7Se-4; %% travel limit for main poppet
ylimit=.5e-4; %% travel limit for pilot poppet

%% Discontinuity functions for pilot poppet
if (rn2static-=O)

sfternp=relvBb(t,x); ~ call to equations of motion for pilot poppet
~ for use as discontinuity function

sumforcesl=m2static*sftemp(2); %% multiply by state flag
ymax=O;
ymin=O;

end

if (m2static==O)
sumforcesl=O;
ymin=x(5) ;
ymax=(ylimit)-x(5);

end

~~ Discontinuity functions for main poppet
if (mlstatic-=O)

sftemp=relvBa(t,x);% call to equations of motion for main poppet
% for use as discontinuity function

sumforces2=mlstatic*sftemp(2Jj %% multiply by state flag
xmax=O;
xmin=O;

end

if (mlstatic==OJ
sumforces2=O;
xmin=x(3);
xmax=(xlimit)-x(3) j

end

%% send discontinuity functions to event locater
outl=[sumforcesl;sumforces2;ymin;ymaxjxmin;xmax);
out2=[1;1;1;1;1;1); ~~ any zero crossing is terminal
out3=[-1;-1;-1;-1;-1;-1]; %~ terminate when crossing from pos. to

neg.

end
end

1.. .,
.J_
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% File Name: relv8a.m
% File Description:
% Contains equations of motion for main poppet
% for access as function evaluations or
% as discontinuity functions

function [xdot]=rel8a(t,x)

%% Physical parameters
ksl=5000;
dampl=lOOO;
Dl=.017;
Dp=1.0219*Dl;
Al=(Dl"2*pi)/4;
Ap=(Dp"2*pi)/4;
alphal=pi/6;
ml=.045;
Prel=lOO;

%% Equations of motion
xdot(I)=x(4) ;
xdot (2) = (l/ml) * ( (AI) *x (I) - (Ap) *:x (2) - Prel-dampl *x (4) - ksl *x (3) ­

(O.6l*pi*Dl*sin(2*alphal) )*x(l)*x(3));

~ File Name: relv8b.m
File Description:

~ Contains equations of motion for pilot poppet
~ for access as function evaluations or
~ as discontinuity functions

function [xdotl=rel8b(t,x)

~~ Physical parameters
ks2=50000;
darnp2=50;
Pcr=lOOe5;
D2=.005;
A2=(D2"2*pi)/4;
alpha2=pi/6;
m2=.02;

~! Equations of motion
xdot(1)=x(6);
xdot(2)=(I/m2)* (A2*:x(2)-Pcr*A2-damp2*:x(6)-ks2*x(5)­

O.61*pi*D2*sin(2*alpha2)*x(2)*x(5));
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