
SERVICE DIFFERENTIATION USING

p-PERSISTENT CSMA/CA

By

 VIJAY GURUSAMY

 Bachelor of Engineering in Computer Science

 Bharthidasan University

 Trichy, India

 2002

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2005

ii

 SERVICE DIFFERENTIATION USING

p-PERSISTENT CSMA/CA

Thesis Approved:

Dr. Venkatesh Sarangan
Thesis Advisor

Dr. John P Chandler

Dr. N. Park

Dr. A.Gordon Emslie
Dean of the Graduate College

iii

ACKNOWLEGEMENTS

I wish to express my sincere gratitude to my advisor, Dr. Venkatesh Sarangan, for

his guidance, assistance, and motivation throughout the study. I am very grateful to him

for his persistence and support in completing my thesis work.

 My sincere appreciation extends to my committee members, Dr. John P. Chandler

and Dr. N. Park for their suggestions and supervision.

 I would like to thank my mother Mrs. Saroja Gurusamy, father Mr. Gurusamy and

brother Mr. Ramanujam for their love and support throughout the years.

 Finally, I would like to thank all my friends who stood beside me when I was

down at times with their constant moral support.

iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION…………………………………………………………………1

1.1 Wireless Local Area Networks………………………………………………...1
1.2 Distributed Coordination Function (DCF)……………………………………..3
1.3 Point Coordination Function (PCF)...………………………………………….3

2. BACKGROUND…………………………………………………………………...4
 2.1 What is CSMA protocol ?...4
 2.2 One – Persistent CSMA………………………………………………………..4
 2.3 Non – Persistent CSMA………………………………………………………..4
 2.4 p-Persistent CSMA…………………………………………………………….5
 2.5 IEEE 802.11 Distributed Coordination Function (DCF)………………………5
 2.6 IEEE 802.11 Point Coordination Function (PCF)……………………………...7
 2.7 Need for QoS enhancement………………………………………………….....9
3. HYPOTHESIS...…………………………………………………………………...10
4. LITERATURE REVIEW………………………………………………………....11

4.1 IACC Scheme………………………………………………………………….11
 4.2 Blackburst Scheme……………………………………………………………..11
 4.3 JDRC Scheme………………………………………………………………….12
 4.4 Hybrid Coordination Function (HCF) Scheme………………………………...12
 4.5 Adaptive Service Differentiation Scheme……………………………………...13
 4.6 Adaptive Fair EDCF Scheme…………………………………………………..13
 4.7 Dynamic Tuning of IEEE 802.11 protocol………………………………….....14
5. PROPOSED SOLUTION…………………………………………………………15
 5.1 Introduction…………………………………………………………………….15
 5.2 Priorities Assignment…………………………………………………………..15
 5.3 Service Differentiation Rule……………………………………………………15

v

6. SIMULATION…………………………………………………………………...18
 6.1 Introduction…………………………………………………………………..18
 6.2 OPNET Implementation……………………………………………………...18
 6.3 Scenarios and Settings………………………………………………………..20
 6.4 Observations and Results…………………………………………………......20
7. CONCLUSION AND FUTURE WORK………………………………………..26
 7.1 Conclusion…………………………………………………………………….26
 7.2 Future Work…………………………………………………………………...26
REFERENCES………………………………………………………………………..28
APPENDIX……………………………………………………………………………31

vi

LIST OF FIGURES

Figure Page

1. DCF Access Mechanism….……………………………………………………8
2. PCF and DCF alteration………………………………………………………..9
3. Comparison of 802.11 and 802.11e EDCF…………………………………...13
4. Process model for p-Persistent CSMA/CA…………………………………...20
5. Average Throughput for p-persistent (Scenario 1)……………………………22
6. Average Media Access Delay for p-persistent (Scenario 1)…………………..22
7. Average Throughput for contention window scheme (Scenario 1)…………...23
8. Average Media Access Delay for contention window scheme (Scenario 1)….23
9. Average Throughput for p-persistent (Scenario 2)……………………………24
10. Average Media Access Delay for p-persistent (Scenario 2)…………………..25
11. Average Throughput for contention window scheme (Scenario 2)…………...25
12. Average Media Access Delay for contention window scheme (Scenario 2)….26

1

CHAPTER 1

INTRODUCTION

1.1 Wireless Local Area Networks

Wireless networking and multimedia are two fast growing technologies. Wireless Local

Area Network (WLAN) is a flexible data exchange system that can either add

functionality to a wired network or replace the existing one. A WLAN has the luxury of

not being connected by a cable as well provides all the features and benefits of traditional

LAN technologies like Ethernet and Token Ring [1].

 Temporary installations represent one situation of when a wireless networks

might make sense or even is required. The increasing number of mobile users is a clear

candidate for WLAN. Portable access to WLANs can be achieved using notebook

computers and wireless Network Interface Cards. This makes the users travel to various

locations like meeting rooms, hallways, lobbies, cafeterias, classrooms, etc. and still have

access to their networked data. Without a WLAN, the user has to carry an awkward cable

and find a network tap to plug into.

In all these scenarios it is worth mentioning that today’s standards-based WLANs

operate at high speeds – the same speed which where considered state of art for wired

networks a few years ago. There are numerous WLAN solutions available today, with

varying levels of standardization and interoperability. The solution that is currently

leading the industry is Wi-FiTM (IEEE 802.11b). WLANs are built using two basic

topologies. They are as follows:

2

1) Infrastructure: This topology can extend wired LAN to wireless devices

by providing a base station called an access point. The access point acts

as a central coordinator connecting the wired network and wireless

network. In this mode there could be multiple access points to cover a

large area or only a single point for a small area or small building.

2) Ad-hoc: In this topology, the wireless devices themselves, with no

central coordinator like an access point create a WLAN. Each device

communicates with other devices in the network rather than through a

central coordinator.

As WLAN is a new networking medium, which has to face all the new challenges

that arises when introduced into a new environment. Considering the challenge of

transmitting multimedia contents had taken its toll on the technology. Real-time and

multimedia applications require some Quality of Service (QoS) support such as

guaranteed bandwidth, bounded delay and jitter. Providing such QoS support in 802.11 is

challenging since 802.11 does not take QoS support into account [3, 4]: both the Medium

Access Control (MAC) layer and the Physical (PHY) layer are designed for best-effort

data transmission.

The IEEE 802.11 MAC specifies two different MAC mechanisms in WLANs: the

mandatory contention based Distributed Coordination Function (DCF) and the optional

polling based Point Coordination Function (PCF) [3].

3

1.2 Distributed Coordination Function (DCF)

DCF is a mandatory asynchronous mechanism. Before a station starts

transmission, it senses the wireless medium to determine whether it is idle. If the medium

is idle, station defers its transmission until the ongoing transmission is completed. The

CSMA/CA mechanism requires a minimum time interval between contiguous frame

transmissions. A station will ensure that the medium is idle for the specified interval of

time before attempting to transmit.

1.3 Point Coordination Function (PCF)

 PCF is an optional synchronous mechanism which implements polling based

contention-free access scheme. It can be only used with an infrastructure mode. The

reason is that PCF relies on asynchronous service provided by DCF mechanism, which

should at least send one DCF data frame in a beacon interval. Moreover, PCF uses a

centralized polling scheme, which uses the access point (AP) as a point coordinator (PC).

This thesis aims to provide novel approach for providing service differentiation

using p-Persistent CSMA/CA logic. The following chapter 2 gives the background

regarding this thesis. Chapter 3 provides the problem statement. Literature review is done

in chapter 4. Chapter 5 illustrates the proposed solution. Simulation plan is discussed in

chapter 6.

4

CHAPTER 2

BACKGROUND

This chapter discusses all the fundamentals of wireless local area networks and CSMA

protocols along with all the variants of the protocols.

2.1 What is CSMA protocol ?

Carrier Sense Multiple Access (CSMA) Protocols are protocols in which the

station listen for a carrier (or a transmission) and act accordingly.

There are several variants of CSMA contention protocols.1-persistent CSMA,

non-persistent CSMA, and p-persistent CSMA, are the various versions of the carrier

sense protocol. The following paragraphs discusses about the variants:

2.2 One-Persistent CSMA

 When a station has data to send, it first listens to the channel to see if any station

is transmitting at that moment. If the channel is busy, the station waits until it becomes

idle. When the station detects an idle channel, it transmits a frame. If a collision occurs,

the station waits a random amount of time and starts all over again. This version of

CSMA transmits with a probability of 1 whenever it finds the channel idle.

2.3 Non-Persistent CSMA

 In this version, an attempt is made to make the 1-persitent CSMA version less

greedy. Before sending, a station senses the channel. If the medium is idle, the station

begins transmitting. However, if the channel is already in use, the station does not

continuously sense to seize the channel upon detecting the end of previous transmission,

5

instead it waits a random period of time and then repeats the whole process. This

algorithm should lead to better channel utilization and longer delays than 1-persistent

CSMA.

2.4 p-Persistent CSMA

 This version of CSMA applies to slotted channels. When a station becomes ready

to send, it senses the channel. If it is idle, it transmits with a probability p. With a

probability q=1-p it defers until the next slot. If that slot is also idle, it either transmits or

defers again, with the probabilities p and q. The process is repeated until either the frame

has been transmitted or another station has begun transmitting. If another station has

begun transmitting, it acts as if there had been a collision, which means that it waits a

random time and starts again. If the station initially senses the channel busy, it waits until

the next slot and applies the whole process again.

2.5 IEEE 802.11 DCF

The DCF [2] achieves medium sharing between compatible stations through the

use of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). Collision

detection cannot be implemented due to the significant difference between transmitted

and received power levels. Two different carrier-sensing mechanisms are used [8]: PHY

carrier sensing at the air interface and virtual carrier sensing at the MAC layer. By

analyzing all the packets received from other stations (STA), the PHY carrier sensor can

detect the presence of other STAs. A station to inform all other stations how long the

channel will be reserved for transmission optionally uses virtual carrier sensor. In order to

avoid this scenario, the sender can set a duration field in the MAC header of data frames,

or in the RequestToSend (RTS) and ClearToSend (CTS) control frames. Accordingly,

6

other stations will update their local timers of network allocation vectors (NAVs) to take

the duration into account.

As shown in figure 1 [8], if a packet arrives at an empty queue and if the medium

has been found idle for more than distributed interfame space called DIFS, the source

station can transmit the packet immediately. In the meantime, rest of the stations defer

their transmissions by adjusting their respective NAVs, and start the backoff process.

Stations compute their backoff timer, which is a random time interval selected from the

Contention Window (CW): backoff timer = random [0, CW].slot time, where slot time

depends on the PHY layer type and CWmin < CW < CWmax. The backoff timer parameter

is decreased until the medium is idle. It is frozen once the medium is busy.

To reduce probability of collisions, after each unsuccessful transmission attempt,

the CW value is doubled and after every successful transmission attempt the CW value is

reset to CWmin. According to the standard, a maximum of 7 retransmissions for short

frames are allowed before the frame is dropped. Hidden terminals can also cause

collisions. Consequently, frames sent from different senders will collide at the same

receiver. To solve the hidden terminal problems RTS/CTS mechanism can be used

optionally. As shown in figure 1 [8], the source sends a short request to send (RTS) frame

before each transmission begins.

7

Figure 1: DCF Access Mechanism: CSMA/CA (up) and RTS/CTS scheme (down) [8]

The receiver replies with a clear to send (CTS) frame if it is ready to receive.

Once the source receives the CTS frame, it transmits a frame. All other station in the

same BSS hearing the CTS frame adjusts the respective network allocation vectors

(NAVs). The rest of the stations in the BSS will not attempt to start transmission until the

NAV timer reaches zero. If the data frame sizes are large, the RTS/CTS mechanism can

improve the performance significantly.

2.6 IEEE 802.11 PCF

Priority-based access can also be used to access the medium. Unlike DCF, its

implementation is not mandatory. The reason is the implementation of PCF itself was

thought to complex and not finalized in the standard. PCF uses a centralized polling

scheme, which uses the access point (AP) as a point coordinator (PC). When a BSS is set

8

up with a PCF-enabled, the channel access time is divided into periodic intervals named

beacon intervals. As shown in the figure 2 [8], the beacon interval is composed of a

contention-free period (CFP) and a contention period (CP).

Figure 2: PCF and DCF alternation [8]

During the CFP, the PC maintains a list of registered stations and polls each of them

according to the list. When a station is polled, it starts to transmit data frames, where the

size of each frame depends on the maximum MAC service data unit size. The time used

by the PC to generate the beacon frame is called target beacon transmission time (TBTT).

The next TBTT is sent within the beacon frame by the PC to inform all other stations in

the BSS. To give higher priority of access than DCF in a beacon interval, the PC waits

for a shorter interframe space than DCF interframe space (DIFS). PCF is not allowed to

interrupt any ongoing frame transmissions in DCF. Once PCF obtains access to the

wireless medium, short interframe space (SIFS) timing is used for frames exchanges

during CFP except if the polled station does not respond the PC within a PIFS period.

PCF and DCF cycles take place as shown in the figure 2 [8]. If the stations have no data

to transmit during CFP, the AP can terminate the CFP by sending CF-end frame. After

9

CF-end frame, the CP is started again and it will remain so until a CFP AP transmits

starting beacon. In general, PCF uses a round-robin scheduler to poll each station

sequentially in the order of the polling list. The PCF is used for delay sensitive data to

meet their delay requirements.

2.7 Need for QoS enhancement

Maintaining QoS is one of the most challenging functions a MAC layer should

support. QoS is the ability of a network element to provide some levels of assurance for

consistent network data delivery [8]. When a bandwidth is not scarce, such as in wired

LANs, QoS issues are not so important. However, a WLAN have a higher bit error rate, a

higher delay and lower bandwidth than a wired LAN. IEEE 802.11 WLAN is originally

designed for best-effort services. The error rate at physical layer is more than three orders

of magnitude larger than that of wired LAN. Moreover, high collision rate and frequent

retransmissions cause unpredictable delays and jitters, which degrade the quality of real-

time voice and video transmission. Enhanced QoS aware coordination can reduce

overhead, prioritize frames, and prevent collisions to meet delay and jitter requirements

in mobile environments.

10

CHAPTER 3

HYPOTHESIS

QoS can be provided using persistent CSMA logic. Basically, CSMA/CA

protocol supports that all stations has the same priority. The p-persistent CSMA logic can

be used to achieve QoS among the various WLAN stations. In the following paragraphs

we formulate the problem of providing priorities to various WLAN stations involved in

the wireless network. The problem here is to identify the stations with higher priority and

lower priority. Usually, the priorities to all the stations in a p-persistent CSMA/CA logic

is maintained the same by having a common ‘p’ value for all the stations.

Hence, the question arises how to distinguish a high priority station from the low

priority station?

The problem can be analyzed as follows. Consider a situation where a particular

station ‘A’ has real-time applications like voice or live video transmission. While another

station ‘B’ which has a data transmission application. In this scenario, the station ‘A’ has

to be given a higher priority since there are voice and video packets to be transmitted.

One way to provide priority is by statically fixing the stations with a constant ‘p’

value. According to the rule of probability, higher the value of ‘p’ there are more chances

of packet transmission and vice versa. This concept is explained in detail in the following

proposed approach.

11

CHAPTER 4

LITERATURE REVIEW

Reference [8] presents a review of QoS enhancement research efforts and

standardization activities of wireless LANs. It also discusses about the various QoS

enhancement schemes, which are classified into station-based and queue-based

categories. A station-based category will provide only one priority for one station and

queue-based category will introduce multiple priority queues in each station. Another

level of classification depends on whether the scheme is DCF-based or PCF-based.

4.1 IACC Scheme

IACC scheme introduce priorities using three techniques. The first one allocates

different contention windows to stations with different priorities. Experiments shows that

this technique performs well with UDP traffic were as performs badly with TCP. In the

second technique, each station sets the DIFS parameter according to its priority level. The

problem with this technique is the low priority traffic suffers from starvation. While the

third technique, each station is allocated a different maximum frame length according to

the priority level. This technique seemed to work for TCP and UDP flows but in a noisy

environment it tends to decrease the efficiency of service differentiation.

4.2 Blackburst Scheme

The objective of the Blackburst scheme is to minimize the delay of real-time

traffic. Unlike other schemes, it imposes certain requirements on high priority stations:

(1) the use of equal and constant intervals to access the medium and (2) the ability to jam

12

the medium for a period of time. If there are no constant access intervals for high priority

station, performance of the Blackburst scheme degrades considerably.

4.3 JDRC Scheme

In the JDRC scheme, high priority stations will be able to access medium with

short waiting time. On the downside, when none of the high priority station wants to

transmit the low priority station still have a longer waiting time.

4.4 Hybrid Coordination Function Scheme

 Reference [5] discusses about the IEEE 802.11e Medium Access Control, which

emerged as a standard to support QoS. The Hybrid Coordination Function (HCF) in

802.11e is only efficient for flows with strict Constant Bit Rate (CBR) characteristics.

The HCF access method is a combination of the EDCF mechanism and Hybrid

Controlled Channel Access mechanism. However, a lot of real-time applications such as

video conferencing have small variations in packet sizes, which leads to Variable Bit

Rate (VBR) characteristics. Hence, priority to real-time traffic cannot be supported which

needs a better algorithm to distinguish the stations need for higher priority.

 Reference [13] talks about a new proposed standard IEEE 802.11e, which

supports QoS in wireless LANs. It introduced a new access method Hybrid Coordination

Function (HCF) that combines the DCF and PCF mechanisms.

Figure 3: Comparison of 802.11 and 802.11e EDCF [15]

13

Enhanced DCF is a contention-based HCF access method specified in 802.11e. An

802.11e QoS enhanced station can support at most four access categories (AC) of which

it can support eight types of traffic classes. Each traffic type is mapped into particular

access category with the priority range from 0 to 7 [14]. As shown in figure 3, in IEEE

802.11e, a QoS enhanced station uses a new Arbitration Interfame Space, AIFSD [AC],

CWmin[AC] and CWmax[AC] instead of DIFS, CWmin and CWmax of the DCF. The

respective AC is selected according to the priority range selected for that application. By

differentiating the inter frame space time and contention window of each access category,

the traffic with high priority will have more chances to gain the channel access and suffer

less delay.

4.5 Adaptive Service Differentiation Scheme

Romdhani, Ni and Turletti [7] proposed an adaptive service differentiation

scheme for QoS enhancement in IEEE 802.11e. The contention window (CW) parameter

is set statically in Enhanced DCF (EDCF) were as in this scheme CW value is set

dynamically. They use a dynamic procedure to change the CW value after each

successful transmission or collision. Though, the performance of this scheme is better

than EDCF the background performance of the low priority flows degrades at high loads.

4.6 Adaptive fair EDCF Scheme

Malli, Ni, Turletti and Barakat [6] suggested a new scheme called adaptive fair

EDCF that extends EDCF, which combines the advantages of service differentiation, fast

backoff decrease and an adaptive access scheme (using an adaptive backoff threshold).

This scheme aims to improve the performance of multimedia applications, total

throughput and fairness between same priority applications.

14

4.7 Dynamic Tuning of IEEE 802.11 protocol

Cali, Conti and Gregori [10], [11], [12], are the first to derive analytic models that

characterize the system capacity using the p-persistent version of IEEE 802.11. The

capacity is defined as the maximum fraction of the channel bandwidth used for successful

packet transmission. However, they consider only a single class of traffic that does not

address the issue of providing differentiation among multiple traffic classes. We extend

their work, and propose to use p-persistent CSMA logic to introduce priority among

different class of stations.

15

CHAPTER 5

PROPOSED SOLUTION

5.1 Introduction

This chapter explains the solution for the proposed problem. A p-persistent

CSMA version of the IEEE 802.11 protocol differs from the standard protocol only in the

selection of the backoff interval. In the standard version of p-persistent CSMA logic, the

‘p’ value remains a constant for all the stations in the wireless network.

5.2 Priorities Assignment

The priorities to various stations are assigned after analyzing the applications that

is running on respective stations. The station that has real-time application such as

multimedia contents to transmit is given higher priority over the other applications, which

transmits data contents.

5.3 Service Differentiation Rule

 A constant probability value ‘p1’ is fixed for a higher-class priority station.

Similarly, a value ‘p2’ is fixed for a lower-class priority station. The constant value for

each station that is assigned follows a rule; higher-class priority value should be greater

than lower-class priority value (i.e. p1 > p2). Since the fixed values a probability values

they are assumed to be in the range 0 to 1.

 We have to distinguish the class-level station priorities using the following

method:

i) A random value ‘p’ is generated between 0 and 1

16

ii) If p < pi Then

Respective station is given access to transmit

 Else

 The transmission is deferred to the next slot

In the above process, ‘pi’ denotes the probability that is fixed for the different class-level

priorities and the subscript ‘i’ refers to the various class-levels.

Depending on the random value of ‘p’ that is generated there could be two different

cases, which are discussed as follows:

 Case I:

Suppose, if the random ‘p’ value is lesser than the fixed probability of the

respective class-level priority then the station, which belongs to that

particular class-level priority is given access to transmit the packets.

 Case II:

Suppose, if the random ‘p’ value is greater than fixed probabilities of both

class-level priorities then the access to the channel is deferred to the next

slot with a probability of ‘1-p’.

For example, consider a scenario where there is a two class of stations ‘A’ and

‘B’. If class ‘A’ stations has real-time applications then it is assigned a high priority like

p1=0.8. If class ‘B’ stations contains only data contents will be assigned a low priority

like p2=0.3. The above algorithm is executed on each class of machines individually.

Case 1:

Suppose, if the random ‘p’ value generated is 0.2 that is less than 0.3 (class ‘B’)

17

Then class ‘B’ stations is given access to transmit

Case 2:

Suppose, if the random ‘p’ value obtained is 0.7 that is less than 0.8 (class ‘A’)

 Then class ‘A’ stations is given access to transmit

Case 3:

Suppose, if the random ‘p’ value obtained is greater than probabilities of either

class of stations ‘A’ or ‘B’

 Then transmission is deferred with probability of ‘1-p’

The proposed approach is a new approach to the problem. It is a well-organized

and simple approach to the problem. Unlike the existing p-persistent CSMA version of

the protocol, this approach addresses the issue of class priority for an individual station.

This solution can be implemented easily with minor modifications to the p-persistent

CSMA version. Furthermore, it can be deployed across the wireless networks without any

major changes in the infrastructure.

18

CHAPTER 6

SIMULATION

In the simulation, we try to study the behavior and performance of the algorithm

discussed in the previous chapter. We implemented the modified p-persistent CSMA

version in the wireless environment using the OPNET modeler.

6.1 Introduction

 I chose the OPNET simulator because it has a lot of modules that is needed for

this simulation. OPNET Modeler [16] supports all network types and technologies.

Among the many benefits of this development environment are: its hierarchical network

models, its clear modeling paradigm, its finite state machine design capabilities, its

integrated analysis tools, its comprehensive libraries of protocol, application, and

network devices, its wireless, point-to-point, and multilink functionality. The wireless

WLAN module of the simulator was used as the basis for modifying and implementing

the class priority using the p-persistent CSMA/CA version.

6.2 OPNET Implementation

 The p-persistent CSMA/CA version was implemented and integrated into the

wlan_mac process model as shown in the figure 4. One transition and one condition was

inserted into the process model and the TRANSMIT state was modified. I also modified

the interrupts in the Function Block and added a priority to the Node Attributes Interface

for easy assignment of class priorities for various stations.

19

The additional pseudo code for TRANSMIT state is as follows:

If random_priority < station_priority

Then

transmit the packet

Else

defer the transmission to next slot

Figure 4: Modified wlan_mac process model for p-Persistent CSMA/CA

20

6.3 Scenarios and Settings

 Two different simulation scenarios were implemented on both the existing

contention window scheme and the proposed p-persistent version. The different scenarios

are as follows:

i) In the first scenario, the data generation rate was kept constant all the

stations and the number of stations (2, 4, 8, 12, 16, and 20) transmitting

was varied.

ii) In the second one, the number of stations was made a constant (14) and

the data generation rates (0.003, 0.005, 0.007, 0.009 and 0.01) were

varied.

In both scenarios, the average throughput and average media access delay of

different class priority stations are analyzed. The source stations randomly choose the

destination stations. The parameters of the existing contention window scheme and

proposed p-persistent version are chosen in such a manner so that the outputs of both the

schemes are comparable. In the p-persistent version, low priority class is given a ‘p’

value of 0.3 and high priority class is given a ‘p’ value of 0.5. In the contention window

scheme, the low priority class is given additional 800 backoff slots were as high priority

is given additional 500 backoff slots.

6.4 Observations and Results

 The average throughput and average media access delay of all the transmitting

stations are divided into two different class priorities (low and high), which are collected

for analysis.

21

The simulation results (Figures 5 – 8) illustrates that in the first scenario, the

proposed p-persistent version the delay is reduced greatly as the load in the network

increases while the delay in the contention window scheme increases.

Average Throughput
(p-Persistent)

0
2
4
6
8

10
12

2 4 8 12 16 20
number of stations

tra
ns

mi
tte

d
(p

ac
ke

ts/
se

co
nd

)

Low Priority(p=0.3)
High Priority(p=0.5)

Figure 5: Average Throughput for p-persistent (Scenario 1)

Average Media Access Delay
(p-Persistent)

0
100
200
300
400
500
600

2 4 8 12 16 20
number of stations

de
lay

(se
co

nd
s)

Low
Priority(p=0.3)
High
Priority(p=0.5)

Figure 6: Average Media Access Delay for p-persistent (Scenario 1)

22

Average Throughput
(contention window)

0
2
4
6
8

10
12

2 4 8 12 16 20
number of stations

tra
ns

mi
tte

d
(p

ac
ke

ts
/se

co
nd

)
Low
Priority(backoff=800)
High
Priority(backoff=500)

Figure 7: Average Throughput for contention window (Scenario 1)

Moreover, in the first scenario (Figures 5 and 7), throughput of the lower priority

class in the contention window scheme drastically decreased compared to that of the

proposed p-persistent technique.

Average Media Access Delay
(contention window)

0
20
40
60
80

100
120
140

2 4 8 12 16 20
number of stations

de
lay

(se
co

nd
s)

Low
Priority(backoff=800)
High
Priority(backoff=500)

Figure 8: Average Media Access Delay for contention window (Scenario 1)

23

In the first scenario (Figures 5 and 7), the difference between higher priority and

lower priority throughput is a constant in p-persistent version whereas in the contention

window scheme it varies.

In the second scenario (Figures 9 – 12), the p-persistent version and contention

window scheme almost maintain constant delays were as the throughput decreases when

the data generation rate is decreased.

Average Throughput

(p-Persistent)

0

5

10

15

0.003 0.005 0.007 0.009 0.01
packet generation rate

(inter-arrival time)

tra
ns

mi
tte

d
(p

ac
ke

ts
/se

co
nd

)

Low Priority(p=0.3)
High Priority(p=0.5)

Figure 9: Average Throughput for p-persistent (Scenario 2)

24

Average Media Access Delay
(p-Persistent)

0
5

10
15
20
25

0.003 0.005 0.007 0.009 0.01
packet generation rate

(inter-arrival time)

de
lay

(se
co

nd
s)

Low Priority(p=0.3)
High Priority(p=0.5)

Figure 10: Average Media Access Delay for p-persistent (Scenario 2)

Average Throughput
(contention window)

0

5

10

15

0.003 0.005 0.007 0.009 0.01
packet generation rate

(inter-arrival time)

tra
ns

m
itt

ed
(p

ac
ke

ts/
se

co
nd

)

Low
Piority(backoff=800)
High
Priority(backoff=500)

Figure 11: Average Throughput for contention window (Scenario 2)

In the second scenario (Figure 9 and 11), the throughput distinction is a constant

in the p-persistent version whereas in the contention window scheme varies.

25

Average Media Access Delay
(contention window)

0
5

10
15
20
25
30
35

0.003 0.005 0.007 0.009 0.01
packet generation rate

(inter-arrival time)

de
lay

(se
co

nd
s)

Low
Priority(backoff=800)
High
Priority(backoff=500)

Figure 12: Average Media Access Delay for contention window (Scenario 2)

In the second scenario, the throughput decreases as the data generation rate

increased.

Simulation results indicate that the throughput and delay of the existing

contention scheme and proposed p-persistent version on both the scenarios are consistent.

For example (Figure 8 and 12), illustrates the throughput and delay of 14 station is

comparable when the data generation rate is 0.01.

26

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In the eon of multimedia communication, the design of priority-sensitive network

protocols continues to be an important issue, and in particular the broadband wireless

links constitute an important class in which prioritization is key to optimizing the overall

performance of the network. In this thesis, the proposed p-persistent technique provides

service differentiation between two different classes, which can very well be extended to

different levels of class-priorities.

The service differentiation using contention window scheme is used as comparison

method for the proposed p-persistent version. The two different methods are implemented

in wireless LAN environment and their performance (throughput and media access delay)

is analyzed. OPNET simulation results indicate that in the p-persistent version, media

access delay is reduced as the load in the network increases. Finally, the p-persistent

version in the MAC layer can effectively reduce the selection of backoff time when the

load increases.

7.2 Future Work

For wireless LANs, well-defined coverage areas simply do not exist. Propagation

characteristics are dynamic and unpredictable hence small changes in position or

direction may result in dramatic differences in signal strength. If the basic service sets

27

(BSSs) are not physically very apart, and then two or more BSSs may overlap on the

same geographical area.

In this thesis, it had been assumed that the BSSs are far apart so that there or no

interference from neighboring BSSs. It would be more appropriate to perform an

evaluation study of the proposed MAC scheme by considering the interferences from

neighboring BSSs. Another vital avenue for research is to study an automated distributed

approach that enables each station to on-line measure parameters needed in calculating

the optimal values of ‘p’ and to tune the backoff times accordingly. Since the service

differentiation is varied dynamically among the different class-priorities of various

stations in the network the throughput can further be optimized.

28

REFERENCES

[1] Z. Iqbal (2002). Wireless LAN Technology: Current State and Furture Trends

[Electronic Version]. Retrieved August 23, 2005 from

http://www.tml.tkk.fi/Studies/T-110.557/2002/papers/zahed_iqbal.pdf.

[2] IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical

 Layer (PHY) Specifications, Standard, IEEE, Aug. 1999.

[3] IEEE 802.11 WG, International Standard [for] Information Technology –

Telecommunications and information exchange between systems-Local and

metropolitan area networks-Specific Requirements - Part 11:Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications, Reference number

ISO/IEC 8802-11:1999(E), 1999.

[4] Q. Ni, L. Romdhani, and T. Turletti, A survey of QoS enhancements for IEEE 802.11

Wireless LAN, Journal of Wireless and Mobile Computing, John Wiley, Vol. 4, pp. 1-

20, 2004, to appear.

[5] P. Ansel, Q. Ni, and T. Turletti, An efficient scheduling scheme for IEEE 802.11e.

Proc. Of WiOpt (Modeling and Optimization in Mobile, Ad Hoc and Wireless

Networks), Cambridge, UK, March 24-26, 2004.

[6] M. Malli, Q. Ni, T. Turletti, and C. Barakat. Adaptive fair channel allocation for QoS

enhancement in IEEE 802.11 wireless LANs. IEEE ICC 2004 (International

Conference on Communications), Paris, June 20-24, 2004.

29

[7] L. Romdhani, Q. Ni, and T. Turletti, Adaptive EDCF: enhanced service

differentiation for IEEE 802.11 wireless ad hoc networks, Wireless Communications

and Networking Conference, New Orleans, Louisiana, USA, March 16-20, 2003.

[8] Qiang Ni, and Thierry Turletti, QoS Support for IEEE 802.11 WLAN, Nova Science

Publishers, New York, USA, 2004

[9] L. Kleinrock and F. A. Tobagi. (1975) Packet switching in radio channels: Part 1 -

Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE

Transactions on Communications, Vol. COM-23, December, pp. 1400 –1416.

[10] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11Wireless LAN: Capacity Analysis

and Protocol Enhancement,” in Proc. IEEE INFOCOM’98, March 1998.

[11] F. Cali, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to

Achieve a Theoretical Throughput Limit,” IEEE/ACM Trans. on Networking, Vol. 8,

No. 6, pp. 785–799, December 2000.

[12] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11 Protocol: Design and Performance

Evaluation of an Adaptive Backoff Mechanism,” IEEE JSAC, Vol. 18, No. 9, pp.

1774– 1786, September 2000.

[I3] IEEE 802.11ef/D4.0, Draft Supplement to Part II: Wireless Medium Access Control

(MAC) and physical layer PHY) specifications: Medium Access Control (MAC)

Enhancements for Quality of Service (QoS), November 2002.

[14] IEEE 802.1d-1998, Part 3: Media Access Control (MAC) bridges, ANSUIEEE Std.

802.1D, 1998 edition, 1998.

30

[15] Protocol enhancement for IEEE 802.11e EDCF Xin Wang; Qianli Zhang; Xing Li;

Networks, 2004. (ICON 2004). Proceedings, 12th IEEE International Conference on

Volume 1, 16-19 Nov. 2004 Page(s): 80 - 84 Vol.1.

[16] OPNET Technologies, Inc, “Wireless LAN model description,”

http://www.opnet.com/products/library/WLAN_Model_guide1.pdf.

31

APPENDIX

SOURCE CODE LISTING

 The process model implementations of wireless medium access control (MAC)

layer are listed for the proposed p-persistent CSMA/CA and existing contention window

scheme:

Proposed p-Persistent CSMA/CA:
/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/** Include files **/

#include <math.h>
#include <string.h>
#include "oms_pr.h"
#include "oms_tan.h"
#include "oms_bgutil.h"
#include "wlan_support.h"
#include "oms_auto_addr_support.h"
#include "oms_dist_support.h"
#include "bridge_header.h"
#include "prg_mapping.h"
#include <prg_geo.h>

/** Constants **/

/* Incoming statistics and stream wires.
#define TRANSMITTER_BUSY_INSTAT 1
#define LOW_LAYER_INPUT_STREAM 0
#define LOW_LAYER_OUTPUT_STREAM 0

/* Flags to load different variables based on attribute settings. */
#define WLAN_AP 1
#define WLAN_STA 0

/* Flags to indicate the medium access mode (PCF/DCF). *
#define PCF_ACTIVE 1
#define PCF_INACTIVE 0

/* Special value indicating BSS identification is not used. */
#define WLAN_BSSID_NOT_USED -1

/* Special value indicating radio transceiver frequencies are set */
/* based on the BSS identification.
#define WLAN_BSS_BASED_FREQ_USED -1

/* Special value indicating that the number of back-off slots are */

32

/* not determined yet. */
#define BACKOFF_SLOTS_UNSET -1.0

/* Define a small value (= 1 psec), which will be used to recover */
/* from double arithmetic precision losts while doing time related */
/* precision sensitive computations.
#define PRECISION_RECOVERY 0.000000000001

/* Special value indicating BSS identification is currently unset. */
#define WLANC_BSS_ID_UNKNOWN -2

/* Define the lowest data transmission rate supported by WLAN MAC. */
#define LOWEST_TX_RATE 1000000.0
/* bits/sec */

/* Speed of light (m/s). */
#define C 3.0E+08

/* 16 times pi-squared. */
#define SIXTEEN_PI_SQ 157.91367

/* Period after which the STA will check for connectivity if scanning
is distance based. */
#define WLANC_CONN_CHK_DIST_INTERVAL 10.0

/* When in the SCAN state, the period that an STA will wait before
trying a new channel. */
#define WLANC_NEW_SCAN_BEACON_MULT 2.5

/* Physical layer parameters used during roaming/channel scanning.*/
#define WLANC_CHANNEL_COUNT 11
#define WLANC_FIRST_CHAN_MIN_FREQ 2401.0 /* MHz */
#define WLANC_CHANNEL_BANDWIDTH 22.0 /* MHz */
#define WLANC_CHANNEL_SPACING 5.0 /* MHz */
#define WLANC_LAST_CHAN_MIN_FREQ ((WLANC_CHANNEL_COUNT - 1)
* WLANC_CHANNEL_SPACING + WLANC_FIRST_CHAN_MIN_FREQ)
#define WLANC_CH_STEP_FOR_NO_OVERLAP ((int) ceil
(WLANC_CHANNEL_BANDWIDTH / WLANC_CHANNEL_SPACING))

/* When virtual scanning is used, two different thresholds are used to
decide */
/* when the STA must start looking for a new AP, and when a new AP is
/* considered acceptable. This brings in a "hysteresis" which ensures
that the STA does not flip-flop rapidly between APs. */

#define WLANC_ROAM_SCAN_START_VIRTUAL_THRESH rx_power_threshold
#define WLANC_ROAM_NEW_CONN_VIRTUAL_THRESH
 (rx_power_threshold * 1.1)

/* Define interrupt codes for generating handling interrupts */
/* indicating changes in deference, frame timeout which infers */
/* that the collision has occurred, random backoff and transmission */
/* completion by the physical layer (self interrupts). */
typedef enum WlanT_Mac_Intrpt_Code
 {
 WlanC_Deference_Off, /* Deference before frame transmission

33

WlanC_Frame_Timeout,/*No frame rcvd in set duration (infer
collision) */

 WlanC_Backoff_Elapsed,/*Backoff done before frame transmission*/
WlanC_CW_Elapsed,/* Backoff done after successful frame
 Transmission */

 WlanC_Beacon_Tx_Time, /* Time to transmit beacon frame */
 WlanC_Cfp_End, /* End of the Contention free period */
 WlanC_Scan_Timeout,/* End of scan duration for given channel */
 WlanC_AP_Check_Timeout,/* Time to check the connectivity status
 with the current AP*/
 Deference_Persistent /* Interrupt code for Deference in
 p-Persistent CSMA/CA */

} WlanT_Mac_Intrpt_Code;

/* Defining codes for the physical layer characteristics type.
typedef enum WlanT_Phy_Char_Code
 {
 WlanC_Frequency_Hopping,
 WlanC_Direct_Sequence,
 WlanC_Infra_Red
 } WlanT_Phy_Char_Code;

/** Global Variables **/

/* Global list of AP position info.
List* global_ap_pos_info_lptr = OPC_NIL;

/* Global variable to keep note of the nature of the subnet. *
/* This variable is initialized to not set.
WlanT_Bss_Identification_Approach bss_id_type = WlanC_Not_Set;

/** Macro Definitions **/

/** The data frame send flag is set whenever there is a data to be send
 by the higher layer or the response frame needs to be sent.

However, in either case the flag will not be set if the receiver is
busy. Frames cannot be transmitted until medium is idle. Once, the
medium is available then the station is eligible to transmit
provided there is a need for backoff. Once the transmission is
complete then the station will wait for the response provided the
frame transmitted requires a response (such as RTS and Data
frames). If response is not needed then the station will defer to
transmit next packet.

 After receiving a stream interrupt, we need to switch states from
 idle to defer or transmit if there is a frame to transmit and the
 receiver is not busy.If a frame is received indicating that the STA
 should scan, all bets are off, and the STA moves into the scan
 state to look for other APs */

#define READY_TO_TRANSMIT(((intrpt_type == OPC_INTRPT_STRM &&
wlan_flags->data_frame_to_send == OPC_TRUE && (pcf_flag ==
OPC_BOOLINT_DISABLED || (wlan_flags->pcf_active == OPC_FALSE &&
(ap_flag == OPC_BOOLINT_ENABLED || cfp_ap_medium_control ==
OPC_FALSE)))) || fresp_to_send != WlanC_None || wlan_flags->polled ==

34

OPC_TRUE || wlan_flags->tx_beacon == OPC_TRUE || wlan_flags->pcf_active
== OPC_TRUE && ap_flag == OPC_BOOLINT_ENABLED)) && !roam_state_ptr-
>scan_mode)

/* When we have a frame to transmit, we move to transmit state if the
 medium was idle for at least a DIFS time, otherwise we go to defer
 state. */
#define MEDIUM_IS_IDLE (((current_time - nav_duration +
PRECISION_RECOVERY >= difs_time) && wlan_flags->receiver_busy ==
OPC_FALSE && (current_time - rcv_idle_time + PRECISION_RECOVERY >=
difs_time) && wlan_flags->pcf_active == OPC_FALSE) || wlan_flags-
>forced_bk_end == OPC_TRUE)

/* Change state to Defer from Frm_End, if the input buffers are not
empty or a frame needs to be retransmitted or the station has to respond
to some frame. */
#define FRAME_TO_TRANSMIT (wlan_flags->data_frame_to_send
== OPC_TRUE || fresp_to_send != WlanC_None || retry_count != 0 ||
wlan_flags->tx_beacon == OPC_TRUE || wlan_flags->cw_required ==
OPC_TRUE)

/* After deferring for either collision avoidance or interframe gap */
/* the channel will be available for transmission. */
#define DEFERENCE_OFF (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == WlanC_Deference_Off && wlan_flags->receiver_busy ==
OPC_FALSE)

/*If the Service Differentiation Rule is not satisfied then the
transmission is deferred to the next slot after a deference of 1 ms*/
#define DEFER_PERSISTENT (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == Deference_Persistent)

/*Issue a transmission complete stat once the packet has successfully*/
/* been transmitted from the source station */
#define TRANSMISSION_COMPLETE (intrpt_type == OPC_INTRPT_STAT &&
op_intrpt_stat () == TRANSMITTER_BUSY_INSTAT)

/* Backoff is performed based on the value of the backoff flag.*/
#define PERFORM_BACKOFF (wlan_flags->backoff_flag
== OPC_TRUE || wlan_flags->perform_cw == OPC_TRUE)

/* Need to start transmitting frame once the backoff (self intrpt) */
/* completed */
#define BACKOFF_COMPLETED (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == WlanC_Backoff_Elapsed && (wlan_flags->receiver_busy ==
OPC_FALSE || wlan_flags->forced_bk_end == OPC_TRUE))

/* Contention Window period, which follows a successful packet */
/* transmission, is completed. */
#define CW_COMPLETED (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == WlanC_CW_Elapsed && (wlan_flags->receiver_busy ==
OPC_FALSE || wlan_flags->forced_bk_end == OPC_TRUE))

/* After transmission the station will wait for a frame response for*/
/* Data and Rts frames. */
#define WAIT_FOR_FRAME (expected_frame_type != WlanC_None)

35

/* Need to retransmit frame if there is a frame timeout and the */
/* required frame is not received */
#define FRAME_TIMEOUT (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == WlanC_Frame_Timeout)

/* If the frame is received appropriate response will be transmitted */
/* provided the medium is considered to be idle */
#define FRAME_RCVD (intrpt_type == OPC_INTRPT_STRM &&
bad_packet_rcvd == OPC_FALSE && i_strm == LOW_LAYER_INPUT_STREAM)

/* Skip backoff if no backoff is needed
#define TRANSMIT_FRAME (!PERFORM_BACKOFF)

/* Expecting frame response after data or Rts transmission */
#define EXPECTING_FRAME (expected_frame_type != WlanC_None)

/* When the contention window period is over then we go to IDLE state*/
/* if we don't have another frame to send at that moment. If we have */
/* one then we go to TRANSMIT state if we did not sense any activity */
/* on our receiver for a period that is greater than or equal to DIFS*/
/* period; otherwise we go DEFER state to defer and back-off before */
/* transmitting the new frame.
#define BACK_TO_IDLE (CW_COMPLETED && wlan_flags-
>data_frame_to_send == OPC_FALSE && !roam_state_ptr->scan_mode)

#define SEND_NEW_FRAME_AFTER_CW (CW_COMPLETED && wlan_flags-
>data_frame_to_send == OPC_TRUE && MEDIUM_IS_IDLE && !roam_state_ptr-
>scan_mode)

#define DEFER_AFTER_CW (CW_COMPLETED && wlan_flags-
>data_frame_to_send == OPC_TRUE && !MEDIUM_IS_IDLE && !roam_state_ptr-
>scan_mode)

/* Macros that check the change in the busy status of the receiver. */
#define RECEIVER_BUSY_HIGH (intrpt_type == OPC_INTRPT_STAT
&& intrpt_code < TRANSMITTER_BUSY_INSTAT && op_stat_local_read
(intrpt_code) > rx_power_threshold && !wlan_flags->collision)

#define RECEIVER_BUSY_LOW (intrpt_type == OPC_INTRPT_STAT
&& intrpt_code < TRANSMITTER_BUSY_INSTAT && !wlan_flags->receiver_busy)

#define PERFORM_TRANSMIT ((BACKOFF_COMPLETED ||
SEND_NEW_FRAME_AFTER_CW))

#define BACK_TO_DEFER ((FRAME_RCVD || DEFER_AFTER_CW ||
(wlan_flags->tx_beacon == OPC_TRUE && !wlan_flags->receiver_busy)))

/* Macro to evaluate whether the MAC is in a contention free period. */
#define IN_CFP (pcf_flag ==
OPC_BOOLINT_ENABLED && (cfp_ap_medium_control == OPC_TRUE ||
wlan_flags->pcf_active == OPC_TRUE))

/* After receiving a packet that indicates the end of the current CFP
 go to back to IDLE state if there is no packet to transmit in the CP*/

#define IDLE_AFTER_CFP (intrpt_type == OPC_INTRPT_STRM&&
!FRAME_TO_TRANSMIT && !IN_CFP)

36

/* Macro to cancel the self interrupt for end of deference. It is */
/* called at the state transition from DEFER to IDLE. */
#define CANCEL_DEF_EVENT (op_ev_cancel (deference_evh))

#define FRM_END_TO_IDLE (!FRAME_TO_TRANSMIT && !EXPECTING_FRAME
&& !IN_CFP)

#define FRM_END_TO_DEFER (!EXPECTING_FRAME && (FRAME_TO_TRANSMIT
|| IN_CFP))

/* Macros associated with the "SCAN" state. If the scan mode flag is */
/* set, the STA considers itself disconnected from its AP and starts */
/* scanning for a new AP-- only in DCF STAs. */
#define AP_DISCONNECTED (roam_state_ptr->scan_mode == OPC_TRUE)

#define AP_CONNECTED (roam_state_ptr->scan_mode == OPC_FALSE)

#define DATA_FRAME_TO_TX (wlan_flags->data_frame_to_send ==
OPC_TRUE)

#define SCAN_TIMEOUT (intrpt_type == OPC_INTRPT_SELF &&
intrpt_code == WlanC_Scan_Timeout)

#define SCAN_AFTER_CW (CW_COMPLETED && AP_DISCONNECTED)

/* End of Header Block */

/* State variable definitions */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 int retry_count;
 int intrpt_type;
 WlanT_Mac_Intrpt_Code intrpt_code;
 int my_address;
 Objid my_objid;
 Objid my_node_objid;
 Objid my_subnet_objid;
 Objid tx_objid;
 Objid txch_objid;
 Objid rx_objid;
 Objid rxch_objid;
 OmsT_Pr_Handle own_process_record_handle;
 List* hld_list_ptr;
 double operational_speed;
 int frag_threshold;
 int packet_seq_number;
 int packet_frag_number;
 int destination_addr;
 Sbhandle fragmentation_buffer_ptr;
 Sbhandle common_rsmbuf_ptr;
 WlanT_Mac_Frame_Type fresp_to_send;
 double nav_duration;
 int rts_threshold;

37

int duplicate_entry;
 WlanT_Mac_Frame_Type expected_frame_type;
 int remote_sta_addr;
 double backoff_slots;
 Stathandle packet_load_handle;
 double intrpt_time;
 Packet *
 wlan_transmit_frame_copy_ptr;
 Stathandle backoff_slots_handle;
 int instrm_from_mac_if;
 int outstrm_to_mac_if;
 int num_fragments;
 OpT_Packet_Size remainder_size;
 List* defragmentation_list_ptr;
 WlanT_Mac_Flags* wlan_flags;
 OmsT_Aa_Address_Handle oms_aa_handle;
 double current_time;
 double rcv_idle_time;
 Pmohandle hld_pmh;
 int max_backoff;
 char current_state_name [32];
 Stathandle hl_packets_rcvd;
 Stathandle media_access_delay;
 Stathandle ete_delay_handle;
 Stathandle global_ete_delay_handle;
 Stathandle global_throughput_handle;
 Stathandle global_load_handle;
 Stathandle global_dropped_data_handle;
 Stathandle global_mac_delay_handle;
 Stathandle ctrl_traffic_rcvd_handle_inbits;
 Stathandle ctrl_traffic_sent_handle_inbits;
 Stathandle ctrl_traffic_rcvd_handle;
 Stathandle ctrl_traffic_sent_handle;
 Stathandle data_traffic_rcvd_handle_inbits;
 Stathandle data_traffic_sent_handle_inbits;
 Stathandle data_traffic_rcvd_handle;
 Stathandle data_traffic_sent_handle;
 double sifs_time;
 double slot_time;
 int cw_min;
 int cw_max;
 double difs_time;
 double plcp_overhead_control;
 double plcp_overhead_data;
 Stathandle channel_reserv_handle;
 Stathandle retrans_handle;
 Stathandle throughput_handle;
 int long_retry_limit;
 int short_retry_limit;
 int retry_limit;
 WlanT_Mac_Frame_Type last_frametx_type;
 Evhandle deference_evh;
 Evhandle backoff_elapsed_evh;
 Evhandle frame_timeout_evh;
 double eifs_time;
 int i_strm;
 Boolean wlan_trace_active;

38

SimT_Pk_Id pkt_in_service;
 Stathandle bits_load_handle;
 int ap_flag;
 Boolean bss_flag;
 int ap_mac_address;
 int hld_max_size;
 double max_receive_lifetime;
 int accept_large_packets;
 WlanT_Phy_Char_Code phy_char_flag;
 OpT_Packet_Size total_hlpk_size;
 Stathandle drop_packet_handle;
 Stathandle drop_packet_handle_inbits;
 Log_Handle drop_pkt_log_handle;
 Log_Handle config_log_handle;
 int drop_pkt_entry_log_flag;
 int packet_size;
 double receive_time;
 Ici* llc_iciptr;
 double rx_power_threshold;
 int bss_id;
 int pcf_retry_count;
 int poll_fail_count;
 int max_poll_fails;
 List* cfpd_list_ptr;
 int pcf_queue_offset;
 double beacon_int;
 Sbhandle pcf_frag_buffer_ptr;
 Packet * wlan_pcf_transmit_frame_copy_ptr;
 int pcf_num_fragments;
 OpT_Packet_Size pcf_remainder_size;
 int* polling_list;
 int poll_list_size;
 int poll_index;
 double pifs_time;
 Evhandle beacon_evh;
 Evhandle cfp_end_evh;
 SimT_Pk_Id pcf_pkt_in_service;
 int pcf_flag;
 Boolean active_pc;
 int cfp_prd;
 int cfp_offset;
 double cfp_length;
 Boolean ap_relay;
 OpT_Packet_Size total_cfpd_size;
 OpT_Packet_Size packet_size_dcf;
 OpT_Packet_Size packet_size_pcf;
 double receive_time_dcf;
 double receive_time_pcf;
 Boolean cfp_ap_medium_control;
 int pcf_network;
 int beacon_eff_mode;
 int channel_num;
 int eval_bss_id;
 WlanT_Roam_State_Info* roam_state_ptr;
 WlanT_Rx_State_Info* rx_state_info_ptr;
 double ap_connectivity_check_interval;
 double ap_connectivity_check_time;

39

Evhandle ap_connectivity_check_evhndl;
 WlanT_AP_Position_Info* conn_ap_pos_info_ptr;
 WlanT_Sta_Mapping_Info* my_sta_info_ptr;
 WlanT_Bss_Mapping_Info* my_bss_info_ptr;
 PrgT_Mutex* mapping_info_mutex;
 double my_priority;
 int ack_seq_num;
 int dat_seq_num;
 } wlan_mac_p-Persistent_state;

/** state (TRANSMIT) enter executives **/
FSM_STATE_ENTER_UNFORCED (4, "TRANSMIT", state4_enter_exec,
"wlan_mac_sample1 [TRANSMIT enter execs]")
FSM_PROFILE_SECTION_IN (wlan_mac_sample1 [TRANSMIT enter execs],
state4_enter_exec)
{
/** In this state following intrpts can occur: **/
/** 1. Data arrival from application layer. **/
/** 2. Frame (DATA,ACK,RTS,CTS) rcvd from PHY layer. **/
/** 3. Busy intrpt stating that frame is being rcvd. **/
/** 4. Collision intrpt means more than one frame is rcvd. **/
/** 5. Transmission completed intrpt from physical layer **/
/** Queue the packet for Data Arrival from the higher layer, **/
/** and do not change state. **/
/** After Transmission is completed change state to FRM_END **/
/** No response is generated for any lower layer packet arrival**/
/* Prepare transmission frame by setting appropriate */
/* fields in the control/data frame. */
/* Skip this routine if any frame is received from the */
/* higher or lower layer(s) */
printf("\nAddress(TxENT) :%d\tPKT_SEQ_NUM :
%d",my_address,packet_seq_number);
if (wlan_flags->immediate_xmt == OPC_TRUE)
{
/* Initialize the contention window size for the */
/* packets that are sent without backoff for the */
/* first time, if in case they are retransmitted. */
 max_backoff = cw_min;

tmp_pty=op_dist_uniform(1);
 printf("\nTesting PTY1 : %.1f",tmp_pty);
 if(tmp_pty < my_priority)
 {
 printf("\nTransmit1");
 wlan_frame_transmit ();
 }
 else
 {
 printf("\nDeference1");

deference_evh = p_intrpt_schedule_self(op_sim_time()+0.001,
Deference_Persistent);

 }
}
else
{

printf("\nDestination Address : %d",destination_addr);
 wlan_frame_transmit ();

40

}
/* Start the transmission. */
/* Reset the immediate transmission flag. */
wlan_flags->immediate_xmt = OPC_FALSE;
}

else if (wlan_flags->rcvd_bad_packet == OPC_FALSE && intrpt_type ==
OPC_INTRPT_SELF)
{
/* If it is a PCF enabled MAC then make sure that */
/* the interrupt was not PCF related. Start the */
/* transmission, if the delivered self interrupt is */
/* an interrupt that was just brought us into this */
/* state. */
if ((pcf_flag == OPC_BOOLINT_DISABLED || intrpt_code ==
WlanC_Deference_Off || intrpt_code == WlanC_Backoff_Elapsed ||
intrpt_code == WlanC_CW_Elapsed) && !(intrpt_code ==
WlanC_Beacon_Tx_Time || intrpt_code == WlanC_AP_Check_Timeout))
{

wlan_frame_transmit ();
 tmp_pty=op_dist_uniform(1);
 printf("\nTesting PTY2 : %.1f",tmp_pty);
 if(tmp_pty < my_priority)
 {
 printf("\nTransmit2");
 wlan_frame_transmit ();
 }
 else
 {
 printf("\nDeference2");
 deference_evh = op_intrpt_schedule_self (op_sim_time()+0.001,
 Deference_Persistent);
 }
/* Check whether the forced transmission (end */
/* of backoff) flag is set. */
if (wlan_flags->forced_bk_end == OPC_TRUE)
{
/* Reset the flag. */
wlan_flags->forced_bk_end = OPC_FALSE;
/* This flag indicates a rare case: at the */
/* exact time when we completed our backoff */
/* and started our transmission, we also */
/* started receiving a packet. Hence, mark */
/* the currently being received packet as a */
/* bad packet. */
wlan_flags->rcvd_bad_packet = OPC_TRUE;
}
if (wlan_trace_active)
{
/* Determine the current state name. */
strcpy (current_state_name, "transmit");
}

/* Unlock the mutex that serializes accessing the */
/* roaming related information of this MAC. */
op_prg_mt_mutex_unlock (roam_state_ptr->roam_info_mutex);
}

41

Existing Contention Window Scheme:

/* OPNET system definitions */
#include <opnet.h>

/* Header Block */

/** Include files **/

#include <math.h>
#include <string.h>
#include "oms_pr.h"
#include "oms_tan.h"
#include "oms_bgutil.h"
#include "wlan_support.h"
#include "oms_auto_addr_support.h"
#include "oms_dist_support.h"
#include "bridge_header.h"
#include "prg_mapping.h"
#include <prg_geo.h>

/** Global Variables **/

/* Global list of AP position info. */
List* global_ap_pos_info_lptr = OPC_NIL;
/* Global variable to keep note of the nature of the subnet. */
/* This variable is initialized to not set. */
WlanT_Bss_Identification_Approach bss_id_type = WlanC_Not_Set;

/* State variable definitions */
typedef struct
 {
 /* Internal state tracking for FSM */
 FSM_SYS_STATE
 /* State Variables */
 int retry_count;
 int intrpt_type;
 WlanT_Mac_Intrpt_Code intrpt_code;
 int my_address;
 Objid my_objid;
 Objid my_node_objid;
 Objid my_subnet_objid;
 Objid tx_objid;
 Objid txch_objid;
 Objid rx_objid;
 Objid rxch_objid;
 OmsT_Pr_Handle own_process_record_handle;
 List* hld_list_ptr;
 double operational_speed;
 int frag_threshold;
 int packet_seq_number;
 int packet_frag_number;
 int destination_addr;
 Sbhandle fragmentation_buffer_ptr;
 Sbhandle common_rsmbuf_ptr;

42

WlanT_Mac_Frame_Type fresp_to_send;
 double nav_duration;
 int rts_threshold;
 int duplicate_entry;
 WlanT_Mac_Frame_Type expected_frame_type;
 int remote_sta_addr;
 double backoff_slots;
 Stathandle packet_load_handle;
 double intrpt_time;
 Packet *
 wlan_transmit_frame_copy_ptr;
 Stathandle backoff_slots_handle;
 int instrm_from_mac_if;
 int outstrm_to_mac_if;
 int num_fragments;
 OpT_Packet_Size remainder_size;
 List* defragmentation_list_ptr;
 WlanT_Mac_Flags* wlan_flags;
 OmsT_Aa_Address_Handle oms_aa_handle;
 double current_time;
 double rcv_idle_time;
 Pmohandle hld_pmh;
 int max_backoff;
 char current_state_name [32];
 Stathandle hl_packets_rcvd;
 Stathandle media_access_delay;
 Stathandle ete_delay_handle;
 Stathandle global_ete_delay_handle;
 Stathandle global_throughput_handle;
 Stathandle global_load_handle;
 Stathandle
 global_dropped_data_handle;
 Stathandle global_mac_delay_handle;
 Stathandle
 ctrl_traffic_rcvd_handle_inbits;
 Stathandle
 ctrl_traffic_sent_handle_inbits;
 Stathandle ctrl_traffic_rcvd_handle;
 Stathandle ctrl_traffic_sent_handle;
 Stathandle
 data_traffic_rcvd_handle_inbits;
 Stathandle
 data_traffic_sent_handle_inbits;
 Stathandle data_traffic_rcvd_handle;
 Stathandle data_traffic_sent_handle;
 double sifs_time;
 double slot_time;
 int cw_min;
 int cw_max;
 double difs_time;
 double plcp_overhead_control;
 double plcp_overhead_data;
 Stathandle channel_reserv_handle;
 Stathandle retrans_handle;
 Stathandle throughput_handle;
 int long_retry_limit;
 int short_retry_limit;

43

int retry_limit;
 WlanT_Mac_Frame_Type last_frametx_type;
 Evhandle deference_evh;
 Evhandle backoff_elapsed_evh;
 Evhandle frame_timeout_evh;
 double eifs_time;
 int i_strm;
 Boolean wlan_trace_active;
 SimT_Pk_Id pkt_in_service;
 Stathandle bits_load_handle;
 int ap_flag;
 Boolean bss_flag;
 int ap_mac_address;
 int hld_max_size;
 double max_receive_lifetime;
 int accept_large_packets;
 WlanT_Phy_Char_Code phy_char_flag;
 OpT_Packet_Size total_hlpk_size;
 Stathandle drop_packet_handle;
 Stathandle drop_packet_handle_inbits;
 Log_Handle drop_pkt_log_handle;
 Log_Handle config_log_handle;
 int drop_pkt_entry_log_flag;
 int packet_size;
 double receive_time;
 Ici* llc_iciptr;
 double rx_power_threshold;
 int bss_id;
 int pcf_retry_count;
 int poll_fail_count;
 int max_poll_fails;
 List* cfpd_list_ptr;
 int pcf_queue_offset;
 double beacon_int;
 Sbhandle pcf_frag_buffer_ptr;
 Packet * wlan_pcf_transmit_frame_copy_ptr;
 int pcf_num_fragments;
 OpT_Packet_Size pcf_remainder_size;
 int* polling_list;
 int poll_list_size;
 int poll_index;
 double pifs_time;
 Evhandle beacon_evh;
 Evhandle cfp_end_evh;
 SimT_Pk_Id pcf_pkt_in_service;
 int pcf_flag;
 Boolean active_pc;
 int cfp_prd;
 int cfp_offset;
 double cfp_length;
 Boolean ap_relay;
 OpT_Packet_Size total_cfpd_size;
 OpT_Packet_Size packet_size_dcf;
 OpT_Packet_Size packet_size_pcf;
 double receive_time_dcf;
 double receive_time_pcf;
 Boolean cfp_ap_medium_control;

44

int pcf_network;
 int beacon_eff_mode;
 int channel_num;
 int eval_bss_id;
 WlanT_Roam_State_Info* roam_state_ptr;
 WlanT_Rx_State_Info* rx_state_info_ptr;
 double ap_connectivity_check_interval;
 double ap_connectivity_check_time;
 Evhandle ap_connectivity_check_evhndl;
 WlanT_AP_Position_Info* conn_ap_pos_info_ptr;
 WlanT_Sta_Mapping_Info* my_sta_info_ptr;
 WlanT_Bss_Mapping_Info* my_bss_info_ptr;
 PrgT_Mutex* mapping_info_mutex;
 double my_priority;
 int ack_seq_num;
 int dat_seq_num;
 int bk1;
 int bk2;
 int bkr;
 double tsum1;
 double tsum2;
 } wlan_mac_ContentionWindowScheme_state;

static void wlan_mac_sv_init ()
 {
 Objid
 mac_params_comp_attr_objid;
 Objid params_attr_objid;
 Objid pcf_params_comp_attr_objid;
 Objid subpcf_params_attr_objid;
 Objid chann_objid;
 int num_chann;
 double tx_power;
 int i;
 Objid statwire_objid;
 int num_statwires;
 double threshold;
 void* temp_ptr;
 char mutex_name_str [64];
 int roaming_cap_flag;

/** 1. Initialize state variables. **/
 /** 2. Read model attribute values in variables. **/
 /** 3. Create global lists **/
 /** 4. Register statistics handlers **/
 FIN (wlan_mac_sv_init ());

/* object id of the surrounding processor. */
 my_objid = op_id_self ();

/* Obtain the node's object identifier */
 my_node_objid = op_topo_parent (my_objid);

/* Obtain subnet objid. */
 my_subnet_objid = op_topo_parent (my_node_objid);

/* Obtain the values assigned to the various attributes */

45

op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters",
 &mac_params_comp_attr_objid);
 params_attr_objid = op_topo_child (mac_params_comp_attr_objid,
 OPC_OBJTYPE_GENERIC, 0);

/* Determine the assigned MAC address. */
 op_ima_obj_attr_get (my_objid, "Address", &my_address);

/* Obtain an address handle for resolving WLAN MAC addresses.
oms_aa_handle = oms_aa_address_handle_get ("MAC Addresses",

 "Address");

/* Obtain the BSS_Id attribute to determine if BSS based network
 is used */
 op_ima_obj_attr_get (params_attr_objid, "BSS Identifier",
 &bss_id);

/* Register the log handles and related flags.
config_log_handle = op_prg_log_handle_create

 (OpC_Log_Category_Configuration, "Wireless Lan", "MAC
 Configuration", 128);
 drop_pkt_log_handle = op_prg_log_handle_create
 (OpC_Log_Category_Protocol, "Wireless Lan", "Data packet
 Drop", 128);
 drop_pkt_entry_log_flag = 0;

/* Update the global variable if this is the first node to come
 up. If not the first node, then check for mismatches. A subnet

can be a traditional subnet (i.e. a subnet with one BSS, this is
the existing model) or a BSS based subnet where for every node
the attribute BSS_Id is set to indicate to which BSS a node
belongs. If the global is set to traditional subnet and the this

 node has its BSS_Id attribute set then log a warning message
and recover by considering the BSS_Id attribute setting as not
used. If the global is set to BSS based subnet and this node is
not using its BSS_Id attribute then log an error message and
stop the simulation. */

 if (bss_id_type == WlanC_Not_Set)
 {

if (bss_id == WLAN_BSSID_NOT_USED)
 {

bss_id_type = WlanC_Entire_Subnet ;
 }

else
 {

bss_id_type = WlanC_Bss_Divided_Subnet ;
 }

}

/* Configuration error checking */
if (bss_id_type == WlanC_Entire_Subnet && bss_id
!=WLAN_BSSID_NOT_USED)

 {
 /*Recoverable mismatch, log warning and continue by enforcing */
 /*traditional subnet,i.e.force the bss_id variable to not used*/
 /* Write the warning message. */
 op_prg_log_entry_write (config_log_handle,"WARNING:\n"

46

" A node with an explicit BSS \n"
 " assignment was found in a pure \n"
 " subnet.\n"
 "ACTION:\n"
 " The BSS identifier is set to\n"
 " the default value.\n"
 "CAUSE:\n"
 " There are some nodes in the\n"
 " network which have their BSS\n"
 " identifiers set to the default\n"
 " while the others have the\n"
 " default setting.\n"
 "SUGGESTION:\n"
 " Ensure that all nodes have the\n"
 " BSS identifier set to the default\n"
 " value or all of them are explicitly\n"
 " assigned.\n");
 }

else if (bss_id_type == WlanC_Bss_Divided_Subnet && bss_id ==
 WLAN_BSSID_NOT_USED)
 {
 /* Unrecoverable error-- not all BSS IDs have been configured.

Suppose in the wlan what the BSS ID should be, hence terminate*/
 wlan_mac_error ("BSS ID not set in a node which belongs to a
 network in which some BSS IDs are set","Please set a non-default
 BSS ID on all nodes in the network", OPC_NIL);
 }

/* Use the subnet ID as the BSS ID if it is set to "NOT USED".
if (bss_id_type == WlanC_Entire_Subnet)

 {
 bss_id = my_subnet_objid;

/* Add the BSS ID into the BSS ID list, which is later going to
 be used while selecting channels for BSSs.*/
 wlan_bss_id_list_manage (bss_id, "add");
 }

/* Get model attributes. */
 op_ima_obj_attr_get (params_attr_objid, "Data Rate",
 &operational_speed);

 op_ima_obj_attr_get (params_attr_objid, "Fragmentation
 Threshold", &frag_threshold);

 op_ima_obj_attr_get (params_attr_objid, "Rts Threshold",
 &rts_threshold);

op_ima_obj_attr_get (params_attr_objid, "Short Retry Limit",
&short_retry_limit);

 op_ima_obj_attr_get (params_attr_objid, "Long Retry Limit",
 &long_retry_limit);
 op_ima_obj_attr_get (params_attr_objid, "Access Point
 Functionality", &ap_flag);

 op_ima_obj_attr_get (params_attr_objid, "Buffer Size",
 &hld_max_size);

 op_ima_obj_attr_get (params_attr_objid, "Max Receive Lifetime",
 &max_receive_lifetime);
 op_ima_obj_attr_get (params_attr_objid, "Large Packet
 Processing", &accept_large_packets);

47

op_ima_obj_attr_get_dbl (my_node_objid, "Priority",
 &my_priority);

/* Get simulation attributes. */
 op_ima_sim_attr_get (OPC_IMA_TOGGLE, "WLAN Beacon Efficiency
 Mode", &beacon_eff_mode);

/* Initialize the retry limit for the current frame to long
 retry limit. */
 retry_limit = long_retry_limit;

/* Extract beacon and PCF parameters. */
 op_ima_obj_attr_get (params_attr_objid, "PCF Parameters",
 &pcf_params_comp_attr_objid);

 subpcf_params_attr_objid = op_topo_child
 (pcf_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 0);

 op_ima_obj_attr_get (subpcf_params_attr_objid, "PCF
 Functionality", &pcf_flag);
 op_ima_obj_attr_get (subpcf_params_attr_objid, "CFP Beacon
 Multiple", &cfp_prd);
 op_ima_obj_attr_get (subpcf_params_attr_objid, "CFP Offset",
 &cfp_offset);
 op_ima_obj_attr_get (subpcf_params_attr_objid, "CFP Interval",
 &cfp_length);
 op_ima_obj_attr_get (subpcf_params_attr_objid, "Max Failed
 Polls", &max_poll_fails);
 op_ima_obj_attr_get (subpcf_params_attr_objid, "Beacon
 Interval", &beacon_int);

ap_relay = OPC_TRUE;

/* Check if there is an active AP controlling the medium during
 the CFP.*/
 if ((ap_flag == OPC_BOOLINT_ENABLED) && (pcf_flag ==
 OPC_BOOLINT_ENABLED))
 active_pc= OPC_TRUE;
 else
 active_pc= OPC_FALSE;

/* Load the appropriate physical layer characteristics.
op_ima_obj_attr_get (params_attr_objid, "Physical

 Characteristics", &phy_char_flag);

/* Obtain the receiver valid packet power threshold value used
 by the statwires from the receiver into the MAC module. */
 op_ima_obj_attr_get (params_attr_objid, "Packet Reception-Power
 Threshold", &rx_power_threshold);
 op_ima_obj_attr_get (params_attr_objid, "Transmit Power",
 &tx_power);

/* Based on physical characteristics settings set appropriate
 values to the variables. */
 switch (phy_char_flag)
 {

case WlanC_Frequency_Hopping:
 {

/* Slot duration in terms of seconds. */

48

slot_time = 50E-06;

/* Short interframe gap in terms of seconds. */
 sifs_time = 28E-06;

/* PLCP overheads, which include the preamble and
 header, in terms of seconds. */

 plcp_overhead_control = 128E-06;
 plcp_overhead_data = 128E-06;

/* Minimum contention window size for selecting
 backoff slots. */
 cw_min = 15;

/* Maximum contention window size for selecting
backoff slots. */

 cw_max = 1023;
 break;
 }

case WlanC_Direct_Sequence:
 {

/* Slot duration in terms of seconds. */
 slot_time = 20E-06;

/* Short interframe gap in terms of seconds. */
 sifs_time = 10E-06;

/* PLCP overheads, which include the preamble and
header, in terms of seconds. */

 plcp_overhead_control = 192E-06;
 plcp_overhead_data = 192E-06;

/* Minimum contention window size for selecting
backoff slots. */

 cw_min = 31;

/* Maximum contention window size for selecting
backoff slots. */

 cw_max = 1023;

if(my_priority == 0.3) //LOW PRIORITY CLASS
 {

cw_min = 500;
 cw_max = 1023;
 }

else if(my_priority == 0.8)//HIGH PRIORITY CLASS
 {

cw_min = 100;
 cw_max = 500;
 }

Else //NORMAL PACKETS CLASS FOR ACKs
 {

cw_min = 31;
 cw_max = 100;
 }

break;

49

}

case WlanC_Infra_Red:
 {

/* Slot duration in terms of seconds.
slot_time = 8E-06;

/* Short interframe gap in terms of seconds.
sifs_time = 7E-06;

/* PLCP overheads, which include the preamble and
header, in */

 /* terms of seconds. Infra-red supports
 transmission of parts */
 /* of the PLCP header at the regular data
 transmission rate, */
 /* which can be higher than mandatory lowest data
 rate. */
 plcp_overhead_control = 57E-06;
 plcp_overhead_data = 25E-06 + (ceil
 (32000000.0 / operational_speed) / 1E6);

/* Minimum contention window size for selecting
 backoff slots. */
 cw_min = 63;

/* Maximum contention window size for selecting
 backoff slots. */
 cw_max = 1023;
 break;
 }

default:
 {

wlan_mac_error ("Unexpected Physical Layer
Characteristic encountered.", OPC_NIL, OPC_NIL);

 break;
 }

}

/** By default stations are configured for IBSS unless
an Access Point is found,**/
/** then the network will have an infrastructure BSS
configuration. **/

 bss_flag = OPC_FALSE;

/* Computing DIFS interval which is interframe gap
between successive frame transmissions. */

 difs_time = sifs_time + 2 * slot_time;

/* If the receiver detects that the received frame is
erroneous then it will set the network allocation vector
to EIFS duration. */
eifs_time = difs_time + sifs_time + WLAN_ACK_DURATION +
plcp_overhead_control;

50

/** PIFS duration is used by the AP operating under PCF
to gain priority to access the medium **/

 pifs_time = sifs_time + slot_time;

/* Creating list to store data arrived from higher
layer. */

 hld_list_ptr = op_prg_list_create ();

/* If the station is an AP, and PCF supported, create
separate PCF queue list for higher layer. */
if ((ap_flag == OPC_BOOLINT_ENABLED) && (pcf_flag ==
OPC_BOOLINT_ENABLED))

 cfpd_list_ptr = op_prg_list_create ();
 else
 cfpd_list_ptr = OPC_NIL;

/* Initialize segmentation and reassembly buffers. */
 defragmentation_list_ptr = op_prg_list_create ();

fragmentation_buffer_ptr = op_sar_buf_create
(OPC_SAR_BUF_TYPE_SEGMENT, OPC_SAR_BUF_OPT_PK_BNDRY);
common_rsmbuf_ptr = op_sar_buf_create
(OPC_SAR_BUF_TYPE_REASSEMBLY, OPC_SAR_BUF_OPT_DEFAULT);

/* Create the mutex that will be used to serialize calling of
prg_mapping functions, which read/write global model related
mapping information, under multi-threaded execution with
multiple CPUs. */
mapping_info_mutex = op_prg_mt_mutex_create
(OPC_MT_MUTEX_READER_WRITER, 0, "WLAN Mapping Info Mutex");

FOUT;

 }
/** state (BKOFF_NEEDED) enter executives **/
FSM_STATE_ENTER_FORCED (3, "BKOFF_NEEDED", state3_enter_exec,
"wlan_mac_sample2 [BKOFF_NEEDED enter execs]")
FSM_PROFILE_SECTION_IN (wlan_mac_sample2 [BKOFF_NEEDED enter execs],
state3_enter_exec)
{
/** In this state we determine whether a back-off is necessary for the
 frame we are trying to transmit. It is needed when station
 preparing to transmit frame discovers that the medium is busy or

the station is responding to the frame. Following a successful
 packet transmission, again a back-off procedure is performed for a
 contention window period as stated in 802.11 standard. **/
/** If backoff needed then check whether the station completed its **/
/** backoff in the last attempt. If not then resume the backoff **/
/** from the same point, otherwise generate a new random number **/
/** for the number of backoff slots. **/

/* Checking whether backoff is needed or not. */
if (wlan_flags->backoff_flag == OPC_TRUE || wlan_flags->perform_cw ==
OPC_TRUE)
{
if (backoff_slots == BACKOFF_SLOTS_UNSET)
{
/* Compute backoff interval using binary exponential process. */

51

/* After a successful transmission we always use cw_min. */
if (retry_count == 0 || wlan_flags->perform_cw == OPC_TRUE)
{
/* If retry count is set to 0 then set the maximum backoff */
/* slots to min window size. */
max_backoff = cw_min;
}
else
{
/* We are retransmitting. Increase the back-off window size */
max_backoff = max_backoff * 2 + 1;
}

/* The number of possible slots grows exponentially until it */
/* exceeds a fixed limit.*/
if (max_backoff > cw_max)
{

max_backoff = cw_max;
}
/* Obtain a uniformly distributed random integer between 0 and */
/* the minimum contention window size. Scale the number of */
/* slots according to the number of retransmissions. */
backoff_slots = floor (op_dist_uniform (max_backoff + 1));
}
if(my_priority==0.3)
{

tsum1=tsum1+ backoff_slots ;
 bk1++;
}
else if(my_priority==0.8)
{

tsum2=tsum2+ backoff_slots;
 bk2++;
}
else
 bkr++;
printf("\nBACKOFF SLOTS: %.1f FOR STATION: %d BackOff STATE Count:%d
backoffSLOTS:%.1f",backoff_slots,my_address,((my_priority==0.1)?(bk1):(
bk2)),((my_priority==0.1)?(tsum1):(tsum2)));

/* Set a timer for the end of the backoff interval. */
if(my_priority==0.3)
{
backoff_slots = backoff_slots + 800;
intrpt_time = (current_time + backoff_slots * slot_time);
printf("\tIntrpt Time(PTY(%.1f)) : %f Station ID :
%d",my_priority,intrpt_time,my_address);
}
else if(my_priority==0.8)
{

backoff_slots = backoff_slots +500;
 intrpt_time = (current_time + backoff_slots * slot_time);

printf("\tIntrpt Time(PTY(%.1f)) : %f Station Id :
%d",my_priority,intrpt_time,my_address);

}
else
{

52

intrpt_time = (current_time + backoff_slots * slot_time);
printf("\tIntrpt Time(Rx) : %f Station ID :%d",intrpt_time,my_address);
}
printf("\nINTRPT TIME SET: %f Station ID : %d",intrpt_time,my_address);

/* Scheduling self interrupt for backoff. */
if (wlan_flags->perform_cw == OPC_TRUE)
 backoff_elapsed_evh = op_intrpt_schedule_self (intrpt_time,
 WlanC_CW_Elapsed);
else

backoff_elapsed_evh = op_intrpt_schedule_self (intrpt_time,
WlanC_Backoff_Elapsed);

/* Reporting number of backoff slots as a statistic. */
op_stat_write (backoff_slots_handle, backoff_slots);
}

}
FSM_PROFILE_SECTION_OUT (wlan_mac_contentwindowscheme [BKOFF_NEEDED
enter execs], state3_enter_exec)

/** End of state (BKOFF_NEEDED) Enter executives **/

VITA

Vijay Gurusamy

Candidate for the Degree of

Master of Science

Thesis: SERIVCE DIFFERENTIATION USING p-PERSISTENT CSMA/CA

Major Field: Computer Science

Biographical:

Personal Data: Born in Trichy, Tamil Nadu, India on October 26, 1980, the son of
Mr. R. Gurusamy and Mrs. Saroja Gurusamy.

Education: Received Bachelor of Engineering in Computer Science and

Engineering from Bharathidasan University, Trichy, India in May
2002. Completed the requirements for the Master of Science degree
with a major in Computer Science at Oklahoma State University in
December, 2005.

Professional Experience: August 2004 – December 2005 worked as Software

Programmer for Soil Water Forage Analytical Labs (SWFAL),
Dr. Halin Zhang, Plant and Soil Sciences Department, Oklahoma State
University, Stillwater.

Name: Vijay Gurusamy Date of Degree: December 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SERVICE DIFFERENTIATION USING p-PERSISTENT CSMA/CA

Pages of Study: 52 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The problem of service differentiation in wireless LANs is

of utmost importance compared to wired networks. Multimedia
communication via wireless LANs needs larger bandwidth compared to non-
multimedia communications. Hence, a service differentiation scheme to
enhance the distinction of service offered to different class priorities is
essential. The objective of this thesis is to study the problem of providing
service differentiation using proposed p-Persistent CSMA approach and the
existing contention window scheme. The areas of this study include service
differentiation schemes in p-Persistent CSMAs, various contention window
schemes and a number of adaptive service differentiation schemes. Also, a
service differentiation rule is used to distinguish the services offered to
various classes of traffic.

Findings and Conclusions: Service differentiation for different classes of priorities using

proposed p-Persistent version and existing contention window scheme were
studied. The performance (average throughput & average media access delay)
of both p-Persistent CSMA and contention window scheme was studied in
depth. A service differentiation rule was implemented to distinguish the
priorities among different classes of traffic. The parameters of both the
schemes were chosen to be comparable. The p-Persistent CSMA version and
contention window scheme works successfully for the two different scenarios
(Scenario 1: load varied & data generation rate constant, Scenario 2: data
generation rate varied & load constant). Finally, the p-Persistent version when
analyzed offered service differentiation with lower delay as the network load
increases.

ADVISOR’S APPROVAL: _____________Dr. Venkatesh Sarangan________________

